Powered by Deep Web Technologies
Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fusion Plasma Performance Required for Fusion Power The performance achieved on MFE and IFE fusion experiments using DT fuel is compared with the fusion performance  

E-Print Network (OSTI)

Fusion Plasma Performance Required for Fusion Power The performance achieved on MFE and IFE fusion experiments using DT fuel is compared with the fusion performance required for a Fusion Power Plant. Const. Cost $B Date

2

Investigation of condensed matter fusion  

SciTech Connect

Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations.

Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

1990-12-01T23:59:59.000Z

3

Fusion reactions in multicomponent dense matter  

Science Journals Connector (OSTI)

We analyze thermonuclear and pycnonuclear fusion reactions in dense matter containing atomic nuclei of different types. We extend a phenomenological expression for the reaction rate, proposed recently by Gasques et al. [Phys. Rev. C 72, 025806 (2005)] for the one-component plasma of nuclei, to the multicomponent plasma. The expression contains several fit parameters which we adjust to reproduce the best microscopic calculations available in the literature. Furthermore, we show that pycnonuclear burning is drastically affected by an (unknown) structure of the multicomponent matter (a regular lattice, a uniform mix, etc.). We apply the results to study nuclear burning in a 12C-16O mixture. In this context, we present new calculations of the astrophysical S factors for carbon-oxygen and oxygen-oxygen fusion reactions. We show that the presence of a C-O lattice can strongly suppress carbon ignition in white dwarf cores and neutron star crusts at densities ??3×109 g cm-3 and temperatures T?108 K.

D. G. Yakovlev; L. R. Gasques; A. V. Afanasjev; M. Beard; M. Wiescher

2006-09-27T23:59:59.000Z

4

Giant laser needs a revamp to achieve nuclear fusion  

Science Journals Connector (OSTI)

An expert panel advises extending fusion efforts at the huge laser facility in California, but says big changes might be necessary for success

2013-01-01T23:59:59.000Z

5

NIF achieves record laser energy in pursuit of fusion ignition | National  

NLE Websites -- All DOE Office Websites (Extended Search)

achieves record laser energy in pursuit of fusion ignition | National achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF achieves record laser energy in pursuit ... NIF achieves record laser energy in pursuit of fusion ignition Posted By Office of Public Affairs NNSA Blog The NNSA's National Ignition Facility (NIF) surpassed a critical

6

Near and sub-barrier fusion as a probe of nuclear structure Sub-barrier fusion is particularly sensitive to the tail of the nuclear matter distribution,  

E-Print Network (OSTI)

Near and sub-barrier fusion as a probe of nuclear structure Sub-barrier fusion is particularly sensitive to the tail of the nuclear matter distribution, hence provides a good probe of the neutron and proton distributions. Measuring fusion for an isotopic chain of projectile nuclei one can sensitively

de Souza, Romualdo T.

7

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving Fusion Conditions Achieving Fusion Conditions CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Achieving Fusion Conditions EXPERIMENTAL RESULTS IN FUSION RESEARCH Both inertial and magnetic confinement fusion research have focused on understanding plasma confinement and heating. This research has led to increases in plasma temperature, T, density, n, and energy confinement

8

Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion  

SciTech Connect

Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

Nuckolls, J.H.

1994-06-01T23:59:59.000Z

9

Nuclear Matter Incompressibility Effect on the Cross Section of Fusion Reactions with a weakly bound projectile  

E-Print Network (OSTI)

Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be +209Bi,208Pb,29Si and 27Al reactions. The results show that applying these effects at energies near the Coulomb barrier improves the agreement between the calculated and experimental cross sections, and modifies the mean values of the suppression parameter.

Seyyedi, S A

2015-01-01T23:59:59.000Z

10

Nuclear Matter Incompressibility Effect on the Cross Section of Fusion Reactions with a weakly bound projectile  

E-Print Network (OSTI)

Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be +209Bi,208Pb,29Si and 27Al reactions. The results show that applying these effects at energies near the Coulomb barrier improves the agreement between the calculated and experimental cross sections, and modifies the mean values of the suppression parameter.

S. A. Seyyedi; H. Golnarkar

2015-01-19T23:59:59.000Z

11

Main achievements in research on Plasma Physics and Controlled Fusion in 2010 in Russia  

SciTech Connect

The key results presented at the XXXVIII International Zvenigorod Conference on Plasma Physics and Controlled Fusion, held February 14-18, 2011 are reviewed, and the main research directions are analyzed.

Grishina, I. A.; Ivanov, V. A.; Kovrizhnykh, L. M. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

2011-12-15T23:59:59.000Z

12

Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as  

E-Print Network (OSTI)

scientific breakeven." E. Moses, Status of the NIF Project, Lawrence Livermore National Laboratory Report: "Laser fusion experiments, facilities, and diagnostics at Lawrence Livermore National Laboratory", by H of 1 defines scientific breakeven. (This is therefore a Livermore definition!) The recent National

13

Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt  

Science Journals Connector (OSTI)

European activities on inertial fusion energy are coordinated by “keep in touch activities” of the European Fusion Programme coordinated by the European Commission. There is no general inertial fusion program in Europe. Instead, a number of activities relevant to inertial fusion are carried out by university groups and research centers. The Helmholtz-Research Center GSI-Darmstadt (Gesellschaft für Schwerionenforschung) operates accelerator facilities which provide the highest intensity for heavy ion beams and therefore key issues of ion beam driven fusion can be addressed. In addition to the accelerator facilities, one high-energy laser system is available (nhelix: nanosecond high-energy laser for ion experiments) and another one is under construction (PHELIX: petawatt high-energy laser for ion experiments). The heavy ion synchrotron facility, SIS18 (Schwer-Ionen-Synchrotron 18) recently delivered an intense uranium beam that deposits about 1 kJ/g specific energy in solid matter. Using this beam, experiments have been performed where solid Pb- and Ta-targets have been heated to the level of 1 eV. Experiments to study interaction mechanism of heavy ion beams with matter have been continued and are reported here.

D.H.H. Hoffmann; A. Blazevic; S. Korostiy; P. Ni; S.A. Pikuz; B. Rethfeld; O. Rosmej; M. Roth; N.A. Tahir; S. Udrea; D. Varentsov; K. Weyrich; B.Yu. Sharkov; Y. Maron

2007-01-01T23:59:59.000Z

14

Hydrogen Hydrogen FusionFusionFusionFusionFusionFusion  

E-Print Network (OSTI)

100.000 years LNGS Laboratori Nazionali del Gran Sasso Borexino THE THERMONUCLEAR FUSION REACTIONHydrogen Hydrogen Fusion Deuterium FusionFusionFusionFusionFusionFusion THE SUN AS BOREXINO SEES

Heiz, Ulrich

15

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescent Lights and Neon Signs Fluorescent Lights and Neon Signs CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Fluorescent Lights and Neon Signs Two of the most common plasma devices on the planet are the fluorescent light bulb, and its cousin, the neon sign. Since their development in the 1940's, fluorescent bulbs have become the lighting fixture of choice in

16

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Sun Sun Layers CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour From Core to Corona Layers of the Sun Image Credit: p. 110,125, Kaler The Core The innermost layer of the sun is the core. With a density of 160 g/cm^3, 10 times that of lead, the core might be expected to be solid. However, the core's temperature of 15 million kelvins (27 million degrees Fahrenheit)

17

Laser Fusion: The Uncertain Road to Ignition  

Science Journals Connector (OSTI)

In early 2014, the U.S. National Ignition Facility announced that it had achieved a fusion reaction that produced net positive energy. Fusion scientists have applauded that...

Rose, Melinda

2014-01-01T23:59:59.000Z

18

Stopping of swift protons in matter and its implication for astrophysical fusion reactions C. A. Bertulani1,2,  

E-Print Network (OSTI)

s : 26.20. f, 34.50.Bw Nuclear fusion reactions proceed in stars at low energies, e.g., of the order sections measured in the labo- ratory with those in a stellar environment. Another screening effect protons in low-energy collisions is investigated. At low projectile energies the stopping is mainly due

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

19

PLASMA-PHYSICS-21 Heavy ion driven reactor-size double shell inertial fusion targets*  

E-Print Network (OSTI)

Inertial Confinement Fusion (ICF) is considered as an alternative to Magnetic Confinement Fusion to achieve controlled thermonuclear fusion. The main goal is to exploit the energy released from thermonuclear fusion reactions

M. C. Serna Moreno; N. A. Tahir; J. J. López Cela; A. R. Piriz; D. H. H. Hoffmann

20

Splenogonadal Fusion  

Science Journals Connector (OSTI)

Splenogonadal fusion is a very rare congenital malformation. It is characterized by fusion of the spleen and gonad. The first case of splenogonadal fusion was described by Bostroem in 1883. There are two types: c...

Ahmed H. Al-Salem

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Type Fusion  

Science Journals Connector (OSTI)

Fusion is an indispensable tool in the arsenal ... Less well-known, but equally valuable is type fusion, which states conditions for fusing an application ... algebra. We provide a novel proof of type fusion base...

Ralf Hinze

2011-01-01T23:59:59.000Z

22

Finding Fusion  

Science Journals Connector (OSTI)

Finding Fusion ... Study of these reactions will advance understanding of the workings of stars and giant planets, fusion energy, and nuclear weapon stockpiles. ...

JYLLIAN KEMSLEY

2012-09-10T23:59:59.000Z

23

Inertial-confinement fusion with fast ignition  

Science Journals Connector (OSTI)

...achieve ignition and thermonuclear burn. For a fusion power plant, gains...the ratio of the thermonuclear energy to the initial...released by the thermonuclear burn in unit mass...compressed spherical fusion fuel. Higher gain...

1999-01-01T23:59:59.000Z

24

Score Fusion and Decision Fusion  

Science Journals Connector (OSTI)

Score fusion is a paradigm, which calculates similarity scores ... then combines the two scores according to a fusion formula, e.g., the overall score ... mean of the two modality scores. Decision fusion is a par...

2009-01-01T23:59:59.000Z

25

US ITER - Why Fusion?  

NLE Websites -- All DOE Office Websites (Extended Search)

US Fusion Research Sites US Fusion Research Sites DOE Office of Science: US Fusion Energy Sciences Program Fusion Power Associates General Atomics DIIII-D National Fusion Facility...

26

Scientific Achievement  

NLE Websites -- All DOE Office Websites (Extended Search)

We have shown that even higher maximum solar cell efficiencies can be achieved by using "spectrum---spli;ng" geometries that combine strong light trapping and r adiave c oupling....

27

Fusion Power Still a Long Way Off  

Science Journals Connector (OSTI)

Fusion Power Still a Long Way Off ... PRESS REPORTS of spectacular British breakthroughs in achieving controlled thermonuclear reactions have proved to be unfounded. ...

1958-02-03T23:59:59.000Z

28

Analysis of Data Fusion Methods in Virtual Screening:? Similarity and Group Fusion  

Science Journals Connector (OSTI)

We also develop a customized fusion rule, which provides an estimate of the optimal possible result for fusing multiple searches of a specific database; this shows that similarity fusion can, in principle, achieve retrieval enhancements even if this is not achieved in practice with current fusion rules. ... Studies of data fusion applied to similarity searching fall into three types. ... In similarity fusion, of type (i) or (ii) discussed in the Introduction, the values obtained using two or more measures are combined using one of several fusion rules. ...

Martin Whittle; Valerie J. Gillet; Peter Willett; Jens Loesel

2006-08-29T23:59:59.000Z

29

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

program to achieve ignition, to provide laser facility timeIgnition Facility National Institute for Fusion Science National LaserIgnition Facility (NIF). In support of the OMEGA Laser

Dart, Eli

2014-01-01T23:59:59.000Z

30

Nuclear Fusion  

Science Journals Connector (OSTI)

Although not yet developed at the commercial stage, nuclear fusion technology is still being considered as a ... used in nuclear warfare. Since research in nuclear fusion for the production of energy started abou...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

31

Fusion Energy  

Science Journals Connector (OSTI)

Nuclear fusion was discovered in 1932, which is earlier ... than 400 fission power plants are operated to provide base load of electricity worldwide now. In contrast, nuclear fusion was used for a hydrogen bomb i...

Prof. Hiroshi Yamada

2012-01-01T23:59:59.000Z

32

Fusion Inhibitors  

Science Journals Connector (OSTI)

(T-20, Fuzeon) was introduced as the first fusion inhibitor at the beginning of 2003. It works by blocking the cells' viral uptake. Disadvantages of fusion inhibitors are their production difficulties, high...

2008-01-01T23:59:59.000Z

33

Genetic fusion  

Science Journals Connector (OSTI)

Genetic fusion is introduced as a model for evolution. In the fusion two genomes are combined to generate a longer genome. Representing each species by a binary genetic sequence, we introduce a fitness function on the bit sequence. As the evolutionary dynamics, we incoroporate mutation, genetic fusion, and reproduction in proportion to fitness. It is found that genetic fusion leads to the appearance of module-type sequences and duplicated genes. The time necessary to find a sequence with large fitness is largely reduced by the inclusion of genetic fusion, which suggests the application of our algorithm to optimization problems.

Takashi Ikegami and Kunihiko Kaneko

1990-12-24T23:59:59.000Z

34

Fusion Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Intro Fusion Education Research DIII-D Internal Site Opportunities Virtual DIII-D Collaborators Countries Physics Eng Physics Operations Diagnostics Computing IFT IFT Site ITER ITER Site FDF Theory Collaborators Conferences GA-Hosted Room Reservations Fusion Meetings Plasma Publications Presentations Images Brochures Posters Movies Corporate General Atomics Products Visitor GA Fusion Hotels Internal Users GA Internal Site DIII-D General Experimental Science Experimental Science Home 2013 Experimental Campaign Burning Plasma Physics Dynamics & Control Boundary and Pedestal ELM Control Operations Diagnostics Computing Support Visitors DIII-D Web Access Help IFT ITER-GA Theory Research Highlights Personnel Links Policies Safety Comp Support Trouble Ticket Eng/Design Fusion Webmail Phone Book

35

The Road to Controlled Nuclear Fusion  

Science Journals Connector (OSTI)

... is one atom of deuterium for every 7,000 atoms of ordinary hydrogen. Second, nuclear fusion does not generate as much radioactive waste as nuclear fission, so storage-a serious ... plants-does not constitute such a serious problem. By contrast with nuclear fission, however, nuclear fusion reactions cannot be sustained by themselves in matter which is in its normal state. ...

L. ARTSIMOVICH

1972-09-01T23:59:59.000Z

36

Plasmas are Hot and Fusion is Cool  

SciTech Connect

Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

None

2011-01-01T23:59:59.000Z

37

Ceramics for fusion applications  

SciTech Connect

Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

Clinard, F.W. Jr.

1986-01-01T23:59:59.000Z

38

Fusion Policy Advisory Committee (FPAC)  

SciTech Connect

This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

Not Available

1990-09-01T23:59:59.000Z

39

Fusion Power  

Science Journals Connector (OSTI)

...present cost of coal, on a per-unit-of-energy basis. Nuclear fusion is nuclear combustion, the process that heats the sun and...enough for the release of fusion energy to exceed the heat input; and third, convert the energy released to useful form...

R. F. Post

1971-01-01T23:59:59.000Z

40

Fusion Prospects  

Science Journals Connector (OSTI)

...Ermesto Mazzucato Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA E-mail: mazzucato@pppl.gov Several recent letters proclaim once again the superior promise that thermonuclear fu-sion offers for future large-scale...

Ernesto Mazzucato

1996-02-16T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fusion energy  

SciTech Connect

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-02T23:59:59.000Z

42

Fusion energy  

ScienceCinema (OSTI)

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-23T23:59:59.000Z

43

Fusion Power Associates Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Power Associates Awards Fusion Power Associates is "a non-profit, tax-exempt research and educational foundation, providing information on the status of fusion development...

44

Minimal fusion systems.  

E-Print Network (OSTI)

??We define minimal fusion systems in a way that every non-solvable fusion system has a section which is minimal. Minimal fusion systems can also be… (more)

Henke, Ellen

2010-01-01T23:59:59.000Z

45

Dynamic Instruction Fusion  

E-Print Network (OSTI)

SANTA CRUZ DYNAMIC INSTRUCTION FUSION A thesis submitted in4 2.2 Instruction Fusion & Complex10 3.1 Fusion Selection

Lee, Ian

2012-01-01T23:59:59.000Z

46

RSNA 2002: Image Fusion Image Fusion  

E-Print Network (OSTI)

of anatomical feature #12;RSNA 2002: Image Fusion Types of Data to be Registered Anatomic CT, MRI, US DigitizedRSNA 2002: Image Fusion Image Fusion: Introduction to the Technology Charles A. Pelizzari, Ph.D. Department of Radiation and Cellular Oncology The University of Chicago #12;RSNA 2002: Image Fusion "Fusion

Pelizzari, Charles A.

47

Status report on fusion research  

Science Journals Connector (OSTI)

At the beginning of the twenty-first century mankind is faced with the serious problem of meeting the energy demands of a rapidly industrializing population around the globe. This, against the backdrop of fast diminishing fossil fuel resources (which have been the main source of energy of the last century) and the increasing realization that the use of fossil fuels has started to adversely affect our environment, has greatly intensified the quest for alternative energy sources. In this quest, fusion has the potential to play a very important role and we are today at the threshold of realizing net energy production from controlled fusion experiments. Fusion is, today, one of the most promising of all alternative energy sources because of the vast reserves of fuel, potentially lasting several thousands of years and the possibility of a relatively 'clean' form of energy, as required for use in concentrated urban industrial settings, with minimal long term environmental implications. The last decade and a half has seen unprecedented advances in controlled fusion experiments with the discovery of new regimes of operations in experiments, production of 16?MW of fusion power and operations close to and above the so-called 'break-even' conditions. A great deal of research has also been carried out in analysing various socio-economic aspects of fusion energy. This paper briefly reviews the various aspects and achievements of fusion research all over the world during this period.

International Fusion Research Council (IFRC)

2005-01-01T23:59:59.000Z

48

Fusion Power  

Science Journals Connector (OSTI)

...later) of fusion fuel above its ignition point-about 100 million degrees...closely, so that prediction based on theory is becoming much more...new-generation experiments, based on the successes of the old...substantially lower than that of steam turbine-alternator conversion...

R. F. Post

1971-01-01T23:59:59.000Z

49

The path to fusion power  

Science Journals Connector (OSTI)

...cost-effective neutron and plasma source for a component...at Culham and NSTX at Princeton, are beginning to reach...that requires no driven plasma current to confine the...achieved near fusion plasma conditions at very modest...Experiment (NSTX) at Princeton in the USA also operates...

2010-01-01T23:59:59.000Z

50

Superheavy Elements - Achievements and Challenges  

SciTech Connect

The search for superheavy elements (SHE) has yielded exciting results for both the 'cold fusion' approach with reactions employing Pb and Bi targets and the ''hot fusion'' reactions with {sup 48}Ca beams on actinide targets. The most recent activities at GSI were the successful production of a more neutron rich isotope of element 112 in the reaction {sup 48}Ca+{sup 238}U confirming earlier result from FLNR, and the attempt to synthesize an isotope with Z 120 in the reaction {sup 64}Ni+{sup 238}U. Apart from the synthesis of new elements, advanced nuclear structure studies for heavy and super heavy elements promise a detailed insight in the properties of nuclear matter under the extreme conditions of high Z and A. The means are evaporation residue(ER)-{alpha}-{alpha} and -{alpha}-{gamma} coincidence techniques applied after separation of the reaction products from the beam. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the investigation of K-isomers observed for {sup 252,254}No and indicated for {sup 270}Ds. Fast chemistry and precision mass measurements deliver in addition valuable information on the fundamental properties of the SHE.

Ackermann, Dieter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

2009-03-04T23:59:59.000Z

51

Operations & Maintenance Best Practices Guide: Front Matter  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the front matter of the Operations and Maintenance Best Practices: a Guide to Achieving Operational Efficiency.

52

Road Map for a Modular Magnetic Fusion Program Dale M. Meade  

E-Print Network (OSTI)

1 Road Map for a Modular Magnetic Fusion Program Dale M. Meade Princeton Plasma Physics Laboratory Princeton University During the past several decades magnetic fusion has made outstanding progress in understanding the science of fusion plasmas, the achievement of actual fusion plasmas and the development of key

53

FUSION03, Concluding Remarks  

Science Journals Connector (OSTI)

......studies of subbarrier fusion of light nuclei are needed as input into the calculation of dynamics and evolution of various...in this conference. 7. Fusion in astrophysical settings Nuclear fusion reactions play a very important role in astrophysical settings......

A. B. Balantekin

2004-02-01T23:59:59.000Z

54

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

55

data fusion 15 June 2012  

E-Print Network (OSTI)

real world data fusion Fred Daum 15 June 2012 data fusion Copyright © 2012 Raytheon Company. All fusion fusion of measurements performance fusion of tracks interesting parameter 3 #12;real world multi-sensor data fusion fusion of tracks performance fusion of measurements interesting parameter 4 #12;real world

Dobigeon, Nicolas

56

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

in the Tokamak Fusion Test Reactor which will be completedDrivers and Reactors for Inertial Confinement Fusion, K.A.

Keefe, D.

2008-01-01T23:59:59.000Z

57

Braided Fusion Categories First Conjecture  

E-Print Network (OSTI)

Braided Fusion Categories First Conjecture Second Conjecture Braided Weakly Integral Fusion Fusion Categories #12;Braided Fusion Categories First Conjecture Second Conjecture Outline 1 Braided Fusion Categories Preliminaries Dimensions and Braid Representations 2 First Conjecture Finiteness

Rowell, Eric C.

58

Lithium and nuclear fusion  

Science Journals Connector (OSTI)

... the EEC of a decision on the siting of the Joint European Torus (JET) nuclear fusion project, worrying setbacks though these are for European fusion research, should not be allowed ... gain is the highest (about 1,800 per fusion reaction). The first generation of nuclear fusion reactors will therefore need a continuous supply of both deuterium and tritium fuel.

Nick Walton, Ed Spooner

1976-06-17T23:59:59.000Z

59

Fusion Basics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are hot balls of plasma. Aurora Borealis and Aurora Australis Fusion reactors, like NSTX, use plasma to fuse atoms to make energy. Plasma displays use small cells of plasma to illuminate images. What is Fusion? Light atoms like hydrogen (one proton and one neutron) can fuse together so

60

Fusion Algebras of Logarithmic Minimal Models  

E-Print Network (OSTI)

We present explicit conjectures for the chiral fusion algebras of the logarithmic minimal models LM(p,p') considering Virasoro representations with no enlarged or extended symmetry algebra. The generators of fusion are countably infinite in number but the ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of representations decomposes into a finite direct sum of representations. The fusion rules are commutative, associative and exhibit an sl(2) structure but require so-called Kac representations which are reducible yet indecomposable representations of rank 1. In particular, the identity of the fundamental fusion algebra is in general a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the results of Gaberdiel and Kausch for p=1 and with Eberle and Flohr for (p,p')=(2,5) corresponding to the logarithmic Yang-Lee model. In the latter case, we confirm the appearance of indecomposable representations of rank 3. We also find that closure of a fundamental fusion algebra is achieved without the introduction of indecomposable representations of rank higher than 3. The conjectured fusion rules are supported, within our lattice approach, by extensive numerical studies of the associated integrable lattice models. Details of our lattice findings and numerical results will be presented elsewhere. The agreement of our fusion rules with the previous fusion rules lends considerable support for the identification of the logarithmic minimal models LM(p,p') with the augmented c_{p,p'} (minimal) models defined algebraically.

Jorgen Rasmussen; Paul A. Pearce

2007-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth  

E-Print Network (OSTI)

Driver Laser h=5-10% Heavy ion Accelerator h=15-40% Z-pinch h~15% Ignition by stagnation of convergent good progress toward achieving fusion ignition and high gain for energy applications We are making good progress toward achievingWe are making good progress toward achieving fusion ignition and high gain

62

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

Dart, Eli

2014-01-01T23:59:59.000Z

63

E-Print Network 3.0 - antimatter matter exploration Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Matter An International Colloquium on the Science of Time August 11 - 17, 2002 at Venice Source: Experimental High Energy Physics Collection: Plasma Physics and Fusion ;...

64

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Rainer W. Kuehne

2006-04-14T23:59:59.000Z

65

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Kuehne, R W

2006-01-01T23:59:59.000Z

66

Laser fusion experiments, facilities, and diagnostics at Lawrence Livermore National Laboratory  

Science Journals Connector (OSTI)

The progress of the LLNL Laser Fusion Program in our work to achieve high gain thermonuclear microexplosions is discussed. Many experiments have been successfully performed and...

Ahlstrom, H G

1981-01-01T23:59:59.000Z

67

Measuring Energy Achievements  

Energy.gov (U.S. Department of Energy (DOE))

This presentation covers types of energy measurements essential to industrial facilities and discusses the benefits of metrics. ArcelorMittal provides examples from their experience measuring energy achievements.

68

Plasma physics: A promising advance in nuclear fusion  

Science Journals Connector (OSTI)

... Formidable challenges face the decades-long quest to achieve nuclear fusion— the power source of stars — in the laboratory. For a plasma to ... power source of stars — in the laboratory. For a plasma to undergo self-heating nuclear fusion (ignition), it must be both hot and well confined. The facilities that hope ...

Mark Herrmann

2014-02-12T23:59:59.000Z

69

Multi-Sensor Fusion for Localization Concept and Simulation Results  

E-Print Network (OSTI)

Multi-Sensor Fusion for Localization Concept and Simulation Results Damien Kubrak, Thales Alenia system that takes advantage of very few measurements of different types as well as map constraints. The data fusion is achieved at infrastructure and user level. Particle and extended Kalman filters

LeGland, François

70

Fusion Power Associates, 2011 Annual Meeting 1 General Fusion  

E-Print Network (OSTI)

Fusion Power Associates, 2011 Annual Meeting 1 General Fusion #12;Fusion Power Associates, 2011 Annual Meeting 2 General Fusion Making commercially viable fusion power a reality. · Founded in 2002, based in Vancouver, Canada · Plan to demonstrate a fusion system capable of "net gain" within 3 years

71

Fusion Power Associates, 2012 Annual Meeting 1 General Fusion  

E-Print Network (OSTI)

Fusion Power Associates, 2012 Annual Meeting 1 General Fusion #12;Fusion Power Associates, 2012 Annual Meeting 2 General Fusion Making affordable fusion power a reality. · Founded in 2002, based to demonstrate the first fusion system capable of "net gain" 3 years after proof · Validated by leading experts

72

Charge exchange recombination spectroscopy on fusion devices  

SciTech Connect

For fusion, obtaining reliable measurements of basic plasma parameters like ion and electron densities and temperatures is a primary goal. For theory, measurements are needed as a function of time and space to understand plasma transport and confinement with the ultimate goal of achieving economic nuclear fusion power. Electron profile measurements and plasma spectroscopy for the plasma ions are introduced. With the advent of Neutral Beam auxiliary plasma heating, Charge Exchange Recombination Spectroscopy provides accurate and time resolved measurements of the ions in large volume fusion devices. In acknowledgement of Nicol Peacock's role in the development of these techniques, still at the forefront of plasma fusion research, this paper describes the evolution of this diagnostic method.

Duval, B. P. [Centre de Recherches en Physique des Plasmas, EPFL, Lausanne (Switzerland)

2012-05-25T23:59:59.000Z

73

PROGRESS TOWARD UNDERSTANDING MAGNETIZED TARGET FUSION (MTF).  

SciTech Connect

Magnetized target fusion (MTF) takes advantage of (1) the reduction of the electron thermal conductivity in a plasma due to magnetization and (2) the efficient heating through bulk compression. MTF proposes to create a warm plasma with an embedded magnetic field and to compress it using an imploded liner or shell. The minimum energy required for fusion in an optimized target is directly proportional to the mass of the ignited fusion fuel. Simple theoretical arguments and parameter studies have demonstrated that MTF has the potential for significantly reducing the power and intensity of a target driver needed to achieve fusion. In order to acquire a comprehensive understanding of MTF and its potential applications it is prudent to develop more complete and reliable computational techniques. This paper briefly reviews the progress toward that goal.

Kirkpatrick, R. C. (Ronald C.); Lindemuth, I. R. (Irvin R.); Barnes, D. C. (Daniel C.); Faehl, R. J. (Rickey J.); Sheehey, P. T. (Peter T.); Knapp, C. E. (Charles E.)

2001-01-01T23:59:59.000Z

74

Characteristics of an Economically Attractive Fusion Power Plant  

E-Print Network (OSTI)

Characteristics of an Economically Attractive Fusion Power Plant Farrokh Najmabadi University: Assessment Based on Attractiveness & Feasibility Periodic Input from Energy Industry Goals and Requirements Scientific & Technical Achievements Evaluation Based on Customer Attributes Attractiveness Characterization

75

Fusion News: 2002  

Science Journals Connector (OSTI)

This paper summarizes key news events in the development of fusion energy. Highlights include status of ITER negotiations, FESAC studies, NIF construction and fusion-related legislation. Also included are summ...

Stephen O. Dean

2003-03-01T23:59:59.000Z

76

Fusion Research Moves Ahead  

Science Journals Connector (OSTI)

Fusion Research Moves Ahead ... U.S. SCIENTISTS are steadily pecking away at the problems of controlled thermonuclear reactions. ...

1959-12-07T23:59:59.000Z

77

Chapter 7 - Fusion  

Science Journals Connector (OSTI)

Abstract This chapter briefly introduces the topic of fusing light nuclei such as deuterium (D) and tritium (T) together to release binding energy. Characteristics of a plasma in which thermonuclear fusion is carried out are described. Fusion reaction cross sections are graphed for the most promising reactions including D-D and D-T. The ignition temperature for fusion is shown as the cross over point between energy produced by fusion and radiation losses due to mechanisms such as bremsstrahlung.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

78

Dynamic Instruction Fusion  

E-Print Network (OSTI)

and energy efficient register file (Transient Register File) tightly coupled to the Fusion ALU in order to provide

Lee, Ian

2012-01-01T23:59:59.000Z

79

Fusion systems of -type  

Science Journals Connector (OSTI)

We prove results on 2-fusion systems related to the 2-fusion systems of groups of Lie type over the field of order 2 and certain sporadic groups. The results are used in a later paper to determine the N-systems: the 2-fusion systems of N-groups.

Michael Aschbacher

2013-01-01T23:59:59.000Z

80

Ion beam fusion  

Science Journals Connector (OSTI)

...that converts the fusion and blanket energy into...target gain G is the thermonuclear energy produced by the...Most concep- tual fusion power plants have a...and the International Thermonuclear Experimental Reactor...situation, the inertial fusion com- munity in the...

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fusion Plasmas Martin Greenwald  

E-Print Network (OSTI)

. Despite the cold war, which raged for another 30 years, controlled fusion research became a modelFusion Plasmas Martin Greenwald Encyclopedia of Electrical and Electronic Engineering, John Webster - editor, published by John Wiley & Sons, New York (1999) #12;Controlled Fusion For half a century

Greenwald, Martin

82

Cluster-impact fusion  

Science Journals Connector (OSTI)

We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

P. M. Echenique; J. R. Manson; R. H. Ritchie

1990-03-19T23:59:59.000Z

83

Presented by Information Fusion  

E-Print Network (OSTI)

Presented by Information Fusion: Science and Engineering of Combining Information from Multiple's Office of Science #12;2 Managed by UT-Battelle for the U.S. Department of Energy Rao_InfoFusion_SC10 Information Fusion at ORNL ďż˝ ORNL Instrumental in formulating and fostering this multi-disciplinary area

84

Cold nuclear fusion in metallic hydrogen and normal metals  

Science Journals Connector (OSTI)

The rate of nuclear fusion from tunneling in very dense metallic hydrogen in the core of Jupiter is calculated to be 10-50 per hydrogen-deuterium pair per second. It is estimated that the width of the fusion barrier for deuterium in palladium or a similar metal must be reduced to, of order, 0.1 A? for the fusion rate to be 10-25 per deuterium per second. If this scale is achieved, the ratios of various nuclear reaction rates will be very different for cold versus thermonuclear fusion.

Charles J. Horowitz

1989-10-01T23:59:59.000Z

85

When matter matters  

SciTech Connect

We study a recently proposed scenario for the early universe:Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions — to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.

Easson, Damien A. [Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Tempe, AZ, 85287-1504 (United States); Sawicki, Ignacy [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg Philosophenweg 16, 69120 Heidelberg (Germany); Vikman, Alexander, E-mail: easson@asu.edu, E-mail: ignacy.sawicki@uni-heidelberg.de, E-mail: alexander.vikman@cern.ch [CERN, Theory Division, CH-1211 Genčve 23 (Switzerland)

2013-07-01T23:59:59.000Z

86

The Physics of Magnetic Fusion Rectors  

Science Journals Connector (OSTI)

23 April 1981 research-article The Physics of Magnetic Fusion Rectors K. V. Roberts Once ignition has been achieved the...phases. Efficient methods are required for extracting the thermonuclear energy which is deposited as heat within the plasma, for...

1981-01-01T23:59:59.000Z

87

AFRD - Fusion Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Fusion Virtual National Laboratory Heavy Ion Fusion Virtual National Laboratory AFRD - Fusion Energy Sciences AFRD - Home Fusion - Home HIF-VNL Website Ion Beam Technology Group website Artist's conception of a heavy ion fusion power plant Artist's conception of an IFE powerplant We further inertial fusion energy as a future power source, primarily through R&D on heavy-ion induction accelerators. Our program is part of a "Virtual National Laboratory," headquartered in AFRD, that joins us with Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory in close collaboration on inertial fusion driven by beams of heavy ions. The related emergent science of high-energy-density physics (HEDP) has become a major focus. For further synergy, we have combined forces with the former Ion Beam

88

BUILDING MOMENTUM ACHIEVING EXCELLENCE  

E-Print Network (OSTI)

BUILDING MOMENTUM ACHIEVING EXCELLENCE AnnuAlRepoRtofDonoRs July 1, 2013 ­ June 30, 2014 #12;the '82 Douglas R. Cliggott '78 Lecturer UMass Amherst Jeanette Cole^ Associate Chair & Director UMass Amherst David J. Der Hagopian '72 (Retired) CEO Ravago Holdings Americare George R. Ditomassi Jr. '57, '96

Mountziaris, T. J.

89

Achieving Sustainability Cindy Carlsson  

E-Print Network (OSTI)

Achieving Sustainability at MnDOT Cindy Carlsson MnDOT Office of Policy Analysis, Research and Innovation 22nd Annual Transportation Research Conference May 24, 2011 #12;Sustainable practices respect Sustainability #12;Environmental Sustainability Sustainable practices · Are compatible with and may enhance

Minnesota, University of

90

Achieving Sustainability Cindy Carlsson  

E-Print Network (OSTI)

Achieving Sustainability Cindy Carlsson Mn/DOT Office of Policy Analysis, Research and Innovation April 21, 2011 #12;Sustainability Is Not New Mn/DOT has long been a leader in CSS and environmental excellence. . . . . . so we're well along on the path to sustainability! #12;Today Sustainability is More

Minnesota, University of

91

Reviving Cold Fusion  

Science Journals Connector (OSTI)

Reviving Cold Fusion ... In March 1989, electrochemists B. Stanley Pons and Martin Fleischmann announced at a press conference at the University of Utah that they had tamed the power of nuclear fusion in a benchtop electrolysis experiment. ... The discovery of cold fusion, as it came to be called, held the promise of endless amounts of pollution-free energy being generated from the natural deuterium in water. ...

STEPHEN K. RITTER

2012-05-14T23:59:59.000Z

92

Cold Fusion Fiasco  

Science Journals Connector (OSTI)

Cold Fusion Fiasco ... When two chemists, B. Stanley Pons and Martin Fleischmann, announced to the world's press on March 23, 1989, that they had discovered fusion in a test tube, they launched the equivalent of a scientific gold rush. ... Within a day of that infamous Utah press conference, physicist Stephen Jones at nearby Brigham Young University claimed that he, too, had been detecting neutrons from a cold fusion cell. ...

TREVOR PINCH

1992-01-13T23:59:59.000Z

93

Project ACHIEVE final report  

SciTech Connect

Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

NONE

1997-06-13T23:59:59.000Z

94

Controlled Nuclear Fusion Reactions  

Science Journals Connector (OSTI)

... THE presentation of full and authoritative accounts of research on controlled nuclear fusion reactions was a major feature of the second Geneva Conference on the Peaceful Uses of ...

R. S. PEASE

1958-10-18T23:59:59.000Z

95

Fission, Fusion Materials Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

is shown in illustration. Materials are the immediate priority of both the fission and fusion communities. Extending the lifetime of the current fleet of light water reactors...

96

AEC Pushes Fusion Reactors  

Science Journals Connector (OSTI)

AEC Pushes Fusion Reactors ... Project Sherwood, as the study program is called, began in 1951-52 soon after the first successful thermonuclear explosion in the Pacific. ...

1955-10-10T23:59:59.000Z

97

Path toward fusion energy  

SciTech Connect

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

98

flame-fusion process  

Science Journals Connector (OSTI)

...a method of gem synthesis based on Verneuil process (furnace) used in growing synthetic single crystals to distinguish from a melt or flux fusion. Verneuil furnace .

2009-01-01T23:59:59.000Z

99

Fusion Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

100

Photons & Fusion Newsletter - 2014  

NLE Websites -- All DOE Office Websites (Extended Search)

news Photons & Fusion Newsletter - 2014 May ARC Beamlet Profiles NIF Petawatt Laser Is on Track to Completion The Advanced Radiographic Capability (ARC), a petawatt-class laser now...

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fusion Energy Sciences Jobs  

Office of Science (SC) Website

Title: Administrative Support Specialist 15 DE SC HQ 013
Office: Fusion Energy Sciences
URL:

102

Fusion-A Potential Power Source  

Science Journals Connector (OSTI)

Fusion-A Potential Power Source ... Nuclear energy, fusion reactions, magnetic confinement, and tokamaks. ...

Torkil H. Jensen

1994-01-01T23:59:59.000Z

103

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

Network Research) C.S. Chang, PPPL (Fusion Simulations) EliGreenwald, MIT PSFC (Alcator C-Mod) Paul Henderson, PPPL (PPPL Networking) Steve Jardin, PPPL (Fusion Simulations)

Dart, Eli

2014-01-01T23:59:59.000Z

104

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

the world’s first reactor-scale fusion device in Cadarache,vital to fusion research, as the newest reactors are those

Dart, Eli

2014-01-01T23:59:59.000Z

105

Channeling of Fusion Alpha-Particle Power Using Minority Ion Catalysis A. I. Zhmoginov and N. J. Fisch  

E-Print Network (OSTI)

, with electrons kept cold, so that the effective fusion reactivity can be increased [9­11]. The meansChanneling of Fusion Alpha-Particle Power Using Minority Ion Catalysis A. I. Zhmoginov and N. J greatly facilitate controlled nuclear fusion. The parameter range for achieving this temperature disparity

106

Controlled Nuclear Fusion  

Science Journals Connector (OSTI)

... papers have an English abstract. Translations of the Russian papers have already been published in Nuclear Fusion. It is a great pity, for Western readers at least, that the Russian ... two volumes are obviously going to be standard reference books for those interested in controlled nuclear fusion. They also contain a large amount of information, particularly on the theoretical side, ...

GEORGE ROWLANDS

1970-01-31T23:59:59.000Z

107

Polyploidy and Nuclear Fusion  

Science Journals Connector (OSTI)

... mitotic figures, reported during delayed wound healing in Rhodnius11, are likewise the result of nuclear fusion. Polyploid nuclei are far more plentiful in the fat body of Rhodnius after extreme ... starved for long periods. It is probable that this occasional polyploidy also is due to nuclear fusion. Endomitosis, however, occurs regularly in the fat body of Rhodnius as in other ...

V. B. WIGGLESWORTH

1966-12-31T23:59:59.000Z

108

Focus on Fusion...  

Science Journals Connector (OSTI)

Focus on Fusion... ... As 1957 ended, the British press set off a thermonuclear uproar, blasted the U. S. Atomic Energy Commission for assertedly withholding information on British breakthroughs in controlled thermonuclear reactions. ... However, last year did see a breakthrough of sorts as thermonuclear information managed to clear the secrecy hurdle at last; by fall, fusion research was completely declassified. ...

1959-01-05T23:59:59.000Z

109

The Nuclear Fusion Award  

Science Journals Connector (OSTI)

The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 635–44 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 451–61 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L25–8 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 512–20 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 277–84 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 82–98 Berk H.L. et al 2006 Explanation of the JET n = 0 chirping mode Nucl. Fusion 46 S888–97 Urano H. et al 2006 Confinement degradation with beta for ELMy HH-mode plasmas in JT-60U tokamak Nucl. Fusion 46 781–7 Izzo V.A. et al 2006 A numerical investigation of the effects of impurity penetration depth on disruption mitigation by massive high-pressure gas jet Nucl. Fusion 46 541–7 Inagaki S. et al 2006 Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas Nucl. Fusion 46 133–41 Watanabe T.-H. et al 2006 Velocity–space structures of distribution function in toroidal ion temperature gradient turbulence Nucl. Fusion 46 24–32 2010 Nuclear Fusion Award nominees For the 2010 award, the papers published in the 2007 volume were assessed and the following papers were nominated, all of which are magnetic confinement experiments and theory. Rice J.E. et al 2007 Inter-machine comparison of intrinsic toroidal rotation in tokamaks Nucl. Fusion 47 1618–24 Lipschultz B. et al 2007 Plasma–surface interaction, scrape-off layer and divertor physics: implications for ITER Nucl. Fusion 47 1189–205 Loarer T. et al 2007 Gas balance and fuel retention in fusion devices Nucl. Fusion 47 1112–20 Garcia O.E et al 2007 Fluctuations and transport in the TCV scrape-off layer Nucl. Fusion 47 667–76 Zonca F. et al 2007 Electron fishbones: theory and experimental evidence Nucl. Fusion 47 1588–97 Maggi C.F. et al 2007 Characteristics of the H-mode pedestal in improved confinement scenarios in ASDEX Upgrade, DIII-D, JET and JT-60U Nucl. Fusion 47 535–51 Yoshida M. et al 2007 Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas Nucl. Fusion 47 856–63 Zohm H. et al 2007 Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER Nucl. Fusion 47 228–32 Snyder P.B. et al 2007 Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation Nucl. Fusion 47 961–8 Urano H. et al 2007 H-mode pedestal structure in the v

M. Kikuchi

2011-01-01T23:59:59.000Z

110

Fusion of Polarized Deuterons  

Science Journals Connector (OSTI)

The nuclear physics aspects of the d-d reactions initiated by low-energy polarized deuterons are discussed. It is shown that the use of polarized deuterons does not suppress the fusion of deuterons with deuterons and hence does not suppress neutron production. Therefore a recently proposed "neutron-free" d-He3 fusion reactor is unlikely to work.

H. M. Hofmann and D. Fick

1984-06-04T23:59:59.000Z

111

Lysolecithin and Cell Fusion  

Science Journals Connector (OSTI)

... INTEREST in the fusion of biological membranes has recently been stimulated by investigations on the biochemistry of secretion1, ... of membranes in the lysosomal vacuolar system2 and, in particular, by work on the fusion of cells that is induced by viruses3'4. For C3ll ...

A. R. POOLE; J. I. HOWELL; J. A. LUCY

1970-08-22T23:59:59.000Z

112

Fusion excitation function revisited  

E-Print Network (OSTI)

We report on a comprehensive systematics of fusion-evaporation and/or fusion-fission cross sections for a very large variety of systems over an energy range 4-155 A.MeV. Scaled by the reaction cross sections, fusion cross sections do not show a universal behavior valid for all systems although a high degree of correlation is present when data are ordered by the system mass asymmetry.For the rather light and close to mass-symmetric systems the main characteristics of the complete and incomplete fusion excitation functions can be precisely determined. Despite an evident lack of data above 15A.MeV for all heavy systems the available data suggests that geometrical effects could explain the persistence of incomplete fusion at incident energies as high as 155A.MeV.

Ph. Eudes; Z. Basrak; F. Sébille; V. de la Mota; G. Royer; M. Zori?

2012-09-07T23:59:59.000Z

113

From nucleons to nuclei to fusion reactions S. Quaglioni1, P. Navratil2,1, R. Roth3, and W. Horiuchi4  

E-Print Network (OSTI)

reactions. Providing the research community with accurate nuclear fusion data is one of the longstanding and ionized state of matter at which they take place, nuclear fusion reactions can be very challenging or even as fusion- experiment simulations rely on various nuclear input data such as cross sections (or

Roth, Robert

114

LIFE: The Case for Early Commercialization of Fusion Energy  

SciTech Connect

This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

Anklam, T; Simon, A J; Powers, S; Meier, W R

2010-11-30T23:59:59.000Z

115

D matter  

Science Journals Connector (OSTI)

We study the properties and phenomenology of particlelike states originating from D branes whose spatial dimensions are all compactified. They are nonperturbative states in string theory and we refer to them as D matter. In contrast to other nonperturbative objects such as ’t Hooft–Polyakov monopoles, D-matter states could have perturbative couplings among themselves and with ordinary matter. The lightest D particle (LDP) could be stable because it is the lightest state carrying certain (integer or discrete) quantum numbers. Depending on the string scale, they could be cold dark matter candidates with properties similar to that of WIMPs or wimpzillas. The spectrum of excited states of D matter exhibits an interesting pattern which could be distinguished from that of Kaluza-Klein modes, winding states, and string resonances. We speculate about possible signatures of D matter from ultrahigh energy cosmic rays and colliders.

Gary Shiu and Lian-Tao Wang

2004-06-29T23:59:59.000Z

116

Dark Matters  

ScienceCinema (OSTI)

One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

Joseph Silk

2010-01-08T23:59:59.000Z

117

Alperin's Fusion Theorem and Fusion Systems David A. Craven  

E-Print Network (OSTI)

-called domestic intersections, which are special types of tame intersections that should play a role in fusionAlperin's Fusion Theorem and Fusion Systems David A. Craven September 2010 Abstract This short note provides a new and straightforward proof of the original fusion theorem of Alperin, then considers so

Craven, David A.

118

Up-Fusion: An Evolving Multimedia Decision Fusion Xiangyu Wang  

E-Print Network (OSTI)

Up-Fusion: An Evolving Multimedia Decision Fusion Method Xiangyu Wang National Univ. of Singapore multimedia's nature of hav- ing multiple information sources, fusion methods are criti- cal for its data analysis and understanding. However, most of the traditional fusion methods are static with respect to time

Rui, Yong

119

Chapter 17 - Nuclear Fusion  

Science Journals Connector (OSTI)

Publisher Summary Nuclear fusion, the joining of light nuclei of hydrogen into heavier nuclei of helium, has potential environmental, safety and proliferation characteristics as an energy source, as well as adequate fuel to power civilization for times long compared to human history. It is, however, more challenging to convert to an energy source than nuclear fission. This chapter introduces the physics, advantages, difficulties, progress, economics and prospects for fusion energy power plants. Nuclear fusion is the process, in which light nuclei can release large amounts of energy if they combine, or fuse, into heavier nuclei. The principal nuclear reactions which have been considered for reactor concepts involve reactions of isotopes of the two lightest elements: hydrogen and helium. The fuel costs for fusion reactors will be negligible in comparison with the value of the electricity produced. It is difficult to precisely assess the cost of fusion-generated electricity until there is experience with an operating power plant, since the cost will be dependent upon the reliability and the frequency and expense of maintenance, both of which are likely to improve with the hindsight of experience. A fusion reactor does not directly emit CO2 or other greenhouse gases, or any combustion products that contribute to acid rain, and the indirect emissions due to factors like fuel gathering and transport, plant construction and maintenance, and activated parts storage would be small. Thus, fusion power would not have appreciable adverse effects upon global warming, atmospheric quality or acidification of the oceans, lakes and streams.

Larry R. Grisham

2008-01-01T23:59:59.000Z

120

Fusion Energy Sciences Program Mission  

E-Print Network (OSTI)

Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion power has the long-range potential to serve as an abundant and clean source of energy and recommends

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Network Fusion Pascal Fradet1  

E-Print Network (OSTI)

Network Fusion Pascal Fradet1 and St´ephane Hong Tuan Ha2 1 INRIA Rh^one-Alpes 655, av. de l composition method which strives to reconcile modularity and efficiency. Our technique, network fusion fusion. Fusion allows to replace internal commu- nications by assignments and alleviates most time

Paris-Sud XI, Université de

122

Dark matter  

Science Journals Connector (OSTI)

...just how much dark matter in baryons...have lead to the discovery that a large component of the dark mass in groups...the highest-energy photons and the...to that of the discovery of the microwave...experiments assume the dark matter in the...c) Vacuum energy and the cosmological...

1999-01-01T23:59:59.000Z

123

Cluster-impact fusion  

Science Journals Connector (OSTI)

Deuteron-deuteron fusion, detected via the 3-MeV protons produced, is shown to occur when singly charged clusters of 25 to 1300 D2O molecules, accelerated to 200 to 325 keV, impinge on TiD targets. The energy and cluster-size dependence of the fusion rate are discussed. The fusion events are shown to originate from the cluster-ion impacts rather than from D+ or D2O+ ions in the beam. The observed rates may be correlated with the compressions and high energy densities created in collision spikes by cluster-ion impacts.

R. J. Beuhler; G. Friedlander; L. Friedman

1989-09-18T23:59:59.000Z

124

Cold fusion research  

Science Journals Connector (OSTI)

Cold fusion research ... Eugene Mallove (C&EN, Feb. 10, page 2) accuses Trevor Pinch and me of "arrogant misunderstanding of cold fusion research/' Casting his net further, he then accuses the scientific establishment and some science media of "arrogant dismissal" of a "new phenomenon of unparalleled signficance," because we regard it as "a priori impossible." ... The latter, at least, is untrue, as should be apparent to anyone who read even the first three pages of 'Too Hot to Handle," where I wrote, 'liven though intuitive[ ly we felt] that [cold fusion] was too far-fetched to be real, nonetheless it had to be checked." ...

FRANK E. CLOSE

1992-04-13T23:59:59.000Z

125

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

126

A TUTORIAL ON IGNITION AND GAIN FOR SMALL FUSION TARGETS  

SciTech Connect

Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriate to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.

Kirkpatrick, R. C. [Los Alamos National Laboratory, Los Alamos, NM 087545 (United States)

2009-07-26T23:59:59.000Z

127

Harnessing Nuclear Fusion  

Science Journals Connector (OSTI)

... as a source of energy, only the future will show. Meanwhile the control of nuclear fusion will be welcomed both as a great advance in science and as a factor of ...

1958-01-25T23:59:59.000Z

128

Nuclear Fusion Introduced  

Science Journals Connector (OSTI)

... introduce undergraduates to the present state of science, but it is difficult to see how Nuclear Fusion can be recommended to grammar school pupils or even to first-year undergraduates. The ...

DAPHNE F. JACKSON

1970-01-31T23:59:59.000Z

129

Fusion in Coq  

Science Journals Connector (OSTI)

Fusion theorem is a classical result that allows...10]. We present this theorem and some generalizations in the context of the constructive proof assistant tool Coq [2] where we have dependent types and parametri...

José L. Freire Nistal; José E. Freire Brańas…

2001-01-01T23:59:59.000Z

130

Spectral Label Fusion  

E-Print Network (OSTI)

We present a new segmentation approach that combines the strengths of label fusion and spectral clustering. The result is an atlas-based segmentation method guided by contour and texture cues in the test image. This offers ...

Wachinger, Christian

131

Fusion and Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

that found in the cores of the sun and stars. One of NIF's goals is to create a self-sustaining nuclear fusion reaction, in which the nuclei of two forms of hydrogen fuse...

132

Photons & Fusion Newsletter - 2014  

NLE Websites -- All DOE Office Websites (Extended Search)

Photons & Fusion Newsletter - 2014 May NIF Petawatt Laser Is on the Fast Track to Completion First Isotope-Specific Radiograph Using MEGa-rays Produced NIF&PS Directorate Review...

133

Colliding Beam Fusion Reactors  

Science Journals Connector (OSTI)

The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the Fokker–Planck equation. The reactors involve non-Maxwellian plasmas. The calculations are ... the rec...

Norman Rostoker; Artan Qerushi; Michl Binderbauer

2003-06-01T23:59:59.000Z

134

Cold nuclear fusion  

SciTech Connect

Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

Tsyganov, E. N., E-mail: edward.tsyganov@utsouthwestern.edu [University of Texas Southwestern Medical Center at Dallas (United States)

2012-02-15T23:59:59.000Z

135

Still Flying Fusion Edition  

E-Print Network (OSTI)

. ; The Fox Television Broadcasting Company ; 20th Century Fox Ltd. ; Fox Home Entertainment or Universal Pictures All rights are reserved and owned by the copyright holders as appropriate. Welcome to this very special Fusion Edition of Still.... This abridged edition is available only at Fusion, Issue Two will be available soon, complete with an Adam Baldwin interview! If you wish to subscribe (for free) please email stillflying@bitwiser.com with the subject heading "Subscribe" and you...

2013-11-27T23:59:59.000Z

136

Fusion Energy Division progress report, 1 January 1990--31 December 1991  

SciTech Connect

The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1994-03-01T23:59:59.000Z

137

ITER Fusion Energy  

ScienceCinema (OSTI)

ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

Dr. Norbert Holtkamp

2010-01-08T23:59:59.000Z

138

Quark Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Quark Quark Matter in Neutron Stars Prashanth Jaikumar Argonne National Laboratory, (PHY) September 7th, 2006 . - p.1/29 Outline * Neutron stars: observations by a theorist . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? ------------------------ * Strange Quark stars: Features and "Findings" . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? ------------------------

139

Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008  

SciTech Connect

Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.

None

2008-09-01T23:59:59.000Z

140

An evaluation of fusion gain in the compact helical fusion reactor FFHR-c1  

Science Journals Connector (OSTI)

A new procedure to predict achievable fusion gain in a sub-ignition fusion reactor is proposed. This procedure uses the direct profile extrapolation (DPE) method based on the gyro-Bohm model. The DPE method has been developed to predict the radial profiles in a fusion reactor sustained without auxiliary heating (i.e., in the self-ignition state) from the experimental data. To evaluate the fusion gain in a fusion reactor sustained with auxiliary heating (i.e., in the sub-ignition state), the DPE method is modified to include the influence of the auxiliary heating. The beta scale factor from experiment to reactor is assumed to be 1. Under this assumption, it becomes reasonable to apply the magnetohydrodynamic (MHD) equilibrium (which is calculated to reproduce the experimental data) to the reactor. At the same time, the MHD stability of the reactor plasma is also guaranteed to a certain extent since that beta was already proven in the experiment. The fusion gain in the helical type nuclear test machine FFHR-c1 has been evaluated using this modified DPE method. FFHR-c1 is basically a large duplication of the Large Helical Device (LHD) with a scale factor of 10/3, which corresponds to the major radius of the helical coils of 13.0 m and the plasma volume of ~1000 m3. Two options with different magnetic field strengths are considered. The fusion gain in FFHR-c1 extrapolated from a set of radial profile data obtained in LHD ranges from 1 to 7, depending on the profiles used together with the assumptions of the magnetic field strength and the alpha heating efficiency.

J. Miyazawa; T. Goto; R. Sakamoto; A. Sagara; the FFHR Design Group

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cold fusion lab dies, but fusion research goes on  

Science Journals Connector (OSTI)

Cold fusion lab dies, but fusion research goes on ... that deuterium nuclei can fuse at or near room temperature inside a metal lattice to produce useful energy, is an idea that refuses to die, despite its rejection by mainstream scientists. ...

1991-07-01T23:59:59.000Z

142

High-Frequency Gravitational Wave Induced Nuclear Fusion  

SciTech Connect

Nuclear fusion is a process in which nuclei, having a total initial mass, combine to produce a single nucleus, having a final mass less than the total initial mass. Below a given atomic number the process is exothermic; that is, since the final mass is less than the combined initial mass and the mass deficit is converted into energy by the nuclear fusion. On Earth nuclear fusion does not happen spontaneously because electrostatic barriers prevent the phenomenon. To induce controlled, industrial scale, nuclear fusion, only a few methods have been discovered that look promising, but net positive energy production is not yet possible because of low overall efficiency of the systems. In this paper we propose that an intense burst of High Frequency Gravitational Waves (HFGWs) could be focused or beamed to a target mass composed of appropriate fuel or target material to efficiently rearrange the atomic or nuclear structure of the target material with consequent nuclear fusion. Provided that efficient generation of HFGW can be technically achieved, the proposed fusion reactor could become a viable solution for the energy needs of mankind and alternatively a process for beaming energy to produce a source of fusion energy remotely - even inside solid materials.

Fontana, Giorgio [University of Trento, 38050 POVO (Italy); Baker, Robert M. L. Jr. [Transportation Sciences Corporation and GRAVWAVE LLC, 8123 Tuscany Avenue, Playa del Rey, California 90293 (United States)

2007-01-30T23:59:59.000Z

143

Realization of Fusion Energy: An alternative fusion roadmap  

E-Print Network (OSTI)

Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

144

CRYOGENICS FOR FUSION  

SciTech Connect

Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to 'fusion for energy' will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

Dauguet, P.; Bonneton, M.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F. [Air Liquide Advanced Technology Division BP15, ZI Les Engenieres, 38360 Sassenage (France); Gistau-Baguer, G. M.; Boissin, J. C. [Consultants, Grenoble (France)

2008-03-16T23:59:59.000Z

145

Spherical torus fusion reactor  

DOE Patents (OSTI)

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

146

Ceramics for fusion devices  

SciTech Connect

Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors.

Clinard, F.W. Jr.

1984-01-01T23:59:59.000Z

147

Simulation of Fusion Plasmas  

ScienceCinema (OSTI)

The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

Chris Holland

2010-01-08T23:59:59.000Z

148

Plasma-materials interactions and impurity control in magnetically confined thermonuclear fusion machines  

Science Journals Connector (OSTI)

Progress achieved in plasma heating and magnetic confinement during the past decade has brought to the fore a number of problems which have to be solved if controlled thermonuclear fusion is to become an economic...

Dieter M. Gruen; Stanislav Vep?ek; Randy B. Wright

1980-01-01T23:59:59.000Z

149

Princeton -Weekly Bulletin 2/10/03 -Abraham: U.S. participation in international fusion effort builds on success at PPPL  

E-Print Network (OSTI)

international fusion energy initiative called ITER. Praising the achievements of the fusion energy research into heavier elements such as helium and release enormous amounts of energy. Efforts to control and harnessPrinceton - Weekly Bulletin 2/10/03 - Abraham: U.S. participation in international fusion effort

150

Cross section for nuclear fusion  

Science Journals Connector (OSTI)

... gamma rays. In recent years there have been many studies of the cross section for nuclear fusion, and some features of the process are now understood (Nature, 256, 261; ... velocities fusion cannot take place at all.

P. E. Hodgson

1976-05-20T23:59:59.000Z

151

Cell Fusion and Tissue Regeneration  

Science Journals Connector (OSTI)

Cell fusion is a natural process implicated in normal ... bone marrow stem cells fuse with several cell types, under normal condition or after an injury ... in regenerative medicine and genetic repair. Cell fusion

Manuel Álvarez-Dolado; Magdalena Martínez-Losa

2011-01-01T23:59:59.000Z

152

The spectrum of splenogonadal fusion  

Science Journals Connector (OSTI)

Splenogonadal fusion is a rare congenital malformation in which there is an abnormal fusion between the spleen and the gonad or ... more frequently in males. There are two types of this malformation: the continuo...

A. S. H. Gouw; J. D. Elema; M. Th. E. Bink-Boelkens…

1985-11-01T23:59:59.000Z

153

Scientists Report Results on Fusion  

Science Journals Connector (OSTI)

Scientists Report Results on Fusion ... Steady progress points to several feasible controls for thermonuclear "fire" ... American scientists trying to control thermonuclear fusion have summed up the results of their work of the past two years. ...

1960-04-04T23:59:59.000Z

154

Structural materials for fusion reactors  

Science Journals Connector (OSTI)

Fusion Reactors will require specially engineered structural materials, which ... on safety considerations. The fundamental differences between fusion and other nuclear reactors arise due to the 14MeV neutronics ...

P. M. Raole; S. P. Deshpande

2009-04-01T23:59:59.000Z

155

Magnetically catalyzed fusion  

Science Journals Connector (OSTI)

We calculate the reaction cross sections for the fusion of hydrogen and deuterium in strong magnetic fields as are believed to exist in the atmospheres of neutron stars. We find that in the presence of a strong magnetic field (B?1012 G), the reaction rates are many orders of magnitude higher than in the unmagnetized case. The fusion of both protons and deuterons is important over a neutron star’s lifetime for ultrastrong magnetic fields (B?1016 G). The enhancement may have dramatic effects on thermonuclear runaways and bursts on the surfaces of neutron stars. © 1996 The American Physical Society.

Jeremy S. Heyl and Lars Hernquist

1996-11-01T23:59:59.000Z

156

Fusion welding process  

DOE Patents (OSTI)

A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

1983-01-01T23:59:59.000Z

157

New Routes to Fusion Power?  

Science Journals Connector (OSTI)

New Routes to Fusion Power? ... THE VEIL OF SECRECY around U. S. research on controlled thermonuclear reactions has lifted slightly. ...

1958-05-19T23:59:59.000Z

158

Prospects for spheromak fusion reactors  

Science Journals Connector (OSTI)

The reactor study of Hagenson and Krakowski demonstrated the attractiveness of the spheromak as a compact fusion reactor, based on...

T. K. Fowler; D. D. Hua

1995-06-01T23:59:59.000Z

159

How low-energy fusion can occur  

E-Print Network (OSTI)

Fusion of two deuterons of room temperature energy is discussed. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. The wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

B. Ivlev

2012-11-03T23:59:59.000Z

160

Dynamics of Fusion in Plasmas  

Science Journals Connector (OSTI)

......gaining energy from nuclear fusion reactions using different...energy is by means of nuclear fusion reactions. Such reactions...from time to time some nuclear fusion occurs and energy is...more energy output than input, the and/or must......

A. Bonasera

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Human-Centered Fusion Framework  

SciTech Connect

In recent years the benefits of fusing signatures extracted from large amounts of distributed and/or heterogeneous data sources have been largely documented in various problems ranging from biological protein function prediction to cyberspace monitoring. In spite of significant progress in information fusion research, there is still no formal theoretical framework for defining various types of information fusion systems, defining and analyzing relations among such types, and designing information fusion systems using a formal method approach. Consequently, fusion systems are often poorly understood, are less than optimal, and/or do not suit user needs. To start addressing these issues, we outline a formal humancentered fusion framework for reasoning about fusion strategies. Our approach relies on a new taxonomy for fusion strategies, an alternative definition of information fusion in terms of parameterized paths in signature related spaces, an algorithmic formalization of fusion strategies and a library of numeric and dynamic visual tools measuring the impact as well as the impact behavior of fusion strategies. Using a real case of intelligence analysis we demonstrate that the proposed framework enables end users to rapidly 1) develop and implement alternative fusion strategies, 2) understand the impact of each strategy, 3) compare the various strategies, and 4) perform the above steps without having to know the mathematical foundations of the framework. We also demonstrate that the human impact on a fusion system is critical in the sense that small changes in strategies do not necessarily correspond to small changes in results.

Posse, Christian; White, Amanda M.; Beagley, Nathaniel

2007-05-16T23:59:59.000Z

162

Fusion of Isolated Plant Protoplasts  

Science Journals Connector (OSTI)

... Protoplasts have been seen to fuse before2,3, but in ill-defined conditions, and fusions were rare and non-reproducible4. In these cases protoplasts were freed from their walls ... kinds, and these conditions indicated some of the factors that affect the likelihood of protoplast fusion. For example, the presence of sucrose in the solution apparently inhibited fusion2, while ...

J. B. POWER; S. E. CUMMINS; E. C. COCKING

1970-03-14T23:59:59.000Z

163

Fusion systems for profinite groups  

Science Journals Connector (OSTI)

......April 2014 research-article Articles Fusion systems for profinite groups Radu Stancu...paper. We introduce the notion of a pro-fusion system on a pro- group, which generalizes the notion of a fusion system on a finite -group. We also prove......

Radu Stancu; Peter Symonds

2014-04-01T23:59:59.000Z

164

The Fusion Machine (extended abstract)  

E-Print Network (OSTI)

The Fusion Machine (extended abstract) Philippa Gardner Cosimo Laneve Lucian Wischik March 27, 2002. In particular, we describe a dis- tributed abstract machine called the fusion machine. In it, only channels exist at runtime. It uses a form of concurrent constraints called fusions--equations on channel names

Gardner, Philippa

165

Fusion and Heavy Ion Reactions  

Science Journals Connector (OSTI)

......February 2004 research-article Articles Fusion and Heavy Ion Reactions David M. Brink...useful for understanding of sub-barrier fusion processes. The Christensen-Winther...potentials like the CW interaction give good fusion cross-sections near and for a few MeV......

David M. Brink

2004-02-01T23:59:59.000Z

166

Control of Fusion and Solubility in Fusion Systems David A. Craven  

E-Print Network (OSTI)

Control of Fusion and Solubility in Fusion Systems David A. Craven March 2009 Abstract In this article, we consider control of fusion, quotients, and p-soluble fusion systems. For control of fusion, we for fusion systems. We move on to p-soluble fusion systems, and prove that they are constrained, allowing us

Craven, David A.

167

Awards & Achievements | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy, Vehicle Technologies Office, Distinguished Achievement Award, Larry Johnson 2014 U.S. Department of Energy, Vehicle Technologies Office, Research and Development...

168

Laser-driven fusion  

Science Journals Connector (OSTI)

The use of intense laser light to bring about thermonuclear reactions in a plasma is of considerable current interest. We present detailed analytical and computational studies which show the feasibility of laser-driven fusion. The required laser technology and the presently anticipated practical difficulties are discussed in outline.

Keith A. Brueckner and Siebe Jorna

1974-04-01T23:59:59.000Z

169

Fusion Chamber Technology Publications  

E-Print Network (OSTI)

, Z. "Thermal and Mechanical Properties of Ceramic Blanket Particle Bed Materials: Numerical Nonconforming Beryllium and Type 316 Stainless Steel Surfaces Subjected to Nonuniform Thermal Deformations.N. Sviatoslavsky, M.L. Corradini, and S. Malang, "EVOLVE Lithium Tray Thermal-Hydraulic Analysis," Fusion

California at Los Angeles, University of

170

Fusion solution to dispose of spent nuclear fuel, transuranic elements, and highly enriched uranium  

Science Journals Connector (OSTI)

The disposal of the nuclear spent fuel, the transuranic elements, and the highly enriched uranium represents a major problem under investigation by the international scientific community to identify the most promising solutions. The investigation of this paper focused on achieving the top rated solution for the problem, the elimination goal, which requires complete elimination for the transuranic elements or the highly enriched uranium, and the long-lived fission products. To achieve this goal, fusion blankets with liquid carrier, molten salts or liquid metal eutectics, for the transuranic elements and the uranium isotopes are utilized. The generated energy from the fusion blankets is used to provide revenue for the system. The long-lived fission products are fabricated into fission product targets for transmutation utilizing the neutron leakage from the fusion blankets. This paper investigated the fusion blanket designs for small fusion devices and the system requirements for such application. The results show that 334 MW of fusion power from D–T plasma for 30 years with an availability factor of 0.75 can dispose of the 70,000 tons of the U.S. inventory of spent nuclear fuel generated up to the year 2015. In addition, this fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future.

Yousry Gohar

2001-01-01T23:59:59.000Z

171

High Current Ion Sources and Injectors for Heavy Ion Fusion  

E-Print Network (OSTI)

on Heavy Ion Inertial Fusion; Fusion Engineering and Design,Ion Inertial Fusion, Princeton, New Jersey, Sept. 6-9, 1995; in Fusion EngineeringIon Inertial Fusion, Princeton, New Jersey, Sept. 6-9, 1995; in Fusion Engineering

Kwan, Joe W.

2005-01-01T23:59:59.000Z

172

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

173

Multiple beam induction accelerators for heavy ion fusion  

Science Journals Connector (OSTI)

Abstract Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (?10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

Peter A. Seidl; John J. Barnard; Andris Faltens; Alex Friedman; William L. Waldron

2014-01-01T23:59:59.000Z

174

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

175

New Accelerator to Study Steps on the Path to Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Will Accelerator Will Study Steps on the Path to Fusion Power New Accelerator Will Study Steps on the Path to Fusion Power Unusual Machine Tailor-made to Examine Heavy-ion Fusion May 10, 2012 The accelerator, looking "downstream." In the foreground is the grounded cage th The accelerator, looking "downstream." In the foreground is the grounded cage that encloses the 150,000-volt injector. See more photos at http://newscenter.lbl.gov/news-releases/2012/05/08/ndcx-accelerator/ (Photo: Roy Kaltschmidt, LBNL) The Neutralized Drift Compression Experiment, NDCX-II has recently marked successful completion. Designed with the aid of computer simulations executed at NERSC, the accelerator was created to study warm dense matter, an important research field in itself and particularly relevant to nuclear

176

Cooling Fusion in a Flash | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash...

177

Magnetized Target Fusion Collaboration. Final report  

SciTech Connect

Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

John Slough

2012-04-18T23:59:59.000Z

178

The neutronics studies of fusion fission hybrid power reactor  

SciTech Connect

In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi [School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 (China)

2012-06-19T23:59:59.000Z

179

Secretary's Achievement Award | Department of Energy  

Office of Environmental Management (EM)

Secretary's Achievement Award Secretary's Achievement Award Office of Science Daya Bay reactor Neutrino Detector Project...

180

Muon spectrum and convoy effects after muon-catalyzed fusion  

Science Journals Connector (OSTI)

We study final-state interactions of the muon after muon-catalyzed D-T fusion reaction with the ? particle and with target matter. The yield of convoy muons, traveling with the ? particle but remaining unbound is calculated. Energy loss in the dense target may lead to capture of a fraction of these muons into outer shells of the ? particle. We show that the final capture probability can be strongly density dependent.

B. Müller; H. E. Rafelski; J. Rafelski

1989-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

in Heavy Ion Fusion Science, Magnetic Fusion Energy, andin Heavy Ion Fusion Science, Magnetic Fusion Energy, and

Kwan, J.W.

2008-01-01T23:59:59.000Z

182

Fusion pumped laser  

DOE Patents (OSTI)

The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

Pappas, D.S.

1987-07-31T23:59:59.000Z

183

Modular Aneutronic Fusion Engine  

SciTech Connect

NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

2012-05-11T23:59:59.000Z

184

Fusion of Nonionic Vesicles  

Science Journals Connector (OSTI)

The data are qualitatively consistent with that the vesicles on the average are becoming larger, and at the same time more polydisperse, which is exactly what we expect if the vesicles are fusing into larger ones. ... Then, the two inner monolayers get in contact, and if they also fuse the result is a fusion pore, which then widens as the new larger vesicle obtains its spherical shape. ...

Sanja Bulut; Malin Zackrisson Oskolkova; Ralf Schweins; Ha?kan Wennerstro?m; Ulf Olsson

2009-12-30T23:59:59.000Z

185

T-661: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update T-661: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update July 5, 2011 - 7:57am Addthis...

186

COLLABORATIVE: FUSION SIMULATION PROGRAM  

SciTech Connect

New York University, Courant Institute of Mathematical Sciences, participated in the ���¢��������Fusion Simulation Program (FSP) Planning Activities���¢������� [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP���¢��������s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.

Chang, Choong Seock

2012-06-05T23:59:59.000Z

187

Fusion barriers for heavy-ion systems  

Science Journals Connector (OSTI)

Analytical expressions for the fusion barrier height and radius have been derived from a four-parameter empirical fusion cross section formula for heavy ions. The fusion barrier parameters calculated, using these expressions, are in good agreement with the literature values.NUCLEAR REACTIONS Fusion cross section excitation functions, fusion barrier parameters.

S. K. Gupta and S. Kailas

1982-08-01T23:59:59.000Z

188

Methodology for Scaling Fusion Power Plant Availability  

SciTech Connect

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

189

Fast track to fusion energy  

Science Journals Connector (OSTI)

... Nuclear fusion powers our Sun, the stars and ... powers our Sun, the stars and thermonuclear weapons, so what's stopping it being used as an energy source? The answer ...

Michael H. Key

2001-08-23T23:59:59.000Z

190

Solar neutrinos and dark matter: cosmions, CHAMPs or DAEMONS?  

Science Journals Connector (OSTI)

......they are possibly truly elementary particles, whose fusion...energetics, these DArk Electric Matter Objects with...atom, say, owing to electric focusing of (light...2qimy!2/Tpp to the resistance met by the moving DAEMON...charged (to Z ~ 10) elementary black holes (EBHs......

E. M. Drobyshevski

1996-09-01T23:59:59.000Z

191

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Confinement Fusion Magnetic Confinement Fusion FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Fusion by Magnetic Confinement The image above is an artistic rendering of a tokamak, a donut-shaped magnetic vacuum chamber in which wispy vapors of fusion fuel are

192

NUCLEAR STRUCTURE AND HEAVY-ION FUSION  

E-Print Network (OSTI)

will cover three types of experiments on the fusion of heavyconsidered are of three types. The fusion fusion of lighterfusion cross sections, and give us a familiarity with the type

Stokstad, R.G.

2010-01-01T23:59:59.000Z

193

Cytoplasmic Fusion and the Nature of Sexes  

Science Journals Connector (OSTI)

...that: (i) in systems with fusion of gametes, the mating type genes are typically binary...independently associated with fusion, although at least twice binary types have been lost, associated with a loss of fusion; further, in accordance...

1992-01-01T23:59:59.000Z

194

RAPPORTEUR TALK FOR IAEA FUSION MEETING, BRUSSELS  

E-Print Network (OSTI)

Ion Fusion Papers: The Argonne Heavy Ion Fusion Program:to the target. 3. The Argonne Heavy Ion Fusion Program:ring system developed at Argonne National Laboratory shows

Watson, J.M.

2010-01-01T23:59:59.000Z

195

FUSION POWER Tokamak Test a Big Success  

Science Journals Connector (OSTI)

FUSION POWER Tokamak Test a Big Success ... Successful plasma production in the tokamak fusion test reactor at Princeton University's Plasma Physics Laboratory has set the stage for possible sustained fusion reactions in the device by 1990. ...

1983-01-10T23:59:59.000Z

196

Fusion Reactions Involving Radioactive Beams at GANIL  

Science Journals Connector (OSTI)

......February 2004 research-article Articles Fusion Reactions Involving Radioactive Beams...been used to produce exotic nuclei via fusion evaporation or to study reaction mechanisms...Physics Supplement No. 154, 2004 113 Fusion Reactions Involving Radioactive Beams......

Gilles de France

2004-02-01T23:59:59.000Z

197

NUCLEAR STRUCTURE AND HEAVY-ION FUSION  

E-Print Network (OSTI)

Nuclear Structure and Heavy-Ton Fusion* A series of lecturesthe cross section for fusion in the experiments consideredEffects g in III. Subharrier Fusion Cross Sections for Light

Stokstad, R.G.

2010-01-01T23:59:59.000Z

198

INL Fusion Safety Program - Past Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Significant publications from the INL Fusion Safety Program D. A. Petti and K. A. McCarthy, "Progress in US fusion safety and environmental activities over the last decade," Fusion...

199

Status and problems of fusion reactor development  

Science Journals Connector (OSTI)

Thermonuclear fusion of deuterium and tritium constitutes an enormous ... inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process,...

Uwe Schumacher

2001-03-01T23:59:59.000Z

200

Fusion Electricity A roadmap to the realisation of fusion energy  

E-Print Network (OSTI)

Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed association EURaToM ­ University of latvia LATVIA lithuanian Energy Institute LITHUANIA Ministry of Education and Research ROMANIA Ministry of Education, science, culture and sport SLOVENIA centro de Investigaciones

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual  

E-Print Network (OSTI)

@sandia.gov) LTD Cavity Recyclable Transmission Line Hohlraum #12;2 Outline · Refurbished Z · Pulsed power fusion 82 kV #12;7 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z Ray Lemke Strip-line geometry: S ~ Strip Width + AK "equivalent" AK gap d(t) from 1-D simulatio

202

Modeling pionic fusion  

Science Journals Connector (OSTI)

Recently observed rare heavy ion fusion processes, where the entire available energy is carried away by a single pion, is an example of extreme collectivity in nuclear reactions. We calculate the cross section in the approximation of sudden overlap, modeling the initial and final nuclei by moving harmonic oscillator potentials. This allows for a fully quantum-mechanical treatment, exact conservation of linear and angular momenta and fulfillment of the Pauli principle. The results are in satisfactory agreement with data. Mass number dependence and general trends of the process are discussed.

Alexander Volya; Scott Pratt; Vladimir Zelevinsky

1999-01-01T23:59:59.000Z

203

Fusion of heavy nuclei  

Science Journals Connector (OSTI)

Cross sections for evaporation residue formation following complete fusion of Br81+Zr90,94, Mo96, and Ru104 and Zr90+Zr90,94 have been measured over a broad range of energies from far below to well above the classical Coulomb barrier. We observe large changes of slope and magnitude among the excitation functions for these systems at all energies. There are pronounced structural variations at sub-barrier energies, less rapid than expected increases in evaporation residue formation at near-barrier energies and declining evaporation residue formation as the systems become heavier at still higher energies.

M. Beckerman; J. Wiggins; H. Aljuwair; M. K. Salomaa

1984-05-01T23:59:59.000Z

204

Study of internal magnetic field via polarimetry in fusion plasmas  

E-Print Network (OSTI)

Motivation Controlled thermonuclear fusion is a promising2007]. Controlled thermonuclear fusion is based on the

Zhang, Jie

2013-01-01T23:59:59.000Z

205

Electron Screening Effect on Stellar Thermonuclear Fusion  

E-Print Network (OSTI)

Key words Dense matter, stellar nucleosynthesis. We study the impact of plasma correlation effects on nonresonant thermonuclear reactions for various stellar objects, namely in the liquid envelopes of neutron stars, and the interiors of white dwarfs, low-mass stars, and substellar objects. We examine in particular the effect of electron screening on the enhancement of thermonuclear reactions in dense plasmas within and beyond the linear mixing rule approximation as well as the corrections due to quantum effects at high density. In addition, we examine some recent unconventional theoretical results on stellar thermonuclear fusions and show that these scenarios do not apply to stellar conditions. c ? 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1

K. -h. Spatschek; M. Bonitz; T. Klinger; U. Ebert; C. Franck; A. V. Keudell; D. Naujoks; M. Dewitz; A. Y. Potekhin; G. Chabrier

2012-01-01T23:59:59.000Z

206

Fusion Tritium Program in the United States  

Science Journals Connector (OSTI)

National Fusion Tritium Program / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

James L. Anderson; John R. Bartlit

207

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

208

Secretary's 2013 Achievement Awards | Department of Energy  

Office of Environmental Management (EM)

Awards Secretary's 2013 Achievement Awards Berkeley Laboratory Laser Accelerator Project (Office of Science) More Documents & Publications Secretary's 2013 Achievement Awards...

209

The path to fusion power  

Science Journals Connector (OSTI)

...proportional to P 2. The energy confinement time...determines the energy gain of the fusion...needed to keep the electric current in the plasma...in France, once planning permission-which...The much higher energy fusion neutrons...essentially the same distributions of energies as those...

2007-01-01T23:59:59.000Z

210

Fusion needs more than SNAREs  

Science Journals Connector (OSTI)

... then fuse their membrane with that of other compartments or with the plasma membrane. Without fusion, all such 'membrane traffic' would grind to a halt. Nerve cells would stop ... compartments would shed vesicles until the compartments disappeared. It seemed all but settled that membrane fusion was mediated by the so-called SNAREs — proteins that inhabit all ...

Wolfhard Almers

2001-02-01T23:59:59.000Z

211

Fusion history beyond the fiascos  

Science Journals Connector (OSTI)

... It is 50 years since the first international symposium on fusion energy research took place in Geneva, Switzerland, as part of the second United Nations ... the United Kingdom, the Soviet Union and the United States announced the declassification of controlled fusion research, raising the hope of clean and limitless energy for mankind.

Jean Jacquinot

2009-01-14T23:59:59.000Z

212

Membrane fusion: Ready ? aim ? fire!  

Science Journals Connector (OSTI)

... All cells use a programme of membrane fusion and fission to assemble membranes, both internally and on their surface. Given that biological ... internally and on their surface. Given that biological membranes are essentially two-dimensional fluids, fusion must obey certain restrictions that prevent incompatible membranes from intermixing. Without such selective contact, ...

Randy Schekman

1998-12-10T23:59:59.000Z

213

Fusion algebra of critical percolation  

E-Print Network (OSTI)

We present an explicit conjecture for the chiral fusion algebra of critical percolation considering Virasoro representations with no enlarged or extended symmetry algebra. The representations we take to generate fusion are countably infinite in number. The ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of these representations decomposes into a finite direct sum of these representations. The fusion rules are commutative, associative and exhibit an sl(2) structure. They involve representations which we call Kac representations of which some are reducible yet indecomposable representations of rank 1. In particular, the identity of the fusion algebra is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the recent results of Eberle-Flohr and Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of indecomposable representations of rank 3. Our fusion rules are supported by extensive numerical studies of an integrable lattice model of critical percolation. Details of our lattice findings and numerical results will be presented elsewhere.

Jorgen Rasmussen; Paul A. Pearce

2007-06-19T23:59:59.000Z

214

Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Fusion Nuclear Science Facility (FNSF) ­ Motivation, Role, Required Capabilities YK Martin Peng;1 Managed by UT-Battelle for the Department of Energy Example: fusion nuclear-nonnuclear coupling effects-composites; Nano-structure alloy; PFC designs, etc. · Nuclear-nonnuclear coupling in PFC: - Plasma ion flux induces

215

Fusion Energy Research Presentation to  

E-Print Network (OSTI)

, other ICCs 14-MeV neutron source Base fusion power technologies Base Plasma Support technologies Decision point DEMO Volumetric neutron source Theory & Simulation ICC ETR DEMO #12;Advanced Computing, Bioremediation Fusion Energy CombustionMaterials #12;#12;Microwave Imaging Reflectometry Laboratory tests

216

Dynamics of Fusion in Plasmas  

Science Journals Connector (OSTI)

......especially when coupled to an accelerator, in the second case...gaining energy from nuclear fusion reactions using...especially when coupled to an accelerator, in the second case...energy is by means of nuclear fusion reactions. Such...section is measured in vacuum, but it might be modified......

A. Bonasera

2004-02-01T23:59:59.000Z

217

Molecular and Cellular Mechanisms of Mammalian Cell Fusion  

Science Journals Connector (OSTI)

The types of cell fusion best understood in mammals include the fusion of sperm and egg [3], fusion of cytotrophoblast cells to form syncytiotrophoblast [4], fusion of myoblasts to form myotubes [5], and fusion o...

Xiaofeng Zhou; Jeffrey L. Platt

2011-01-01T23:59:59.000Z

218

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ FAQ FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Answers to Frequently Asked Questions about Fusion Research An updated, searchable Fusion FAQ is being prepared. In the meantime, the incomplete public-domain Fusion FAQ from 1994-1995 is still available

219

Study on the operational control of helical fusion reactor FFHR-d1  

Science Journals Connector (OSTI)

Abstract Plasma operation control of the Large Helical Device (LHD)-type helical fusion reactor, FFHR-d1, was examined by using a quasi-one-dimensional particle balance calculation code. It was found that feedback control of the fusion power, which is proposed in the past study with a zero-dimensional model, was difficult because of the time delay between the pellet injection and response of the fusion power due to shallow pellet deposition. While the achievable parameter range of the fusion power at a steady state is limited by the pellet injection condition and magnetic field strength, smooth ignition access and steady-state sustainment can in principle be achieved via feedback control of the line-averaged electron density by manipulating the pellet fuelling rate and maintaining adequate control of the external heating power.

Takuya Goto; Junichi Miyazawa; Ryuichi Sakamoto; Osamu Mitarai; Akio Sagara

2014-01-01T23:59:59.000Z

220

Dark Stars: the First Stars in the Universe may be powered by Dark Matter Heating  

E-Print Network (OSTI)

A new line of research on Dark Stars is reviewed, which suggests that the first stars to exist in the universe were powered by dark matter heating rather than by fusion. Weakly Interacting Massive Particles, which may be there own antipartmers, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a Dark Star, powered by dark matter annihilation as long as there is dark matter fuel.

Katherine Freese; Peter Bodenheimer; Paolo Gondolo; Douglas Spolyar

2008-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

222

LiWall Fusion - The New Concept of Magnetic Fusion  

SciTech Connect

Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

L.E. Zakharov

2011-01-12T23:59:59.000Z

223

Dark Matter Density in Disk Galaxies  

E-Print Network (OSTI)

I show that the predicted densities of the inner dark matter halos in LCDM models of structure formation appear to be higher than estimates from real galaxies and constraints from dynamical friction on bars. This inconsistency would not be a problem for the LCDM model if physical processes that are omitted in the collisionless collapse simulations were able to reduce the dark matter density in the inner halos. I review the mechanisms proposed to achieve the needed density reduction.

J. A. Sellwood

2008-07-12T23:59:59.000Z

224

Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility  

Science Journals Connector (OSTI)

Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of ?120–250??MJ may be possible with laser drive energies of 1–1.6 MJ, while gains of ?50 may still be achievable at only ?0.2??MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G?126E??(MJ)0.510. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path.

L. J. Perkins; R. Betti; K. N. LaFortune; W. H. Williams

2009-07-23T23:59:59.000Z

225

Moisture Matters | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Moisture Matters Moisture Matters Cryogenic microscopy methods yield insights to microbial morphology State-of-the-art cryogenic electron microscopy (EM) approaches at EMSL are...

226

Dark Matter Theory  

NLE Websites -- All DOE Office Websites (Extended Search)

Dark Matter Theory Dark Matter Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505)...

227

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

228

Fusion Power Demonstration III  

SciTech Connect

This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

Lee, J.D. (ed.)

1985-07-01T23:59:59.000Z

229

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

230

Portuguese research program on nuclear fusion  

Science Journals Connector (OSTI)

The Portuguese research program on nuclear fusion is presented. The experimental activity associated with...

C. A. F. Varandas; J. A. C. Cabral; M. E. Manso; F. Serra

1994-12-01T23:59:59.000Z

231

Fusion et volution des caractristiques topologiques  

E-Print Network (OSTI)

exactement n 1 types de fusions possibles, qui sont les fusions de dimension 0 � n 1. Pour pouvoir e#27Chapitre 6 Fusion et �volution des caract�ristiques topologiques Chapitre 5, nous avons d�#28;ni la carte topologique en dimension 3. Cette d�#28;nition utilise l'op�ration de fusion, que nous avons pr

Damiand, Guillaume

232

Exotic fusion systems over 2-groups  

E-Print Network (OSTI)

and types of fusion systems. Definition Fix a prime p, a finite p-group S, and a fusion system F over S. LetExotic fusion systems over 2-groups Bob Oliver joint with Kasper Andersen and Joana Ventura The fusion category of a finite group G encodes the conjugacy relations within a Sylow p-subgroup S of G

Thévenaz, Jacques

233

FUSION ET VOLUTION DES CARACTRISTIQUES TOPOLOGIQUES  

E-Print Network (OSTI)

n, il existe exactement n-1 types de fusions possibles, qui sont les fusions de dimension 0 à n - 1CHAPITRE 6 FUSION ET �VOLUTION DES CARACT�RISTIQUES TOPOLOGIQUES Chapitre 5, nous avons défini la carte topologique en dimension 3. Cette définition utilise l'opération de fusion, que nous avons

Damiand, Guillaume

234

Inertial fusion energy studies in the UK  

E-Print Network (OSTI)

#12;The types of research - Fusion ·Absorption and partition of laser energy ­ effects of laserInertial fusion energy studies in the UK Dr Kate Lancaster #12;Inertial Confinement Fusion #12 burns because the alpha particles produced deposit more energy and make more fusion reactions happen

235

Electron Screening Effect on Stellar Thermonuclear Fusion  

E-Print Network (OSTI)

thermonuclear fusions and show that these scenarios do not apply to stellar conditions. c ? 2013 WILEY

K. -h. Spatschek; M. Bonitz; T. Klinger; U. Ebert; C. Franck; A. V. Keudell; D. Naujoks; M. Dewitz; A. Y. Potekhin; G. Chabrier

2012-01-01T23:59:59.000Z

236

2002 Fusion Summer Study Executive Summary  

E-Print Network (OSTI)

2002 Fusion Summer Study Executive Summary 31 July 2002 #12;page 2 of 15 2002 Fusion Summer Study Executive Summary The 2002 Fusion Summer Study was conducted from July 8-19, 2002, in Snowmass, CO, and carried out a critical assessment of major next-steps in the fusion energy sciences program in both

237

Fusion Protein Products Screen Purify Detect Cleave  

E-Print Network (OSTI)

Fusion Protein Products · Screen · Purify · Detect · Cleave Fusion Protein Products · Screen researchers look to plasmid vectors to express fusion proteins, they find themselves in need of methods proteins is also included for those fusion proteins that may have an inaccessible tag. Pierce offers a host

Lebendiker, Mario

238

Tritium diagnostics in a fusion reactor  

Science Journals Connector (OSTI)

Methods for controlling tritium in a fusion reactor are reviewed. The characteristic features of the...

A. I. Markin; N. I. Syromyatnikov; A. M. Belov

2010-05-01T23:59:59.000Z

239

FUSION FRAMES AND THEORETICAL APPLICATIONS: FOR THE FUSION FRAME WEB PAGE  

E-Print Network (OSTI)

FUSION FRAMES AND THEORETICAL APPLICATIONS: FOR THE FUSION FRAME WEB PAGE PETER G. CASAZZA The deepest and most difficult question in Fusion Frame Theory is the construction of fusion frames with added that they do not show how to construct the frames. Recently, Casazza and Fickus [4] have developed a Fusion

Casazza, Pete

240

(MS WORD TEMPLATE for Submission in Fusion Engineering and Design) Security on the US Fusion Grid  

E-Print Network (OSTI)

(MS WORD TEMPLATE for Submission in Fusion Engineering and Design) Security on the US Fusion Grid J, FusionGrid, grid computing 1. Introduction Critical to the success of any computational grid is security to improve security for the US Fusion Grid (FusionGrid) [1]. Collaboratory workers have adapted secure

Thompson, Mary R.

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear fusion: Fast heating scalable to laser fusion ignition  

Science Journals Connector (OSTI)

... fuel by a short-duration laser pulse is a promising route to generating energy by nuclear fusion, and has been demonstrated on an experimental scale using a novel fast-ignitor geometry. ...

R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, et al.

2002-08-29T23:59:59.000Z

242

Nuclear Fusion and Non-Fusion in Theobroma cacao L.  

Science Journals Connector (OSTI)

... or in /S^.g x ^i-3), the substance which 'interferes' with nuclear fusion diffuses from the male cytoplasm into that associated with the polar nuclei, from which ...

M. C. BENNETT, F. W. COPE

1959-05-30T23:59:59.000Z

243

Economic analysis of fusion breeders  

SciTech Connect

This paper presents a study of the economic performance of Fission/Fusion Hybrid devices. This work takes fusion breeder cost estimates and applies methodology and cost factors used in the fission reactor programs to compare fusion breeders with Liquid Metal Fast Breeder Reactors (LMFBR). The results of the analysis indicate that the Hybrid will be in the same competitive range as proposed LMFBRs and have the potential to provide economically competitive power in a future of rising uranium prices. The sensitivity of the results to variations in key parameters is included.

Delene, J.G.

1985-01-01T23:59:59.000Z

244

Advanced fusion concepts: project summaries  

SciTech Connect

This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

None

1980-12-01T23:59:59.000Z

245

Applications of high-speed dust injection to magnetic fusion  

SciTech Connect

It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage. Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

Wang, Zhehui [Los Alamos National Laboratory; Li, Yangfang [Max Planck Institute for Extraterrestrial Physics, Germany

2012-08-08T23:59:59.000Z

246

Vehicle Technologies Office: ACEM Instrument Achieves Significant  

NLE Websites -- All DOE Office Websites (Extended Search)

ACEM Instrument Achieves ACEM Instrument Achieves Significant Performance Milestone to someone by E-mail Share Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Facebook Tweet about Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Twitter Bookmark Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Google Bookmark Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Delicious Rank Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Digg Find More places to share Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on AddThis.com... ACEM Instrument Achieves Significant Performance Milestone

247

Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma  

E-Print Network (OSTI)

The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

Labaune, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

2013-01-01T23:59:59.000Z

248

The first cryogenic dark matter experiment  

SciTech Connect

An experimental search for dark matter particle candidates using cryogenic detectors requires a low radioactive background environment. The authors discuss the status of a cryogenic dark matter experiment to be performed in the Stanford Underground Facility. The detectors will be cooled in a specially designed cryostat connected to a modified side access Oxford 400 dilution refrigerator. Details of the cryostat design and its operating performance are presented. The effectiveness of the multi-level shield surrounding the cryostat, as well as the background levels expected to be achieved in the pilot experiment are discussed. Finally, the limits which can be set on dark matter candidates with such an experiment are discussed.

Barnes, P.D.; Aubourg, E.; Akerib, D.S.; Cummings, A.; Lange, A.E.; Margulies, S.; Sadoulet, B.; Shutt, T.; Stockwell, W.; White, S.; Young, B.A. (Univ. of California, Berkeley, CA (United States)); Da Silva, A. (Univ. of British Columbia, BC (Canada)); Bauer, D.; Borden, D.; Caldwell, D.O.; Gray, M.; Hale, D.; Lu, A.; Witherell, M.; Yellin, S. (Univ. of California, Santa Barbara, CA (United States)); Cabrera, B.; Chugg, B.; Dougherty, B.L.; Irwin, K.D.; Penn, M.J. (Stanford Univ., Stanford, CA (United States)); Emes, J.; Smith, A.; Smith, G.; Taylor, J.; Wolgast, C.; Haller, E.E. (Lawrence Berkeley Lab., CA (United States)); Pritychenko, B.V.; Pomansky, A.A. (Institute for Nuclear Research, Moscow (Russian Federation)); Ross, R.R. (Univ. of California, Berkeley, CA (United States) Lawrence Berkeley Lab., CA (United States))

1993-11-01T23:59:59.000Z

249

Role of nuclear fusion in future energy systems and the environment under future uncertainties  

Science Journals Connector (OSTI)

Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050–2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO2 concentration constraint.

Koji Tokimatsu; Jun’ichi Fujino; Satoshi Konishi; Yuichi Ogawa; Kenji Yamaji

2003-01-01T23:59:59.000Z

250

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Sun Our Sun FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Sun Runs on Fusion Energy How the sun looks through x-ray eyes! Like all stars, the sun is a huge fusion reactor, pumping out 100 million times as much energy in a single second as the entire population of Earth

251

Fusion materials irradiations at MaRIE's fission fusion facility  

SciTech Connect

Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

Pitcher, Eric J [Los Alamos National Laboratory

2010-10-06T23:59:59.000Z

252

The physics of magnetic fusion reactors  

Science Journals Connector (OSTI)

During the past two decades there have been substantial advances in magnetic fusion research. On the experimental front, progress has been led by the mainline tokamaks, which have achieved reactor-level values of temperature and plasma pressure. Comparable progress, when allowance is made for their smaller programs, has been made in complementary configurations such as the stellarator, reversed-field pinch and field-reversed configuration. In this paper, the status of understanding of the physics of toroidal plasmas is reviewed. It is shown how the physics performance, constrained by technological and economic realities, determines the form of reference toroidal reactors. A comparative study of example reactors is not made, because the level of confidence in projections of their performance varies widely, reflecting the vastly different levels of support which each has received. Success with the tokamak has led to the initiation of the International Thermonuclear Experimental Reactor project. It is designed to produce 1500 MW of fusion power from a deuterium-tritium plasma for pulses of 1000 s or longer and to demonstrate the integration of the plasma and nuclear technologies needed for a demonstration reactor.

John Sheffield

1994-07-01T23:59:59.000Z

253

Prospects for inertial fusion as an energy source  

SciTech Connect

Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

Hogan, W.J.

1989-06-26T23:59:59.000Z

254

Laser-Driven Nuclear Fusion  

Science Journals Connector (OSTI)

Energy is set free not only by fission of heavy nuclei but also when the lightest nuclei fuse to form heavier ones. Such fusion processes are the energy source of our sun and other stars. Great effort is being...

S. Witkowski

1982-01-01T23:59:59.000Z

255

Table-top nuclear fusion  

Science Journals Connector (OSTI)

... chance of colliding with accelerated deuterium ions from adjacent clusters with sufficient woomph to create nuclear fusion - the deuterium ions would fuse to create helium nuclei, releasing neutrons of a ...

Henry Gee

1999-04-08T23:59:59.000Z

256

Nuclear Fusion in the Sun  

Science Journals Connector (OSTI)

...February 2004 research-article Articles Nuclear Fusion in the Sun Giovanni Fiorentini * Barbara Ricci ** Francesco L. Villante *** * E-mail: fiorenti@fe.infn.it ** E-mail......

Giovanni Fiorentini; Barbara Ricci; Francesco L. Villante

2004-02-01T23:59:59.000Z

257

Condensed hydrogen for thermonuclear fusion  

SciTech Connect

Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2010-11-15T23:59:59.000Z

258

EURATOM/CCFE Fusion Association  

E-Print Network (OSTI)

- Public Understanding and Education Outreach 7 - Training 7 JET Operations 8 JET Studies 11 MAST 14 - MAST to capture heat from the fusion core to generate electricity in a power station. In this Executive Summary

259

Fusion Energy Sciences Network Requirements  

E-Print Network (OSTI)

Division, and the Office of Fusion Energy Sciences. This isEnergy Sciences, DOE Office of Science Energy SciencesDepartment of Energy, Office of Science, Office of Advanced

Dart, Eli

2014-01-01T23:59:59.000Z

260

The Spheromak Path to Fusion  

Science Journals Connector (OSTI)

Options for a spheromak fusion-energy reactor are described and provide ... configuration offers. However, the ability of the spheromak to confine plasma energy has not yet ... . These are being studied in the Su...

K. I. Thomassen; E. B. Hooper; D. D. Ryutov

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fusion genes in breast cancer  

E-Print Network (OSTI)

Fusion genes in breast cancer Elizabeth M. Batty Clare College, University of Cambridge A dissertation submitted to the University of Cambridge in candidature for the degree of Doctor of Philosophy November 2010 ii... is the outcome of work done in collaboration except where specifically indicated in the text. It has not been submitted whole or in part for any other qualification at any other University. iii Summary Fusion genes in breast cancer Elizabeth Batty...

Batty, Elizabeth

2012-02-07T23:59:59.000Z

262

Fusion reactor systems  

Science Journals Connector (OSTI)

In this review we consider deuterium-tritium (D-T) fusion reactors based on four different plasma-confinement and heating approaches: the tokamak, the theta-pinch, the magnetic-mirror, and the laser-pellet system. We begin with a discussion of the dynamics of reacting plasmas and basic considerations of reactor power balance. The essential plasma physical aspects of each system are summarized, and the main characteristics of the corresponding conceptual power plants are described. In tokamak reactors the plasma densities are about 1020 m-3, and the ? values (ratio of plasma pressure to confining magnetic pressure) are approximately 5%. Plasma burning times are of the order of 100-1000 sec. Large superconducting dc magnets furnish the toroidal magnetic field, and 2-m thick blankets and shields prevent heat deposition in the superconductor. Radially diffusing plasma is diverted away from the first wall by means of null singularities in the poloidal (or transverse) component of the confining magnetic field. The toroidal theta-pinch reactor has a much smaller minor diameter and a much larger major diameter, and operates on a 10-sec cycle with 0.1-sec burning pulses. It utilizes shock heating from high-voltage sources and adabatic-compression heating powered by low-voltage, pulsed cryogenic magnetic or inertial energy stores, outside the reactor core. The plasma has a density of about 1022 m-3 and ? values of nearly unity. In the power balance of the reactor, direct-conversion energy obtained by expansion of the burning high-? plasma against the containing magnetic field is an important factor. No divertor is necessary since neutral-gas flow cools and replaces the "spent" plasma between pulses. The open-ended mirror reactor uses both thermal conversion of neutron energy and direct conversion of end-loss plasma energy to dc electrical power. A fraction of this direct-convertor power is then fed back to the ioninjection system to sustain the reaction and maintain the plasma. The average ion energy is 600 keV, plasma diameter 6 m, and the plasma beta 85%. The power levels of the three magnetic-confinement devices are in the 500-2000 MWe range, with the exception of the mirror reactor, for which the output is approximately 200 MWe. In Laser-Pellet reactors, frozen D-T pellets are ignited in a cavity which absorbs the electromagnetic, charged particle, and neutron energy from the fusion reaction. The confinement is "inertial," since the fusion reaction occurs during the disassembly of the heated pellet. A pellet-cavity unit would produce about 200 MWt in pulses with a repetition rate of the order of 10 sec-1. Such units could be clustered to give power plants with outputs in the range of 1000 MWe.

F. L. Ribe

1975-01-01T23:59:59.000Z

263

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

Logan, B.G.

2007-01-01T23:59:59.000Z

264

Progress in inertial fusion at LLNL  

SciTech Connect

Experiments at LLNL using the 10 TW Novette laser have led to significantly increased understanding of laser/plasma coupling. Tests using 1.06 ..mu..m, 0.53 ..mu..m and 0.26 ..mu..m light have shown increased light absorption, increased efficiency of conversion to x-rays, and decreased production of suprathermal electrons as the wavelength of the incident light decreases. The data indicate that stimulated Raman scattering is the source of the excessive hot electrons and that the effect can be controlled by the proper selection of laser frequency and target material. The control of these effects has led to achievement of higher inertial fusion target compressions and to production of the first laboratory x-ray laser.

Storm, E.

1985-04-15T23:59:59.000Z

265

Boiler Maximum Achievable Control Technology (MACT) Technical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, May 2014 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

266

Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability...  

Energy Savers (EERE)

Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability Status Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability Status September 30, 2014 - 12:00pm...

267

Energy Department Forecasts Geothermal Achievements in 2015 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in...

268

../fusion/templates/mapguide/maroon/css/maroon_fusion.css background-image: url(../images/background.gif);  

E-Print Network (OSTI)

../fusion/templates/mapguide/maroon/css/maroon_fusion.css body { background-image: url(../images/background.gif); ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css body { background-color: #3e5c5f; ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css #ToolbarVertical { background: #500000; maroon_fusion.css #Toolbar { background

Ahmad, Sajjad

269

JET and the Prospect for Nuclear Fusion  

Science Journals Connector (OSTI)

This paper describes the Joint European Torus (JET) device which was built as a European collaboration effort, with the aim of testing the scientific feasibility of producing controlled thermonuclear reactions between light nuclei with a net yield of energy. JET is the largest magnetic confinement machine in the world both in physical size and in the magnitude of the plasma current (5 ? 106 Amperes). The machine came into operation in mid-1983 and has followed the first stages of a planned evolution, in which the performance is progressively increased mainly by adding more heating power and which will culminate in eventual operation in a deuterium-tritium mixture. This will permit study of the plasma performance when there is a substantial power input from the ?-particle fusion products. So far operating in deuterium gas with 8 MW of additional heating by neutral beams, a peak ion temperature of 12 keV has been obtained with a corresponding fusion product (density ? confinement time) of 8 ? 1018 m-3 s. If the same conditions were to be achieved in a deuterium-tritium mixture, then the ratio of thermonuclear power output to the heating power input, Q, would be ~ 0.1. It is expected that following further technical improvements to JET, "scientific breakthrough" (namely Q = 1) will be achieved. The next step after JET will be to study a burning or ignited plasma in which no power input is required because energy losses are balanced by ?-particle heating. The requirements for such an experiment will become increasingly clear as more data is obtained from JET. At present it seems likely that a larger apparatus will be needed with a plasma current capability of 12-15 MA. These requirements for the thermonuclear furnace remain broadly consistent with the known technological constraints on an eventual power reactor.

R J Bickerton

1988-01-01T23:59:59.000Z

270

Method of achieving the controlled release of thermonuclear energy  

DOE Patents (OSTI)

A method of achieving the controlled release of thermonuclear energy by illuminating a minute, solid density, hollow shell of a mixture of material such as deuterium and tritium with a high intensity, uniformly converging laser wave to effect an extremely rapid build-up of energy in inwardly traveling shock waves to implode the shell creating thermonuclear conditions causing a reaction of deuterons and tritons and a resultant high energy thermonuclear burn. Utilizing the resulting energy as a thermal source and to breed tritium or plutonium. The invention also contemplates a laser source wherein the flux level is increased with time to reduce the initial shock heating of fuel and provide maximum compression after implosion; and, in addition, computations and an equation are provided to enable the selection of a design having a high degree of stability and a dependable fusion performance by establishing a proper relationship between the laser energy input and the size and character of the selected material for the fusion capsule.

Brueckner, Keith A. (Ann Arbor, MI)

1986-01-01T23:59:59.000Z

271

Placing Fusion Power on a Pedestal | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Placing Fusion Power on a Pedestal American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Placing Fusion Power on a Pedestal...

272

Fusion & Materials for Nuclear Systems Division | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion & Materials for Nuclear Systems SHARE Fusion & Materials for Nuclear Systems Division Fusion holds the promise of significant power with no carbon emissions and minimal...

273

Neutron imaging with bubble chambers for inertial confinement fusion.  

E-Print Network (OSTI)

??One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated… (more)

Ghilea, Marian Constantin (1973 - ); Meyerhofer, David D.

2011-01-01T23:59:59.000Z

274

Non-Abelian Fusion Rules from an Abelian System  

E-Print Network (OSTI)

We demonstrate the emergence of non-Abelian fusion rules for excitations of a two dimensional lattice model built out of Abelian degrees of freedom. It can be considered as an extension of the usual toric code model on a two dimensional lattice augmented with matter fields. It consists of the usual $\\mathbb{C}(\\mathbb{Z}_p)$ gauge degrees of freedom living on the links together with matter degrees of freedom living on the vertices. The matter part is described by a $n$ dimensional vector space which we call $H_n$. The $\\mathbb{Z}_p$ gauge particles act on the vertex particles and thus $H_n$ can be thought of as a $\\mathbb{C}(\\mathbb{Z}_p)$ module. An exactly solvable model is built with operators acting in the corresponding Hilbert space. The vertex excitations for this model are studied and shown to obey non-Abelian fusion rules. We will show this for specific values of $n$ and $p$, though we believe this feature holds for all $n>p$. We will see that non-Abelian anyons of the quantum double of $\\mathbb{C}(S_3)$ are obtained as part of the vertex excitations of the model with $n=6$ and $p=3$. Ising anyons are obtained in the model with $n=4$ and $p=2$. The $n=3$ and $p=2$ case is also worked out as this is the simplest model exhibiting non-Abelian fusion rules. Another common feature shared by these models is that the ground states have a higher symmetry than $\\mathbb{Z}_p$. This makes them possible candidates for realizing quantum computation.

Pramod Padmanabhan; Paulo Teotonio-Sobrinho

2014-07-15T23:59:59.000Z

275

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Glossary of Plasma Physics and Fusion Energy Research Browse | Search | Submit an Entry Introduction, Sources and Contributors This Glossary seeks to provide plain-language definitions of over 3600

276

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Home> Student and Teacher Resources > For Introductory Students Home> Student and Teacher Resources > For Introductory Students FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Guide to Fusion Education Resources for Introductory Physics Students This is a compilation of online and offline education resources for

277

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Webby Honoree graphic graphic Key Resource Snap editors choice new scientist DrMatrix Webby Awards Honoree, April 10, 2007 The Alchemist - WebPick, January 29, 1999 Links2Go - Fusion, November 9, 1998 October 19, 1998 - October 19, 1999 Site of the Day, September 24, 1998. Hot spot. Student Science Resource, April 16, 1997

278

TWO IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION F u s i o n Physics of a Fundamental Energy Source C o n f i n e m e n t Q u a l i t y , n τ ( m - 3 s ) 1970-75 1990s 1975-80 1980s Ion Temperature (K) 10 21 10 20 10 19 10 18 10 17 10 6 10 7 10 8 10 9 Inertial Magnetic Expected reactor regime Expected reactor regime Useful Nuclear Masses (The electron's mass is 0.000549 u.) Label Species Mass (u*) n ( 1 n) neutron 1.008665 p ( 1 H) proton 1.007276 D ( 2 H) deuteron 2.013553 T ( 3 H) triton 3.015500 3 He helium-3 3.014932 α ( 4 He) helium-4 4.001505 * 1 u = 1.66054 x 10 -27 kg = 931.466 MeV/c 2 Nuclear Mass (u) B i n d i n g E n e r g y P e r N u c l e o n ( M e V ) 1 200 150 100 50 10 0 5 62 Ni Fusion Reactions Release Energy Fission Reactions Release Energy EXPERIMENTAL RESULTS IN FUSION RESEARCH Fusion requires high tempera- ture plasmas confined long enough at high density

279

Fusion Plasma Theory project summaries  

SciTech Connect

This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

Not Available

1993-10-01T23:59:59.000Z

280

Neutron scattering effects on fusion ion temperature measurements.  

SciTech Connect

To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY  

SciTech Connect

A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE.

GOODIN,D.T; NOBILE,A; SCHROEN,D.G; MAXWELL,J.L; RICKMAN,W.S

2004-03-01T23:59:59.000Z

282

Big Bang Synthesis of Nuclear Dark Matter  

E-Print Network (OSTI)

We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark "nucleon" number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. > 10^8, may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size >> 10^8, are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the...

Hardy, Edward; March-Russell, John; West, Stephen M

2014-01-01T23:59:59.000Z

283

The Path to Magnetic Fusion Energy  

SciTech Connect

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL) [PPPL

2011-05-04T23:59:59.000Z

284

Fusion under a complex barrier  

Science Journals Connector (OSTI)

The mechanism of fusion of two heavy nuclei is formulated within the concept of transmission across a mildly absorptive effective fusion barrier (EFB). The intensity of transmitted waves across such a barrier could be represented by the product TRPS where TR stands for the transmission coefficient across the corresponding real barrier and PS is a factor of survival probability against absorption under the complex barrier. The justification of this result and the physical basis of the above EFB transmission model of fusion, which is complementary to the definition of fusion based on absorption in the interior region known as the direct reaction model (DRM), are demonstrated in the case of a complex square well potential with a complex rectangular barrier. Based on a WKB approach, expressions for TR for different partial waves utilizing a realistic nucleus-nucleus potential are derived. Using the resulting expressions for the fusion cross section (?F), the experimental values of ?F and the corresponding data of the average angular momentum of the fused body are explained satisfactorily over a wide range of energy around the Coulomb barrier in various heavy ion systems such as 16O+152,154Sm, 58,64Ni+58,64Ni, 64Ni+92Zr, and 64Ni+100Mo.

Basudeb Sahu; I. Jamir; E. F. P. Lyngdoh; C. S. Shastry

1998-04-01T23:59:59.000Z

285

Study of internal magnetic field via polarimetry in fusion plasmas  

E-Print Network (OSTI)

to exploit in a fusion reactor on earth is the fusion of thethis process in a fusion reactor for power generationSince the cost of the fusion reactor increases with the

Zhang, Jie

2013-01-01T23:59:59.000Z

286

RHIC | Why Does Quark Matter Matter?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Does Quark Matter 'Matter'? Why Does Quark Matter 'Matter'? The history of modern technological development can be viewed as a series of investigations, with ever increasing resolution, into the microscopic structure of matter. Since the days of the early Greek philosophers, science has been on a continual quest to find the smallest piece - the most fundamental building block - forming the substance of the universe. STAR researchers During that journey, many beautiful and exotic properties of the subatomic world have been discovered: particles with wave-like properties the ultimate position of which can never be known; "particles" of light that deliver a fixed amount of energy when they strike the atoms of a material's surface; particles in some types of electrical conductors that

287

Establishment of an Institute for Fusion Studies. Technical progress report, November 1, 1994--October 31, 1995  

SciTech Connect

The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are to (1) conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) serve as a national and international center for information exchange by hosting exchange visits, conferences, and workshops; and (3) train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. During FY 1995, a number of significant scientific advances were achieved at the IFS, both in long-range fundamental problems as well as in near-term strategic issues, consistent with the Institute`s mandate. Examples of these achievements include, for example, tokamak edge physics, analytical and computational studies of ion-temperature-gradient-driven turbulent transport, alpha-particle-excited toroidal Alfven eigenmode nonlinear behavior, sophisticated simulations for the Numerical Tokamak Project, and a variety of non-tokamak and non-fusion basic plasma physics applications. Many of these projects were done in collaboration with scientists from other institutions. Research discoveries are briefly described in this report.

NONE

1995-07-01T23:59:59.000Z

288

DOSE RATES FROM NEUTRON ACTIVATION OF FUSION REACTOR COMPONENTS  

E-Print Network (OSTI)

NEUTRON ACTIVATION OF FUSION REACTOR C01WONENTS LawrenceNeutron Activation of Fusion Reactor Components Lawrence

Ruby, Lawrence

2014-01-01T23:59:59.000Z

289

Laser fusion experiments at LLL  

SciTech Connect

These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

Ahlstrom, H.G.

1980-06-16T23:59:59.000Z

290

Fusion roadmapping | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion roadmapping Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design Read more about PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design

291

Plasma physics: Nuclear fusion comes closer  

Science Journals Connector (OSTI)

... A NEW initiative in international cooperation among the nuclear fusion research community, which may lead to a world engineering test reactor, was announced at ... for an engineering the most widely accepted element of a common fusion plan.

R.S. Pease

1986-12-11T23:59:59.000Z

292

MAST Upgrade Advancing compact fusion sources  

E-Print Network (OSTI)

as a stepping stone to greater involvement in the fusion sector and, in particular, the commercial opportunities to fusion research. MAST Upgrade will build on this progress, providing a truly world-class device capable

293

EURATOM/CCFE Fusion Association Annual Report  

E-Print Network (OSTI)

European and UK fusion research Public understanding and education outreach Training JET operations Tokamak for clean electricity generation here on earth. Fusion power stations would emit no greenhouse gases

294

INL Fusion Safety Program - Recent Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

T145 (2011) 014051. B. J. Merill, P. W. Humrickhouse, and J. P. Sharpe, "An aerosol resuspension model for MELCOR for fusion," Fusion Engineering and Design 86 (2011) 2686-2689. M....

295

Fusion Reactor Plasmas with Polarized Nuclei  

Science Journals Connector (OSTI)

Nuclear fusion rates can be enhanced or suppressed by polarization of the reacting nuclei. In a magnetic fusion reactor, the depolarization time is estimated to be longer than the reaction time.

R. M. Kulsrud; H. P. Furth; E. J. Valeo; M. Goldhaber

1982-10-25T23:59:59.000Z

296

Image fusion for a nighttime driving display  

E-Print Network (OSTI)

An investigation into image fusion for a nighttime driving display application was performed. Most of the image fusion techniques being investigated in this application were developed for other purposes. When comparing the ...

Herrington, William Frederick

2005-01-01T23:59:59.000Z

297

Idaho National Laboratory Fusion Safety Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Information: Brad Merrill 208-526-0395 Email Contact Fusion Safety Program Thermonuclear fusion powers the Sun and the stars and is the most powerful energy source known....

298

An accelerator based fusion product source for development of fusion-plasma diagnostics and education  

E-Print Network (OSTI)

been very instrumental in designing, optimizing, characterizing several types of fusionAn accelerator based fusion product source for development of fusion-plasma diagnostics and education Johan Frenje MIT - Plasma Science and Fusion Center Conference on The Big Impact of Small

299

2002 Summer Fusion Study 1 July 19, 2002 2002 Fusion Summer Study  

E-Print Network (OSTI)

2002 Summer Fusion Study 1 July 19, 2002 2002 Fusion Summer Study Snowmass Village, CO. July 19, 2002 For Immediate Release Fusion energy shows great promise to contribute to securing the energy leading scientists from the U.S. and international fusion community concluded a two-week forum assessing

300

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates  

E-Print Network (OSTI)

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates Stephanie in human immunodeficiency virus (HIV) infection is fusion between the viral envelope and the T x-ray scattering is that the bending modulus KC is greatly reduced upon addition of the HIV fusion

Nagle, John F.

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Quantum Tunneling in Nuclear Fusion  

E-Print Network (OSTI)

Recent theoretical advances in the study of heavy ion fusion reactions below the Coulomb barrier are reviewed. Particular emphasis is given to new ways of analyzing data, such as studying barrier distributions; new approaches to channel coupling, such as the path integral and Green function formalisms; and alternative methods to describe nuclear structure effects, such as those using the Interacting Boson Model. The roles of nucleon transfer, asymmetry effects, higher-order couplings, and shape-phase transitions are elucidated. The current status of the fusion of unstable nuclei and very massive systems are briefly discussed.

A. B. Balantekin; N. Takigawa

1997-08-19T23:59:59.000Z

302

Nuclear Physics for Nuclear Fusion  

SciTech Connect

The nuclear fusion data for deuteron-triton resonance near 100 keV are found to be consistent with the selective resonant tunneling model. The feature of this selective resonant tunneling is the selectivity. It selects not only the energy level, but also the damping rate (nuclear reaction rate). When the Coulomb barrier is thin and low, the resonance selects the fast reaction channel; however, when the Coulomb barrier is thick and high, the resonance selects the slow reaction channel. This mechanism might open an approach toward fusion energy with no strong nuclear radiation.

Li Xingzhong [Tsinghua University (China)

2002-01-15T23:59:59.000Z

303

Pionic Fusion of Heavy Ions  

Science Journals Connector (OSTI)

We report the first experimental observation of the pionic fusion of two heavy ions. The 12C(12C,24Mg)?0 and 12C(12C,24Na)?+ cross sections have been measured to be 208±38 and 182±84 pb, respectively, at Ecm=137MeV. This cross section for heavy-ion pion production, at an energy just 6 MeV above the absolute energy-conservation limit, constrains possible production mechanisms to incorporate the kinetic energy of the entire projectile-target system as well as the binding energy gained in fusion.

D. Horn; G. C. Ball; D. R. Bowman; W. G. Davies; D. Fox; A. Galindo-Uribarri; A. C. Hayes; G. Savard; L. Beaulieu; Y. Larochelle; C. St-Pierre

1996-09-16T23:59:59.000Z

304

Method for vacuum fusion bonding  

DOE Patents (OSTI)

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2001-01-01T23:59:59.000Z

305

Fusion bonding and alignment fixture  

DOE Patents (OSTI)

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2000-01-01T23:59:59.000Z

306

European nuclear fusion: Torus takes summer break  

Science Journals Connector (OSTI)

... EUROPE'S collaborative experiment in nuclear fusion, the Joint European Torus (JET), produced "real plasma" for the first time ...

Robert Walgate

1983-08-04T23:59:59.000Z

307

Breakthrough: Neutron Science for the Fusion Mission  

SciTech Connect

How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

McGreevy, Robert

2012-04-24T23:59:59.000Z

308

Fusion Energy: Visions of the Future  

E-Print Network (OSTI)

worldwide · X-ray/neutron applications · US teams at KSU, NSTec 2009: LPP Focus Fusion-1 lab begins

309

in Condensed Matter Physics  

E-Print Network (OSTI)

Master in Condensed Matter Physics ­ Master académique #12;2 #12;3 Students at the University. Condensed matter physics is about explaining and predicting the relationship between the atomic, and broad education in the field of condensed matter physics · introduce you to current research topics

van der Torre, Leon

310

Low-energy fusion caused by an interference  

E-Print Network (OSTI)

Fusion of two deuterons of room temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

B. Ivlev

2012-07-05T23:59:59.000Z

311

A Virtualized Computing Platform For Fusion Control Systems  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. 2,500 servers, 400 network devices and 700 terabytes of networked attached storage provide the foundation for NIF's Integrated Computer Control System (ICCS) and Experimental Data Archive. This talk discusses the rationale & benefits for server virtualization in the context of an operational experimental facility, the requirements discovery process used by the NIF teams to establish evaluation criteria for virtualization alternatives, the processes and procedures defined to enable virtualization of servers in a timeframe that did not delay the execution of experimental campaigns and the lessons the NIF teams learned along the way. The virtualization architecture ultimately selected for ICCS is based on the Open Source Xen computing platform and 802.1Q open networking standards. The specific server and network configurations needed to ensure performance and high availability of the control system infrastructure will be discussed.

Frazier, T; Adams, P; Fisher, J; Talbot, A

2011-03-18T23:59:59.000Z

312

A1.5 Fusion Performance  

SciTech Connect

Analysis and radiation hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant in the mid-2030s timeframe are presented. The required laser energy driver is 2.2 MJ at a 0.351-{micro}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for a near-term experimental resolution of the key physics uncertainties on the National Ignition Facility (NIF). The NIF is poised to demonstrate ignition by 2012 based on the central hot spot (CHS) mode of ignition and propagating thermonuclear burn [1]. This immediate prospect underscores the imperative and timeliness of advancing inertial fusion as a carbon-free, virtually limitless source of energy by the mid-21st century to substantially offset fossil fuel technologies. To this end, an intensive effort is underway to leverage success at the NIF and to provide the foundations for a prototype 'LIFE.1' engineering test facility by {approx}2025, followed by a commercially viable 'LIFE.2' demonstration power plant operating at 1 GWe by {approx}2035. The current design goal for LIFE.2 is to accommodate {approx}2.2 MJ of laser energy (entering the high-Z radiation enclosure or 'hohlraum') at a 0.351-{micro}m wavelength operating at a repetition rate of 16 Hz and to provide a fusion target yield of 132 MJ. To achieve this design goal first requires a '0-d' analytic gain model that allows convenient exploration of parameter space and target optimization. This step is then followed by 2- and 3-dimensional radiation-hydrodynamics simulations that incorporate laser beam transport, x-ray radiation transport, atomic physics, and thermonuclear burn [2]. These simulations form the basis for assessing the susceptibility to hydrodynamic instability growth, target performance margins, laser backscatter induced by plasma density fluctuations within the hohlraum, and the threat spectrum emerging from the igniting capsule, e.g., spectra, fluences and anisotropy of the x rays and ions, for input into the chamber survivability calculations. The simulations follow the guidelines of a 'point design' methodology, which formally designates a well-defined milestone in concept development that meets established criteria for experimental testing. In Section 2, the 0-d analytic gain model to survey gain versus laser energy parameter space is discussed. Section 3 looks at the status of integrated hohlraum simulations and the needed improvements in laser-hohlraum coupling efficiency to meet the LIFE.2 threshold (net) target gain of {approx}60. Section 4 considers advanced hohlraum designs to well exceed the LIFE.2 design goal for satisfactory performance margins. We summarize in Sec. 5.

Amendt, P

2011-03-31T23:59:59.000Z

313

EPRI Fusion Energy Assessment July 19, 2011  

E-Print Network (OSTI)

Building Blocks Come in Two Types Major Integration Facilities · Nuclear (e.g., ITER, Demo, Fusion NuclearEPRI Fusion Energy Assessment July 19, 2011 Palo Alto, CA Roadmapping an MFE Strategy R.J. Fonck Department of Engineering Physics University of Wisconsin-Madison #12;US MFE PROGRAM CAN MOVE TO A FUSION

314

Fusion power: a challenge for materials science  

Science Journals Connector (OSTI)

...schematic representation of a fusion power plant is shown in figure-1...the harshest environments in fusion power plants are those that...broadly classified into three types. The conditions experienced...materials The first wall of a fusion power plant must contain the...

2010-01-01T23:59:59.000Z

315

Laser Fusion Energy The High Average Power  

E-Print Network (OSTI)

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

316

Prospects for attractive fusion power systems  

Science Journals Connector (OSTI)

...Robinson Prospects for attractive fusion power systems Farrokh Najmabadi...commercial product. Today's fusion experiments, by their charter...power plant; the International Thermonuclear Experimental Reac- tor (ITER...for rapid maintenance of the fusion core (the so-called mean...

1999-01-01T23:59:59.000Z

317

Improved Image Fusion Using Balanced Multiwavelets  

E-Print Network (OSTI)

Improved Image Fusion Using Balanced Multiwavelets Lahouari Ghouti, Ahmed Bouridane and Mohammad K. Ibrahim Abstract-- This paper presents the use of balanced multi- wavelets for image fusion. The proposed image fusion scheme incorporates the use of balanced multiwavelets transform, which uses multiple

Ghouti, Lahouari

318

Fusion Lecture Summary Eugene S. Evans  

E-Print Network (OSTI)

March 31, 2010 2 / 15 #12;National Ignition Facility (NIF) location: Lawrence Livermore National. Evans (2010) Fusion Lecture Summary March 31, 2010 1 / 15 #12;Outline 1 Overview of NIF Specifications Timeline Goals 2 Inertial Confinement Fusion (ICF) 3 Science at NIF 4 Fusion and the Future Laser Inertial

Budker, Dmitry

319

FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES  

E-Print Network (OSTI)

FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical & Computer Eng. and Fusion Energy Research Program, University of California, San Diego, La Jolla, CA 92093-0417 619-534-7869 (619-534-7716, Fax) ABSTRACT Fusion is one of a few future power sources with the poten

Najmabadi, Farrokh

320

FUSION CATEGORIES AND MODULE CATEGORIES EVAN JENKINS  

E-Print Network (OSTI)

FUSION CATEGORIES AND MODULE CATEGORIES EVAN JENKINS k is an algebraically closed field of bilinear functors C Ă? D E. 2. Fusion categories Definition. Let C be a tensor/monoidal category. C is called a fusion category if (1) Every object has a left and right dual (2) 1 is simple. Examples (G

Proudfoot, Nicholas

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fusion in a Staged Z-pinch  

E-Print Network (OSTI)

York (1978) Teller, E. : Fusion. Academic Press, New York (O R I G I N A L A RT I C L E Fusion in a Staged Z-pinch H.U.implosion the sim- ulated fusion-energy yield is 7.6 MJ,

Rahman, H. U.; Ney, P.; Rostoker, N.; Wessel, F. J.

2009-01-01T23:59:59.000Z

322

A Kinetic model of crack fusion  

Science Journals Connector (OSTI)

......Research Note A Kinetic model of crack fusion Zbigniew Czechowski Institute of Geophysics...presents a kinetic approach to the problem of fusion of cracks. A kinetic equation for the...repetitive episodes of seismicity. crack fusion|kinetic model|seismicity| References......

Zbigniew Czechowski

1991-02-01T23:59:59.000Z

323

EURATOM/CCFE Fusion Association Annual Report  

E-Print Network (OSTI)

potential as an energy source. We are looking forward to JET advancing the records for fusion power for the year 2013. The objective of fusion research is to develop power stations that harness the process that powers the sun for clean electricity generation here on earth. Fusion power stations would emit

324

Directional projection based image fusion quality metric  

Science Journals Connector (OSTI)

In the past few decades, image fusion and its performance evaluation have attracted considerable research attention. However, it is still hard to objectively evaluate the fusion performance due to the diversity of image sources and the motivations for ... Keywords: Image fusion, Local sensitive intensity, Radon transform

Richang Hong, Wenyi Cao, Jianxin Pang, Jianguo Jiang

2014-10-01T23:59:59.000Z

325

Achieving Airtight Ducts in Manufactured Housing  

E-Print Network (OSTI)

correlated with achieving CFM25OUT=3% in mastic sealed systems, but less reliably with taped systems. Cost for achieving duct tightness goals range from $4 to $8 including duct testing on the assembly line...

McIlvaine, J.; Beal, D.; Moyer, N.; Chasar, D.; Chandra, S.

2004-01-01T23:59:59.000Z

326

Journal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report  

E-Print Network (OSTI)

.2. A Brief History of Heavy Ion Fusion The heavy ion fusion approach to inertial fusion energy (IFEJournal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report on Inertial Fusion Energy 1 Ronald Davidson,2 Barrett Ripin, Mohamed Abdou, David E. Baldwin

Abdou, Mohamed

327

Achieving Total Employee Engagement in Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

Ratheon and GM share their experiences with employee engagement to achieve energy efficiency and sustainability goals in this presentation.

328

Plasma physics: The fusion upstarts  

Science Journals Connector (OSTI)

... fusion reactor capable of generating an excess of energy from a sustained burn of its plasma fuel. But it looks set to cost as much as US$50 billion — ... light elements, add heat to strip the electrons from the nuclei and form an ionized plasma, then compress that ...

M. Mitchell Waldrop

2014-07-23T23:59:59.000Z

329

Fusion Ignition Research Experiment Highlights  

E-Print Network (OSTI)

objectives for FIRE are to address the critical burning plasma issues of an attractive magnetic fusion power plant as envisioned by the Advanced Reactor Innovation Evaluation Studies (ARIES). The FIRE Design study. institutions, and is managed through the Virtual Laboratory for Technology. The technical work on FIRE has been

330

The path to fusion power  

Science Journals Connector (OSTI)

...fusion RD, the remaining challenges and...2.1), a gas of deuterium...used to drive turbines and generate...with a half-life of approximately...again the half-life is relatively...small amount of gas (hydrogen or...equipped with turbines, etc., that...R&D, the remaining challenges and...

2007-01-01T23:59:59.000Z

331

The path to fusion power  

Science Journals Connector (OSTI)

...research and development before they...desirable technology for power...Thus, a gas of deuterium...to drive turbines. These turbines...decrease as the technology matures...intensive development of fusion technologies. One contribution...lithium and a turbine-driven...

2010-01-01T23:59:59.000Z

332

Third Edition, Gene Fusion System  

E-Print Network (OSTI)

. Small-Scale Isolation of pGEX DNA .... 9 6. Large-Scale Isolation of pGEX DNA .... 9 Notes on Sequencing ....................................................... 2 pGEX Vectors ............................................. 2 Purification Modules. Screening pGEX Vectors with PCR ..... 10 Purification of GST Fusion Proteins.. 11 8. Preparation

Lai, Zhi-Chun

333

Big Questions: Dark Matter  

ScienceCinema (OSTI)

Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

Lincoln, Don

2014-08-07T23:59:59.000Z

334

Sum rules of four-neutrino mixing in matter  

E-Print Network (OSTI)

Assuming the existence of one light sterile neutrino, we investigate the neutrino flavor mixing matrix in matter. Sum rules between the mixing parameters in vacuum and their counterparts in matter are derived. By using these new sum rules, we obtain the simple but exact expressions of the effective flavor mixing matrix in matter in terms of neutrino masses and the mixing parameters in vacuum. The rephasing invariants, sides of unitarity quadrangles and oscillation probabilities in matter are also achieved. Our model-independent results will be very helpful for analyzing flavor mixing and CP violation in the future long-baseline neutrino oscillation experiments.

He Zhang

2006-06-04T23:59:59.000Z

335

American Fusion News | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

American Fusion News American Fusion News General Atomics (GA) December 4, 2012 The Scorpion's Strategy: "Catch and Subdue" December 4, 2012 Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment February 15, 2012 General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement See All Massachusetts Institute of Technology (MIT) April 5, 2013 Applying physics, teamwork to fusion energy science February 22, 2013 A Tour of Plasma Physics in Downtown Cambridge December 4, 2012 Placing Fusion Power on a Pedestal September 21, 2012 MASSACHUSETTS INSTITUTUE OF TECHNOLOGY See All National Ignition Facility February 22, 2013 Summary of Assessment of Prospects for Inertial Fusion Energy February 16, 2012 National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes

336

Intimations of neck formation in heavy-ion subbarrier fusion reactions  

SciTech Connect

Since the observed fusion cross sections for collisions between heavy ions at subbarrier energies are orders of magnitude larger than would be expected for barrier tunnelling, one is faced with the task of identifying the basic force which is strong enough to overcome the strong Coulomb force and bring about fusion. The two possibilities seem to be excursions of the nuclear surface (and strong nuclear force) due to collective motions of the colliding nuclei and formation of a neck of nuclear matter. The first possibility has received the most attention. However, the systematics of fusion cross sections suggest neck formation is playing an important role. Neck formation can also result in a reseparation of the composite system and we review the experimental information on these reactions at barrier and subbarrier energies. 15 refs., 18 figs.

Stelson, P.H.

1990-07-01T23:59:59.000Z

337

Professor and Director of the Fusion Science Center of Extreme States of  

National Nuclear Security Administration (NNSA)

Professor and Director of the Fusion Science Center of Extreme States of Professor and Director of the Fusion Science Center of Extreme States of Matter and Fast Ignition, University of Rochester | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Riccardo Betti Professor and Director of the Fusion Science Center of Extreme States of

338

E-Print Network 3.0 - advanced fusion material Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics and Fusion 5 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

339

E-Print Network 3.0 - advanced deuterium fusion Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics and Fusion 2 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

340

T-661: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important 1: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update T-661: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update July 5, 2011 - 7:57am Addthis PROBLEM: ColdFusion 9.0.1, ColdFusion 9, ColdFusion 8.0.1, and ColdFusion 8 are affected with vulnerabilities mentioned in the security bulletins APSB11-14 and APSB11-15. ColdFusion 9.0.1, 9.0, 8.0.1 and 8.0 for Windows, Macintosh and UNIX (APSB11-14); ColdFusion integrated/installed with LCDS (APSB11-15) PLATFORM: ColdFusion 9.0.1, 9.0, 8.0.1 and 8.0 for Windows, Macintosh and UNIX ABSTRACT: Vulnerabilities have been identified in ColdFusion 9.0.1 and earlier versions for Windows, Macintosh and UNIX. These vulnerabilities could lead to a cross-site request forgery (CSRF) or a remote denial-of-service (DoS).

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lithium As Plasma Facing Component for Magnetic Fusion Research  

SciTech Connect

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

342

Laser fusion neutron source employing compression with short pulse lasers  

DOE Patents (OSTI)

A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

Sefcik, Joseph A; Wilks, Scott C

2013-11-05T23:59:59.000Z

343

Specially Conditioned EM Fields to Reduce Nuclear Fusion Input Energy Needs  

Science Journals Connector (OSTI)

Ordinary electromagnetic (EM) fields possess relatively simple \\{U1gauge\\} symmetry, and their angular momentum is analogous to that of spin1 particles whose likecharges attract and unlike charges repel. This manifests in coulomb repulsion between free electrons or ions and coulomb attraction between free electrons and ions. By contrast, angular momentum of SU(2) fields that describe the shortrange Weak Nuclear Force in atomic nuclei is analogous to that of spin2 particles whose likecharges attract. So, free ions that enter such small SU(2) field regions attract each other until their separation becomes so small that their fusion occurs. In this respect, Barrett has derived EM fields with the same SU(2) gauge symmetry and spin2 angular momentum as SU(2) matter fields in atomic nuclei. It is conceivable, therefore, that SU(2) EM fields might cause fuel ions inside nuclear fusion reactors to attract (rather than repel) each other. This paper, therefore, explores the possibility of SU(2) EM fields reducing the electrical compression energies these SU(2) EM fields must exert on fuel ions before fusion of the ions by the SU(2) matter fields of the weak nuclear force then occurs. A specific conditioning of U(1) EM field energy into SU(2) EM field energy was selected; a given type of fusion was assumed; and preliminary, parametric estimates of input electrical energy reductions were made.

H. David Froning Jr.; Terence W. Barrett; George H. Miley

2012-01-01T23:59:59.000Z

344

Lab scientists recognized for their achievements  

NLE Websites -- All DOE Office Websites (Extended Search)

scientists recognized for their achievements Influential scientific minds, F. Albert Cotton and Ernest O. Lawrence Awards September 2, 2014 Left to right: Bette Korber, Alan...

345

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

346

Preparing for Project Implementation Measuring Energy Achievements...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Project Implementation Measuring Energy Achievements Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference...

347

Collaboration drives achievement in protein structure research  

NLE Websites -- All DOE Office Websites (Extended Search)

AlumniLink November 2014 Collaboration drives achievement in protein structure research Alumni Link: Opportunities, News and Resources for Former Employees Latest...

348

Pre-Amplifier Module for Laser Inertial Confinement Fusion  

SciTech Connect

The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

Heebner, J E; Bowers, M W

2008-02-06T23:59:59.000Z

349

Potential and desire for HTS application in thermonuclear fusion  

Science Journals Connector (OSTI)

Superconducting magnets are stringent for fusion reactors with magnetic confinement to provide an economic energy balance. Large-scale development programmes have been executed worldwide to achieve in time the needed technology. The ultimate result of this effort, so far, is the ITER magnet system with the most sophisticated LTS. However, if one thinks about the design of a fusion DEMO and later reactors, the option of HTS must be considered seriously in view of the potential advantages of these conductors concerning higher operation temperature, temperature margin, high field properties and cryogenic power saving. Extrapolating from the long period needed for the ITER conductor development, it is time now to start with HTS development for fusion reactors to be able to decide their applicability. It is still a long way for the HTS to become comparable with LTS, however, continuous progress can be seen. Beside the large confinement magnets, HTS will also be of advantage for current leads, bus bars and gyrotron magnets. The state of the art of HTS is such, that already now such components can be constructed with HTS.

P. Komarek

2006-01-01T23:59:59.000Z

350

The Matter of Detailing  

Science Journals Connector (OSTI)

Project success is truly a “matter of detailing”! So, it is imperative that the strongest of cases must be made for the process of detailing!

Ralph W. Liebing RA; CSI; CPCA; CBO

2011-01-01T23:59:59.000Z

351

EMSL - soil organic matter  

NLE Websites -- All DOE Office Websites (Extended Search)

soil-organic-matter en Structures and Stabilities of (MgO)n Nanoclusters. http:www.emsl.pnl.govemslwebpublicationsstructures-and-stabilities-mgon-nanoclusters

352

Dark matter at colliders  

SciTech Connect

We show that colliders can impose strong constraints on dark matter. We take an effective field theory approach where dark matter couples to quarks and gluons through high dimensional operators. We discuss limits on interactions of dark matter and hadronic matter from the ATLAS experiment at the Large Hadron Collider (LHC). For spin-independent scattering, the LHC limits are stronger than those from direct detection experiments for light WIMPs. For spin-dependent scattering, the LHC sets better limits over much of parameter space.

Yu Haibo [Department of Physics, University of Michigan, Ann Arbor, MI, 48109 (United States)

2013-05-23T23:59:59.000Z

353

A weekly review of scientific and technological achievements from Lawrence Liver  

NLE Websites -- All DOE Office Websites (Extended Search)

Oct. 28-Nov. 1 2013. Oct. 28-Nov. 1 2013. NIF is trying to achieve fusion ignition in a laboratory setting. A tiny pellet barely the diameter of a human hair could lead to endless clean energy from tap water. Scientists including those at Lawrence Livermore's National Ignition Facility are moving closer to fusion ignition. They are working to recreate the super-hot conditions at the centers of stars and our sun but in miniature. They fire 192 lasers at a chamber the size of a pencil eraser that contains a pellet about two millimeters wide. Inside, the pellet is coated with a mix of deuterium and tritium, which are two isotopes of hydrogen. Deuterium can be readily found in water and tritium is refined from lithium, which is an element in garden soil. To read more, go to Newsweek.

354

Fusion Power Associates Annual Meeting  

E-Print Network (OSTI)

to that obtained on JET. Summary #12;Collaborators V. N. Goncharov, R. Betti,T. R. Boehly,T. J. B. Collins, R. S-relevant conditions E18399 M.C. Hermann, M.Tabak, and J. D. Lindl, Nucl. Fusion 41, 99 (2001). C. D. Zhou and R. Betti. D. Zhou and R. Betti, Phys. Plasmas 14, 072703 (2007). 0.05 2.0 2.5 3.0 Implosion velocity (�107 cm

355

Conceptual design of fast-ignition laser fusion reactor FALCON-D  

Science Journals Connector (OSTI)

A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5–6?m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400?kJ, i.e. a 40?MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400?MWe) can be achieved with a high repetition (30?Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.

T. Goto; Y. Someya; Y. Ogawa; R. Hiwatari; Y. Asaoka; K Okano; A. Sunahara; T. Johzaki

2009-01-01T23:59:59.000Z

356

Fusion Frames Peter G. Casazza and Gitta Kutyniok  

E-Print Network (OSTI)

Chapter 1 Fusion Frames Peter G. Casazza and Gitta Kutyniok Abstract Novel technological advances. Fusion frames, which can be regarded as frames of subspaces, do satisfy exactly those needs. They analyze, distributed processing, fusion coherence, fusion frame, fusion frame potential, isoclinic subspaces, mutually

Kutyniok, Gitta

357

FUSION SYSTEMS FOR PROFINITE GROUPS RADU STANCU AND PETER SYMONDS  

E-Print Network (OSTI)

FUSION SYSTEMS FOR PROFINITE GROUPS RADU STANCU AND PETER SYMONDS Abstract. We introduce the notion of a pro-fusion system on a pro-p group, which generalizes the notion of a fusion system on a finite p-group. We also prove a version of Alperin's Fusion Theorem for pro-fusion systems. 1. Introduction Profinite

Symonds, Peter

358

Course: FUSION SCIENCE AND ENGINEERING Universit degli Studi di Padova  

E-Print Network (OSTI)

the subject of controlled thermonuclear fusion in magnetically confined plasmas. Both fusion science of Controlled Thermonuclear Fusion, b) Engineering of a Magnetically Confined Fusion Reactor, c) ExperimentalCourse: FUSION SCIENCE AND ENGINEERING UniversitĂ  degli Studi di Padova in agreement

Cesare, Bernardo

359

Progress toward high-gain laser fusion  

SciTech Connect

A 1985-1986 Review of the US inertial confinement fusion program by the National Academy of Sciences concluded that five more years might be required to obtain enough data to determine the future course of the program. Since then, data from the Nova laser and from the Halite/Centurion program have resolved most of the outstanding problems identified by the NAS review. In particular, we now believe that we can produce a sufficiently uniform target; that we can keep the energy content in hot electrons and high-energy photons low enough (/approximately/1--10% of drive energy, depending on target design) and achieve enough pulse-shaping accuracy (/approximately/10%, with a dynamic range of 100:1) to keep the fuel on a near-Fermi-degenerate adiabat; that we can produce an /approximately/100-Mbar pressure pulse of sufficient uniformity (/approximately/1%), and can we control hydrodynamic instabilities so that the mix of the pusher into the hot spot is low enough to permit marginal ignition. These results are sufficiently encouraging that the US Department of Energy is planning to complete a 10-MJ laboratory microfusion facility to demonstrate high-gain ICF in the laboratory within a decade. 22 refs., 1 fig.

Storm, E.

1988-09-28T23:59:59.000Z

360

Achieving diversity in Scotland's forest landscapes  

E-Print Network (OSTI)

is covered by forests and woodlands, most of which are conifer forests planted during the last centuryAchieving diversity in Scotland's forest landscapes Practice Guide #12;Practice Guide Achieving diversity in Scotland's forest landscapes Alison Grant and Rick Worrell with Scott Wilson, Duncan Ray

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Princeton Plasma Physics Lab - Inertial confinement fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

inertial-confinement-fusion An inertial-confinement-fusion An experimental process that uses lasers to compress plasma to sufficiently high temperatures and densities for fusion to occur. Such experiments are carried out in places such as the National Ignition Facility at the Lawrence Livermore National Laboratory in Livermore, California. en Fusion through the eyes of a veteran science journalist http://www.pppl.gov/news/2013/07/fusion-through-eyes-veteran-science-journalist-1

Author Daniel Clery recently published "A Piece of the Sun," a 320-page narrative of the history of fusion research and the

362

Role of CD9 in Sperm-Egg Fusion and Its General Role in Fusion Phenomena  

Science Journals Connector (OSTI)

In fertilization, two types of sex cells or gametes – a ... a new individual. Notably, the “membrane fusion” that occurs intercellularly between a sperm and ... that is delivered into the egg cytoplasm through fusion

Natsuko Kawano; Yuichiro Harada; Keiichi Yoshida; Mami Miyado; Kenji Miyado

2011-01-01T23:59:59.000Z

363

Calculations of (n,?) Cross Sections on Some Structural Fusion Materials for Fusion Reactor Technology  

Science Journals Connector (OSTI)

The knowledge of cross section for emission of light charged particles (p, d, t, and ?) induced by fast neutrons on structural fusion materials has a critical importance on fusion reactors. The ga...

M. Yi?it; E. Tel; G. Tan?r

2013-06-01T23:59:59.000Z

364

Investigation into Fusion Feasibility of a Magnetized Target Fusion Reactor: A Preliminary Numerical Framework  

Science Journals Connector (OSTI)

The efforts to engineer devices to produces conditions suitable for nuclear fusion on earth have made significant leaps and ... improved technology and engineering methods. Magnetized target fusion, or magneto-in...

Michael Lindstrom; Sandra Barsky; Brian Wetton

2014-09-01T23:59:59.000Z

365

Money Matters Parent Presentation  

E-Print Network (OSTI)

Money Matters Parent Presentation Presented by Becky Lore June 7, 2014 #12;Money Matters · Dates.fcac-acfc.gc.ca · Gail Vaz-Oxlade My Money, My Choices www.gailvazoxlade.com · Money Mentors www.moneymentors.ca/ · Money

Seldin, Jonathan P.

366

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network (OSTI)

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

Zhong, X H; Ning, P Z

2004-01-01T23:59:59.000Z

367

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network (OSTI)

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

X. H. Zhong; L. Li; P. Z. Ning

2004-10-18T23:59:59.000Z

368

Effects of Hemagglutinin Fusion Peptide on Poly(ethylene glycol)-Mediated Fusion of Phosphatidylcholine Vesicles  

Science Journals Connector (OSTI)

Fusion peptide had different effects on the fusion of these different types of vesicles:? fusion was not induced in the absence of PEG or in unperturbed DOPC LUV even in the presence of PEG. ... For a 100:1 lipid:peptide ratio, all vesicles fused just once, whereas for a 50:1 ratio, higher-order fusion products formed. ... The wild type virus can fuse to membranes at pH 5 but not at pH 7.4. ...

Md. Emdadul Haque; Andrea J. McCoy; Julie Glenn; JinKeun Lee; Barry R. Lentz

2001-11-02T23:59:59.000Z

369

D-Fusion: a Distinctive Fusion Calculus Michele Boreale1, Maria Grazia Buscemi2, and Ugo Montanari2  

E-Print Network (OSTI)

D-Fusion: a Distinctive Fusion Calculus Michele Boreale1, Maria Grazia Buscemi2, and Ugo Montanari2 Informatica, Universit`a di Pisa, Italy. boreale@dsi.unifi.it {buscemi,ugo}@di.unipi.it Abstract. Fusion of a new calculus, D-Fusion, with two binders, and . We show that D-Fusion is strictly more expressive

Parrow, Joachim

370

Status of Fusion Reactor Blanket Design  

Science Journals Connector (OSTI)

Blanket Design and Evaluation / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

D. L. Smith; D.-K. Sze

371

Fusion: A general framework for hierarchical tilings  

E-Print Network (OSTI)

One well studied way to construct quasicrystalline tilings is via inflate-and-subdivide (a.k.a. substitution) rules. These produce self-similar tilings--the Penrose, octagonal, and pinwheel tilings are famous examples. We present a different model for generating hierarchical tilings we call "fusion rules". Inflate-and-subdivide rules are a special case of fusion rules, but general fusion rules are more flexible and allow for defects, changes in geometry, and even constrained randomness. A condition that produces homogeneous structures and a method for computing frequency for fusion tiling spaces are discussed.

Natalie Priebe Frank

2013-11-21T23:59:59.000Z

372

Fusion calculations with the Skyrme interactions  

Science Journals Connector (OSTI)

The effect on nuclear dynamics of using various parametrizations of the Skyrme potential is studied. In particular, fusion cross sections for the light system O16 + Mg24 are calculated for the interactions Skyrme II, Skyrme III, Skyrme IV, Skyrme V, and Skyrme VI. The interaction Skyrme III is shown to increase significantly the fusion cross section. An angular momentum window for fusion is observed to occur for Ec.m.?70 MeV.NUCLEAR REACTIONS O16(Mg24,x) in time-dependent Hartree-Fock approximation. Effect of nuclear interaction on fusion cross section.

S. J. Krieger and M. S. Weiss

1981-09-01T23:59:59.000Z

373

Progress and prospect of laser thermonuclear fusion  

Science Journals Connector (OSTI)

Report presented at the International Seminar on Present Status and Future Plan of Inertial Confinement Fusion, Tokyo, Japan, 26 November 1992.

N G Basov

1993-01-01T23:59:59.000Z

374

Inertial confinement fusion | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

375

Method of controlling fusion reaction rates  

DOE Patents (OSTI)

This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

1983-05-09T23:59:59.000Z

376

Theoretical Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory Department The fusion energy sciences mission of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) is to help provide the scientific foundations...

377

Cavitation-Induced Fusion: Proof of Concept  

E-Print Network (OSTI)

Cavitation-induced fusion (also known as bubble fusion or sonofusion) has been a topic of much debate and controversy and is generally (albeit incorrectly) perceived as unworkable. In this paper we present the theoretical foundations of cavitation-induced fusion and summarize the experimental results of the research conducted in the past 20 years. Based on the systematic study of all available data we conclude that the cavitation-induced fusion is feasible, doable, and can be used for commercial power generation. We present the results of our own research and disclose a commercial reactor prototype.

Fomitchev-Zamilov, Max I

2012-01-01T23:59:59.000Z

378

Cavitation-Induced Fusion: Proof of Concept  

E-Print Network (OSTI)

Cavitation-induced fusion (also known as bubble fusion or sonofusion) has been a topic of much debate and controversy and is generally (albeit incorrectly) perceived as unworkable. In this paper we present the theoretical foundations of cavitation-induced fusion and summarize the experimental results of the research conducted in the past 20 years. Based on the systematic study of all available data we conclude that the cavitation-induced fusion is feasible, doable, and can be used for commercial power generation. We present the results of our own research and disclose a commercial reactor prototype.

Max I. Fomitchev-Zamilov

2012-09-09T23:59:59.000Z

379

World's largest laser misses nuclear fusion deadline  

Science Journals Connector (OSTI)

The 192-beam laser in California was an ambitious attempt to pip a magnetic fusion technique to the post – but that now looks unlikely

2012-01-01T23:59:59.000Z

380

The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy  

E-Print Network (OSTI)

-consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER  

E-Print Network (OSTI)

Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergyJJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges without green house gashouse gas #12;JJ, IAP Cambridge January 20103 3 D + T + He ++ n U235 n n Neutrons

382

Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century  

E-Print Network (OSTI)

Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century Carlos Matos FerreiraInstituto SuperiorSuperior TTéécnicocnico,, LisboaLisboa, Portugal, Portugal 20th International Atomic Energy Agency, Fusion Energy Conference, Vilamoura, Portugal #12;OutlineOutline ·· World Energy ConsumptionWorld Energy

383

Fusion Engineering and Design 41 (1998) 393400 Economic goals and requirements for competitive fusion energy  

E-Print Network (OSTI)

fusion energy Ronald L. Miller Fusion Energy Research Program, Uni6ersity of California, San Diego, La Jolla, CA 92093-0417, USA Abstract Future economic competitiveness, coupled to and constrained market-penetration context and also influence the near-term funding climate for fusion R&D. With concept

California at San Diego, University of

384

Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences  

E-Print Network (OSTI)

. Benefits Total world energy consumption has increased by more than 50% during the past 25 years, and given,182 31,317 Total, Fusion Energy Sciences 280,683a 318,950 427,850 Public Law Authorizations: Public LawScience/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile

385

Fast ignition of inertial confinement fusion targets  

SciTech Connect

Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2013-01-15T23:59:59.000Z

386

An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion - Revision 1  

SciTech Connect

This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nucle& fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should be in a 30-53 mills/kWh (1999 dollars) range if carbon sequestration is not needed, 30-61 mills/kWh if sequestration is required, or as high as 83 mills/kWh for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 65-102 mills/kWh for l- to 1.3-GW(e) scale power plants. Fusion costs will have tqbe, reduced and/or alternative concepts devised before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal.

Delene, J.G.; Sheffield, J.; Williams, K.A.; Reid, R.L.; Hadley, S.

2000-02-01T23:59:59.000Z

387

The role of transmembrane domains in membrane fusion  

Science Journals Connector (OSTI)

Biological membrane fusion is driven by different types of molecular fusion machines. Most of these proteins are membrane ... . SNARE proteins are essential for intracellular membrane fusion along the secretory a...

D. Langosch; M. Hofmann; C. Ungermann

2007-04-01T23:59:59.000Z

388

On Data Fusion for Parametric-Model-Based Wireless Localization  

Science Journals Connector (OSTI)

In this paper, we present a data fusion framework for parametric-model-based wireless localization ... treated as a deterministic unknown vector. Three types of fusion schemes are presented: measurement fusion, e...

Robin Wentao Ouyang; Albert Kai-Sun Wong

2012-03-01T23:59:59.000Z

389

EXTENSIONS OF LINKING SYSTEMS AND FUSION SYSTEMS BOB OLIVER  

E-Print Network (OSTI)

to construct certain * *types of extensions of abstract fusion and linking systems. The special case shown EXTENSIONS OF LINKING SYSTEMS AND FUSION SYSTEMS BOB extensions of fusion and li* *nking systems by groups of outer automorphisms. Special cases

Oliver, Bob

390

Component framework for coupled integrated fusion plasma simulation  

Science Journals Connector (OSTI)

Successful simulation of the complex physics that affect magnetically confined fusion plasma remains an important target milestone towards the development of viable fusion energy. Major advances in the underlying physics formulations, mathematical modeling, ... Keywords: components, coupled simulation, framework, fusion

Wael R. Elwasif; David E. Bernholdt; Lee A. Berry; Donald B. Batchelor

2007-10-01T23:59:59.000Z

391

Alternative approaches: concept improvements in magnetic fusion research  

Science Journals Connector (OSTI)

...providing a driver for inertial fusion. Keywords: stellarator...tricity generation using magnetic fusion. These are (a) pressing...e.g. the International Thermonuclear Experimen- tal Reactor (ITER...generation and/or for other fusion applications like testing prototype...

1999-01-01T23:59:59.000Z

392

The development of structural materials for fusion reactors  

Science Journals Connector (OSTI)

...severely exposed parts of future fusion reactors and pose key problems...successful implementation of fusion reactors as an efficient source...conditions in the International Thermonuclear Experimental Reactor (ITER...environmental attractiveness of fusion reactors. In this paper...

1999-01-01T23:59:59.000Z

393

THE DYNAMICS OF THE FUSION OF TWO NUCLEI  

E-Print Network (OSTI)

Olmi, D. Schwalm, and W. Wolfli, Fusion Reaction Studies ofFactor in Initiating Fusion between Very Heavy Ions", GSI-Alexander and G.R. Satchler, "Fusion Barriers, Empirical and

Swiatecki, W.J.

2014-01-01T23:59:59.000Z

394

FUSION CROSS-SECTIONS AND THE NEW DYNAMICS  

E-Print Network (OSTI)

Olmi, 0. Schwalm and W. Wb'lfli, "Fusion Reaction Studies ofin I n i t i a t i n g Fusion between Very High Ions", GSI-Alexander and G.R. Satchler, "Fusion Barriers, Empirical and

Swiatecki, W.J.

2010-01-01T23:59:59.000Z

395

Fusion action systems by Matthew J.K. Gelvin.  

E-Print Network (OSTI)

The study of fusion first arose in the local theory of finite groups. Puig abstracted the fusion data of a finite group to the notion of fusion system, an object that reflects local data in more abstract algebraic settings, ...

Gelvin, Matthew J. K. (Matthew Justin Karcher)

2010-01-01T23:59:59.000Z

396

Experiments at The Virtual National Laboratory for Heavy Ion Fusion  

E-Print Network (OSTI)

Heavy Ion Beam Driven Fusion Reactor Study", KfK 3840,between the reactor chamber wall and the fusion target. Thereactor chambers. INTRODUCTION The USA Virtual National Laboratory for Heavy Ion Fusion

2000-01-01T23:59:59.000Z

397

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

for a practical fusion power reactor. HIF is the only fusionenter the reactor chamber, and focus Heavy Ion Fusion ontoengineering test reactor. The promise of fusion as a power

Celata, C.M.

2004-01-01T23:59:59.000Z

398

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network (OSTI)

Tritium can be bred in a fusion reactor by capturing fusionchamber. Whereas magnetic-fusion reactors typically combineProjected MFE reactors have a toroidal fusion-power core

Sharp, W. M.

2011-01-01T23:59:59.000Z

399

ANNUAL REPORT, ACCELERATOR and FUSION RESEARCH DIVISION. FISCAL YEAR 1978  

E-Print Network (OSTI)

Target of a Heavy Ion Fusion Reactor: Summary of a meetingTarget of a Heavy Ion Fusion Reactor: Summary of a Meetingor more economical fusion reactor. A. BASIC PLASMA THEORY

Lofgren, E.J.

2010-01-01T23:59:59.000Z

400

A Scaled Final Focus Experiment for Heavy Ion Fusion  

E-Print Network (OSTI)

Beams of a Pellet Fusion Reactor by Quadrupole Doublets. ”scaled) radius of the fusion reactor chamber. The 3-axisHeavy Ion Beam Driven Fusion Reactor Study”, KfK-3840, FPA-

MacLaren, Stephan, Alexander

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ch. 37, Inertial Fusion Energy Technology  

SciTech Connect

Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

Moses, E

2010-06-09T23:59:59.000Z

402

From Earth to Saturn: Los Alamos Achievements  

ScienceCinema (OSTI)

A compilation of some of the remarkable achievements of Los Alamos National Laboratory staff over the past 12 months. Originally aired in the June 26, 2008 Director's all-employee meeting.

McMillan, Charlie; Wilson, Cathy; Nekimkem, Howard; Martinez, Johnnie; Martz, Joe; Albright, Brian

2014-08-13T23:59:59.000Z

403

Achieving Energy Efficiency in Exis0ng Buildings How achieve significant commercial building energy efficiency?  

E-Print Network (OSTI)

� Led BU Energy Audit over past 3 years � University Sustainability CommiAchieving Energy Efficiency in Exis0ng Buildings �How achieve significant commercial building energy efficiency? Focus on HVAC. �Our solu0on

Hutyra, Lucy R.

404

Inertial fusion in the nineties  

SciTech Connect

The 1980s has proven to be an exicting time for the inertial confinement fusion (ICF) program. Major new laser and light-ion drivers have been constructed and have produced some encouraging results. The 1990s will be a crucial time for the ICF program. A decision for proceeding with the next facility is scheduled for the early 1990s. If the decision is positive, planning and construction of this facility will occur. Depending on the time required for design and construction, this next-generation facility could become operational near the turn of the century. 21 refs., 4 figs.

Harris, D.B.; Dudziak, D.J.; Cartwright, D.C.

1987-01-01T23:59:59.000Z

405

Kinematics in Vector Boson Fusion  

E-Print Network (OSTI)

The vector boson fusion process leads to two forward/backward jets (tag jets) and the produced state, a Higgs boson in this case, moving slowly in the p-p C.M. frame at the LHC. For the case of Higgs decaying to W+W (W*) with Higgs mass below 180 GeV, the W bosons have low momentum in the Higgs C.M. For the case of W leptonic decays, this fact allows for an approximate reconstruction of the two final state neutrinos. In turn, those solutions then provide additional kinematic cuts against background.

D. Green

2006-03-02T23:59:59.000Z

406

Fusion Reactions of Polarized Deuterons  

Science Journals Connector (OSTI)

Polarized and unpolarized d+d?n+He3 fusion reaction cross sections in the center-of-mass energy region of 20-150 keV are calculated in a distorted-wave Born approximation. The calculated unpolarized cross sections and the anisotropy of the angular distributions are within 20% of the experimental data. The polarized cross sections are found to be Ĺ7.7% of the unpolarized ones despite the inclusion of the D-state component in He3. This shows that the idea of a "neutronlean" reactor may still be feasible.

J. S. Zhang; K. F. Liu; G. W. Shuy

1986-09-22T23:59:59.000Z

407

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

408

Low Voltage White Phosphorescent OLED Achievements  

Energy.gov (U.S. Department of Energy (DOE))

Universal Display Corporation (UDC) and its research partners at Princeton University and the University of Southern California have succeeded in developing a white phosphorescent OLED (PHOLED™) that achieved a record efficiency of 20 lumens per watt. This achievement is the result of the team's collaborative efforts to increase the efficiency of PHOLED lighting by focusing on two critical factors: lowering the drive voltages and increasing the amount of light extracted.

409

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network (OSTI)

plasmas   for   thermonuclear   fusion.   Because  of  the  Thermonuclear  Research  (CTR)  and  the  National  Magnetic   Fusion  

Gerber, Richard

2014-01-01T23:59:59.000Z

410

Achieving high flux amplification in a gun-driven, flux-core spheromak  

Science Journals Connector (OSTI)

A new means of operating flux-core spheromaks with possibly increased stability, confinement and pulse length is analysed by a resistive magnetohydrodynamic (MHD) model. High amplification of the bias poloidal flux, required to minimize ohmic losses, is achieved by reducing the bias rapidly in a plasma formed at a lower amplification. The plasma separatrix is predicted to expand and incorporate the removed bias flux maintaining the total poloidal flux within the spheromak's flux-conserving wall. MHD energy on open magnetic field lines is reduced, reducing magnetic fluctuation levels. A means of experimental verification is suggested that may point the way to fusion-relevant spheromaks.

E.B. Hooper; D.N. Hill; H.S. McLean; C.A. Romero-Talamás; R.D. Wood

2007-01-01T23:59:59.000Z

411

Matter Waves and Electricity  

Science Journals Connector (OSTI)

Classical four-dimensional relativity gives a most natural and harmonious interpretation of the three basic phenomena of nature: gravity, electricity, and the wave structure of matter, provided that the basic assumptions of the Einsteinian theory are modified in two respects: (1) the fundamental invariant of the action principle is chosen as a quadratic instead of a linear function of the curvature components; (2) the static equilibrium of the world is replaced by a dynamic equilibrium. Electricity comes out as a second-order resonance effect of the matter waves. The matter waves are gravitational waves but superposed not on an empty Euclidean space but on a space of high average curvature.

Cornelius Lanczos

1942-06-01T23:59:59.000Z

412

A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION  

SciTech Connect

This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

Allen R. Sanderson; Christopher R. Johnson

2006-08-01T23:59:59.000Z

413

MIT Plasma Science & Fusion left: research>alctor>meetings scheduled  

NLE Websites -- All DOE Office Websites (Extended Search)

of larger Directory of Plasma Conferences list with some additions (see also the Nuclear Fusion calendar). ITPA meetings schedule Fusion meetings calendars Conference, Workshop,...

414

MIT's Plasma Science Fusion Center: Tokamak Experiments Come...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tokamak Experiments Come Clean about Impurity Transport American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: Tokamak...

415

Exploring Plasma Science Advances from Fusion Findings to Astrophysica...  

NLE Websites -- All DOE Office Websites (Extended Search)

confinement fusion experiments at the National Ignition Facility (NIF) at the DOE's Lawrence Livermore National Laboratory. Speakers noted that producing fusion by heating a...

416

DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...  

Office of Scientific and Technical Information (OSTI)

and scientific research data related to advanced systems for fusion energy and nuclear power, primary scientific challenges addressed through the Incite Program. Fusion...

417

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network (OSTI)

discuss scenarios for fusion energy deployment in the energy market. 1.2. The strategic role of fusion1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RĂ?LE DE L'Ă?NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one

Najmabadi, Farrokh

418

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network (OSTI)

discuss scenarios for fusion energy deployment in the energy market. 1.2. The strategic role of fusion1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RĂ? LE DE L'Ă?NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one

419

Fusion for Energy: A new European organization for the development of fusion energy  

Science Journals Connector (OSTI)

The European Joint Undertaking for ITER and the Development of Fusion Energy or (“Fusion for Energy” of F4E for short) is a new organisation that has been established with the main objective of providing Europe's contribution to the ITER International Organisation (IO) as its Domestic Agency. Fusion for Energy is also the Implementing Agency for the Broader Approach projects being carried out with Japan and, in the longer term, will prepare a programme for the construction of demonstration fusion reactors (DEMO). The threefold mission of Fusion for Energy is consistent with the fast track strategy for the realisation of fusion energy. This paper aims to provide an overview of the current status of Fusion for Energy and highlight some of the opportunities available for research organisations and industry to participate.

Didier Gambier

2009-01-01T23:59:59.000Z

420

Nuclear fusion control-oriented plasma physics  

Science Journals Connector (OSTI)

The development of control techniques for the efficient and reliable operation of a fusion reactor is one of the most challenging issues nowadays and it would provide great advantages over existing energy sources: Unlimited fuel availability, no greenhouse ... Keywords: fusion control, plasma physics, tokamak modeling and simulation

Aitor J. Garrido; Izaskun Garrido; M. Goretti Sevillano-Berasategui; Mikel Alberdi; Modesto Amundarain; Oscar Barambones; Itziar Martija

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Views on inertial fusion energy development  

Science Journals Connector (OSTI)

A memorial lecture reviews the inertial fusion developments. The issues of the world energy consumption the atmospheric concentration of carbon dioxide and the necessity of an advanced nuclear fission technology are considered. A real world wide collaboration is very important for the inertial confinement fusion program. (AIP)

S. Nakai

1994-01-01T23:59:59.000Z

422

Magnetic Confinement Fusion Science Status and Challenges  

E-Print Network (OSTI)

Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin February, 2005 #12;Two approaches to fusion Inertial confinement extremely dense, short-lived Magnetic ·Control plasma disruptions ·Develop new magnetic configurations ·Control the plasma-wall interaction

423

Fusion Power Associates Meeting 1 December 2010  

E-Print Network (OSTI)

Pellet Direct Drive (IFE) Laser Beams Pellet .. · ID Ignition being explored on NIF · Providing high time #12;Laser Fusion Shock Ignited (SI) direct drive targets* Low aspect ratio pellet helps mitigate drive laser fusion with the KrF laser Presented by: Steve Obenschain Plasma Physics Division U.S. Naval

424

NATURE | NEWS Laser fusion nears crucial milestone  

E-Print Network (OSTI)

Eric Hand NATURE | NEWS Laser fusion nears crucial milestone National Ignition Facility approaches the National Ignition Facility (NIF) finally lives up to its name. The facility, which boasts the world's largest laser, is designed to trigger fusion by imploding a target pellet of hydrogen isotopes, thereby

425

Transmission Line MTF: Magnetized Target Fusion  

E-Print Network (OSTI)

Transmission Line MTF: Magnetized Target Fusion Initial target: preheated & magnetized Subsequent for the FRC. Abstract Block Diagram theta coil transmission line Bias cap. bank maincapacitor inductor PI cap compression to fusion conditions Magnetic field of at least 5 T in a closed-field line topology Density ~ 1017

426

Cable test raises fears at fusion project  

Science Journals Connector (OSTI)

... Scientists on three continents are scrambling to understand a potentially serious problem with superconducting cables destined for ITER, the world's largest fusion experiment. Nature has learned that preliminary ... ITER, the world's largest fusion experiment. Nature has learned that preliminary tests of cable for ITER's powerful central magnet show that it degrades too quickly to be used ...

Geoff Brumfiel

2011-03-08T23:59:59.000Z

427

Method of controlling fusion reaction rates  

DOE Patents (OSTI)

A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

Kulsrud, Russell M. (Princeton, NJ); Furth, Harold P. (Princeton, NJ); Valeo, Ernest J. (Princeton Junction, NJ); Goldhaber, Maurice (Bayport, NY)

1988-01-01T23:59:59.000Z

428

Fusion Techniques for the Oxidation of Refractory Actinide Oxides  

SciTech Connect

Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due to the potential of achieving higher actinide recoveries from refractory materials. In this experiment, nominally 10 g of a graphite-containing residue generated during plutonium casting operations was initially calcined to remove the graphite. Removal of combustible material prior to a large-scale fusion with Na2O2 is needed due to the large amount of heat liberated during oxidation. Two successive fusions using the residue from the calcination and the residue generated from the initial dissolution allowed recovery of 98 percent of the plutonium. The fusion of the residue following the first dissolution was performed at a higher temperature (600 degrees Celsius versus 450 degrees Celsius during the first fusion). The ability to recover most of the remaining plutonium from the residue suggest the oxidation efficiency of the Na2O2 fusion improves with higher temperatures similar to results observed with NpO2 fusion.

Rudisill, T.S.

1999-04-15T23:59:59.000Z

429

Accelerator and Fusion Research Division: 1984 summary of activities  

SciTech Connect

During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers.

Not Available

1985-05-01T23:59:59.000Z

430

Hot and dark matter  

E-Print Network (OSTI)

In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

D'Eramo, Francesco

2012-01-01T23:59:59.000Z

431

The Heart of Matter  

E-Print Network (OSTI)

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Godbole, Rohini M

2010-01-01T23:59:59.000Z

432

The Heart of Matter  

E-Print Network (OSTI)

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Rohini M. Godbole

2010-06-30T23:59:59.000Z

433

Atomic dark matter  

SciTech Connect

We propose that dark matter is dominantly comprised of atomic bound states. We build a simple model and map the parameter space that results in the early universe formation of hydrogen-like dark atoms. We find that atomic dark matter has interesting implications for cosmology as well as direct detection: Weak-scale dark atoms can accommodate hyperfine splittings of order 100 keV, consistent with the inelastic dark matter interpretation of the DAMA data while naturally evading direct detection bounds. Moreover, protohalo formation can be suppressed below M{sub proto} ? 10{sup 3}–10{sup 6}M{sub s}un for weak scale dark matter due to Ion-Radiation and Ion-Atom interactions in the dark sector.

Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.; Wells, Christopher M., E-mail: dkaplan@pha.jhu.edu, E-mail: gordan@pha.jhu.edu, E-mail: keith@pha.jhu.edu, E-mail: cwells13@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States)

2010-05-01T23:59:59.000Z

434

PPPL Races Ahead with Fusion Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the Power... the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science-two topics of vital interest to the United States and the world. Fusion powers the sun and stars, and harnessing this power on Earth could provide a safe, clean and virtually limitless way to meet global electricity needs.

435

Nuclear Fusion Award 2010 speech  

Science Journals Connector (OSTI)

Following the suggestion of Earl Marmar in 1995, I installed a compact von Hamos type x-ray spectrometer (originally built with Elisabeth Rachlew and Jan Kallne) on a tangentially viewing port on the Alcator C-Mod tokamak. The spectrometer views the plasma through a 2 cm diameter hole, and is tuned to H-like argon, suitable for passive measurement of the core toroidal rotation velocity from the Doppler shift. It soon became evident that the rotation in Ohmic L-mode discharges, while for the most part directed counter-current, depends in a very complicated fashion on plasma parameters, notably the electron density, current and magnetic configuration. The rotation can even flip sign for almost no apparent reason! In Ohmic and ion cyclotron range of frequencies (ICRF) heated H-mode plasmas the rotation is in the co-current direction and has a relatively simple dependence on plasma parameters, proportional to the stored energy normalized to the current. Rotation velocities as high as 130 km s-1 have been observed without external momentum input. In dimensionless terms this intrinsic (or spontaneous rotation) depends on the normalized plasma pressure. The association of toroidal rotation with plasma pressure in ICRF H-modes was first observed by Lars-Goran Eriksson in JET discharges. Similar results were subsequently reported for Tore Supra enhanced confinement plasmas. In the early 2000s concerns began to surface about the lack of substantial neutral beam driven rotation in ITER, and intrinsic rotation became a topic of interest in the ITPA Transport Group. Through that connection, similar observations from DIII-D, TCV and JT-60U were added to the growing list. A database of intrinsic rotation observations was assembled with the goal of extrapolating to the expected values for ITER. Both dimensional and dimensionless scalings were developed and formed the backbone of the 2007 Nuclear Fusion paper. I gratefully acknowledge the important contributions to this paper from Alex Ince-Cushman, John deGrassie, Lars-Goran Eriksson, Yoshiteru Sakamoto, Andrea Scarabosio and Yuri Podpaly, as well as the other coauthors. I would like to express my sincere appreciation to Earl Marmar, Martin Greenwald and Miklos Porkolab at MIT for continued support of this work, as well as to the entire C-Mod team. This award was made possible due to the insight of Mitsuru Kikuchi and the support of the IAEA through Werner Burkhart, and I am truly grateful to both of them. Many thanks as well to the outstanding staff at Nuclear Fusion. It is a distinct honor to be included in the group of previous winners: Tim Luce, Clemente Angioni, Todd Evans and Steve Sabbagh. It is also a great honor to be considered alongside the 2010 nominees: Phil Snyder, Sibylle Guenter, Maiko Yoshida, Hajime Urano, Fulvio Zonca, Erik Garcia, Costanza Maggi, Hartmut Zohm, Thierry Loarer and Bruce Lipschultz. Finally, I would like to thank the readers of Nuclear Fusion for the many citations. John Rice 2010 Nuclear Fusion Award winner Plasma Science and Fusion Center, MIT, Cambridge, MA, USA

John Rice

2011-01-01T23:59:59.000Z

436

fusion  

National Nuclear Security Administration (NNSA)

7%2A en ICF Facilities http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicffacilities

437

TCP-Fusion: A Hybrid Congestion Control Algorithm for High-speed Networks  

E-Print Network (OSTI)

Abstract — This paper presents a new congestion control algorithm of TCP, called TCP-Fusion, and provides its extensive evaluation results through simulations and implementations. Recently, towards high-speed networks with large bandwidth delay product, a number of different approaches have been proposed to improve TCP performance. However, their potential unfriendliness to TCP-Reno encumbers their wide deployment in the Internet because TCP-Reno is already widely deployed. Most recently, to satisfy efficiency and friendliness tradeoffs of TCP, new approaches combining a loss-based protocol and a delay-based protocol have been proposed, such as TCP-Adaptive Reno and Compound TCP. Our TCP-Fusion also belongs to this category and tries to utilize the residual capacity effectively without impacts on coexisting flows, i.e. TCP-Reno flows. To achieve this purpose, TCP-Fusion exploits three useful characteristics of TCP-Reno, TCP-Vegas and TCP-Westwood in its congestion avoidance strategy. In short, congestion window of TCP-Fusion is decreased without causing too drastic reduction and is increased with smart adaptability to coexisting TCP-Reno flows according to the congestion level measurement estimated from RTT. Our implementation and simulation results show that TCP-Fusion can obtain the highest throughput among existing TCP variants when there is unused residual capacity while its friendliness to the TCP-Reno is sufficiently satisfied, otherwise, it shares the same bandwidth to coexisting flows.

Kazumi Kaneko; Tomoki Fujikawa; Zhou Su; Jiro Katto

438

31 TCP-Fusion: A Hybrid Congestion Control Algorithm for High-speed Networks  

E-Print Network (OSTI)

Abstract — This paper presents a new congestion control algorithm of TCP, called TCP-Fusion, and provides its extensive evaluation results through simulations and implementations. Recently, towards high-speed networks with large bandwidth delay product, a number of different approaches have been proposed to improve TCP performance. However, their potential unfriendliness to TCP-Reno encumbers their wide deployment in the Internet because TCP-Reno is already widely deployed. Most recently, to satisfy efficiency and friendliness tradeoffs of TCP, new approaches combining a loss-based protocol and a delay-based protocol have been proposed, such as TCP-Adaptive Reno and Compound TCP. Our TCP-Fusion also belongs to this category and tries to utilize the residual capacity effectively without impacts on coexisting flows, i.e. TCP-Reno flows. To achieve this purpose, TCP-Fusion exploits three useful characteristics of TCP-Reno, TCP-Vegas and TCP-Westwood in its congestion avoidance strategy. In short, congestion window of TCP-Fusion is decreased without causing too drastic reduction and is increased with smart adaptability to coexisting TCP-Reno flows according to the congestion level measurement estimated from RTT. Our implementation and simulation results show that TCP-Fusion can obtain the highest throughput among existing TCP variants when there is unused residual capacity while its friendliness to the TCP-Reno is sufficiently satisfied, otherwise, it shares the same bandwidth to coexisting flows. T I.

Kazumi Kaneko; Tomoki Fujikawa; Zhou Su; Jiro Katto

439

A U.S. high-flux neutron facility for fusion materials development  

SciTech Connect

Materials for a fusion reactor first wall and blanket structure must be able to reliably function in an extreme environment that includes 10-15 MW-year/m{sup 2} neutron and heat fluences. The various materials and structural challenges are as difficult and important as achieving a burning plasma. Overcoming radiation damage degradation is the rate-controlling step in fusion materials development. Recent advances with oxide dispersion strengthened ferritic steels show promise in meeting reactor requirements, while multi-timescale atomistic simulations of defect-grain boundary interactions in model copper systems reveal surprising self-annealing phenomenon. While these results are promising, simultaneous evaluation of radiation effects displacement damage ({le} 200 dpa) and in-situ He generation ({le} 2000 appm) at prototypical reactor temperatures and chemical environments is still required. There is currently no experimental facility in the U.S. that can meet these requirements for macroscopic samples. The E.U. and U.S. fusion communities have recently concluded that a fusion-relevant, high-flux neutron source for accelerated characterization of the effects of radiation damage to materials is a top priority for the next decade. Data from this source will be needed to validate designs for the multi-$B next-generation fusion facilities such as the CTF, ETF, and DEMO, that are envisioned to follow ITER and NIF.

Rei, Donald J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

440

Intense Ion Beam for Warm Dense Matter Physics  

E-Print Network (OSTI)

break-even point in a fusion reactor, or ignition, where theoriginal report on fusion reactors (initially classi?ed). [Inertial Fusion Energy (IFE) reactor and power plant

Heimbucher, Lynn

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Secretary's Achievement Award (IBL) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IBL) IBL) Secretary's Achievement Award (IBL) Secretary’s Achievement Award (IBL) Presented to: The National Nuclear Security Administration Ion Beam Laboratory Project The Ion Beam Laboratory project team is recognized for delivering this state-of-the-art facility six months ahead of schedule and nearly $6 million dollars under budget. This was accomplished while achieving LEED Gold certification. Through the exceptionally close working relationships between all project stakeholders, the project overcame numerous challenges to deliver a facility that is unlike any other laboratory in the Department of Energy or NNSA complex. Critical to this project was a complex series of sensitive equipment moves. One specific move involved the relocation of a 100,000 pound, 40 foot long accelerator with an internal glass tube

442

Secretarial Achievement Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretarial Achievement Awards Secretarial Achievement Awards Secretarial Achievement Awards Addthis David Arakawa (ORNL) 1 of 6 David Arakawa (ORNL) David Arakawa, from Oak Ridge National Laboratory, managed the Spallation Neutron Source Instruments - Next Generation (SING) project, where his hands-on approach helped him lead his team to complete the project two months ahead of schedule and $263,000 under budget. Brian Lally (Office of Science) 2 of 6 Brian Lally (Office of Science) Brian Lally, from the Office of Science's Chicago Site Office, helped create and execute reforms that provide more flexibility in negotiating intellectual property rights for technologies developed at the national labs. This will make it easier for private companies to take advantage of lab capabilities, create jobs, and accelerate the development of new clean

443

Challenge members to achieve a goal | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge members to achieve a goal Challenge members to achieve a goal Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Partner with ENERGY STAR Encourage members to benchmark Challenge members to achieve a goal Tell members how to save Deliver training to members Give recognition Tie it all together in a campaign Challenge members to achieve a goal Benchmarking and goal-setting go hand-in-hand. No matter what type of

444

The Gasdynamic Mirror Fusion Propulsion System -- Revisited  

SciTech Connect

Many of the previous studies assessing the capability of the gasdynamic mirror (GDM) fusion propulsion system employed analyses that ignored the 'ambipolar' potential. This electrostatic potential arises as a result of the rapid escape of the electrons due to their small mass. As they escape, they leave behind an excess positive charge which manifests itself in an electric field that slows down the electrons while speeding up the ions until their respective axial diffusions are equalized. The indirect effect on the ions is that their confinement time is reduced relative to that of zero potential, and hence the plasma length must be increased to accommodate that change. But as they emerge from the thruster mirror - which serves as a magnetic nozzle - the ions acquire an added energy equal to that of the potential energy, and that in turn manifests itself in increased specific impulse and thrust. We assess the propulsive performance of the GDM thruster, based on the more rigorous theory, by applying it to a round trip Mars mission employing a continuous burn acceleration/deceleration type of trajectory. We find that the length of the device and travel time decrease with increasing plasma density, while the total vehicle mass reaches a minimum at a plasma density of 3 x 1016 cm-3. At such a density, and an initial DT ion temperature of 10 keV, a travel time of 60 days is found to be achievable at GDM propulsion parameters of about 200,000 seconds of specific impulse and approximately 47 kN of thrust.

Kammash, Terry [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Tang, Ricky [Department of Aerospace Engineering, University Michigan, 1320 Beal Ave, Ann Arbor, MI 48109 (United States)

2005-02-06T23:59:59.000Z

445

2 nature physics | VOL 2 | JANUARY 2006 | www.nature.com/naturephysics A high-power laser fusion  

E-Print Network (OSTI)

are constructing multi-billion-euro laser facilities to achieve thermonuclear `ignition' for the first time in the scale of the drive laser seems plausible. Demonstration of this `fast ignition' approach should-power laser fusion facility for Europe MIKE DUNNE is at the Central Laser Facility, CCLRC Rutherford Appleton

Loss, Daniel

446

Fusion materials science and technology research opportunities now and during the ITER era  

SciTech Connect

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

2014-10-01T23:59:59.000Z

447

Fusion Materials Science and Technology Research Opportunities now and during the ITER Era  

SciTech Connect

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

2014-02-22T23:59:59.000Z

448

Accelerator and Fusion Research Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Historical photo of Laboratory founder and cyclotron inventor Ernest Orlando Lawrence at his desk OUR SCIENTIFIC PROGRAMS Accelerator Physics for the ALS Center for Beam Physics LOASIS Laboratory Fusion Science and Ion Beam Technology Superconducting Magnets Free Electron Laser R&D News: AFRD's Jean-Luc Vay and former AFRD scientist Kwang-Je Kim share the US Particle Accelerator School Prize. Andre Anders places two articles among the year's top 30 in the Journal of Applied Physics. AFRD personnel win an R&D 100 in a joint project with industry; the laser at the heart of BELLA sets a world record for laser power. Employees: Safety tips regarding the mountain lion are available. The results from our two most recent Self-Assessment Focus Groups are up, covering emergency preparedness and ergonomics while working offsite.

449

Multishell inertial confinement fusion target  

DOE Patents (OSTI)

A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

1984-01-01T23:59:59.000Z

450

Multishell inertial confinement fusion target  

DOE Patents (OSTI)

A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

1987-01-01T23:59:59.000Z

451

On the Theory of Fusion  

Science Journals Connector (OSTI)

Although equilibrium between two phases is in general determined by both phases, fusion stands somewhat apart in that a crystal cannot be overheated. As a type of the simplest possible crystal, the exact equation of state of frozen argon has been developed here. It has been found that the pressure as function of the volume at a given temperature has a minimum, which means the breakdown of the crystal under these conditions. The temperature at which this minimum occurs at zero pressure is interpreted as the melting point. It has been found in accordance with experiment that a positive pressure is necessary for the existence of crystalline helium but the numerical agreement is bad.

K. F. Herzfeld and Maria Goeppert Mayer

1934-12-01T23:59:59.000Z

452

Fusion reactions with germanium isotopes  

Science Journals Connector (OSTI)

Measurements of the fusion of 16O and 27Al with a series of germanium isotopes are analyzed within a coupled-channels approach. It is found that couplings based interactions that are linear in the deformation amplitudes are insufficient in reproducing the data. In order to obtain reasonable fits, it is necessary also to include couplings based on quadratic interactions. The analysis suggests that the nuclear radius of 72Ge is significantly smaller than predicted from a smooth interpolation between other germanium isotopes. The large prolate deformation of 74Ge, which has been proposed as the preferred solution to measurements of the quadrupole moment of the 2+ state, is not supported by the analysis; the near spherical solution is more likely.

H. Esbensen

2003-09-04T23:59:59.000Z

453

Ion Rings for Magnetic Fusion  

SciTech Connect

This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

Greenly, John, B.

2005-07-31T23:59:59.000Z

454

Reply to Knecht: Achieving sustainable health  

E-Print Network (OSTI)

- tems would use far less fossil fuel inputs. Food processing, transportation, and packaging wouldLETTER Reply to Knecht: Achieving sustainable health We wholeheartedly agree with Knecht's (1 industry is as dependent on business-as-usual as any other. In the United States, health care is a for

Vermont, University of

455

ACHIEVING CALIFORNIA'S 33 PERCENT RENEWABLE PORTFOLIO  

E-Print Network (OSTI)

. To remedy this limitation, the report presents a new feed-in tariff approach that is modelled on successful as the basis for feed-in tariff rates that do not achieve the renewable goal, or do so at a higher cost than and risks because of their diversification effects. KEYWORDS Feed-in tariffs, portfolio analysis, generation

456

Nano-Machines Achieve Huge Mechanical Breakthrough  

E-Print Network (OSTI)

NANO TECH Nano-Machines Achieve Huge Mechanical Breakthrough Dublin, Ireland (SPX) Sep 08, 2005 that use molecular 'nano'-machines of this kind to help perform physical tasks. Nano-machines could also owners set to return to battered Orleans l Six dead, two missing after heavy rains hit Page 1 of 3Nano

Leigh, David A.

457

Ra: A high efficiency, D-/sup 3/He, tandem mirror fusion reactor: Appendix C  

SciTech Connect

The Ra tandem mirror fusion reactor concept features inherent safety, high net plant efficiency, low cost of electricity, low radioactive waste generation, low activation, highly efficient direct conversion, thin radiation shields, and axisymmetric magnets. The safety and environmental features are achieved through the use of D/He-3 fuel, while the high efficiency derives from a new operating mode. ICRF stabilization allows an axisymmetric magnet set. 11 refs., 5 figs., 3 tabs.

Santarius, J.F.; Attaya, H.; Corradini, M.L.; El-Guebaly, L.A.; Emmert, G.A.; Kulcinski, G.L.; Larsen, E.M.; Maynard, C.W.; Musicki, Z.; Sawan, M.E.

1987-01-01T23:59:59.000Z

458

Synaptic vesicle fusion Josep Rizo1 & Christian Rosenmund2  

E-Print Network (OSTI)

that have homologs in most types of intracellular membrane fusion and include the Sec1/Munc18-1 (SM) proteinSynaptic vesicle fusion Josep Rizo1 & Christian Rosenmund2 The core of the neurotransmitter release for fusion, and by Munc18-1, which controls SNARE-complex formation and may also have a direct role in fusion

Alford, Simon

459

Advanced Probes for Boundary Plasma Diagnostics in Fusion Devices  

Science Journals Connector (OSTI)

Diagnostics / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

Guido Van Oost

460

Advanced Probes for Boundary Plasma Diagnosis in Fusion Devices  

Science Journals Connector (OSTI)

Diagnostics / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

Guido Van Oost

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network (OSTI)

provide some operational redundancy. The essential problem for inertial fusion is depositing enough energy

Sharp, W. M.

2011-01-01T23:59:59.000Z

462

Fusion Frames and Robust Dimension Reduction Ali Pezeshki  

E-Print Network (OSTI)

Fusion Frames and Robust Dimension Reduction Ali Pezeshki Princeton University Princeton, NJ 08544 fusion frame measurements in presence noise and subspace erasures. Each fusion frame mea- surement is a low-dimensional vector whose elements are inner products of an orthogonal basis for a fusion frame

Kutyniok, Gitta

463

2002 Fusion Summer Study Subgroup E4 -Development Pathway Subgroup  

E-Print Network (OSTI)

2002 Fusion Summer Study Subgroup E4 - Development Pathway Subgroup Draft by: Farrokh Najmabadi A burning plasma experiment is a key step in developing fusion. The realization of fusion, however, requires and fusion power technologies, etc. An important discriminator among various embodiments of burning plasma

Najmabadi, Farrokh

464

FUSION OF ADE LATTICE MODELS Yu-kui Zhou1  

E-Print Network (OSTI)

FUSION OF A­D­E LATTICE MODELS Yu-kui Zhou1 and Paul A. Pearce2 Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia Abstract Fusion hierarchies of A­D­E face models fusion yields the face weights of both the Ising model and 3-state CSOS models. 1 Introduction The fusion

Pearce, Paul A.

465

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network (OSTI)

Thermonuclear Experimental Reactor), now being constructed in Caderache, France [5]. In contrast, inertial fusion

Sharp, W. M.

2011-01-01T23:59:59.000Z

466

Fusion of Isotactic Poly(propylene)  

Science Journals Connector (OSTI)

Fusion of Isotactic Poly(propylene) ... They involve, among others, the accurate determination of the structural regularity of the chain, interpretation of the multiple endothermic peaks that are invariably exhibited during the fusion of this polymer, use of sufficiently high molecular weight samples, and the heating rates. ... Rather, we wish to report a unique feature of the fusion of isotactic poly(propylene) that not only has direct bearing in determining the observed melting temperature Tm of a sample crystallized under given conditions, and thus the extrapolation procedures, but is of importance and significance in itself. ...

Tracy W. Huang; Rufina G. Alamo; Leo Mandelkern

1999-08-25T23:59:59.000Z

467

Fusion utility in the Knudsen layer  

SciTech Connect

In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

Davidovits, Seth; Fisch, Nathaniel J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544 (United States)

2014-09-15T23:59:59.000Z

468

Fusion Induced by Radioactive Ion Beams  

E-Print Network (OSTI)

The use of radioactive beams opens a new frontier for fusion studies. The coupling to the continuum can be explored with very loosely bound nuclei. Experiments were performed with beams of nuclei at or near the proton and neutron drip-lines to measure fusion and associated reactions in the vicinity of the Coulomb barrier. In addition, the fusion yield is predicted to be enhanced in reactions involving very neutron-rich unstable nuclei. Experimental measurements were carried out to investigate if it is feasible to use such beams to produce new heavy elements. The current status of these experimental activities is given in this review.

J. F. Liang; C. Signorini

2005-04-26T23:59:59.000Z

469

Fusion hindrance in reactions with very heavy ions: Border between normal and hindered fusion  

SciTech Connect

The fusion hindrance in heavy-ion collisions is studied in the framework of the two-center liquid drop model. It appears that the neck and the radial degrees of freedom might both be hampered by an inner potential barrier on their path between the contact configuration to the compound nucleus. Heavy-ion reactions with and without the two kinds of fusion hindrance are classified through systematic calculations. It is found that the number of reactions without radial fusion hindrance is much smaller than that without neck fusion hindrance, and for both kinds of fusion hindrance the number of reactions without fusion hindrance at small mass-asymmetry parameter {alpha} is smaller than that at large {alpha}. In the formation of a given compound nucleus, if a reaction with {alpha}{sub c} is not hindered, then other reactions with {alpha}>{alpha}{sub c} are also not hindered, as is well known experimentally.

Shen Caiwan; Li Qingfeng [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Boilley, David [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen cedex 5 (France); Universite de Caen Basse-Normandie, F-14032 Caen (France); Shen Junjie [School of Science, Huzhou Teachers College, Huzhou 313000 (China); School of Science and Information Engineering, Zhejiang Normal University, Jinhua 321000 (China); Abe, Yasuhisa [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan)

2011-05-15T23:59:59.000Z

470

Results from D—T experiments on TFTR and implications for achieving an ignited plasma  

Science Journals Connector (OSTI)

...significant bursts of fusion energy per pulse. This...of the International Thermonuclear Experimental Reactor...Texas, Institute for Fusion Studies, Austin, Texas...Institute of Innovative and Thermonuclear Research, Moscow...National Institute for Fusion Science, Nagoya, Japan...

1999-01-01T23:59:59.000Z

471

Crystallization and collapse in relativistically degenerate matter  

SciTech Connect

In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

Akbari-Moghanjoughi, M. [International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum, Germany and Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz (Iran, Islamic Republic of)

2013-04-15T23:59:59.000Z

472

DOE Handbook: Supplementary guidance and design experience for the fusion safety standards DOE-STD-6002-96 and DOE-STD-6003-96  

SciTech Connect

Two standards have been developed that pertain to the safety of fusion facilities. These are DOE- STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements, and DOE-STD-6003-96, Safety of Magnetic Fusion Facilities: Guidance. The first of these standards identifies requirements that subscribers to that standard must meet to achieve safety in fusion facilities. The second standard contains guidance to assist in meeting the requirements identified in the first This handbook provides additional documentation on good operations and design practices as well as lessons learned from the experiences of designers and operators of previous fusion facilities and related systems. It is intended to capture the experience gained in the various fields and pass it on to designers of future fusion facilities as a means of enhancing success and safety. The sections of this document are presented according to the physical location of the major systems of a fusion facility, beginning with the vacuum vessel and proceeding to those systems and components outside the vacuum vessel (the "Ex-vessel Systems"). The last section describes administrative procedures that cannot be localized to specific components. It has been tacitly assumed that the general structure of the fusion facilities addressed is that of a tokamak though the same principles would apply to other magnetic confinement options.

none,

1999-01-01T23:59:59.000Z

473

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

474

Thermodynamics of clusterized matter  

E-Print Network (OSTI)

Thermodynamics of clusterized matter is studied in the framework of statistical models with non-interacting cluster degrees of freedom. At variance with the analytical Fisher model, exact Metropolis simulation results indicate that the transition from homogeneous to clusterized matter lies along the $\\rho=\\rho_0$ axis at all temperatures and the limiting point of the phase diagram is not a critical point even if the surface energy vanishes at this point. Sensitivity of the inferred phase diagram to the employed statistical framework in the case of finite systems is discussed by considering the grand-canonical and constant-pressure canonical ensembles. A Wigner-Seitz formalism in which the fragment charge is neutralized by an uniform electron distribution allows to build the phase diagram of neutron star matter.

Ad. R. Raduta; F. Gulminelli

2009-02-28T23:59:59.000Z

475

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Panel  

E-Print Network (OSTI)

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Marshall Rosenbluth, H,~3 William Tang, 12 and Ernest Valeo 12 Dr. Robert W. Conn, Chair Fusion Energy on a specific recommendation made by your Committee in its report, "A Restructured Fusion Energy Sciences Pro

Abdou, Mohamed

476

Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials Science Subcommittee  

E-Print Network (OSTI)

1 Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials, Columbia University 2 Plasma Science and Fusion Center, MIT December 19, 2011 Summary The proposal for tritium-suppressed D-D fusion and the understanding of the turbulent pinch in magnetically confined plasma

477

SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH  

E-Print Network (OSTI)

SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH RESTORE FUNDING FOR THE DOMESTIC FUSION PROGRAM AND MAINTAIN OUR COMMITMENT TO ITER the goals of the U.S. fusion program. To realize the promise of participation in ITER, cultivate future

478

D-Fusion: a Distinctive Fusion Calculus Michele Boreale1, Maria Grazia Buscemi2, and Ugo Montanari2  

E-Print Network (OSTI)

D-Fusion: a Distinctive Fusion Calculus Michele Boreale1, Maria Grazia Buscemi2, and Ugo Montanari2 Informatica, Universit`a di Pisa, Italy. boreale@dsi.unifi.it {buscemi,ugo}@di.unipi.it Abstract. Fusion that there is no uniform fully abstract embedding of pi-calculus into Fusion. This fact motivates the introduction of a new

Parrow, Joachim

479

Fusion of Earth Data, Sophia Antipolis, France, 28-30 January 1998 DATA FUSION: A CONCEPTUAL APPROACH FOR AN EFFICIENT  

E-Print Network (OSTI)

Fusion of Earth Data, Sophia Antipolis, France, 28-30 January 1998 DATA FUSION: A CONCEPTUAL Antipolis cedex, France. ABSTRACT: The need for a definition of the concept of data fusion is established. Already published definitions are discussed. A new definition of the data fusion is proposed, which allows

Paris-Sud XI, Université de

480

Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program  

E-Print Network (OSTI)

, Livermore, CA 94551. 6 University of Wisconsin, Madison, WI 53706. 7 Columbia University, New York, NY 10027Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion

Abdou, Mohamed

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Synthetic Fusion Peptides of Tick-Borne Encephalitis Virus as Models for Membrane Fusion  

Science Journals Connector (OSTI)

Initial coordinates for the L107F and L107T mutants were generated by modifying residue 107 into the appropriate residue types using CHIMERA (57). ... The ability of human immunodeficiency virus type 1 (HIV-1) to fuse its membrane with the membrane of the target cell is a function of a ?23-amino-acid amino-terminal segment of the gp41 subunit of the envelope glycoprotein complex, known as the fusion peptide. ... At the optimum pH for fusion and 37°, the rate and extent of fusion were very high, with >50% of the virus fusing within 2 s and the final extent of fusion being 70%. ...

Jinhe Pan; C. Benjamin Lai; Walter R. P. Scott; Suzana K. Straus

2009-12-10T23:59:59.000Z

482

The purpose, status and future of fusion research  

Science Journals Connector (OSTI)

At present approximately 85% of energy consumption is met by burning fossil fuels. The world population is at present 5.5 billion. United Nations projections for 2060 give a median prediction of population doubling, a 'worst case' prediction of tripling and a 'best possible' 50% increase. Clearly the demand for energy is likely to increase by factors of 1.5 to 10 depending on the actual population growth and the achieved improvements, if any, in the mean standard of living. Fossil fuels are a finite resource and estimated reserves correspond at present energy consumption rates to approximately 50 years for oil and gas and several hundred years for coal. The only major alternatives to fossil fuels are solar, fission and fusion power. These are all at different states of development and have very different environmental effects and perceived safety aspects. Given the magnitude of the long-term energy problem it is clearly important to aim at diversity of supply and to develop each system to its full potential. The purpose of fusion research is therefore to explore the related science and technology and to develop prototype power-generation systems.

R J Bickerton

1993-01-01T23:59:59.000Z

483

Fusion of Visual and Thermal Signatures with Eyeglass Removal for Robust Face Recognition  

E-Print Network (OSTI)

recognition. Two types of fusion methods are discussed: data fusion and decision fusion. Data fusion produces [5]. Two types of fusion- based face recognition techniques are developed and compared: data fusionFusion of Visual and Thermal Signatures with Eyeglass Removal for Robust Face Recognition Jingu Heo

Abidi, Mongi A.

484

ICALEPCS Lifetime Achievement Award to Martin Kraimer  

NLE Websites -- All DOE Office Websites (Extended Search)

Cockroaches Advance Student's Study of Ancient Life Cockroaches Advance Student's Study of Ancient Life Bringing Fruit Flies in from the Cold DOE Environmental Sustainability Award to Three from APS 2009 Chemistry Nobel to APS Users The First Experiment at the LCLS APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed ICALEPCS Lifetime Achievement Award to Martin Kraimer OCTOBER 28, 2009 Bookmark and Share Left to right: Ryotaro Tanaka (ICALEPCS2009 Chair), Jeffrey O. Hill, Martin R. Kraimer, Bob Daleisio, and In Soo Ko (ICALEPCS ISAC Chair), October 15, 2009, Kobe Japan. Martin R. Kraimer, formerly of the Controls Group in the Argonne APS Engineering Support Division, is one of three recipients of the first Lifetime Achievement Award presented by the ICALEPCS International

485

Secretary's Achievement Award (RSF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RSF) RSF) Secretary's Achievement Award (RSF) Secretary’s Achievement Award (RSF) Presented to: The Office of Energy Efficiency and Renewable Energy's Research Support Facility (RSF) Project Using a state-of-the-art performance-based design-build acquisition strategy and whole building design approach, the Research Support Facility project team delivered a highly energy efficient and user friendly facility that has received national acclaim. This 222,000 square foot facility was completed ahead of schedule and at a per square foot cost that is 22% less than comparable buildings. Most impressive were the project team's aggressive application of energy modeling, innovative energy management strategies, and creative occupant features. Using these tools, the

486

Roadmap to Achieve Energy Delivery Systems Cybersecurity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity Roadmap to Achieve Energy Delivery Systems Cybersecurity ii Acknowledgements The Energy Sector Control Systems Working Group (ESCSWG) developed this roadmap in support of the Electricity Sub-sector Coordinating Council, Oil and Natural Gas Sector Coordinating Council, and the Government Coordinating Council for Energy under the Critical Infrastructure Partnership Advisory Council (CIPAC) Framework; the roadmap has been approved for release by these councils. The ESCSWG members volunteered their time and expertise to this effort and would like to thank the other participants for their valuable perspectives and contributions to this important effort. Special thanks go to the U.S. Department of Energy, which provided the funds and support needed to convene participants

487

Fusion energy | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

energy energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Two PPPL-led teams win increased supercomputing time to study conditions

488

Science Museum Exhibition on Controlled Nuclear Fusion  

Science Journals Connector (OSTI)

... 18 until the end of March 1959, illustrates British research in the field of controlled nuclear fusion. The centre-piece of the exhibition is a one-third scale model of Zeta, ...

1958-12-20T23:59:59.000Z

489

Theory of Laser-Induced Nuclear Fusion  

Science Journals Connector (OSTI)

It is to the merit of Basov and Krokhin that they discussed135...the possibilities of laser heating of solid deuterium or mixtures of deuterium with tritium for the purpose of nuclear fusion. Not only are the phy...

Heinrich Hora

1975-01-01T23:59:59.000Z

490

On the Structure of the Fusion Ideal  

E-Print Network (OSTI)

A and type C the fusion ring is always a global completefusion ring: the ?rst [4], by Bouwknegt and Ridout, shows that in typefusion rings are simpler as a result. The dual Coxeter labelings in types

Douglas, Christopher L.

2009-01-01T23:59:59.000Z

491

Quantification of Cell Fusion by Flow Cytometry  

Science Journals Connector (OSTI)

Cells of different types can be induced to fuse by electroshock. Cells of one type are typically dominant and are able to ... the nuclei derived from cells of the other type, in fusion hybrids derived from one ce...

Stephen Sullivan; Martin Waterfall; Ed J. Gallagher; Jim McWhir…

2006-01-01T23:59:59.000Z

492

Remote computing using the National Fusion Grid  

Science Journals Connector (OSTI)

The National Fusion Collaboratory (http://www.fusiongrid.org) uses grid technology to implement remote computing on the National Fusion Grid. The motivations are to reduce the cost of computing resources, shorten the software deployment cycle, and simplify remote computing for the user community. The National Fusion Collaboratory has successfully demonstrated remote access as a grid service to the TRANSP transport analysis code for tokamak experiments. TRANSP development and administration are now centralized at the Princeton Plasma Physics Laboratory (PPPL), obviating both the need to port TRANSP to different platforms and the process of deploying TRANSP to remote sites. TRANSP users now share the resources of a powerful Linux cluster located at PPPL. Fusion researchers have completed over 900 TRANSP runs utilizing over 5600 h of CPU time since the TRANSP service was installed in October 2002.

J.R Burruss; S Flanagan; K Keahey; C Ludescher; D.C McCune; Q Peng; L Randerson; D.P Schissel; M Thompson

2004-01-01T23:59:59.000Z

493

1995 International Sherwood Fusion Theory Conference  

SciTech Connect

This book is a guide to the 1995 International Sherwood Fusion Theory Conference. It consists largely of abstracts of the oral and poster presentations that were to be made, and gives some general information about the conference and its schedule.

NONE

1995-07-01T23:59:59.000Z

494

Experimental Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

confinement. The shiny metal keeps the particles from re-entering the plasma as a cold gas, retains impurities that can cool the plasma and halt fusion reactions, and...

495

Fusion Power | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Power For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce...

496

Data Fusion for Improved Respiration Rate Estimation  

E-Print Network (OSTI)

We present an application of a modified Kalman-Filter (KF) framework for data fusion to the estimation of respiratory rate from multiple physiological sources which is robust to background noise. A novel index of the ...

Nemati, Shamim

497

Quantum Fusion of Domain Walls with Fluxes  

E-Print Network (OSTI)

We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.

S. Bolognesi; M. Shifman; M. B. Voloshin

2009-07-20T23:59:59.000Z

498

Fusion materials modeling: Challenges and opportunities  

E-Print Network (OSTI)

The plasma facing components, first wall, and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National ...

Wirth, B. D.

499

Microscopic study of Ca$+$Ca fusion  

E-Print Network (OSTI)

We investigate the fusion barriers for reactions involving Ca isotopes $\\mathrm{^{40}Ca}+\\mathrm{^{40}Ca}$, $\\mathrm{^{40}Ca}+\\mathrm{^{48}Ca}$, and $\\mathrm{^{48}Ca}+\\mathrm{^{48}Ca}$ using the microscopic time-dependent Hartree-Fock theory coupled with a density constraint. In this formalism the fusion barriers are directly obtained from TDHF dynamics. We also study the excitation of the pre-equilibrium GDR for the $\\mathrm{^{40}Ca}+\\mathrm{^{48}Ca}$ system and the associated $\\gamma$-ray emission spectrum. Fusion cross-sections are calculated using the incoming-wave boundary condition approach. We examine the dependence of fusion barriers on collision energy as well as on the different parametrizations of the Skyrme interaction.

R. Keser; A. S. Umar; V. E. Oberacker

2012-02-17T23:59:59.000Z

500

Magnetic Field Lines in Fusion Plasmas  

Science Journals Connector (OSTI)

Study of mappings as a part of Hamiltonian dynamics of magnetic field lines in plasmas were initiated by the research...1.... Actually, a fusion research in early sixties gave a huge impact on the development of ...

Sadrilla S. Abdullaev

2006-01-01T23:59:59.000Z