Powered by Deep Web Technologies
Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Multinational achievement: PPPL collaborates on record fusion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multinational achievement: PPPL collaborates on record fusion plasma in tokamak in China By John Greenwald December 9, 2013 Tweet Widget Facebook Like Google Plus One Interior view...

2

NIF achieves record laser energy in pursuit of fusion ignition...  

National Nuclear Security Administration (NNSA)

achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

3

Investigation of condensed matter fusion  

SciTech Connect

Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations.

Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

1990-12-01T23:59:59.000Z

4

Multinational achievement: PPPL collaborates on record fusion...  

NLE Websites -- All DOE Office Websites (Extended Search)

and confinement have been achieved," PPPL physicists Menard and Maingi said in an interview. "This was good physics," Jackson of General Atomics said of the experiments,...

5

Nuclear fusion in dense matter: Reaction rate and carbon burning  

E-Print Network (OSTI)

In this paper we analyze the nuclear fusion rate between equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S-factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate which covers all cases. The parameters of this formula can be varied, taking into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the ^{12}C+^{12}C fusion reaction. This reaction is very important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovae, and in accreting neutron stars. The S-factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S-factor using a recently developed parameter-free model for the nuclear interaction, taking into account the effects of the Pauli nonlocality. For illustration, we analyze the efficiency of carbon burning in a wide range of densities and temperatures of stellar matter with the emphasis on carbon ignition at densities rho > 10^9 g/cc.

L. R. Gasques; A. V. Afanasjev; E. F. Aguilera; M. Beard; L. C. Chamon; P. Ring; M. Wiescher; D. G. Yakovlev

2005-06-16T23:59:59.000Z

6

NIF achieves record laser energy in pursuit of fusion ignition | National  

NLE Websites -- All DOE Office Websites (Extended Search)

achieves record laser energy in pursuit of fusion ignition | National achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF achieves record laser energy in pursuit ... NIF achieves record laser energy in pursuit of fusion ignition Posted By Office of Public Affairs NNSA Blog The NNSA's National Ignition Facility (NIF) surpassed a critical

7

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving Fusion Conditions Achieving Fusion Conditions CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Achieving Fusion Conditions EXPERIMENTAL RESULTS IN FUSION RESEARCH Both inertial and magnetic confinement fusion research have focused on understanding plasma confinement and heating. This research has led to increases in plasma temperature, T, density, n, and energy confinement

8

Divertor conditions relevant for fusion reactors achieved with linear plasma generator  

Science Conference Proceedings (OSTI)

Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 Multiplication-Sign 10{sup 20} m{sup -3} and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m{sup -2} and 10{sup 24} m{sup -2} s{sup -1}, respectively. We have shown that the plasma surface interactions are dominated by the incoming ions. The achieved conditions correspond very well to the projected conditions at the divertor strike zones of fusion reactors such as ITER. In addition, the machine has an unprecedented high gas efficiency.

Eck, H. J. N. van; Lof, A.; Meiden, H. J. van der; Rooij, G. J. van; Scholten, J.; Zeijlmans van Emmichoven, P. A. [FOM Institute DIFFER - Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Kleyn, A. W. [FOM Institute DIFFER - Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam (Netherlands)

2012-11-26T23:59:59.000Z

9

Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as  

E-Print Network (OSTI)

NIF Project definition of Scientific Breakeven was given by the NIF Project Head Ed Moses when describing the NIF goal as : "..producing more energy than the energy in the laser pulse and achieving scientific breakeven." E. Moses, Status of the NIF Project, Lawrence Livermore National Laboratory Report

10

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescent Lights and Neon Signs Fluorescent Lights and Neon Signs CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Fluorescent Lights and Neon Signs Two of the most common plasma devices on the planet are the fluorescent light bulb, and its cousin, the neon sign. Since their development in the 1940's, fluorescent bulbs have become the lighting fixture of choice in

11

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Sun Sun Layers CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour From Core to Corona Layers of the Sun Image Credit: p. 110,125, Kaler The Core The innermost layer of the sun is the core. With a density of 160 g/cm^3, 10 times that of lead, the core might be expected to be solid. However, the core's temperature of 15 million kelvins (27 million degrees Fahrenheit)

12

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Plasmas - the Fourth State of Matter CHARACTERISTICS OF TYPICAL PLASMAS Plasmas consist...

13

Controlled thermonuclear fusion reactors  

SciTech Connect

Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10/sup 20/ sec m/sup -3/, the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation.

Walstrom, P.L.

1976-01-01T23:59:59.000Z

14

Fusion Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotating Plasma Finding is Key for ITER Heavy-Ion Fusion Science (HIFS) Math & Computer Science Nuclear Science Science Highlights HPC Requirements Reviews NERSC HPC Achievement...

15

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

of planet formation and structures as well as the evolution of an imploding inertial fusion capsule depends on our understanding of matter in the complex warm dense matter...

16

Role of Fusion Energy in a Sustainable Global Energy Strategy  

DOE Green Energy (OSTI)

Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion energy research program has been to develop a viable means of harnessing the virtually unlimited energy stored in the nuclei of light atoms--the primary fuel deuterium is present as one part in 6,500 of all hydrogen. This vision grew out of the recognition that the immense power radiated by the sun is fueled by nuclear fusion in its hot core. Such high temperatures are a prerequisite for driving significant fusion reactions. The fascinating fourth state of matter at high temperatures is known as plasma. It is only in this fourth state of matter that the nuclei of two light atoms can fuse, releasing the excess energy that was needed to separately bind each of the original two nuclei. Because the nuclei of atoms carry a net positive electric charge, they repel each other. Hydrogenic nuclei, such as deuterium and tritium, must be heated to approximately 100 million degrees Celsius to overcome this electric repulsion and fuse. There have been dramatic recent advances in both the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. For this reason, the general thrust of fusion research has focused on configuration improvements leading to an economically competitive product. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities [1]. In this paper we review the tremendous scientific progress in fusion during the last 10 years. We utilize the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements of an attractive fusion system with present achievements to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the energy market.

Meier, W; Najmabadi, F; Schmidt, J; Sheffield, J

2001-03-07T23:59:59.000Z

17

Fusion safety regulations in the United States: Progress and trends  

SciTech Connect

This paper explores the issue of regulations as they apply to current and future fusion experimental machines. It addresses fusion regulatory issues, current regulations used for fusion, the Tokamak Fusion Test Reactor experience with regulations, and future regulations to achieve fusion`s safety and environmental potential.

DeLooper, J.

1994-07-01T23:59:59.000Z

18

Antiproton catalyzed fusion  

SciTech Connect

Because of the potential application to power production, it is important to investigate a wide range of possible means to achieve nuclear fusion, even those that may appear initially to be infeasible. In antiproton catalyzed fusion, the negative antiproton shields the repulsion between the positively charged nuclei of hydrogen isotopes, thus allowing a much higher level of penetration through the repulsive Coulomb barrier, and thereby greatly enhancing the fusion cross section. Because of their more compact wave function, the more massive antiprotons offer considerably more shielding than do negative muons. The effects of the shielding on fusion cross sections are most predominate, at low energies. If the antiproton could exist in the ground state with a nucleus for a sufficient time without annihilating, the fusion cross sections are so enhanced that at room temperature energies, values up to about 1,000 barns (that for d+t) would be possible. Unfortunately, the cross section for antiproton annihilation with the incoming nucleus is even higher. A model that provides an upper bound for the fusion to annihilation cross section for all relevant energies indicates that each antiproton will catalyze no more than about one fusion. Because the energy required to make one antiproton greatly exceeds the fusion energy that is released, this level of catalysis is far from adequate for power production.

Morgan, D.L. Jr.; Perkins, L.J.; Haney, S.W.

1995-05-15T23:59:59.000Z

19

Research on fusion neutron sources  

SciTech Connect

The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

2012-06-19T23:59:59.000Z

20

Professor and Director of the Fusion Science Center of Extreme...  

NLE Websites -- All DOE Office Websites (Extended Search)

Professor and Director of the Fusion Science Center of Extreme States of Matter and Fast Ignition, University of Rochester | National Nuclear Security Administration Our Mission...

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

1980-12-31T23:59:59.000Z

22

Fusion breeder  

SciTech Connect

The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

Moir, R.W.

1982-02-22T23:59:59.000Z

23

Fusion Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Intro Fusion Education Research DIII-D Internal Site Opportunities Virtual DIII-D Collaborators Countries Physics Eng Physics Operations Diagnostics Computing IFT IFT Site ITER ITER Site FDF Theory Collaborators Conferences GA-Hosted Room Reservations Fusion Meetings Plasma Publications Presentations Images Brochures Posters Movies Corporate General Atomics Products Visitor GA Fusion Hotels Internal Users GA Internal Site DIII-D General Experimental Science Experimental Science Home 2013 Experimental Campaign Burning Plasma Physics Dynamics & Control Boundary and Pedestal ELM Control Operations Diagnostics Computing Support Visitors DIII-D Web Access Help IFT ITER-GA Theory Research Highlights Personnel Links Policies Safety Comp Support Trouble Ticket Eng/Design Fusion Webmail Phone Book

24

Fusion breeder  

SciTech Connect

The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

Moir, R.W.

1982-04-20T23:59:59.000Z

25

Achieving Energy Reliability TOGETHER. Achieving Energy Reliability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving Energy Reliability TOGETHER. Achieving Energy Reliability TOGETHER. 2010 STRATEGIC PLAN June 2010 This plan reflects OE's ongoing development of a strategy to achieve the...

26

Fusion Implementation  

SciTech Connect

If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

J.A. Schmidt

2002-02-20T23:59:59.000Z

27

Road map for a modular magnetic fusion program  

SciTech Connect

During the past several decades magnetic fusion has made outstanding progress in understanding the science of fusion plasmas, the achievement of actual fusion plasmas and the development of key fusion technologies. Magnetic fusion is now technically ready to take the next step: the study of high gain fusion plasmas, the optimization of fusion plasmas and the continued development and integration of fusion technology. However, each of these objectives requires significant resources since the tests are now being done at the energy production scale. This paper describes a modular approach that addresses these objectives in specialized facilities that reduces the technical risk and lowers cost for near term facilities needed to address critical issues.

Dale M. Meade

2000-07-18T23:59:59.000Z

28

Programmable matter by folding  

E-Print Network (OSTI)

Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to ...

Wood, R. J.

29

Fusion Policy Advisory Committee (FPAC)  

Science Conference Proceedings (OSTI)

This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

Not Available

1990-09-01T23:59:59.000Z

30

Achieving Energy Reliability TOGETHER. Achieving Energy Reliability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving Energy Reliability TOGETHER. Achieving Energy Reliability TOGETHER. 2010 STRATEGIC PLAN June 2010 TABLE OF CONTENTS OE's Declaration . . . . . . . . . . . . . . . . . . ....

31

Assisted fusion  

E-Print Network (OSTI)

A model of nuclear fusion consisting of a wave packet impinging into a well located between square one dimensional barriers is treated analytically. The wave function inside the well is calculated exactly for the assisted tunneling induced by a perturbation mimicking a constant electric field with arbitrary time dependence. Conditions are found for the enhancement of fusion.

German Kälbermann

2009-10-19T23:59:59.000Z

32

Fusion devices  

SciTech Connect

Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included. (RME)

Fowler, T.K.

1977-10-11T23:59:59.000Z

33

Ceramics for fusion applications  

SciTech Connect

Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

Clinard, F.W. Jr.

1986-01-01T23:59:59.000Z

34

Economic potential of inertial fusion  

SciTech Connect

Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

Nuckolls, J.H.

1984-04-01T23:59:59.000Z

35

(Fusion energy research)  

SciTech Connect

This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

Phillips, C.A. (ed.)

1988-01-01T23:59:59.000Z

36

Dynamic Instruction Fusion  

E-Print Network (OSTI)

SANTA CRUZ DYNAMIC INSTRUCTION FUSION A thesis submitted in4 2.2 Instruction Fusion & Complex10 3.1 Fusion Selection

Lee, Ian

2012-01-01T23:59:59.000Z

37

Minimal fusion systems.  

E-Print Network (OSTI)

??We define minimal fusion systems in a way that every non-solvable fusion system has a section which is minimal. Minimal fusion systems can also be… (more)

Henke, Ellen

2010-01-01T23:59:59.000Z

38

Prospects for Tokamak Fusion Reactors  

SciTech Connect

This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

Sheffield, J.; Galambos, J.

1995-04-01T23:59:59.000Z

39

Prospects for developing attractive magnetic fusion concepts  

SciTech Connect

Comments are made pertaining to a generic magnetic fusion reactor study carried out at ORNL. A second study was made of the required reactor characteristics for attractive fusion reactors. The study concluded that both the physics and economics would be achievable with present magnetic configurations.

Sheffield, J.

1985-01-01T23:59:59.000Z

40

Search for fusion power  

SciTech Connect

A brief review of the basics of fusion power is given. Both inertial confinement and magnetic confinement fusion are discussed.

Post, R.F.

1978-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Future of Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

Nuckolls, J H; Wood, L L

2002-09-04T23:59:59.000Z

42

Safety of magnetic fusion facilities: Requirements  

SciTech Connect

This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved.

1996-05-01T23:59:59.000Z

43

Cold fusion, Alchemist's dream  

SciTech Connect

In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

Clayton, E.D.

1989-09-01T23:59:59.000Z

44

Inertial fusion: strategy and economic potential  

SciTech Connect

Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity).

Nuckolls, J.H.

1983-01-01T23:59:59.000Z

45

Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions  

Science Conference Proceedings (OSTI)

A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

Donovan, D. C. [Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550 (United States); Boris, D. R. [Naval Research Laboratory, 4555 Overlook Avenue, South West, Washington, DC 20375 (United States); Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Piefer, G. R. [Phoenix Nuclear Labs, 2555 Industrial Drive, Madison, Wisconsin 53713 (United States)

2013-03-15T23:59:59.000Z

46

Corporate Achievement Award  

Science Conference Proceedings (OSTI)

Recognizes industry achievement; an outstanding process, product, or contribution that has made an impact on its industry segment. Corporate Achievement Award Awards Program achievement aocs application award Awards baldwin distinguished division

47

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

48

Dark Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

with other matter. Based on observations of the relationships between mass and gravity and the speed of the stars and other cosmological systems, scientists believe that...

49

Latent Matcher Fusion  

Science Conference Proceedings (OSTI)

Page 1. Latent Matcher Fusion -- Lessons Learned IAI ... 14 Page 15. The Fusion was in Two Steps • Step 1 – a reduced working candidate list was ...

2012-08-07T23:59:59.000Z

50

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

in the Tokamak Fusion Test Reactor which will be completedDrivers and Reactors for Inertial Confinement Fusion, K.A.

Keefe, D.

2008-01-01T23:59:59.000Z

51

Fusion Basics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are hot balls of plasma. Aurora Borealis and Aurora Australis Fusion reactors, like NSTX, use plasma to fuse atoms to make energy. Plasma displays use small cells of plasma to illuminate images. What is Fusion? Light atoms like hydrogen (one proton and one neutron) can fuse together so

52

Fusion Algebras of Logarithmic Minimal Models  

E-Print Network (OSTI)

We present explicit conjectures for the chiral fusion algebras of the logarithmic minimal models LM(p,p') considering Virasoro representations with no enlarged or extended symmetry algebra. The generators of fusion are countably infinite in number but the ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of representations decomposes into a finite direct sum of representations. The fusion rules are commutative, associative and exhibit an sl(2) structure but require so-called Kac representations which are reducible yet indecomposable representations of rank 1. In particular, the identity of the fundamental fusion algebra is in general a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the results of Gaberdiel and Kausch for p=1 and with Eberle and Flohr for (p,p')=(2,5) corresponding to the logarithmic Yang-Lee model. In the latter case, we confirm the appearance of indecomposable representations of rank 3. We also find that closure of a fundamental fusion algebra is achieved without the introduction of indecomposable representations of rank higher than 3. The conjectured fusion rules are supported, within our lattice approach, by extensive numerical studies of the associated integrable lattice models. Details of our lattice findings and numerical results will be presented elsewhere. The agreement of our fusion rules with the previous fusion rules lends considerable support for the identification of the logarithmic minimal models LM(p,p') with the augmented c_{p,p'} (minimal) models defined algebraically.

Jorgen Rasmussen; Paul A. Pearce

2007-07-21T23:59:59.000Z

53

Quark Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Quark Quark Matter in Neutron Stars Prashanth Jaikumar Argonne National Laboratory, (PHY) September 7th, 2006 . - p.1/29 Outline * Neutron stars: observations by a theorist . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? ------------------------ * Strange Quark stars: Features and "Findings" . - p.2/29 Outline * Neutron stars: observations by a theorist * Mass-Radius constraints on Equation of State (EoS) * Is quark matter inside neutron stars ruled out? ------------------------

54

Fusion energy  

Science Conference Proceedings (OSTI)

The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

Not Available

1990-09-01T23:59:59.000Z

55

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Rainer W. Kuehne

2006-04-14T23:59:59.000Z

56

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Kuehne, R W

2006-01-01T23:59:59.000Z

57

Review of fusion synfuels  

DOE Green Energy (OSTI)

Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

Fillo, J.A.

1980-01-01T23:59:59.000Z

58

Fusion research: the past is prologue  

SciTech Connect

At this juncture fusion research can be viewed as being at a turning point, a time to review its past and to imagine its future. Today, almost 50 years since the first serious attempts to address the daunting problem of achieving controlled fusion, we have both an opportunity and a challenge. Some predictions place fusion research today at a point midway between its first inception and its eventual maturation - in the middle of the 21st century - when fusion would become a major source of energy. Our opportunity therefore is to assess what we have learned from 50 years of hard work and use that knowledge as a starting point for new and better approaches to solving the fusion problem. Our challenge is to prove the "50 more years" prophesy wrong, by finding ways to shorten the time when fusion power becomes a reality. The thesis will be advanced that in the magnetic confinement approach to fusion open-ended magnetic confinement geometries offer much in responding to the challenge. A major advantage of open systems is that, owing to their theoretically and experimentally demonstrated ability to suppress plasma instabilities of both the MHD and the high-frequency wave-particle variety, the confinement becomes predictable from "classical," i.e., Fokker-Planck-type analysis. In a time of straitened budgetary circumstances for magnetic fusion research now being faced in the United States, the theoretical tractability of mirror-based systems is a substantial asset. In pursuing this avenue it is also necessary to keep an open mind as to the forms that mirror-based fusion power plants might take. For example, one can look to the high-energy physics community for a possible model: This community has shown the feasibility of constructing large and complex particle accelerators using superconducting magnets, vacuum chambers and complicated particle-handling technology, housed in underground tunnels that are 20 or more kilometers long. In the paper examples of mirror-based fusion power systems resembling long "linear colliders" will be discussed. It is not the intent of this paper to present detailed proposals for next-generation experiments in magnetic fusion research, but rather to encourage a return to the ambiance of an earlier era of fusion research, when innovative thinking and a spirit of scientific adventure prevailed. In that way we can realistically build a new era of fusion research, an era that would be firmly undergirded by the scientific and technological foundation that was laid in fusion's first half-century.

Post, R F

1998-10-14T23:59:59.000Z

59

Nuclear fusion advances  

Science Conference Proceedings (OSTI)

The last decade has seen advances in the shaping and confinement of plasmas, and in approaches to noninductive current drive. Here, the author presents an overview of nuclear fusion advances between 1983-93 examining: fusion milestones; plasma shaping; ...

W. Sweet

1994-02-01T23:59:59.000Z

60

Engineering Challenges in Antiproton Triggered Fusion Propulsion  

SciTech Connect

During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

Cassenti, Brice [Department. of Engineering and Science, Rensselaer Polytechnic Institute, 275 Windsor Avenue, Hattford, CT 06120 (United States); Kammash, Terry [Nuclear Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States)

2008-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fusion Forum 1981  

SciTech Connect

This review covers the basics of the fusion process. Some research programs and their present status are mentioned. (MOW)

Fowler, T.K.

1981-07-28T23:59:59.000Z

62

Charge exchange recombination spectroscopy on fusion devices  

Science Conference Proceedings (OSTI)

For fusion, obtaining reliable measurements of basic plasma parameters like ion and electron densities and temperatures is a primary goal. For theory, measurements are needed as a function of time and space to understand plasma transport and confinement with the ultimate goal of achieving economic nuclear fusion power. Electron profile measurements and plasma spectroscopy for the plasma ions are introduced. With the advent of Neutral Beam auxiliary plasma heating, Charge Exchange Recombination Spectroscopy provides accurate and time resolved measurements of the ions in large volume fusion devices. In acknowledgement of Nicol Peacock's role in the development of these techniques, still at the forefront of plasma fusion research, this paper describes the evolution of this diagnostic method.

Duval, B. P. [Centre de Recherches en Physique des Plasmas, EPFL, Lausanne (Switzerland)

2012-05-25T23:59:59.000Z

63

Fusion Plasmas Martin Greenwald  

E-Print Network (OSTI)

. Despite the cold war, which raged for another 30 years, controlled fusion research became a modelFusion Plasmas Martin Greenwald Encyclopedia of Electrical and Electronic Engineering, John Webster - editor, published by John Wiley & Sons, New York (1999) #12;Controlled Fusion For half a century

Greenwald, Martin

64

Slow liner fusion  

SciTech Connect

{open_quotes}Slow{close_quotes} liner fusion ({approximately}10 ms compression time) implosions are nondestructive and make repetitive ({approximately} 1 Hz) pulsed liner fusion reactors possible. This paper summarizes a General Atomics physics-based fusion reactor study that showed slow liner feasibility, even with conservative open-line axial magnetic field confinement and Bohm radial transport.

Shaffer, M.J.

1997-08-01T23:59:59.000Z

65

Particle-beam fusion research facilities at Sandia National Laboratories  

SciTech Connect

Sandia research in inertial-confinement fusion (ICF) is based on pulse-power capabilities that grew out of earlier developments of intense relativistic electron-beam (e-beam) radiation sources for weapon effects studies. ICF involves irradiating a deuterium-tritium pellet with either laser light or particle beams until the center of the pellet is compressed and heated to the point of nuclear fusion. This publication focuses on the use of particle beams to achieve fusion, and on the various facilities that are used in support of the particle-beam fusion (PBF) program.

1980-12-31T23:59:59.000Z

66

Magnetized target fusion and fusion propulsion.  

DOE Green Energy (OSTI)

Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion conditions is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion.

Kirkpatrick, R. C. (Ronald C.)

2001-01-01T23:59:59.000Z

67

Key Research Results Achievement  

E-Print Network (OSTI)

daylighting options for specific spaces with sample design layouts · Various HVAC system types that achieve%energysavingsovercode.NREL developedthesimulationtoolsandledthe committeethatproducedtheguides. Key Result TheAdvanced school in Greensburg, Kansas, used many of the energy efficiency measures outlined in the Advanced Energy

68

AFRD - Fusion Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Fusion Virtual National Laboratory Heavy Ion Fusion Virtual National Laboratory AFRD - Fusion Energy Sciences AFRD - Home Fusion - Home HIF-VNL Website Ion Beam Technology Group website Artist's conception of a heavy ion fusion power plant Artist's conception of an IFE powerplant We further inertial fusion energy as a future power source, primarily through R&D on heavy-ion induction accelerators. Our program is part of a "Virtual National Laboratory," headquartered in AFRD, that joins us with Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory in close collaboration on inertial fusion driven by beams of heavy ions. The related emergent science of high-energy-density physics (HEDP) has become a major focus. For further synergy, we have combined forces with the former Ion Beam

69

Matter Field, Dark Matter and Dark Energy  

E-Print Network (OSTI)

A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

Masayasu Tsuge

2008-02-01T23:59:59.000Z

70

Ralph Holman Lifetime Achievement Award  

Science Conference Proceedings (OSTI)

Significant lifetime and meritorious achievements in areas of interest to the Health and Nutrition Division of AOCS are recognized with the Ralph Holman Lifetime Achievement Award. Ralph Holman Lifetime Achievement Award Divisions achievement agri

71

Connecting Stakeholders, Achieving Green  

E-Print Network (OSTI)

If Green is gold, why is progress so slow? The public understanding of Green is evolving. Standards are being developed, but there is still much work to be done. Achieving Green is difficult. Necessary conditions include: •A plan that is realistic and sustainable; •Partnership that share the efforts and benefits of Green results; and •A continuous improvement process, i.e. the flexibility to evolve with a dynamic industry and market. A successful Green plan combines vision, initiative, and a willingness to invest in the right tools. To implement a successful plan, leaders have recognized that, in light of the barriers that exist, real progress cannot be made alone. Because of common interest, core stakeholders are natural and necessary allies. As the public acceptance of Green increases, core stakeholders are challenging the status quo. Consequently, stakeholders are not risking inaction, and are connecting to achieve the rewards of being Green.

Rouse, S.; Nolan, B.

2008-10-01T23:59:59.000Z

72

Security on the US Fusion Grid  

E-Print Network (OSTI)

TEMPLATE for Submission in Fusion Engineering and Design)et al. , “Building the US National Fusion Grid: Resultsfrom the National Fusion Collaboratory Project,” Fusion Eng.

Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

2005-01-01T23:59:59.000Z

73

Data security on the national fusion grid  

E-Print Network (OSTI)

TEMPLATE for Submission in Fusion Engineering and Design)et al. , “Building the US National Fusion Grid: Resultsfrom the National Fusion Collaboratory Project,” Fusion Eng.

Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

2005-01-01T23:59:59.000Z

74

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Creating the Conditions for Fusion PLASMA CONFINEMENT AND HEATING Fusion requires high...

75

RESEARCH HIGHLIGHTS State of fusion  

E-Print Network (OSTI)

RESEARCH HIGHLIGHTS State of fusion In the 1950s,the promise of controlled nuclear fusion, although there is still some way to go to realize the dream,the latest status report on fusion research compiled by the International Fusion Research Council (Nucl. Fusion 45,A1­A28; 2005) provides good reason

Loss, Daniel

76

Low Temperature Plasma Science: Not Only the Fourth State of Matter but All of Them. Report of the Department of Energy Office of Fusion Energy Sciences Workshop on Low Temperature Plasmas, March 25-57, 2008  

SciTech Connect

Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequate to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.

None

2008-09-01T23:59:59.000Z

77

Status of fusion maintenance  

SciTech Connect

Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission.

Fuller, G.M.

1984-01-01T23:59:59.000Z

78

Fusion Communication Summit cover  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMUNICATIONS SUMMIT for U.S. Magnetic Fusion September 12-13, 2012 Princeton University - Frist Campus Center Princeton, New Jersey, USA Mission Statement Announcements...

79

Fusion Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

80

Fusion Energy Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Division http:www.ornl.govscinseddivisionfed.shtml Please click link above if you were not already redirected to the page....

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Controlled fusion physics: experimental  

SciTech Connect

A historical review is given of the experimental thermonuclear research program. The role of pinch devices, mirror machines, tokamak devices, and laser fusion is discussed. (MOW)

Post, R.F.

1975-10-23T23:59:59.000Z

82

Nuclear Fusion Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Nuclear fusion reactors, if they can be made to work, promise virtually unlimited power for the indefinite future. This is because the fuel, isotopes of hydrogen, are...

83

Magnetic fusion reactor economics  

SciTech Connect

An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

Krakowski, R.A.

1995-12-01T23:59:59.000Z

84

Path toward fusion energy  

SciTech Connect

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

85

Fusion Energy Division  

NLE Websites -- All DOE Office Websites (Extended Search)

and engineering activities. Our plasma theorists develop the fundamental plasma theory and computational base needed to understand plasma behavior in fusion devices, to...

86

Multi-agent coordination by temporal plan fusion: Application to combat search and rescue  

Science Conference Proceedings (OSTI)

Coordination of actions and plans that must be achieved by multiple agents is one of the most difficult tasks in the multi-agent domain. In order to work together and achieve a common goal, agents need to coordinate their plans in a way that guarantees, ... Keywords: Distributed plan monitoring, Multi-agent coordination, Plan fusion, Temporal fusion, Temporal merging, Temporal planning

Mohamad K. Allouche; Abdeslem Boukhtouta

2010-07-01T23:59:59.000Z

87

Ultrafast Spectroscopy of Warm Dense Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Spectroscopy of Warm Dense Matter Print Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and pressures, WDM tends to be drastically transient and thus difficult to study in the laboratory. Now, researchers have set up ultrafast x-ray absorption spectroscopy at the ALS to measure the electronic structure of WDMs, demonstrating that fast-changing electron temperatures of matter under extreme conditions can be determined with picosecond resolution.

88

Achieving closure at Fernald  

Science Conference Proceedings (OSTI)

When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.

Bradburne, John; Patton, Tisha C.

2001-02-25T23:59:59.000Z

89

Using MCNP for fusion neutronics.  

E-Print Network (OSTI)

??Any fusion reactor using tritium-deuterium fusion will be a prolific source of 14 MeV neutrons. In fact, 80% of the fusion energy will be carried… (more)

Wasastjerna, Frej

2008-01-01T23:59:59.000Z

90

Mirror fusion--fission hybrids  

SciTech Connect

The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described.

Lee, J.D.

1978-05-01T23:59:59.000Z

91

FUSION ENERGY Position Statement  

E-Print Network (OSTI)

The American Nuclear Society (ANS) supports a vigorous research and development program for fusion energy. Fusion represents a potential energy source that is sustainable and has favorable safety and environmental features. Like fission, fusion offers the opportunity to generate substantial quantities of energy while producing no CO2 or other “greenhouse gases” that may contribute to global warming. Even with substantial conservation efforts and improvements in end-use efficiency, the future world demand for energy is expected to increase as a result of population growth and economic development. The timely advent of fusion as a practical energy source may be crucial. In particular, the ANS believes the following: 1. The long-term benefits of fusion energy warrant a sustained effort aimed at advancing fusion science and technology. International cooperation is a cost-effective complement to strong national programs. 2. Recent scientific progress in fusion research has been encouraging and warrants an enhanced and expanded fusion engineering and technology development program. 3. Based on the continuing success of physics and technology development programs, it appears

unknown authors

2008-01-01T23:59:59.000Z

92

About sponsorship Fusion power  

E-Print Network (OSTI)

project to build a nuclear-fusion reactor came a step closer to reality when politicians agreed it should are needed. Unlike existing nuclear reactors, which produce nasty long-lived radioactive wasteAbout sponsorship Fusion power Nuclear ambitions Jun 30th 2005 From The Economist print edition

93

Fusion Power Deployment  

DOE Green Energy (OSTI)

Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

J.A. Schmidt; J.M. Ogden

2002-02-06T23:59:59.000Z

94

Fusion of Giant Unilamellar Liposomes  

Science Conference Proceedings (OSTI)

Fusion of Giant Unilamellar Liposomes. ... Our main aim is to demonstrate whether a stalk forms during the fusion process or not. ...

95

Heavy Ion Fusion development plan  

SciTech Connect

Some general cnsiderations in the fusion development program are given. The various factors are considered that must be determined before heavy ion fusion can be assessed. (MOW)

Maschke, A.W.

1978-01-01T23:59:59.000Z

96

Matter-Radiation Interactions in Extremes (MaRIE), Los Alamos...  

NLE Websites -- All DOE Office Websites (Extended Search)

MaRIE: Matter-Radiation Interactions in Extremes Experimental Facility MaRIE Home MaRIE 1.0 Fission, Fusion materials Facility Accelerator Systems Making, Measuring and Modeling...

97

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour How Fusion Reactions Work THE NUCLEAR PHYSICS OF FUSION Fusion of light (low-mass)...

98

Effects of Fusion Mass Density and Fusion Location on the Strength of a Lumbar Interbody Fusion.  

E-Print Network (OSTI)

??The location and elastic modulus of a fusion mass are important factors for clinical assessment of the adequacy of interbody fusion. Various finite element models… (more)

Shelly, Cassi Elizabeth

2005-01-01T23:59:59.000Z

99

Realizing Technologies for Magnetized Target Fusion  

SciTech Connect

Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

Wurden, Glen A. [Los Alamos National Laboratory

2012-08-24T23:59:59.000Z

100

HEDP and new directions for fusion energy  

SciTech Connect

The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

Kirkpatrick, Ronald C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Channeling of Fusion Alpha-Particle Power Using Minority Ion Catalysis A. I. Zhmoginov and N. J. Fisch  

E-Print Network (OSTI)

, with electrons kept cold, so that the effective fusion reactivity can be increased [9­11]. The meansChanneling of Fusion Alpha-Particle Power Using Minority Ion Catalysis A. I. Zhmoginov and N. J greatly facilitate controlled nuclear fusion. The parameter range for achieving this temperature disparity

102

LIFE: The Case for Early Commercialization of Fusion Energy  

SciTech Connect

This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

Anklam, T; Simon, A J; Powers, S; Meier, W R

2010-11-30T23:59:59.000Z

103

Inertial fusion: an energy-production option for the future  

SciTech Connect

The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

1982-05-01T23:59:59.000Z

104

Fusion energy science: Clean, safe, and abundant energy through innovative science and technology  

SciTech Connect

Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.

2001-01-01T23:59:59.000Z

105

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

106

Why and how of fusion  

SciTech Connect

The potential advantages of fusion power are listed. The approaches to plasma containment are mentioned and the status of the fusion program is described. The ERDA and EPRI programs are discussed. The Fusion Energy Foundation's activities are mentioned. Fusion research at the U. of Ill. is described briefly. (MHR)

Miley, G.H.

1977-01-01T23:59:59.000Z

107

Physics Out Loud - Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Previous Video (Laser) Physics Out Loud Main Index Next Video (Neutron) Neutron Matter David Lawrence, a Jefferson Lab physicist, discusses matter...

108

Inertial confinement fusion: present status and future potential  

DOE Green Energy (OSTI)

Power from inertial confinement fusion holds much promise for society. This paper points out many of the benefits relative to combustion of hydrocarbon fuels and fission power. Potential problems are also identified and put in perspective. The progress toward achieving inertial fusion power is described and results of recent work at the Lawrence Livermore National Laboratory are presented. Key phenomenological uncertainties are described and experimental goals for the Nova laser system are given. Several ICF reactor designs are discussed.

Hogan, W.J.

1984-07-16T23:59:59.000Z

109

Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities for Fusion Nuclear Technology Development  

SciTech Connect

The paper shows that timely development of fusion nuclear technology (FNT) components, e.g. blanket, for DEMO requires the construction and operation of a fusion facility parallel to ITER. This facility, called VNS, will be dedicated to testing, developing and qualifying FNT components and material combinations. Without VNS, i.e. with ITER alone, the confidence level in achieving DEMO operating goals has been quantified and is unacceptably low (< 1 %). An attractive design envelope for VNS exists. Tokamak VNS designs with driven plasma (Q ~ 1-3), steady state plasma operation and normal copper toroidal field coils lead to small sized devices with moderate cost.

Abdou, M [University of California, Los Angeles; Peng, Yueng Kay Martin [ORNL

1995-01-01T23:59:59.000Z

110

Fusion Science to Prepare  

NLE Websites -- All DOE Office Websites (Extended Search)

DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The...

111

Fusion-breeder program  

SciTech Connect

The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

Moir, R.W.

1982-11-19T23:59:59.000Z

112

Cold nuclear fusion  

SciTech Connect

Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

Tsyganov, E. N., E-mail: edward.tsyganov@utsouthwestern.edu [University of Texas Southwestern Medical Center at Dallas (United States)

2012-02-15T23:59:59.000Z

113

Cluster-Impact Fusion  

Science Conference Proceedings (OSTI)

This report considers the theoretical interpretation of cluster-impact fusion (CIF). The proton energy spectrum of CIF shows it to be hot fusion on a microscopic atomic scale. The temperature of the reaction can be determined by the Doppler-like broadening of the 3.025 MeV proton line. The spectrum also indicates that the high temperature results from a one-dimensional rather than a three-dimensional velocity distribution.

1992-05-01T23:59:59.000Z

114

On the Structure of the Fusion Ideal  

E-Print Network (OSTI)

On the Structure of the Fusion Ideal 4. Bouwknegt, P. ,of Wess-Zumino-Witten fusion rings. Rev. Math. Phys.A conjectural presentation of fusion algebras. Preprint,

Douglas, Christopher L.

2009-01-01T23:59:59.000Z

115

Solenoid transport for heavy ion fusion  

E-Print Network (OSTI)

Transport for Heavy Ion Fusion* Edward Lee** LawrenceHm Heavy Ion Inertial Fusion Abstract Solenoid transport ofseveral stages of a heavy ion fusion driver. In general this

Lee, Edward

2004-01-01T23:59:59.000Z

116

Fusion Energy Division: Annual progress report, period ending December 31, 1987  

Science Conference Proceedings (OSTI)

The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

1988-11-01T23:59:59.000Z

117

Fusion Energy Division progress report, 1 January 1990--31 December 1991  

Science Conference Proceedings (OSTI)

The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1994-03-01T23:59:59.000Z

118

Fusion research at General Atomics annual report, October 1, 1993-- September 30, 1994  

SciTech Connect

In FY94, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the controlled fusion power program. The work was supported by the Office of Fusion Energy, Advanced Physics and Technology Division and ITER and Technology Division, of the US Department of Energy. The work is reported in the following sections on Fusion Power Plant Studies, Plasma Interactive Materials, RF Technology, and Diagnostics. Meetings attended and publications are listed in their respective sections. The overall objective of GA`s fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to the next-generation fusion reactor experiments, Tokamak Physics Experiment (TPX) and ITER, and ultimately to fusion power plants. To achieve this overall objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power reactors, and we conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. We continue to be committed to the development of fusion power and its commercialization by US industry.

1995-11-01T23:59:59.000Z

119

Achieving  

NLE Websites -- All DOE Office Websites (Extended Search)

solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level...

120

Progress in inertial confinement fusion at Lawrence Livermore National Laboratory  

SciTech Connect

The goals of the Inertial Fusion Program at the Lawrence Livermore National Laboratory are to study matter under extreme conditions of temperature and pressure and to produce fusion energy from inertially confined fusion fuel. With the conclusion of recent multi-kilojoule 0.53 ..mu..m experiments on Novette, we have demonstrated vastly improved plasma conditions compared to those previously obtained at LLNL with similar energies at 1.06 ..mu..m and elsewhere with 10 ..mu..m radiation. The lower preheat environment obtainable with short wavelength light has led to 3X improvements in the compression of targets on Novette compared to similar targets on Shiva with 1.06 ..mu..m. Subsequent experiments on Nova with short wavelength light will begin in 1985. They are expected to demonstrate the necessary compression conditions required for high gain fusion to occur when irradiated with a multi-megajoule driver. These recent results, together with improved calculations, and innovations in driver and reactor technology, indicate that high gain inertial fusion will occur and is a viable candidate for fusion power production in the future.

Holzrichter, J.F.

1984-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Spherical torus fusion reactor  

DOE Patents (OSTI)

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

122

Peaceful uses of fusion  

SciTech Connect

Applications a thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and when once brought under control are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low--specific-yield formations are also suggested.

Teller, E.

1958-07-01T23:59:59.000Z

123

Ceramics for fusion devices  

SciTech Connect

Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors.

Clinard, F.W. Jr.

1984-01-01T23:59:59.000Z

124

Inverse Fusion PCR Cloning  

E-Print Network (OSTI)

Inverse fusion PCR cloning (IFPC) is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 59-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

Markus Spiliotis

2012-01-01T23:59:59.000Z

125

APS FEL Achieves Ultraviolet Saturation  

NLE Websites -- All DOE Office Websites (Extended Search)

has achieved "saturation" of self-amplified spontaneous emission in a mirrorless free-electron laser at a wavelength over 1000 times shorter than the previous record. This...

126

Desjarlais received Lifetime Achievement Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Andr Desjarlais received a Lifetime Achievement Award from the Polyisocyanurate Insulation Manufacturers Association (PIMA) during the group's 25th Anniversary celebration...

127

HYFIRE II: a fusion/synfuel producer  

DOE Green Energy (OSTI)

HYFIRE II is a point design study of a commercial fusion Tokamak reactor coupled to a high-temperature electrolysis (HTE) system for the production of hydrogen and oxygen. The purpose of the study is to assess the technical and economic feasibility of the application of fusion energy for the production of these basic fuels. The HYFIRE II fusion reactor design is based on the STARFIRE commercial power reactor, the primary differences are in the type of blankets between the two reactors, the power cycle design and in the increased thermal power rating (to 6000 MW(th)). Otherwise, the major features of STARFIRE which are maintained include: steady-state operation; rf drive; mechanical limiters; number of TF coils; etc. Based on HYFIRE conceptual design studies to date, the following observations are made: a) blanket designs have been identified to simultaneously meet global tritium breeding requirements and required energy splits between process steam and helium; b) attractive tritium breeders such as LiAlO/sub 2/ and liquid lead with dissolved lithium have been identified; c) gross power cycle efficiencies in the 40 to 45% range appear achievable; and d) high H/sub 2/ production efficiencies in the 50 to 55% range appear achievable.

Fillo, J.A.

1981-01-01T23:59:59.000Z

128

Fusion welding process  

DOE Patents (OSTI)

A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

1983-01-01T23:59:59.000Z

129

Atomic data for fusion  

DOE Green Energy (OSTI)

This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.) [eds.; Barnett, C.F.

1990-07-01T23:59:59.000Z

130

Fusion Categories and Homotopy Theory  

E-Print Network (OSTI)

We apply the yoga of classical homotopy theory to classification problems of G-extensions of fusion and braided fusion categories, where G is a finite group. Namely, we reduce such problems to classification (up to homotopy) ...

Etingof, Pavel I.

131

Fusion Development Facility (A26455)  

E-Print Network (OSTI)

Proc. Of 23rd IEEE/NPSS Symposium On Fusion Engineering, San Diego, California; To Be Published In The Proceedings23rd IEEE/NPSS Symposium on Fusion Engineering San Diego California, US, 2009999616325

Smith, J.P.

2009-06-17T23:59:59.000Z

132

Multisensor data fusion algorithm development  

Science Conference Proceedings (OSTI)

This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

1995-12-01T23:59:59.000Z

133

Fusion technology status and requirements  

SciTech Connect

This paper summarizes the status of fusion technology and discusses the requirements to be met in order to build a demonstration fusion plant. Strategies and programmatic considerations in pursuing engineering feasibility are also outlined.

Thomassen, K.I.

1982-01-26T23:59:59.000Z

134

RHIC | Why Does Quark Matter Matter?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Does Quark Matter 'Matter'? Why Does Quark Matter 'Matter'? The history of modern technological development can be viewed as a series of investigations, with ever increasing resolution, into the microscopic structure of matter. Since the days of the early Greek philosophers, science has been on a continual quest to find the smallest piece - the most fundamental building block - forming the substance of the universe. STAR researchers During that journey, many beautiful and exotic properties of the subatomic world have been discovered: particles with wave-like properties the ultimate position of which can never be known; "particles" of light that deliver a fixed amount of energy when they strike the atoms of a material's surface; particles in some types of electrical conductors that

135

How much laser power can propagate through fusion plasma?  

E-Print Network (OSTI)

Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data, and suggest a way to increase that maximum by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and suggests the indirect control of backscatter through manipulation of plasma ionization state or acoustic damping.

Pavel M. Lushnikov; Harvey A. Rose

2005-12-30T23:59:59.000Z

136

Neutronics issues and inertial fusion energy: a summary of findings  

Science Conference Proceedings (OSTI)

We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES&H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES&H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions.

Latkowski, J. F., LLNL

1998-05-29T23:59:59.000Z

137

Fifty years in fusion and the way forward  

E-Print Network (OSTI)

This particular ‘Fusion Pioneers Memorial lecture ’ was given 50 years after the first historical FEC conference in 1958. It was a unique occasion to perform a global reflection on thermonuclear fusion which is summarized in this paper. We first consider the case for fusion energy then move on to the scientific achievements during the past five decades. Finally, the lessons drawn from the past give a framework to consider the challenges ahead of us. The 1958 pioneers had the vision of the vital importance of international collaboration to succeed in this unique endeavour. Fifty years later, this vision has amply proven its worth. Looking at the way forward, this vision constitutes a strong basis to harness fusion energy in the decades to come.

J. Jacquinot

2009-01-01T23:59:59.000Z

138

Fusion reactors as future energy sources  

SciTech Connect

From conference on energy policies and the international system; New, Delhi, India (4 Dec 1973). The need is now apparent for a global energy policy with the following characteristics: Compatibility with environmental and economic factors; large fuel resources, the recovery and exploration of which have minimal environmental impact and which do not introduce disturbing factors into the world political situation. Fusion power in this context is discussed, including assessments of its potential and of the problems yet to be solved in achieving its realization. The proposition is advanced that fusion should be considered as the ultimate source of energy, and that other sources of energy, including conventional nuclear power, should be considered as interim sources. (auth)

Post, R.F.; Ribe, F.L.

1973-01-01T23:59:59.000Z

139

Exothermic dark matter  

E-Print Network (OSTI)

We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, ...

Graham, Peter W.

140

Design of programmable matter  

E-Print Network (OSTI)

Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...

Knaian, Ara N. (Ara Nerses), 1977-

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fusion technology development. Annual report, October 1, 1994--September 30, 1995  

SciTech Connect

In FY95, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work is reported in the following sections on Fusion Power Plant Studies (Section 2), DiMES (Section 3), SiC Composite Studies (Section 4), Magnetic Probe (Section 5) and RF Technology (Section 6). Meetings attended and publications are listed in their respective sections. The overall objective of GA`s fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. They continue to be committed to the development of fusion power and its commercialization by US industry.

1996-08-01T23:59:59.000Z

142

Flexible data fusion (& fission)  

Science Conference Proceedings (OSTI)

An approach is described for developing methods for "data fusion": given how events A & B occurring by themselves influence some measure, estimate the influence (on that measure) of A and B occurring together. An example is "combine the effects of evidence ...

Alexander Yeh

1985-08-01T23:59:59.000Z

143

Status of inertial fusion  

SciTech Connect

The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program.

Keefe, D.

1987-04-01T23:59:59.000Z

144

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

145

New Accelerator to Study Steps on the Path to Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Will Accelerator Will Study Steps on the Path to Fusion Power New Accelerator Will Study Steps on the Path to Fusion Power Unusual Machine Tailor-made to Examine Heavy-ion Fusion May 10, 2012 The accelerator, looking "downstream." In the foreground is the grounded cage th The accelerator, looking "downstream." In the foreground is the grounded cage that encloses the 150,000-volt injector. See more photos at http://newscenter.lbl.gov/news-releases/2012/05/08/ndcx-accelerator/ (Photo: Roy Kaltschmidt, LBNL) The Neutralized Drift Compression Experiment, NDCX-II has recently marked successful completion. Designed with the aid of computer simulations executed at NERSC, the accelerator was created to study warm dense matter, an important research field in itself and particularly relevant to nuclear

146

Directions for improved fusion reactors  

SciTech Connect

Conceptual fusion reactor studies over the past 10 to 15 years have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points towards smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. A generic fusion physics/engineering/costing model is used to provide a quantiative basis for these arguments for specific fusion concepts.

Krakowski, R.A.; Miller, R.L.; Delene, J.G.

1986-01-01T23:59:59.000Z

147

Commercial application of laser fusion  

SciTech Connect

The fundamentals of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described.

Booth, L.A.

1976-01-01T23:59:59.000Z

148

Accelerators for heavy ion fusion  

SciTech Connect

Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

Bangerter, R.O.

1985-10-01T23:59:59.000Z

149

Fusion reactors-high temperature electrolysis (HTE)  

DOE Green Energy (OSTI)

Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800/sup 0/C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400/sup 0/C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) ($1000/KW(E) equivalent), the H/sub 2/ energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10/sup 6/ scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen.

Fillo, J.A. (ed.)

1978-01-01T23:59:59.000Z

150

Cooling Fusion in a Flash | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash...

151

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

DOE Green Energy (OSTI)

Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

Grisham, L.R.; Kwan, J.W.

2008-08-01T23:59:59.000Z

152

Experiments in cold fusion  

DOE Green Energy (OSTI)

The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

Palmer, E.P.

1986-03-28T23:59:59.000Z

153

Fusion pumped laser  

DOE Patents (OSTI)

The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

Pappas, D.S.

1987-07-31T23:59:59.000Z

154

Modular Aneutronic Fusion Engine  

SciTech Connect

NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

2012-05-11T23:59:59.000Z

155

and Enable Development of Fusion’s Energy Applications  

E-Print Network (OSTI)

Demonstrate advanced physics operation of a tokamak in steadystate with Burn – Utilize conservative expressions of all elements of Advanced Tokamak physics to produce 100-250 MW fusion power with modest energy gain (Q 2 weeks – Further develop all elements of Advanced Tokamak physics, qualifying them for an advanced performance DEMO Develop fusion’s nuclear technology – Test materials with high neutron fluence (3-6 MW-yr/m 2) with duty factor 0.3 on a year – Demonstrate Tritium self-sufficiency – Develop fusion blankets that make both tritium and electricity at 1-2 MW/m 2 neutron fluxes – Develop fusion blankets that produce hydrogen With ITER and IFMIF, provide the basis for a fusion DEMO Power Plant

R. D. Stambaugh

2007-01-01T23:59:59.000Z

156

Laser fusion overview. [Forecasting of laser fusion feasibility  

SciTech Connect

Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages.

Nuckolls, J.

1976-05-17T23:59:59.000Z

157

COLLABORATIVE: FUSION SIMULATION PROGRAM  

SciTech Connect

New York University, Courant Institute of Mathematical Sciences, participated in the ���¢��������Fusion Simulation Program (FSP) Planning Activities���¢������� [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP���¢��������s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.

Chang, Choong Seock

2012-06-05T23:59:59.000Z

158

The neutronics studies of fusion fission hybrid power reactor  

SciTech Connect

In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi [School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049 (China)

2012-06-19T23:59:59.000Z

159

Biased Weak Polyform Achievement Games  

E-Print Network (OSTI)

In a biased weak $(a,b)$ polyform achievement game, the maker and the breaker alternately mark $a,b$ previously unmarked cells on an infinite board, respectively. The maker's goal is to mark a set of cells congruent to a polyform. The breaker tries to prevent the maker from achieving this goal. A winning maker strategy for the $(a,b)$ game can be built from winning strategies for games involving fewer marks for the maker and the breaker. A new type of breaker strategy called the priority strategy is introduced. The winners are determined for all $(a,b)$ pairs for polyiamonds and polyominoes up to size four.

Norris, Ian

2011-01-01T23:59:59.000Z

160

Fusion power: the transition from fundamental science to fusion reactor engineering  

SciTech Connect

The historical development of fusion research is outlined. The basics of fusion power along with fuel cost and advantages of fusion are discussed. Some quantitative requirements for fusion power are described. (MOW)

Post, R.F.

1975-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fusion power production in TFTR  

SciTech Connect

Up to 9.3 MW of fusion power has been produced from deuterium-tritium (DT) fusion reactions in the Tokamak Fusion Test Reactor (TFTR). The total fusion yield from a single plasma pulse has reached 6.5 MJ. The experiments in TFTR with deuterium-tritium plasmas fueled and heated by neutral beam injection span wide ranges in plasma and operating conditions. Through the use of lithium pellet conditioning to control the edge recycling, the plasma confinement in TFTR has been improved to the point where the stability of the plasma to pressure driven modes is limiting the fusion power for plasma currents up to 2.5 MA. The central energy and fusion power densities in these plasmas are comparable to those expected in a thermalized DT reactor, such as ITER.

Bell, M.G.; Budny, R.V. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States)] [and others

1994-11-01T23:59:59.000Z

162

Intitutional constraints to fusion commercialization  

SciTech Connect

The major thrust of this report is that the long time frame associated with the development of commercial fusion systems in the context of the commercialization and institutional history of an allied technology, fission-power, suggests that fusion commercialization will not occur without active and broad-based support on the part of the Nation's political leaders. Its key recommendation is that DOE fusion planners devote considerable resources to analytical efforts aimed at determining the need for fusion and the timing of that need, in order to convince policymakers that they need do more than preserve fusion as an option for application at some indefinite point in the future. It is the thesis of the report that, in fact, an act of political vision on the part of the Nation's leaders will be required to accomplish fusion commercialization.

1979-10-01T23:59:59.000Z

163

Achieving world class maintenance status  

Science Conference Proceedings (OSTI)

The article written by a management consultant, discusses the art of successful planning and operation of maintenance in mines considering factors such as benchmaking, key performance indices (KPIs) and frequency of procedures which can help achieve 'world class maintenance'. 1 fig.

Tomlingson, P.D. [Paul D. Tomingson Associates (United States)

2007-08-15T23:59:59.000Z

164

Inertial Confinement Fusion R&D and Nuclear Proliferation  

Science Conference Proceedings (OSTI)

In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

Robert J. Goldston

2011-04-28T23:59:59.000Z

165

Fusion reactors for synthetic fuels  

DOE Green Energy (OSTI)

Some of the types of processes now being considered for synthetic fuels production from fusion energy, together with an example of each type are listed. The process efficiency is defined as the chemical energy in the generated hydrogen (at the higher heating value (HHV)) divided by the total fusion energy release, including alpha particles and secondary neutron reactions in the blanket. Except where specifically noted, both high and low temperature blanket heats are counted as part of total fusion energy release.

Powell, J.R.

1979-01-01T23:59:59.000Z

166

Quark Matter 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

Seventeenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004) took place in Oakland, California from January 11 - 17, 2004. The location...

167

Magnetization of neutron matter  

SciTech Connect

In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

Bigdeli, M. [Department of Physics, Zanjan University, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

2011-09-21T23:59:59.000Z

168

Dark matter at colliders  

SciTech Connect

We show that colliders can impose strong constraints on dark matter. We take an effective field theory approach where dark matter couples to quarks and gluons through high dimensional operators. We discuss limits on interactions of dark matter and hadronic matter from the ATLAS experiment at the Large Hadron Collider (LHC). For spin-independent scattering, the LHC limits are stronger than those from direct detection experiments for light WIMPs. For spin-dependent scattering, the LHC sets better limits over much of parameter space.

Yu Haibo [Department of Physics, University of Michigan, Ann Arbor, MI, 48109 (United States)

2013-05-23T23:59:59.000Z

169

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Insulators ALS Reveals New State of Matter First Observation of Plasmarons in Graphene Electron Correlation in Iron-Based Superconductors Towards Heavy Fermions in Europium...

170

Fusion technology development. Annual report to the US Department of Energy, October 1, 1996--September 30, 1997  

SciTech Connect

In FY97, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the magnetic fusion program. The work was supported by the Office of Fusion Energy Sciences, International and Technology Division, of the US Department of Energy. The work is reported in the following sections on Fusion Power Plant Studies (Section 2), Plasma Interactive Materials (Section 3), Magnetic Diagnostic Probes (Section 4) and RF Technology (Section 5). Meetings attended and publications are listed in their respective sections. The overall objective of GA`s fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to ITER and other next-generation fusion experiments, and ultimately to fusion power plants. To achieve this overall objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and we conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. We continue to be committed to the development of fusion power and its commercialization by US industry.

1998-03-01T23:59:59.000Z

171

Methodology for Scaling Fusion Power Plant Availability  

Science Conference Proceedings (OSTI)

Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

Lester M. Waganer

2011-01-04T23:59:59.000Z

172

Fusion Energy Division Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

of Agreement with UT-Battelle to collaborate with Japan's National Institute for Fusion Science. Division Director Stanley L. Milora Oak Ridge National Laboratory P.O. Box...

173

Fusion rings for quantum groups  

E-Print Network (OSTI)

We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [KS] and give a similar description of the sp(2n)-fusion ring in terms of noncommutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings extending known results in special cases. Finally we also compute the fusion rings for type G2.

Henning Haahr Andersen; Catharina Stroppel

2012-12-22T23:59:59.000Z

174

Stockpile tritium production from fusion  

SciTech Connect

A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century.

Lokke, W.A.; Fowler, T.K.

1986-03-21T23:59:59.000Z

175

Achieving a ten percent greenhouse gas reduction by 2020 Response to  

E-Print Network (OSTI)

ERG/200801 Achieving a ten percent greenhouse gas reduction by 2020 Response to The Nova Scotia. Sandy Cook. #12;Achieving a ten percent greenhouse gas reduction by 2020 1 Introduction In April 2007 matters. Central to the act is the government's commitment to reducing greenhouse gas emissions

Hughes, Larry

176

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

Jassby, Daniel L. (Princeton, NJ)

1988-01-01T23:59:59.000Z

177

Beam cooling: Principles and achievements  

SciTech Connect

After a discussion of Liouville's theorem, and its implications for beam cooling, a brief description is given of each of the various methods of beam cooling: stochastic, electron, radiation, laser, ionization, etc. For each, we present the type of particle for which it is appropriate, its range of applicability, and the currently achieved degree of cooling. For each method we also discuss the present applications and, also, possible future developments and further applications.

Mohl, Dieter; Sessler, Andrew M.

2003-05-18T23:59:59.000Z

178

Fusion 2.0 the next generation of fusion in California : aligning state and regional fusion centers .  

E-Print Network (OSTI)

??A growing number of states have created multiple fusion centers, including California. In addition to having a state fusion center, California has four regional centers… (more)

MacGregor, David S.

2010-01-01T23:59:59.000Z

179

A 3 MEGAJOULE HEAVY ION FUSION DRIVER  

E-Print Network (OSTI)

Research, Office of Inertia! Fusion, Research Division ofA 3 MEGAJOULE HEAVY ION FUSION DRIVER* A. Faltens, E. Hoyer,Research, Office of Inertial Fusion, Research Division of

Faltens, A.

2010-01-01T23:59:59.000Z

180

NUCLEAR STRUCTURE AND HEAVY-ION FUSION  

E-Print Network (OSTI)

Nuclear Structure and Heavy-Ton Fusion* A series of lecturesthe cross section for fusion in the experiments consideredEffects g in III. Subharrier Fusion Cross Sections for Light

Stokstad, R.G.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On the infinity Laplacian and Hrushovski's fusion  

E-Print Network (OSTI)

Definable rank and degree 4.1.2 Fusion . . . . . . . . . .s example . . . . . 4.2 A new fusion construction . . . .4.2.1 Free fusion . . . . . . . . . 4.2.2 Codes . . . . . .

Smart, Charles Krug

2010-01-01T23:59:59.000Z

182

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Confinement Fusion Magnetic Confinement Fusion FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Fusion by Magnetic Confinement The image above is an artistic rendering of a tokamak, a donut-shaped magnetic vacuum chamber in which wispy vapors of fusion fuel are

183

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Two Important Fusion Reactions D + T > He-4 + n D-T reaction graphic For first...

184

RAPPORTEUR TALK FOR IAEA FUSION MEETING, BRUSSELS  

E-Print Network (OSTI)

Ion Fusion Papers: The Argonne Heavy Ion Fusion Program:to the target. 3. The Argonne Heavy Ion Fusion Program:ring system developed at Argonne National Laboratory shows

Watson, J.M.

2010-01-01T23:59:59.000Z

185

LLNL-PRES-463228 FUSION PERSPECTIVES*  

E-Print Network (OSTI)

LLNL-PRES-463228 FUSION PERSPECTIVES* LLNL Fusion Energy Sciences Program D.D. Ryutov Fusion, Novosibirsk, July 1988: working together with the LLNL team #12;Axisymmetric mirrors can serve as a basis

186

Search for Dark Matter  

E-Print Network (OSTI)

The search for dark matter is a very wide an active field of research, and I necessarily concentrate here only in some aspects of it. I will review the prospects for direct and indirect dark matter searches of Weakly Interacting Massive Particles in the dark halo of our galaxy and focus in particular on the data of GLAST, PAMELA and DAMA.

Graciela B. Gelmini

2008-10-21T23:59:59.000Z

187

Cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

1998-01-01T23:59:59.000Z

188

Civilian applications of laser fusion  

SciTech Connect

The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. We have found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser fusion studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

1978-08-14T23:59:59.000Z

189

Cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

1998-02-17T23:59:59.000Z

190

Fusion algebra of critical percolation  

E-Print Network (OSTI)

We present an explicit conjecture for the chiral fusion algebra of critical percolation considering Virasoro representations with no enlarged or extended symmetry algebra. The representations we take to generate fusion are countably infinite in number. The ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of these representations decomposes into a finite direct sum of these representations. The fusion rules are commutative, associative and exhibit an sl(2) structure. They involve representations which we call Kac representations of which some are reducible yet indecomposable representations of rank 1. In particular, the identity of the fusion algebra is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the recent results of Eberle-Flohr and Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of indecomposable representations of rank 3. Our fusion rules are supported by extensive numerical studies of an integrable lattice model of critical percolation. Details of our lattice findings and numerical results will be presented elsewhere.

Jorgen Rasmussen; Paul A. Pearce

2007-06-19T23:59:59.000Z

191

Application of small-signal fusion energy gain  

SciTech Connect

The measured burnup fraction of the 1-MeV tritons produced in a deuterium tokamak plasma, multiplied by 17.5, is essentially the small-signal fusion energy gain g/sub T/ for an ideal 1-MeV triton beam injected into the deuterium plasma. The measured g/sub T/ can be converted directly into the two-component fusion energy gain that would be realized if a lower energy tritium beam were injected into the plasma, or if a deuterium beam were injected into a tritium target plasma having the same parameters as the acutal deuterium plasma. Under certain conditions, g/sub T/ greater than or equal to 1 can be obtained by injection of a low-current 225-keV tritium beam into a hot deuterium plasma, thereby verifying that the plasma has the essential characteristics needed for achieving macroscopic fusion energy ''break-even.''

Jassby, D.L.

1986-11-01T23:59:59.000Z

192

Key Issues for the Safety and Licensing of Fusion  

SciTech Connect

Studies of the safety and environmental impacts of fusion, both of future power plants and of ITER, have shown that a good performance can be achieved. Although it is difficult to anticipate the regulatory regime in which future fusion power stations will be licensed, the areas of public and occupational safety and short and long-term environmental impact are likely to remain important. In each of these areas, the outcome of various studies have been reviewed, leading to a list of issues which should be given attention to facilitate eventual licensing of a fusion power plant. Many of these relate to reducing conservatisms and uncertainties in the analyses, but also included are improved understanding of tritium retention and of dust generation, and development of materials to provide long component lifetimes. A full appraisal is also recommended of the viability of recycling of active materials after end of plant life.

Taylor, Neill P. [Culham Science Centre (United Kingdom)

2005-05-15T23:59:59.000Z

193

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

1996-2000 Editions of the CPEP Fusion Chart English plus Dutch (Flemish), French, German, Italian, Portuguese and Spanish (European) Created by the Fusion Group of the Contemporary...

194

Radiation Effects on Structural Ceramics in Fusion  

Science Conference Proceedings (OSTI)

Fusion Materials—Radiation Effects and Activation / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

G. R. Hopkins; R. J. Price; P. W. Trester

195

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National...

196

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview | The Guided Tour Click anywhere on this picture to go to the relevant fusion topic, or try the Guided Tour. Fusion Chart These introductory educational materials on...

197

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Energy Sources & Conversion An Overview of Energy Conversion Processes One of the...

198

Role Of Calcium In Membrane Fusion.  

E-Print Network (OSTI)

??This project is focused on understanding the role of calcium in membrane fusion at the atomic level. Membrane fusion is an intense area of experimental… (more)

Issa, Zeena Kas

2010-01-01T23:59:59.000Z

199

Longitudinal Tracking of Direct Drive Inertial Fusion Targets  

Science Conference Proceedings (OSTI)

Technical Paper / The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers

J. D. Spalding; L. C. Carlson; M. S. Tillack; N. B. Alexander; D. T. Goodin; R. W. Petzoldt

200

On the true nature of transfer reactions leading to the complete fusion of projectile and target  

E-Print Network (OSTI)

The transfer of nucleons in hot-fusion reactions occurs within 0.17 yoctosecond, in a new state of nuclear matter. We suggest that the same state should show itself in an early stage of the phenomena occurring in nucleus-nucleus collisions realized at relativistic energies.

G. Mouze; C. Ythier

2012-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A review of Vlasov-Fokker-Planck numerical modeling of inertial confinement fusion plasma  

Science Conference Proceedings (OSTI)

The interaction of intense lasers with solid matter generates a hot plasma state that is well described by the Vlasov-Fokker-Planck equation. Accurate and efficient modeling of the physics in these scenarios is highly pertinent, because it relates to ... Keywords: Computational, Fast electron transport, Fokker-Planck, Inertial confinement fusion, Laser, Magnetic field, Plasma, Vlasov

A. G. R. Thomas; M. Tzoufras; A. P. L. Robinson; R. J. Kingham; C. P. Ridgers; M. Sherlock; A. R. Bell

2012-02-01T23:59:59.000Z

202

Is there hope for fusion  

SciTech Connect

From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs.

Fowler, T.K. (California Univ., Berkeley, CA (USA). Dept. of Nuclear Engineering)

1990-04-12T23:59:59.000Z

203

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

Fusion Science, Magnetic Fusion Energy, and Related FieldsFusion Science, Magnetic Fusion Energy, and Related Fieldscalled, in the magnetic fusion energy community, a tandem

Kwan, J.W.

2008-01-01T23:59:59.000Z

204

Princeton Plasma Physics Laboratory achieves milestone, completing...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the upgrade that will make the device the most advanced fusion facility of its kind on earth. Completion of the first quadrant entailed some anxious moments. Riding on the...

205

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

206

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

207

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ FAQ FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Answers to Frequently Asked Questions about Fusion Research An updated, searchable Fusion FAQ is being prepared. In the meantime, the incomplete public-domain Fusion FAQ from 1994-1995 is still available

208

Understanding and accepting fusion as an alternative energy source  

SciTech Connect

Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

Goerz, D.A.

1987-12-10T23:59:59.000Z

209

Understanding and accepting fusion as an alternative energy source  

SciTech Connect

Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

Goerz, D.A.

1987-12-10T23:59:59.000Z

210

LiWall Fusion - The New Concept of Magnetic Fusion  

Science Conference Proceedings (OSTI)

Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

L.E. Zakharov

2011-01-12T23:59:59.000Z

211

Vehicle Technologies Office: ACEM Instrument Achieves Significant  

NLE Websites -- All DOE Office Websites (Extended Search)

ACEM Instrument Achieves ACEM Instrument Achieves Significant Performance Milestone to someone by E-mail Share Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Facebook Tweet about Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Twitter Bookmark Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Google Bookmark Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Delicious Rank Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Digg Find More places to share Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on AddThis.com... ACEM Instrument Achieves Significant Performance Milestone

212

Fusion pumped laser  

SciTech Connect

Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

213

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

214

Multiple shell fusion targets  

DOE Patents (OSTI)

Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

Lindl, J.D.; Bangerter, R.O.

1975-10-31T23:59:59.000Z

215

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the lasing medium. 3 figs.

Pappas, D.S.

1988-09-01T23:59:59.000Z

216

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

217

Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program  

SciTech Connect

The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In this paper, recent accomplishments are reviewed and future directions outlined.

David A. Petti; Brad J. Merrill; Phillip Sharpe; L. C. Cadwallader; L. El-Guebaly; S. Reyes

2006-07-01T23:59:59.000Z

218

Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma  

E-Print Network (OSTI)

The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

C. Labaune; C. Baccou; S. Depierreux; C. Goyon; G. Loisel; V. Yahia; J. Rafelski

2013-10-08T23:59:59.000Z

219

Civilian applications of laser fusion  

DOE Green Energy (OSTI)

The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

1977-11-17T23:59:59.000Z

220

The XENON Dark Matter Search  

SciTech Connect

The XENON experiment will search for Weakly Interacting Massive Particles (WIMPS), a leading candidate for the dark matter content of the Universe. The XENON detector uses the simultaneous measurement of ionization and scintillation in liquid xenon to distinguish between nuclear recoils and background electronic interactions. Ionization electrons are extracted into the xenon vapor where they produce a large proportional scintillation signal in a grid assembly. Both prompt and proportional scintillation light are detected by PMT arrays on the top and bottom of the active liquid xenon volume. The distribution of proportional scintillation light in the top PMT array can be used to achieve xy position resolution, while the ionization drift time gives position resolution in the z direction. This allows the definition of a low-background fiducial volume. I describe the results of the R and D phase of this project before providing a status update on the XENON10 phase.

McKinsey, D. N. [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States)

2006-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Dark matter dynamics  

E-Print Network (OSTI)

N-body simulations have revealed a wealth of information about dark matter halos but their results are largely empirical. Here we attempt to shed light on simulation results by using a combination of analytic and numerical ...

Zukin, Phillip Gregory

2012-01-01T23:59:59.000Z

222

The Heart of Matter  

E-Print Network (OSTI)

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Godbole, Rohini M

2010-01-01T23:59:59.000Z

223

The Heart of Matter  

E-Print Network (OSTI)

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Rohini M. Godbole

2010-06-30T23:59:59.000Z

224

Phases of Nuclear Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

and on the density of the nucleons. Thus we may ask what is the equation of state for nuclear matter? In their normal states of lowest energy, nuclei show liquid-like...

225

Matter & Energy Electricity  

E-Print Network (OSTI)

See Also: Matter & Energy Electricity Energy Technology Computers & Math Distributed Computing Computer Science Science & Society Energy Issues Environmental Policies Reference Electric power transmission Distributed generation Electric power Grid computing ScienceDaily (Oct. 12, 2010) -- A new study

Hines, Paul

226

Dark matter: Theoretical perspectives  

SciTech Connect

I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

1993-01-01T23:59:59.000Z

227

Fusion option to dispose of spent nuclear fuel and transuranic elements  

SciTech Connect

The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k{sub eff} of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's.

Gohar, Y.

2000-02-10T23:59:59.000Z

228

Distributed Multisensor Fusion Lucy Y. Pao \\Lambda  

E-Print Network (OSTI)

Distributed Multisensor Fusion Lucy Y. Pao \\Lambda Northwestern University Evanston, IL 60208. The distributed fusion prob­ lem is more complex than the centralized fusion problem due to correlation across track estimates for the same object. We propose an approach for distributed sen­ sor fusion

Pao, Lucy Y.

229

Temperature & Nuclear Fusion 4 October 2011  

E-Print Network (OSTI)

Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class-Boltzmann equation: L = 4R2 T4 . (d) In fusion energy generation: T . #12;temperature & nuclear fusion 2 Nuclear

Militzer, Burkhard

230

Temperature & Nuclear Fusion 4 October 2011  

E-Print Network (OSTI)

Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class temperature. #12;temperature & nuclear fusion 2 Nuclear Fusion 2. There are a few different energy scales

Militzer, Burkhard

231

Fusion of Loops for Parallelism and Locality  

Science Conference Proceedings (OSTI)

AbstractżLoop fusion improves data locality and reduces synchronization in data-parallel applications. However, loop fusion is not always legal. Even when legal, fusion may introduce loop-carried dependences which prevent parallelism. In addition, performance ... Keywords: Locality enhancement, loop fusion, cache conflicts, loop transformations, data-parallel applications, scalable shared-memory multiprocessors.

Naraig Manjikian; Tarek S. Abdelrahman

1997-02-01T23:59:59.000Z

232

Super-high density laser fusion CTR  

SciTech Connect

From sixth European conference on controlled fusion and plasma physics; Moscow, USSR (30 Jul 1973). A basic discussion of laser-induced fusion is presented. Implosion development and applications are described. Implosion and thermonuclear physics are discussed in some detail along with laser technology, laser fusion reactors, and fusion energy conversion. (MOW)

Thiessen, A.; Zimmerman, G.; Weaver, T.; Emmett, J.; Nuckolls, J.; Wood, L.

1973-09-01T23:59:59.000Z

233

Fusion materials irradiations at MaRIE's fission fusion facility  

SciTech Connect

Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

Pitcher, Eric J [Los Alamos National Laboratory

2010-10-06T23:59:59.000Z

234

Training Reciprocity Achieves Greater Consistency, Saves Time...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Reciprocity Achieves Greater Consistency, Saves Time and Money for Idaho, Other DOE Sites Training Reciprocity Achieves Greater Consistency, Saves Time and Money for...

235

Property:Achievement Date | Open Energy Information  

Open Energy Info (EERE)

Date Jump to: navigation, search Property Name Achievement Date Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:AchievementDate&oldid...

236

Pantex supports academic achievement | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex supports academic achievement Pantex supports academic achievement Posted By Office of...

237

Applications of high power millimeter waves in the DIII-D fusion program  

SciTech Connect

First operation of a new generation of MW level, 110 GHz generator (gyrotron) on the DIII-D fusion experimental device has been achieved. The desire for high power, cw millimeter (mm) wave sources to support fusion research and development is just now beginning to be realized. Plasma heating and current drive with directed mm waves rely on the strong absorption achieved when the wave frequency matches the natural ``cyclotron`` frequency of electrons in a magnetic field, or its harmonics. Recent progress in fusion experiments highlights the need for control of the interior details of the hot plasma, and nun wave systems are ideally suited for this role. A brief status of fusion research is given, and the importance of mm waves in the future directions for fusion research is described. The vacuum transmission components necessary for transmitting, monitoring, and launching high power 1 10 GHz waves into a plasma have been developed at General Atomics (GA) and will be described. High power mm waves have a number of attractive technological features for fusion applications compared with other candidate plasma heating and current drive technologies. Millimeter waves can be transmitted with high power density over large distances with low losses by utilizing corrugated waveguides, so the generators can be sited remotely, facilitating maintenance and saving valuable space near the fusion device.

Freeman, R.L.

1996-08-01T23:59:59.000Z

238

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Sun Our Sun FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Sun Runs on Fusion Energy How the sun looks through x-ray eyes! Like all stars, the sun is a huge fusion reactor, pumping out 100 million times as much energy in a single second as the entire population of Earth

239

Applications of high-speed dust injection to magnetic fusion  

Science Conference Proceedings (OSTI)

It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage. Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

Wang, Zhehui [Los Alamos National Laboratory; Li, Yangfang [Max Planck Institute for Extraterrestrial Physics, Germany

2012-08-08T23:59:59.000Z

240

Fusion/Plasma Physics materials  

NLE Websites -- All DOE Office Websites (Extended Search)

FusionPlasma Physics materials 71958-00 Large Chart 107 150 cm 17. 71958-01 Package of 30 Three-hole-punched Notebook Charts, chart size 43 28 cm, folded size 22 28 cm...

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Maintenance FUSION IGNITION RESEARCH EXPERIMENT  

E-Print Network (OSTI)

to refine the system details, interfaces and the requirements for remote handling. Table 1. FIRE RadialInsulation Enclosure Remote Maintenance Module FUSION IGNITION RESEARCH EXPERIMENT SYSTEM objectives and subsystem requirements in an arrangement that allows remote maintenance of in

242

U. S. Fusion Energy Future  

SciTech Connect

Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

2000-10-12T23:59:59.000Z

243

Possible fusion reactor. [Movable plasmas  

SciTech Connect

A scheme to improve performance characteristics of a tokamak-type fusion reactor is proposed. Basically, the tokamak-type plasma could be moved around so that the plasma could be heated by compression, brought to the region where the blanket surrounds the plasma, and moved so as to keep wall loading below the acceptable limit. This idea should be able to help to economize a fusion reactor.

Yoshikawa, S.

1976-05-01T23:59:59.000Z

244

Advanced synfuel production with fusion  

SciTech Connect

An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets.

Powell, J.R.; Fillo, J.

1979-01-01T23:59:59.000Z

245

Laser fusion monthly -- August 1980  

SciTech Connect

This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

Ahlstrom, H.G. [ed.

1980-08-01T23:59:59.000Z

246

Magnetic fusion 1985: what next  

SciTech Connect

Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion.

Fowler, T.K.

1985-03-01T23:59:59.000Z

247

Method of achieving the controlled release of thermonuclear energy  

SciTech Connect

A method of achieving the controlled release of thermonuclear energy by illuminating a minute, solid density, hollow shell of a mixture of material such as deuterium and tritium with a high intensity, uniformly converging laser wave to effect an extremely rapid build-up of energy in inwardly traveling shock waves to implode the shell creating thermonuclear conditions causing a reaction of deuterons and tritons and a resultant high energy thermonuclear burn. Utilizing the resulting energy as a thermal source and to breed tritium or plutonium. The invention also contemplates a laser source wherein the flux level is increased with time to reduce the initial shock heating of fuel and provide maximum compression after implosion; and, in addition, computations and an equation are provided to enable the selection of a design having a high degree of stability and a dependable fusion performance by establishing a proper relationship between the laser energy input and the size and character of the selected material for the fusion capsule.

Brueckner, Keith A. (Ann Arbor, MI)

1986-01-01T23:59:59.000Z

248

Fusion power and the environment  

SciTech Connect

Environmental characteristics of conceptual fusion-reactor systems based on magnetic confinement are examined quantitatively, and some comparisons with fission systems are made. Fusion, like all other energy sources, will not be completely free of environmental liabilities, but the most obvious of these-- tritium leakage and activation of structural materials by neutron bombardment-- are susceptible to significant reduction by ingenuity in choice of materials and design. Large fusion reactors can probably be designed so that worst-case releases of radioactivity owing to accident or sabotage would produce no prompt fatalities in the public. A world energy economy relying heavily on fusion could make heavy demands on scarce nonfuel materials, a topic deserving further attention. Fusion's potential environmental advantages are not entirely ''automatic'', converting them into practical reality will require emphasis on environmental characteristics throughout the process of reactor design and engineering. The central role of environmental impact in the long-term energy dilemma of civilization justifies the highest priority on this aspect of fusion. (auth)

Holdren, J.P.; Fowler, T.K.; Post, R.F.

1975-06-01T23:59:59.000Z

249

Laser fusion diagnostics  

SciTech Connect

The current status of the capability of laser fusion diagnostics is reviewed. Optical and infrared streak cameras provide one time resolution measurement capability of less than 10 ps, while x-ray streak cameras provide 15 ps time resolution in the range of about 1--30 keV presently. Time integrated spatial resolutions of 1 ..mu..m are provided with a variety of optical techniques. Ultraviolet holographic interferometry has measured electron densities above 10/sup 21/ cm/sup -3/ with 1 ..mu..m spatial resolution and 15 ps temporal resolution. X-ray microscopes provide 3 ..mu..m time integrated resolution and the x-ray streak pinhole camera has 6 ..mu..m spatial resolution. Development of the framing camera has thus far provided 50 ..mu..m spatial resolution with 125 ps frame duration and the third order reconstruction of zone plate images has provided 3 ..mu..m resolutions for alpha particles. Time integrated measurements of x-rays span the range shown. Finally, the new Shiva neutron spectrometer increases the energy resolution capability of that technique to 25 keV for 14-MeV neutrons. These combined capabilities provide a unique set of diagnostics for the detailed measurement of the interaction of laser light with targets and a subsequent performance of those targets.

Coleman, L.W.

1978-05-09T23:59:59.000Z

250

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

Logan, B.G.

2007-01-01T23:59:59.000Z

251

Ignition and Inertial Confinement Fusion at The National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

Moses, E

2009-10-01T23:59:59.000Z

252

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

253

Inertial Confinement Fusion Annual Report 1997  

SciTech Connect

The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change provided a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also provide a short summary of the quarterly activities within Nova laser operations, Beamlet laser operations, and National Ignition Facility laser design. LLNL's ICF Program falls within DOE's national ICF program, which includes the Nova and Beamlet (LLNL), OMEGA (University of Rochester Laboratory for Laser Energetics), Nike (Naval Research Laboratory), and Trident (Los Alamos National Laboratory) laser facilities. The Particle Beam Fusion Accelerator (Z) and Saturn pulsed-power facilities are at Sandia National Laboratories. General Atomics, Inc., develops and provides many of the targets for the above experimental facilities. Many of the ICF Annual Report articles are co-authored with our colleagues from these other ICF institutions.

Correll, D

1998-06-01T23:59:59.000Z

254

../fusion/templates/mapguide/maroon/css/maroon_fusion.css background-image: url(../images/background.gif);  

E-Print Network (OSTI)

../fusion/templates/mapguide/maroon/css/maroon_fusion.css body { background-image: url(../images/background.gif); ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css body { background-color: #3e5c5f; ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css #ToolbarVertical { background: #500000; maroon_fusion.css #Toolbar { background

Ahmad, Sajjad

255

Phase transition from hadronic matter to quark matter  

Science Conference Proceedings (OSTI)

We study the phase transition from nuclear matter to quark matter within the SU(3) quark mean field model and NJL model. The SU(3) quark mean field model is used to give the equation of state for nuclear matter, while the equation of state for color superconducting quark matter is calculated within the NJL model. It is found that at low temperature, the phase transition from nuclear to color superconducting quark matter will take place when the density is of order 2.5?0 - 5?0. At zero density, the quark phase will appear when the temperature is larger than about 148 MeV. The phase transition from nuclear matter to quark matter is always first order, whereas the transition between color superconducting quark matter and normal quark matter is second order.

P. Wang; A.W. Thomas; A.G. Williams

2007-04-01T23:59:59.000Z

256

ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION  

E-Print Network (OSTI)

and Controlled Nuclear Fusion Research, Brussels, Belgium,of the Heavy Ion Fusion Workshop held at Brookhaven NationalReport, Hearthfire Heavy Ion Fusion, October 1, 1979 - March

Faltens, A.

2010-01-01T23:59:59.000Z

257

General Atomics (GA) Fusion News: A New Spin on Understanding...  

NLE Websites -- All DOE Office Websites (Extended Search)

General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement American Fusion News Category: General Atomics (GA) Link: General Atomics (GA) Fusion News: A New...

258

Placing Fusion Power on a Pedestal | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Placing Fusion Power on a Pedestal American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Placing Fusion Power on a Pedestal...

259

Knudsen Layer Reduction of Fusion Reactivity Kim Molvig and Nelson...  

NLE Websites -- All DOE Office Websites (Extended Search)

fusion cross section determine Gamow peak in the fusion reactivity. 2 Inertially confined fusion systems typically have plasma fuel enveloped by a cold non-reacting region or...

260

Fusion Education | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Benefits of FES Fusion Education Fusion Energy Sciences (FES) FES Home About FES Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities...

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Praise and suggestions for fusion research from a utility industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Select and View High Resolution Images to Download Learn More Engineering Fusion energy Fusion reactor design Inertial confinement fusion Nuclear energy Plasma physics Tokamaks...

262

Plasma Blobs and Filaments: Fusion Scientists Discover Secrets...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport American Fusion News Category: U.S. Universities Link: Plasma Blobs and Filaments: Fusion...

263

Fusion systems and biset functors via ghost algebras  

E-Print Network (OSTI)

2.2 Fusion Preserving1 Background 1.1 Fusion System Basics . . . . . . 1.2A. Craven. The theory of fusion systems. Vol. 131. Cambridge

O'Hare, Shawn Michael

2013-01-01T23:59:59.000Z

264

Applying physics, teamwork to fusion energy science | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy...

265

Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment American Fusion News Category: General Atomics (GA) Link: Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...

266

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls American Fusion News Category: U.S. Universities Link: Deuterium Uptake in Magnetic Fusion Devices...

267

TWO IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION F u s i o n Physics of a Fundamental Energy Source C o n f i n e m e n t Q u a l i t y , n τ ( m - 3 s ) 1970-75 1990s 1975-80 1980s Ion Temperature (K) 10 21 10 20 10 19 10 18 10 17 10 6 10 7 10 8 10 9 Inertial Magnetic Expected reactor regime Expected reactor regime Useful Nuclear Masses (The electron's mass is 0.000549 u.) Label Species Mass (u*) n ( 1 n) neutron 1.008665 p ( 1 H) proton 1.007276 D ( 2 H) deuteron 2.013553 T ( 3 H) triton 3.015500 3 He helium-3 3.014932 α ( 4 He) helium-4 4.001505 * 1 u = 1.66054 x 10 -27 kg = 931.466 MeV/c 2 Nuclear Mass (u) B i n d i n g E n e r g y P e r N u c l e o n ( M e V ) 1 200 150 100 50 10 0 5 62 Ni Fusion Reactions Release Energy Fission Reactions Release Energy EXPERIMENTAL RESULTS IN FUSION RESEARCH Fusion requires high tempera- ture plasmas confined long enough at high density

268

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Webby Honoree graphic graphic Key Resource Snap editors choice new scientist DrMatrix Webby Awards Honoree, April 10, 2007 The Alchemist - WebPick, January 29, 1999 Links2Go - Fusion, November 9, 1998 October 19, 1998 - October 19, 1999 Site of the Day, September 24, 1998. Hot spot. Student Science Resource, April 16, 1997

269

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Glossary of Plasma Physics and Fusion Energy Research Browse | Search | Submit an Entry Introduction, Sources and Contributors This Glossary seeks to provide plain-language definitions of over 3600

270

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Home> Student and Teacher Resources > For Introductory Students Home> Student and Teacher Resources > For Introductory Students FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Guide to Fusion Education Resources for Introductory Physics Students This is a compilation of online and offline education resources for

271

Kinetic advantage of controlled intermediate nuclear fusion  

SciTech Connect

The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

Guo Xiaoming [Physics and Computer Science Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5 (Canada)

2012-09-26T23:59:59.000Z

272

Conformal nets III: fusion of defects  

E-Print Network (OSTI)

Conformal nets provides a mathematical model for conformal field theory. We define a notion of defect between conformal nets, formalizing the idea of an interaction between two conformal field theories. We introduce an operation of fusion of defects, and prove that the fusion of two defects is again a defect, provided the fusion occurs over a conformal net of finite index. There is a notion of sector (or bimodule) between two defects, and operations of horizontal and vertical fusion of such sectors. Our most difficult technical result is that the horizontal fusion of the vacuum sectors of two defects is isomorphic to the vacuum sector of the fused defect. Equipped with this isomorphism, we construct the basic interchange isomorphism between the horizontal fusion of two vertical fusions and the vertical fusion of two horizontal fusions of sectors.

Arthur Bartels; Christopher L. Douglas; André Henriques

2013-10-30T23:59:59.000Z

273

A.: Sparse fusion frames: existence and construction  

E-Print Network (OSTI)

Abstract. Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame is a frame-like collection of subspaces in a Hilbert space, thereby generalizing the concept of a frame for signal representation. In this paper, we study the existence and construction of fusion frames. We first present a complete characterization of a special class of fusion frames, called Parseval fusion frames. The value of Parseval fusion frames is that the inverse fusion frame operator is equal to the identity and therefore signal reconstruction can be performed with minimal complexity. We then introduce two general methods – the spatial complement and the Naimark complement – for constructing a new fusion frame from a given fusion frame. We then establish existence conditions for fusion frames with desired properties. In particular, we address the following question: Given M, N, m ? N and {?j} M j=1, does there exist a fusion frame in RM with N subspaces of dimension m for which {?j} M j=1 are the eigenvalues of the associated fusion frame operator? We address this problem by providing an algorithm which computes such a fusion frame for almost any collection of parameters M, N, m ? N and {?j} M j=1. Moreover, we show how this procedure can be applied, if subspaces are to be added to a given fusion frame to force it to become Parseval. 1.

Robert Calderbank; Peter G. Casazza; Andreas Heinecke; Gitta Kutyniok; Ali Pezeshki

2011-01-01T23:59:59.000Z

274

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

for magnetic fusion reactors and IFMIF. Journal of NuclearFusion reactors blanket nucleonics. In Progress in NuclearFusion-Fission hybrid reactors. In Advances in Nuclear

Kramer, Kevin James

2010-01-01T23:59:59.000Z

275

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

32] E. Greenspan. Fusion reactors blanket nucleonics. Intemperature windows for fusion reactor structural materials.steels for magnetic fusion reactors and IFMIF. Journal of

Kramer, Kevin James

2010-01-01T23:59:59.000Z

276

Matter & Energy Solar Energy  

E-Print Network (OSTI)

See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

Rogers, John A.

277

Little Higgs Dark Matter  

E-Print Network (OSTI)

The introduction of T parity dramatically improves the consistency of Little Higgs models with precision electroweak data, and renders the lightest T-odd particle (LTP) stable. In the Littlest Higgs model with T parity, the LTP is typically the T-odd heavy photon, which is weakly interacting and can play the role of dark matter. We analyze the relic abundance of the heavy photon, including its coannihilations with other T-odd particles, and map out the regions of the parameter space where it can account for the observed dark matter. We evaluate the prospects for direct and indirect discovery of the heavy photon dark matter. The direct detection rates are quite low and a substantial improvement in experimental sensitivity would be required for observation. A substantial flux of energetic gamma rays is produced in the annihilation of the heavy photons in the galactic halo. This flux can be observed by the GLAST telescope, and, if the distribution of dark matter in the halo is favorable, by ground-based telescope arrays such as VERITAS and HESS.

Andreas Birkedal; Andrew Noble; Maxim Perelstein; Andrew Spray

2006-03-09T23:59:59.000Z

278

Matter: the fundamental particles  

E-Print Network (OSTI)

"The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)

Landua, Rolf

2007-01-01T23:59:59.000Z

279

The Path to Magnetic Fusion Energy  

Science Conference Proceedings (OSTI)

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL)

2011-05-04T23:59:59.000Z

280

Laser fusion experiments at LLL  

Science Conference Proceedings (OSTI)

These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

Ahlstrom, H.G.

1980-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81  

E-Print Network (OSTI)

were derived from a MAGNETIC FUSION ENERGY STAFF W, Kunkel (H. 1. F. Staff, Heavy Ion Fusion Half-year Report October 1,LBL-12594 (1981). Heavy Ion Fusion Staff, Heavy Ion Fusion

Johnson Ed, R.K.

2010-01-01T23:59:59.000Z

282

Energy Matters in Washington State Page 1 Energy Matters  

E-Print Network (OSTI)

Energy Matters in Washington State ­ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ­ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

Collins, Gary S.

283

Crystallization and collapse in relativistically degenerate matter  

SciTech Connect

In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

Akbari-Moghanjoughi, M. [International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum, Germany and Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz (Iran, Islamic Republic of)

2013-04-15T23:59:59.000Z

284

Method for vacuum fusion bonding  

DOE Patents (OSTI)

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2001-01-01T23:59:59.000Z

285

Fusion bonding and alignment fixture  

DOE Patents (OSTI)

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2000-01-01T23:59:59.000Z

286

Fusion energy for hydrogen production  

SciTech Connect

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

Fillo, J.A.; Powell, J.R.; Steinberg, M.

1978-01-01T23:59:59.000Z

287

Fusion Breeder Program interim report  

Science Conference Proceedings (OSTI)

This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83.

Moir, R.; Lee, J.D.; Neef, W.

1982-06-11T23:59:59.000Z

288

Laser fusion monthly, February 1981  

SciTech Connect

This report is divided into the following sections: (1) facility reports (Argus and Shiva); (2) Nova project; and (3) fusion experiments. In the Fusion Experiments section of this report, the author describes the results of a series of experiments on Shiva which further the understanding of the production and transport of suprathermal electrons. He found that of the suprathermal electrons which strike a laser irradiated disk target or which interact with the rear surface of a half Cairn hohlraum target, a significant fraction of these electrons orbit the target and strike the rear of the disk. These results have significant implications in the interpretation and modeling of the laser irradiated target experiments.

Ahlstrom, H.G.

1981-02-01T23:59:59.000Z

289

Fusion reactors: a remote possibility  

SciTech Connect

The next generation of controlled thermonuclear reactor experiments will be faced with the handling problems of tritium and neutron activation that will dominate the safety and maintenance problems of future fusion reactors. The nuclear industry has been working with highly radioactive systems for many years and has developed the tools and methods to do safely productive work in the presence of high radiation fields. These methods can be applied to CTR work by extending them to the unique problems associated with fusion reactors. (auth)

Doggett, J.N.

1975-11-14T23:59:59.000Z

290

Environmental impact of fusion power  

SciTech Connect

From 140th meeting on the American Association for the Advancement of Science; San Francisco, California, USA (24 Feb The environmental effects of fusion power is considered assuming as a typical model a conceptual design for a full-scale fusion power plant. The appraisal indlcates that such a system would yield plentiful, cheap power for all of the world's energy requirements and provide fine solutions to most of the environmental pollution problems if the uncertainties in the plasma physics can be resolved in the fashion that current experiments lead one to expect. (auth)

Fraas, A.P.

1973-01-01T23:59:59.000Z

291

Fusion roadmapping | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion roadmapping Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design Read more about PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design

292

Image fusion for a nighttime driving display  

E-Print Network (OSTI)

An investigation into image fusion for a nighttime driving display application was performed. Most of the image fusion techniques being investigated in this application were developed for other purposes. When comparing the ...

Herrington, William Frederick

2005-01-01T23:59:59.000Z

293

Role of atomic collisions in fusion  

SciTech Connect

Atomic physics issues have played a large role in controlled fusion research. A general discussion of the present role of atomic processes in both magnetic and inertial controlled fusion work is presented.

Post, D.E.

1982-04-01T23:59:59.000Z

294

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Stars The Sun Runs on Fusion Energy Like all stars, the sun is a huge fusion reactor, pumping out 100 million times as much energy in a single second as the entire population of...

295

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

To dig deeper into the fundamental physics of fusion, simply explore any of the Guided Tour topics in the menu frame at left. For visitors new to the subject of fusion, we...

296

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Lightning Sound and Fury Image courtesy of Steve Albers at NOAA On clear days and...

297

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Planetary Nebulae A planetary nebula can result as a star with mass of less than...

298

Cold fusion catalyzed by muons and electrons  

SciTech Connect

Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

Kulsrud, R.M.

1990-10-01T23:59:59.000Z

299

Magnetic fusion: planning for the future  

SciTech Connect

A brief review of international cooperation in the fusion program is given. The author shares his views on the technical prospects and future potential of fusion as a practical energy source. (MOW)

Fowler, T.K.

1984-02-07T23:59:59.000Z

300

Demonstrating a Target Supply for Inertial Fusion Energy (A24816)  

E-Print Network (OSTI)

Fusion Science And Technology 47, 1131 (2005)16th Topical Meeting on Technology Fusion Energy Madison Wisconsin, US, 2004999609940

Goodin, D.T.

2004-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81  

E-Print Network (OSTI)

Beamlines and Other fusion Reactor Components, M.S. Thesis,Future fusion experiments and reactors may require the

Johnson Ed, R.K.

2010-01-01T23:59:59.000Z

302

Quark Matter 2004 Conference Hotel  

NLE Websites -- All DOE Office Websites (Extended Search)

as the conference Hotel. It is adjacent to the Oakland Convention Center where all Quark Matter talks will be held. Quark Matter attendees can get a reduced price of 126...

303

Centrifugal torque in rotating matter  

E-Print Network (OSTI)

Thermal molecular motion in combination with rotation and differences in centrifugal forces causes a torque in matter. The effect is derived for gas but does also exist in liquid and solid matter.

Jonsson, David

2010-01-01T23:59:59.000Z

304

Calculation of fusion product angular correlation coefficients for fusion plasmas  

SciTech Connect

The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

Murphy, T.J.

1987-08-01T23:59:59.000Z

305

Fusion ProgramFusion Program Overview at Los Alamos  

E-Print Network (OSTI)

p Fusion Energy: Status & Prospects Washington DC Dec. 2, 2009 U N C L A S S I F I E D Operated configuration plasma physics with the U of Washington, and field diagnostics to study radiation and plasma power windows ­ May produce technically viable design, but not with desired optimal economic

306

"50" Years of Fusion Research Fusion Innovation Research and Energy  

E-Print Network (OSTI)

· Steady-state operation is a highly desirable characteristic for a magnetic fusion power plant with toroidal multipole at GA 1966 #12;Four New Superconducting Tokamaks will Address Steady- State Advanced by Sakharov in the early 50s). ­ Wave propagation became basis for RF heating · Experimental Progress (some

307

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network (OSTI)

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

Abdou, Mohamed

308

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences  

E-Print Network (OSTI)

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

309

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences  

E-Print Network (OSTI)

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

310

Superdense muonic matter  

DOE Green Energy (OSTI)

A possible method of creation of superdense matter with approximate atomic density 4 x 10/sup 29/cm/sup -3/ is suggested. A pulsed beam of 10/sup 8/ muons, with duration 3 x 10/sup -6/sec is shone on liquid hydrogen of volume approx.(300A)/sup 3/. A muon charge-exchanges with an electron in a hydrogen atom: with enough muonic hydrogen atoms, the compressibility tends to diverge and condensation into a much higher density state begins. The muon beam should be cooled by the ionization process and channeled through crystal axes before irradiation on the hydrogen specimen. When magnetic fields are present upon irradiation, the fields may be enhanced up to 10/sup 9/ Gauss. A possible state of this matter is speculated.

Tajima, T.

1987-07-01T23:59:59.000Z

311

Rigid particulate matter sensor  

DOE Patents (OSTI)

A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

Hall, Matthew (Austin, TX)

2011-02-22T23:59:59.000Z

312

Axisymmetric Magnetic Mirror Fusion-Fission Hybrid  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

R. W. Moir; N. N. Martovetsky; A. W. Molvik; D. D. Ryutov; T. C. Simonen

313

Fusion Nuclear Science Facility - Advanced Tokamak Option  

Science Conference Proceedings (OSTI)

Power Plant, Demo, and FNSF / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

C. P. C. Wong; V. S. Chan; A. M. Garofalo; J. A. Leuer; M. E. Sawan; J. P. Smith; R. D. Stambaugh

314

Exo-endo cellulase fusion protein  

DOE Patents (OSTI)

The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

Bower, Benjamin S. (Palo Alto, CA); Larenas, Edmund A. (Palo Alto, CA); Mitchinson, Colin (Palo Alto, CA)

2012-01-17T23:59:59.000Z

315

One-to-Many Multimodal Fusion Package  

Science Conference Proceedings (OSTI)

The One-to-many Multimodal Fusion Package. Participants from the Iris Exchange (IREX) III Evaluation and the Multibiometrics ...

2012-04-05T23:59:59.000Z

316

1994 International Sherwood Fusion Theory Conference  

SciTech Connect

This report contains the abstracts of the paper presented at the 1994 International Sherwood Fusion Theory Conference.

NONE

1994-04-01T23:59:59.000Z

317

Z-Pinch Fusion for Energy Applications  

SciTech Connect

Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

SPIELMAN,RICK B.

2000-01-01T23:59:59.000Z

318

FESAC Fusion Development Path Rob Goldston  

E-Print Network (OSTI)

ProjectedOntario(OPG)Tritium Inventory(kg) Candu Supply w/o Fusion Projected Tritium Supply Impacts Blanket

319

Institute of Plasma and Fusion Research  

E-Print Network (OSTI)

for fusion accumulated over 40 years of CANDU reactors operation will peak at 27 kg in the year 2027 and

320

Polynomial Fusion Rings of Logarithmic Minimal Models  

E-Print Network (OSTI)

We identify quotient polynomial rings isomorphic to the recently found fundamental fusion algebras of logarithmic minimal models.

Jorgen Rasmussen; Paul A. Pearce

2007-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Heavy Ion Fusion Systems Assessment study  

SciTech Connect

The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of a fusion system to identify favored areas in the multidimensional parameter space. The resulting cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 100 MWe.

Dudziak, D.J.; Herrmannsfeldt, W.B.

1986-07-01T23:59:59.000Z

322

Brookhaven Condensed Matter Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Matter Physics Condensed Matter Physics Condensed matter physicists study the properties of bulk matter-solids and liquids-as well as the properties exhibited at surfaces and interfaces, with a view to obtaining a fundamental understanding of the unusual properties that materials can exhibit. These problems are some of the most challenging in physics today, but have the huge pay-off in that such an understanding may ultimately lead to improved materials for use in applications as diverse as computing, memory storage, electric motors, and energy storage and transport. At Brookhaven Lab, this work includes both experimental and theoretical studies. Much of the experimental work carried out today uses the National Synchrotron Light Source (NSLS, shown at right)-one of the premiere synchrotron light sources of the last two decades. Commissioned in the 1980s, the NSLS is host to more than 2,200 users per year and produces copious amounts of light, from the infrared to the ultraviolet to the x-ray. By using this light as a probe, scientists can learn about the arrangement of the atoms and electrons in the materials and how they behave under various conditions. Among other projects, BNL scientists have played leading roles in the development and application of resonant and inelastic x-ray scattering techniques to the study of magnetic and other materials, have pioneered the use of photoemission techniques (based on the photoelectric effect that Einstein first understood 100 years ago) for looking at electronic and magnetic materials, and have carried out some of the seminal experiments to understand the atomic and magnetic structure at surfaces.

323

Space Time Matter inflation  

E-Print Network (OSTI)

We study a model of power-law inflationary inflation using the Space-Time-Matter (STM) theory of gravity for a five dimensional (5D) canonical metric that describes an apparent vacuum. In this approach the expansion is governed by a single scalar (neutral) quantum field. In particular, we study the case where the power of expansion of the universe is $p \\gg 1$. This kind of model is more successful than others in accounting for galaxy formation.

Mariano Anabitarte; Mauricio Bellini

2005-08-31T23:59:59.000Z

324

Aging Matters What's Inside  

E-Print Network (OSTI)

Aging Matters What's Inside Letter from the dean PSU winS Carter award artiSan eConomy eLi BUi and Public affairs 2008 fall newsletter www.pdx.edu/cupa aGinG is a modern fact of life. In 2006 the world's population of adults aged 60 or over was 650 million. By 2025 that number will nearly double. By 2050

Bertini, Robert L.

325

Normal matter storage of antiprotons  

SciTech Connect

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

326

Dark Energy and Dark Matter  

E-Print Network (OSTI)

A brief overview of our current understanding of abundance and properties of dark energy and dark matter is presented. A more focused discussion of supersymmetric dark matter follows. Included is a frequentist approach to the supersymmetric parameter space and consequences for the direct detection of dark matter.

Keith A. Olive

2010-01-27T23:59:59.000Z

327

dark matter dark energy inflation  

E-Print Network (OSTI)

theory dark matter dark energy inflation The National Science Foundation The Kavli Foundation NSF Site Review November 28-29, 2005 #12;dark matter dark energy inflation NSF Site Visit ­ November 28 Gravitation initial conditions beyond single-field slow roll #12;dark matter dark energy inflation NSF Site

Hu, Wayne

328

Quantum Condensed Matter | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...

329

Quantum Condensed Matter | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter SHARE Quantum Condensed Matter Neutron scattering is a uniquely powerful probe for measuring the structure and dynamics of condensed matter. As such it is...

330

Quantum Condensed Matter Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter Division SHARE Quantum Condensed Matter Division QCMD Director Steve Nagler The Quantum Condensed Matter Division (QCMD) enables and conducts a broad...

331

Fusion in a Staged Z-pinch  

E-Print Network (OSTI)

York (1978) Teller, E. : Fusion. Academic Press, New York (O R I G I N A L A RT I C L E Fusion in a Staged Z-pinch H.U.implosion the sim- ulated fusion-energy yield is 7.6 MJ,

Rahman, H. U.; Ney, P.; Rostoker, N.; Wessel, F. J.

2009-01-01T23:59:59.000Z

332

DISTRIBUTED SENSOR FUSION USING DYNAMIC CONSENSUS  

E-Print Network (OSTI)

DISTRIBUTED SENSOR FUSION USING DYNAMIC CONSENSUS Demetri P. Spanos Richard M. Murray California in the underlying network topology and performance, making it an interesting candidate for sensor fusion, Decentralized systems, Graph theoretic models, Sensor Fusion 1. INTRODUCTION Sensor networks are a prominent

Murray, Richard M.

333

White Paper on Magnetic Fusion Program Strategies  

E-Print Network (OSTI)

White Paper on Magnetic Fusion Program Strategies Prepared for The President's Committee May 16,1995 #12;Page 2 White Paper on Magnetic Fusion Program Strategies 1. Introduction Dramatic present our vision for the future of fusion energy research. In this white paper, following a summary

334

Designing ontologies for higher level fusion  

Science Conference Proceedings (OSTI)

The purpose of higher level fusion is to produce contextual understanding of the states of the environment and prediction of their impact in relation to specific goals of decision makers. One of the main challenges of designing higher level fusion processes ... Keywords: Basic formal ontology (BFO), Higher level fusion, Mereotopology, Ontology, Postdisaster environment, Relations

Eric G. Little; Galina L. Rogova

2009-01-01T23:59:59.000Z

335

CO/sub 2/-laser fusion  

SciTech Connect

The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO/sub 2/ laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO/sub 2/ laser systems for fusion applications are discussed.

Stark, E.E. Jr.

1978-01-01T23:59:59.000Z

336

Information fusion in data privacy: A survey  

Science Conference Proceedings (OSTI)

In this paper, we review the role of information fusion in data privacy. To that end, we introduce data privacy, and describe how information and data fusion are used in some fields of data privacy. Our study is focused on the use of aggregation for ... Keywords: Data privacy, Information fusion, Microaggregation, Record linkage

Guillermo Navarro-Arribas; Vicenç Torra

2012-10-01T23:59:59.000Z

337

Implications of high efficiency power cycles for fusion reactor design  

SciTech Connect

The implications of the High Efficiency Power Cycle for fusion reactors are examined. The proposed cycle converts most all of the high grade CTR heat input to electricity. A low grade thermal input (T approximately 100$sup 0$C) is also required, and this can be supplied at low cost geothermal energy at many locations in the U. S. Approximately 3 KW of low grade heat is required per KW of electrical output. The thermodynamics and process features of the proposed cycle are discussed. Its advantages for CTR's are that low Q machines (e.g. driven Tokamaks, mirrors) can operate with a high (approximately 80 percent) conversion of CTR fusion energy to electricity, where with conventional power cycles no plant output could be achieved with such low Q operation. (auth)

Powell, J.R.; Usher, J.; Salzano, F.J.

1975-01-01T23:59:59.000Z

338

Senate targets fusion, backs NIF  

SciTech Connect

This article discusses a budget approved by the Senate Appropriations Committee which funds the fusion program even lower than the drastically reduced level the House approved in July. Work on the International Thermonuclear Experimental Reactor (ITER) would continue but the Tokamak Physics Experiment would be halted. At the same time, the Senate bill allots money to start work on the National Ignition Facility (NIF).

Lawler, A.

1995-08-01T23:59:59.000Z

339

Inertial confinement fusion (ICF) review  

Science Conference Proceedings (OSTI)

During its 1996 winter study JASON reviewed the DOE Inertial Confinement Fusion (ICF) program. This included the National Ignition Facility (NIF) and proposed studies. The result of the review was to comment on the role of the ICF program in support of the DOE Science Based Stockpile Stewardship program.

Hammer, D.; Dyson, F.; Fortson, N.; Novick, B.; Panofsky, W.; Rosenbluth, M.; Treiman, S.; York, H.

1996-03-01T23:59:59.000Z

340

Overview of ORNL Fusion Program  

E-Print Network (OSTI)

Materials Science and Technology Div. 8 Nuclear Science and Technology Div. 9 Research Reactor Div. 10 High Flux Isotope Reactor #12;Molecular dynamics simulation of particle surface interactions Controlled plasma theory and the computational base needed to understand plasma behavior in fusion devices

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tritium breeding in fusion reactors  

Science Conference Proceedings (OSTI)

Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements.

Abdou, M.A.

1982-10-01T23:59:59.000Z

342

Data fusion with minimal communication  

Science Conference Proceedings (OSTI)

Two sensors obtain data vectors x and y, respectively, and transmit real vectors m&oarr;1(x) and m&oarr;2(y), respectively, to a fusion center. The authors obtain tight lower bounds on the number of messages (the sum of ...

Zhi-Quan Luo; J. N. Tsitsiklis

1994-09-01T23:59:59.000Z

343

Fusion Simulation Project Workshop Report  

E-Print Network (OSTI)

for tokamak operation, disruptions, energetic particle stability and confinement, turbulent transport to performance projections and operational limits. The Fusion Simulation Project, which will focus on tokamak and transient heat loads on the divertor . . . . . 17 2.1.3 Tritium migration and impurity transport

Gropp, Bill

344

Particle beam fusion progress report for 1989  

Science Conference Proceedings (OSTI)

This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

Sweeney, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Pulsed Power Sciences Center

1994-08-01T23:59:59.000Z

345

Fusion of Superalgebras and D=3, N=4 Quiver Gauge Theories  

E-Print Network (OSTI)

For further investigating the underlying structures of the D=3, N=4 Chern-Simons-matter (CSM) theories, we suggest a new concept and procedure for "fusing" two superalgebras into a single new superalgebra. The starting superalgebras may be those used in the previous construction of the double-symplectic 3-algebras in the N=4 CSM theories: The bosonic parts of these two superalgebras share at least one simple factor or U(1) factor. We are able to provide two different methods to do the "fusion". Several explicit examples are presented to demonstrate the "fusion" procedure. We also generalize the "fusion" procedure so that more than two superaglebras can be fused into a single one, provided some conditions are satisfied. It is shown that two or more N=4 theories with different gauge groups may be associated with the same "fused" superalgebra.

Fa-Min Chen; Yong-Shi Wu

2012-12-29T23:59:59.000Z

346

Professor and Director of the Fusion Science Center of Extreme States of  

National Nuclear Security Administration (NNSA)

Professor and Director of the Fusion Science Center of Extreme States of Professor and Director of the Fusion Science Center of Extreme States of Matter and Fast Ignition, University of Rochester | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Riccardo Betti Professor and Director of the Fusion Science Center of Extreme States of

347

Reviewers Comments on the 5th Symposium and the Status of Fusion Research 2003  

DOE Green Energy (OSTI)

Better to understand the status of fusion research in the year 2003 we will first put the research in its historical context. Fusion power research, now beginning its sixth decade of continuous effort, is unique in the field of scientific research. Unique in its mixture of pure and applied research, unique in its long-term goal and its promise for the future, and unique in the degree that it has been guided and constrained by national and international governmental policy. Though fusion research's goal has from the start been precisely defined, namely, to obtain a net release of energy from controlled nuclear fusion reactions between light isotopes (in particular those of hydrogen and helium) the difficulty of the problem has spawned in the past a very wide variety of approaches to the problem. Some of these approaches have had massive international support for decades, some have been pursued only at a ''shoestring'' level by dedicated groups in small research laboratories or universities. In discussing the historical and present status of fusion research the implications of there being two distinctly different approaches to achieving net fusion power should be pointed out. The first, and oldest, approach is the use of strong magnetic fields to confine the heated fuel, in the form of a plasma and at a density typically four or five orders of magnitude smaller than the density of the atmosphere. In steady state this fusion fuel density is still sufficient to release fusion energy at the rate of many megawatts per cubic meter. The plasma confinement times required for net energy release in this regime are long--typically a second or more, representing an extremely difficult scientific challenge --witness the five decades of research in magnetic fusion, still without having reaching that goal. The second, more recently initiated approach, is of course the ''inertial'' approach. As its name implies, the ''confinement'' problem is solved ''inertially,'' that is by compressing and heating a tiny pellet of frozen fusion fuel in nanoseconds, such that before disassembly the pellet fuses and releases its energy as a micro-explosion. The first, and most thoroughly investigated means to create this compression and heating is to use multiple laser beams, with total energies of megajoules, focused down to impinge uniformly on the pellet target. To illustrate the extreme difference between the usual magnetic confinement regime at that of inertial fusion, there are twenty orders of magnitude in fusion power density (ten orders of magnitude in plasma density) between the two regimes. In principle fusion power systems could operate at any density between these extremes, if means were to be found to exploit this possibility.

Post, R F

2005-02-03T23:59:59.000Z

348

Overview of nonelectrical applications of fusion  

DOE Green Energy (OSTI)

The potential for, and importance of, nonelectrical applications of fusion energy is discussed. Three possibilities are reviewed in some detail: fusion-fission hybrids for fissile fuel production; high-temperature electrolysis and thermochemical processes for hydrogen production; and high-temperature steam for coal gasification. The hybrid could be an early application of fusion if this route is identified as a desirable goal. Hydrogen production and coal gasification processes appear feasible and could be developed as a part of the conventional fusion blanket research and development. The question of economics, particularly in view of the high capital cost of fusion plants, remains an open issue requiring more study.

Miley, G.H.

1979-01-01T23:59:59.000Z

349

The Effect of Massive Neutrinos on Matter Power Spectrum  

E-Print Network (OSTI)

We investigate the impact of massive neutrinos on the distribution of matter in the semi-nonlinear regime (0.1eV-1.9 eV respectively. We also discuss the precision levels that future cosmological datasets would have to achieve in order to resolve between the normal and inverted neutrino mass hierarchies.

Agarwal, Shankar

2010-01-01T23:59:59.000Z

350

Personnel Safety for Future Magnetic Fusion Power Plants  

Science Conference Proceedings (OSTI)

The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical exposure value is ~1000 times the Earth’s magnetic field, but the Earth’s field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.

Lee Cadwallader

2009-07-01T23:59:59.000Z

351

Intense Ion Beam for Warm Dense Matter Physics  

E-Print Network (OSTI)

break-even point in a fusion reactor, or ignition, where theoriginal report on fusion reactors (initially classi?ed). [Inertial Fusion Energy (IFE) reactor and power plant

Heimbucher, Lynn

2008-01-01T23:59:59.000Z

352

Wormhole solutions supported by interacting dark matter and dark energy  

E-Print Network (OSTI)

We show that the presence of a nonminimal interaction between dark matter and dark energy may lead to a violation of the null energy condition and to the formation of a configuration with nontrivial topology (a wormhole). In this it is assumed that both dark matter and dark energy satisfy the null energy condition, a violation of which takes place only in the inner high-density regions of the configuration. This is achieved by assuming that, in a high-density environment, a nonminimal coupling function changes its sign in comparison with the case where dark matter and dark energy have relatively low densities which are typical for a cosmological background. For this case, we find regular static, spherically symmetric solutions describing wormholes supported by dark matter nonminimally coupled to dark energy in the form of a quintessence scalar field.

Folomeev, Vladimir

2013-01-01T23:59:59.000Z

353

Wormhole solutions supported by interacting dark matter and dark energy  

E-Print Network (OSTI)

We show that the presence of a nonminimal interaction between dark matter and dark energy may lead to a violation of the null energy condition and to the formation of a configuration with nontrivial topology (a wormhole). In this it is assumed that both dark matter and dark energy satisfy the null energy condition, a violation of which takes place only in the inner high-density regions of the configuration. This is achieved by assuming that, in a high-density environment, a nonminimal coupling function changes its sign in comparison with the case where dark matter and dark energy have relatively low densities which are typical for a cosmological background. For this case, we find regular static, spherically symmetric solutions describing wormholes supported by dark matter nonminimally coupled to dark energy in the form of a quintessence scalar field.

Vladimir Folomeev; Vladimir Dzhunushaliev

2013-08-13T23:59:59.000Z

354

Charged anisotropic matter with linear equation of state  

E-Print Network (OSTI)

We consider the general situation of a compact relativistic body with anisotropic pressures in the presence of the electromagnetic field. The equation of state for the matter distribution is linear and may be applied to strange stars with quark matter. Three classes of new exact solutions are found to the Einstein-Maxwell system. This is achieved by specifying a particular form for one of the gravitational potentials and the electric field intensity. We can regain anisotropic and isotropic models from our general class of solution. A physical analysis indicates that the charged solutions describe realistic compact spheres with anisotropic matter distribution. The equation of state is consistent with dark energy stars and charged quark matter distributions. The masses and central densities correspond to realistic stellar objects in the general case when anisotropy and charge are present.

S. Thirukkanesh; S. D. Maharaj

2008-10-21T23:59:59.000Z

355

Data security on the national fusion grid  

SciTech Connect

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

356

Security on the US Fusion Grid  

SciTech Connect

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

357

Multimodal fusion for multimedia analysis: a survey  

E-Print Network (OSTI)

This survey aims at providing multimedia researchers with a state-of-the-art overview of fusion strategies, which are used for combining multiple modalities in order to accomplish various multimedia analysis tasks. The existing literature on multimodal fusion research is presented through several classifications based on the fusion methodology and the level of fusion (feature, decision, and hybrid). The fusion methods are described from the perspective of the basic concept, advantages, weaknesses, and their usage in various analysis tasks as reported in the literature. Moreover, several distinctive issues that influence a multimodal fusion process such as, the use of correlation and independence, confidence level, contextual information, synchronization between different modalities, and the optimal modality selection are also highlighted. Finally, we present the open issues for further research in the area of multimodal fusion.

P. K. Atrey; M. A. Hossain; Abdulmotaleb El Saddik; Mohan S. Kankanhalli

2010-01-01T23:59:59.000Z

358

American Fusion News | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

American Fusion News American Fusion News General Atomics (GA) December 4, 2012 The Scorpion's Strategy: "Catch and Subdue" December 4, 2012 Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment February 15, 2012 General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement See All Massachusetts Institute of Technology (MIT) April 5, 2013 Applying physics, teamwork to fusion energy science February 22, 2013 A Tour of Plasma Physics in Downtown Cambridge December 4, 2012 Placing Fusion Power on a Pedestal September 21, 2012 MASSACHUSETTS INSTITUTUE OF TECHNOLOGY See All National Ignition Facility February 22, 2013 Summary of Assessment of Prospects for Inertial Fusion Energy February 16, 2012 National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes

359

Conservation tillage achieves record acreage yields  

E-Print Network (OSTI)

switching to no-tillage Conservation Agriculture Systems agelonger-term Sustainable Conservation counties (Fresno, Kern,Research news Conservation tillage achieves record acreage,

Warnert, Jeannette E; Editors, The

2012-01-01T23:59:59.000Z

360

Alternative Energy Technologies in Asia: Achievements & Outlook...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Energy Technologies in Asia: Achievements & Outlook for the World Bank's Asia Alternative Energy Program Speaker(s): Grayson Heffner Date: March 21, 2003 - 12:00pm...

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

2014 Call for HPC Achievement Award Nominations  

NLE Websites -- All DOE Office Websites (Extended Search)

Award Nominations are open for the 2014 NERSC Award for Innovative Use of High Performance Computing and the 2014 NERSC Award for High Impact Scientific Achievement. NERSC...

362

LLNL Supercomputing Facility Achieves LEED Gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Alison Terrill, ArchitectLEED AP Jennifer Doman, Pollution PreventionSustainability Program LLNL Supercomputing Facility Achieves LEED Gold This work performed under...

363

Federal Energy Management: Helping Agencies Achieve Savings ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieve Savings October 30, 2013 - 1:30pm Addthis The Energy Department's Federal Energy Management Program guides and advises agencies on how to use funding more...

364

Roadmap to Achieve Energy Delivery Systems Cybersecurity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity ii Acknowledgements The Energy Sector Control Systems Working Group (ESCSWG) developed this roadmap in support of the...

365

EMSL: Science: GC: Membrane Biology - Project Achievements  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Achievements EMSL's Membrane Biology Scientific Grand Challenge researchers grew Cyanothece in defined culture conditions and entrained it to a 12-hour light12-hour...

366

Thermodynamics of electroweak matter  

E-Print Network (OSTI)

This paper is a slightly modified version of the introductory part of a PhD thesis, also containing the articles hep-ph/0303019, hep-ph/0510375 and hep-ph/0512177. We provide a short history of the research of electroweak thermodynamics and a brief introduction to the theory as well as to the necessary theoretical tools needed to work at finite temperatures. We then review computations regarding the pressure of electroweak matter at high temperatures (the full expression of the perturbative expansion of the pressure is given in the appendix) and the electroweak phase diagram at finite chemical potentials. Finally, we compare electroweak and QCD thermodynamics.

A. Gynther

2006-09-21T23:59:59.000Z

367

Nuclear Physics Aspects of Cold Fusion Experiments: Scientific Summary after ICCF-7  

E-Print Network (OSTI)

The circumstance that I made the scientific summary on Nuclear Products in Cold Fusion Experiments also after ICCF-6 1 gives to me the opportunity of combining the comparison of the results from two subsequent conferences and of discussing globally the impressive achievements gained in these last three years.

T. Bressani

1998-01-01T23:59:59.000Z

368

Laser Cooling and Cold Atomic Matter  

Science Conference Proceedings (OSTI)

Laser Cooling and Cold Atomic Matter: to advance the understanding and applications of cold atomic matter, including ...

2012-05-30T23:59:59.000Z

369

Magneto-Inertial Fusion (Magnetized Target Fusion)( g g )  

E-Print Network (OSTI)

National Security, LLC for the DOE/NNSA Slide 1 LA-UR-11-01898 #12;Some Observations An economic for the DOE/NNSA 2 #12;Magneto-inertial fusion: Part of a plan B · May allow more efficient drivers, lower Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 3 #12;A Wide Range of Driver

370

Measurement of the Fusion Probability, PCN, for Hot Fusion Reactions  

E-Print Network (OSTI)

Background: The cross section for forming a heavy evaporation residue in fusion reactions depends on the capture cross section, the fusion probability, PCN, i.e., the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than re-separating (quasifission), and the survival of the completely fused system against fission. PCN is the least known of these quantities. Purpose: To measure PCN for the reaction of 101.2 MeV 18O, 147.3 MeV 26Mg, 170.9 MeV 30Si and 195.3 MeV 36S with 197Au. Methods: We measured the fission fragment angular distributions for these reactions and used the formalism of Back to deduce the fusion-fission and quasifission cross sections. From these quantities we deduced PCN for each reaction. Results: The values of PCN for the reaction of 101.2 MeV 18O, 147.3 MeV 26Mg, 170.9 MeV 30Si and 195.3 MeV 36S with 197Au are 0.66, 1.00, 0.06, 0.13, respectively. Conclusions: The new measured values of PCN agree roughly with the semi-empirical system- atic dependence of PCN upon fissility for excited nuclei.

R. Yanez; W. Loveland; J. S. Barrett; L. Yao; B. B. Back; S. Zhu; T. L. Khoo

2013-06-17T23:59:59.000Z

371

A dark matter scaling relation from mirror dark matter  

E-Print Network (OSTI)

Mirror dark matter, and other similar dissipative dark matter candidates, need an energy source to stabilize dark matter halos in spiral galaxies. It has been suggested previously that ordinary supernovae can potentially supply the required energy. By matching the energy supplied to the halo from supernovae to that lost due to radiative cooling, we here derive a rough scaling relation, $R_{SN} \\propto \\rho_0 r_0^2$ ($R_{SN}$ is the supernova rate and $\\rho_0, \\ r_0$ the dark matter central density and core radius). Such a relation is consistent with dark matter properties inferred from studies of spiral galaxies with halo masses larger than $3\\times 10^{11} M_\\odot$. We speculate that other observed galaxy regularities might be explained within the framework of such dissipative dark matter.

R. Foot

2013-03-07T23:59:59.000Z

372

T-661: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important 1: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update T-661: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update July 5, 2011 - 7:57am Addthis PROBLEM: ColdFusion 9.0.1, ColdFusion 9, ColdFusion 8.0.1, and ColdFusion 8 are affected with vulnerabilities mentioned in the security bulletins APSB11-14 and APSB11-15. ColdFusion 9.0.1, 9.0, 8.0.1 and 8.0 for Windows, Macintosh and UNIX (APSB11-14); ColdFusion integrated/installed with LCDS (APSB11-15) PLATFORM: ColdFusion 9.0.1, 9.0, 8.0.1 and 8.0 for Windows, Macintosh and UNIX ABSTRACT: Vulnerabilities have been identified in ColdFusion 9.0.1 and earlier versions for Windows, Macintosh and UNIX. These vulnerabilities could lead to a cross-site request forgery (CSRF) or a remote denial-of-service (DoS).

373

Fusion Nuclear Science Facility-AT: A Material and Component Testing Device  

Science Conference Proceedings (OSTI)

Fusion Technology Facilities / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

C. P. C. Wong; V. S. Chan; A. M. Garofalo; R. Stambaugh; M. E. Sawan; R. Kurtz; B. Merrill

374

The Suitability of the Materials Test Station for Fusion Materials Irradiations  

Science Conference Proceedings (OSTI)

Fusion Technology Facilities / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

E. J. Pitcher; C. T. Kelsey IV; S. A. Maloy

375

A blueprint for higher-level fusion systems  

Science Conference Proceedings (OSTI)

This paper contends that demands on the data fusion community are beginning to exceed its historical roots in sensor fusion, by requiring greater development of automated situation and impact assessments and more appropriate integration with humans engaged ... Keywords: Cognitive machines, Data fusion, Higher-level fusion, Higher-level fusion interfaces, Impact assessment, Information fusion, JDL model, Object assessment, Semantic machines, Sensor fusion, Situation assessment, Situation awareness, Social machines

Dale A. Lambert

2009-01-01T23:59:59.000Z

376

Lithium As Plasma Facing Component for Magnetic Fusion Research  

SciTech Connect

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

377

Final report on the Magnetized Target Fusion Collaboration  

SciTech Connect

Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

John Slough

2012-04-18T23:59:59.000Z

378

Lithium As Plasma Facing Component for Magnetic Fusion Research  

Science Conference Proceedings (OSTI)

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

379

Hydrogen fusion-energy reactions  

SciTech Connect

At the Los Alamos Ion Beam Facility we have installed a low-energy fusion cross section (LEFCS) apparatus specifically designed to measure cross sections to high accuracy for the various fusion-energy reactions among the hydrogen isotopes in the bombarding-energy range 10 to 120 keV. To date, we have completed and published our study of the D(t,..cap alpha..)n reaction, have finished data-taking for the D(d,p)T and D(d,/sup 3/He)n reactions, and have nearly finished data-taking for the T(t,..cap alpha..)nn reaction. Here we describe the LEFCS facility, present final and preliminary results for these reactions, and compare them with R-matrix calculations. 16 refs., 10 figs.

Brown, R.E.; Jarmie, N.

1985-01-01T23:59:59.000Z

380

FUSION WELDING METHOD AND APPARATUS  

DOE Patents (OSTI)

An apparatus for the fusion welding of metal pieces at a joint is described. The apparatus comprises a highvacuum chamber enclosing the metal pieces and a thermionic filament emitter. Sufficient power is applied to the emitter so that when the electron emission therefrom is focused on the joint it has sufficient energy to melt the metal pieces, ionize the metallic vapor abcve the molten metal, and establish an arc discharge between the joint and the emitter.

Wyman, W.L.; Steinkamp, W.I.

1961-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Inertial-confinement-fusion targets  

DOE Green Energy (OSTI)

Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques have been devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

Hendricks, C.D.

1981-11-16T23:59:59.000Z

382

A weekly review of scientific and technological achievements from Lawrence Liver  

NLE Websites -- All DOE Office Websites (Extended Search)

Oct. 28-Nov. 1 2013. Oct. 28-Nov. 1 2013. NIF is trying to achieve fusion ignition in a laboratory setting. A tiny pellet barely the diameter of a human hair could lead to endless clean energy from tap water. Scientists including those at Lawrence Livermore's National Ignition Facility are moving closer to fusion ignition. They are working to recreate the super-hot conditions at the centers of stars and our sun but in miniature. They fire 192 lasers at a chamber the size of a pencil eraser that contains a pellet about two millimeters wide. Inside, the pellet is coated with a mix of deuterium and tritium, which are two isotopes of hydrogen. Deuterium can be readily found in water and tritium is refined from lithium, which is an element in garden soil. To read more, go to Newsweek.

383

Fusion for Earth and Space  

Science Conference Proceedings (OSTI)

The compact reactor concept (Williams, 2007) has the potential to provide clean, safe and unlimited supply of energy for Earth and Space applications. The concept is a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for individual home and space power. The concept also would make it possible for each plant or remote location to have it's own power source, on site, without the need for a connection to the power grid. This would minimize, or eliminate, power blackouts. The concept could replace large fission reactors and fossil fuel power plants plus provide energy for ships, locomotives, trucks and autos. It would make an ideal source of energy for space power applications and for space propulsion.

Williams, Pharis E

2009-03-16T23:59:59.000Z

384

DOE Science Showcase - Dark Matter and Dark Energy | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Dark Matter and Dark Energy Dark Matter and Dark Energy The nature of dark energy or invisible energy is one of the universe's most compelling mysteries and its resolution is likely to completely change our understanding of matter, space, and time. For more information, see In the OSTI Collections: Dark Matter and Dark Energy, by Dr. William Watson, Physicist, OSTI staff. Gravitational lensing, or the warping of light around massive objects is one sign of dark energy Image Credit: NASA/Andy Fruchter/ERO team Dark energy research information: Temperature and Density Conditions for Nucleogenesis by Fusion Processes in Stars, William Fowler, DOE R&D Accomplishments Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe, DOE R&D Accomplishments

385

The PICASSO Dark Matter Experiment  

Science Conference Proceedings (OSTI)

The PICASSO experiment searches for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs) via their spin?dependent interactions with fluorine at SNOLAB

Ubi Wichoski; The PICASSO Collaboration

2011-01-01T23:59:59.000Z

386

Statistical Mechanics of Jammed Matter  

E-Print Network (OSTI)

A thermodynamic formulation of jammed matter is reviewed. Experiments and simulations of compressed emulsions and granular materials are then used to provide a foundation for the thermodynamics.

Hernan A. Makse; Jasna Brujic; Sam F. Edwards

2005-03-03T23:59:59.000Z

387

An Introduction to Particulate Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

for Fiscal Year 2014. Title An Introduction to Particulate Matter Publication Type Book Chapter Year of Publication 2009 Authors Prisco, Joe, Rich Hill, Pam Lembke, D. Moore,...

388

Nuclear Matter and Nuclear Dynamics  

E-Print Network (OSTI)

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

389

Pre-Amplifier Module for Laser Inertial Confinement Fusion  

SciTech Connect

The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

Heebner, J E; Bowers, M W

2008-02-06T23:59:59.000Z

390

Impurity studies in fusion devices using laser-fluorescence spectroscopy  

DOE Green Energy (OSTI)

Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler-broadened absorption spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10/sup 6/ atoms/cm/sup 3/ with a velocity resolution of 600 m/s (0.1 eV) have been achieved.

Husinsky, W.R.

1981-04-01T23:59:59.000Z

391

Cold Dark Matter Resuscitated?  

E-Print Network (OSTI)

The Cold Dark Matter (CDM) model has an elegant simplicitly which makes it very predictive, but when its parameters are fixed at their `canonical' values its predictions are in conflict with observational data. There is, however, much leeway in the initial conditions within the CDM framework. We advocate a re-examination of the CDM model, taking into account modest variation of parameters from their canonical values. We find that CDM models with $n=0.8$--0.9 and $h=0.45$--0.50 can fit the available data. Our ``best fit'' CDM model has $n=0.9$, $h=0.45$ and $C_2^{T}/C_2^{S}=0.7$. We discuss the current state of observations which could definitely rule out this model.

Martin White; Douglas Scott; Joe Silk; Marc Davis

1995-08-02T23:59:59.000Z

392

Fusion Nuclear Science Pathways Assessment  

Science Conference Proceedings (OSTI)

With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

C.E. Kessel, et. al.

2012-02-23T23:59:59.000Z

393

Advances in Tandem Mirror fusion power reactors  

DOE Green Energy (OSTI)

The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

Perkins, L.J.; Logan, B.G.

1986-05-20T23:59:59.000Z

394

Princeton Plasma Physics Lab - Inertial confinement fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

inertial-confinement-fusion An inertial-confinement-fusion An experimental process that uses lasers to compress plasma to sufficiently high temperatures and densities for fusion to occur. Such experiments are carried out in places such as the National Ignition Facility at the Lawrence Livermore National Laboratory in Livermore, California. en Fusion through the eyes of a veteran science journalist http://www.pppl.gov/news/2013/07/fusion-through-eyes-veteran-science-journalist-1

Author Daniel Clery recently published "A Piece of the Sun," a 320-page narrative of the history of fusion research and the

395

Fusion: an energy source for synthetic fuels  

DOE Green Energy (OSTI)

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

Fillo, J A; Powell, J; Steinberg, M

1980-01-01T23:59:59.000Z

396

Dark matter and Higgs boson collider implications of fermions in an abelian-gauged hidden sector  

E-Print Network (OSTI)

We add fermions to an abelian-gauged hidden sector. We show that the lightest can be the dark matter with the right thermal relic abundance, and discovery is within reach of upcoming dark matter detectors. We also show that these fermions change Higgs boson phenomenology at the Large Hadron Collider (LHC), and in particular could induce a large invisible width to the lightest Higgs boson state. Such an invisibly decaying Higgs boson can be discovered with good significance in the vector boson fusion channel at the LHC.

Shrihari Gopalakrishna; Seung J. Lee; James D. Wells

2009-04-13T23:59:59.000Z

397

Image Fusion schemes using ICA bases Nikolaos Mitianoudis, Tania Stathaki  

E-Print Network (OSTI)

Image Fusion schemes using ICA bases Nikolaos Mitianoudis, Tania Stathaki Communications and Signal Processing group, Imperial College London, Exhibition Road, SW7 2AZ London, UK Abstract Image fusion as analysis and synthesis tools for image fusion by the fusion community. Using various fusion rules, one can

Mitianoudis, Nikolaos

398

Inertial fusion energy: A clearer view of the environmental and safety perspectives  

Science Conference Proceedings (OSTI)

If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

Latkowski, J.F.

1996-11-01T23:59:59.000Z

399

Preface to foundations of information/decision fusion with applications to engineering problems  

SciTech Connect

In engineering design, it was shown by von Neumann that a reliable system can be built using unreliable components by employing simple majority rule fusers. If error densities are known for individual pattern recognizers then an optimal fuser was shown to be implementable as a threshold function. Many applications have been developed for distributed sensor systems, sensor-based robotics, face recognition, decision fusion, recognition of handwritten characters, and automatic target recognition. Recently, information/decision fusion has been recognized as an independently growing field with its own principles and methods. While some of the fusion problems in engineering systems could be solved by applying existing results from other domains, many others require original approaches and solutions. In turn, these new approaches would lead to new applications in other areas. There are two paradigms at the extrema of the spectrum of the information/decision methods: (i) Fusion as Problem: In certain applications, fusion is explicitly specified in the problem statement. Particularly in robotics applications, many researchers realized the fundamental limitations of single sensor systems, thereby motivating the deployment of multiple sensors. In more general engineering applications, similar sensors are employed for fault tolerance, while in several others, different sensor modalities are required to achieve the given task. In these scenarios, fusion methods have to be first designed to solve the problem at hand. (ii) Fusion as Solution: In many instances (e.g., DNA analysis), a number of different solutions to a particular problem already exist. Often these solutions can be combined to obtain solutions that outperform any individual one. The area of forecasting is a good example of such paradigm. Although fusion is not explicitly specified in these problems, it is used as an ingredient of the solution.

Madan, R.N. [Office of Naval Research, Arlington, VA (United States); Rao, N.S.V. [Oak Ridge National Lab., TN (United States)

1996-10-01T23:59:59.000Z

400

Edible Applications Technology Division Outstanding Achievement Award  

Science Conference Proceedings (OSTI)

Recognizes a scientist, technologist, or leader making contributions to the advancement of edible oils and/or the Division. Edible Applications Technology Division Outstanding Achievement Award Edible Applications Technology division divisions edible Edi

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network (OSTI)

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

X. H. Zhong; L. Li; P. Z. Ning

2004-10-18T23:59:59.000Z

402

the fusion trend line Stan Milora (ORNL)  

E-Print Network (OSTI)

://vlt.ornl.gov/ VLT Virtual Laboratory for Technology For Fusion Energy Science #12;2 Managed by UT-Battelle for the U.S For Fusion Energy Science #12;3 Managed by UT-Battelle for the U.S. Department of Energy Somebody For Fusion Energy Science #12;4 Managed by UT-Battelle for the U.S. Department of Energy Somebody

403

Minimal Achievable Error in the LED problem  

E-Print Network (OSTI)

This paper presents a theoretical model to predict the minimal achievable error, given a noise ratio #, in the LED data set problem. The motivation for developing this theoretical model is to understand and explain some of the results that di#erent systems achieve when they solve the LED problem. Moreover, given a new learning algorithm that solves the LED problem, we can now bound its optimal generalization accuracy.

Xavier Llora; Xavier Llora; David E. Goldberg; David E. Goldberg

2002-01-01T23:59:59.000Z

404

Intraoperative Ultrasound-Fluoroscopy Fusion can Enhance Prostate Brachytherapy Quality  

SciTech Connect

Purpose: To evaluate a transrectal ultrasound (TRUS)-fluoroscopy fusion-based intraoperative dosimetry system. Method and Materials: Twenty-five patients were treated for prostate cancer with Pd-103 implantation. After the execution of the treatment plan, two sets of TRUS images were collected using the longitudinal and axial transducers of a biplanar probe. Then, three fluoroscopic images were acquired at 0, -15 and +15{sup o}. The three-dimensional locations of all implanted seeds were reconstructed from fluoroscopic images. A subset of the implanted seeds was manually identified in TRUS images and used as fiducial markers to perform TRUS-fluoroscopy fusion. To improve the implant quality, additional seeds were placed if adverse isodose patterns were identified during visual inspection. If additional seeds were placed, intraoperative dosimetry was repeated. Day 0 computed tomography-based dosimetry was compared with final intraoperative dosimetry to validate dosimetry achieved in the implant suite. Results: An average of additional 4.0 seeds was implanted in 16 patients after initial intraoperative dose evaluation. Based on TRUS-fluoroscopy fusion-based dosimetry, the V100 improved from 86% to 93% (p = 0.005), whereas D90 increased from 94% to 109% (p = 0.011) with the guided additional seed implantation. No statistical difference was observed in V200 and V300 values. V100 and D90 values were 95 {+-} 4% and 120 {+-} 24%, respectively, based on the final intraoperative dosimetry evaluation, compared with 95 {+-} 4% and 122 {+-} 24%, respectively, based on Day 0 computed tomography-based dosimetry. Conclusions: Implantation of extra seeds based on TRUS-fluoroscopy fusion-based intraoperative dosimetry can improve the final V100 and D90 values with minimal increase in V200 and V300 values.

Orio, Peter F. [Department of Radiation Oncology, University of Washington, Seattle, WA (United States); Tutar, Ismail B. [Department of Electrical Engineering, University of Washington, Seattle, WA (United States); Narayanan, Sreeram [Department of Radiation Oncology, University of Washington, Seattle, WA (United States); Arthurs, Sandra [Radiation Oncology, Puget Sound Health Care System, Department of Veterans Affairs, Seattle, WA (United States); Cho, Paul S. [Department of Radiation Oncology, University of Washington, Seattle, WA (United States); Kim, Yongmin [Department of Electrical Engineering, University of Washington, Seattle, WA (United States); Department of Bioengineering, University of Washington, Seattle, WA (United States); Merrick, Gregory [Schiffler Cancer Center, Wheeling, WV (United States); Wallner, Kent E. [Department of Radiation Oncology, University of Washington, Seattle, WA (United States); Radiation Oncology, Puget Sound Health Care System, Department of Veterans Affairs, Seattle, WA (United States); Radiation Oncology, Group Health Cooperative, Seattle, WA (United States)], E-mail: kent.wallner@med.va.gov

2007-09-01T23:59:59.000Z

405

Basics of Fusion-Fission Research Facility (FFRF) as a Fusion Neutron Source  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Leonid E. Zakharov

406

Fusion-reaction cross section in (high-temperature). mu. -catalyzed fusion  

DOE Green Energy (OSTI)

The barrier penetration factor for the fusion reaction of ..mu..-mesic hydrogen atoms with hydrogen nuclei is studied. (MOW)

Takahashi, H.; Moats, A.

1982-06-01T23:59:59.000Z

407

Fusion power production from TFTR plasmas fueled with deuterium and tritium  

Science Conference Proceedings (OSTI)

Peak fusion power production of 6.2[plus minus]0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2[times]10[sup 17] m[sup [minus]3] without the appearance of either disruptive magnetohydrodynamics events or detectable changes in Alfven wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits.

Strachan, J.D.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Ashcroft, D.; Barnes, C.W.; Barnes, G.; Batha, S.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N.L.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Cauffman, S.; Chang, Z.; Cheng, C.Z.; Collins, J.; Coward, G.; Darrow, D.S.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Fisher, R.; Fonck, R.J.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Gentile, C.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kugel, H.; Lam, N.T.; LaMarche, P.H.; Loughlin, M.J.; LeBlanc, B.; Leonard, M.; Levinton, F.M.; Machuzak, J.; Mansfield, D.K.; Martin, A.; Mazzucato, E.; Majeski, R.; Marmar, E.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkels

1994-05-30T23:59:59.000Z

408

Fusion reactor design | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

used magnetic confinement device is the tokamak, followed by the stellarator. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

409

EBIT Shines New Light on Nuclear Fusion  

Science Conference Proceedings (OSTI)

... of highly ionized particles in nuclear fusion reactors ... researchers recently confirmed a theory which predicted ... lead to more efficient energy production ...

410

: Fusion Wall Development Research by Neutron Depth ...  

Science Conference Proceedings (OSTI)

... nano-sized cavities with the theory that the ... Formation,” Transaction of America Nuclear Society Summer ... in an Inertial Fusion Energy Reactor,” Nucl. ...

2012-11-16T23:59:59.000Z

411

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Group, Contemporary Physics Education Project The Contemporary Physics Education Project (CPEP) is a non-profit organization of teachers, educators and physicists working to...

412

SELECTED RESOURCES: Fusion Welding of Superalloys - TMS  

Science Conference Proceedings (OSTI)

May 31, 2007 ... This listing provides links to resources on fusion welding of superalloys. Two formats of the information are presented for your convenience: pdf ...

413

Method of controlling fusion reaction rates  

DOE Patents (OSTI)

This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

1983-05-09T23:59:59.000Z

414

Developments in Direct Drive Laser Fusion  

Science Conference Proceedings (OSTI)

IFE / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012

J. L. Weaver et al.

415

PPPL Races Ahead with Fusion Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Princeton Plasma Physics Laboratory. A Collaborative National Center for Fusion & Plasma Research. All rights reserved. NONDISCRIMINATION STATEMENT In compliance with Title IX of...

416

Experimental Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

417

Theoretical Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

418

Fusion Power | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

419

Inertial confinement fusion | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

420

Cavitation-Induced Fusion: Proof of Concept  

E-Print Network (OSTI)

Cavitation-induced fusion (also known as bubble fusion or sonofusion) has been a topic of much debate and controversy and is generally (albeit incorrectly) perceived as unworkable. In this paper we present the theoretical foundations of cavitation-induced fusion and summarize the experimental results of the research conducted in the past 20 years. Based on the systematic study of all available data we conclude that the cavitation-induced fusion is feasible, doable, and can be used for commercial power generation. We present the results of our own research and disclose a commercial reactor prototype.

Fomitchev-Zamilov, Max I

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cavitation-Induced Fusion: Proof of Concept  

E-Print Network (OSTI)

Cavitation-induced fusion (also known as bubble fusion or sonofusion) has been a topic of much debate and controversy and is generally (albeit incorrectly) perceived as unworkable. In this paper we present the theoretical foundations of cavitation-induced fusion and summarize the experimental results of the research conducted in the past 20 years. Based on the systematic study of all available data we conclude that the cavitation-induced fusion is feasible, doable, and can be used for commercial power generation. We present the results of our own research and disclose a commercial reactor prototype.

Max I. Fomitchev-Zamilov

2012-09-09T23:59:59.000Z

422

Accelerated plan to develop magnetic fusion energy  

SciTech Connect

We have shown that, despite funding delays since the passage of the Magnetic Fusion Engineering Act of 1980, fusion development could still be carried to the point of a demonstration plant by the year 2000 as called for in the Act if funding, now about $365 million per year, were increased to the $1 billion range over the next few years (see Table I). We have also suggested that there may be an economic incentive for the private sector to become in accelerating fusion development on account of the greater stability of energy production costs from fusion. Namely, whereas fossil fuel prices will surely escalate in the course of time, fusion fuel will always be abundantly available at low cost; and fusion technology poses less future risk to the public and the investor compared to conventional nuclear power. In short, once a fusion plant is built, the cost of generating electricity mainly the amortization of the plant capital cost - would be relatively fixed for the life of the plant. In Sec. V, we found that the projected capital cost of fusion plants ($2000 to $4000 per KW/sub e/) would probably be acceptable if fusion plants were available today.

Fowler, T.K.

1986-05-28T23:59:59.000Z

423

Commercial applications of inertial confinement fusion  

SciTech Connect

This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described.

Booth, L.A.; Frank, T.G. (comps.)

1977-05-01T23:59:59.000Z

424

Panel discussion on prospects for fusion power  

SciTech Connect

Although substantial progress is made every year in fusion research, the projected time to realize the ultimate goal of commercial fusion always seems to be 25 to 30 years away. This shifting schedule reflects the underlying difficulty of developing fusion. Every new technology improves the prospects for success, yet as each fusion mountain is scaled, it serves mainly to bring a better view of the next mountain. Two questions are considered: (1) why are so many configurations studied, and (2) what constitutes an economic power density.

Sheffield, J.

1986-01-01T23:59:59.000Z

425

Engineering challenges of fusion-reactor development  

SciTech Connect

A brief review of the fusion research program and some problems to be faced in the near future are described. (MOW)

Talbot, J.B.

1981-01-01T23:59:59.000Z

426

Present Status and Achievements of Broader Approach Activities  

Science Conference Proceedings (OSTI)

Keynote and Plenary - I / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012

Yoshikazu Okumura

427

Energy Matters in Washington State  

E-Print Network (OSTI)

Energy Matters in Washington State Energy Matters in Washington State www.energy.wsu.edu/library/ November 2009 #12;905 Plum Street SE, Building 3 P.O. Box 43169 Olympia, Washington 98504-3169 Energy University Extension Energy Program. 905 Plum Street SE, Building 3, P.O. Box 43169, Olympia, Washington

Collins, Gary S.

428

AnnualReport06/07EURATOM/UKAEA Fusion Association Nuclear fusion, which  

E-Print Network (OSTI)

AnnualReport06/07EURATOM/UKAEA Fusion Association #12;Nuclear fusion, which powers the sun station-sized experimental fusion device called ITER (the International Tokamak Experimental Reactor and heating systems for ITER is a growing part of the UK programme, which also contains very strong theory

429

Laser fusion pulse shape controller  

DOE Patents (OSTI)

An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

Siebert, Larry D. (Ann Arbor, MI)

1977-01-01T23:59:59.000Z

430

Kinematics in Vector Boson Fusion  

E-Print Network (OSTI)

The vector boson fusion process leads to two forward/backward jets (tag jets) and the produced state, a Higgs boson in this case, moving slowly in the p-p C.M. frame at the LHC. For the case of Higgs decaying to W+W (W*) with Higgs mass below 180 GeV, the W bosons have low momentum in the Higgs C.M. For the case of W leptonic decays, this fact allows for an approximate reconstruction of the two final state neutrinos. In turn, those solutions then provide additional kinematic cuts against background.

D. Green

2006-03-02T23:59:59.000Z

431

YEAR-END REPORT: HEAVY ION FUSION PROGRAM  

E-Print Network (OSTI)

1978-Mar. 1979, Heavy Ion Fusion Program, Lawrence BerkeleyOlson, Proceedings of the Heavy Ion Fusion Workshop, ArgonneUniversity Ravi N. Sudan KMS Fusion, Inc. Stanford Linear

Fusion Staff, Heavy Ion

2010-01-01T23:59:59.000Z

432

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80  

E-Print Network (OSTI)

11, 1980, p. 725. MAGNETIC FUSION ENERGY Staff W. Kunkel andsupport) Accelerator and Fusion Research Division N.Abt Y.Wong J. Zatver HEAVY ION FUSION Work continued during FY80

Authors, Various

2010-01-01T23:59:59.000Z

433

Homodyne target tracking for direct drive laser inertial fusion  

E-Print Network (OSTI)

National Laboratory. Inertial Fusion Energy: How IFE Works,Tracking of Direct Drive Inertial Fusion Targets."Fusion Science and Technology 52.3 (2007): 435-439. Tillack,

Spalding, Jon David

2009-01-01T23:59:59.000Z

434

High Current Ion Sources and Injectors for Heavy Ion Fusion  

E-Print Network (OSTI)

2001). [40] L.R. Grisham, Fusion Sci. & Tech. 43, 191, (Symp. on Heavy Ion Inertial Fusion, Princeton, New Jersey,Sept. 6-9, 1995; in Fusion Engineering and Design, 32-33,

Kwan, Joe W.

2005-01-01T23:59:59.000Z

435

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network (OSTI)

HIFAN 1830 INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMSAC02-05CH11231. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION467 (1992). [38] R. W. Moir, Fusion Tech. 25, 5 (1994) [39

Sharp, W. M.

2011-01-01T23:59:59.000Z

436

Fusion action systems by Matthew J.K. Gelvin.  

E-Print Network (OSTI)

The study of fusion first arose in the local theory of finite groups. Puig abstracted the fusion data of a finite group to the notion of fusion system, an object that reflects local data in more abstract algebraic settings, ...

Gelvin, Matthew J. K. (Matthew Justin Karcher)

2010-01-01T23:59:59.000Z

437

FUSION CROSS-SECTIONS AND THE NEW DYNAMICS  

E-Print Network (OSTI)

Olmi, 0. Schwalm and W. Wb'lfli, "Fusion Reaction Studies ofin I n i t i a t i n g Fusion between Very High Ions", GSI-Alexander and G.R. Satchler, "Fusion Barriers, Empirical and

Swiatecki, W.J.

2010-01-01T23:59:59.000Z

438

Fusion Nuclear Science Facility - Advanced Tokamak Option (A26932)  

E-Print Network (OSTI)

Proc. Of 19th Technology Of Fusion Energy, Las Vegas, Nevada, 2010; To Be Published In Fusion Science And Technology19th Topical Meeting on Technology Fusion Energy Las Vegas Nevada, US, 2010999618795

Wong, C.P.C.

2010-04-13T23:59:59.000Z

439

Component framework for coupled integrated fusion plasma simulation  

Science Conference Proceedings (OSTI)

Successful simulation of the complex physics that affect magnetically confined fusion plasma remains an important target milestone towards the development of viable fusion energy. Major advances in the underlying physics formulations, mathematical modeling, ... Keywords: components, coupled simulation, framework, fusion

Wael R. Elwasif; David E. Bernholdt; Lee A. Berry; Donald B. Batchelor

2007-10-01T23:59:59.000Z

440

ANNUAL REPORT, ACCELERATOR and FUSION RESEARCH DIVISION. FISCAL YEAR 1978  

E-Print Network (OSTI)

Target of a Heavy Ion Fusion Reactor: Summary of a meetingTarget of a Heavy Ion Fusion Reactor: Summary of a Meetingor more economical fusion reactor. A. BASIC PLASMA THEORY

Lofgren, E.J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Review of Helium Cooling for Fusion Reactor Applications (A23181)  

E-Print Network (OSTI)

To Be Presented At The 5th Int. Symp. On Fusion Nucl. Technol., Rome, Italy, To Be Published In Fusion Eng. And Design5th International Symposium on Fusion Nuclear Technology Rome, IT, 1999932161691

Baxi, C.B.

1999-09-01T23:59:59.000Z

442

Homodyne target tracking for direct drive laser inertial fusion  

E-Print Network (OSTI)

direct drive inertial fusion reactor (Sethian). HAPL’sblock from the fusion reactor chamber. 4.3 Demonstration A.fusion reaction for generating electricity (see figure 1.1). In order for such a nuclear reactor

Spalding, Jon David

2009-01-01T23:59:59.000Z

443

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network (OSTI)

Tritium can be bred in a fusion reactor by capturing fusionchamber. Whereas magnetic-fusion reactors typically combineProjected MFE reactors have a toroidal fusion-power core

Sharp, W. M.

2011-01-01T23:59:59.000Z

444

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

for a practical fusion power reactor. HIF is the only fusionenter the reactor chamber, and focus Heavy Ion Fusion ontoengineering test reactor. The promise of fusion as a power

Celata, C.M.

2004-01-01T23:59:59.000Z

445

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

in Proc. of the Inertial Fusion Science and ApplicationsP. Abbott, P. F. Peterson, Fusion Science and Technology 44March 15–20, 2004 Heavy Ion Fusion– Using Heavy Ions to Make

Celata, C.M.

2004-01-01T23:59:59.000Z

446

The high current transport experiment for heavy ion inertial fusion  

E-Print Network (OSTI)

on Heavy Ion Inertial Fusion, Princeton, 1996, edited by J.Conference on Inertial Fusion Sciences and Applications (FOR HEAVY ION INERTIAL FUSION 1 L. R. Prost, D. Baca, F. M.

2004-01-01T23:59:59.000Z

447

The Modular Point Design for Heavy Ion Fusion  

E-Print Network (OSTI)

POINT DESIGN FOR HEAVY ION FUSION S.S. Yu 1 , J.J. BarnardUpdated Point Design for Heavy Ion Fusion,” Proc. 2002 Amer.Nucl. Soc. Fusion Topical Meeting, 17-21 November 2002,

2004-01-01T23:59:59.000Z

448

Ch. 37, Inertial Fusion Energy Technology  

DOE Green Energy (OSTI)

Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

Moses, E

2010-06-09T23:59:59.000Z

449

Challenge members to achieve a goal | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge members to achieve a goal Challenge members to achieve a goal Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Partner with ENERGY STAR Encourage members to benchmark Challenge members to achieve a goal Tell members how to save Deliver training to members Give recognition Tie it all together in a campaign Challenge members to achieve a goal Benchmarking and goal-setting go hand-in-hand. No matter what type of

450

Impact of Strange Quark Matter Nuggets on Pycnonuclear Reaction Rates in the Crusts of Neutron Stars  

E-Print Network (OSTI)

This paper presents an investigation into the pycnonuclear reaction rates in dense crustal matter of neutron stars contaminated with strange quark matter nuggets. The presence of such nuggets in the crustal matter of neutron stars would be a natural consequence if Witten's strange quark matter hypothesis is correct. The methodology presented in this paper is a recreation of a recent representation of nuclear force interactions embedded within pycnonuclear reaction processes. The study then extends the methodology to incorporate distinctive theoretical characteristics of strange quark matter nuggets, like their low charge-per-baryon ratio, and then assesses their effects on the pycnonuclear reaction rates. Particular emphasis is put on the impact of color superconductivity on the reaction rates. Depending on whether or not quark nuggets are in this novel state of matter, their electric charge properties vary drastically which turns out to have a dramatic effect on the pycnonuclear reaction rates. Future nuclear fusion network calculations may thus have the potential to shed light on the existence of strange quark matter nuggets and on whether or not they are in a color superconducting state, as suggested by QCD.

Barbara Golf; Joe Hellmers; Fridolin Weber

2009-06-12T23:59:59.000Z

451

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

452

Secretarial Achievement Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretarial Achievement Awards Secretarial Achievement Awards Secretarial Achievement Awards Addthis David Arakawa (ORNL) 1 of 6 David Arakawa (ORNL) David Arakawa, from Oak Ridge National Laboratory, managed the Spallation Neutron Source Instruments - Next Generation (SING) project, where his hands-on approach helped him lead his team to complete the project two months ahead of schedule and $263,000 under budget. Brian Lally (Office of Science) 2 of 6 Brian Lally (Office of Science) Brian Lally, from the Office of Science's Chicago Site Office, helped create and execute reforms that provide more flexibility in negotiating intellectual property rights for technologies developed at the national labs. This will make it easier for private companies to take advantage of lab capabilities, create jobs, and accelerate the development of new clean

453

Secretary's Achievement Award (IBL) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IBL) IBL) Secretary's Achievement Award (IBL) Secretary’s Achievement Award (IBL) Presented to: The National Nuclear Security Administration Ion Beam Laboratory Project The Ion Beam Laboratory project team is recognized for delivering this state-of-the-art facility six months ahead of schedule and nearly $6 million dollars under budget. This was accomplished while achieving LEED Gold certification. Through the exceptionally close working relationships between all project stakeholders, the project overcame numerous challenges to deliver a facility that is unlike any other laboratory in the Department of Energy or NNSA complex. Critical to this project was a complex series of sensitive equipment moves. One specific move involved the relocation of a 100,000 pound, 40 foot long accelerator with an internal glass tube

454

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

4.3.3.4 Chamber Radius and Fusion Neutron Flux . . . . .1.1.3.2 Fusion Energy . . . . . . . . .1.1.3.3 Fission-Fusion Hybrids . . . . 1.2 Scope and Purpose

Kramer, Kevin James

2010-01-01T23:59:59.000Z

455

LIFE Power Plant Fusion Power Associates  

E-Print Network (OSTI)

LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled near-term, NIF based, NIC-derivative fusion performance § 3 allows small, thin Fresnel lenses ­ enables

456

Ethnicity classification based on a hierarchical fusion  

Science Conference Proceedings (OSTI)

In this paper, we propose a cascaded multimodal biometrics system involving a fusion of frontal face and lateral gait, for the specific problem of ethnicity classification. This system performs human ethnicity classification first from the cues of gait ... Keywords: ethnicity, face, fusion, gait

De Zhang; Yunhong Wang; Zhaoxiang Zhang

2012-12-01T23:59:59.000Z

457

RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET  

E-Print Network (OSTI)

RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET A group called the Energy Efficiency Education Project (1333 H St. NW, Suite 700, Washington, DC 20005-4707; 202-682-1270), claiming to represent over 80 billion in the DOE budget out of fusion, fission and fossil energy research and into "more cost

458

Nuclear fusion control-oriented plasma physics  

Science Conference Proceedings (OSTI)

The development of control techniques for the efficient and reliable operation of a fusion reactor is one of the most challenging issues nowadays and it would provide great advantages over existing energy sources: Unlimited fuel availability, no greenhouse ... Keywords: fusion control, plasma physics, tokamak modeling and simulation

Aitor J. Garrido; Izaskun Garrido; M. Goretti Sevillano-Berasategui; Mikel Alberdi; Modesto Amundarain; Oscar Barambones; Itziar Martija

2009-07-01T23:59:59.000Z

459

Renew Workshop on Fusion-Fission Hybrids  

E-Print Network (OSTI)

of Final Report #12;4 The Workshop Sponsored by OFES, NE, NNSA About 100 attendees From fusion (DOE) DOE NNSA perspective Kirk Levedahl (DOE) Nuclear industry perspective Adrian Heymer (NEI yet What should we (OFES, NE, NNSA) do? Carry out a fair comparison study Restart fusion technology

460

Magnetic Confinement Fusion at the Crossroads  

E-Print Network (OSTI)

Atoll: 15MT yield References - "Dark Sun" by Richard Rhodes, 1995 "History of Soviet Fusion", V = 12m ­ Pfusion = 880 MW Ref: V.D. Shafranov, "History of Soviet Fusion" Physics-Uspekhi 4 835, culminating in TFTR (US), JET (EU), JT-60 (Japan) #12;MGB / UT / 070307 19 1973 Oil Embargo - Energy R

Princeton Plasma Physics Laboratory

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Method of controlling fusion reaction rates  

DOE Patents (OSTI)

A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

Kulsrud, Russell M. (Princeton, NJ); Furth, Harold P. (Princeton, NJ); Valeo, Ernest J. (Princeton Junction, NJ); Goldhaber, Maurice (Bayport, NY)

1988-01-01T23:59:59.000Z

462

Synfuel (hydrogen) production from fusion power  

DOE Green Energy (OSTI)

A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power.

Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

1979-01-01T23:59:59.000Z

463

Fusion breeder: its potential role and prospects  

SciTech Connect

The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

Lee, J.D.

1981-01-01T23:59:59.000Z

464

Fusion reactor design studies. [ARIES Tokamak  

SciTech Connect

This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources. (LSP)

Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

1990-10-12T23:59:59.000Z

465

Biometric Fusion Using Enhanced SVM Classification  

Science Conference Proceedings (OSTI)

Support Vector Machines or SVM is one of the most successful and powerful statistical learning classification techniques. It has been also implemented in the biometric field. In this paper we propose the use of SVM as a fusion tool. We propose a system ... Keywords: SVM, Biometric Fusion, Multimodal Biometrics, Fingerprint, Iris

Menrit S. Fahmy; Amir F. Atyia; Raafat S. Elfouly

2008-08-01T23:59:59.000Z

466

Performance requirements of an inertial-fusion-energy source for hydrogen production  

DOE Green Energy (OSTI)

Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances.

Hovingh, J.

1983-01-01T23:59:59.000Z

467

Enhancing the W State Quantum Network Fusion Process with A Single Fredkin Gate  

E-Print Network (OSTI)

Integrating a single Fredkin (controlled swap) gate to the previously introduced W state fusion mechanism (Ozdemir et al, N. J. Phys. 13, 103003, 2011) and using an ancillary photon, we increase the size of the fused W states and essentially, we improve the success probability of the fusion process in a promising way for a possible deterministic W state fusion mechanism. Besides fusing arbitrary size W states, our setup can also fuse Bell states to create W states with a success probability 3/4 which is much higher than the previous works. Therefore using only this setup, it is now possible to start with Bell pairs to create and expand arbitrary size W states. Since higher probability of success implies a lower cost of resource in terms of the number of the states spent to achieve a target size, our setup gives rise to more cost-efficient scenarios.

Sinan Bugu; Can Yesilyurt; Fatih Ozaydin

2013-03-16T23:59:59.000Z

468

ORNL's Peng wins Fusion Power Associates Leadership Award | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's Martin Peng, recipient of Fusion Power Associates' Leadership Award, explains an ITER fusion experiment diagram. OAK RIDGE, Tenn., Aug. 17, 2010 - Martin Peng, a researcher...

469

DOE and Fusion Links | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

United States Sites General Atomics (GA) MIT Plasma Science and Fusion Center U.S. ITER National Ignition Facility (NIF) American Fusion News International Sites Australian...

470

Large Scale Computing and Storage Requirements for Fusion Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion Energy...

471

IRIM@TRECVID2012 Hierarchical Late Fusion for Concept ...  

Science Conference Proceedings (OSTI)

Page 1. IRIM@TRECVID2012 Hierarchical Late Fusion for Concept Detection in Videos ... slide 4 /21 Processing chain : late fusion context Video ...

2012-12-10T23:59:59.000Z

472

A Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel A. Cohen This invention discloses improvements in magnetic fusion reactor design and operational modes that reduce...

473

COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare...  

NLE Websites -- All DOE Office Websites (Extended Search)

officers retain the right to inspect vehicles and personal packages, such as briefcases, satchels, book bags, and purses. Learn More Fusion energy Fusion reactor design ITER...

474

Divertor Development for a Future Fusion Power Plant.  

E-Print Network (OSTI)

??The thesis begins by describing the fusion process and operation of a fusion reactor, the approach in the conceptual development of a helium-cooled divertor, and… (more)

Norajitra, Prachai

2011-01-01T23:59:59.000Z

475

(MSIB) Examination of Inertial Fusion Energy Candidate Materials  

Science Conference Proceedings (OSTI)

There is no source of fusion neutrons of adequate intensity currently available. Instead ... Evolution in High Purity Reference V-4Cr-4Ti Alloy for Fusion Reactor.

476

Contribution ŕ létude du peptide de fusion et du domaine transmembranaire des glycoprotéines de fusion virales de classe 1 / Contribution to the study of the fusion peptide and the transmembrane domain of class 1 viral fusion glycoproteins.  

E-Print Network (OSTI)

??Les glycoprotéines de fusion virales de classe 1 contrôlent la fusion entre lenveloppe virale et la membrane cellulaire. Ces glycoprotéines présentent une extrémité N-terminale indispensable… (more)

Lorin, Aurélien

2007-01-01T23:59:59.000Z

477

Fusion action systems by Matthew J.K. Gelvin.  

E-Print Network (OSTI)

??The study of fusion first arose in the local theory of finite groups. Puig abstracted the fusion data of a finite group to the notion… (more)

Gelvin, Matthew J. K. (Matthew Justin Karcher)

2010-01-01T23:59:59.000Z

478

Step-specific investigation of SNARE-mediated membrane fusion.  

E-Print Network (OSTI)

??Cholesterol is a major component of biological membranes and is known to affect vesicle fusion. However, the mechanism by which cholesterol modulates SNARE-dependent intracellular fusion… (more)

Kim, Sunae

2013-01-01T23:59:59.000Z

479

MIT's Plasma Science Fusion Center: Tokamak Experiments Come...  

NLE Websites -- All DOE Office Websites (Extended Search)

MIT's Plasma Science Fusion Center: Tokamak Experiments Come Clean about Impurity Transport American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's...

480

Data Security on the National Fusion Grid (A25052)  

E-Print Network (OSTI)

Fusion Eng. Design 81, 1949 (2006)5th IAEA Technical Committee Meeting on Control, Data Acquisition and Remote Participation for Fusion Research Budapest, HU, 2005999611020

Burruss, J.R.

2005-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "matter achieving fusion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Magneized target fusion: An overview of the concept  

SciTech Connect

Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magneticfield and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field in the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion.

Kirkpatrick, R.C.

1994-12-31T23:59:59.000Z

482

Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers  

E-Print Network (OSTI)

The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

2005-09-26T23:59:59.000Z

483

Target Tracking and Engagement for Inertial Fusion Energy - A Tabletop Demonstration  

Science Conference Proceedings (OSTI)

Technical Paper / The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers

Lane Carlson; Mark Tillack; Thomas Lorentz; Jon Spalding; Neil Alexander; Graham Flint; Dan Goodin; Ronald Petzoldt

484

Systems Modeling for the Laser Fusion-Fission Energy (LIFE) Power Plant  

Science Conference Proceedings (OSTI)

Laser Fusion-Fission Hybrid / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

W. R. Meier et al.

485

A Continuous, In-Chamber Target Tracking and Engagement Approach for Laser Fusion  

Science Conference Proceedings (OSTI)

Technical Paper / The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers

Ron Petzoldt; Neil Alexander; Lane Carlson; Graham Flint; Dan Goodin; Jon Spalding; Mark Tillack

486

ANNUAL REPORT FOR ACCELERATOR & FUSION RESEARCH DIVISION. FISCAL YEAR 1979 OCTOBER 1978 - SEPTEMBER 1979  

E-Print Network (OSTI)

more eco­ nomical fusion reactor. NEUTRAL BEAM DEVELOPMENTTopical Meeting on Fusion Reactor Materials, Miami Beach,

Authors, Various

2010-01-01T23:59:59.000Z

487

Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)  

Science Conference Proceedings (OSTI)

Laser Fusion-Fission Hybrid / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

R. W. Moir; H. F. Shaw; A. Caro; Larry Kaufman; J. F. Latkowski; J. Powers; P. E. A. Turchi

488

The Unification and Cogeneration of Dark Matter and Baryonic Matter  

E-Print Network (OSTI)

In grand unified theories with gauge groups larger than SU(5), the multiplets that contain the known quarks and leptons also contain fermions that are singlets under the Standard Model gauge group. Some of these could be the dark matter of the universe. Grand unified theories can also have accidental U(1) global symmetries (analogous to B-L in minimal SU(5)) that can stabilize dark matter. These ideas are illustrated in an SU(6) model.

S. M. Barr

2011-09-12T23:59:59.000Z

489

The Unification and Cogeneration of Dark Matter and Baryonic Matter  

E-Print Network (OSTI)

In grand unified theories with gauge groups larger than SU(5), the multiplets that contain the known quarks and leptons also contain fermions that are singlets under the Standard Model gauge group. Some of these could be the dark matter of the universe. Grand unified theories can also have accidental U(1) global symmetries (analogous to B-L in minimal SU(5)) that can stabilize dark matter. These ideas are illustrated in an SU(6) model.

Barr, S M

2011-01-01T23:59:59.000Z

490

The Energy of Charged Matter  

E-Print Network (OSTI)

In this talk I will discuss some of the techniques that have been developed over the past 35 years to estimate the energy of charged matter. These techniques have been used to solve stability of (fermionic) matter in different contexts, and to control the instability of charged bosonic matter. The final goal will be to indicate how these techniques with certain improvements can be used to prove Dyson's 1967 conjecture for the energy of a charged Bose gas--the sharp $N^{7/5}$ law.

Jan Philip Solovej

2004-04-16T23:59:59.000Z

491

Stable Higgs Bosons - new candidate for cold dark matter -  

E-Print Network (OSTI)

The Higgs boson is in the backbone of the standard model of electroweak interactions. It must exist in some form for achieving unification of interactions. In the gauge-Higgs unification scenario the Higgs boson becomes a part of the extra-dimensional component of gauge fields. The Higgs boson becomes absolutely stable in a class of the gauge-Higgs unification models, serving as a promising candidate for cold dark matter in the universe. The observed relic abundance of cold dark matter is obtained with the Higgs mass around 70 GeV. The Higgs-nucleon scattering cross section is found to be close to the recent CDMS II and XENON10 bounds in the direct detection of dark matter. In collider experiments stable Higgs bosons are produced in a pair, appearing as missing energies and momenta so that the way of detecting Higgs bosons must be altered.

Yutaka Hosotani

2010-03-31T23:59:59.000Z

492

Stable Higgs Bosons - new candidate for cold dark matter  

SciTech Connect

The Higgs boson is in the backbone of the standard model of electroweak interactions. It must exist in some form for achieving unification of interactions. In the gauge-Higgs unification scenario the Higgs boson becomes a part of the extra-dimensional component of gauge fields. The Higgs boson becomes absolutely stable in a class of the gauge-Higgs unification models, serving as a promising candidate for cold dark matter in the universe. The observed relic abundance of cold dark matter is obtained with the Higgs mass around 70 GeV. The Higgs-nucleon scattering cross section is found to be close to the recent CDMS II XENON10 bounds in the direct detection of dark matter. In collider experiments stable Higgs bosons are produced in a pair, appearing as missing energies momenta so that the way of detecting Higgs bosons must be altered.

Hosotani, Yutaka [Department of Physics, Osaka University, Toyonaka Osaka 560-0043 (Japan)

2010-08-12T23:59:59.000Z

493

PPPL Races Ahead with Fusion Research  

NLE Websites -- All DOE Office Websites (Extended Search)

the Power... the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science-two topics of vital interest to the United States and the world. Fusion powers the sun and stars, and harnessing this power on Earth could provide a safe, clean and virtually limitless way to meet global electricity needs.

494

Matter Matters: Unphysical Properties of the Rh = ct Universe  

E-Print Network (OSTI)

It is generally agreed that there is matter in the universe and, in this paper, we show that the existence of matter is extremely problematic for the proposed Rh = ct universe. Considering a dark energy component with an equation of state of w=-1/3, it is shown that the presence of matter destroys the strict expansion properties that define the evolution of Rh = ct cosmologies, distorting the observational properties that are touted as its success. We further examine whether an evolving dark energy component can save this form of cosmological expansion in the presence of matter by resulting in an expansion consistent with a mean value of = -1/3, finding that the presence of mass requires unphysical forms of the dark energy component in the early universe. We conclude that matter in the universe significantly limits the fundamental properties of the Rh = ct cosmology, and that novel, and unphysical, evolution of the matter component would be required to save it. Given this, Rh = ct cosmology is not simpler or...

Lewis, Geraint F

2013-01-01T23:59:59.000Z

495

Fusion Techniques for the Oxidation of Refractory Actinide Oxides  

Science Conference Proceedings (OSTI)

Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due to the potential of achieving higher actinide recoveries from refractory materials. In this experiment, nominally 10 g of a graphite-containing residue generated during plutonium casting operations was initially calcined to remove the graphite. Removal of combustible material prior to a large-scale fusion with Na2O2 is needed due to the large amount of heat liberated during oxidation. Two successive fusions using the residue from the calcination and the residue generated from the initial dissolution allowed recovery of 98 percent of the plutonium. The fusion of the residue following the first dissolution was performed at a higher temperature (600 degrees Celsius versus 450 degrees Celsius during the first fusion). The ability to recover most of the remaining plutonium from the residue suggest the oxidation efficiency of the Na2O2 fusion improves with higher temperatures similar to results observed with NpO2 fusion.

Rudisill, T.S.

1999-04-15T23:59:59.000Z

496

A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION  

SciTech Connect

This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

Allen R. Sanderson; Christopher R. Johnson

2006-08-01T23:59:59.000Z

497

State Standards Reform and Student Achievement ?  

E-Print Network (OSTI)

Proponents of the recent and widely adopted Common Core State Standards argue that high quality curricular standards are critical to students ’ educational success. Little clear evidence exists, however, linking the quality of such standards to student achievement. I remedy this by connecting data on state-level student achievement from 1994-2011 with measures of the quality of states ’ curricular standards as judged by two independent organizations at three different moments in time. I show that, within states, changes in the quality of standards have little impact on overall student achievement. Improved standards do, however, raise achievement of 8th graders in low-scoring states, particularly for low-scoring students. Given the known weaknesses of U.S. middle schools, this result suggests that standards may be beneficial in settings where pedagogy would otherwise be poor. For their very helpful comments, I am grateful to Paul Peterson, Martin West and Antonio Wendland, as well as participants in the PEPG July 2012 Conference. Heather Sarsons and Shelby Lin provided outstanding research Over the last couple of decades, policymakers and educators have increasingly turned to standardsbased

Joshua Goodman; Joshua Goodman

2012-01-01T23:59:59.000Z

498

Nano-Machines Achieve Huge Mechanical Breakthrough  

E-Print Network (OSTI)

NANO TECH Nano-Machines Achieve Huge Mechanical Breakthrough Dublin, Ireland (SPX) Sep 08, 2005 that use molecular 'nano'-machines of this kind to help perform physical tasks. Nano-machines could also owners set to return to battered Orleans l Six dead, two missing after heavy rains hit Page 1 of 3Nano

Leigh, David A.

499

MSD Condensed Matter Theory - Argonne National Laboratories,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Condensed Matter Theory Condensed Matter Theory research interacts with the materials research program at ANL through a mix of individual theoretical studies and...

500

Quantum Condensed Matter Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter Division Steve Nagler, QCMD Director QCMD Director Steve Nagler. The Quantum Condensed Matter Division (QCMD) enables and conducts a broad program of...