Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Venture Development Community Partnerships Strategic Initiatives  

E-Print Network [OSTI]

Technology Venture Development Community Partnerships · Strategic Initiatives · Faculty Outreach) 587-3836 Technology Commercialization Office (TCO) Intellectual Property Protection · Technology and Start the Commercialization Process www.TeCh venTUreS.UTAh.eDU Technology commercialization starts

2

Technology Venture Development Community Partnerships Strategic Initiatives  

E-Print Network [OSTI]

Technology Venture Development Community Partnerships · Strategic Initiatives · Faculty Outreach) 587-3836 Technology Commercialization Office (TCO) Intellectual Property Protection · Technology) 585-3844 INTRODUCTION www.TeCh venTUreS.UTAh.eDUwww.TeCh venTUreS.UTAh.eDU Technology

3

Technology Venture Development Community Partnerships Strategic Initiatives  

E-Print Network [OSTI]

and academic partnerships to accelerate development of renewable and efficient energy sources. www League we manage Utah FIRST LeGO League to inspire kids. Partners are welcome. www.utfll.utah.edu & More.westerninnovation.com Energy Commercialization Center (ECC) The energy Commercialization Center is working to create industry

4

Volume 3 | Fall 2010 INNOVATIONSThe Official Newsletter for Technology Venture Development at The University of Utah  

E-Print Network [OSTI]

its efforts to commercialize promising clean- energy technologies.TheTechnology CommercializationVolume 3 | Fall 2010 INNOVATIONSThe Official Newsletter for Technology Venture Development Development Center will help drive technology commercialization at the U With one clip of a giant scissors

5

Oregon UniversityVenture Development Fund (UVDF) A new tax credit program supporting  

E-Print Network [OSTI]

Oregon UniversityVenture Development Fund (UVDF) A new tax credit program supporting higher credit: Sixty percent of your gift to the UVDF is eligible for a tax credit. In any one year, you can use up to 20 percent of your total contribution as a tax credit, not to exceed a donor's Oregon tax

Bertini, Robert L.

6

The evolution of interorganizational relationships in emerging ventures: An ethnographic study within the new product development process  

Science Journals Connector (OSTI)

Abstract Emerging ventures rarely have the resources they need, which often force them to reach beyond their boundaries to access these resources. While the field has acknowledged how critical external relationships are in the emergence process, we lack an understanding of how these relationships evolve. Drawing on fourteen longitudinal case studies, this article begins to fill that gap by examining how emerging ventures use interorganizational relationships to discover, develop, and commercialize new products. We found that emerging ventures tended to establish outsourcing relationships early and that many outsourcing relationships progressed into alliances. This suggests that these early relationships are dynamic, evolve through the emergence process, and may be critical to the successful emergence of a venture. We also discovered that many entrepreneurs developed strong socioemotional bonds with their alliance partners. Unexpectedly, our study revealed that in many cases these socioemotional bonds clouded the entrepreneur's judgment of the partner's abilities and led to problems that threatened the venture's survival.

Tucker J. Marion; Kimberly A. Eddleston; John H. Friar; David Deeds

2015-01-01T23:59:59.000Z

7

Venture Capital Finance  

Broader source: Energy.gov [DOE]

Plenary III: Project Finance and Investment Venture Capital Finance Brian Baynes, Partner, Flagship Ventures

8

Primary Energy Ventures | Open Energy Information  

Open Energy Info (EERE)

Primary Energy Ventures Primary Energy Ventures Jump to: navigation, search Name Primary Energy Ventures Place Oak Brook, Illinois Zip 60523 Product Primary Energy Ventures is a privately held developer, owner and operator of on-site combined heat and power and recycled energy projects. References Primary Energy Ventures[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Primary Energy Ventures is a company located in Oak Brook, Illinois . References ↑ "Primary Energy Ventures" Retrieved from "http://en.openei.org/w/index.php?title=Primary_Energy_Ventures&oldid=349951" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

9

Lab announces Venture Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides...

10

CPV Wind Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

CPV Wind Ventures LLC CPV Wind Ventures LLC Jump to: navigation, search Name CPV Wind Ventures LLC Place Silver Spring, Maryland Zip 20910 Sector Wind energy Product Wind power project developer. References CPV Wind Ventures LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CPV Wind Ventures LLC is a company located in Silver Spring, Maryland . References ↑ "CPV Wind Ventures LLC" Retrieved from "http://en.openei.org/w/index.php?title=CPV_Wind_Ventures_LLC&oldid=343959" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

11

Oceanshore Ventures | Open Energy Information  

Open Energy Info (EERE)

Oceanshore Ventures Jump to: navigation, search Name: Oceanshore Ventures Place: Palo Alto, California Product: Palo Alto, CA based venture capital firm that invests in companies...

12

Noventi Venture Capital formerly CIR Ventures | Open Energy Information  

Open Energy Info (EERE)

Noventi Venture Capital formerly CIR Ventures Noventi Venture Capital formerly CIR Ventures Jump to: navigation, search Name Noventi Venture Capital (formerly CIR Ventures) Place Menlo Park, California Zip CA 94025 Product Noventi (formerly CIR Ventures, aka Cypress Ventures, part of the CIR Group) is an early-stage venture capital firm actively looking for investment opportunities that focus on the convergence of technology, energy, and the environment. References Noventi Venture Capital (formerly CIR Ventures)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Noventi Venture Capital (formerly CIR Ventures) is a company located in Menlo Park, California . References ↑ "Noventi Venture Capital (formerly CIR Ventures)"

13

Geothermal materials development  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

14

Solar Array Ventures Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Solar Array Ventures Inc Place Austin, Texas Product Texas-based start-up thin film PV panel maker, which plans to develop five production plants over the next five years, with four of those facilities located at a site in New Mexico. References Solar Array Ventures Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Array Ventures Inc is a company located in Austin, Texas . References ↑ "Solar Array Ventures Inc" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Array_Ventures_Inc&oldid=351246" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

15

MRI Ventures | Open Energy Information  

Open Energy Info (EERE)

MRI Ventures MRI Ventures Jump to: navigation, search Logo: MRI Ventures Name MRI Ventures Address 425 Volker Boulevard Place Kansas City, Missouri Zip 64110 Product Handles the commercialization of intellectual property and new technologies that are developed either at MRI or through collaborative efforts Phone number (816) 753-7600 Website http://www.mriresearch.org/Abo Coordinates 39.0386366°, -94.5819018° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0386366,"lon":-94.5819018,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Persu Mobility was Venture Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Persu Mobility was Venture Vehicles Inc Persu Mobility was Venture Vehicles Inc Jump to: navigation, search Name Persu Mobility (was Venture Vehicles Inc) Place Los Angeles, California Zip 90067 Product Los Angeles based electric and hybrid plug-in vehicle developer with a Persu Hybrid vehicle that has 3 wheels and leans into turns. References Persu Mobility (was Venture Vehicles Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Persu Mobility (was Venture Vehicles Inc) is a company located in Los Angeles, California . References ↑ "Persu Mobility (was Venture Vehicles Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Persu_Mobility_was_Venture_Vehicles_Inc&oldid=349682"

17

Core Technology Ventures Services CTV | Open Energy Information  

Open Energy Info (EERE)

Technology Ventures Services CTV Technology Ventures Services CTV Jump to: navigation, search Name Core Technology Ventures Services (CTV) Place Co Durham, United Kingdom Zip DL13 3DS Sector Hydro, Hydrogen Product An independent advisory team focused on seed and early stage companies developing fuel cell systems and hydrogen storage technologies. References Core Technology Ventures Services (CTV)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Core Technology Ventures Services (CTV) is a company located in Co Durham, United Kingdom . References ↑ "Core Technology Ventures Services (CTV)" Retrieved from "http://en.openei.org/w/index.php?title=Core_Technology_Ventures_Services_CTV&oldid=34391

18

venture.mcmaster.ca What is Venture?  

E-Print Network [OSTI]

the excitement of engineering to life. Through interactive projects, campers explore their potential and expand hands-on projects that encourage creativity and curiosity · Qualified staff of enthusiastic McMaster Engineering students · Campers have access to McMaster's top resources · Venture classes are designed

Thompson, Michael

19

Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures Ventures Jump to: navigation, search Name @Ventures Place Wilmington, Massachusetts Zip 18870 Product Massachusetts-based venture capital firm investing in early stage clean technology enterprises. Coordinates 42.866922°, -72.868494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866922,"lon":-72.868494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Foothills Energy Ventures | Open Energy Information  

Open Energy Info (EERE)

Foothills Energy Ventures Foothills Energy Ventures Jump to: navigation, search Name Foothills Energy Ventures Place Denver, Colorado Zip 80202 Product Foothills Energy Ventures, is a Denver-based firm engaged in the development, acquisition, and operation of midstream energy assets. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Small Business Venture Capital Tax Credit Program (Manitoba, Canada) |  

Broader source: Energy.gov (indexed) [DOE]

Venture Capital Tax Credit Program (Manitoba, Venture Capital Tax Credit Program (Manitoba, Canada) Small Business Venture Capital Tax Credit Program (Manitoba, Canada) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Home Weatherization Water Solar Wind Program Info State Manitoba Program Type Corporate Tax Incentive Personal Tax Incentives Provider Manitoba Entrepreneurship, Training and Trade The Small Business Venture Capital Tax Credit Program (SBVCTC) assists eligible small corporations to issue new equity to primarily new investors.

22

Herty Advanced Materials Development Center  

Broader source: Energy.gov [DOE]

Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

23

American River Ventures | Open Energy Information  

Open Energy Info (EERE)

American River Ventures American River Ventures Place Roseville, California Sector Efficiency Product Early-stage venture capital firm, ARV invests in new technologies which provide a platform for a sustainable future, specifically, energy efficiency, energy intelligence and advanced materials. Coordinates 41.865599°, -76.958585° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.865599,"lon":-76.958585,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Opean Ventures Ltd | Open Energy Information  

Open Energy Info (EERE)

Opean Ventures Ltd Opean Ventures Ltd Jump to: navigation, search Name Opean Ventures Ltd Place London, United Kingdom Sector Renewable Energy, Solar Product London-based firm investing in the renewable energy and solar raw materials supply markets. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

ITP Industrial Materials: Development and Commercialization of...  

Broader source: Energy.gov (indexed) [DOE]

Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

26

Mainsail Energy Ventures Inc | Open Energy Information  

Open Energy Info (EERE)

Mainsail Energy Ventures Inc Mainsail Energy Ventures Inc Jump to: navigation, search Name Mainsail Energy Ventures Inc Place Beijing, China Zip 100022 Sector Renewable Energy Product A renewable energy asset development, investment and management firm. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Clear Power Ventures | Open Energy Information  

Open Energy Info (EERE)

Clear Power Ventures Clear Power Ventures Place Boston, Massachusetts Product Venture development firm focused on deals in the cleantech market. Coordinates 42.358635°, -71.056699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358635,"lon":-71.056699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Puna Geothermal Venture | Open Energy Information  

Open Energy Info (EERE)

Venture Venture Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Venture Project Location Information Coordinates 19.478799°, -154.888701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.478799,"lon":-154.888701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Summit Ventures | Open Energy Information  

Open Energy Info (EERE)

Wind energy Product: Brazil based advisory and consulting company, focused on wind, small hydro and biomass projects. References: Summit Ventures1 This article is a stub....

30

Fraunhofer Venture Group | Open Energy Information  

Open Energy Info (EERE)

Fraunhofer Venture Group Place: Germany Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: Fraunhofer Venture Group1 This...

31

Energy Ventures Organization Inc | Open Energy Information  

Open Energy Info (EERE)

search Name: Energy Ventures Organization Inc Place: United States Sector: Hydro, Hydrogen Product: Hydrogen ( Private family-controlled ) References: Energy Ventures...

32

Lab announces Venture Acceleration Fund recipients  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides...

33

New developments in loudspeaker materials  

Science Journals Connector (OSTI)

Perhaps the drive behind a number of important new materials developments for speakers was the compact disc. The CD brought wide dynamic range with extended bass response into the home and car and digital?ready speakers have become more than just a marketing pitch. How are speaker engineers increasing excursion thermal power handling and maintaining performance characteristics at higher sound levels while improving reliability? Specific solutions such as carbon fiber and Kevlar woven and nonwoven composite cones new cone forming technologies injection molded adhesiveless suspension surrounds thermally conductiveadhesives thermally (but nonelectrically) conductive voice coil formers high?temperature voice coil wire insulation and adhesives a new magnetic geometry for high?excursion linear travel ferrofluids for woofers high?heat emmisivity plating techniques and other fabriction and materials solutions will be briefly discussed. Advances in materials extend to enclosure materials and a brief survey of developments in this related field will be mentioned. Additionally test and measurement procedures to objectively quantify these enhancements will be touched upon.

Michael A. Klasco

1995-01-01T23:59:59.000Z

34

Development of Spintronic Bandgap Materials  

SciTech Connect (OSTI)

The development of Ge/Si quantum dots with high spatial precision has been pursued, with the goal of developing a platform for spintronics bandgap materials. Quantum dots assemblies were grown by molecular beam epitaxy on carbon-templated silicon substrates. These structures were characterized by atomic force microscopy. Vertically gated structures were created on systems with up to six well-defined quantum dots with a controlled geometric arrangement, and low-temperature (mK) transport experiments were performed. These experiments showed evidence for a crossover from diamagnetic to Zeeman energy shifts in resonant tunneling of electrons through electronic states in the quantum dots.

Levy, Jeremy; Awschalom, David; Floro, Jerrold

2014-02-16T23:59:59.000Z

35

LNG ventures raise economic, technical, partnership issues  

SciTech Connect (OSTI)

The author feels that natural gas will remain a competitive energy alternative and the preferred fuel for many residential and industrial customers around the globe. The article attempts to explain where liquefied natural gas will fit into the global picture. The paper discusses the growth in the Asia-Pacific region; the complex interactions in a LNG project involving buyers, sellers, governments, financial institutions, and shipping companies; the cost of development of such projects; and the elements of a LNG venture.

Acord, H.K. [Mobil Oil Corp., Fairfax, VA (United States)

1995-07-03T23:59:59.000Z

36

@Ventures (California) | Open Energy Information  

Open Energy Info (EERE)

California) California) Jump to: navigation, search Logo: @Ventures (California) Name @Ventures (California) Address 800 Menlo Avenue, Suite 120 Place Menlo Park, California Zip 94025 Region Bay Area Product Venture capital firm investing in early stage clean technology enterprises Phone number (650) 322-3246 Website http://www.ventures.com/ Coordinates 37.450078°, -122.184403° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.450078,"lon":-122.184403,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

@Ventures (Massachusetts) | Open Energy Information  

Open Energy Info (EERE)

Massachusetts) Massachusetts) Jump to: navigation, search Logo: @Ventures (Massachusetts) Name @Ventures (Massachusetts) Address 187 Ballardvale Street, Suite A260 Place Wilmington, Massachusetts Zip 01887 Region Greater Boston Area Product Venture capital firm investing in early stage clean technology enterprises Phone number (978) 658-8980 Website http://www.ventures.com/ Coordinates 42.581566°, -71.158217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.581566,"lon":-71.158217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Venture Capital Program (North Dakota)  

Broader source: Energy.gov [DOE]

The Venture Capital Program, provided by the ND Department of Commerce, is an innovative financial program that provides flexible financing through debt and equity investments for new or expanding...

40

Hydrogen Ventures | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Ventures Hydrogen Ventures Name Hydrogen Ventures Address 1219 N. Studabaker Road Place Long Beach, California Zip 90811 Region Southern CA Area Product Venture fund focusing on hydrogen technology Phone number (562) 618-8641 Website http://www.hydrogen.la/ Coordinates 33.781788°, -118.103155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.781788,"lon":-118.103155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Redpoint Ventures | Open Energy Information  

Open Energy Info (EERE)

Redpoint Ventures Redpoint Ventures Jump to: navigation, search Logo: Redpoint Ventures Name Redpoint Ventures Address 3000 Sand Hill Road Bldg 2 Ste 290 Place Menlo Park, California Zip 94025 Region Bay Area Number of employees 11-50 Year founded 1999 Phone number 650 926 5600 Website http://www.redpoint.com/ Coordinates 37.4234385°, -122.2210783° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4234385,"lon":-122.2210783,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Puna Geothermal Venture 8MW Expantion | Open Energy Information  

Open Energy Info (EERE)

Venture 8MW Expantion Venture 8MW Expantion Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Puna Geothermal Venture 8MW Expantion Abstract Adding to its existing generating capacity of 27 MW, Ormat's Puna Geothermal Venture (PGV) geothermal power plant recently completed a successful 8MW expansion project bringing more renewable, low-cost electricity to the people of Hawaii. The project presented several technical challenges including use of high scale potential brine in a state-of-the-art binary plant, development of highly reliable brine pH monitoring and control system, and brine injection management in a high energy resource. Each of the project challenges were overcome with unique engineering solutions. Authors Mike Kaleikini, Paul Spielman, Tom Buchanan, Ormat Technologies

43

Native American Venture Acceleration Fund provides boost to six regional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Native American Venture Acceleration Fund Native American Venture Acceleration Fund Native American Venture Acceleration Fund provides boost to six regional businesses The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. February 26, 2013 Ribbon cutting and grand opening of Than Povi Fine Art Gallery in Cuyamungue. Ribbon cutting and grand opening of Than Povi Fine Art Gallery in Cuyamungue. Contact Steve Sandoval Communications Office (505) 665-9206 Email LANS and Los Alamos National Laboratory are excited to announce the first of these Native American Venture Acceleration Grant Fund recipients and we look forward to working with these and other Native American businesses to promote economic development in Northern New Mexico.

44

Venture Formation | BNL Technology Commercialization and Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Entrepreneurs and Investors Entrepreneurs and Investors Venture Formation Resources Entrepreneurship Resource Center - Entrepreneurship.org was created by the Ewing Marion Kauffman Foundation as a free, online international resource with a vast array of content designed to assist entrepreneurs, business mentors, policy makers, academics and investors through each phase of the entrepreneurial process. U.S. Small Business Administration - The U.S. Small Business Administration (SBA) is a federally funded organization developed to aid, counsel, assist and protect the interests of small business concerns and new ventures in the United States. Wall Street Journal Entrepreneur Resource - An online how to guide for small businesses and start ups with tips from The Wall Street Journal's reporters and columnists.

45

Illinois Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Illinois Ventures LLC Place Champaign, Illinois Zip 61820 Product Illinois Ventures partners with faculty inventors and entreprenuers to build breakthrough start-up companies based on University of Illinois research and development. Coordinates 40.1142°, -88.243499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1142,"lon":-88.243499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Developing Functionalized Graphene Materials for Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

47

SJF Ventures | Open Energy Information  

Open Energy Info (EERE)

SJF Ventures SJF Ventures Jump to: navigation, search Name SJF Ventures Address 200 N Mangum St., Suite 203 Place Durham, North Carolina Zip 27701 Number of employees 1-10 Website [www.sjfventures.com www.sjfventures.com ] Coordinates 35.995645°, -78.899877° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.995645,"lon":-78.899877,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Ark Ventures | Open Energy Information  

Open Energy Info (EERE)

Ark Ventures Ark Ventures Jump to: navigation, search Name Ark Ventures Address 85 Wall Street Place Madison, CT Zip 06443 Website http://www.arkventures.com Coordinates 41.2822696°, -72.5937049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2822696,"lon":-72.5937049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

NBGI Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures Ventures Jump to: navigation, search Name NBGI Ventures Place London, United Kingdom Zip EC4V 4BJ Product UK-based firm focused on investing in early stage, high growth and innovative companies. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Braemar Energy Ventures | Open Energy Information  

Open Energy Info (EERE)

Braemar Energy Ventures Braemar Energy Ventures Jump to: navigation, search Name Braemar Energy Ventures Place New York City, New York Zip 10017 Product New York-based venture capital firm, that invests in early to expansion stage companies focusing on technology, clean technology, communications, alternative energy and energy sectors. References Braemar Energy Ventures[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Braemar Energy Ventures is a company located in New York City, New York . References ↑ "Braemar Energy Ventures" Retrieved from "http://en.openei.org/w/index.php?title=Braemar_Energy_Ventures&oldid=343002" Categories: Clean Energy Organizations Companies

51

Battelle Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures LP Ventures LP Name Battelle Ventures LP Address 103 Carnegie Center, Suite 100 Place Princeton, New Jersey Zip 08540 Region Northeast - NY NJ CT PA Area Product Venture fund supporting new and early-stage companies Number of employees 1-10 Year founded 2003 Phone number (609) 921-1456 Website http://www.battelleventures.co Coordinates 40.323515°, -74.642505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.323515,"lon":-74.642505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Nuclear Concrete Materials Database Phase I Development  

SciTech Connect (OSTI)

The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

Ren, Weiju [ORNL; Naus, Dan J [ORNL

2012-05-01T23:59:59.000Z

53

Three dimensional neutronics calculations for the TAMU Nuclear Science Center Triga reactor using BOLD VENTURE  

E-Print Network [OSTI]

, other pr ogr ams such as thermal hydraulics, ar e expected to be implemented as soon as their development is completed at ORNL. Due to the lar ge memory requirements of the BOLD VENTURE system, only the neutr onics computational module VENTURE...

Yupari, Ricardo

1985-01-01T23:59:59.000Z

54

Role of networks in emergence of international new ventures  

Science Journals Connector (OSTI)

The present paper combines network approach-based internationalisation research and entrepreneurial opportunity discovery research to examine the entrepreneurial networking for emergence of international new ventures. Specifically, we aim to find out how entrepreneurs use relationships to create a basis for emergence of an international new venture. In the empirical part, we conduct a single case study on the process of emergence of a venture that operates in software business serving the so-called continental system developers. The primary empirical data consists of interviews of the entrepreneur and interviews of the persons in the networks on which the emergence of the international new venture was to a great extent based. As a result, we present a process model of international new venture emergence. It illustrates the acts of opportunity creation that are embedded in entrepreneurial networks. The networking acts are taken to a great extent before firm establishment and centre on overcoming the dual hurdle created by the lack of capability and lack of legitimacy.

Tuija Mainela; Vesa Puhakka

2011-01-01T23:59:59.000Z

55

Malibu Joint Venture | Open Energy Information  

Open Energy Info (EERE)

Malibu Joint Venture Malibu Joint Venture Jump to: navigation, search Name Malibu Joint Venture Place Germany Sector Solar Product String representation "German utility ... e of next year." is too long. References Malibu Joint Venture[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Malibu Joint Venture is a company located in Germany . References ↑ "Malibu Joint Venture" Retrieved from "http://en.openei.org/w/index.php?title=Malibu_Joint_Venture&oldid=348612" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

56

Venture Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Venture Wind II Wind Farm Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer Seawest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Native American Venture Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

requirements and begin 8A (small disadvantaged business) certification process. * Sunbeam Indian Art, San Ildefonso Pueblo, 3,400, develop website capabilities to increase online...

58

Technology Ventures Corporation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

development of business and management capabilities, and seeks sources of capital investment for entrepreneurs and startups. TVC is a nonprofit charitable foundation funded by...

59

Grid-Related Materials Development Across the NETL-RUA: A Proposed Integrated Materials Development Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Materials Development Across the NETL-RUA: Related Materials Development Across the NETL-RUA: A Proposed Integrated Materials Development Initiative Office of Research & Development Activities Relevant Centers and Expertise Within the Regional University Alliance Needs for Advanced Materials in Grid Applications Forward Looking Vision: Integrated Development Initiative Active / Passive Components in Power Electronics Sensors for Power Flow Control and Condition Monitoring Grid-Scale Energy Storage Enduring Expertise in Electrochemical Materials Emerging Expertise in Magnetic and Optical Materials EPRI Report 1016921 EPRI Report 1020619 Energy Storage Energy Storage Grid of The Future 1) High Renewable Penetration 2) Active Power Flow Control 3) High Electric Vehicle Deployment 4)

60

DTE Energy Venture formerly EdVenture Capital Corporation | Open Energy  

Open Energy Info (EERE)

Venture formerly EdVenture Capital Corporation Venture formerly EdVenture Capital Corporation Jump to: navigation, search Name DTE Energy Venture (formerly EdVenture Capital Corporation) Place Detroit, Michigan Zip 48226 Product EdVenture Capital Corporation provides venture capital investments in new energy technologies. Coordinates 42.331685°, -83.047924° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.331685,"lon":-83.047924,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

STARTech Early Ventures | Open Energy Information  

Open Energy Info (EERE)

States Sector: Services Product: General Financial & Legal Services ( Partnership (investment, law etc) ) References: STARTech Early Ventures1 This article is a stub. You can...

62

Lab seeks ideas for Venture Acceleration Fund  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for these Venture Acceleration Fund awards, which have already produced a significant return on investment for the regional companies that have received them," said Padilla....

63

Oxy-combustion Boiler Material Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

64

WindPole Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

WindPole Ventures LLC WindPole Ventures LLC Jump to: navigation, search Logo: WindPole Ventures LLC Name WindPole Ventures LLC Address 48 Pleasant Street Place Lexington, Massachusetts Zip 02421 Sector Wind energy Product Will create, develop and operate commercial-scale wind powered electric generating facilities Website http://www.windpoleventures.co Coordinates 42.423694°, -71.207449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.423694,"lon":-71.207449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Carbon Credit Capital and Feedback Ventures JV | Open Energy...  

Open Energy Info (EERE)

and Feedback Ventures JV Jump to: navigation, search Name: Carbon Credit Capital and Feedback Ventures JV Place: India Sector: Carbon Product: String representation "Carbon Credit...

66

Puna Geothermal Venture Hydrologic Monitoring Program  

SciTech Connect (OSTI)

This document provides the basis for the Hydrologic Monitoring Program (HMP) for the Puna Geothermal Venture. The HMP is complementary to two additional environmental compliance monitoring programs also being submitted by Puma Geothermal Venture (PGV) for their proposed activities at the site. The other two programs are the Meteorology and Air Quality Monitoring Program (MAQMP) and the Noise Monitoring Program (NMP), being submitted concurrently.

None

1990-04-01T23:59:59.000Z

67

Sustainable Energy Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures Ventures Jump to: navigation, search Logo: Sustainable Energy Ventures Name Sustainable Energy Ventures Address Kalkkaai 6 Place Brussels, Belgium Zip 1000 Product Investment fund providing venture capital and private equity to sustainable energy companies Phone number +32 2 229 53 10 Website http://www.fuelcellmarkets.com Coordinates 50.8551654°, 4.3473341° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8551654,"lon":4.3473341,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Gaebler Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

Gaebler Ventures LLC Gaebler Ventures LLC Jump to: navigation, search Logo: Gaebler Ventures LLC Name Gaebler Ventures LLC Address 156 N. Jefferson Street, Suite 301 Place Chicago, Illinois Zip 60661 Product Seed-stage and early-stage venture capital fund. Year founded 1999 Website http://www.gaebler.com/ Coordinates 41.885004°, -87.643754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.885004,"lon":-87.643754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

2014 SSL Market Development Workshop Presentations and Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 SSL Market Development Workshop Presentations and Materials 2014 SSL Market Development Workshop Presentations and Materials Download presentations from the 2014 Solid-State...

70

Development of High-Capacity Cathode Materials with Integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures 2013 DOE Hydrogen and Fuel Cells...

71

Development of high-capacity cathode materials with integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and...

72

Geothermal Materials Development, Annual Report FY 1991  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored full cost'' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

73

Geothermal Materials Development. Annual report FY 1991  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored ``full cost`` recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

74

ARCH Venture Partners (Texas) | Open Energy Information  

Open Energy Info (EERE)

ARCH Venture Partners (Texas) ARCH Venture Partners (Texas) Jump to: navigation, search Logo: ARCH Venture Partners Name ARCH Venture Partners Address 6300 Bridgepoint Parkway, Bldg 1, Suite 500 Place Austin, Texas Zip 78730 Region Texas Area Coordinates 30.3732514°, -97.8395151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3732514,"lon":-97.8395151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Arch Venture Partners | Open Energy Information  

Open Energy Info (EERE)

Arch Venture Partners Arch Venture Partners Name Arch Venture Partners Address 1700 Owens Street Place San Francisco, California Zip 94158 Region Bay Area Product Venture capital firm investing in alternative energy production Website http://www.archventure.com/ Coordinates 37.7679113°, -122.3941495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7679113,"lon":-122.3941495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Clean Pacific Ventures | Open Energy Information  

Open Energy Info (EERE)

Clean Pacific Ventures Clean Pacific Ventures Name Clean Pacific Ventures Address 425 California Street, Suite 2450 Place San Francisco, California Zip 94104 Region Bay Area Product Venture capital firm investing in early stage clean technology companies Phone number (415) 433-0123 Website http://www.cleanpacific.com/ Coordinates 37.792796°, -122.401353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.792796,"lon":-122.401353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

CEI Community Ventures | Open Energy Information  

Open Energy Info (EERE)

CEI Community Ventures CEI Community Ventures Jump to: navigation, search Name CEI Community Ventures Address 2 Portland Fish Pier, Suite 206 Place Portland, Maine Zip 04101 Product Venture fund targeting the northeast US. Phone number (207) 772-5356 Website http://www.ceicommunityventure Coordinates 43.653517°, -70.255563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.653517,"lon":-70.255563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Technology Ventures Corporation | Open Energy Information  

Open Energy Info (EERE)

Ventures Corporation Ventures Corporation Jump to: navigation, search Logo: Technology Ventures Corporation Name Technology Ventures Corporation Address PO Box 1280 Place Menlo Park, California Zip 94026 Region Bay Area Coordinates 37.4539°, -122.1813° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4539,"lon":-122.1813,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Arch Venture Partners (Washington) | Open Energy Information  

Open Energy Info (EERE)

Arch Venture Partners (Washington) Arch Venture Partners (Washington) Jump to: navigation, search Name Arch Venture Partners Address 1000 Second Avenue Place Seattle, Washington Zip 98104 Region Pacific Northwest Area Product Venture capital firm investing in alternative energy production Website http://www.archventure.com/ Coordinates 47.6051741°, -122.3351302° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6051741,"lon":-122.3351302,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

DTE Energy Ventures | Open Energy Information  

Open Energy Info (EERE)

DTE Energy Ventures DTE Energy Ventures Name DTE Energy Ventures Address 414 S.Main Street, Suite 600 Place Ann Arbor, Michigan Zip 48104 Product Venture capital Phone number (734) 302-5309 Website http://www.dteenergyventures.c Coordinates 42.277198°, -83.749123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.277198,"lon":-83.749123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Applied Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

Applied Ventures LLC Applied Ventures LLC Name Applied Ventures LLC Address 3050 Bowers Avenue Place Santa Clara, California Zip 95054 Region Southern CA Area Product Venture capital. Number of employees 1-10 Phone number (408) 727-5555 Website http://www.appliedventures.com Coordinates 37.37751°, -121.978721° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.37751,"lon":-121.978721,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Haddington Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

Haddington Ventures LLC Haddington Ventures LLC Jump to: navigation, search Logo: Haddington Ventures LLC Name Haddington Ventures LLC Address 2603 Augusta, Suite 900 Place Houston, Texas Zip 77057 Region Texas Area Product Midstream energy private equity fund Phone number (713) 532-7992 Website http://www.hvllc.com/ Coordinates 29.739323°, -95.481781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.739323,"lon":-95.481781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

SAIL Venture Partners (California) | Open Energy Information  

Open Energy Info (EERE)

SAIL Venture Partners (California) SAIL Venture Partners (California) Name SAIL Venture Partners (California) Address 600 Anton Blvd, Suite 1010 Place Costa Mesa, California Zip 92626 Region Southern CA Area Product Venture fund focusing on clean energy Year founded 2002 Phone number (714) 241-7500 Website http://www.sailvc.com/ Coordinates 33.690295°, -117.881439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.690295,"lon":-117.881439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Climate Leaders Joint Venture | Open Energy Information  

Open Energy Info (EERE)

Leaders Joint Venture Leaders Joint Venture Jump to: navigation, search Name Climate Leaders' Joint Venture Place Dallas, Texas Product Tudor Investment and Camco International have partnered to create Climate Leaders' Joint Venture. They will have inital working capital of USD 10m, with Camco owning 60%. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

WHEB Venture Partners LLP | Open Energy Information  

Open Energy Info (EERE)

WHEB Venture Partners LLP WHEB Venture Partners LLP Jump to: navigation, search Name WHEB Venture Partners LLP Place London, United Kingdom Zip W1G 8HE Product London-based venture capital investor focused on European cleantech. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Advanced Lighting Controls - My Venture from the Ivory Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Lighting Controls - My Venture from the Ivory Tower Advanced Lighting Controls - My Venture from the Ivory Tower Speaker(s): Charlie Huizenga Date: June 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Lighting energy represents 30-40% of commercial building electricity consumption, yet very few buildings have advanced lighting controls. The potential energy savings are tremendous as is the opportunity to reduce demand on the grid during critical peak use periods. Charlie will describe how low-cost wireless radio technology developed at UC Berkeley and commercialized by Adura Technologies is creating a paradigm shift in the way we think about controlling lighting. Beyond deep energy savings and demand response, the technology offers personal control for occupants and

87

Venture Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Venture Wind I Wind Farm Facility Venture Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Development of High Energy Cathode Materials | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Development of High Energy Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

89

MDV - Mohr, Davidow Ventures | Open Energy Information  

Open Energy Info (EERE)

MDV - Mohr, Davidow Ventures MDV - Mohr, Davidow Ventures Jump to: navigation, search Logo: MDV - Mohr, Davidow Ventures Name MDV - Mohr, Davidow Ventures Address 3000 Sand Hill Road Building 3, Suite 290 Place Menlo Park, California Zip 94025 Region Bay Area Product Early Stage Venture Capital Number of employees 51-200 Year founded 1983 Phone number 650-854-7236 Website http://www.mdv.com Coordinates 37.4234385°, -122.2210783° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4234385,"lon":-122.2210783,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Chrysalix Energy Venture Capital | Open Energy Information  

Open Energy Info (EERE)

Chrysalix Energy Venture Capital Chrysalix Energy Venture Capital Jump to: navigation, search Logo: Chrysalix Energy Venture Capital Name Chrysalix Energy Venture Capital Address 1367 West Broadway, Suite 400 Place Vancouver, Canada Zip V6H 4A7 Product Venture capital firm. Phone number (604) 659-5499 Website http://www.chrysalix.com/ Coordinates 49.2635735°, -123.1352545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.2635735,"lon":-123.1352545,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

FA Technology Ventures (Boston) | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Jump to: navigation, search Logo: FA Technology Ventures (Boston) Name FA Technology Ventures (Boston) Address 100 High Street, Suite 1105 Place Boston, Massachusetts Zip 02110 Region Greater Boston Area Product Venture capital fund focused on investing in early and expansion-stage information technology and energy technologies companies Phone number (617) 757-3880 Website http://www.fatechventures.com/ Coordinates 42.3545166°, -71.0547625° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3545166,"lon":-71.0547625,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

FA Technology Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures Ventures Jump to: navigation, search Logo: FA Technology Ventures Name FA Technology Ventures Address 677 Broadway Place Albany, New York Zip 12207 Region Northeast - NY NJ CT PA Area Product Venture capital fund focused on investing in early and expansion-stage information technology and energy technologies companies Phone number (518) 447-8525 Website http://www.fatechventures.com/ Coordinates 42.653416°, -73.748465° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.653416,"lon":-73.748465,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Conduit Ventures Limited | Open Energy Information  

Open Energy Info (EERE)

Conduit Ventures Limited Conduit Ventures Limited Name Conduit Ventures Limited Address 59-61 Hatton Garden, Unit B, 2nd Floor Colonial Buildings Place London, United Kingdom Zip EC1N 8LS Product Venture capital funding for fuel cells and hydrogen. Phone number +44 (0) 20 7831 3131 Website http://www.conduit-ventures.co Coordinates 51.5179133°, -0.1097391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5179133,"lon":-0.1097391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Garage Technology Ventures | Open Energy Information  

Open Energy Info (EERE)

Garage Technology Ventures Garage Technology Ventures Jump to: navigation, search Logo: Garage Technology Ventures Name Garage Technology Ventures Address 360 Bryant St., Suite 100 Place Palo Alto, California Zip 94301 Region Bay Area Product Seed-stage and early-stage venture capital fund. Year founded 1997 Phone number (650) 838-0811 Website http://www.garage.com/ Coordinates 37.446731°, -122.163101° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.446731,"lon":-122.163101,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

FY 2008 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development  

Broader source: Energy.gov [DOE]

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

96

Implementation Plan and Initial Development of Nuclear Concrete Materials  

Broader source: Energy.gov (indexed) [DOE]

Implementation Plan and Initial Development of Nuclear Concrete Implementation Plan and Initial Development of Nuclear Concrete Materials Database for Light Water Reactor Sustainability Program Implementation Plan and Initial Development of Nuclear Concrete Materials Database for Light Water Reactor Sustainability Program The FY10 activities for development of a nuclear concrete materials database to support the Light Water Reactor Sustainability Program are summarized. The database will be designed and constructed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In Phase I, a static database will be developed to manage searchable documents from the Structural Materials Handbook that contains information on nuclear concrete

97

Implementation Plan and Initial Development of Nuclear Concrete Materials  

Broader source: Energy.gov (indexed) [DOE]

Implementation Plan and Initial Development of Nuclear Concrete Implementation Plan and Initial Development of Nuclear Concrete Materials Database for Light Water Reactor Sustainability Program Implementation Plan and Initial Development of Nuclear Concrete Materials Database for Light Water Reactor Sustainability Program The FY10 activities for development of a nuclear concrete materials database to support the Light Water Reactor Sustainability Program are summarized. The database will be designed and constructed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In Phase I, a static database will be developed to manage searchable documents from the Structural Materials Handbook that contains information on nuclear concrete

98

Access Venture Partners | Open Energy Information  

Open Energy Info (EERE)

Logo: Access Venture Partners Name Access Venture Partners Address 8787 Turnpike Drive, Suite 260 Place Westminster, Colorado Zip 80030 Region Rockies Area Product Venture Capital Number of employees 1-10 Year founded 1998 Phone number 303-426-8899 Website http://www.accessvp.com/ Coordinates 39.854298°, -105.052635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.854298,"lon":-105.052635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

OVP Venture Partners | Open Energy Information  

Open Energy Info (EERE)

OVP Venture Partners OVP Venture Partners Address 5550 SW Macadam Ave Place Portland, Oregon Zip 97239 Region Pacific Northwest Area Product Cleantech venture fund Website http://www.ovp.com/ Coordinates 45.483923°, -122.673013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.483923,"lon":-122.673013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Commercial Solar Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures Ventures Jump to: navigation, search Name Commercial Solar Ventures Place Portland, Oregon Zip 97205 Sector Solar Product Portland based company that specializes in commercial scale solar installations throughout Oregon. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

OVP Venture Partners (Washington) | Open Energy Information  

Open Energy Info (EERE)

OVP Venture Partners OVP Venture Partners Address 1010 Market Street Place Kirkland, Washington Zip 98033 Region Pacific Northwest Area Product Cleantech venture fund Website http://www.ovp.com/ Coordinates 47.6829783°, -122.2096335° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6829783,"lon":-122.2096335,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Energy Ventures Group | Open Energy Information  

Open Energy Info (EERE)

Energy Ventures Group Energy Ventures Group Name Energy Ventures Group Address 3050 K Street, N.W., Suite 205 Place Washington, District of Columbia Zip 20007 Product Boutique investment firm focused on emerging technologies in the energy industry Phone number (202) 944-4141 Website http://www.energyvg.com/ Coordinates 38.90137°, -77.059768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.90137,"lon":-77.059768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

New Energy Ventures (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Ventures (Kentucky) Ventures (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on August 29, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name New Energy Ventures (Kentucky) Policy Category Financial Incentive Policy Type Equity Investment, Grant Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Hydroelectric, Hydroelectric (Small), Natural Gas, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://startups.kstc.com/index.php/funding-opportunities/kef-funds Information Source http://startups.kstc.com/images/resource_docs/knev%20guidelines%20revision%2020121112.pdf

104

Clean Wave Ventures | Open Energy Information  

Open Energy Info (EERE)

Clean Wave Ventures Clean Wave Ventures Place Indianapolis, Indiana Zip 46204 Product Midwest-based venture capital firm specializing in high growth Clean Technology investments Coordinates 39.76691°, -86.149964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.76691,"lon":-86.149964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

EcoElectron Ventures | Open Energy Information  

Open Energy Info (EERE)

EcoElectron Ventures EcoElectron Ventures Jump to: navigation, search Name EcoElectron Ventures Address 1106 2nd Street Place Encinitas, California Zip 92024 Region Southern CA Area Product Seed stage capital investment fund Phone number (760) 635-1681 Website http://www.ecoelectron.com/ Coordinates 33.037816°, -117.293986° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.037816,"lon":-117.293986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Designing the organizational structure for an entrepreneurial venture  

E-Print Network [OSTI]

BS Grupo is a Peruvian entrepreneurial venture begun in 2000. The company has grown relatively fast, becoming a leading training provider in Peru. The venture delivers high level and specialized training services in the ...

Martinez Delgado, Juan Carlos

2010-01-01T23:59:59.000Z

107

Colorado Firm Develops Innovative Materials for Geothermal Systems...  

Energy Savers [EERE]

EERE, Composite Technology Development, Inc. advanced several technologies related to geothermal energy extraction. The company developed materials designed to create and...

108

Venture Global Calcasieu Pass, LLC- (Formerly Venture Global LNG, LLC)- 14-88-LNG  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy gives notice of receipt of an application filed on May 13, 2014, by Venture Global LNG, LLC (VGP) requesting long-term, multi-contract authority to export (in addition...

109

Green Spark Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

Spark Ventures LLC Spark Ventures LLC Jump to: navigation, search Name Green Spark Ventures, LLC Place Denver, Colorado Zip 80203 Sector Efficiency, Renewable Energy Product Denver-based venture capital fund prioritizing investing in start-up and early-stage companies in the Rocky Mountain region, operating in the area of renewable energy and energy efficiency. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Pangaea Ventures Ltd (Canada) | Open Energy Information  

Open Energy Info (EERE)

Pangaea Ventures Ltd (Canada) Pangaea Ventures Ltd (Canada) Jump to: navigation, search Logo: Pangaea Ventures Ltd (Canada) Name Pangaea Ventures Ltd (Canada) Address 1500 West Georgia Street, Suite 1580 Place Vancouver, Canada Zip V6G 2Z6 Product Invests in early-stage clean energy technology Phone number (604) 738-0225 Website http://www.pangaeaventures.com Coordinates 49.2897844°, -123.1294356° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.2897844,"lon":-123.1294356,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Genomics-based drug discovery venture  

Science Journals Connector (OSTI)

Genomics-based drug discovery venture ... The Cambridge, Mass.-based company calls its DiscoverEase program "functional genomics"designed to isolate and rapidly determine not only genes but also the related functions of critical proteins. ... Other genomics programs sequence vast amounts of human genetic information. ...

ANN THAYER

1996-10-07T23:59:59.000Z

112

Non-Federal Participation Federal Marketing and Joint Ventures : Administrator`s Record of Decision.  

SciTech Connect (OSTI)

By this Record of Decision, the Bonneville Power Administrtion (BPA) adopts the Federal Marketing and Joint Ventures alternative to guide future BPA contract negotiations involving use of the Pacific Northwest-Pacific Southwest AC Intertie (Intertie). To implement this concept, BPa intends to negotiate an array of flexible, market-oriented contracts, expanded Intertie access for non-BPA parties, efficient use of Federal Columbia River resources, and facilitation of efficient, coordinated west coast development of generating resources. Federal Marketing and Joint Ventures meets need and serves purposes to a better degree than No Action. BPA considers Federal Marketing and Joint Ventures to be the environmentally preferable alternative in that it encourages long-term coordination of west coast generating resource development and operation. This provides the greatest opportunity to decrease generation of more environmentally harmful plants which would otherwise have greater effects on air, land, and water, and to avoid construction of new generation plants.

United States. Bonneville Power Administration.

1994-04-01T23:59:59.000Z

113

Solar Torx New Solar Ventures | Open Energy Information  

Open Energy Info (EERE)

Torx New Solar Ventures Torx New Solar Ventures Jump to: navigation, search Name Solar Torx / New Solar Ventures Place Arizona Product Set up in November 2005 to secure finance for a thin-film amorphous silicon cell and module manufacturing plant, and an associated 300MW power project. No evidence of progress as of June 2008, has probably been abandoned. References Solar Torx / New Solar Ventures[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Torx / New Solar Ventures is a company located in Arizona . References ↑ "Solar Torx / New Solar Ventures" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Torx_New_Solar_Ventures&oldid=351340" Categories:

114

Ceres BioVentures Ltd | Open Energy Information  

Open Energy Info (EERE)

Ceres BioVentures Ltd Ceres BioVentures Ltd Jump to: navigation, search Name Ceres BioVentures Ltd Place Surrey, United Kingdom Zip TW10 5ED Sector Biomass Product UK-based firm that provides biomass supply solutions to European power and heat markets. It controls the entire supply chain to deliver reliable, repeatable and certifiably sustainable volumes in woodchip and wood pellet form. References Ceres BioVentures Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ceres BioVentures Ltd is a company located in Surrey, United Kingdom . References ↑ "Ceres BioVentures Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Ceres_BioVentures_Ltd&oldid=343419"

115

FRV USA formerly Fotowatio Renewable Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

FRV USA formerly Fotowatio Renewable Ventures LLC FRV USA formerly Fotowatio Renewable Ventures LLC Jump to: navigation, search Name FRV USA (formerly Fotowatio Renewable Ventures LLC) Place San Francisco, California Zip 94104 Sector Renewable Energy Product A wholly-owned subsidiary of FRV which manages and operates renewable energy assets in the US. References FRV USA (formerly Fotowatio Renewable Ventures LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. FRV USA (formerly Fotowatio Renewable Ventures LLC) is a company located in San Francisco, California . References ↑ "FRV USA (formerly Fotowatio Renewable Ventures LLC)" Retrieved from "http://en.openei.org/w/index.php?title=FRV_USA_formerly_Fotowatio_Renewable_Ventures_LLC&oldid=345517"

116

ITP Materials: Development of Materials Resistant to Metal Dustiing Degradation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INDUSTRIAL INDUSTRIAL TECHNOLOGIES PROGRAM Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Energy Efficiency and Renewable Energy U.S. Department of Energy Degradation of metallic structural compo- nents by metal dusting is a major issue in plants such as those involved in hydrogen production, ammonia synthesis, methanol reforming, and syngas (H 2 /CO mixtures) pro- duction. Metal dusting is also experienced at high temperatures in the oxidizing-carbur- izing environments that are prevalent in the heat-treating industry and in processes that involve direct reduction in the production of iron. While experiments have proved that metal dusting does occur, industries could not develop an approach to combat this problem because of a lack of understanding

117

Oxy-Combustion Boiler Material Development  

SciTech Connect (OSTI)

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

2012-01-31T23:59:59.000Z

118

Oxy-Combustion Boiler Material Development  

SciTech Connect (OSTI)

Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year) data. The test program details and data are presented herein.

Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

2012-01-31T23:59:59.000Z

119

Arch Venture Partners (Texas) | Open Energy Information  

Open Energy Info (EERE)

Texas) Texas) Jump to: navigation, search Name Arch Venture Partners Address 6300 Bridgepoint Parkway Place Austin, Texas Zip 78730 Region Texas Area Product Venture capital firm investing in alternative energy production Website http://www.archventure.com/ Coordinates 30.354669°, -97.794039° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.354669,"lon":-97.794039,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

ARCH Venture Partners (Washington) | Open Energy Information  

Open Energy Info (EERE)

Washington) Washington) Jump to: navigation, search Logo: ARCH Venture Partners Name ARCH Venture Partners Address 1000 Second Avenue, Suite 3700 Place Seattle, Washington Zip 98104 Region Pacific Northwest Area Coordinates 47.605526°, -122.334716° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.605526,"lon":-122.334716,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Experience with the Development of Advanced Materials for Geothermal Systems  

SciTech Connect (OSTI)

This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

Sugama, T.; Butcher, T.; Ecker, L.

2011-01-01T23:59:59.000Z

122

Development of Materials for Supercritical-Water-Cooled Reactor |  

Broader source: Energy.gov (indexed) [DOE]

Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Development of Materials for Supercritical-Water-Cooled Reactor Supercritical-Water-Cooled Reactor (SCWR) was selected as one of the promising candidates in Generation IV reactors for its prominent advantages; those are the high thermal efficiency, the system simplification, the R&D cost minimization and the flexibility for core design. As the demand for advanced nuclear system increases, Japanese R&D project started in 1999 aiming to provide technical information essential to demonstration of SCPR technologies through three sub-themes of 1. Plant conceptual design, 2. Thermal-hydraulics, and 3. Material. Although the material development is critical issue of SCWR development, previous studies were limited for the screening tests on commercial alloys

123

Value Creation Through Joint Venture and Strategic Alliance Formation.  

E-Print Network [OSTI]

??This study examines the price reaction to the announcements of joint venture and strategic alliance formation, the main determinants of the partnering firm's choices to (more)

Pana, Elisabeta

2006-01-01T23:59:59.000Z

124

Materials development for ultra-supercritical boilers  

SciTech Connect (OSTI)

Progress is reported on a US Department of Energy project to develop high temperature, corrosion resistant alloys for use in ultra-supercritical steam cycles. The aim is to achieve boiler operation at 1,400{sup o}F/5,000 psi steam conditions with 47% net cycle efficiency. Most ferritic steel tested such as T92 and Save 12 showed severe corrosion. Nickel-based alloys, especially IN 740 and CCA 617, showed greatest resistance to oxidation with no evidence of exfoliation. Laboratory and in-plant tests have begun. 2 figs.

NONE

2005-09-30T23:59:59.000Z

125

Fossil Energy Advanced Research and Technology Development Materials Program  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. (comps.)

1992-12-01T23:59:59.000Z

126

THE DEVELOPMENT OF NEW OR IMPROVED SYNTHETIC MATERIALS FROM CORN  

E-Print Network [OSTI]

of materials will diversify the market for corn and for wet- mill biorefineries." Jaffe said that the workTHE DEVELOPMENT OF NEW OR IMPROVED SYNTHETIC MATERIALS FROM CORN DERIVATIVES IS THE GOAL OF A PARTNERSHIP AMONG NJIT RESEARCHERS, THE IOWA CORN PROMOTION BOARD AND THE MID-ATLANTIC TECHNOLOGY, RESEARCH

Bieber, Michael

127

An Integrated, Component-level Approach to Fusion Materials Development  

E-Print Network [OSTI]

1.1 e19 1.5 e 20 Vacuum Vessel 3.4 e11 4.5 e 12 Cryostat 3E+17 3 systems currently used are reactor viable - #12;Challenge of the Fusion Nuclear Environment - Plasma Wall and computational materials science are key tools to accelerate fusion materials development. However, as governing

128

Investment performance of life-science venture capital investment funds, persistence, and subsector analysis  

E-Print Network [OSTI]

Venture capital investment performance data and performance attribution are not typically published. Venture investors articulate (and sell to LPs) conflicting strategies; the popular business literature and culture is ...

Behrens, Jeffrey S

2007-01-01T23:59:59.000Z

129

Material Recovery and Waste Form Development FY 2014 Accomplishments Report  

SciTech Connect (OSTI)

Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

Lori Braase

2014-11-01T23:59:59.000Z

130

7 - New metallic materials development by laser additive manufacturing  

Science Journals Connector (OSTI)

Abstract The application of laser-based additive manufacturing (AM) technology to prepare novel structured high-performance materials and components is of unique interest. The special material incremental manufacturing (MIM) processing strategy and highly nonequilibrium metallurgical nature of laser processes favor the formation of bulk-form materials with unique microstructures and properties. This chapter summarizes our research work on the development of the nanostructured TiC reinforced Ti nanocomposites and microcellular stainless steel porous material, using the selective laser melting (SLM) AM process.

Dongdong Gu

2015-01-01T23:59:59.000Z

131

Energy Department Investments to Develop Lighter, Stronger Materials for  

Broader source: Energy.gov (indexed) [DOE]

Investments to Develop Lighter, Stronger Investments to Develop Lighter, Stronger Materials for Greater Vehicle Fuel Economy Energy Department Investments to Develop Lighter, Stronger Materials for Greater Vehicle Fuel Economy August 13, 2012 - 9:14am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to reduce the United States' reliance on foreign oil and save drivers money at the pump, U.S. Energy Secretary Steven Chu announced today seven new projects to accelerate the development and deployment of stronger and lighter materials for the next generation of American-made cars and trucks. These projects include the development and validation of modeling tools to deliver higher performing carbon fiber composites and advanced steels, as well as research into new lightweight, high-strength

132

Robotic control architecture development for automated nuclear material handling systems  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies.

Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

1995-02-01T23:59:59.000Z

133

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

134

CMI Affiliate Members | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mineral exploration and development company focused on critical metals including Rare Earth Elements (REE's) and tungsten (W) in Scandinavia. Tasman is listed on the TSX Venture...

135

Vantage Point Venture Partners (Canada) | Open Energy Information  

Open Energy Info (EERE)

Vantage Point Venture Partners (Canada) Vantage Point Venture Partners (Canada) Name Vantage Point Venture Partners (Canada) Address 1200 McGill College, Suite 1240 Place Montreal, Canada Zip QC H3B 4G7 Product Venture capital fund. Website http://www.vpvp.com/ Coordinates 45.501418°, -73.5703564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.501418,"lon":-73.5703564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Florida Venture Capital Program (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Florida Venture Capital Program (Florida) Florida Venture Capital Program (Florida) Florida Venture Capital Program (Florida) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source US Department of the Treasury State Florida Program Type Equity Investment Grant Program Provider Florida Opportunity Fund The Florida Venture Capital Program provides equity investments and convertible debt instruments to emerging Florida companies and companies locating in Florida with long-term growth potential. Equity investments require a matching private capital investment or other credit assistance. Equity investments and debt instruments ranging from $1,000,000 to $5,000,000 are available, though larger transactions are permitted in

137

Venture Capital in den USA und der Bundesrepublik  

Science Journals Connector (OSTI)

Der Begriff Venture Capital wird oft mit der Lsung technisch-wirtschaftlicher Problemstellungen der 80er Jahre verbunden. Auch deutsche Politiker und Medien entdeckten 1983 diese Idee. Sie waren von den jen...

Werner Quillmann

1988-01-01T23:59:59.000Z

138

Phasing Out an Inefficient Venture Capital Tax Credit  

Science Journals Connector (OSTI)

In 2005, the Government of Ontario, Canada, announced the phase out of the Labour Sponsored Venture Capital Corporation (LSVCC) tax credit, which will become effective in 2011. ... related to the phasing out of t...

Douglas Cumming; Sofia Johan

2010-09-01T23:59:59.000Z

139

Superior Ecotech Wins University of Colorado Cleantech New Venture Challenge  

Office of Energy Efficiency and Renewable Energy (EERE)

Competing on its home turf, Superior Ecotech won the University of Colorado at Boulders Cleantech New Venture Challengeone of six regional contests that make up the Energy Department's National Clean Energy Business Plan Competition.

140

Alvan Blanch Green Fuels joint venture | Open Energy Information  

Open Energy Info (EERE)

venture Place: United Kingdom Product: A partnership in which Alvan Blanch provides an oil press to extract oil from rape and Green Fuels provides the equipment to turn the oil...

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Extreme Value Analysis and Ventures into Space and Time  

E-Print Network [OSTI]

Extreme Value Analysis and Ventures into Space and Time 15 Center for Atmospheric Research Copyright NCAR 2013 #12;Extreme Value Analysis'arrive jamais" --Emil Gumbel Copyright NCAR 2013 Extreme Value Analysis #12;Copyright

Gilleland, Eric

142

NETL Publications: Computational Capabilities to Develop Materials for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Capabilities to Develop Materials for Advanced Fossil Energy Power Systems Computational Capabilities to Develop Materials for Advanced Fossil Energy Power Systems February 23, 2011 Table of Contents Disclaimer Presentations PRESENTATIONS Overview of FOA000260 awards Patricia Rawls, NETL Presentation [PDF-153KB] Computational Design of Creep Resistant Alloys and Experimental Validation in Ferritic Alloys Peter Liaw, U. Tennessee Presentation [PDF-5.19MB] Computational Capabilities for Predictions of Interactions at the Grain Boundaries of Refractory Alloys Alex Vasenkov, CFD Research Corp Presentation [PDF-7.03MB] Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for Fossil Energy Power System Applications Wai-Yim Ching, U. Missouri - Kansas City Presentation [PDF-1.14MB] Modeling Creep-Fatigue- Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants

143

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

144

Multi-cultural entrepreneurial ventures in the former Soviet Union: case studies of Finnish and US approaches in Russia, Ukraine and the Baltics  

Science Journals Connector (OSTI)

We present a comparative three-way study on how the characteristics of entrepreneurs and managers, as determined by their national and cultural backgrounds, influence joint entrepreneurial ventures between widely different countries: USA-Eastern Europe, versus Finland-Eastern Europe. Specifically, we describe and analyse the approach of Finnish companies in Russia and the Baltics, based on three case studies, and compare it to the approach of a US new venture in Ukraine. We discuss the impact of multi-cultural differences on the organisational evolution of the joint ventures, including market direction, structure, development of corporate standards, equity sharing, and patterns of cooperation and tension between partners. We summarise the lessons learned in the field that may be useful to Western government officials, managers, and especially entrepreneurs planning to set up joint ventures in Russia, Ukraine, and the Baltics.

Pier A. Abetti; Inkeri Hirvensalo; Mark I. Kapij

2001-01-01T23:59:59.000Z

145

Development of scintillation materials for medical imaging and other applications  

Science Journals Connector (OSTI)

Scintillation materials that produce pulses of visible light in response to the absorption of energetic photons neutrons and charged particles are widely used in various applications that require the detection of radiation. The discovery and development of new scintillators has accelerated in recent years due in large part to their importance in medical imaging as well as in security and high energy physics applications. Better understanding of fundamental scintillation mechanisms as well as the roles played by defects and impurities have aided the development of new high performance scintillators for both gamma-ray and neutron detection. Although single crystals continue to dominate gamma-ray based imaging techniques composite materials and transparent optical ceramics potentially offer advantages in terms of both synthesis processes and scintillation performance. A number of promising scintillator candidates have been identified during the last few years and several are currently being actively developed for commercial production. Purification and control of raw materials and cost effective crystal growth processes can present significant challenges to the development of practical new scintillation materials.

C. L. Melcher

2013-01-01T23:59:59.000Z

146

Electronic materials with a wide band gap: recent developments  

Science Journals Connector (OSTI)

Usually, semiconductors with a band gap Eg 3 eV or larger are called wide band gap materials. Their optical emission can span the whole of the visible spectrum, enabling the development of devices for solid-state lighting. In addition, a large Eg results in a high electrical breakthrough field, which is interesting for high-power electronics.

Klimm, D.

2014-08-29T23:59:59.000Z

147

Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators  

SciTech Connect (OSTI)

Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

Anne Seifert; Louis Nadelson

2011-06-01T23:59:59.000Z

148

California Coast Venture Forum | Open Energy Information  

Open Energy Info (EERE)

Forum Forum Jump to: navigation, search Name California Coast Venture Forum Address 800 Anacapa Street, Suite A Place Santa Barbara, California Zip 93101 Region Southern CA Area Year founded 1996 Phone number (805) 495-6962 Website http://www.ccvf.org/ Notes Mission is to mentor, advise and promote growing companies in markets in California Coordinates 34.421162°, -119.698427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.421162,"lon":-119.698427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture  

E-Print Network [OSTI]

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Policy Number & Name: 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Approval

Yang, Eui-Hyeok

150

Develop Improved Materials to Support the Hydrogen Economy  

SciTech Connect (OSTI)

The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

Dr. Michael C. Martin

2012-07-18T23:59:59.000Z

151

Low work function material development for the microminiature thermionic converter.  

SciTech Connect (OSTI)

Thermionic energy conversion in a miniature format shows potential as a viable, high efficiency, micro to macro-scale power source. A microminiature thermionic converter (MTC) with inter-electrode spacings on the order of microns has been prototyped and evaluated at Sandia. The remaining enabling technology is the development of low work function materials and processes that can be integrated into these converters to increase power production at modest temperatures (800 - 1300 K). The electrode materials are not well understood and the electrode thermionic properties are highly sensitive to manufacturing processes. Advanced theoretical, modeling, and fabrication capabilities are required to achieve optimum performance for MTC diodes. This report describes the modeling and fabrication efforts performed to develop micro dispenser cathodes for use in the MTC.

Zavadil, Kevin Robert; Battaile, Corbett Chandler; Marshall, Albert Christian; King, Donald Bryan; Jennison, Dwight Richard

2004-03-01T23:59:59.000Z

152

Materials and Component Development for Advanced Turbine Systems  

SciTech Connect (OSTI)

In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.

Alvin, M.A.; Pettit, F.; Meier, G.; Yanar, N.; Chyu, M.; Mazzotta, D.; Slaughter, W.; Karaivanov, V.; Kang, B.; Feng, C.; Chen, R.; Fu, T-C.

2008-10-01T23:59:59.000Z

153

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS  

SciTech Connect (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760C with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas.

M. A. Alvin

2009-06-12T23:59:59.000Z

154

Vantage Point Venture Partners (California) | Open Energy Information  

Open Energy Info (EERE)

Point Venture Partners (California) Point Venture Partners (California) Jump to: navigation, search Logo: Vantage Point Venture Partners (California) Name Vantage Point Venture Partners (California) Address 1001 Bayhill Drive, Suite 300 Place San Bruno, California Zip 94066 Region Bay Area Product Venture capital fund. Phone number (650) 866-3100 Website http://www.vpvp.com/ Coordinates 37.6301458°, -122.4189541° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6301458,"lon":-122.4189541,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Vantage Point Venture Partners (Hong Kong) | Open Energy Information  

Open Energy Info (EERE)

Kong) Kong) Jump to: navigation, search Logo: Vantage Point Venture Partners (Hong Kong) Name Vantage Point Venture Partners (Hong Kong) Address Two Exchange Square, Level 8-5 Place Central, Hong Kong Product Venture capital fund. Phone number 852 2297 2325 Website http://www.vpvp.com/ Coordinates 22.2838889°, 114.1583333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.2838889,"lon":114.1583333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Vantage Point Venture Partners (China) | Open Energy Information  

Open Energy Info (EERE)

China) China) Jump to: navigation, search Logo: Vantage Point Venture Partners (China) Name Vantage Point Venture Partners (China) Address No. 79 Jan Guo Road Place Beijing, China Zip 100025 Product Venture capital fund. Phone number 86-10-59204270 Website http://www.vpvp.com/ Coordinates 39.9090502°, 116.5382066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9090502,"lon":116.5382066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

EcoElectron Ventures Inc | Open Energy Information  

Open Energy Info (EERE)

EcoElectron Ventures Inc EcoElectron Ventures Inc Jump to: navigation, search Name EcoElectron Ventures Inc Address 1106 Second Street, PMB 212 Place Encinitas, California Zip 92024 Region Southern CA Area Coordinates 33.052083°, -117.2793685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.052083,"lon":-117.2793685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing  

SciTech Connect (OSTI)

For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal??s forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals ?? materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

2013-04-30T23:59:59.000Z

159

Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund | Open  

Open Energy Info (EERE)

Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund Rudd Klein Alternative Energy Ventures LLC aka Phoenix Energy Fund Jump to: navigation, search Name Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund) Place New York, New York Sector Solar Product New York venture capital firm, specialising in early-stage solar companies. References Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund) is a company located in New York, New York . References ↑ "Rudd-Klein Alternative Energy Ventures LLC (aka Phoenix Energy Fund)" Retrieved from "http://en.openei.org/w/index.php?title=Rudd_Klein_Alternative_Energy_Ventures_LLC_aka_Phoenix_Energy_Fund&oldid=350507"

160

Challenges for internationalization models : the case of e-commerce ventures' informal internationalization  

E-Print Network [OSTI]

This paper investigates if internationalization models can be applied to American e-commerce ventures. Empirical results show that e-commerce ventures do not follow internationalization models, in which companies either ...

Franois, Sbastien (Sbastien Emmanuel)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

RGS Development BV | Open Energy Information  

Open Energy Info (EERE)

RGS Development BV Jump to: navigation, search Name: RGS Development BV Place: Netherlands Sector: Solar Product: Joint venture between the Energy Research Centre of the...

162

Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI  

Broader source: Energy.gov [DOE]

Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research partners

163

Development of sulfur cathode material for Li-S batteries.  

E-Print Network [OSTI]

??M.S. Efforts were taken to fabricate a cathode material having Sulfur as the active material. First step is composed of identifying potential ways of fabricating (more)

Dharmasena, Ruchira Ravinath, 1984-

2014-01-01T23:59:59.000Z

164

FY 2008 Progress Report for Lightweighting Materials- 8. Polymer Composites Research and Development  

Broader source: Energy.gov [DOE]

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

165

SAIL Venture Partners (New York) | Open Energy Information  

Open Energy Info (EERE)

SAIL Venture Partners (New York) SAIL Venture Partners (New York) Name SAIL Venture Partners (New York) Address 30 Rockefeller Plaza Place New York, New York Zip 10112 Region Northeast - NY NJ CT PA Area Product Venture capital fund focusing on clean energy Year founded 2002 Phone number (917) 612-2620 Website http://www.sailvc.com/ Coordinates 40.7589558°, -73.9794642° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7589558,"lon":-73.9794642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Hoechst and Wacker plan joint venture in PVC  

SciTech Connect (OSTI)

Restructuring of Europe's petrochemical industry has taken a further step with the announcement that Hoechst (Frankfurt) and Wacker Chemie (Munich) are planning a joint venture in polyvinyl chloride (PVC). The venture would include production, R D, sales and marketing, plus both companies' PVC recycling activities. However, their vinyl chloride monomer (VCM) plants, and Hoechst's Kalle PVC film business, have been left out. Erich Schnitzler, head of Hoechst's PVC business unit, does not anticipate problems with the European Community's competition directorate. We are both among the middle-sized European PVC producers, and together we would have a 9%-10% market share. Our joint venture would not limit competition. Both partners are hoping for approval from Brussels in first-quarter 1993. Hoechst has 255,000 m.t./year of PVC capacity at Gendorfand Knapsack, while Wacker has 365,000 m.t./year at Burghausen and Cologne. All the units, except Wacker's Cologne plant, are back integrated to VCM. The joint venture would buy VCM from the two parent companies and on the merchant market.

Young, I.

1992-12-02T23:59:59.000Z

167

New Venture Marketing MKTG 561-01, Fall 2013  

E-Print Network [OSTI]

1 New Venture Marketing MKTG 561-01, Fall 2013 Course Pre-requisites: MBA 517 or equivalent An interest in learning about entrepreneurship, innovation, and marketing Course Overview: A dramatically new form of marketing has emerged. Recent years have witnessed the use of such terms as subversive

Carter, John

168

New Venture Marketing MKTG 561-01 Fall 2012  

E-Print Network [OSTI]

New Venture Marketing MKTG 561-01 Fall 2012 Professor: Peter Raven Contact: pvraven (2009), Rethinking Marketing: The Entrepreneurial Imperative, Pea Course Pre-requisites: MBA 517 or equivalent An interest in learning about entrepreneurship and marketing Course Overview: A dramatically new

Carter, John

169

Development of improved performance refractory liner materials for slagging gasifiers  

SciTech Connect (OSTI)

Refractory liners for slagging gasifiers used in power generation, chemical production, or as a possible future source of hydrogen for a hydrogen based economy, suffer from a short service life. These liner materials are made of high Cr2O3 and lower levels of Al2O3 and/or ZrO2. As a working face lining in the gasifier, refractories are exposed to molten slags at elevated temperature that originate from ash in the carbon feedstock, including coal and/or petroleum coke. The molten slag causes refractory failure by corrosion dissolution and by spalling. The Albany Research Center is working to improve the performance of Cr2O3 refractories and to develop refractories without Cr2O3 or with Cr2O3 content under 30 wt pct. Research on high Cr2O3 materials has resulted in an improved refractory with phosphate additions that is undergoing field testing. Results to date of field trials, along with research direction on refractories with no or low Cr2O3, will be discussed.

Kwong, Kyei-Sing; Bennett, James P.; Powell, Cynthia; Thomas, Hugh; Krabbe, Rick

2005-01-01T23:59:59.000Z

170

Sublimation rates of explosive materials : method development and initial results.  

SciTech Connect (OSTI)

Vapor detection of explosives continues to be a technological basis for security applications. This study began experimental work to measure the chemical emanation rates of pure explosive materials as a basis for determining emanation rates of security threats containing explosives. Sublimation rates for TNT were determined with thermo gravimetric analysis using two different techniques. Data were compared with other literature values to provide sublimation rates from 25 to 70 C. The enthalpy of sublimation for the combined data was found to be 115 kJ/mol, which corresponds well with previously reported data from vapor pressure determinations. A simple Gaussian atmospheric dispersion model was used to estimate downrange concentrations based on continuous, steady-state conditions at 20, 45 and 62 C for a nominal exposed block of TNT under low wind conditions. Recommendations are made for extension of the experimental vapor emanation rate determinations and development of turbulent flow computational fluid dynamics based atmospheric dispersion estimates of standoff vapor concentrations.

Phelan, James M.; Patton, Robert Thomas

2004-08-01T23:59:59.000Z

171

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

172

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

develop the high energy high power cathode materials for LIBNew Cathode Material for Batteries of High- Energy Density.High Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

173

Material properties of Devonian shale for stimulation-technology development  

SciTech Connect (OSTI)

Material properties are used in the design of hydraulic fracturing treatments to establish a relation between the volume of fluid used in a job and the expected extent of the fracture. In Devonian shales this is important in determining the volume of fluid necessary to intersect the natural fracture system. In an attempt to provide a consistent and self-contained data base on the physical properties of Devonian shale, Science Applications has reviewed and collected previously generated data from numerous sources and has performed additional experiments so as to define the applicability of some of the quasi-static data to the evaluation of dynamic treatments. The review, experiments and evaluation which have been conducted on Devonian shale physical properties have resulted in the following principle conclusions: the elastic properties and yield surfaces defined by triaxial tests on Devonian shale may be significantly dependent upon shale type and organic richness, but a more systematic approach to core selection and testing will be required to establish correlations. Sufficient material property data for modeling and stimulation design exist only on a very site-specific basis, and more testing is required for identifying generic and regional trends. Dynamic experiments employing modified split-Hopkinson-bar techniques were so controlled by anisotropic sample failure that quantitative data on dynamic yield strength could not be obtained. There is a strong need for the development of experimental techniques and the generation of concordant data on the dynamic yield characteristics of Devonian shale at strain rates representative of explosive and tailored-pulse-loading. 9 figures, 17 tables.

Blanton, T.L.; Young, C.; Patti, N.C.

1980-10-01T23:59:59.000Z

174

Materials, Modules, and Systems: An Atoms to Autos Approach to Automotive Thermoelectric Systems Development  

Broader source: Energy.gov [DOE]

Highlights comprehensive approach tothermoelectric materials, module, and systems development at GM and in collaboration with our R&D partners

175

Development of building materials by using micro-encapsulated phase change material  

Science Journals Connector (OSTI)

Micro-encapsulated phase change material (Micro-PCM) could be used for ... thermal energy storage and also for PCM-building materials. Micro-PCM was prepared by in-situ ... ?m. The thermal fluctuation of PCM-buil...

See Hoon Lee; Sang Jun Yoon; Yong Gu Kim

2007-03-01T23:59:59.000Z

176

PRESSURE DEVELOPMENT IN SEALED CONTAINERS WITH PLUTONIUM BEARING MATERIALS  

SciTech Connect (OSTI)

Gas generation by plutonium-bearing materials in sealed containers has been studied. The gas composition and pressure are determined over periods from months to years. The Pu-bearing materials studied represent those produced by all of the major processes used by DOE in the processing of plutonium and include the maximum amount of water (0.5% by weight) allowed by DOE's 3013 Standard. Hydrogen generation is of high interest and the Pu-bearing materials can be classed according to how much hydrogen is generated. Hydrogen generation by high-purity plutonium oxides packaged under conditions typical for actual 3013 materials is minimal, with very low generation rates and low equilibrium pressures. Materials with chloride salt impurities have much higher hydrogen gas generation rates and result in the highest observed equilibrium hydrogen pressures. Other materials such as those with high metal oxide impurities generate hydrogen at rates in between these extremes. The fraction of water that is converted to hydrogen gas as equilibrium is approached ranges from 0% to 25% under conditions typical of materials packaged to the 3013 Standard. Generation of both hydrogen and oxygen occurs when liquid water is present. The material and moisture conditions that result in hydrogen and oxygen generation for high-purity plutonium oxide and chloride salt-bearing plutonium oxide materials have been characterized. Other gases that are observed include nitrous oxide, carbon dioxide, carbon monoxide, and methane.

Duffey, J.; Livingston, R.

2010-02-01T23:59:59.000Z

177

Point Venture, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Venture, Texas: Energy Resources Venture, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3793672°, -97.9961238° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3793672,"lon":-97.9961238,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

SAIL Venture Partners (Washington DC) | Open Energy Information  

Open Energy Info (EERE)

DC) DC) Name SAIL Venture Partners (Washington DC) Address 2900 S. Quincy St, Suite 375 Place Arlington, Virginia Zip 22206 Product Venture capital fund focusing on clean energy Year founded 2002 Phone number (703) 379-2713 Website http://www.sailvc.com/ Coordinates 38.839975°, -77.087781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.839975,"lon":-77.087781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

O2Diesel Corporation formerly Dynamic Ventures | Open Energy Information  

Open Energy Info (EERE)

O2Diesel Corporation formerly Dynamic Ventures O2Diesel Corporation formerly Dynamic Ventures Jump to: navigation, search Name O2Diesel Corporation (formerly Dynamic Ventures) Place Newark, Delaware Zip 19713 Product O2Diesel Corporation has a proprietary additive made from fats and oils, which facilitates the blending of ethanol with diesel. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

FY 2009 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development  

Broader source: Energy.gov [DOE]

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm29jody.pdf More Documents & Publications Post-Shred Materials Recovery Technology...

182

Venture Intern Program 2013 Michael Berry  

E-Print Network [OSTI]

University with a focus on commercialization. He is concurrently completing this degree and working with the Office of Commercialization and Corporate Development assisting with the appraisal and commercialization and coastal processes. With a background in applied sciences his areas of interest broadly include Hydrology

Escher, Christine

183

Development of Digital Materials Database for Design and Construction of New Power Plants  

SciTech Connect (OSTI)

To facilitate materials selection, structural design, and future maintenance of the Generation IV nuclear reactor systems, an interactive, internet accessible materials property database, dubbed Gen IV Materials Handbook, has been under development with the support of the United States Department of Energy. The Handbook will provide an authoritative source of information on structural materials needed for the development of various Gen IV nuclear reactor systems along with powerful data analysis and management tools. In this paper, the background, history, framework, major features, contents, and development strategy of the Gen IV Materials Handbook are discussed. Current development status and future plans are also elucidated.

Ren, Weiju [ORNL

2008-01-01T23:59:59.000Z

184

Ventures: Conoco abandons Iranian oil deal  

SciTech Connect (OSTI)

Conoco (Houston), the oil and gas subsidiary of DuPont, has backed out of a deal to develop offshore oil fields for Iran as a result of a week of intense pressure from the Clinton Administration. Under the agreement, Conoco Iran, a Netherlands-based affiliate, would have developed two oil fields in the Persian Gulf. The deal, valued at $1 billion, would have been the first between Iran and a U.S. company since Washington severed relations with Teheran in 1980. Conoco says it operated within the law and with the knowledge of the U.S. government in the three years the deal was being negotiated. President Clinton announced an executive order barring such deals last Tuesday, after Conoco executives informed the Administration that the deal would be abandoned if an order was issued.

Westervelt, R.

1995-03-22T23:59:59.000Z

185

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect (OSTI)

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

186

Abstract A29: Developing biospecimen and clinical research education materials for ethnic minorities and younger survivors.  

Science Journals Connector (OSTI)

...Retention/Adherence Research: Poster Presentations - Proffered...biospecimen and clinical research education materials for ethnic minorities...the development of BB and CT education material focusing on ethnic...2) An annual Community Education and Awareness forum was designed...

Sophia Yeung; Mayra Serrano; and Kimlin Ashing-Giwa

2012-10-01T23:59:59.000Z

187

Center for Nanophase Materials Sciences (CNMS) - ORNL develops...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORNL DEVELOPS LIGNIN-BASED THERMOPLASTIC CONVERSION PROCESS (Newswise) Turning lignin, a plant's structural "glue" and a byproduct of the paper and pulp industry, into something...

188

Development of Dual Functional Textile Materials Using Atmospheric Plasma Treatments.  

E-Print Network [OSTI]

??Glow discharges and low temperature plasmas and their applications have increasingly entered various areas of industrial applications. The textile industry is a developing area for (more)

Mittal, Khushboo Surender

2009-01-01T23:59:59.000Z

189

SciTech Connect: Metallic Membrane Materials Development for...  

Office of Scientific and Technical Information (OSTI)

Development for Hydrogen Production from Coal Derived Syngas The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High...

190

Materials and Component Development for Advanced Turbine Systems  

SciTech Connect (OSTI)

Hydrogen-fired and oxy-fueled land-based gas turbines currently target inlet operating temperatures of ?1425-1760C (?2600-3200F). In view of natural gas or syngas-fired engines, advancements in both materials, as well as aerothermal cooling configurations are anticipated prior to commercial operation. This paper reviews recent technical accomplishments resulting from NETLs collaborative research efforts with the University of Pittsburgh and West Virginia University for future land-based gas turbine applications.

Alvin, M.A.; Pettit, F.; Meier, G.H.; Yanar, M.; Helminiak, M.; Chyu, M.; Siw, S.; Slaughter, W.S.; Karaivanov, V.; Kang, B.S.; Feng, C.; Tannebaum, J.M.; Chen, R.; Zhang, B.; Fu, T.; Richards, G.A,; Sidwell, T.G.; Straub, D.; Casleton, K.H.; Dogan, O.M.

2008-07-01T23:59:59.000Z

191

Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97  

SciTech Connect (OSTI)

This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

Newkirk, L.

1997-12-01T23:59:59.000Z

192

Towards quantification of the role of materials innovation in overall technological development  

E-Print Network [OSTI]

This article presents a method for quantitatively assessing the role of materials innovation in overall technological development. The method involves classifying the technical changes underlying the overall innovation ...

Magee, Christopher L.

193

Entrepreneurial marketing: moving beyond marketing in new ventures  

Science Journals Connector (OSTI)

This paper discusses an alternative conceptualisation of entrepreneurial marketing that can be understood as 'marketing with an entrepreneurial mindset'. By combining the definition of marketing of the American Marketing Association (AMA) and two conceptualisations of entrepreneurship (entrepreneurial orientation and entrepreneurial management), we arrive at a definition of entrepreneurial marketing as the organisational function of marketing by taking into account innovativeness, risk taking, pro-activeness and the pursuit of opportunities without regard for the resources currently controlled. This definition must not be restricted to young and small ventures, but can equally be applied to larger firms. We illustrate the concept of entrepreneurial marketing by highlighting guerrilla marketing, buzz marketing and viral marketing.

Sascha Kraus; Rainer Harms; Matthias Fink

2010-01-01T23:59:59.000Z

194

2014 SSL Market Development Workshop Presentations and Materials  

Broader source: Energy.gov [DOE]

Download presentations from the 2014 Solid-State Lighting Market Development Workshop, held November 1213 in Detroit, Michigan. Please note, not all of the workshop speakers presented slides.

195

Prospects for accelerated development of high performance structural materials Steven J. Zinkle a,  

E-Print Network [OSTI]

in the operational per- formance and radiation resistance of structural materials during the past few decadesProspects for accelerated development of high performance structural materials Steven J. Zinkle a for fission and fusion energy applica- tions, by linking material fabrication to thermo-mechanical properties

Ghoniem, Nasr M.

196

9FALL 2004NAVO MSRC NAVIGATOR The development of "smart" materials  

E-Print Network [OSTI]

9FALL 2004NAVO MSRC NAVIGATOR The development of "smart" materials is of wide-ranging, significant and respond to changes in their environment. This ability is the primary reason that smart materials show unexplored. However, smart materials tend to have complex properties that are difficult and expensive

Rappe, Andrew M.

197

Strategic alliance announcements and new venture stock market returns: signaling and resource-based perspectives on the effects of partner firm, new venture firm, and alliance characteristics  

E-Print Network [OSTI]

Firms form marketing and technology alliances to access other firms resources, and these alliances act as signals to investors. Investors use these signals to adjust expectations about new venture performance prospects, but our understanding...

Holmes Jr, Robert Michael

2009-05-15T23:59:59.000Z

198

SEMI-ANNUAL REPORTS FOR VENTURE GLOBAL, LLC - FE DKT. NO. 13...  

Broader source: Energy.gov (indexed) [DOE]

VENTURE GLOBAL, LLC - FE DKT. NO. 13-69-LNG (ORDER 3345) AND 14-88-LNG SEMI-ANNUAL REPORTS FOR VENTURE GLOBAL, LLC - FE DKT. NO. 13-69-LNG (ORDER 3345) AND 14-88-LNG October 2014...

199

Pangaea Ventures Ltd (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

Logo: Pangaea Ventures Ltd (New Jersey) Name Pangaea Ventures Ltd (New Jersey) Address 90 Amwell Road, Bldg 3, Suite 318 Place Hillsborough, New Jersey Zip 08844 Region Northeast - NY NJ CT PA Area Product Invests in early-stage clean energy technologies. Phone number (908) 874-3880 Website http://www.pangaeaventures.com Coordinates 40.5067431°, -74.6589497° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5067431,"lon":-74.6589497,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

ITP Materials: Poster - Development of Materials Resistant to Metal Dusting Degradation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

metal dusting phenomenon metal dusting phenomenon in simulated process environments ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ITP Materials, Sensors, and Automation, and Glass Project and Portfolio Review Meeting, June 21-24, Arlington, Virginia. K. Natesan, Z. Zeng, and D. L. Rink Energy Technology Division, Argonne National Laboratory, Argonne, Illinois, 60439 Introduction Metal dusting is a metal loss process that occurs in hot reactive gases The prerequisite for metal dusting is that carbon activity in the gas phase has to be >>1 Metal ends up as fine powder Pitting and crevice attack are common forms

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Rapidly Renewable Materials  

E-Print Network [OSTI]

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Rapidly Renewable RAPIDLY RENEWABLE MATERIALS: WOOL AND CORK Done by: Bin Ou-Yang David Tan Ritesh Bhan #12;i ABSTRACT This report presents an investigation into the feasibility of using two rapidly renewable materials, cork

202

Structural Analysis of Human and Bovine Bone for Development of Synthetic Materials  

E-Print Network [OSTI]

bones, as well as mimicking nature by developing a synthetic material to repair bones. Experimentally, bovine bone, tumor-free human bone, and cancerous human bone were studied via the small scale mechanical loading test. Failure analysis was conducted...

Jang, Eunhwa

2012-10-19T23:59:59.000Z

203

Applied Materials Develops an Advanced Epitaxial Growth System to Bring Down LED Costs  

Broader source: Energy.gov [DOE]

With the help of DOE funding, Applied Materials has developed an advanced epitaxial growth system for gallium nitride (GaN) LED devices that decreases operating costs, increases internal quantum efficiency, and improves binning yields.

204

Development and numerical implementation of nonlinear viscoelastic-viscoplastic model for asphalt materials  

E-Print Network [OSTI]

pavements is illustrated using finite element simulations. The constitutive model developed in this study can describe the behavior of asphalt materials (asphalt binder, asphalt mastic and mixtures) under various testing conditions. This study also achieved...

Huang, Chien-Wei

2009-05-15T23:59:59.000Z

205

Sorbents and Carbon-Based Materials for Hydrogen Storage Research and Development  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's research and development on sorbents and carbon-based materials for hydrogen storage targets breakthrough concepts for storing hydrogen in high-surface-area sorbents...

206

A hybrid approach to developing CALL materials: authoring with Macromedias Dreamweaver/Coursebuilder  

Science Journals Connector (OSTI)

This paper describes some of the pedagogical and technical issues involved in adopting a hybrid approach to CALL materials development. It illustrates some of these issues with reference to a vocational CALL project, LANCAM, which took such a hybrid ...

Pamela Rogerson-revell

2005-05-01T23:59:59.000Z

207

Cathode Contact Materials for Anode-Supported Cell Development - Lawrence Berkeley National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Contact Materials for Anode- Cathode Contact Materials for Anode- Supported Cell Development- Lawrence Berkeley National Laboratory Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of solid oxide

208

Accelerating the Understanding and Development of Hydrogen Storage Materials: A Review of the Five-Year Efforts of the Three DOE Hydrogen Storage Materials Centers of Excellence  

Science Journals Connector (OSTI)

A technical review of the progress achieved in hydrogen storage materials development through the U.S. Department of Energys (DOE) Fuel Cell Technologies Office and the three Hydrogen Storage Materials Center...

Leonard E. Klebanoff; Kevin C. Ott

2014-06-01T23:59:59.000Z

209

Problem solving in product development: a model for the advanced materials industries  

Science Journals Connector (OSTI)

Problem solving has been identified as a key aspect of product development. Yet, existing descriptive models of problem solving in product development are derived from experience in traditional fabrication and assembly-based industries. This paper examines the sequence of problem solving activities in the advanced materials industries. As opposed to the paradigm of product development seen in industries based on traditional metal fabrication and assembly production technology, development activities in advanced materials industries are focused around a core effort in process development. The paper characterises the steps of design and the associated testing patterns in the advanced materials industries. The model formalises the emphasis on process design and process experimentation, providing a richer description of the problem-solving sequence than the traditional design-build-test sequence so common in the fabrication/assembly industries.

Brent D. Barnett; Kim B. Clark

1998-01-01T23:59:59.000Z

210

Research and development of novel advanced materials for next-generation collimators  

E-Print Network [OSTI]

The study of innovative collimators is essential to handle the high energy particle beams required to explore unknown territory in basic research. This calls for the development of novel advanced materials, as no existing metal-based or carbon-based material possesses the combination of physical, thermal, electrical and mechanical properties, imposed by collimator extreme working conditions. A new family of materials, with promising features, has been identified: metal-diamond composites. These materials are to combine the outstanding thermal and physical properties of diamond with the electrical and mechanical properties of metals. The best candidates are Copper-Diamond (Cu-CD) and Molybdenum-Diamond (Mo-CD). In particular, Mo-CD may provide interesting properties as to mechanical strength, melting temperature, thermal shock resistance and, thanks to its balanced material density, energy absorption. The research program carried out on these materials at CERN and collaborating partners is presented, mainly fo...

Bertarelli, A; Carra, F; Dallocchio, A; Gil Costa, M; Mariani, N

2011-01-01T23:59:59.000Z

211

Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii  

Open Energy Info (EERE)

Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Abstract During the drilling of injection well KS-13 in 2005 at the Puna Geothermal Venture (PGV) well field, on the island of Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m. At a depth of 2488 m a melt of dacitic composition was encountered. The melt flowed up the well bore and was repeatedly re-drilled over a depth interval of 8 m, producing several kilograms of clear, colorless vitric cuttings at the surface. The dacitic glass cuttings have a perlitic texture, a silica content of 67 wgt.%, are enriched in alkalis and nearly

212

U.S. Department of Energy Selects Venture Capital Firms to Accelerate  

Broader source: Energy.gov (indexed) [DOE]

Venture Capital Firms to Venture Capital Firms to Accelerate Adoption of Advanced Energy Technologies U.S. Department of Energy Selects Venture Capital Firms to Accelerate Adoption of Advanced Energy Technologies February 27, 2008 - 11:43am Addthis SAN FRANCISCO, CA - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced the competitive selection of three venture capital firms to participate in DOE's newly established Entrepreneur in Residence (EIR) pilot program, which aims to accelerate deployment and commercialization of advanced clean energy technologies from three DOE National Laboratories into the global marketplace. The EIR pilot program furthers President Bush's comprehensive strategy to reduce our nation's dependence on foreign oil and

213

The impact of angel investors on founders of new ventures in the medical technology industry  

E-Print Network [OSTI]

Founders of new ventures in the medical technology (Medtech) industry require capital to establish, sustain, and grow their companies. Most founders must seek some form of external capital to meet these demands; in Medtech, ...

Braly, Alan R. (Alan Ryan)

2011-01-01T23:59:59.000Z

214

Nonprofit disease foundation investments in biotechnology companies : an evaluation of venture philanthropy  

E-Print Network [OSTI]

In the past decade, the practice of venture philanthropy, defined in this research as the provision of capital by a nonprofit entity to a for-profit company, has become an increasingly common asset allocation strategy for ...

Fielding, Sarah (Sarah Tabbals)

2011-01-01T23:59:59.000Z

215

Agency conflicts in financial contracting with applications to venture capital and CDO markets  

E-Print Network [OSTI]

In these papers I examine efficient financial contracting when incentive problems play a significant role. In the first chapter (joint with Z. Fluck and S. Myers) we focus on the venture capital industry. We build a two-stage ...

Garrison, Kedran

2005-01-01T23:59:59.000Z

216

Company Summary Comment Example RPI NYS Walmart Rice 1 Line Pitch Explain your venture in 140  

E-Print Network [OSTI]

Company Summary Comment Example RPI NYS Walmart Rice 1 Line Pitch Explain your venture in 140 Members Advisors Previous Investors Elevator Pitch 60 second pitch. Do this at the end. Contact Name x x x

Linhardt, Robert J.

217

University of Minnesota Start-up Guide Office for Technology Commercialization (OTC) -Venture Center  

E-Print Network [OSTI]

IN THE TECHNOLOGY COMMERCIALIZATION PROCESS .......................................... 3 1. OTC's IntellectualUniversity of Minnesota Start-up Guide Office for Technology Commercialization (OTC) - Venture................................................................................................................. 1 TECHNOLOGY COMMERCIALIZATION AT THE UNIVERSITY OF MINNESOTA ..................... 2 STEPS

Amin, S. Massoud

218

Opening of a PhD studentship Development and characterization of composite materials for hydrogen storage  

E-Print Network [OSTI]

and development of Hydrogen- and Fuel Cell Technologies towards European Strategy for Sustainable, CompetitiveOpening of a PhD studentship Development and characterization of composite materials for hydrogen "Demokritos", is seeking a pre-doctoral researcher to work on hydrogen storage studies in porous and composite

219

Organic solvent-free water-developable sugar resist material derived from biomass in green lithography  

Science Journals Connector (OSTI)

Abstract We have demonstrated an organic solvent-free water-developable branched sugar resist material derived from biomass for its use in green electron beam lithography. This emphasizes the use of plant products instead of conventionally used tetramethylammonium hydroxide and organic solvents. The rationally designed water-developable branched sugar resist material developed in this study can be patterned with an excellent sensitivity of 7?C/cm2 and a resolution of 50200nm lines. In addition, it indicated sufficient thermal stability at ?180C, acceptable CF4 etch selectivity with a hardmask material, 4253% rate of chemical reaction of acryloyl groups affected by the tacticity of branched sugar chain polymers, and developable in pure water at 23C for 60s.

Satoshi Takei; Akihiro Oshima; Takumi Ichikawa; Atsushi Sekiguchi; Miki Kashiwakura; Takahiro Kozawa; Seiichi Tagawa; Tomoko G. Oyama; Syoji Ito; Hiroshi Miyasaka

2014-01-01T23:59:59.000Z

220

Novel Biomass Conversion Process Results in Commercial Joint Venture, The Spectrum of Clean Energy Innovation (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Biomass Conversion Process Novel Biomass Conversion Process Results in Commercial Joint Venture A novel biomass-to-ethanol process developed, integrated, and demonstrated at pilot scale at the National Renewable Energy Laboratory (NREL) is the basis for one of the world's first cellulosic ethanol demonstration plants. The 74,000-ft 2 plant in Vonore, Tennessee, began production in January 2010. Through a Cooperative Research and Development Agreement (CRADA) with DuPont, NREL and DuPont scientists and engineers developed a unique low-cost pretreatment process that converts raw biomass to ethanol in high yields. The process was developed to facilitate the commercial readiness of lignocellulosic ethanol, which is ethanol produced from nonfood biomass feedstocks such as corn stover, agricultural waste, and energy crops.

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development of High-efficiency Thermoelectric Materials for Vehicle Waste Heat Utililization  

SciTech Connect (OSTI)

The goals of this . CRADA are: 1) Investigation of atomistic structure and nucleation of nanoprecipitates in (PbTe){sub I-x}(AgSbTe2){sub x} (LAST) system; and 2) Development of non-equilibrium synthesis of thermoelectric materials for waste heat recovery. We have made significant accomplishment in both areas. We studied the structure of LAST materials using high resolution imaging, nanoelectron diffraction, energy dispersive spectrum, arid electron energy loss spectrum, and observed a range of nanoparticles The results, published in J. of Applied Physics, provide quantitative structure information about nanoparticles, that is essential for the understanding of the origin of the high thermoelectric performance in this class of materials. We coordinated non-equilibrium synthesis and characterization of thermoelectric materials for waste heat recovery application. Our results, published in J. of Electronic Materials, show enhanced thermoelectric figure of merit and robust mechanical properties in bulk . filled skutterudites.

Li, Qiang

2009-04-30T23:59:59.000Z

222

The Development of Low-Cost Integrated Composite Seal for SOFC: Materials and Design Methodologies  

SciTech Connect (OSTI)

This report summarizes the work conducted by UConn SOFC seal development team during the Phase I program and no cost extension. The work included composite seal sample fabrication, materials characterizations, leak testing, mechanical strength testing, chemical stability study and acoustic-based diagnostic methods. Materials characterization work revealed a set of attractive material properties including low bulk permeability, high electrical resistivity, good mechanical robustness. Composite seal samples made of a number of glasses and metallic fillers were tested for sealing performance under steady state and thermal cycling conditions. Mechanical testing included static strength (pull out) and interfacial fracture toughness measurements. Chemically stability study evaluated composite seal material stability after aging at 800 C for 168 hrs. Acoustic based diagnostic test was conducted to help detect and understand the micro-cracking processes during thermal cycling test. The composite seal concept was successfully demonstrated and a set of material (coating composition & fillers) were identified to have excellent thermal cycling performance.

Xinyu Huang; Kristoffer Ridgeway; Srivatsan Narasimhan; Serg Timin; Wei Huang; Didem Ozevin; Ken Reifsnider

2006-07-31T23:59:59.000Z

223

Advanced process research and development to enhance metals and materials recycling.  

SciTech Connect (OSTI)

Innovative, cost-effective technologies that have a positive life-cycle environmental impact and yield marketable products are needed to meet the challenges of the recycling industry. Four materials-recovery technologies that are being developed at Argonne National Laboratory in cooperation with industrial partners are described in this paper: (1) dezincing of galvanized steel scrap; (2) material recovery from auto-shredder residue; (3) high-value-plastics recovery from obsolete appliances; and (4) aluminum salt cake recycling. These technologies are expected to be applicable to the production of low-cost, high-quality raw materials from a wide range of waste streams.

Daniels, E. J.

1997-12-05T23:59:59.000Z

224

Development of a questionnaire to test the impact of scarce materials on design in Developing Countries  

E-Print Network [OSTI]

The objective of this thesis is to create a questionnaire that tests how designers in developing countries design with scarce resources. The questionnaire will be given to mechanical engineering students in Mexico and will ...

Grinnell, Edward (Edward M.)

2011-01-01T23:59:59.000Z

225

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

226

9 - Materials and coatings developments for gas turbine systems and components  

Science Journals Connector (OSTI)

Abstract: The efficiency increase of advanced gas turbines (GTs) is often accompanied with increased thermal, mechanical and environmental loading of turbine, combustor and rotor materials. The development of alloys suitable for such applications has been described with regard to metallurgical rationales and manufacturing processes. Combustor and turbine hot parts materials are developed to manage thermo-mechanical loading. To control thermal and environmental loading, thermal barrier coating and oxidation/corrosion resistant coating have been used. The lifetime prediction based on laboratory tests has been validated by engine experience evaluation of coated parts. Failure mechanisms as well as optimised manufacturing have been discussed in detail to indicate future needs.

M. Konter; H-P. Bossmann

2013-01-01T23:59:59.000Z

227

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network [OSTI]

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

228

Development of PZT materials, fabrication and characterization of multi layered actuators for aerospace applications  

Science Journals Connector (OSTI)

Piezo Electric Materials capable of performing both "sensing" and "actuation" are known as smart materials. These materials produce electric charges on application of mechanical stress (as sensor) or undergo dimensional change when subjected to an electric field (as actuator). PZTs are preferred because of their (i) fast response time (ii) high frequency response (iii) precession control etc. Piezo sensors and actuators are used for various applications e.g. for vibration control of aerospace structures development of smart aeroplane wings / morphing structures precision flow control of propellants in space vehicles fuel flow control in automobile engines energy harvesting etc. At NAL efforts are being made to prepare PZT materials multi-layered actuators are currently fabricated and characterized for aerospace applications.

2012-01-01T23:59:59.000Z

229

Vision for the University of Connecticut Technology Park Materials Discovery, Product Design & Development  

E-Print Network [OSTI]

· Additive Manufacturing and Nanoscale Processing · Fuel Cells, Sustainable Energy & Energy Management & Development and Advanced Manufacturing: Partnering with Industry to Accelerate Manufacturing Innovation for the Tech Park which will house the Connecticut Collaboratory for Materials & Manufacturing (C2M2

Lozano-Robledo, Alvaro

230

Material Modeling and Development of a Realistic Dummy Testing Blast Induced Traumatic Brain Injury  

E-Print Network [OSTI]

Material Modeling and Development of a Realistic Dummy Head for Testing Blast Induced Traumatic Brain Injury S. G. M. Hossain1, C. A. Nelson1, T. Boulet2, M. Arnoult2, L. Zhang2, A. Holmberg2, J. Hein occurrence rate of traumatic brain injury (TBI) ­ 1.4 million people in US per year ­ 50,000 deaths ­ 235

Farritor, Shane

231

Electrical and Optical As polymer materials have developed, their excellent and sometimes outstanding  

E-Print Network [OSTI]

4 Electrical and Optical Properties As polymer materials have developed, their excellent and sometimes outstanding dielectric properties have guaranteed their widespread use as insulants in electrical and electronic engineering. In the nineteenth and early twentieth centuries electrical apparatus relied on wood

Hall, Christopher

232

Materials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis and Thermochemical-Electrochemical Processes  

E-Print Network [OSTI]

is water electrolysis at high temperatures using heat from a nuclear reactor, known as high temperatureMaterials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis steam electrolysis (HTSE). The feasibility of this process is currently being demonstrated at Idaho

Yildiz, Bilge

233

NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

Not Available

2010-12-01T23:59:59.000Z

234

DEVELOPMENT AND APPLICATION OF MATERIALS PROPERTIES FOR FLAW STABILITY ANALYSIS IN EXTREME ENVIRONMENT SERVICE  

SciTech Connect (OSTI)

Discovery of aging phenomena in the materials of a structure may arise after its design and construction that impact its structural integrity. This condition can be addressed through a demonstration of integrity with the material-specific degraded conditions. Two case studies of development of fracture and crack growth property data, and their application in development of in-service inspection programs for nuclear structures in the defense complex are presented. The first case study covers the development of fracture toughness properties in the form of J-R curves for rolled plate Type 304 stainless steel with Type 308 stainless steel filler in the application to demonstrate the integrity of the reactor tanks of the heavy water production reactors at the Savannah River Site. The fracture properties for the base, weld, and heat-affected zone of the weldments irradiated at low temperatures (110-150 C) up to 6.4 dpa{sub NRT} and 275 appm helium were developed. An expert group provided consensus for application of the irradiated properties for material input to acceptance criteria for ultrasonic examination of the reactor tanks. Dr. Spencer H. Bush played a lead advisory role in this work. The second case study covers the development of fracture toughness for A285 carbon steel in high level radioactive waste tanks. The approach in this case study incorporated a statistical experimental design for material testing to address metallurgical factors important to fracture toughness. Tolerance intervals were constructed to identify the lower bound fracture toughness for material input to flaw disposition through acceptance by analysis.

Sindelar, R; Ps Lam, P; Andrew Duncan, A; Bruce Wiersma, B; Karthik Subramanian, K; James Elder, J

2007-04-18T23:59:59.000Z

235

Trends in U.S. Venture Capital Investments Related to Energy: 1980 through the Second Quarter of 2010  

SciTech Connect (OSTI)

This report documents trends in U.S. venture capital investments over the period 1980 through the second quarter of calendar year 2010 (2010Q1+Q2). Particular attention is given to U.S. venture capital investments in the energy/industrial sector over the period 1980-2010Q1+Q2 as well as in the more recently created cross-cutting category of CleanTech over the period 1995-2010Q1+Q2. During the early 1980s, U.S. venture capital investments in the energy/industrial sector accounted for more than 20% of all venture capital investments. However subsequent periods of low energy prices, the deregulation of large aspects of the energy industry, and the emergence of fast growing new industries like computers (both hardware and software), biotechnology and the Internet quickly reduced the priority accorded to energy/industrial investments. To wit, venture capital investments related to the energy/industrial sector accounted for only 1% of the $119 billion dollars invested in 2000 by the U.S. venture capital community. The significant increase in the real price of oil that began in 2003-2004 correlates with renewed interest and increased investment by the venture capital community in energy/industrial investment opportunities. Venture capital investments for 2009 for the energy/industrial sector accounted for $2.1 billion or slightly more than 13% of all venture capital invested that year. The total venture capital invested in energy/industrial during the first two quarters of 2010 is close to $1.8 billion accounting for 17% of all venture capital investments during the first two quarters of 2010. In 2009, the aggregate amount invested in CleanTech was $1.8 billion (30% of the total US venture capital invested in that lean year) and for the first two quarters of 2010 US venture capital investments in CleanTech have already exceeded $1.9 billion (19% of all US venture capital investments made during the first half of 2010). Between 2004 and 2009, U.S. venture capital investments in energy/industrial as well as CleanTech have more than quadrupled in real terms.

Dooley, James J.

2010-07-29T23:59:59.000Z

236

Developing standard performance testing procedures for material control and accounting components at a site  

SciTech Connect (OSTI)

The condition of a nuclear material control and accountability system (MC&A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC&A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC&A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC&A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC&A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC&A performance-testing procedures were the basis for a Guide for MC&A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

Scherer, Carolynn P [Los Alamos National Laboratory; Bushlya, Anatoly V [ROSATOM, RUSSIA; Efimenko, Vladimir F [IPPE, RUSSIA; Ilyanstev, Anatoly [IPPE, RUSSIA; Regoushevsky, Victor I [IPPE, RUSSIA

2010-01-01T23:59:59.000Z

237

Development of Eco-efficiency Indicators for Rubber Glove Product by Material Flow Analysis  

Science Journals Connector (OSTI)

Rubber glove product Thailand shows the trend of higher growth. Currently, the average export value of rubber glove product is 826.72 US$/year. Thus, the development guideline of this product for Thailand should be concerned. However, rubber glove process caused the environmental and human impacts. Hence, the eco-efficiency concept of rubber glove product was interested. Initial important step of eco-efficiency concept was indicator development. Therefore, this research developed the eco efficiency indicators including economic and environmental indicators of rubber glove product based on the eco-efficiency theory and material flow analysis. The result showed that economic indicators consisted of quantity product and net sale and environmental indicators consisted of material consumption, energy consumption, water consumption, wastewater production, solid waste production, greenhouse gas emission, were selected to eco-efficiency indicators based on eco-efficiency theory and material flow analysis. These eco-efficiency indicators would help to discover more economic and effective ways to improve productivity process and to enhance recyclability or reducing energy and material intensity.

Cheerawit Rattanapan; Thunwadee Tachapattaworakul Suksaroj; Weerawat Ounsaneha

2012-01-01T23:59:59.000Z

238

Core materials development for the fuel cycle R&D program  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350 750 C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (400 MPa) and a large increase in DBTT (up to 230 C) for specimens irradiated at 383 C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide dispersions.

Toloczko, M [Pacific Northwest National Laboratory (PNNL); Maloy, S [Los Alamos National Laboratory (LANL); Cole, James I. [Idaho National Laboratory (INL); Byun, Thak Sang [ORNL

2011-01-01T23:59:59.000Z

239

Core Materials Development for the Fuel Cycle R&D Program  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels fast reactor core materials (cladding and duct) must be able to withstand very high doses (greater than 300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350-750 C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress ({approx}400 MPa) and a large increase in DBTT (up to 230 C) for specimens irradiated at 383 C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide dispersions.

S. A. Maloy; M. Toloczko; J. Cole; T. S. Byun

2011-08-01T23:59:59.000Z

240

Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes  

SciTech Connect (OSTI)

Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move holes (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy charge transfer states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the deposition profile of material so that arbitrary concentration gradients can be implemented in layers with mixed composition. These concentration profiles are known to increase device efficiency and longevity and we confirmed that experimentally. Third, we investigated a new method for analyzing degradation in devices using mass spectrometry to look for degradation products. We showed that these methods are not simple to interpret unambiguously and need to be used with caution.

Tang, Ching; Chen, Shaw

2013-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The contribution of venture capital to modern systems of innovation: a critical review  

Science Journals Connector (OSTI)

The paper examines the empirical evidence on economic impacts of venture capital. At the macro-level, the consistently positive and significant statistical associations with the share of knowledge intensive industries, higher education, participation in lifelong learning, R&D expenditures or patent applications reveal it to be an integral part of modern systems of innovation. A critical review of studies estimating the precise impact of venture capital, among others, on corporate growth, patent output, survival or technical efficiency illuminates a varied spectrum of particular transmission channels. However, the review also points at an imbalance in the analytical focus of most studies, targeting the presumed value added function of venture capital, while largely ignoring its specific financing and selection function.

Michael Peneder

2009-01-01T23:59:59.000Z

242

Evaluation of irradiation facility options for fusion materials research and development  

Science Journals Connector (OSTI)

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuteriumtritium (DT) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50200displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. One or more intense neutron source(s) are needed to address two complementary missions: (1) scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and (2) engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Some of the key technical considerations for selecting the most appropriate fusion materials irradiation source are summarized. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, DLi stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Steven J. Zinkle; Anton Mslang

2013-01-01T23:59:59.000Z

243

Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.  

SciTech Connect (OSTI)

We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

Kearney, Sean P.; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji

2014-11-01T23:59:59.000Z

244

Recent developments in gas turbine materials and technology and their implications for syngas firing  

Science Journals Connector (OSTI)

Gas turbine combined-cycle systems burning natural gas represent a reliable and efficient power generation technology that is widely used. A critical factor in their development was the rapid adaptation of aero-engine technology (single crystal airfoils, sophisticated cooling techniques, and thermal barrier coatings) in order to operate at the high rotor-inlet temperatures required for high efficiency generation. Early reliability problems have been largely overcome, so that this type of power generation system is now considered to be a mature technology capable of achieving high levels of availability. Current interest in replacing natural gas with gas derived from coal (syngas or hydrogen) in these gas turbine systems focuses attention on implications for the critical turbine components. In this paper, the development requirements for materials for critical hot gas-path parts in large gas turbines burning coal-derived syngas fuels are briefly considered in the context of the state-of-the-art in materials for engines burning natural gas. It is shown that, despite some difficult design issues, many of the materials used in current engines will be applicable to units burning syngas. However, there is the potential that the durability of some components may be prejudiced because of differences in the combustion environment (especially in terms of water vapor content, and possibly sulfur compounds and particulates). Consequently, effort to develop improved coatings to resist erosion and also attack by S-containing compounds may be necessary.

I.G. Wright; T.B. Gibbons

2007-01-01T23:59:59.000Z

245

Evaluation of irradiation facility options for fusion materials research and development  

SciTech Connect (OSTI)

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium-tritium (D-T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50-200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. The intense neutron source(s) is needed to address two complimentary missions: 1) Scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and 2) Engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D-Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Zinkle, Steven J [ORNL] [ORNL; Mslang, Anton [Karlsruhe Institute of Technology, Karlsruhe, Germany] [Karlsruhe Institute of Technology, Karlsruhe, Germany

2013-01-01T23:59:59.000Z

246

Big Ideas: Creativity, Design and Innovation Camp Photo Permission Venture Engineering and Science at McMaster University is excited to offer, for the first  

E-Print Network [OSTI]

Big Ideas: Creativity, Design and Innovation Camp Photo Permission Form Venture Engineering and Science at McMaster University is excited to offer, for the first time, The Big Ideas: Creativity, Design and Innovation Camp. This is a new program from Venture Engineering and Science and Actua programs. Venture

Haykin, Simon

247

Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance  

SciTech Connect (OSTI)

Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in ferromagnetic materials of relevance to the Industries of the Future (IOF).

Ludtka, GERALD M.

2005-03-31T23:59:59.000Z

248

Development of laser-cladding layers containing nano-Al2O3 particles for wear-resistance materials  

Science Journals Connector (OSTI)

Surface laser cladding using CO2 laser beam irradiation was used to develop iron-...2O3 particles. The microstructural and mechanical, in particular, tribological, behaviors of the developed materials were invest...

Sirong Yu; Yan Liu; Luquan Ren; Wen Li

2006-12-01T23:59:59.000Z

249

Chemical-vapor deposition of complex oxides: materials and process development  

SciTech Connect (OSTI)

This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) part of the Advanced Materials Laboratory (AML). The demand for higher performance and lower cost in electronics is driving the need for advanced materials and consequent process integration. Ceramic thin-film technology is becoming more important in the manufacture of microelectronic devices, photovoltaics, optoelectronics, magneto-optics, sensors, microwave, and radio frequency communication devices, and high-Tc superconducting tapes. A flexible processing approach for potential large-scale manufacturing of novel electronic ceramic thin films is desirable. Current thin- film deposition technologies based on physical vapor-deposition techniques are limited in scale potential and have limited control of processing parameters. The lack of control over multiple process parameters inhibits the versatility and reproducibility of the physical vapor deposition processes applied to complex oxides. Chemical vapor deposition is emerging as a viable approach for large- scale manufacturing of electronic materials. Specifically, the ability to control more processing parameters with chemical vapor deposition than with other processing techniques provides the reliability and material property reproducibility required by manufacturing. This project sought to investigate the chemical vapor deposition of complex oxides.

Muenchausen, R.

1996-11-01T23:59:59.000Z

250

A U.S. high-flux neutron facility for fusion materials development  

SciTech Connect (OSTI)

Materials for a fusion reactor first wall and blanket structure must be able to reliably function in an extreme environment that includes 10-15 MW-year/m{sup 2} neutron and heat fluences. The various materials and structural challenges are as difficult and important as achieving a burning plasma. Overcoming radiation damage degradation is the rate-controlling step in fusion materials development. Recent advances with oxide dispersion strengthened ferritic steels show promise in meeting reactor requirements, while multi-timescale atomistic simulations of defect-grain boundary interactions in model copper systems reveal surprising self-annealing phenomenon. While these results are promising, simultaneous evaluation of radiation effects displacement damage ({le} 200 dpa) and in-situ He generation ({le} 2000 appm) at prototypical reactor temperatures and chemical environments is still required. There is currently no experimental facility in the U.S. that can meet these requirements for macroscopic samples. The E.U. and U.S. fusion communities have recently concluded that a fusion-relevant, high-flux neutron source for accelerated characterization of the effects of radiation damage to materials is a top priority for the next decade. Data from this source will be needed to validate designs for the multi-$B next-generation fusion facilities such as the CTF, ETF, and DEMO, that are envisioned to follow ITER and NIF.

Rei, Donald J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

251

HYBRID MODES OF ORGANIZATION Alliances, Joint Ventures, Networks, and other `strange' animals.  

E-Print Network [OSTI]

1 HYBRID MODES OF ORGANIZATION Alliances, Joint Ventures, Networks, and other `strange' animals version: December 2010) halshs-00624291,version1-16Sep2011 #12;2 HYBRID MODES OF ORGANIZATION Alliances of these arrangements, hereafter identified as "hybrids", remains difficult to quantify, they play a major role

Paris-Sud XI, Université de

252

The Ups and Downs of Collaborative Ventures: A Case Study on Being a Collaborator  

E-Print Network [OSTI]

, CRA Institute of Ecosystem Studies (IES) PO Box AB, Millbrook, NY 12545. Telephone: 845-677-7600 x202, 2004). As Research Administrators, we seek to facilitate collaborative ventures while protecting). Institute of Ecosystem Studies Founded in 1983, the Institute of Ecosystem Studies (IES) combines research

Berkowitz, Alan R.

253

Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials  

SciTech Connect (OSTI)

New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 C inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 1200 C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 C.

Paul Wosko; Sundram, S. K.

2012-10-16T23:59:59.000Z

254

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

surface phase structural change, the materials thereforerelated phase/structural change nears the material surface.material voltage and change of lattice parameters versus Li concentration. In manganese spinel, phase

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

255

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

Lithium Ion Batteries", Materials Science and Engineering R,Ion Batteries", as it appears in Materials Science and EngineeringIon Batteries", as it appears in Materials Science and Engineering

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

256

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

as cathode materials for Li-ion battery. Physica B-CondensedHigh Energy High Power Li-ion Battery Cathode Materials AHigh Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

257

Development of Standards for NanoSIMS Analyses of Biological Materials  

SciTech Connect (OSTI)

NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its distribution in the matrix was similar to that observed in spores. In experiments with Mo on humic acid, homogeneity was achieved and a sensitivity factor relative to C was determined. For synthetic material, we successfully prepared polyacrylic acid containing complexed elements of Mo, Ca, Sr, and Ba at low abundance. These were prepared as aqueous mixtures of dissolved elements and polyacrylic resin, followed by thin film drying. The Mo was homogeneously distributed and yielded a relative sensitivity factor nearly identical to that calculated for humic acid. This approach shows great promise for most water soluble metals. Poly(methacrylate) thin films were prepared that contained different low-level concentrations of Si introduced as a silane compound. Although homogeneity was not fully achieved, the analytical results did validate our previous quantitative methodology for Si. In addition, Commercial plastics were also examined for suitability for F and Cl. We found food-grade polyvinyl tubing produced high precision Cl determinations. For ion implantation, we used epoxy as the substrate and successfully extracted depth profiles and sensitivity factors for F and Cu.

Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

2008-07-31T23:59:59.000Z

258

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

SciTech Connect (OSTI)

The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

J. K. Wright; R. N. Wright

2008-04-01T23:59:59.000Z

259

Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. [comps.

1992-12-01T23:59:59.000Z

260

Private equity and venture capital in emerging markets : a case study of Egypt and the MENA region  

E-Print Network [OSTI]

Private equity and venture capital investments in emerging markets grew significantly over the past five years (2003-2008), both in absolute and relative terms. In this study, we examine the industry's role in emerging ...

Ismail, Ayman (Ayman Adel), 1973-

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Entrepreneurial ventures launched by graduating MIT students : insights on founding teams, business models, execution challenges and impact  

E-Print Network [OSTI]

This thesis examines entrepreneurial ventures launched by graduating MIT students with the goal of understanding entrepreneurship activities of students while in full-time graduate degree programs and drawing insights on ...

Rao, Nitin Bantwal

2011-01-01T23:59:59.000Z

262

Comment on Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

Comment on Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

263

DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

Blanton, P.; Eberl, K.

2008-09-14T23:59:59.000Z

264

Design and Materials The Design area is a rapidly growing research area aimed at furthering the development of  

E-Print Network [OSTI]

Design and Materials Design The Design area is a rapidly growing research area aimed at furthering the development of competitive products and systems. Research in this department focuses on design theories, design methodologies

Calgary, University of

265

"Developing terahertz spectroscopy to be used for the study of bio-materials."  

E-Print Network [OSTI]

and photonic materials and devices including uncooled photodetectors, photovoltaics and light-emitting diodes

Acton, Scott

266

ITP Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies  

Broader source: Energy.gov [DOE]

Fact sheet overviewing project that reduces the cost of carbon fiber raw materials and processing technologies

267

Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-237 -237 Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects November 2001 Prepared by Sujit Das Oak Ridge National Laboratory Jean H. Peretz The University of Tennessee Bruce Tonn Oak Ridge National Laboratory DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

268

EMSL Research and Capability Development Proposals Nonlinear Radiation Response and Transport Properties in Scintillating Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Figure 1. Time-of-Flight (TOF) versus light Figure 1. Time-of-Flight (TOF) versus light output (L) of CsI:Tl to He + ions. The inset is an example where L=263 is determined for particles with certainty energy (TOF=840). The energy resolution can be determined by ∆L/L = 45/263. The light-energy dependence and energy resolution can be observed as the difference in curvature and dispersive of the data. EMSL Research and Capability Development Proposals Nonlinear Radiation Response and Transport Properties in Scintillating Materials Project start date: Spring 2007 EMSL Lead Investigator: Yanwen Zhang Deposition and Microfabrication, EMSL, PNNL Co-investigators: Vaithiyalingam Shutthanandan Deposition and Microfabrication, EMSL, PNNL Scintillation response has wide applications in the field of astronomy, medical physics, high-energy

269

Development of Superconducting Materials for Use in Magnet Applications: Nb3Sn Flux Pinning and Bi-2212 Magnetic Texturing  

E-Print Network [OSTI]

DEVELOPMENT OF SUPERCONDUCTING MATERIALS FOR USE IN MAGNET APLICATIONS: Nb3Sn FLUX PINING AND Bi-212 MAGNETIC TEXTURING Major: Physics April 2010 Submitted to the Office of Undergraduate Research Texas A&M University... in partial fulfillment of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by DAVID GABRIEL RAHMANI DEVELOPMENT OF SUPERCONDUCTING MATERIALS FOR USE IN MAGNET APLICATIONS: Nb3Sn FLUX...

Rahmani, David G.

2010-07-14T23:59:59.000Z

270

The Constellation-EdF Nuclear Joint Venture: Regulatory Issues and Subsequent Resolutions  

Science Journals Connector (OSTI)

Corporate restructurings of electric utilities in the U.S. have become a significant and controversial issue due to the differing perspectives of electric utility executives and regulatory commissioners relating to corporate restructuring associated with mergers, diversification, and functional separation of generation, transmission, and distribution. The Maryland Public Service Commission assessed a joint venture between Constellation Energy Group and Electricite de France that reflects these tradeoffs.

Ryan Pfaff; Howard Lubow; J. Robert Malko

2010-01-01T23:59:59.000Z

271

The Constellation-EdF nuclear joint venture: regulatory issues and subsequent resolutions  

SciTech Connect (OSTI)

Corporate restructurings of electric utilities in the U.S. have become a significant and controversial issue due to the differing perspectives of electric utility executives and regulatory commissioners relating to corporate restructuring associated with mergers, diversification, and functional separation of generation, transmission, and distribution. The Maryland Public Service Commission assessed a joint venture between Constellation Energy Group and Electricite de France that reflects these tradeoffs. (author)

Pfaff, Ryan; Lubow, Howard; Malko, J. Robert

2010-03-15T23:59:59.000Z

272

The economic impact of strategic risk on petroleum ventures: Examples from West Africa  

SciTech Connect (OSTI)

Strategic risks attend any and all business ventures. They arise from the nature of the particular business being pursued and the environment in which that business is being conducted. In the petroleum industry, considerable attention is devoted to quantifying technical risks, i.e., the risk of finding and producing hydrocarbons. However, strategic risks often impact economic viability more than technical asks. Accordingly, strategic risk analysis is critical to, realistically evaluating petroleum ventures in today`s turbulent business environment. While difficult to assess and quantify, strategic risks must be accorded equal status with technical risks. Competitor activity, contract terms, environmental sensitivity, political stability and market forces are typical strategic risks. A strategic risk system correlates a company`s capabilities with the quality of possible ventures. Internal strengths and weaknesses are thus matched against external opportunities and threats. This is known in the business literature as a SWOT analysis. The degree of strategic risk is then proportional to the mismatch between the SWOT elements. Such a mismatch was not recognized during exploration of the West Africa Aptian Salt Basins play in the 1980s. Angola, Congo and Gabon all contain examples where failure to consider strategic risk ultimately resulted in {open_quotes}Gambler`s Ruin{close_quotes}.

Ethetton, L.K.; Brumbaugh, W.D.

1995-12-31T23:59:59.000Z

273

CHALLENGES IN DEVELOPING MATERIALS FOR FUSION TECHNOLOGY PAST, PRESENT AND FUTURE  

SciTech Connect (OSTI)

A brief historical review of the evolution in structural materials options for fusion energy systems is presented, along with the author s perspective on emerging trends in advanced manufacturing techniques and new high-performance materials.

Zinkle, Steven J [ORNL

2013-01-01T23:59:59.000Z

274

Development of Approach to Estimate Volume Fraction of Multiphase Material Using Dielectrics  

E-Print Network [OSTI]

Most engineering as well as pavement materials are composites composed of two or more components to obtain a variety of solid properties to support internal and external loading. The composite materials rely on physical or chemical properties...

Lee, Sang Ick

2010-07-14T23:59:59.000Z

275

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Rapidly Renewable Materials  

E-Print Network [OSTI]

into Rapidly Renewable Materials: Bamboo and Cotton Mohammad Hassan Jafarian Thanet (Vic) Ying-udomrat Xiao of a project/report". #12;Page 1 An Investigation into Rapidly Renewable Materials: Bamboo and Cotton Prepared of renewable resources. Renewable resources, whether it is energy or material, are the ones that can

276

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995  

SciTech Connect (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

Carlson, P.T. [comp.

1995-04-01T23:59:59.000Z

277

Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge  

SciTech Connect (OSTI)

The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our moisture sensitivity test suggested that our materials were non-water wettable and did not disintegrate on submerging the product in water for at least two months. Countertop polishing techniques were also established.

V. M. Malhotra; Y. P. Chugh

2003-08-31T23:59:59.000Z

278

The Development of a Parameterized Scatter Removal Algorithm for Nuclear Materials Identification System Imaging  

SciTech Connect (OSTI)

This dissertation presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects non-intrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross-sections of features inside the object can be determined. The cross sections can then be used to identify the materials and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons which are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using the PSRA resulted in an improvement of the chi-squared test by a factor of 60 or more when applied to simple homogeneous objects.

Grogan, Brandon R [ORNL

2010-03-01T23:59:59.000Z

279

THE DEVELOPMENT OF A PARAMETERIZED SCATTER REMOVAL ALGORITHM FOR NUCLEAR MATERIALS IDENTIFICATION SYSTEM IMAGING  

SciTech Connect (OSTI)

This report presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects nonintrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross sections of features inside the object can be determined. The cross sections can then be used to identify the materials, and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons that are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized, and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements, and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using the PSRA resulted in an improvement of the chi-squared test by a factor of 60 or more when applied to simple homogeneous objects.

Grogan, Brandon R [ORNL

2010-05-01T23:59:59.000Z

280

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993  

SciTech Connect (OSTI)

Objective of DOE's Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

Carlson, P.T. (comp.)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993  

SciTech Connect (OSTI)

Objective of DOE`s Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

Carlson, P.T. [comp.

1993-05-01T23:59:59.000Z

282

Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470  

SciTech Connect (OSTI)

This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

van Hest, M.

2013-08-01T23:59:59.000Z

283

The development of nanoparticulate materials for biodegradable bone fracture plates: (I)  

Science Journals Connector (OSTI)

A cost effective route for the production of nanoparticulate calcium carbonate with high phase purity, a narrow particle size range and low tendency for agglomeration represents a crucial stage in the development of degradable nanocomposite materials for the manufacture of fracture fixation plates. In this study, the size, morphology and zeta potential of calcium carbonate (CaCO3) precipitated through carbonation of an aqueous solution of calcium hydroxide were investigated experimentally. It was found that the precipitating temperature, pH and the addition of a chelating agent were most influential in producing nanoparticulate CaCO3. The smallest particles (mean of 48 nm) were produced with an initial temperature of ?93C, initial pH of 8.5 and EDTA added. This route also has the advantage of narrow particle size distributions, which together with a zeta potential greater than 30 mV means that the precipitated CaCO3 is well suited for use as a filler in a biodegradable nanocomposite as indicated above.

Marcia E. Clark; David F. Farrar; Gavin S. Walker; Colin A. Scotchford; David M. Grant

2008-01-01T23:59:59.000Z

284

Mexico joins the venture: Joint Implementation and Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Joint Implementation (JI) and its pilot phase of Activities Implemented Jointly (AIJ) are envisioned as an economic way of reducing global emissions of greenhouse gases. This paper draws upon the Mexican experience with AIJ to identify Mexican concerns with AIJ/JI and proposed solutions to these. Three approved Mexican AIJ projects (Ilumex, Scolel Te, and Salicornia) are described in detail. The Ilurnex project promotes the use of compact fluorescent lamps in Mexican homes of the States of Jalisco and Nuevo Leon, to reduce electric demand. Scolel Te is a sustainable forest management project in Chiapas. Salicornia examines the potential for carbon sequestration with a Halophyte-based crop irrigated with saline waters in Sonora. These three projects are reviewed to clarify the issues and concerns that Mexico has with AIJ and JI and propose measures to deal with them. These initial Mexican AIJ projects show that there is a need for creation of standard project evaluation procedures, and criteria and institutions to oversee project design, selection, and implementation. Further JI development will be facilitated by national and international clarification of key issues such as additionality criteria, carbon-credit sharing, and valuation of non-GHG environmental and/or social benefits and impacts for AIJ projects. Mexico is concerned that JI funding could negatively impact official development assistance or that OECD countries will use JI to avoid taking significant GHG mitigation actions in their own countries. The lack of carbon credit trading in the AIJ stage must be removed to provide useful experience on how to share carbon credits. National or international guidelines are needed to ensure that a portion of the carbon credits is allocated to Mexico.

Imaz, M.; Gay, C.; Friedmann, R.; Goldberg, B.

1998-11-01T23:59:59.000Z

285

Development of Thermo-Regulating Fabric Using Phase Change Material (PCM).  

E-Print Network [OSTI]

?? This research study concentrates on use of phase change material (PCM) in textiles which can produce thermo-regulating characteristics to control body temperature useful for (more)

Bhatkhande, Prasad S.

2011-01-01T23:59:59.000Z

286

FY 2009 Progress Report for Lightweighting Materials- 8. Polymer Composites Research and Development  

Broader source: Energy.gov [DOE]

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

287

E-Print Network 3.0 - advanced materials development Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Fossil Energy Program Collection: Fossil Fuels 84 Kompetenzzentrum fr Automobil-und Industrieelektronik Summary: of materials for these advanced semiconductor...

288

Carbon Based Nano-Materials Research, Development and Applications in Optoelectronics  

E-Print Network [OSTI]

Lett. Granqvist, C. G. Electrochromic Materials: Out of aA Feasibility Study of Electrochromic Windows in Vehicles.active layer in electrochromic smart windows. References:

Wang, Feihu

2012-01-01T23:59:59.000Z

289

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

SciTech Connect (OSTI)

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

290

Development of Micro-Encapsulated Phase Change Materials and W. Brownrigg  

E-Print Network [OSTI]

are the poor thermal conductivity of most PCM materials and that the PCM must fixed in place by its physical of paraffin PCMs to be their low thermal conductivity upon cooling. Many researchers have attempted of the absorbent material. Three basic thermal energy storage (TES) strategies exist. They are sensible heat

291

Development of processing techniques for advanced thermal protection materials. Annual progress report, 1 June 1994-31 May 1995  

SciTech Connect (OSTI)

The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.

Selvaduray, G.S.

1995-06-01T23:59:59.000Z

292

Overview of Fraunhofer IPM Activities in High Temperature Bulk Materials and Device Development  

Broader source: Energy.gov [DOE]

Presentation given at the 2011 Thermoelectrics Applications Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric metrology.

293

Computational studies of hydrogen storage materials and the development of related methods  

E-Print Network [OSTI]

Computational methods, including density functional theory and the cluster expansion formalism, are used to study materials for hydrogen storage. The storage of molecular hydrogen in the metal-organic framework with formula ...

Mueller, Timothy Keith

2007-01-01T23:59:59.000Z

294

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

295

The contribution of disease focused nonprofits to biomedical research and development  

E-Print Network [OSTI]

Patient-centered, disease-focused nonprofits are playing an increasingly prominent role in accelerating the development of new diagnostics, drugs, and therapies. They are engaging in a variety of complex venture philanthropic ...

Polis Schutz, Jordanna

2013-01-01T23:59:59.000Z

296

Development of 10B2O3 processing for use as a neutron conversion material  

Science Journals Connector (OSTI)

Development of thermal neutron detectors is critical for a number of homeland security and physics applications. In this work, we describe our efforts towards developing boron-10 oxide (10B2O3) as a thermal neutr...

L. F. Voss; J. Oiler; A. M. Conway

2012-01-01T23:59:59.000Z

297

Development of Nanostructured Materials with Improved Radiation Tolerance for Advanced Nuclear Systems  

SciTech Connect (OSTI)

This project will explore the fundamental mechanisms through which interfaces in nanolayered structures and grain boundaries of bulk nanomaterials are able to attract and rapidly eliminate point defects and unwanted foreign species. Candidate materials that will be studied include both nanostructured multilayer composites synthesized by magnetron sputtering and structural bulk nanomaterials produced by severed plastic deformation, equal channel angular extrusion.

Zinghang Zhang; K. Ted Hartwig

2009-08-12T23:59:59.000Z

298

DEVELOPMENT OF BURN TEST SPECIFICATIONS FOR FIRE PROTECTION MATERIALS IN RAM PACKAGES  

SciTech Connect (OSTI)

The regulations in 10 CFR 71 require that the radioactive material (RAM) packages must be able to withstand specific fire conditions given in 10 CFR 71.73 during Hypothetical Accident Conditions (HAC). This requirement is normally satisfied by extensive testing of full scale test specimens under required test conditions. Since fire test planning and execution is expensive and only provides a single snapshot into a package performance, every effort is made to minimize testing and supplement tests with results from computational thermal models. However, the accuracy of such thermal models depends heavily on the thermal properties of the fire insulating materials that are rarely available at the regulatory fire temperatures. To the best of authors knowledge no test standards exist that could be used to test the insulating materials and derive their thermal properties for the RAM package design. This paper presents a review of the existing industry fire testing standards and proposes testing methods that could serve as a standardized specification for testing fire insulating materials for use in RAM packages.

Gupta, N.

2010-03-03T23:59:59.000Z

299

Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors  

SciTech Connect (OSTI)

Metglas{sup TM} 2826MB foils of 25-30 {mu}m thickness with the composition of Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18} have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of {approx}3 {mu}m thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum (Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magnetic properties of FeNi is also observed as the Mo dopant level increases. The coercivity of FeNi films doped with Mo decreases to a value less than one third of the value without dopant. Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropy properties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The film material that is fabricated using an optimized process is magnetically as soft as amorphous Metglas{sup TM} 2826MB with a coercivity of less than 40 Am{sup -1}. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin film materials on their magnetic properties.

Liang Cai; Gooneratne, Chinthaka; Cha, Dongkyu; Chen Long; Kosel, Jurgen [Computer Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955 (Saudi Arabia); Gianchandani, Yogesh [Department of Electrical Engineering and Computer Science, 1301 Beal Ave., University of Michigan, Ann Arbor, Michigan 48109 (United States)

2012-12-01T23:59:59.000Z

300

A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents  

SciTech Connect (OSTI)

A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.

Tortorelli, J.P. [ed.] [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

Jie Guan; Nguyen Minh

2003-10-01T23:59:59.000Z

302

Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, January 1, 1980-March 31, 1980  

SciTech Connect (OSTI)

Results are presented of work performed on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Included are the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described, including screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850, and 950/sup 0/C.

Not Available

1980-06-25T23:59:59.000Z

303

RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL  

E-Print Network [OSTI]

DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS ANDDEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS ANDof the biomass, (2) the extent of conversion to glucose, (3)

Wilke, C.R.

2011-01-01T23:59:59.000Z

304

Development of nuclear materials accounting for international safeguards: The past, the present, the future  

SciTech Connect (OSTI)

Nuclear materials accountancy was introduced as a primary safeguards measure in international safeguards from the inception of the EURATOM safeguards directorate in 1959 and IAEA safeguards in 1961 with the issuance of INFCIRC 26. As measurement technology evolved and safeguarded facilities increased in both number and size, measurement methodology requirements increased as reflected in INFCIRC 66 (Rev 2.) in 1968 and later in INFCIRC 153 in 1972. Early measurements relied heavily on chemical analysis, but in the 1960s it evolved more and more toward nondestructive assay. Future nuclear materials accountancy systems will increase in complexity, driven by larger and more complex facilities; more stringent health, safety, and environmental considerations; and unattended automation in facility operations. 15 refs.

Markin, J.T.; Augustson, R.H.; Eccleston, G.W.; Hakkila, E.A.

1991-01-01T23:59:59.000Z

305

Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets  

SciTech Connect (OSTI)

REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to todays best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

None

2012-01-01T23:59:59.000Z

306

Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment  

SciTech Connect (OSTI)

Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.

Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

2009-03-23T23:59:59.000Z

307

Development of backfill material as an engineered barrier in the waste package system- Interim topical report  

SciTech Connect (OSTI)

A backfill barrier, emplaced between the containerized waste and the host rock, can both protect the other engineered barriers and act as a primary barrier to the release of radionuclides from the waste package. Attributes that a backfill should provide in order to carry out its required function have been identified. Primary attributes are those that have a direct effect upon the release and transport of radionuclides from the waste package. Supportive attributes do not directly affect radionuclide release but are necessary to support the primary attributes. The primary attributes, in order of importance, are: minimize (retard or exclude) the migration of ground water between the host rock and the waste canister system; retard the migration of selected chemical species (corrosive species and radionuclides) in the ground water; control the Eh and pH of the ground water within the waste-package environment. The supportive attributes are: self-seal any cracks or discontinuities in the backfill or interfacing host geology; retain performance properties at all repository temperatures; retain peformance properties during and after receiving repository levels of gamma radiation; conduct heat from the canister system to the host geology; retain mechanical properties and provide resistance to applied mechanical forces; retain morphological stability and compatibility with structural barriers and with the host geology for required period of time. Screening and selection of candidate backfill materials has resulted in a preliminary list of materials for testing. Primary emphasis has been placed on sodium and calcium bentonites and zeolites used in conjunction with quartz sand or crushed host rock. Preliminary laboratory studies have concentrated on permeability, sorption, swelling pressure, and compaction properties of candidate backfill materials.

Wheelwright, E.J.; Hodges, F.N.; Bray, L.A.; Westsik, J.H. Jr.; Lester, D.H.; Nakai, T.L.; Spaeth, M.E.; Stula, R.T.

1981-09-01T23:59:59.000Z

308

Vehicle Technologies Office Merit Review 2014: Process Development and Scale-up of Advanced Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process development and scale...

309

PEO-containing copolymers as polyurethane soft segments in the development of high performance materials  

E-Print Network [OSTI]

Silk-inspired segmented polyurethanes containing flexible, hydrophilic segments with crystalline and liquid crystalline moieties were developed to mimic the hierarchical morphology of the continuous domain in and the ...

James-Korley, LaShanda Teresa

2005-01-01T23:59:59.000Z

310

Long range planning of biologics process development and clinical trial material supply process  

E-Print Network [OSTI]

This thesis investigates the feasibility of using a complex model with a Monte Carlo simulation model to forecast the financial, personnel, and manufacturing capacity resources needed for biologic drug development. Accurate ...

Edwards, Emily (Emily Rose)

2011-01-01T23:59:59.000Z

311

"Developing new or improved catalytic materials by studying how the structure of  

E-Print Network [OSTI]

RESEARCH DEVELOPMENTS � The mechanism of selective oxidation of aqueous glycerol, ethanol, and 5- hydroxymethylfurfural at high pH over Pt and Au catalysts requires molecular oxygen for the oxidation

Acton, Scott

312

There has been a considerable research interest in materials, especially nanomaterials, in recent years and several novel materials have been developed for various  

E-Print Network [OSTI]

for measuring the elastic constants. Thermoelectric Materials: It has been reported that the quantum confinement 14 nm. One important application of such a material is in the making of excellent thermoelectric materials as the thermoelectric efficiency of Bi nanorods increases upon decreasing its diameter. In order

Preyer, Norris

313

ESS 2012 Peer Review - Next Generation Composite Materials for Flywheel Development - Timothy Lambert, SNL  

Broader source: Energy.gov (indexed) [DOE]

Sandia! Sandia! National! Laboratories! Acknowledgments We gratefully acknowledge support from Dr. Imre Gyuk and the Office of Electricity, Delivery and Energy Reliability. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000. Abstract Flywheels are "mechanical battery" storage systems that have fast response times, long lifetimes and lower maintenance costs; when coupled with high-temperature superconducting (HTS) bearings, flywheels can exhibit extremely low rotational losses resulting in high efficiency. For energy storage purposes, materials with higher strengths, and lower densities that would allow the flywheel to spin

314

Development of Biodegradable Foamlike Materials Based on Casein and Sodium Montmorillonite Clay  

Science Journals Connector (OSTI)

(1-4) The current generation of biobased polymers are produced primarily from renewable resources, such as sugar cane, proteins, and starches; such materials for packaging, adhesives, coatings, and biomedical applications can be produced with less overall energy consumption than their petrochemical counterparts and tend to be less toxic to the environment. ... (5-7) Due to its random coil conformation with a high degree of molecular flexibility and large amount of polar groups, casein shows good film-forming and coating properties as well as excellent barrier properties to nonpolar substances (oxygen, carbon dioxide, and aromas). ... (11-20) Because the clay aerogels are relatively fragile, the incorporation of either a polymeric component or natural or synthetic fibers into the clay aerogel sample is required to improve their mechanical rigidity and to produce the foamlike structures that reflect the thermal/mechanical properties of the matrix polymers themselves. ...

Tassawuth Pojanavaraphan; Rathanawan Magaraphan; Bor-Sen Chiou; David A. Schiraldi

2010-08-31T23:59:59.000Z

315

THE DEVELOPMENT OF SYNTHETIC SOIL MATERIALS FOR THE SUCCESSFUL RECLAMATION OF ABANDONED MINED LAND SITES  

SciTech Connect (OSTI)

Abandoned mine sites associated with coal and metal mining across the western United States have been left as unproductive wastelands. The availability of soil materials or other materials to support the restoration of the vegetative cover and enhance the recovery of such areas is limited. The restoration of these areas often requires the use of available amendments such as organic waste products or to help stabilize the soil. Many of the organic waste products, including sewage sludge, clarifier sludge, fly ash sludge, and other by-products from the agricultural industries such as compost can be employed for beneficial uses. This study looked at the feasibility of applying organic waste products to a mine soil in Montana to increase soil fertility and enhance plant productivity. Waste rock samples were tested for acid forming potential via acid base accounting. Samples cores were constructed and leached with simulated rainwater to determine amendment affect on metal leaching. A greenhouse study was completed to determine the most suitable amendment(s) for the field mine land site. Results from the acid base accounting indicate that acid formed from the waste rock would be neutralized with the alkalinity in the system. Results also show that metals in solution are easily held by organics from the amendments and not allowed to leach in to the surrounding water system. Data from the greenhouse study indicated that the amendment of sewage sludge was most promising. Application of 2% sewage sludge along with 1% sewage sludge plus 1% clarifier sludge, 2% compost, and no treatment were used for mine land application. Initial results were encouraging and it appears that sewage sludge may be a good reclamation option for mine lands.

Song Jin

2006-03-01T23:59:59.000Z

316

On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials  

E-Print Network [OSTI]

received most interest as a means to produce porous scaffolds by using ice as a template for complexOn the development of ice-templated silicon carbide scaffolds for nature-inspired structural of ceramic scaffolds using the ice-templating, or freeze casting, technique provides a relatively simple

Ritchie, Robert

317

Development of a system for academic training of the personnel engaged in nuclear material protection, control and accounting in Russia  

Science Journals Connector (OSTI)

The main attention in the present paper is focused on discussing the educational problems in the area of nuclear materials physical protection, control and accountability (MPC&A) in Russia. Currently, only the Master of Science Graduate Program has been completely developed for students training. This is taking place at Moscow Engineering Physics Institute (State University, MEPhI), where the sixth generation of Masters has graduated in May 2004. The MPC&A Engineer Degree Program, currently under development at MEPhI, is considered in the paper. This paper discusses specific features of the Engineer Degree training required by the Russian educational legislation and the Russian quality control system as applied to the training process. The paper summarises the main joint actions undertaken during the past three years by MEPhI in collaboration with the US Department of Energy and US National Laboratories for developing the MPC&A Engineer Degree Program in Russia.

Boris N. Onykiy; Eduard F. Kryuchkov

2005-01-01T23:59:59.000Z

318

Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, July 1, 1979-September 30, 1979  

SciTech Connect (OSTI)

The results of work performed from July 1, 1979 through September 30, 1979 on the Advanced Gas-Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment, and gas chemistry analysis instrumentation and equipment. The status of the data management system is presented. In addition, the progress in the screening test program is described.

Not Available

1980-03-07T23:59:59.000Z

319

Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

PACKAGING AND TRANSFER PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials Regulations

320

Development of materials for open-cycle MHD. Quarterly report ending December 1982  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) is conducting an ongoing study of channel components for open cycle, coal-fired magnetohydrodynamic generators. specifically, electrodes/insulators are being developed and tested. For this study, a hot-walled test channel with eight electrodes was fabricated for testing in the WESTF test facility at Westinghouse Research and Development Laboratory, Pittsburgh, Pennsylvania. The chanel is designed to operate hot on all four walls, thereby reducing the amount of condensed slag. The compositions of four of the electrodes in the test channel were based on hafnium oxide-rare earth oxides-indium oxide. The electrical conductivity has been measured on several compositions based on hafnium oxide-rare earth oxides-indium oxides. The results show that adequate conductivity may be obtained with reduced indium oxide content as long as praseodymium oxide is used as the rare earth.

Marchant, D.D.; Bates, J.L.

1983-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Silicon dendritic web material process development. First quarterly report, March 28-June 30, 1980  

SciTech Connect (OSTI)

Initial values of pressure, power, and speed have been determined for seam bonding interconnects to dendritic web solar cells. Satisfactory bond strengths and high yield have been achieved without cell damage. However, in case of processing large numbers of cells for module fabrication, further testing is required to assure reproducibility of this technique. Various techniques have been developed for fabricating solar modules by lamination using ethylene vinyl acetate with a glass superstrate, and no cell breakage has been noted.

Campbell, R. B.; Stapleton, R. E.; Sienkiewicz, L.; Rai-Choudhury, P.

1980-01-01T23:59:59.000Z

322

Development of polyimide materials for use in solar energy systems. Final report, August 1, 1978-July 31, 1979  

SciTech Connect (OSTI)

A program to optimize and characterize improved insulation materials for solar energy systems is described. Two separate and distinct products have been studied, a lightweight flexible insulating foam and a high density, rigid, load bearing insulating foam. These products are derived from a polyimide resin, the formulations and processes for which were developed under NASA-JSC sponsored programs. These materials are non-burning and do not emit measurable quantities of smoke or toxic by-products. Candidate resins were selected on the basis of cost, expected foam insulating and weatherability properties and ease of production. Critical characterization parameters were established for the flexible insulating foam in the form of environmental exposure resistance, thermal conductivity and hydrolytic stability. Studies initiated to improve the exposure resistance included additive studies, using reinforcements and UV absorbers, and postcure and densification studies. Optimum resin formulations, foam densities and foam structures were identified on the basis of the exposure, thermal conductivity, and microwave testing. Two candidate materials were selected and fully characterized for physical and thermal properties. This resulted in the selection of a final candidate material. The rigid foam was optimized through a glass reinforcement and process parameter study. This work was characterized on the basis of low cost, ease of production and the critical property requirement of compressive strength. The result of these studies was an optimized glass strand/microballoon reinforced foam which was then fully characterized for physical and thermal properties. Samples of both the flexible and rigid polyimide insulating materials were then prepared and submitted to DOE.

Wilcoxson, A.L.; Sorathia, U.A.; Gagliani, J.

1980-01-01T23:59:59.000Z

323

High-performance beam-plasma neutron sources for fusion materials development  

SciTech Connect (OSTI)

The design and performance of a relatively low-cost, plasma-based, 14-MeV deuterium-tritium neutron source for accelerated end-of-life testing of fusion reactor materials are described. An intense flux (up to 5 [times] 10[sup 18] n/m[sup 2][center dot]s) of 14-MeV neutrons is produced in a fully ionized high-density tritium target (n[sub e] [approx] 3 [times] 10[sup 21] m[sup [minus]3]) by injecting a current of 150-keV deuterium atoms. The tritium plasma target and the energetic D[sup +] density produced by D[sup 0] injection are confined in a [<=] 0.16-m-diam column by a linear magnet set, which provides magnetic fields up to 12 T. Energy deposited by transverse injection of neutral beams at the midpoint of the column is transported along the plasma column to the end regions. Three variations of the neutron source design are discussed, differing in the method of control of the energy transport. Emphasis is on the design in which the target plasma density is maintained in a region where electron thermal conduction along the column is the controlling energy-loss process.

Coensgen, F.H.; Casper, T.A.; Correll, D.L.; Damm, C.C.; Futch, A.H.; Logan, B.G.; Molvik, A.W. (Lawrence Livermore National Lab., CA (United States))

1990-10-01T23:59:59.000Z

324

Development of K-2 horticultural instructional materials for use by Texas Agricultural Extension Service  

E-Print Network [OSTI]

. This paper discusses the developmental processes which led to the development of "Plant Pals" ? K-2 Clover Kids Horticulture curriculum. ACKNOWLEDGMENTS I would like to take the opportunity to thank a few of the many special and talented individuals who... Davison for believing in my abilities and for providing leadership from the 4-H office for the K-2 Plant Pals Curriculum Guide. I owe a very special thanks to Mrs. Gayle Laine and Mrs. Martha Curtis for their support, guidance, and friendship which...

Whittlesey, Lisa A.

1990-01-01T23:59:59.000Z

325

Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas  

SciTech Connect (OSTI)

The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the feasibility of a 40% efficient, near zero emissions IGCC plant that uses membrane separation technology and other advanced technologies to reduce the cost of electricity by at least 35%; and (2) Develop H{sub 2} production and processing technologies that will contribute {approx}3% in improved efficiency and 12% reduction in cost of electricity.

O.N. Dogan; B.H. Howard; D.E. Alman

2012-02-26T23:59:59.000Z

326

Development of new materials for solar cells in Nagoya Institute of Technology  

Science Journals Connector (OSTI)

Solar cells with high efficiency and low price have long been desired, however, the commercially available solar cells are still expensive and the efficiencies of them are not high enough yet. A tandem solar cell was fabricated to develop a high-efficiency solar cell, and amorphous carbon solar cells were fabricated to develop a low-price solar cell.An AlGaAs/Si tandem solar cell was successfully fabricated by heteroepitaxial growth of AlGaAs on Si substrate. At first, a pn junction was formed in Si substrate by the impurity diffusion method. Then, an AlGaAs pn junction was grown by MOCVD. Since the AlGaAs pn junction has a graded band gap emitter, the photo-excited minority carriers can be collected efficiently. The energy conversion efficiency of AlGaAs/Si tandem solar cell was 21.4% (AM0) in spite of large lattice mismatch and difference in thermal expansion coefficients between AlGaAs and Si.Solar cells were fabricated by using amorphous carbon films deposited by Ion Beam Sputtering and Pulse Laser Deposition (PLD). The highest efficiency of 1.82% (AM0) was attained with a-C(IBS)/p-C(pyrolysis)/p-Si structure. Solar cells using a-C:H were also fabricated by PLD and Plasma CVD, and the efficiencies of them were 2.1% (AM1.5) and 0.04% (AM0), respectively.Other research activities on solar cells in Nagoya Institute of Technology are briefly mentioned.

Takashi Jimbo; Tetsuo Soga; Yasuhiko Hayashi

2005-01-01T23:59:59.000Z

327

Development of a catalyst for conversion of syngas-derived materials to isobutylene  

SciTech Connect (OSTI)

The initial objective of this program was to develop a catalyst and process for the conversion of synthesis gas to isobutylene via the isosynthesis process. Preliminary work directed at identifying potential catalysts for this reaction did not have promising results. Therefore, the objectives of this program were revised to the development of a catalyst and process for the conversion of synthesis gas to isobutanol. Two approaches have been investigated in this area: the direct conversion of synthesis gas to higher alcohols and indirect conversion via methanol produced using conventional methanol synthesis technology. The isosynthesis reaction for the conversion of synthesis gas to branched hydrocarbons was pioneered by German workers during World War II The primary products of this reaction are either isobutane or isobutylene depending on the catalyst system used. Thoria-based catalysts were found to give the highest yields, but virtually all of the products were alkanes. More recently, there have been several reports of olefin production using ZrO{sub 2}-based. The preliminary work in this program focussed on the evaluation of ZrO{sub 2} and modified ZrO{sub 2} catalysts for the direct conversion of CO/H{sub 2} to isobutylene via the isosynthesis reaction. All of the catalysts and conditions evaluated in this work gave isobutylene yields of less than 4% which is far below that required for an economically viable process. A summary of the key results from this portion of the project is given in Section 3.6. In view of the poor performance of these catalysts and the lack any encouraging results from other research groups working in the isosynthesis area, this approach was abandoned in favor of approaches related to higher alcohols synthesis.

Barger, P.T.; Spehlmann, B.C.; Gajda, G.J.

1996-10-01T23:59:59.000Z

328

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.

Jie Guan; Atul Verma; Nguyen Minh

2003-04-01T23:59:59.000Z

329

Innovation Ecosystem Development Initiative  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Office of Energy Efficiency and Renewable Energy: Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) University of Central Florida Location: Orlando, FL Project Title MegaWatt Ventures Proposed Action or Project Description The University of Central Florida is dedicated to creating innovative programs that accelerate the

330

Corrosion and degradation of test materials in the Westinghouse 15 ton/day Coal Gasification Process Development Unit  

SciTech Connect (OSTI)

Two periods of in-plant exposures of candidate materials in the Westinghouse PDU have been completed. Coupons were exposed in the gasifier, hot-gas cyclone, quench scrubber, and gas cooler vessels. Corrosion monitoring of test materials is currently being conducted in the Westinghouse Coal Gasification Process Development Unit (PDU) coal gasification pilot plant. The corrosion data presented are from work during 1981 through 1984. During these two exposure periods, several coals ranging from lignites to bituminous coals and two petroleum cokes were gasified in the steam-oxygen mode. Fouling was observed on most corrosion racks. The effect of this process-related material was to promote corrosion. In the gasifier environment, alloys 6B, IN 671, and 18SR were the best performing alloys. Nickel-base alloys with Ni/Cr ratios >1.5, namely IN-617, IN-825, and alloy X, incurred severe corrosion attack in both exposures. Other alloys, although generally acceptable in corrosion performance, were not immune to solids-induced corrosion around coupon mounting holes. Several refractories such as Brickram 90, Harbison-Walker Ruby, and Chemal 85B showed little degradation in both gasifier exposures. Nitride bonded silicon carbon Refrax 20 had the greatest reduction in abrasion resistance as well as other properties. Single-phase structural ceramics including siliconized SiC, sintered ..cap alpha..-SiC, and Al/sub 2/O/sub 3/ did not suffer any noticeable damage. Materials evaluation in the hot-gas cyclone showed IN-671 and 26-1 to be more resistant than Type 310 and Type 310 aluminized. 18 refs., 23 figs., 24 tabs.

Yurkewycz, R.

1985-01-31T23:59:59.000Z

331

????? ? ??? ? ????? Gender Equality & Womens Empowerment UNDP Invitation for Prequalification Developing curriculum and training material to train  

E-Print Network [OSTI]

Gender Equality and Womens Empowerment GEWE is a joint programme MDG-F GEWE that 6 UN agencies are jointly implementing in the occupied Palestinian Territories. This programme aims at reducing gender-based violence and all forms of violence against women and the girl child; increasing the representation of women and womens issues in decisionmaking bodies; and ensuring equal opportunities for womens economic participation, especially women survivors of gender-based violence. Capacity to provide refuge, security, and access to justice strengthened and the organization of training and workshops to raise awareness on gender in local authorities and related NGOs, are among the responsibilities of UNDP, The service includes but is not limited to the following: 1- Develop specialized curricula and training material illustrating the gendered impacts of Palestinian Basic Law in the different parts of the occupied Palestinian territory (oPt). 2- Identify and train 500-600 male and female judges, prosecutors, and lawyers in the oPt on provision of assistance to victims of violence and gender based violence in the West Bank and Gaza. 3- Develop and provide gender justice awareness training to local government unit staff in 15 districts (covering the entire oPt) by addressing both men & women officials on mainstreaming locally specific gender justice in district development planning, to identify, plan, deliver and report on gender and on MDGs. 4- Monitor and evaluate the efficacy of all training developed in order to address any gaps.

unknown authors

332

Abstract P5-07-02: I-SPY 2 Clinical Trial: Advocate Involvement in Protocol, Informed Consent and Patient Support Materials Development  

Science Journals Connector (OSTI)

...challenge. In the interest of meeting regulatory requirements and protecting participating...email and teleconferences) was used to plan, develop and finalize patient support materials and to review multiple versions of all documents. A...

J Perlmutter; E Frank; B LeStage; and L. Esserman

2011-04-26T23:59:59.000Z

333

Development of accelerator based spatially resolved ion beam analysis techniques for the study of plasma materials interactions in magnetic fusion devices  

E-Print Network [OSTI]

Plasma-material interactions (PMI) in magnetic fusion devices pose significant scientific and engineering challenges for the development of steady-state fusion power reactors. Understanding PMI is crucial for the develpment ...

Barnard, Harold Salvadore

2014-01-01T23:59:59.000Z

334

Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report  

SciTech Connect (OSTI)

Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for stateof-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency.

Chang H. Oh

2006-06-01T23:59:59.000Z

335

Development of electron reflection suppression materials for improved thermionic energy converter performance using thin film deposition techniques  

SciTech Connect (OSTI)

Nonideal electrode surfaces cause significant degree of electron reflection from collector during thermionic converter operation. The effect of the collector surface structure on the converter performance was assessed through the development of several electron reflection suppression materials using various thin film deposition techniques. The double-diode probe method was used to compare the J-V characteristics of converters with polished and modified collector surfaces for emitter temperature and cesium vapor pressure in the ranges of 900-2000 K and 0.02-1.5 torr, respectively. The coadsorption of cesium and oxygen with respective partial vapor pressures of {approx}1.27 torr and a few microtorrs reduced the emitter work function to a minimum value of 0.99 eV. It was found that the collector surfaces with matte black appearance such as platinum black, voided nickel from radio-frequency plasma sputtering, and etched electroless Ni-P with craterlike pore morphology exhibited much better performance compared with polished collector surface. For these thin films, the increase in the maximum output voltage was up to 2.0 eV. For optimum performance with minimum work function and maximum saturation emission current density, the emitter temperature was in the range of 1100-1500 K, depending on the collector surface structure. The use of these materials in cylindrical converter design and/or in combination with hybrid mode triode configuration holds great potential in low and medium scale power generators for commercial use.

Islam, Mohammad; Inal, Osman T.; Luke, James R. [Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); New Mexico Institute of Mining and Technology, Institute for Engineering Research and Applications (IERA) , 901 University Blvd. SE, Albuquerque, New Mexico 87106-4339 (United States)

2006-10-15T23:59:59.000Z

336

Sensors & Materials | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

337

Development of a Fuel Containing Material Removal and Waste Management Strategy for the Chernobyl Unit 4 Shelter  

SciTech Connect (OSTI)

A study was performed to develop a strategy for the removal of fuel-containing material (FCM) from the Chernobyl Unit 4 Shelter and for the related waste management. This study was performed during Phase 1 of the Shelter Implementation Plan (SIP) and was funded by the Chernobyl Shelter Fund. The main objective for Phase 2 of the SIP is to stabilize the Shelter and to construct a New Confinement (NC) by the year 2007. In addition, the SIP includes studies on the strategy and on the conceptual design implications of the removal of FCM from the Shelter. This is considered essential for the ultimate goal, the transformation of the Shelter into an environmentally safe system.

Tokarevsky, V. V.; Shibetsky, Y. A.; Leister, P.; Davison, W. R.; Follin, J. F.; McNair, J.; Lins, W.; Edler, G.

2002-02-27T23:59:59.000Z

338

Selection of the InGaAs/InP as the Single TPV Diode Material System for NR Research and Development  

SciTech Connect (OSTI)

Advanced Concepts has focused on developing two material systems (InGaAs/InP and InGaAsSb/GaSb) over the past several years. This work summarizes a scientific evaluation of both material systems to determine which material has the greatest potential for high-efficiency (27%) and power density (0.8W/cm{sup 2}) TPV energy conversion. Lockheed Martin, KAPL Inc. and Bechtel Bettis have issued a joint recommendation to focus all diode development efforts in the future on InGaAs/InP TPV diodes, based on it's potential to acquire the required performance.

M Dashiell

2004-12-08T23:59:59.000Z

339

A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

1991-09-01T23:59:59.000Z

340

Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498  

SciTech Connect (OSTI)

Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

Olson, D.

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Implementation of CTRLPOS, a VENTURE module for control rod position criticality searches, control rod worth curve calculations, and general criticality searches  

SciTech Connect (OSTI)

A module in the VENTURE reactor analysis code system, CTRLPOS, is developed to position control rods and perform control rod position criticality searches. The module is variably dimensioned so that calculations can be performed with any number of control rod banks each having any number of control rods. CTRLPOS can also calculate control rod worth curves for a single control rod or a bank of control rods. Control rod depletion can be calculated to provide radiation source terms. These radiation source terms can be used to predict radiation doses to personnel and estimate the shielding and long-term storage requirements for spent control rods. All of these operations are completely automated. The numerous features of the module are discussed in detail. The necessary input data for the CTRLPOS module is explained. Several sample problems are presented to show the flexibility of the module. The results presented with the sample problems show that the CTRLPOS module is a powerful tool which allows a wide variety of calculations to be easily performed.

Smith, L.A.; Renier, J.P.

1994-06-01T23:59:59.000Z

342

Development of materials for solid state electrochemical sensors and fuel cell applications. Final report, September 30, 1995--December 30, 1995  

SciTech Connect (OSTI)

The intent of this project was two fold: (1) to develop new ionically conducting materials for solid state gas phase sensors and fuel cells and (2) to train students and create an environment conducive to Solid State Ionics research at Southern University. The authors have investigated the electrode-electrolyte interfacial reactions, defect structure and defect stability in some perovoskite type solid electrolyte materials and the effect of electrocatalyst and electrolyte on direct hydrocarbon and methanol/air fuel cell performance using synchrotron radiation based Extended X-ray Absorption Spectroscopy (EXAFS), surface analytical and Impedance Spectroscopic techniques. They have measured the AC impedance and K edge EXAFS of the entire family of rare earth dopants in Cerium Oxide to understand the effect of dopants on the conductivity and its impact on the structural properties of Cerium Oxide. All of the systems showed an increase in the conductivity over undoped ceria with ceria doped Gd, Sm and Y showing the highest values. The conductivity increased with increasing ionic radius of the dopant cation. The authors have measured the K edge of the EXAFS of these dopants to determine the local structural environment and also to understand the nature of the defect clustering between oxygen vacancies and trivalent ions. The analysis and the data reduction of these complex EXAFS spectra is in progress. Where as in the DOWCs, the authors have attempted to explore the impact of catalyst loadings on the performance of direct oxidation of methanol fuel cells. Their initial measurements on fuel cell performance characteristics and EXAFS are made on commercial membranes Pt/Ru/Nafion 115, 117 and 112.

Bobba, R.; Hormes, J.; Young, V.; Baker, J.A.

1995-12-31T23:59:59.000Z

343

Response to Comment on Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

Response to Comment on Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste ... treatment-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery. ... Velis, C. A.; Cooper, J.Are solid recovered fuels resource-efficient? ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-12-05T23:59:59.000Z

344

Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials  

SciTech Connect (OSTI)

This annual report describes recent progress on a collaborative project between scientists and engineers in the Institute for Integrated Catalysis at PNNL and at Ford Motor Company, involving investigations of laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We are investigating SCR catalysts with reduced ammonia slip, increased low temperature activity, and increased product selectivity to N2. More recent recognition that high temperature performance, under regimes that sometimes cause deactivation, also needs to be improved is driving current work focused on catalyst materials modifications needed to achieve this enhanced performance. We are also studying materials effective for the temporary storage of HC species during the cold-start period. In particular, we examine the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measure the kinetic parameters to update Fords HC adsorption model.

Kwak, Ja Hun; Lee, Jong H.; Kim, Do Heui; Li, Xiaohong S.; Tran, Diana N.; Peden, Charles HF

2011-12-22T23:59:59.000Z

345

Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials  

SciTech Connect (OSTI)

In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Fords HC adsorption model. Since this CRADA has now been completed, in this annual report we will provide very brief summaries of most of the work carried out on this CRADA over the last several years.

Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

2012-12-31T23:59:59.000Z

346

Vehicle Technologies Office Merit Review 2014: Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly  

Broader source: Energy.gov [DOE]

Presentation given by USAMP at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated computational materials...

347

AH 18/02/2011 Page 1 of 12 Tech Venture Creation Programme 2011  

E-Print Network [OSTI]

is Intellectual Property? Is it Patentable? The Patent Process Case Material/Practical Exercises To be confirmed research Planning and executing a market feasibility study Case Material/Practical Exercises Cully, Europe, US #12;AH 18/02/2011 Page 4 of 12 Case Material/Practical Exercises To be confirmed Module 6

Humphrys, Mark

348

Materials - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

349

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Rapidly Renewable Materials Soy and Bio-Diesel  

E-Print Network [OSTI]

Materials ­ Soy and Bio-Diesel Navin Abeysundara Brian Lee Aramazd Gharapetian University of British RENEWABLE MATERIALS ­ SOY AND BIO-DIESEL SUBMITTED TO Florence Luo By: Navin Abeysundara Brian Lee Aramazd based spray foam and bio-diesel furnaces. Soy based spray foam and biodiesel furnaces were considered

350

Energy Materials & Processes | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

351

EMSL - Energy Materials & Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

352

The Numerical Simulation on Cooling Effect of Microcapsulated Phase Change Material Suspension in Laminar Thermal Developing Section  

Science Journals Connector (OSTI)

The microcapsulated phase change material (MEPCM) suspension has obtained more and ... concerning MECPM suspension are generally reduced to single-phase models. In this paper, a novel two-phase model is construct...

P. Q. Liu; J. Jin; G. P. Lin

2009-01-01T23:59:59.000Z

353

Effects of artificial settlement plate materials and methods of deployment on the sessile epibenthic community development in a tropical environment  

Science Journals Connector (OSTI)

The choice of substrata and the methods of deployment in analyses of settlement in benthic communities are often driven by the cost of materials and their local availability, and comparisons are often made bet...

S. N. Field; D. Glassom; J. Bythell

2007-06-01T23:59:59.000Z

354

Development of a new light-weight car audio using polycarbonate/acrylonitrile-butadiene-styrene copolymer composite based hybrid material  

Science Journals Connector (OSTI)

Engineering plastics have been applied to automobile components ... /ABS) based composite material to the car audio chassis was investigated with respect to the key properties of a car audio chassis mainly throug...

Seong-Ho Jeon; Woo Chun Choi; Tae-Hong Park

2012-01-01T23:59:59.000Z

355

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into the Use of Biodegradable Packing Materials in the New SUB: A  

E-Print Network [OSTI]

businesses in the new SUB. For economic analysis, the unit selling price and market growth of both materials. Also, coal-fired power for PHA production and landfill disposal option for both types of bags haveUBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation

356

Jiangsu Chenfeng New Material Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jiangsu Chenfeng New Material Technology Co Ltd Jiangsu Chenfeng New Material Technology Co Ltd Jump to: navigation, search Name Jiangsu Chenfeng New Material Technology Co Ltd Place Jiangsu Province, China Sector Wind energy Product Jiangsu-based wind turbine blade manufacturing joint venture company. References Jiangsu Chenfeng New Material Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jiangsu Chenfeng New Material Technology Co Ltd is a company located in Jiangsu Province, China . References ↑ "Jiangsu Chenfeng New Material Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Jiangsu_Chenfeng_New_Material_Technology_Co_Ltd&oldid=347325" Categories:

357

Denise RAVET IAE de Lyon, Universit Jean Moulin Lyon 3 Dorich House Group Developing Sustainability Area: Material Manufacturing and Design  

E-Print Network [OSTI]

BETWEEN SUPPLY CHAIN AND SUSTAINABLE DEVELOPMENT While there are separate streams of established research for companies. The goal of the mission is to explore the link between supply chain and sustainable development with sustainable development at the different stage of the supply chain. Keywords: Sustainable development

Paris-Sud XI, Université de

358

Summary of Blast Shield and Material Testing for Development of Solid Debris Collection at the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The ability to collect solid debris from the target chamber following a NIF shot has application for both capsule diagnostics, particularly for fuel-ablator mix, and measuring cross sections relevant to the Stockpile Stewardship program and nuclear astrophysics. Simulations have shown that doping the capsule with up to 10{sup 15} atoms of an impurity not otherwise found in the capsule does not affect its performance. The dopant is an element that will undergo nuclear activations during the NIF implosion, forming radioactive species that can be collected and measured after extraction from the target chamber. For diagnostics, deuteron or alpha induced reactions can be used to probe the fuel-ablator mix. For measuring neutron cross sections, the dopant should be something that is sensitive to the 14 MeV neutrons produced through the fusion of deuterium and tritium. Developing the collector is a challenge due to the extreme environment of the NIF chamber. The collector surface is exposed to a large photon flux from x-rays and unconverted laser light before it is exposed to a debris wind that is formed from vaporized material from the target chamber center. The photons will ablate the collector surface to some extent, possibly impeding the debris from reaching the collector and sticking. In addition, the collector itself must be mechanically strong enough to withstand the large amount of energy it will be exposed to, and it should be something that will be easy to count and chemically process. In order to select the best material for the collector, a variety of different metals have been tested in the NIF chamber. They were exposed to high-energy laser shots in order to evaluate their postshot surface characterization, morphology, degree of melt, and their ability to retain debris from the chamber center. The first set of samples consisted of 1 mm thick pieces of aluminum that had been fielded in the chamber as blast shields protecting the neutron activation diagnostic. Ten of these pieces were fielded at the equator and one was fielded on the pole. The shields were analyzed using a combination of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray fluorescence (XRF), neutron activation analysis (NAA) and chemical leaching followed by mass spectrometry. On each shield, gold debris originating from the gold hohlraum was observed, as well as large quantities of debris that were present in the center of the target chamber at the time of the shot (i.e., stainless steel, indium, copper, etc.) Debris was visible in the SEM as large blobs or splats of material that had encountered the surface of the aluminum and stuck. The aluminum itself had obviously melted and condensed, and some of the large debris splats arrived after the surface had already hardened. Melt depth was determined by cross sectioning the pieces and measuring the melted surface layers via SEM. After the SEM analysis was completed, the pieces were sent for NAA at the USGS reactor and were analyzed by U. Greife at the Colorado School of Mines. The NAA showed that the majority of gold mass present on the shields was not in the form of large blobs and splats, but was present as small particulates that had most likely formed as condensed vapor. Further analysis showed that the gold was entrained in the melted aluminum surface layers and did not extend down into the bulk of the aluminum. Once the gold mass was accounted for from the NAA, it was determined that the aluminum fielded at the equator was collecting a fraction of the total gold hohlraum mass equivalent to 120% {+-} 10% of the solid angle subtended by the shield. The attached presentation has more information on the results of the aluminum blast shield analysis. In addition to the information given in the presentation, the surfaces of the shields have been chemically leached and submitted for mass spectrometric analysis. The results from that analysis are expected to arrive after the due date of this report and will be written up at a later time. Based on the results of the aluminum b

Shaughnessy, D A; Gostic, J M; Moody, K J; Grant, P M; Lewis, L A; Hutcheon, I D

2011-11-21T23:59:59.000Z

359

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Ventures Massachusetts Ballardvale Street Suite Ventures Massachusetts Ballardvale Street Suite A260 Wilmington Massachusetts Venture capital firm investing in early stage clean technology enterprises http www ventures com Greater Boston Area Access Venture Partners Access Venture Partners Turnpike Drive Suite Westminster Colorado Venture Capital http www accessvp com Rockies Area Advanced Materials Partners Inc Advanced Materials Partners Inc Pine Street New Canaan Connecticut Venture investor http www amplink com Northeast NY NJ CT PA Area Advent International Advent International State Street Boston Massachusetts Global private equity firm http www adventinternational com Greater Boston Area African Development Bank African Development Bank Rue Joseph Anoma BP Abidjan Abidjan C te d Ivoire Ivory Coast http www afdb org en

360

Geopolymer Sealing Materials  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Materializing Energy  

E-Print Network [OSTI]

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

362

Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization  

SciTech Connect (OSTI)

Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

Henghu Sun; Yuan Yao

2012-06-29T23:59:59.000Z

363

Developing a Methodology for Characterizing the Effects of Building Materials Natural Radiation Background on a Radiation Portal Monitoring System  

E-Print Network [OSTI]

the sponsors of this research, Oak Ridge National Laboratory (ORNL). vi NOMENCLATURE EW Energy Windowing FWHM Full-Width at Half Maximum HEU Highly Enriched Uranium HPGe High-Purity Germanium ISOCS In-Situ Object Counting System MCA Multichannel... Naturally Occurring Radioactive Material ? Diameter ORNL Oak Ridge National Laboratory PMT Photomultiplier Tube PNNL Pacific Northwest National Laboratory PVT Polyvinyl Toluene RDD Radiological Dispersal Device vii RPM Radiation Portal Monitor...

Fitzmaurice, Matthew Blake 1988-

2012-11-06T23:59:59.000Z

364

Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report  

SciTech Connect (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter.

Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

2009-03-16T23:59:59.000Z

365

Advanced Materials Partners Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Logo: Advanced Materials Partners Inc Name Advanced Materials Partners Inc Address 45 Pine Street Place New Canaan, Connecticut Zip 06840 Region Northeast - NY NJ CT PA Area Product Venture investor. Year founded 1987 Phone number (203) 966-6415 Website http://www.amplink.com/ Coordinates 41.1450129°, -73.4967805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1450129,"lon":-73.4967805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Advanced gas cooled nuclear reactor materials evaluation and development program. Progress report, October 1, 1979-December 31, 1979  

SciTech Connect (OSTI)

This report presents the results of work performed from October 1, 1979 through December 31, 1979. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described. This includes: screening creep results, weight gain and post-exposure mechanical properties for materials thermally exposed at 750/sup 0/ and 850/sup 0/C (1382/sup 0/ and 1562/sup 0/F). In addition, the status of the data management system is described.

Not Available

1980-04-18T23:59:59.000Z

367

Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program. Progress report, April 1, 1980-June 30, 1980  

SciTech Connect (OSTI)

Objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Nuclear Process Heat (NPH) and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (helium containing small amounts of various other gases), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes the activities associated with the status of the simulated reactor helium supply system, testing equipment and gas chemistry analysis instrumentation and equipment. The progress in the screening test program is described; this includes: screening creep results and metallographic analysis for materials thermally exposed or tested at 750, 850 and 950/sup 0/C. The initiation of air creep-rupture testing in the intensive screening test program is discussed. In addition, the status of the data management system is described.

Not Available

1980-11-14T23:59:59.000Z

368

Venezuelan projects advance to develop world`s largest heavy oil reserves  

SciTech Connect (OSTI)

A number of joint venture projects at varying stages of progress promise to greatly increase Venezuela`s production of extra heavy oil. Units of Conoco, Chevron, Total, Arco, and Mobil have either signed agreements or are pursuing negotiations with affiliates of state-owned Petroleos de Venezuela SA on the development of huge reserves of 8--10{degree} gravity crude. Large heavy oil resources are present in the oil producing areas of eastern and western Venezuela, and the largest are in eastern Venezuela`s Orinoco heavy oil belt. The paper discusses the Orinoco heavy oil belt geology and several joint ventures being implemented.

Croft, G.; Stauffer, K. [Pantera Petroleum Inc., San Leandro, CA (United States)

1996-07-08T23:59:59.000Z

369

Development and simulation of a cylindrical cusped-field thruster and a diagnostics tool for plasma-materials interactions  

E-Print Network [OSTI]

A low power, Hall-effect type plasma thruster known as the MIT-Cylindrical Cusped- Field Thruster (MIT-CCFT) has been developed and simulated using a fully-kinetic plasma model, the Plasma Thruster particle-in-cell (PTpic) ...

Pang, Anthony

2013-01-01T23:59:59.000Z

370

Collaborative Ventures and Value of Learning: Integrating the Transaction Cost and Strategic Option Perspectives on the Choice of Market Entry Modes  

E-Print Network [OSTI]

the new market. It is well accepted among scholars of international business that a collaborative venture (CV) is not economically justified unless there exists some complementarity between the resources of the participants [Contractor and Lorange 1987... also exploit the synergy by acquiring the others complementary assets. In order for a CV to be the optimal arrangement, the two firms must also face some transaction cost problems that make the acquisition of the other firm or part thereof...

Chi, Tailan; McGuire, Donald J.

1996-01-01T23:59:59.000Z

371

Dental Materials BIOMATERIALS  

E-Print Network [OSTI]

focus is on the development of two standard methods: one for a material's resistance to microleakage will quantify a significant portion of a material's ability to resist secondary caries. The methodsDental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant

372

Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

This diagram shows the flow of actual mass from which it is useful to recover energy. ... The utilization of solid recovered fuels (SRF) for energy recovery has been increasing steadily in recent years, and this development is set to continue. ... To date, Korea has used four species of solid recovered fuels (SRFs) which have been certified by the Environmental Ministry of Korea: refuse-derived fuel (RDF), refused plastic fuel (RPF), tyre-derived fuel (TDF), and wood chip fuel (WCF). ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-02-11T23:59:59.000Z

373

Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

374

High performance PEM fuel cells - from electrochemistry and material science to engineering development of a multicell stack. Interim report  

SciTech Connect (OSTI)

Under Task 1, it was shown that apparently identical MEAs of 50 Cm2 active area with 1.4 mg/cm2 Pt./C cathodes (20 wt % Pt on C) and 0.3 mg/cm2 Pt/C anodes with 40 microns thickness Gore-Select(TM) PEM material did not give identical performance, except in the Tafel region. This indicates that their overall active surface areas at low current density were identical, and that performance suffered at high current density in the range of interest. In all cases, this is shown as a change in polarization slope in the linear region. The slope of the best of these cells was 0.25 ohms cm2, and that of the worst was ca. 0.36 ohms cm2. In consequence, the performance of the best cell at 0.7 V with humidified gases was 0.44 A/cm2, and that of the worst was 0.3 A/cm2. These are substantially less than 0.7 A/cm2 at 0.7 V, which has been achieved in 5 cm2 cells. This is the fuel cell performance level required to achieve the overall system` performance goals (i.e., 0.7 A/cm2 and 0.7 V on hydrogen and air at atmospheric pressure). The variable polarization slope gives the impression of an internal resistance component, but the internal resistance measured at high frequency is rather low, about 0.12 ohms cm2. Thus, the differences in performance observed are either due to problems with the flow-field, or to dispersion in performance between individual MEAs, which otherwise contain identical components made by identical methods.

Appleby, A.J.

1997-03-04T23:59:59.000Z

375

Materialism and materiality  

Science Journals Connector (OSTI)

Accountants and auditors in recent financial scandals have been pictured as materialistic, simply calculating consequences and ignoring duties. This paper potentially explains this apparently materialistic behaviour in what has historically been a truthtelling profession. Materiality, which drives audit priorities, has been institutionalised in accounting and auditing standards. But a materiality focus inherently implies that all amounts that are not 'materially' misstated are equally true. This leads to habitual immaterial misstatements and promotes the view that auditors do not care about truth at all. Auditors' lack of commitment to truth undermines their claim to be professionals in the classic sense.

Michael K. Shaub

2005-01-01T23:59:59.000Z

376

Venture into Politics: Scientists and Engineers in the Election Campaign (I)  

Science Journals Connector (OSTI)

...Everett L. Gayhart, 74; devel-oper of high-speed spark lighting tech-niques (photography), and former member of the Applied...November. Albert L. Schrader, 68; retired pro-fessor of horticulture, University of Maryland, and former professor at the University...

D. S. Greenberg

1964-12-11T23:59:59.000Z

377

Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report  

SciTech Connect (OSTI)

Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsins 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800C.

Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

2006-09-01T23:59:59.000Z

378

NERI Quarterly Progress Report -- April 1 - June 30, 2005 -- Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility  

SciTech Connect (OSTI)

The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

Chang Oh

2005-07-01T23:59:59.000Z

379

DEVELOPMENT OF A UHT WATER PASTEURIZATION SYSTEM USING MICROCHANNEL HEAT EXCHANGER TECHNOLOGY  

E-Print Network [OSTI]

stages of proposal development for DaVita, leveraging the OSU Venture Fund money for a small-scale system+ that a small-scale system is feasible with microchannel technology. These past activities, as footnoted below, significant interest exists in a stand-alone water purification system in the 1000 ml

Escher, Christine

380

PARTNERSHIP FOR THE DEVELOPMENT OF NEXT GENERATION SIMULATION TOOLS TO EVALUATE CEMENTITIOUS BARRIERS AND MATERIALS USED IN NUCLEAR APPLICATION - 8388  

SciTech Connect (OSTI)

The US DOE has initiated a multidisciplinary cross cutting project to develop a reasonable and credible set of tools to predict the structural, hydraulic and chemical performance of cement barriers used in nuclear applications over extended time frames (e.g., > 100 years for operating facilities and > 1000 years for waste management). A partnership that combines DOE, NRC, academia, private sector, and international expertise has been formed to accomplish the project objectives by integrating existing information and realizing advancements where necessary. The set of simulation tools and data developed under this project will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems, e.g., waste forms, containment structures, entombments and environmental remediation, including decontamination and decommissioning (D&D) activities. The simulation tools will also support analysis of structural concrete components of nuclear facilities (spent fuel pools, dry spent fuel storage units, and recycling facilities, e.g., fuel fabrication, separations processes). Simulation parameters will be obtained from prior literature and will be experimentally measured under this project, as necessary, to demonstrate application of the simulation tools for three prototype applications (waste form in concrete vault, high level waste tank grouting, and spent fuel pool). Test methods and data needs to support use of the simulation tools for future applications will be defined. This is a national issue that affects all waste disposal sites that use cementitious waste forms and structures, decontamination and decommissioning activities, service life determination of existing structures, and design of future public and private nuclear facilities. The problem is difficult because it requires projecting conditions and responses over extremely long times. Current performance assessment analyses show that engineered barriers are typically the primary control to prevent the release of radionuclides from nuclear facilities into the environment. In the absence of an adequate predictive tool, assessments cannot fully incorporate the effectiveness of the concrete barriers, and the inventory of radionuclides (especially the long-lived radionuclides) that may be safely disposed of in shallow land disposal and the predicted service life of operating nuclear facilities. This project is 5 year effort focused on reducing uncertainties associated with current methodologies for assessing cementitious barrier performance and increasing the consistency and transparency of the assessment process. The results of this project will enable improved risk-informed, performance-based decision making, and supports several of the strategic initiatives in the DOE-EM Engineering & Technology Roadmap.

Langton, C; Richard Dimenna, R

2008-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials  

SciTech Connect (OSTI)

Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products?single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles?and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. This accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley; Quelen, Sarah; Marlot, Lea; Preble, Chelsea; Chen, Sharon; Montalbano, Amadine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

2013-11-18T23:59:59.000Z

382

Puncture detecting barrier materials  

DOE Patents [OSTI]

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

383

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project On May 22,...

384

Secondary natural gas recovery -- infield reserve growth joint venture: Applications in midcontinent sandstones  

SciTech Connect (OSTI)

The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gas from conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from deltaic and valley-fill sandstones of the Midcontinent as a natural laboratory for developing concepts and testing applications to find secondary gas; to demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields; and to transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

Finley, R.J.; Hardage, B.A.

1995-06-01T23:59:59.000Z

385

Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the interface of electrodes and electrolytes and using supercomputers to predict how battery systems will perform. We develop "soft" materials, including polymers and...

386

Novel Anode Materials  

Broader source: Energy.gov (indexed) [DOE]

with a variety of loadings, morphologies, and thicknesses. - Develop synchrotron tomography tools to better understand how the active materials interact with their surroundings...

387

Vehicle Technologies Office: Propulsion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

388

Development of a portable neutron coincidence counter for field measurements of nuclear materials using the advanced multiplicity capabilities of MCNPX 2.5.F and the neutron coincidence point model  

E-Print Network [OSTI]

given material. In an effort to identify unknown nuclear samples in field inspections, the Portable Neutron Coincidence Counter (PNCC) has been developed. This detector makes use of the coincident neutrons being emitted from a bulk sample. An in...

Thornton, Angela Lynn

2009-05-15T23:59:59.000Z

389

Development of a portable neutron coincidence counter for field measurements of nuclear materials using the advanced multiplicity capabilities of MCNPX 2.5.F and the neutron coincidence point model  

E-Print Network [OSTI]

given material. In an effort to identify unknown nuclear samples in field inspections, the Portable Neutron Coincidence Counter (PNCC) has been developed. This detector makes use of the coincident neutrons being emitted from a bulk sample. An in...

Thornton, Angela Lynn

2008-10-10T23:59:59.000Z

390

Cybersecurity Awareness Materials | Department of Energy  

Energy Savers [EERE]

Cybersecurity Awareness Materials Cybersecurity Awareness Materials The OCIO develops and distributes a variety of awareness material to be used during cyber awareness campaigns or...

391

Cybersecurity Awareness Marketing/Promotional Material | Department...  

Broader source: Energy.gov (indexed) [DOE]

MarketingPromotional Material Cybersecurity Awareness MarketingPromotional Material The OCIO has developed a variety of marketing and promotional material to be used during cyber...

392

Scientists produce transparent, light-harvesting material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

393

Short courses in Composite Materials  

E-Print Network [OSTI]

Short courses in Composite Materials Overview The ability to tailor the material properties used. Combining the adaptability of composites with clear weight savings, whilst tailoring materials properties Airbus and Glyndr University, the Advanced Composites Training and Development Centre educates current

Davies, John N.

394

Photovoltaic Materials  

SciTech Connect (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

395

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

396

NBT Baicheng New Energy Development aka Ao Lu Jia New Energy Development |  

Open Energy Info (EERE)

NBT Baicheng New Energy Development aka Ao Lu Jia New Energy Development NBT Baicheng New Energy Development aka Ao Lu Jia New Energy Development Jump to: navigation, search Name NBT (Baicheng) New Energy Development (aka Ao Lu Jia New Energy Development) Place China Sector Wind energy Product China-based Sino-Norwegian joint venture that develops wind projects. References NBT (Baicheng) New Energy Development (aka Ao Lu Jia New Energy Development)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. NBT (Baicheng) New Energy Development (aka Ao Lu Jia New Energy Development) is a company located in China . References ↑ "[ NBT (Baicheng) New Energy Development (aka Ao Lu Jia New Energy Development)]" Retrieved from "http://en.openei.org/w/index.php?title=NBT_Baicheng_New_Energy_Development_aka_Ao_Lu_Jia_New_Energy_Development&oldid=349122

397

Reactor Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Benefits Crosscutting Technology Development Reactor Materials Advanced Sensors and Instrumentation Proliferation and Terrorism Risk Assessment Advanced Methods for Manufacturing...

398

CRADA Final Report: Materials Development For Pulp and Paper Mills, Task 9 Proof of Commercial Concept: Commodity Carbon Fibers From Weyerhaeuser Lignin Based Fibers  

SciTech Connect (OSTI)

Tasks were assigned to Oak Ridge National Laboratory (ORNL) researchers for the development of lignin-based carbon fiber from a specific precursor that was produced by the Participant (Weyerhaeuser Corporation). These tasks included characterization of precursor polymers and fibers; and the development of conversion parameters for the fibers. ORNL researchers provided recommendations for in-house characterization of the precursor at the participant's laboratory. During the early stage of the precursor fiber production trials of various spools of fibers with varied compositions were produced. Some of those samples were sent to ORNL (by the Participant) for the development of conversion protocol. The trial tow samples were oxidized at ORNL's precursor evaluation system (PES), a bench-scale facility consisting of an oven, filament winder, tension controller, and a let off creel. The PES is a modular tool useful for the development of precursor conversion protocol. It can handle a single filament to a large single tow (50k filaments). It can also offer precise tensioning for few-filament tows. In the PES, after oxidation, fibers are typically carbonized first at low temperature, {le} 600 C, and subsequently at a higher temperature, {le} 1200 C with controlled residence time. ORNL has recently installed a new carbonization furnace with 1700 C limit and a furnace with 2500 C capacity is under installation. A protocol for the oxidation and carbonization of the trial precursor fibers was developed. Oxidized fiber with a density of 1.46 g/cc (oxidation time: 90 min) shows qualitative flame retardancy via simple flame test (fibers do not catch fire or shrink when exposed to flame). Oxidized and carbonized filaments of the Weyerhaeuser precursor fibers show moderate mechanical properties and 47-51 % carbon yield (based on oxidized fiber mass) after carbonization between 1000-1400 C. The properties of fibers from nonoptimized composition and processing parameters indicate the potential of low-cost, low-end carbon fibers based on renewable resource materials. Further work is necessary to produce high quality precursor and the corresponding carbonized filaments of superior properties.

Paulauskas, Felix L [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL; Keiser, James R [ORNL; Gorog, John Peter [Weyerhaeuser Company

2010-09-01T23:59:59.000Z

399

Venture Capital Finance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

oil prices create a disruptive opportunity for lower cost feedstocks * North American shale gas is a game changer (vs rest of world) * Untapped potential in biomass, especially...

400

VENTURES 2006 DEN STARTUP  

E-Print Network [OSTI]

with a welcome from DEN Founding Director and Adjunct Professor of Busi ness Administration, Gregg Fairbrothers

Lotko, William

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries  

SciTech Connect (OSTI)

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 Systems nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.); and Babinec, S. (A123 Systems, Inc.)

2012-12-15T23:59:59.000Z

402

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

403

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

404

Environmental consequences of postulate plutonium releases from Atomics International's Nuclear Materials Development Facility (NMDF), Santa Susana, California, as a result of severe natural phenomena  

SciTech Connect (OSTI)

Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Atomics International's Nuclear Materials Development Facility (NMDF), in the Santa Susana site, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquake, and the 150-mph and 170-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The deposition values following the 110-mph and the 130-mph tornadoes are below the EPA proposed guideline.

Jamison, J.D.; Watson, E.C.

1982-02-01T23:59:59.000Z

405

ARM - Public Information Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govPublicationsPublic Information Materials govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Public Information Materials The ARM Climate Research Facility develops public information materials to communicate the purpose and objectives of the program to general audiences. These materials are designed to increase awareness of ARM Climate Research Facility goals and to document its scientific results to a lay audience. Public information materials include fact sheets, brochures, CDs, videos, press releases, and information packets. Approved materials are made

406

PNNL: Economic Development Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Calendar Events Calendar left arrow January 2014 right arrow Su Mo Tu We Th Fr Sa 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 Scheduled events for January 4, 2014 Calendar contains no events. Past Events 2013 September 20, 2013 - Startup Weekend Tri-Cities January 29, 2013 - PTAC Class: Developing Your Capability Statement January 24, 2013 - Economic Outlook Summit January 23, 2013 - Women in Business Conference January 10, 2013 - Venture Investment and Partnering Forum January 07, 2013 - New Routes for U.S.-Japan Collaboration / Ambassadorial Outreach Tour 2012 November 29, 2012 - Innovation Summit October 18, 2012 - Funding for Startups from the National Cancer Institute October 11, 2012 - Career Fair October 09, 2012 - Understanding Government Contracting Solicitations

407

Developer | OpenEI Community  

Open Energy Info (EERE)

Developer header Developer header Developer Home > Groups > Groups > Developer Content Group Activity By term Q & A Feeds Looking Back At 2013's Cleantech Investing Predictions - Energy Collective Google Cleanweb News - 5 hours 30 min ago Energy Collective Looking Back At 2013's Cleantech Investing Predictions Energy Collective As I explained, everyone already saw Cleanweb as an exciting new area, but meanwhile I was hearing a lot about agriculture from VCs but not seeing it talked about much by cleantech journalists and others. Well, agriculture-related venture investments ... Chicago co-working space aims to make cleantech cooler - Midwest Energy News Google Cleanweb News - 9 January, 2014 - 05:13 Midwest Energy News Chicago co-working space aims to make cleantech cooler

408

Cybersecurity Awareness Materials  

Broader source: Energy.gov [DOE]

The OCIO develops and distributes a variety of awareness material to be used during cyber awareness campaigns or as needed to address an emerging cyber threat or hot topic. These materials are available to other DOE organizations or public and private institutions to enhance or supplement site-specific awareness programs.

409

Materials Science & Engineering  

E-Print Network [OSTI]

technologies used to develop energy sources, protect the environment, preserve the national infrastructure, electronic materials, composites, biomaterials, nuclear materials and nanomaterials. The common thread and Engineering program. Effective 2014-2015 1 Updated May 2014 #12;Additionally, here are some helpful

Simons, Jack

410

Superconductivity and Magnetism: Materials Properties  

E-Print Network [OSTI]

#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 and Magnetism: Materials Properties and Developments Extended abstracts of the 24th Risø International Symposium LABORATORY ROSKILDE, DENMARK #12;Risø International Symposium on Superconductivity and Magnetism: Material

411

Materializing energy  

Science Journals Connector (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

412

Development Development  

E-Print Network [OSTI]

Programme 2007 - 2010 The aim of the Timber Development Programme (TDP) is "to contribute to the sustainable development to underpin sustainable forest management and support economic growth and employment acrossDevelopment Timber Development Programme 2007 - 2010 #12;2 | Timber Development Programme 2007

413

Numerical modeling of the effect of heat and mass transfer in porous low-temperature heat insulation in composite material structures on the magnitude of stresses which develop  

Science Journals Connector (OSTI)

The stressed state of multilayer low-temperature heat insulation for a cryogenic fuel tank is considered. ... is taken of heat and mass transfer in foam plastic (the main heat insulation material) occurring at cr...

G. V. Kuznetsov; N. V. Rudzinskaya

414

Scientists seek nonlinear optical materials  

Science Journals Connector (OSTI)

Nonlinear optical materials seem about to do for light what semiconductors already have done for electricity. ... Successful development of these materials could mean big payoffs in telecommunications, data processing, nuclear fusion, and applications of lasers in commerce and industry generally. ...

1982-10-04T23:59:59.000Z

415

RADIOACTIVE MATERIALS SENSORS  

SciTech Connect (OSTI)

Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

Mayo, Robert M.; Stephens, Daniel L.

2009-09-15T23:59:59.000Z

416

NETL: Advanced Research - Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Materials > Chrome Oxide Refractory High Performance Materials > Chrome Oxide Refractory Advanced Research High Performance Materials Chrome Oxide Refractory One notable NETL success is the development of a chrome oxide refractory material capable of working in slagging gasifier conditions. In this project, researchers first determined that one of the major failure mechanisms for chrome oxide refractories exposed to the intense heat and corrosive environment was spalling, or the chipping or flaking of refractory material from an exposed face. They used this information to formulate a high-chrome oxide refractory composition that resists spalling, resulting in a refractory with a longer service life in the gasifier. Inside an ultrasupercritical (USC) pulverized coal power plant, materials are exposed to temperatures up to 760°C and pressures up to 5,000 psi. Operating a USC system can improve power plant efficiency up to 47% and reduce emissions. However, finding boiler and turbine materials that can hold up under extreme conditions requires new high-temperature metal alloys and ceramic coatings, as well as computational modeling research to optimize the processing of these materials. Advanced Research Materials Development program successes in this area include the following:

417

Sinolink Development Ltd Sinsol | Open Energy Information  

Open Energy Info (EERE)

Sinolink Development Ltd Sinsol Sinolink Development Ltd Sinsol Jump to: navigation, search Name Sinolink Development Ltd (Sinsol) Place Beijing, China Zip 100007 Product An international wholesale trader operating from Beijing. As sub company of Sinosol AG, a Chinese German joint venture with headquarters in Stuttgart. Deal in gross with Photovoltaic Modules. References Sinolink Development Ltd (Sinsol)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sinolink Development Ltd (Sinsol) is a company located in Beijing, China . References ↑ "Sinolink Development Ltd (Sinsol)" Retrieved from "http://en.openei.org/w/index.php?title=Sinolink_Development_Ltd_Sinsol&oldid=351124"

418

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

419

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

420

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

422

Advanced Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

423

Critical Materials:  

Office of Environmental Management (EM)

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

424

Sandia National Laboratories: Materials Science and Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

itiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Materials...

425

FY 2008 Progress Report for Lightweighting Materials-  

Broader source: Energy.gov [DOE]

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

426

FY 2009 Progress Report for Lightweighting Materials  

Broader source: Energy.gov [DOE]

The FY 2009 Progress Report for Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies, to significantly reduce automotive vehicle...

427

Adaptive Materials Inc | Open Energy Information  

Open Energy Info (EERE)

Michigan Zip: MI 48108 Product: Adaptive Materials Inc (AMI) is a developer of portable fuel cell technology. References: Adaptive Materials Inc1 This article is a stub. You...

428

Advanced Materials and Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

429

Chemical and Materials Sciences Building | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

430

Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...  

Broader source: Energy.gov (indexed) [DOE]

Lightweight Materials R&D Annual Progress Report The Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing...

431

Complex Materials  

SciTech Connect (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-04-17T23:59:59.000Z

432

Complex Materials  

ScienceCinema (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-05-23T23:59:59.000Z

433

Material control evaluation  

SciTech Connect (OSTI)

Changes in the Department of Energy`s (DOE) scope of work have stimulated several laboratories and commercial companies to develop and apply technology to enhance nuclear material control. Accountability, inventory, radiation exposure, and insider protection concerns increase as many DOE facilities require increased storage. This paper summarizes a study of the existing material control technologies. The goal of the study is to identify, characterize, and quantify the trade-offs associated with using these technologies to provide real-time information on stored nuclear material that in turn supports decreasing the frequency of inventories conducted by site personnel.

Waddoups, I.G.; Anspach, D.A. [Sandia National Labs., Albuquerque, NM (US); Abbott, J.A. [EG& G Kirtland Operations, Albuquerque, NM (US)

1993-07-01T23:59:59.000Z

434

MATERIAL TRACKING USING LANMAS  

SciTech Connect (OSTI)

LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

Armstrong, F.

2010-06-07T23:59:59.000Z

435

Materials for geothermal production  

SciTech Connect (OSTI)

Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

Kukacka, L.E.

1992-01-01T23:59:59.000Z

436

Materials Solutions for Hydrogen Delivery in Pipelines  

Broader source: Energy.gov [DOE]

Objective: Develop materials technologies to minimize embrittlement of steels used for high-pressure transport of hydrogen

437

In: Journal of Characterization and Development of Novel Materials ISSN: 1937-7975 Volume 1, Issue 4, pp. 285 296 2010 Nova Science Publishers, Inc.  

E-Print Network [OSTI]

. The resourceful and conclusive results show that the depth and rate of penetration increase with time, temperature, and thermal exposure. Keywords: waterjet; drilling engineering; beeswax; penetration depth; penetration rate developed some empirical relations using waterjet drilling on rate of penetration, depth of penetration (DOP

Hossain, M. Enamul

438

Indian Mineral Development Act of 1982 | Open Energy Information  

Open Energy Info (EERE)

Mineral Development Act of 1982 Mineral Development Act of 1982 Jump to: navigation, search Statute Name Indian Mineral Development Act Year 1982 Url IndianDevelopment1982.jpg Description Provides for tribes to enter into energy development agreements with DOI approval References Indian Mineral Development Act of 1982[1] Bureau of Indian Affairs[2] The Indian Mineral Development Act of 1982 (IMDA) 25 U.S.C. Secs. 2101-2108 was enacted to provide Indian tribes with flexibilty in the development and sale of mineral resources. S.Rep. No. 97-472, 97th Cong.2d Sess. 2 (1982). Foremost among the beneficial effects of IMDA was the opportunity for Indian tribes to enter into joint venture agreements with mineral developers. The contractual relationships permitted by IMDA were designed to meet two objectives: First, to further the policy of self-determination

439

Materials Handbook  

Science Journals Connector (OSTI)

... THE sub title of this handbook gives the clue to the mode of treatment of the subject matter, and so ... seventeen to 'alkalis'; in fact, a better title for the book would be "Handbook of Engineering Materials". British trade names are conspicuously few, but no doubt a ...

E. H. TRIPP

1942-08-15T23:59:59.000Z

440

DEVELOPMENT OF A QUANTITATIVE MEASURE OF THE FUNCTIONALITY OF FRAME WALLS ENHANCED WITH PHASE CHANGE MATERIALS USING A DYNAMIC WALL SIMULATOR  

E-Print Network [OSTI]

into the conditioned space. PCMs have been typically incorporated into the building structure in the form of impregnated masonry (brick or concrete block) or gypsum board in walls, ceilings, and floors [5]. PCMs have been macro-encapsulated in containers... suitable for energy storage applications. Zhang, et al. [10] tested the performance of macroencapsulated PCMs by developing a frame wall that incorporated paraffin PCM encapsulated in pipes. Two small-scale test houses were constructed to compare...

Evers, Angela C.

2008-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Materials Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This department develops capabilities and methods in non-destructive evaluation (NDE) for such applications. These methods include laser-methodologies that use acoustic,...

442

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from...

443

In-Situ X-ray Spectroscopic Studies of the Fundamental Chemistry of Pb and Pb-Bi Corrosion Processes at High Temperatures: Development and Assessment of Composite Corrosion Resistant Materials.  

SciTech Connect (OSTI)

Over the course of this project, we have a number of accomplishments. The following list is presented as a summary statement for the project. Specific details from previous Quarterly Reports are given. (1) We established that it is possible to use EXAFS to study the interface layer between a material and the liquid Pb overlayer. We have discovered that molybdenum grows a selflimiting oxide layer which does not spall even at the highest temperatures studied. There have been 2 publications resulting from these studies. (2) We have fabricated a high temperature environmental chamber capable of extending the Pb overlayer studies by varying the incident x-ray beam angle to perform depth profiling of the Pb layer. This chamber will continue to be available to nuclear materials program researchers who wish to use the MRCAT beam line. (3) We have developed a collaboration with researchers at the Paul Scherrer Institute to study corrosion layers on zircalloy. One publication has resulted from this collaboration and another is in progress. (4) We have developed a collaboration with Prof. G.R. Odette of UCSB in which we studied the local structure of Ti and Y in nanoclusters found in oxygen dispersion strengthened steels. There are two publications in progress form this collaboration and we have extended the project to anomalous small angle x-ray scattering as well as EXAFS. (5) We have promoted the use of EXAFS for the study of nuclear materials to the community over the past 4 years and we have begun to see an increase in demand for EXAFS from the community at the MRCAT beam line. (6) This grant was instrumental in nucleating interest in establishing a new Collaborative Access Team at the Advanced Photon Source, the Nuclear and Radiological Research CAT (NRR-CAT). The co-PI (Jeff Terry) is the lead investigator on this project and it has been approved by the APS Scientific Advisory Committee for further planning. The status of the NRR-CAT project is being discussed in a series of workshops in 2009-2010 and has received exploratory funding from INL. This funding is being used to provide beam time and support at MRCAT for NRR-CAT related experiments. This will continue through 2010 as the development of a full NRR-CAT proposal develops. We believe that this has been a very successful project whose impact will continue to be felt for a number of years. Not only will there be additional publications coming from the work supported directly by this grant but the establishment of NRR-CAT will have a significant impact on the field of nuclear materials research for decades to come.

Carlo Segre

2009-12-30T23:59:59.000Z

444

Materials Challenges and Testing for Manufacturing, Mobility, Biomedical Applications and Climate  

Science Journals Connector (OSTI)

In two parts, the book focusses on materials science developments in the area of1) Materials Data and Informatics: - Materials data quality and infrastructure - Materials databases - Materials data mining, image analysis, data driven materials discovery, ...

Werasak Udomkichdecha, Thomas Bllinghaus, Anchalee Manonukul, Jrgen Lexow

2014-09-01T23:59:59.000Z

445

Estimated airborne release of plutonium from Atomics International's Nuclear Materials Development Facility in the Santa Susana site, California, as a result of postulated damage from severe wind and earthquake hazard  

SciTech Connect (OSTI)

The potential mass of airborne releases of plutonium (source term) that could result from wind and seismic damage is estimated for the Atomics International Company's Nuclear Materials Development Facility (NMDF) at the Santa Susana site in California. The postulated source terms will be useful as the basis for estimating the potential dose to the maximum exposed individual by inhalation and to the total population living within a prescribed radius of the site. The respirable fraction of airborne particles is thus the principal concern. The estimated source terms are based on the damage ratio, and the potential airborne releases if all enclosures suffer particular levels of damage. In an attempt to provide a realistic range of potential source terms that include most of the normal processing conditions, a best estimate bounded by upper and lower limits is provided. The range of source terms is calculated by combining a high best estimate and a low damage ratio, based on a fraction of enclosures suffering crush or perforation, with the airborne release from enclosures based upon an upper limit, average, and lower limit inventory of dispersible materials at risk. Two throughput levels are considered. The factors used to evaluate the fractional airborne release of materials and the exchange rates between enclosed and exterior atmospheres are discussed. The postulated damage and source terms are discussed for wind and earthquake hazard scenarios in order of their increasing severity.

Mishima, J.; Ayer, J.E.

1981-09-01T23:59:59.000Z

446

ATS materials support  

SciTech Connect (OSTI)

The technology based portion of the Advanced Turbine System Program (ATS) contains several subelements which address generic technology issues for land-base gas turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National laboratory (ORNL) for the Department of Energy. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. The materials manufacturing subelement was developed with input from gas turbine manufacturers, material suppliers, government laboratories and universities. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single-crystal airfoil manufacturing technologies, materials characterization and technology information exchange. Westinghouse Power Generation and Pratt and Whitney each have material programs to develop dependable TBCs that enable increased turbine inlet temperatures while maintaining airfoil substrate temperatures at levels to meet the ATS life goals. Howmet and PCC Airfoils each have projects to extend the capability of single-crystal complex-cored airfoil technology to larger sizes so that higher turbine inlet temperatures can be attained in land-based turbines in a cost-effective manner. Materials characterization tasks are ongoing on TBCs in support of the industrial projects. In addition, a project on long-term testing of ceramics and ceramic-matrix composites for gas turbines is being conducted in support of programs at Solar Turbines, Allison Engines, and Westinghouse Power Generation.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K.; Holcomb, R.S. [Oak Ridge National Lab., TN (United States); Rawlins, M.H. [Dept. of Energy, Oak Ridge, TN (United States)

1996-12-31T23:59:59.000Z

447

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

448

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1  

E-Print Network [OSTI]

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials. 1. Introduction

Chen, Gang

449

Old Electrochromic Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochromic Materials Electrochromic Materials DOE also supports the development of electrochromic coatings through several mechanisms. Three companies are engaged in development of commercial prototypes through the Electrochromics Initiative and an SBIR small business grant. LBNL and another DOE laboratory, the National Renewable Energy Laboratory (NREL) perform a variety of measurements to evaluate the energy performance and durability of these prototypes . Other research activities are intended to assist the efforts of the industry in general. At LBNL, research focuses on rapid development and analysis of electrode materials. Among recent accomplishments was the production of a stoichiometric form of Li0.5Ni0.5O by laser deposition and sputtering with excellent electrochromic properties. Dr. Stuart Cogan of EIC Laboratories tested the films and declared them to have "the highest coloration efficiency of any known anodic electrochromic material." EIC will test the films in their own devices in the near future. We also work on several binary electrodes produced by cosputtering from two targets simultaneously. For example, enhanced forms of tungsten oxide produced in this way have wide application because of the prevalence of tungsten oxide in today's devices. In addition to testing durability, NREL also investigates the degradation mechanisms which lead to failure in the hope of being able to correlate accelerated testing to real time failure as well as to diagnose and correct device problems.

450

Materials Under Extremes | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home | Science & Discovery | Advanced Materials | Research Areas | Materials Under Extremes SHARE Materials Under Extremes Materials that can withstand extreme conditions such...

451

Argonne TDC: Material Transfer Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Transfer Agreements Material Transfer Agreements Materials produced by researchers at Argonne National Laboratory are often of interest to the private sector. Depending on the circumstances under which the material was developed, such material may be transferred to industry for a number of reasons (e.g., testing, feasibility studies, etc.). This transfer is usually temporary and can initiate a more formal working arrangement. At this time, TDC, in conjunction with Argonne's Legal Department, provides such agreements on an as-needed basis. If you would like to acquire material produced by Argonne researchers during the course of a federally funded research project, please contact TDC or fill out a Material Transfer Agreement request form. Printed or electronically downloaded copies may become obsolete. Before using such a copy for work direction, employees must verify that it is current by comparing its revision number with that of the online version. Obsolete forms will be rejected.

452

Nuclear Material Control and Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

2011-06-27T23:59:59.000Z

453

2013 National Clean Energy Business Plan Competition | Department...  

Broader source: Energy.gov (indexed) [DOE]

University 31 likes SiNode Systems is a battery materials venture developing silicon-graphene anodes for the next generation of lithium-ion batteries. SiNode anodes offer higher...

454

Bioadhesive Alliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

University 31 likes SiNode Systems is a battery materials venture developing silicon-graphene anodes for the next generation of lithium-ion batteries. SiNode anodes offer higher...

455

Nuclear materials management storage study  

SciTech Connect (OSTI)

The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

Becker, G.W. Jr.

1994-02-01T23:59:59.000Z

456

Critical Materials Workshop  

Broader source: Energy.gov [DOE]

Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

457

Vehicle Technologies Office: Materials by Design  

Broader source: Energy.gov [DOE]

According to the Materials Genome Initiative, it generally requires more than 20 years to develop and implement a new or improved material for automotive applications. To accelerate this process,...

458

Career Advice Venturing into New  

E-Print Network [OSTI]

, will convert cheaply mass-produced, algae-derived oil into biodiesel. However, the Colorado State University Ever since he heard about biofuel photobioreactors, Bryan Willson, has seen raw power in tiny algae acceptable yield at economical cost." Solix continues its work to increase algae growth rate and oil content

Ferrara, Katherine W.

459

Nanomedicine as a Business Venture  

Science Journals Connector (OSTI)

The introduction of nanotechnologies into medical applications requires nanomedicine stakeholders to understand and apply the process ... in order to establish a profitable and industrial nanomedicine sector. The...

Olivier Fontaine; Bojan Boskovic; Yi Ge

2014-01-01T23:59:59.000Z

460

Nature's new venture in Japan  

Science Journals Connector (OSTI)

... should ape the Times and Newsweeks of this world by printing replicas of itself in Japan. Are not two printing centres already a sufficient headache for such an esoteric publication, ... is thus diminished by delay. Nature intends that it should be delivered to addresses in Japan within a few days of its formal publication in London and that its cost to ...

1987-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Improved Refractory Materials for Slagging Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fac Fac ts Materials Science contact Bryan Morreale Focus Area Leader (Acting) Materials Science Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15326 412-386-5929 bryan.morreale@netl.doe.gov Partner Harbison-Walker Refractories Company Improved Refractory Materials for Slagging Gasification Systems Advances in technology are often directly linked to materials development. For

462

Develop & Evaluate Materials & Additives that Enhance Thermal...  

Broader source: Energy.gov (indexed) [DOE]

observed during overcharge process, and the estimate of electricity-to-heat conversion rate is over 93 percent, indicating the high efficiency of ANL-2 redox shuttle....

463

Development of High Energy Cathode Materials  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

464

Materials Development & Fuel Processing Research for  

E-Print Network [OSTI]

tolerance/ catalyst deactivation Understanding reaction pathways Natural Gas Biofuel Diesel Jet Fuel

Azad, Abdul-Majeed

465

Development of High Energy Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

deposits). Al-coated cell can is suitable for high-voltage cathodes. Polyethylene-based separators (such as Celgard K1640) are stable at high V. Carbon Additives...

466

Materials Developments Highlight Progress in Batteries  

Science Journals Connector (OSTI)

They can also be useful for stationary energy storage, making feasible the use of intermittent energy sources such as wind and solar power and helping electric utilities average out ... ...

REBECCA L. RAWLS

1985-12-16T23:59:59.000Z

467

Development of High Energy Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Solid state synthesis: only milling and heating are involved. Easy scale-up. Bulk modification: Cr doping Surface modification: electrolyte additives, surface...

468

Pulse Pressure Forming of Lightweight Materials, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. lm015smith2010o.pdf More Documents & Publications Pulse-Pressure Forming of Lightweight Metals...

469

Develop & evaluate materials & additives that enhance thermal...  

Broader source: Energy.gov (indexed) [DOE]

stable chemistry for better abuse tolerance Coat cathode particle with stable nano-films of Al-oxide or Al-fluoride that act as a barrier against electrolyte reactivity...

470

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

471

Development and Characterization of a Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out Supplemental Materials  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed advanced rapid diagnostics that may be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the potential to improve our nation's ability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect animal populations of high economic importance in the United States. Under 2005 DHS funding we have developed multiplexed (MUX) nucleic-acid-based PCR assays that combine foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease (SVD) and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1 or Infectious Bovine Rhinotracheitus IBR), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus BPSV, Orf of sheep, and Pseudocowpox). Under 2006 funding we have developed a Multiplexed PCR [MUX] porcine assay for detection of FMDV with rule out tests for VESV and SVD foreign animal diseases in addition to one other domestic vesicular animal disease vesicular stomatitis virus (VSV) and one domestic animal disease of swine porcine reproductive and respiratory syndrome (PRRS). We have also developed a MUX bovine assay for detection of FMDV with rule out tests for the two bovine foreign animal diseases malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis virus (VSV), bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitus virus (BHV-1), bluetongue virus (BTV), and the Parapox viruses which are of two bovine types bovine papular stomatitis virus (BPSV) and psuedocowpox (PCP). This document provides details of signature generation, evaluation, and testing, as well as the specific methods and materials used. A condensed summary of the development, testing and performance of the multiplexed assay panel was presented in a 126 page separate document, entitled 'Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out'. This supplemental document provides additional details of large amount of data collected for signature generation, evaluation, and testing, as well as the specific methods and materials used for all steps in the assay development and utilization processes. In contrast to last years effort, the development of the bovine and porcine panels is pending additional work to complete analytical characterization of FMDV, VESV, VSV, SVD, RPV and MCF. The signature screening process and final panel composition impacts this effort. The unique challenge presented this year was having strict predecessor limitations in completing characterization, where efforts at LLNL must preceed efforts at PIADC, such challenges were alleviated in the 2006 reporting by having characterization data from the interlaboratory comparison and at Plum Island under AgDDAP project. We will present an addendum at a later date with additional data on the characterization of the porcine and bovine multiplex assays when that data is available.

Smith, S; Danganan, L; Tammero, L; Lenhoff, R; Naraghi-arani, P; Hindson, B

2007-08-06T23:59:59.000Z

472

2011 Annual Progress Report for Lightweighting Materials | Department...  

Broader source: Energy.gov (indexed) [DOE]

of Energys (DOEs) Vehicle Technologies Program (VTP), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and...

473

Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual...  

Energy Savers [EERE]

of Energy's (DOE's) Vehicle Technologies Program (VTO), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and...

474

Ames Lab 101: Improving Materials with Advanced Computing  

ScienceCinema (OSTI)

Ames Laboratory's Chief Research Officer Duane Johnson talks about using advanced computing to develop new materials and predict what types of properties those materials will have.

Johnson, Duane

2014-06-04T23:59:59.000Z

475

FY 2008 Progress Report for Lightweighting Materials- 11. Recycling  

Broader source: Energy.gov [DOE]

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

476

FY 2008 Progress Report for Lightweighting Materials- 10. Nondestructive Evaluation  

Broader source: Energy.gov [DOE]

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

477

FY 2008 Progress Report for Lightweighting Materials- 9. Joining  

Broader source: Energy.gov [DOE]

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

478

Clean Cities: Clean Cities Reference Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials to Reference Materials to someone by E-mail Share Clean Cities: Clean Cities Reference Materials on Facebook Tweet about Clean Cities: Clean Cities Reference Materials on Twitter Bookmark Clean Cities: Clean Cities Reference Materials on Google Bookmark Clean Cities: Clean Cities Reference Materials on Delicious Rank Clean Cities: Clean Cities Reference Materials on Digg Find More places to share Clean Cities: Clean Cities Reference Materials on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Reference Materials Use these reference materials-including quick-reference documents, publications, websites, and the Clean Cities Coalition Wiki-to develop

479

Multi Material Paradigm  

Energy Savers [EERE]

Multi Material Paradigm Glenn S. Daehn Department of Materials Science and Engineering, The Ohio State University Advanced Composites (FRP) Steel Spaceframe Multi Material Concept...

480

Educational Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

You can order a chart of the Fundamental Particles and Interactions that summarizes the current status of the Standard Model (view chart.) You can order a chart of the Fundamental Particles and Interactions that summarizes the current status of the Standard Model (view chart.) Adventures in Particle Physics is a CD-ROM that contains the complete Particle Adventure as well as the Quark Adventure, a version appropriate for exhibition settings. There are English, Spanish, French, and German versions of both adventures on the CD-ROM. It is both PC and Mac compatible. Student and teacher worksheets for classroom activities. Teachers are encouraged to print out and reproduce these pages for classroom activities (en Español). The Charm of Strange Quarks: Mysteries and Revolutions of Particle Physics can be ordered now. This book brings the excitement and a basic understanding of this fundamental topic to the public and especially to students. It includes very recent developments in particle physics and cosmology. More details

Note: This page contains sample records for the topic "materials venture developing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11