Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

2

Helpful links for materials transport, safety, etc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

3

Hazardous Material Transportation Safety (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

4

Hazardous Materials Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

2015-04-20T23:59:59.000Z

5

Enhancing Railroad Hazardous Materials Transportation Safety | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalon Clean DevelopmentCorporation -|Enhancedof Energy Safety

6

Enhancing Railroad Hazardous Materials Transportation Safety  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES AND INTER-JURISDICTIONAL CHALLENGESRailroad Hazardous g Materials

7

Center for Intermodal Transportation Safety  

E-Print Network [OSTI]

Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

Fernandez, Eduardo

8

Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk  

E-Print Network [OSTI]

1 Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk M. Rapik Saat hazardous materials transport risk by rail · Tank Car Design Optimization Model Tank car weight and capacity model Metrics to assess tank car performance Illustration of the optimization model

Barkan, Christopher P.L.

9

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

1995-09-27T23:59:59.000Z

10

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

1995-09-27T23:59:59.000Z

11

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

1996-10-02T23:59:59.000Z

12

Romanian Experience for Enhancing Safety and Security in Transport of Radioactive Material - 12223  

SciTech Connect (OSTI)

The transport of Dangerous Goods-Class no.7 Radioactive Material (RAM), is an important part of the Romanian Radioactive Material Management. The overall aim of this activity is for enhancing operational safety and security measures during the transport of the radioactive materials, in order to ensure the protection of the people and the environment. The paper will present an overall of the safety and security measures recommended and implemented during transportation of RAM in Romania. Some aspects on the potential threat environment will be also approached with special referring to the low level radioactive material (waste) and NORM transportation either by road or by rail. A special attention is given to the assessment and evaluation of the possible radiological consequences due to RAM transportation. The paper is a part of the IAEA's Vienna Scientific Research Contract on the State Management of Nuclear Security Regime (Framework) concluded with the Institute for Nuclear Research, Romania, where the author is the CSI (Chief Scientific Investigator). The transport of RAM in Romania is a very sensible and complex problem taking into consideration the importance and the need of the security and safety for such activities. The Romanian Nuclear Regulatory Body set up strictly regulation and procedures according to the Recommendation of the IAEA Vienna and other international organizations. There were implemented the adequate regulation and procedures in order to keep the environmental impacts and the radiological consequences at the lower possible level and to assure the effectiveness of state nuclear security regime due to possible malicious acts in carrying out these activities including transport and the disposal site at the acceptable international levels. The levels of the estimated doses and risk expectation values for transport and disposal are within the acceptable limits provided by national and international regulations and recommendations but can increase, significantly during potential malicious acts. (authors)

Vieru, Gheorghe [Institute for Nuclear Research, P.O.BOX 78, 0300 PITESTI (Romania)

2012-07-01T23:59:59.000Z

13

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Cancels DOE O 460.1B, 5-14-10

2010-05-14T23:59:59.000Z

14

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

2003-04-04T23:59:59.000Z

15

Materials Safety Data Sheets  

E-Print Network [OSTI]

Materials Safety Data Sheets (MSDS) MSDS contain chemical hazard information about substances compounds and solvents. MSDS data can be accessed from the following URLs http://www.ehs.umass.edu/ http://www.chem.umass.edu/Safety the "Important Safety Sites for the University" link to reach a variety of safety related information, including

Schweik, Charles M.

16

Transporting particulate material  

DOE Patents [OSTI]

A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

2011-08-30T23:59:59.000Z

17

Material Safety Data Sheets | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Material Safety Data Sheets Material Safety Data Sheets Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a...

18

Material Safety Data Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86 4.77ofMaterial Safety

19

Radioactive Material Transportation Practices  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

2002-09-23T23:59:59.000Z

20

Radiation Safety Training Materials  

Broader source: Energy.gov [DOE]

The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Management and Safety of Transportation Systems  

E-Print Network [OSTI]

Management and Safety of Transportation Systems University Transportation Center for Alabama A N N@eng.ua.edu www.eng.ua.edu Editors: James Cruise, Ph.D. Barbara Moore University Transportation Center for Alabama Transportation Center for Alabama (UTCA). The contents of this Annual Report reflect the views of the editors

Carver, Jeffrey C.

22

Traffic Safety Culture Center for Transportation Safety  

E-Print Network [OSTI]

generally opposed to raising the state's gasoline tax to pay for new roads or to make the roads safer. The Texas Traffic Safety Culture Survey was conducted at ten driver license stations operated by the Texas

23

Food Safety Participant Materials for Notebook  

E-Print Network [OSTI]

foods. · Not eating foods that have been irradiated. · Eating whole foods instead of processed foodsUNIT 5: Food Safety Participant Materials for Notebook #12;Navigating for Success Food Safety p 1 Food Safety Good food safety practices are crucial to reducing foodborne illnesses. Nutrition educators

24

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use. Rigging Equipment for Material Handling Safety Tip #19 At your job or at the plate, you can't get home on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

Minnesota, University of

25

Radioactive Material Transportation Practices Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

2008-06-04T23:59:59.000Z

26

Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY...  

Office of Environmental Management (EM)

DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY, DOE O 460.2A, DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT Order Module--DOE O 460.1C, PACKAGING AND...

27

Safety analysis report for packaging (onsite) sample pig transport system  

SciTech Connect (OSTI)

This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

MCCOY, J.C.

1999-03-16T23:59:59.000Z

28

Transporting Hazardous Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From modeling and simulationTransporting

29

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network [OSTI]

Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by: signed Feb. 9, 2012 Rick Kelly, Facility/EH&S Manager Submitted by: signed Feb. 9, 2012 Miquel Salmeron.1 RESPONSIBILITY AND AUTHORITY THROUGH LINE MANAGEMENT............................................................5

30

August 1999 Radiation Safety Manual Section 12 Shipment of Radioactive Materials  

E-Print Network [OSTI]

August 1999 Radiation Safety Manual Section 12 ­ Shipment of Radioactive Materials UW Environmental Health and Safety Page 12-1 Section 12 Shipment of Radioactive Materials Contents A. Shipping Regulations regulations for the safe transportation of radioactive materials. These regulations are adopted from those

Wilcock, William

31

A critical review of world jet transport safety  

E-Print Network [OSTI]

This thesis is intended to serve as a comprehensive introduction to world jet transport safety and aviation fire safety. Divided into six sections, this thesis contains: 1) a statistical review of overall levels of safety ...

Achtmann, Eric D.

1995-01-01T23:59:59.000Z

32

Fusion reactor breeder material safety compatibility studies  

SciTech Connect (OSTI)

Tritium breeder material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Breeder material safety compatibility studies are being conducted to identify and characterize breeder-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate the following. 1. Ternary oxides (LiAlO/sub 2/, Li/sub 2/ZrO/sub 3/, Li/sub 2/SiO/sub 3/, Li/sub 4/SiO/sub 4/, and LiTiO/sub 3/) at postulated blanket operating temperatures are chemically compatible with water coolant, while liquid lithium and Li/sub 7/Pb/sub 2/ reactions with water generate heat, aerosol, and hydrogen. 2. Lithium oxide and 17Li-83Pb alloy react mildly with water requiring special precautions to control hydrogen release. 3. Liquid lithium reacts substantially, while 17Li83Pb alloy reacts mildly with concrete to produce hydrogen. 4. Liquid lithium-air reactions may present some major safety concerns. Additional scoping tests are needed, but the ternary oxides, lithium oxide, and 17Li-83Pb have definite safety advantages over liquid lithium and Li/sub 7/Pb/sub 2/. The ternary oxides present minimal safetyrelated problems when used with water as coolant, air or concrete; but they do require neutron multipliers, which may have safety compatibility concerns with surrounding materials. The combined favorable neutronics and minor safety compatibility concerns of lithium oxide and 17Li-83Pb make them prime candidates as breeder materials. Current safety efforts are directed toward assessing the compatibility of lithium oxide and the lithium-lead alloy with coolants and other materials.

Jeppson, D.W.; Cohen, S.; Muhlestein, L.D.

1983-09-01T23:59:59.000Z

33

2011 | Center for transportation safety Safety Research and Outreachhttp://tti.tamu.edu/cts/  

E-Print Network [OSTI]

enforcement's impact on changing the driving culture to improve safety. · An examination of the growing2011 | Center for transportation safety Safety Research and Outreachhttp://tti.tamu.edu/cts/ ANNUAL REPORT #12;2 | 2011 annUaL report Center for transportation safety introDUCtion #12;CENTER fOR TRANs

34

Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3  

SciTech Connect (OSTI)

This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

MCCALL, D L

2002-06-01T23:59:59.000Z

35

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

2010-11-18T23:59:59.000Z

36

Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety  

SciTech Connect (OSTI)

Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

Ammerman, D.J.

1997-06-01T23:59:59.000Z

37

Essays on Transportation Safety, Economics, and Policy  

E-Print Network [OSTI]

2002. TCF, 2000, Widening the Transportation Divide: HowGovernor Davis Transportation Plan Leaves Transit-People Stranded, Transportation Choices Forum, 2000.

Scholl, Patricia Lynn

2011-01-01T23:59:59.000Z

38

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

2004-12-22T23:59:59.000Z

39

Apparatus for transporting hazardous materials  

DOE Patents [OSTI]

An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

1992-01-01T23:59:59.000Z

40

Electronic transport in atomically thin layered materials  

E-Print Network [OSTI]

Electronic transport in atomically thin layered materials has been a burgeoning field of study since the discovery of isolated single layer graphene in 2004. Graphene, a semi-metal, has a unique gapless Dirac-like band ...

Baugher, Britton William Herbert

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels: DOE 1540.1A, DOE 1540.2, and DOE 1540.3A.

1995-10-26T23:59:59.000Z

42

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels DOE 1540.1A, DOE 1540.2, DOE 1540.3A.

1995-09-27T23:59:59.000Z

43

Material Safety Data Sheet 2407/2457 Series  

E-Print Network [OSTI]

Measures Suitable Extinguishing Media: Carbon dioxide. Dry chemical. Water spray. #12;Material Safety Data. Evaporation Rate (butyl Acetate=1): Not applicable. Viscosity: Not applicable. Section 10. Stability

Rollins, Andrew M.

44

Toolbox Safety Talk DOT Materials of Trade  

E-Print Network [OSTI]

: Corrosive Battery acid, Descaler Class 9: Miscellaneous Lithium batteries, ORM-D #12;Toolbox Safety Talk DOT

Pawlowski, Wojtek

45

Criticality safety analysis on fissile materials in Fukushima reactor cores  

SciTech Connect (OSTI)

The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong [Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Hirano, Fumio [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Tokai-mura, Ibaraki 319-1194 (Japan)

2013-07-01T23:59:59.000Z

46

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

- Hazards Identification EMERGENCY OVERVIEW Irritant. Irritating to eyes, respiratory system and skin. HMIS CONTROLS Mechanical exhaust required. Safety shower and eye bath. PERSONAL PROTECTIVE EQUIPMENT Respiratory

Choi, Kyu Yong

47

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Irritant. Irritating to respiratory system. Target organ(s): Lungs. Bones. HMIS RATING #12;HEALTH: 2 CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory

Choi, Kyu Yong

48

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

OVERVIEW Harmful. Irritating to eyes, respiratory system and skin. Harmful in contact with skin - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand: Compatible chemical

Choi, Kyu Yong

49

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

OVERVIEW Irritant. Irritating to eyes, respiratory system and skin. HMIS RATING HEALTH: 2 FLAMMABILITY: 0 Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand: Compatible chemical-resistant gloves

Choi, Kyu Yong

50

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

to eyes, respiratory system and skin. HMIS RATING #12;HEALTH: 2 FLAMMABILITY: 0 REACTIVITY: 0 NFPA RATING Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory

Choi, Kyu Yong

51

Heat transport system, method and material  

DOE Patents [OSTI]

A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

Musinski, D.L.

1987-04-28T23:59:59.000Z

52

WATER TRANSPORT IN VESSELLESS ANGIOSPERMS: CONDUCTING EFFICIENCY AND CAVITATION SAFETY  

E-Print Network [OSTI]

WATER TRANSPORT IN VESSELLESS ANGIOSPERMS: CONDUCTING EFFICIENCY AND CAVITATION SAFETY U. G. Hacke. Second, vesselless wood ought to be exceptionally safe from cavitation if the small cumulative area woods averaged a cavitation pressure of ?3:4 6 0:3 MPa, which is low for their wet habitats

Hacke, Uwe

53

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

project having the potential to impact lead-containing building materials, including lead paint. ResultsUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Lead Basis, lead-containing materials have the potential to negatively impact the health of construction workers

Wilcock, William

54

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

. Irritating to eyes, respiratory system and skin. Very toxic to aquatic organisms, may cause long-term adverse and eye bath. Use nonsparking tools. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand: Compatible chemical-resistant gloves. Eye: Chemical safety

Choi, Kyu Yong

55

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

to eyes, respiratory system and skin. Target organ(s): Blood. Central nervous system. HMIS RATING HEALTH Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT SIGMA - MB1 www.sigma-aldrich.com Page 2 #12;Respiratory: Government approved respirator. Hand: Compatible chemical-resistant gloves. Eye

Choi, Kyu Yong

56

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

. Irritating to eyes, respiratory system and skin. HMIS RATING HEALTH: 1 FLAMMABILITY: 0 REACTIVITY: 0 NFPA Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory membranes and upper respiratory tract. May be harmful if inhaled. Ingestion: May be harmful if swallowed

Choi, Kyu Yong

57

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Irritant. Irritating to eyes, respiratory system and skin. HMIS RATING HEALTH: 2 FLAMMABILITY: 0 REACTIVITY Safety shower and eye bath. Mechanical exhaust required. ALDRICH - 258741 www.sigma-aldrich.com Page 2 #12;PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand: Compatible

Choi, Kyu Yong

58

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

to eyes, respiratory system and skin. Target organ(s): Nerves. HMIS RATING HEALTH: 2* FLAMMABILITY: 0 place. Section 8 - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. ALDRICH

Choi, Kyu Yong

59

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

. Irritating to eyes, respiratory system and skin. For additional information on toxicity, please refer - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. ALDRICH - M80806 www.sigma-aldrich.com Page 2 #12;PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government

Choi, Kyu Yong

60

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Flammable Hazards: Yes EXPLOSION DATA Dust Potential: This material, like most materials in powder form, is capable of creating a dust explosion. FLASH POINT 482 °F 250 °C Method: closed cup AUTOIGNITION TEMP 410 clothing to prevent contact with skin and eyes. Specific Hazard(s): Flammable solid. Emits toxic fumes

Choi, Kyu Yong

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Flammable Hazards: Yes EXPLOSION DATA Dust Potential: This material, like most materials in powder form, is capable of creating a dust explosion. FLASH POINT N/A AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING Protective Equipment: Wear self-contained breathing apparatus and protective clothing to prevent contact

Choi, Kyu Yong

62

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

direct contact with skin or eyes and prevent inhalation of dust. ALDRICH - 419281 www. Section 5 - Fire Fighting Measures EXPLOSION HAZARDS May form explosive mixtures with air EXPLOSION DATA Dust Potential: This material, like most materials in powder form, is capable of creating a dust

Choi, Kyu Yong

63

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

with fingers. Call a physician. Section 5 - Fire Fighting Measures EXPLOSION DATA Dust Potential: This material, like most materials in powder form, is capable of creating a dust explosion. FLASH POINT N appropriate precautions to minimize direct contact with skin or eyes and prevent inhalation of dust. METHODS

Choi, Kyu Yong

64

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

EMERGENCY OVERVIEW Irritant. Irritating to eyes, respiratory system and skin. Possible sensitizer. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand Inhalation: Material is irritating to mucous membranes and upper respiratory tract. Multiple Routes: May

Choi, Kyu Yong

65

MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION  

E-Print Network [OSTI]

MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

66

Compendium of Material Composition Data for Radiation Transport Modeling  

SciTech Connect (OSTI)

Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library file or mechanism for revising the data in a consistent and traceable manner. The authors of this revision have addressed that problem by first compiling all of the information (i.e., numbers and references) for all the materials into a single database, maintained at PNNL, that was then used as the basis for this document.

McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

2011-03-04T23:59:59.000Z

67

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

appropriate precautions to minimize direct contact with skin or eyes and prevent inhalation of dust. METHODS conditions, material may decompose to form flammable and/or explosive mixtures in air. FLASH POINT N and protective clothing to prevent contact with skin and eyes. Specific Hazard(s): Emits toxic fumes under fire

Choi, Kyu Yong

68

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

with skin or eyes and prevent inhalation of dust. METHODS FOR CLEANING UP Sweep up, place in a bag and hold OF FLAMMABILITY Under fire conditions, material may decompose to form flammable and/or explosive mixtures in air Equipment: Wear self-contained breathing apparatus and protective clothing to prevent contact with skin

Choi, Kyu Yong

69

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Equipment: Wear self-contained breathing apparatus and protective clothing to prevent contact with skin material pickup is complete. Section 7 - Handling and Storage HANDLING User Exposure: Do not breathe dust Tension N/A Partition Coefficient N/A Decomposition Temp. N/A Flash Point N/A Explosion Limits N

Choi, Kyu Yong

70

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

and in contact with skin. Irritating to eyes, respiratory system and skin. Target organ(s): Liver. Kidneys. HMIS and Storage STORAGE Store at 2-8C Section 8 - Exposure Controls / PPE ENGINEERING CONTROLS Mechanical exhaust: Material is irritating to mucous membranes and upper respiratory tract. Multiple Routes: Harmful if inhaled

Vakni, David

71

Classification of transportation packaging and dry spent fuel storage system components according to importance to safety  

SciTech Connect (OSTI)

This report provides a graded approach for classification of components used in transportation packaging and dry spent fuel storage systems. This approach provides a method for identifying, the classification of components according to importance to safety within transportation packagings and dry spent fuel storage systems. Record retention requirements are discussed to identify the documentation necessary to validate that the individual components were fabricated in accordance with their assigned classification. A review of the existing regulations pertaining to transportation packagings and dry storage systems was performed to identify current requirements The general types of transportation packagings and dry storage systems were identified. Discussions were held with suppliers and fabricators of packagings and storage systems to determine current practices. The methodology used in this report is based on Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material. This report also includes a list of generic components for each of the general types of transportation packagings and spent fuel storage systems. The safety importance of each component is discussed, and a classification category is assigned.

McConnell, J.W., Jr; Ayers, A.L. Jr; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1996-02-01T23:59:59.000Z

72

Lightweight materials for transportation: Program plan  

SciTech Connect (OSTI)

This Program Plan has been prepared by the Office of Transportation Materials in response to a request by the House Committee on Appropriations. It recognizes that a significant commitment to long-term, stable materials research and development (R&D) is required to realize the benefits of lighter weight vehicles, including economic, environmental and energy related benefits. Extensive input was obtained from the major US automakers and from representative materials and component suppliers. Considerable interaction with the key members of the US Automotive Materials Partnership (USAMP) has ensured consistency of technical direction. The program will support R&D activity at industrial sites through competitively bid subcontracts with cost sharing anticipated at 30--50%, with the higher amounts in process scale-up and manufacturing technology development. The recommended LWM Program will enable industry to develop pecessary technology by utilizing their capabilities as well as accessing supporting technology at national laboratories, universities, ongoing program activity at NASA, DoD, DOT, NIST, etc., and thereby leverage industry resources through integrated team approaches. Many individual program efforts are currently in place that address small portions of the overall needs of the LWM Program, both within DOE and in other agencies. Cognizance of these and overall integration of research activities are planned as significant program management tasks. Because of the international nature of the automobile business, benchmarking of foreign technology and tracking of worldwide developments are also key program elements.

Not Available

1993-07-01T23:59:59.000Z

73

TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS  

SciTech Connect (OSTI)

The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the TCRRF is included in the Q-List (BSC 2004 [DIRS 168361], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-26T23:59:59.000Z

74

Water Transport in PEM Fuel Cells: Advanced Modeling, Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on...

75

Water Transport in PEM Fuel Cells: Advanced Modeling, Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Part of a 100 million fuel cell award...

76

Base Technology for Radioactive Material Transportation Packaging Systems  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

1992-07-08T23:59:59.000Z

77

Fusion-reactor blanket-material safety-compatibility studies  

SciTech Connect (OSTI)

Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO/sub 2/, Li/sub 2/ZrO/sub 3/, Li/sub 2/SiO/sub 3/, Li/sub 4/SiO/sub 4/ and LiTiO/sub 3/) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li/sub 7/Pb/sub 2/ alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li/sub 17/Pb/sub 83/ alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li/sub 17/Pb/sub 83/ alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns.

Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

1982-11-01T23:59:59.000Z

78

Water Management in A PEMFC: Water Transport Mechanism and Material  

E-Print Network [OSTI]

Water Management in A PEMFC: Water Transport Mechanism and Material Degradation in Gas Diffusion on the water management of the PEMFC, namely the transport of product water (both liquid and vapor its water management performance and func- tion as indicators of the degradation of GDL material

Kandlikar, Satish

79

Hazardous Material Packaging for Transport - Administrative Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

1986-09-30T23:59:59.000Z

80

Ontario Hydro`s transportation of radioactive material and emergency response plan  

SciTech Connect (OSTI)

Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro`s shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation`s ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada.

Karmali, N. [Ontario Hydro, Toronto, Ontario (Canada). Nuclear Operations Branch

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hazardous materials transportation and emergency response programs  

SciTech Connect (OSTI)

This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

Joy, D.S.; Fore, C.S.

1983-01-01T23:59:59.000Z

82

Vulnerability Analysis Considerations for the Transportation of Special Nuclear Material  

SciTech Connect (OSTI)

The vulnerability analysis methodology developed for fixed nuclear material sites has proven to be extremely effective in assessing associated transportation issues. The basic methods and techniques used are directly applicable to conducting a transportation vulnerability analysis. The purpose of this paper is to illustrate that the same physical protection elements (detection, delay, and response) are present, although the response force plays a dominant role in preventing the theft or sabotage of material. Transportation systems are continuously exposed to the general public whereas the fixed site location by its very nature restricts general public access.

Nicholson, Lary G.; Purvis, James W.

1999-07-21T23:59:59.000Z

83

Transportation of Nuclear Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa HowellTechnologies »Transportation of

84

RESEARCH SAFETY RADIATION SAFETY  

E-Print Network [OSTI]

RESEARCH SAFETY RADIATION SAFETY ENVIRONMENTAL PROGRAMS HAZARDOUS MATERIALS CONTROLLED SUBSTANCES INTEGRATED WASTE MANAGEMENT LABORATORY SAFETY AUDITS & COMPLIANCE BIOSAFETY and ENVIRONMENTAL HEALTH EMERGENCY MANAGEMENT and MISSION CONTINUITY FIRE PREVENTION and LIFE SAFETY GENERAL SAFETY TRAINING

85

Materials and Transportation Services | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract ResearchMaterials and

86

An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility  

SciTech Connect (OSTI)

The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

P. Calderoni; P. Sharpe; M. Shimada

2009-09-01T23:59:59.000Z

87

BIOFUELS FOR TRANSPORT IN THE 21st WHY FIRE SAFETY IS A REAL ISSUE  

E-Print Network [OSTI]

BIOFUELS FOR TRANSPORT IN THE 21st CENTURY: WHY FIRE SAFETY IS A REAL ISSUE Guy Marlair1 , Patricia's), with thé new century venue we are assisting of a booming industry regarding biofuels of biofuels for transport. This contribution is a fîrst output from a National research program named

Paris-Sud XI, Université de

88

Implementation Guide for Use with DOE O 460.1A, Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides information concerning the use of current principles and practices, including regulatory guidance from the U. S. Department of Transportation and the U. S. Nuclear Regulatory Commission, where available, to establish and implement effective packaging and transportation safety programs.

1997-06-05T23:59:59.000Z

89

Hazardous Materials Packaging and Transportation Safety - DOE Directives,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960Options

90

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of|AL 2010-07 AcquistionEMPLOYEE

91

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalon Clean DevelopmentCorporation -|Enhanced

92

Department of Transportation Pipeline and Hazardous Materials Safety  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE Zero EnergyDataResearchDepartmentdraftNuclear WasteDepartment

93

Analysis of emitter material transport in thermionic converter  

SciTech Connect (OSTI)

Output power and efficiency of a thermionic converter depend on temperatures, cesiated work functions, and emissivities of electrodes as well as the interelectrode gap size. Operation lifetime of a thermionic converter is directly related to the values as well as the stability of these parameters, which can be seriously altered by the transport of emitter material to the collector during operation. Loss rate of tungsten, a preferred emitter material, by sublimation at typical operating temperatures is small (about 3{times}10{sup 7} atom/cm{sup 2}sec at 2000 K). The loss rate, however, can be several orders of magnitude higher in the presence of gaseous contaminants. Accelerated transport of emitter material to collector surface changes the effective emissivity and work functions of the electrodes, resulting in performance degradation. A phenomenological model was developed to simulate emitter material transport to the collector in the presence of oxygen, water vapor, and carbon oxide contaminants. The model accounts for interaction of these contaminants with both emitter and collector. Model results were in agreement with experimental data and theoretical results of other investigators. An analysis was performed to determine steady-state chemical composition of deposited material onto the collector surface in the presence of H{sub 2}O, O{sub 2}, and H{sub 2} gaseous contaminants. {copyright} {ital 1996 American Institute of Physics.}

Paramonov, D.V.; El-Genk, M.S. [Institute for Space and Nuclear Power Studies, Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

1996-03-01T23:59:59.000Z

94

LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE  

SciTech Connect (OSTI)

Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

Dunn, K. [Savannah River National Laboratory; Bellamy, S. [Savannah River National Laboratory; Daugherty, W. [Savannah River National Laboratory; Sindelar, R. [Savannah River National Laboratory; Skidmore, E. [Savannah River National Laboratory

2013-08-18T23:59:59.000Z

95

Transporting radioactive materials: Q & A to your questions  

SciTech Connect (OSTI)

Over 2 million packages of radioactive materials are shipped each year in the United States. These shipments are carried by trucks, trains, ships, and airplanes every day just like other commodities. Compliance with Federal regulations ensures that radioactive materials are transported safely. Proper packaging is the key to safe shipment. Package designs for radioactive materials must protect the public and the environment even in case of an accident. As the level of radioactivity increases, packaging design requirements become more stringent. Radioactive materials have been shipped in this country for more than 40 years. As with other commodities, vehicles carrying these materials have been involved in accidents. However, no deaths or serious injuries have resulted from exposure to the radioactive contents of these shipments. People are concerned about how radioactive shipments might affect them and the environment. This booklet briefly answers some of the commonly asked questions about the transport of radioactive materials. More detailed information is available from the sources listed at the end of this booklet.

Not Available

1993-04-01T23:59:59.000Z

96

rev September 2003 Radiation Safety Manual Section 11 Procurement of Radioactive Material  

E-Print Network [OSTI]

rev September 2003 Radiation Safety Manual Section 11 ­ Procurement of Radioactive Material Page 11-1 Section 11 Procurement of Radioactive Materials Contents A. Authorization to Order Radioactive Materials. Authorized Investigator Package Monitoring.................................11-3 3. No Contamination Detected

Wilcock, William

97

Material Safety Data Sheet Ashland Chemical Co. Date Prepared: 01/06/98  

E-Print Network [OSTI]

Material Safety Data Sheet Ashland Chemical Co. Date Prepared: 01/06/98 Date Printed: 06/23/99 MSDS General or Generic ID: BLEND Company Emergency Telephone Number: Ashland Chemical Co. 1-800-ASHLAND (1

Rubloff, Gary W.

98

Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management  

SciTech Connect (OSTI)

The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Peddicord, K.L. [Texas A and M Univ., College Station, TX (United States); Witmer, F.E.; Krumpe, P.F. [USDOE, Washington, DC (United States); Lazarev, L.; Moshkov, M. [Radievyj Inst., Leningrad (Russian Federation)

1997-04-09T23:59:59.000Z

99

ENVIRONMENTAL, HEALTH AND SAFETY  

E-Print Network [OSTI]

Professonal Education Showcase New! Professional Concentration in Environmental Management for Industry HEALTH AND SAFETY PROGRAMS #12;NEW Professional Concentration in Environmental Management for Industry management, air quality, water quality and hazardous materials transportation. Acquire the knowledge to help

California at Davis, University of

100

Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages  

SciTech Connect (OSTI)

The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

DeClue, J. F.

2011-06-28T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electron Transport Materials: Synthesis, Properties and Device Performance  

SciTech Connect (OSTI)

We report the design, synthesis and characterization, thermal and photophysical properties of two silane based electron transport materials, dibenzo[b,d]thiophen-2-yltriphenylsilane (Si{phi}87) and (dibenzo[b,d]thiophen-2-yl)diphenylsilane (Si{phi}88) and their performance in blue organic light emitting devices (OLEDs). The utility of these materials in blue OLEDs with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C']picolinate (Firpic) as the phosphorescent emitter was demonstrated. Using the silane Si{phi}87 as the electron transport material (ETm) an EQE of 18.2% was obtained, with a power efficiency of 24.3 lm/W (5.8V at 1mA/cm{sup 2}), in a heterostructure. When Si{phi}88 is used, the EQE is 18.5% with a power efficiency of 26.0 lm/W (5.5V at 1mA/cm{sup 2}).

Cosimbescu, Lelia; Wang, Liang; Helm, Monte L.; Polikarpov, Evgueni; Swensen, James S.; Padmaperuma, Asanga B.

2012-06-01T23:59:59.000Z

102

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

air pollution control agency and the Department of Labor and Industries (L&I) at least ten (10) days construction and renovation projects. Asbestos is a stringently regulated hazardous material and many Construction projects which impact existing building materials must include an environmental consultant

Wilcock, William

103

UNITED STATES OF AMERICA DEPARTMENT OF TRANSPORTATION PIPELINE...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AMERICA DEPARTMENT OF TRANSPORTATION PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION HAZARDOUS MATERIALS CERTIFICATE OF REGISTRATION FOR REGISTRATION YEAR(S) 2009-2012...

104

On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks  

SciTech Connect (OSTI)

This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry helium and flooded water filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

Samuel Bays; Ayodeji Alajo

2010-05-01T23:59:59.000Z

105

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid  

SciTech Connect (OSTI)

Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

2013-02-15T23:59:59.000Z

106

Safety analysis report for packaging, onsite, long-length contaminated equipment transport system  

SciTech Connect (OSTI)

This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks.

McCormick, W.A.

1997-05-09T23:59:59.000Z

107

Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (?49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of written guidance to capture 'administrative and technical' knowledge (e.g., office instructions (OIs), generic communications (e.g., bulletins, generic letters, regulatory issue summary), standard review plans (SRPs), interim staff guidance (ISGs)); (5) use of mentoring strategies for experienced staff to train new staff members; (6) use of Microsoft SharePoint portals in capturing, transferring, and documenting knowledge for staff across the Division from Division management and administrative assistants to the project managers, inspectors, and technical reviewers; and (7) development and implementation of a Division KM Plan. A discussion and description of the successes and challenges of implementing these KM strategies at the NRC/SFST will be provided. (authors)

Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David [United States Nuclear Regulatory Commission, Mail Stop EBB-03D-02M, 6003 Executive Boulevard, Rockville, MD 20852 (United States)

2012-07-01T23:59:59.000Z

108

Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection  

SciTech Connect (OSTI)

The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision points such as; crash, location, etc. For each pass through the routines, when a crash is randomly selected, crash parameters are then used to determine if failure has occurred using either external look up tables, correlations functions from deterministic calculations, or built in data libraries. The effectiveness of the software was recently demonstrated in safety analyses of the transportation of radioisotope systems for the US Dept. of Energy. These methods are readily adaptable to estimating risks associated with a variety of hazardous shipments such as spent nuclear fuel, explosives, and chemicals.

Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

2010-10-01T23:59:59.000Z

109

Spring 2013 National Transportation Stakeholders Forum Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing U.S. Nuclear Waste Technical Review Board: Roles and Priorities Overview for Newcomers May 15, 2013...

110

COGEMA operating experience in the transportation of spent fuel, nuclear materials and radioactive waste  

SciTech Connect (OSTI)

Were a spent fuel transportation accident to occur, no matter how insignificant, the public outcry could jeopardize both reprocessing operations and power plant operations for utilities that have elected to reprocess their spent fuel. Aware of this possibility, COGEMA has become deeply involved in spent fuel transportation to ensure that it is performed according to the highest standards of transportation safety. Spent fuel transportation is a vital link between the reactor site and the reprocessing plant. This paper gives an overview of COGEMA`s experience in the transportation of spent fuel.

Bernard, H. [COGEMA, Velizy-Villacoublay (France)

1993-12-31T23:59:59.000Z

111

PROPANE -C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

PROPANE - C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: PROPANE - C3H8 Document Number: 001045 PRODUCT IN AIR ACGIH OSHA TLV STEL PEL STEL IDLH OTHER ppm ppm ppm ppm ppm Propane 74-98-6 > 96.0 Simple

Choi, Kyu Yong

112

Packaging and Transfer or Transportation of Materials of National Security Interest  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements and responsibilities for the Transportation Safeguards System (TSS) packaging and transportation and onsite transfer of nuclear explosives, nuclear components, Naval nuclear fuel elements, Category I and Category II special nuclear materials, special assemblies, and other materials of national security interest. Cancels: DOE 5610.12 and DOE 5610.14.

2000-09-29T23:59:59.000Z

113

Pipeline Safety Program Oak Ridge National Laboratory  

E-Print Network [OSTI]

, · fracture mechanics and metallurgy, · hydrogen and natural gas pipeline safety, · in-line inspection methodsPipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U support to the U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration

114

Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.  

SciTech Connect (OSTI)

This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

2008-03-01T23:59:59.000Z

115

Safety, Security & Fire Report  

E-Print Network [OSTI]

2013 Safety, Security & Fire Report Stanford University #12;Table of Contents Public Safety About the Stanford University Department of Public Safety Community Outreach & Education Programs Emergency Access Transportation Safety Bicycle Safety The Jeanne Clery and Higher Education Act Timely Warning

Straight, Aaron

116

Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distribution of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108/1 drying facility; a pilot facility has been manufactured. This report describes key issues of cask drying technology, justification of terms of dry storage of naval SNF in no-108/1, design features of the mobile drying facility, results of tests of the pilot facility at the Far Eastern plant Zvezda. (authors)

Guskov, Vladimir; Korotkov, Gennady [JSC 'KBSM' (Russian Federation); Barnes, Ella [US Environmental Protection Agency - EPA (United States); Snipes, Randy [Oak Ridge National Laboratory - ORNL, 1 Bethel Valley Rd, Oak Ridge, TN 37830 (United States)

2007-07-01T23:59:59.000Z

117

Exciton transport and coherence in molecular and nanostructured materials  

E-Print Network [OSTI]

Over the past 20 years a new classes of optically active materials have been developed that are composites of nano-engineered constituents such as molecules, polymers, and nanocrystals. These disordered materials have ...

Akselrod, Gleb M. (Gleb Markovitch)

2013-01-01T23:59:59.000Z

118

Thermal Transport in Nanoporous Materials for Energy Applications  

E-Print Network [OSTI]

based materials as supercapacitor electrodes, Chemicalas electrochemical supercapacitor electrodes, Chemicaland heat management of supercapacitor modules for vehicle

Fang, Jin

2012-01-01T23:59:59.000Z

119

NGATS ATM-Airportal Project Reference Material (External Release) Next Generation Air Transportation System  

E-Print Network [OSTI]

NGATS ATM-Airportal Project Reference Material (External Release) Next Generation Air Transportation System (NGATS) Air Traffic Management (ATM) - Airportal Project Reference Material May 23, 2007 Manager NASA Mike Madson Project Scientist NASA #12;NGATS ATM-Airportal Project Reference Material

120

Notice of Intent to Revise Department of Energy Order 460.1C, Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this memorandum is to provide justification for the proposed revision of Department of Energy (DOE} Order (O} 460.lC, Packaging and Transportation Safety as part of the quadrennial review and recertification required by DOE O 251.lC, Departmental Directives Program.

2015-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Implementation Guide for Use with DOE O 460.2 Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this guide is to assist those responsible for transporting and packaging Department materials, and to provide an understanding of Department policies on activities which supplement regulatory requirements.

1996-11-15T23:59:59.000Z

122

Computational study of the transport mechanisms of molecules and ions in solid materials  

E-Print Network [OSTI]

electrolytes is a key element in the development of the solid lithium ion batteries. One promising material is dilithium phthalocyanine (Li2Pc), which upon self-assembly may form conducting channels for fast ion transport. Computational chemistry is employed...

Zhang, Yingchun

2009-06-02T23:59:59.000Z

123

Regulations Establishing Restricted Zones for the Transportation of Hazardous Materials (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations establish a Shore Clearance Line which cannot be crossed except in an emergency by any vessel transporting oil or hazardous materials in bulk in Long Island Sound. For the purpose...

124

OCCUPATIONAL SAFETY AND ENVIRONMENTAL HEALTH GUIDELINE  

E-Print Network [OSTI]

OCCUPATIONAL SAFETY AND ENVIRONMENTAL HEALTH GUIDELINE Subject: Training for the Safe prior to shipping hazardous chemicals. REFERENCE REGULATIONS: Federal Hazardous Materials Transportation disease in otherwise healthy humans or animals. Infectious substances meeting these criteria which cause

Shyy, Wei

125

Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes  

DOE Patents [OSTI]

Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

2014-01-28T23:59:59.000Z

126

Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods  

E-Print Network [OSTI]

transport in porous materials like ceramics, concrete, soils, and rocks plays an impor- tant role in many geometries like porous materials. Here, we review some of our previous work and discuss some recent environmental and technological processes [11.For example, the service life and durability of concrete can

Bentz, Dale P.

127

Assuring safety through operational approval : challenges in assessing and approving the safety of systems-level changes in air transportation  

E-Print Network [OSTI]

To improve capacity and efficiency of the air transportation system, a number of new systems-level changes have been proposed. Key aspects of the proposed changes are combined functionality across technology and procedures ...

Weibel, Roland E. (Roland Everett)

2010-01-01T23:59:59.000Z

128

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect (OSTI)

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

129

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect (OSTI)

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

130

Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations  

SciTech Connect (OSTI)

Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging not exceed the regulatory limits prescribed by 10 CFR 71 for non-exclusive shipments. The mass of each radioisotope presented in this paper is limited by the radiation dose rate on the external surface of the package, which per the regulatory limit should not exceed 200 mrem/hr. The results presented are a compendium of allowable masses of a variety of different isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term 'Small Gram Quantity' (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. The isotopes presented in this paper were chosen as the isotopes that Department of Energy (DOE) sites most likely need to ship. Other more rarely shipped isotopes, along with industrial and medical isotopes, are planned to be included in subsequent extensions of this work.

Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

2010-10-27T23:59:59.000Z

131

Environment, safety and health compliance assessment, Feed Materials Production Center, Fernald, Ohio  

SciTech Connect (OSTI)

The Secretary of Energy established independent Tiger Teams to conduct environment, safety, and health (ES H) compliance assessments at US Department of Energy (DOE) facilities. This report presents the assessment of the Feed Materials Production Center (FMPC) at Fernald, Ohio. The purpose of the assessment at FMPC is to provide the Secretary with information regarding current ES H compliance status, specific ES H noncompliance items, evaluation of the adequacy of the ES H organizations and resources (DOE and contractor), and root causes for noncompliance items. Areas reviewed included performance under Federal, state, and local agreements and permits; compliance with Federal, state and DOE orders and requirements; adequacy of operations and other site activities, such as training, procedures, document control, quality assurance, and emergency preparedness; and management and staff, including resources, planning, and interactions with outside agencies.

Not Available

1989-09-01T23:59:59.000Z

132

Health and Safety Handbook UPDATED: June 27, 2012  

E-Print Network [OSTI]

.......................................................................................................5 Material Safety Data Sheets/ Chemical Inventories

Roy, Subrata

133

Sustainable Food Sustainable Water Land Use & Wildlife Culture & Commun ble Transport Sustainable Materials Local & Sustainable Food Sustainable Wat  

E-Print Network [OSTI]

Sustainable Food Sustainable Water Land Use & Wildlife Culture & Commun ble Transport Sustainable Materials Local & Sustainable Food Sustainable Wat appiness Zero Carbon Zero Waste Sustainable Transport Sustainable Materia munity Equity & Local Economy Health & Happiness Zero Carbon Zero Was Water Land Use

Netoff, Theoden

134

Transporting TMI-2 (Three Mile Island Unit 2) core debris to INEL: Public safety and public response  

SciTech Connect (OSTI)

This paper describes the approach taken by the US Department of Energy (DOE) to ensure that public safety is maintained during transport of core debris from the Unit-2 reactor at the Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID. It provides up-to-date information about public response to the transport action and discusses DOE's position on several institutional issues. The authors advise that planners of future transport operations be prepared for a multitude of comments from all levels of federal, state, and local governments, special interest groups, and private citizens. They also advise planners to keep meticulous records concerning all informational transactions.

Schmitt, R.C.; Reno, H.W.; Young, W.R.; Hamric, J.P.

1987-01-01T23:59:59.000Z

135

Light-water-reactor safety materials engineering research programs. Quarterly progress report, January-March 1985. Volume 1  

SciTech Connect (OSTI)

This progress report summarizes work performed by the Materials Science and Technology Division of Argonne National Laboratory during January, February, and March 1985 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light-Water Reactors and Long-Term Embrittlement of Cast Duplex Stainless Steels in Light-Water-Reactor Systems. 42 refs.

Not Available

1986-03-01T23:59:59.000Z

136

Light-water-reactor safety materials engineering research programs. Volume 3. Quarterly progress report, October-December 1984  

SciTech Connect (OSTI)

This progress report summarizes work performed by the Materials Science and Technology Division of Argonne National Laboratory during October, November, and December 1984 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light-Water Reactors and Long-Term Embrittlement of Cast Duplex Stainless Steels in Light-Water-Reactor Systems.

Not Available

1985-10-01T23:59:59.000Z

137

Working with Carbon Tetrachloride According to the Material Safety Data Sheet (MSDS) for Carbon tetrachloride (CCl4) special precautions  

E-Print Network [OSTI]

Working with Carbon Tetrachloride According to the Material Safety Data Sheet (MSDS) for Carbon effects are amplified OSHA PEL is 10 ppm LD50 (oral, rat) is 2800 mg/kg Carbon tetrachloride is classified #12;Working with Carbon Tetrachloride Handling and storage instructions: Preparing CCl4 solutions

Cui, Yan

138

Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2  

SciTech Connect (OSTI)

This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

Ferrell, P.C.

1996-04-18T23:59:59.000Z

139

Model simulation and experiments of flow and mass transport through a nano-material gas filter  

SciTech Connect (OSTI)

A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.

Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir; Eckels, Steve

2013-11-01T23:59:59.000Z

140

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing,  

E-Print Network [OSTI]

Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff MeetingWater Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design fuel cell design and operation; Demonstrate improvements in water management resulting in improved

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Use of the Hanford Onsite Packaging and Transportation Safety Program to Meet Cleanup Milestones Under the Hanford Site Cleanup 2015 Vision and the American Recovery and Reinvestment Act of 2009 - 12403  

SciTech Connect (OSTI)

The Hanford Site presents unique challenges in meeting the U.S. Department of Energy Richland Operations Office (DOE-RL) 2015 Cleanup Vision. CH2M Hill Plateau Remediation Company (CHPRC), its subcontractors, and DOE-RL were challenged to retrieve, transport and remediate a wide range of waste materials. Through a collaborative effort by all Hanford Onsite Central Plateau Cleanup Team Members, disposition pathways for diverse and seemingly impossible to ship wastes were developed under a DOE Order 460.1C-compliant Hanford Onsite Transportation Safety Program. The team determined an effective method for transporting oversized compliant waste payloads to processing and disposition facilities. The use of the onsite TSD packaging authorizations proved to be vital to safely transporting these materials for processing and eventual final disposition. The American Recovery and Reinvestment Act of 2009 (ARRA) provided additional resources to expedite planning and execution of these important cleanup milestones. Through the innovative and creative use of the TSD, the Hanford Onsite Central Plateau Cleanup Team Members have developed and are executing an integrated project plan that enables the safe and compliant transport of a wide variety of difficult-to-transport waste items, accelerating previous cleanup schedules to meet cleanup milestones. (authors)

Lavender, John C. [CH2M HILL Plateau Remediation Company, Richland, WA 99354 (United States); Edwards, W. Scott [Areva Federal Services, Richland, WA 99354 (United States); Macbeth, Paul J.; Self, Richard J. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); West, Lori D. [Materials and Energy Corporation, Richland, WA 99354 (United States)

2012-07-01T23:59:59.000Z

142

Rural ITS Safety Solution Systems University of Minnesota Center for Transportation Studies!  

E-Print Network [OSTI]

to improve safety on rural roadways. ! #12;RITSS! · Driver Behavior Evaluation System (DBES)! · Stop Sign on Intersection Warning System (2007 Mn/DOT Innovative Ideas Program Project)! · Off-the-shelf components! · Solar

Minnesota, University of

143

A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation  

SciTech Connect (OSTI)

This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

2012-08-01T23:59:59.000Z

144

Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518  

SciTech Connect (OSTI)

As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

Dilger, Fred C. [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)

2013-07-01T23:59:59.000Z

145

Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries  

SciTech Connect (OSTI)

Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation Li-ion rechargeable battery and LiCoO2 cathode is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

Katiyar, Ram S; Gmez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

2009-01-19T23:59:59.000Z

146

Packaging and Transportation for Offsite Shipment of Materials of National Security Interest  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE must be conducted in accordance with DOT and Nuclear Regulatory Commission (NRC) regulations that would be applicable to comparable commercial shipments, except where an alternative course of action is identified in this Order. Cancels DOE O 461.1A.

2010-12-20T23:59:59.000Z

147

Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

Ring, S.

1994-12-01T23:59:59.000Z

148

Hole-transport material variation in fully vacuum deposited perovskite solar cells  

SciTech Connect (OSTI)

This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH{sub 3}NH{sub 3}PbI{sub x?3}Cl{sub x} perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.

Polander, Lauren E.; Pahner, Paul; Schwarze, Martin; Saalfrank, Matthias; Koerner, Christian; Leo, Karl, E-mail: karl.leo@iapp.de [Institut fr Angewandte Photophysik, Technische Universitt Dresden, 01069 Dresden (Germany)

2014-08-01T23:59:59.000Z

149

Rural ITS Safety Solution Systems University of Minnesota C enter for Transportation Studies  

E-Print Network [OSTI]

to improve safety on rural roadways. #12;RITSS ·! Driver Behavior Evaluation System (DBES) ·! Stop Sign-the-shelf components ·! Solar-powered with battery backup ·! Modular design ·! Ease of installation and maintenance ·! Relative low-cost #12;System Configurations Solar Radar Controller User Interface Communications (Radio

Minnesota, University of

150

Management of radioactive material safety programs at medical facilities. Final report  

SciTech Connect (OSTI)

A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

Camper, L.W.; Schlueter, J.; Woods, S. [and others

1997-05-01T23:59:59.000Z

151

Safety Analysis: Evaluation of Accident Risks in the Transporation of Hazardous Materials by Truck and Rail at the Savannah River Plant  

SciTech Connect (OSTI)

This report presents an analysis of the consequences and risks of accidents resulting from hazardous material transportation at the Savannah River Plant.

Blanchard, A.

1999-04-15T23:59:59.000Z

152

Radioactive material (RAM) transportation accident and incident experience in the U.S.A. (1971--1997)  

SciTech Connect (OSTI)

The Radioactive Materials Incident Report (RMIR) database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the National Transportation Program (EM-70) of the US Department of Energy. Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident incident events in the US for the period 1971--1997. Among the areas to be examined are: transportation accidents by mode, package response during accidents and an examination of accidents where release of contents has occurred.

McClure, J.D.; Yoshimura, H.R.; Fagan, H.F. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.; Thomas, T. [Dept. of Energy National Transportation Program (United States)

1997-11-01T23:59:59.000Z

153

The role of radiation transport in the thermal response of semitransparent materials to localized laser heating  

SciTech Connect (OSTI)

Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the P{sub n} method with {approx}500 photon energy bands, and by multi-group radiation diffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2-12 W of 4.6 or 10.6 {mu}m laser light for 5-10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. We show that, unlike the case for bulk heating, in localized infrared laser heating radiation transport plays only a very small role in the thermal response of silica.

Colvin, Jeffrey; Shestakov, Aleksei; Stoelken, James; Vignes, Ryan [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

2011-03-01T23:59:59.000Z

154

Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Cancels Chapter 3 of DOE 5480.1A. Canceled by DOE O 460.1 of 9-27-1995 and by DOE N 251.4 & Para. 9c canceled by DOE O 231.1 of 9-30-1995.

1985-07-09T23:59:59.000Z

155

Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis  

SciTech Connect (OSTI)

The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

2003-02-26T23:59:59.000Z

156

Peer review of the National Transportation Safety Board structural analysis of the I-35W bridge collapse.  

SciTech Connect (OSTI)

The Engineering Sciences Center at Sandia National Laboratories provided an independent peer review of the structural analysis supporting the National Transportation Safety Board investigation of the August 1, 2007 collapse of the I-35W Bridge in Minneapolis. The purpose of the review was to provide an impartial critique of the analysis approach, assumptions, solution techniques, and conclusions. Subsequent to reviewing numerous supporting documents, a SNL team of staff and management visited NTSB to participate in analysis briefings, discussions with investigators, and examination of critical elements of the bridge wreckage. This report summarizes the opinion of the review team that the NTSB analysis effort was appropriate and provides compelling supporting evidence for the NTSB probable cause conclusion.

Gwinn, Kenneth West; Redmond, James Michael; Wellman, Gerald William

2008-10-01T23:59:59.000Z

157

Multi-Scale Studies of Transport and Adsorption Phenomena of Cement-based Materials in Aqueous and Saline Environment  

E-Print Network [OSTI]

saturated concrete during drying, Transport in Porous Media,Concrete is a composite material consisting of a porousand Concrete Research, 34 (2004) 1579- [25] L.A. Richards, Capillary conduction of liquids through porous

Yoon, Se Yoon

2012-01-01T23:59:59.000Z

158

Assessment of the safety of spent fuel transportation in urban environs  

SciTech Connect (OSTI)

The results of a program to provide an experimental data base for estimating the radiological consequences from a hypothetical sabotage attack on a light-water-reactor spent fuel shipping cask in a densely populated area are presented. The results of subscale and full-scale experiments in conjunction with an analytical modeling study are described. The experimental data were used as input to a reactor-safety consequence model to predict radiological health consequences resulting from a hypothetical sabotage attack on a spent-fuel shipping cask in the Manhattan borough of New York City. The results of these calculations are presented.

Sandoval, R.P.; Weber, J.P.; Levine, H.S.; Romig, A.D.; Johnson, J.D.; Luna, R.E.; Newton, G.J.; Wong, B.A.; Marshall, R.W. Jr.; Alvarez, J.L.

1983-06-01T23:59:59.000Z

159

Framework for a flexible, real-time controller for automated material transport systems  

E-Print Network [OSTI]

The Manager Module. 5. 5. 1 Configuration 1. . 5. 5. 2 Configurations 2 2k 3. 5. 5. 3 Configuratron 4. . 5. 5. 4 Error Handling and Recovery Routines. . . . . . 5. 6 The Dispatcher Module. . 5. 6. 1 Configurations I 2k 4 5. 6. 2 Configurations 2 & 3... for the manager module. MTC control structure. 25 28 43 61 16 17 19 20 Material transport system layout . Intermediate decision ports . . Intermediate MTS network representation. . Graph representation of the MTS. . . Basic flowchart for the MTC...

Edlabadkar, Abhay

1995-01-01T23:59:59.000Z

160

Materials science division light-water-reactor safety research program. Quarterly progress report, October - December 1981  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during October, November, and December 1981 on water-reactor-safety problems. The research and development areas covered are environmentally assisted cracking in light water reactors, transient fuel response and fission-product release, and clad properties for code verification.

Not Available

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Mode-selective vibrational control of charge transport in $?$-conjugated molecular materials  

E-Print Network [OSTI]

The soft character of organic materials leads to strong coupling between molecular nuclear and electronic dynamics. This coupling opens the way to control charge transport in organic electronic devices by inducing molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such control has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be controlled by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1500-1700 cm$^{-1}$ region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. Vibrational control thus presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.

Artem A. Bakulin; Robert Lovrin?i?; Yu Xi; Oleg Selig; Huib J. Bakker; Yves L. A. Rezus; Pabitra K. Nayak; Alexandr Fonari; Veaceslav Coropceanu; Jean-Luc Brdas; David Cahen

2015-03-02T23:59:59.000Z

162

Regulatory compliance in the design of packages used to transport radioactive materials  

SciTech Connect (OSTI)

Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed.

Raske, D.T.

1993-06-01T23:59:59.000Z

163

Toolbox Safety Talk Welding & Metal Work Safety  

E-Print Network [OSTI]

Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

Pawlowski, Wojtek

164

Application of United States Department of Transportation regulations to hazardous material and waste shipments on the Hanford Site  

SciTech Connect (OSTI)

All hazardous material and waste transported over roadways open to the public must be in compliance with the US Department of Transportation (DOT) regulations. The DOT states that the hazardous material regulations (HMR) also apply to government-owned, contractor-operated (GOCO) transportation operations over any US Department of Energy (DOE) site roadway where the public has free and unrestricted access. Hazardous material and waste in packages that do not meet DOE regulations must be transported on DOE site roadways in a manner that excludes the public and nonessential workers. At the DOE Richland Field Office (the Hanford Site), hazardous material and waste movements that do not meet DOE requirements are transported over public access roadways during off-peak hours with the roadways barricaded. These movements are accomplished using a transportation plan that involves the DOE, DOE contractors, and private utilities who operate on or near the Hanford Site. This method, which is used at the Hanford Site to comply with DOE regulations onsite, can be communicated to other DOE sites to provide a basis for achieving consistency in similar transportation operations.

Burnside, M.E.

1992-01-01T23:59:59.000Z

165

Safety of high speed guided ground transportation systems: Comparison of magnetic and electric fields of conventional and advanced electrified transportation systems. Final report, September 1992-March 1993  

SciTech Connect (OSTI)

Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to proposed maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. The report summarizes and compares the results of a survey of EMF characteristics (spatial, temporal and frequency bands) for representative conventional railroad and transit and advanced high-speed systems including: the German TR-07 maglev system; the Amtrak Northeast Corridor (NEC) and North Jersey Transit (NJT) trains; the Washington, DC Metrorail (WMATA) and the Boston, MA (MBTA) transit systems; and the French TGV-A high speed rail system. This comprehensive comparative EMF survey produced both detailed data and statistical summaries of EMF profiles, and their variability in time and space. EMF ELF levels for WMATA are also compared to those produced by common environmental sources at home, work, and under power lines, but have specific frequency signatures.

Dietrich, F.M.; Feero, W.E.; Jacobs, W.L.

1993-08-01T23:59:59.000Z

166

PAT-2 (Plutonium Air-Transportable Model 2) safety analysis report  

SciTech Connect (OSTI)

The PAT-2 package is designed for the safe transport of plutonium and/or uranium in small quantities. The PAT-2 package is resistant to severe accidents, including that of a high-speed jet aircraft crash, and is designed to withstand such environments as extreme impact, crushing, puncturing and slashing loads, severe hydrocarbon-fueled fires, and deep underwater immersion, with no escape of contents. The package meets the requirements of 10 CFR 71 for Fissile Class I packages with a cargo of 15 grams of Pu-239, or other isotopic forms described herein, not to exceed 2 watts of thermal activity. This SAR presents design and oprational information including evaluations and analyses, test results, operating procedures, maintenance, and quality assurance information.

Andersen, J.A.; Davis, E.J.; Duffey, T.A.; Dupree, S.A.; George, O.L. Jr.; Ortiz, Z.

1981-07-01T23:59:59.000Z

167

Aerosol particle transport modeling for preclosure safety studies of nuclear waste repositories  

SciTech Connect (OSTI)

An important concern for preclosure safety analysis of a nuclear waste repository is the potential release to the environment of respirable aerosol particles. Such particles, less than 10 {mu}m in aerodynamic diameter, may have significant adverse health effects if inhaled. To assess the potential health effects of these particles, it is not sufficient to determine the mass fraction of respirable aerosol. The chemical composition of the particles is also of importance since different radionuclides may pose vastly different health hazards. Thus, models are needed to determine under normal and accident conditions the particle size and the chemical composition distributions of aerosol particles as a function of time and of position in the repository. In this work a multicomponent sectional aerosol model is used to determine the aerosol particle size and composition distributions in the repository. A range of aerosol mass releases with varying mean particle sizes and chemical compositions is used to demonstrate the sensitivities and uncertainties of the model. Decontamination factors for some locations in the repository are presented. 8 refs., 1 tab.

Gelbard, F. [Sandia National Labs., Albuquerque, NM (USA)

1989-01-01T23:59:59.000Z

168

A Review of Removable Surface Contamination on Radioactive Materials Transportation Containers  

SciTech Connect (OSTI)

This report contains the results of a study sponsored by the U.S. Nuclear Regulatory Commission (NRC) of removable surface contamination on radioactive materials transportation containers. The purpose of the study is to provide information to the NRC during their review of existing regulations. Data was obtained from both industry and literature on three major topics: 1) radiation doses, 2) economic costs, and 3) contamination frequencies. Containers for four categories of radioactive materials are considered including radiopharmaceuticals, industrial sources, nuclear fuel cycle materials, and low-level radioactive waste. Assumptions made in this study use current information to obtain realistic yet conservative estimates of radiation dose and economic costs. Collective and individual radiation doses are presented for each container category on a per container basis. Total doses, to workers and the public, are also presented for spent fuel cask and low-level waste drum decontamination. Estimates of the additional economic costs incurred by lowering current limits by factors of 10 and 100 are presented. Current contamination levels for each category of container are estimated from the data collected. The information contained in this report is designed to be useful to the NRC in preparing their recommendations for new regulations.

Kennedy, Jr, W. E.; Watson, E. C.; Murphy, D. W.; Harrer, B. J.; Harty, R.; Aldrich, J. M.

1981-05-01T23:59:59.000Z

169

Transportation  

E-Print Network [OSTI]

Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

Vinson, Steve

2013-01-01T23:59:59.000Z

170

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

171

ALCOJET MSDS -ALCOJET MSDS -ALCOJET MSDS -ALCOJET MSDS MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

remainder to sewer. Material is biodegradable. Wear dust mask to prevent inhalation. Waste Disposal Method% at ambient conditions Appearance: White powder and grandules - slight acrid odor. IV. FIRE AND EXPLOSION DATA Fire and Explosion Hazards: None V. REACTIVITY DATA Stability: Stable- loses available chlorine at high

Dickerson, Russell R.

172

TRUE COLORS: LEDS AND THE RELATIONSHIP BETWEEN CCT, CRI, OPTICAL SAFETY, MATERIAL DEGRADATION, AND PHOTOBIOLOGICAL STIMULATION  

SciTech Connect (OSTI)

This document analyzes the optical, material, and photobiological hazards of LED light sources compared to conventional light sources. It documents that LEDs generally produce the same amount of blue light, which is the primary contributor to the risks, as other sources at the same CCT. Duv may have some effect on the amount of blue light, but CRI does not.

Royer, Michael P.

2014-08-30T23:59:59.000Z

173

Phosphine Oxide Based Electron Transporting and Hole Blocking Materials for Blue Electrophosphorescent Organic Light Emitting Devices  

SciTech Connect (OSTI)

We report the design, synthesis, thermal, and photophysical properties of two phosphine oxide based electron transport/hole blocking materials, 2,6-bis(4-(diphenylphosphoryl)phenyl)pyridine (BM-A11) and 2,4-bis(4-(diphenyl-phosphoryl)phenyl)pyridine (BM-A10) for blue electrophosphorescent organic light emitting devices (OLEDs). The use of these materials in blue OLED with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate (Firpic) as the phosphor was demonstrated. Using the dual host device architecture with BM-A10 as the ETM yields a maximum EQE of 8.9% with a power efficiency of 21.5 lm/W (4.0V and 35 cd/m2). When BM-A11 is used as the ETM, the maximum EQE and power efficiency improves to 14.9% and 48.4 lm/W, respectively (3.0V and 40 cd/m2).

Von Ruden, Amber L.; Cosimbescu, Lelia; Polikarpov, Evgueni; Koech, Phillip K.; Swensen, James S.; Wang, Liang; Darsell, Jens T.; Padmaperuma, Asanga B.

2010-10-26T23:59:59.000Z

174

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-07-01T23:59:59.000Z

175

Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ~700 K, GeTe has a very large power factor, 42 ?Wcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

None

2013-08-29T23:59:59.000Z

176

Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials  

SciTech Connect (OSTI)

GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ~700 K, GeTe has a very large power factor, 42 ?Wcm-1K-2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

None

2013-08-29T23:59:59.000Z

177

Table of Organization Environmental Health & Safety  

E-Print Network [OSTI]

Safety Continues Page 3 Lauren Kelly Manager Hazardous Materials June, 2014 James Kaznosky, Senior Research Safety Lauren Kelly Manager Hazardous Materials Radioactive Waste (only) Hazardous Materials Assistant Physicist Vacant Assistant Physicist 2 #12;Environmental Safety/Hazardous Materials Management

Jia, Songtao

178

Pipeline Safety Rule (Tennessee)  

Broader source: Energy.gov [DOE]

The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

179

Assessment and evaluation of a safety factor with respect to ocean disposal of waste materials  

E-Print Network [OSTI]

to the oceans is essential if ocean dumping is to be continued. The author has surveyed the available literature, bioassay studies, and pertinent research concerning chronic effects and the risk they impose on the marine ecosystem. The main purpose... OPERATIONS 10 History of Ocean Dumping Corps of Engineers' Letters of No Objection 10 12 Types of Materials Dumped Dredge Spoils Industrial Wastes Municipal Wastes Radioactive Wastes Solid Wastes Military Wastes Construction Debris 13 13 15 15...

Zapatka, Thomas Francis

1976-01-01T23:59:59.000Z

180

Safety analysis report for packaging (onsite) steel drum  

SciTech Connect (OSTI)

This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

McCormick, W.A.

1998-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Environment, Safety, and Health Risk Assessment Program (ESHRAP)  

SciTech Connect (OSTI)

The Environment, Safety and Health Risk Assessment Program (ESHRAP) models human safety and health risk resulting from waste management and environmental restoration activities. Human safety and health risks include those associated with storing, handling, processing, transporting, and disposing of radionuclides and chemicals. Exposures to these materials, resulting from both accidents and normal, incident-free operation, are modeled. In addition, standard industrial risks (falls, explosions, transportation accidents, etc.) are evaluated. Finally, human safety and health impacts from cleanup of accidental releases of radionuclides and chemicals to the environment are estimated. Unlike environmental impact statements and safety analysis reports, ESHRAP risk predictions are meant to be best estimate, rather than bounding or conservatively high. Typically, ESHRAP studies involve risk predictions covering the entire waste management or environmental restoration program, including such activities as initial storage, handling, processing, interim storage, transportation, and final disposal. ESHRAP can be used to support complex environmental decision-making processes and to track risk reduction as activities progress.

Eide, Steven Arvid; Thomas Wierman

2003-12-01T23:59:59.000Z

182

Safety considerations for the use of sulfur in sulfur-modified pavement materials  

E-Print Network [OSTI]

on the surround1ng environment. As sulfur-modified paving materials were being developed, there was a corresponding concern for studying the amounts of gaseous emiss1ons that were generated. The Texas Trans- portat1on Inst1tute (TTI) was one of the first... organizations in the United States to become 1nvolved in the research and development of sulfur-modified pavements, Throughout 1ts laboratory stud1es TTI cont1nually mon1tored hydrogen sulf1de (H25) and sulfur d1oxide (502) em1ssions produced during mix...

Jacobs, Carolyn Yuriko

2012-06-07T23:59:59.000Z

183

DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials  

SciTech Connect (OSTI)

DOE Partnerships with States, Tribes and Other Federal Programs Help Responders Prepare for Challenges Involving Transport of Radioactive Materials Implementing adequate institutional programs and validating preparedness for emergency response to radiological transportation incidents along or near U.S. Department of Energy (DOE) shipping corridors poses unique challenges to transportation operations management. Delayed or insufficient attention to State and Tribal preparedness needs may significantly impact the transportation operations schedule and budget. The DOE Transportation Emergency Preparedness Program (TEPP) has successfully used a cooperative planning process to develop strong partnerships with States, Tribes, Federal agencies and other national programs to support responder preparedness across the United States. DOE TEPP has found that building solid partnerships with key emergency response agencies ensures responders have access to the planning, training, technical expertise and assistance necessary to safely, efficiently and effectively respond to a radiological transportation accident. Through the efforts of TEPP over the past fifteen years, partnerships have resulted in States and Tribal Nations either using significant portions of the TEPP planning resources in their programs and/or adopting the Modular Emergency Response Radiological Transportation Training (MERRTT) program into their hazardous material training curriculums to prepare their fire departments, law enforcement, hazardous materials response teams, emergency management officials, public information officers and emergency medical technicians for responding to transportation incidents involving radioactive materials. In addition, through strong partnerships with Federal Agencies and other national programs TEPP provided technical expertise to support a variety of radiological response initiatives and assisted several programs with integration of the nationally recognized MERRTT program into other training venues, thus ensuring consistency of radiological response curriculums delivered to responders. This presentation will provide an overview of the steps to achieve coordination, to avoid redundancy, and to highlight several of the successful partnerships TEPP has formed with States, Tribes, Federal agencies and other national programs. Events, accident scenarios, and training where TEPP was proven to be integral in building the radiological response capabilities for first responders to actual radiological incidents are also highlighted. Participants will gain an appreciation for the collaborative efforts States and Tribes are engaging in with the DOE to ensure that responders all along the DOE transportation corridors are adequately prepared to respond to shipments of radioactive materials through their communities.

Marsha Keister

2001-02-01T23:59:59.000Z

184

Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading  

E-Print Network [OSTI]

Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor Accepted 19 April 2010 Available online xxxx Keywords: Dye-sensitized solar cells Organic semiconductors)-9,90 -spirobifluorene) in solid-state dye-sensitized solar cells. Doctor-blading is a roll

McGehee, Michael

185

PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories  

SciTech Connect (OSTI)

This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

none,

1992-01-01T23:59:59.000Z

186

Transportation Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

187

GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report  

SciTech Connect (OSTI)

This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing waste

Halsey, W

2009-01-15T23:59:59.000Z

188

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

1992-07-01T23:59:59.000Z

189

Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network  

SciTech Connect (OSTI)

Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

190

Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network  

SciTech Connect (OSTI)

Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

2010-10-28T23:59:59.000Z

191

Safety evaluation for packaging for the transport of K Basin sludge samples in the PAS-1 cask  

SciTech Connect (OSTI)

This safety evaluation for packaging authorizes the shipment of up to two 4-L sludge samples to and from the 325 Lab or 222-S Lab for characterization. The safety of this shipment is based on the current U.S. Department of Energy Certification of Compliance (CoC) for the PAS-1 cask, USA/9184/B(U) (DOE).

SMITH, R.J.

1998-11-17T23:59:59.000Z

192

Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

Merrild, Hanna [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Larsen, Anna W., E-mail: awla@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2012-05-15T23:59:59.000Z

193

Transportation Security | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Security SHARE Global Threat Reduction Initiative Transportation Security Cooperation Secure Transport Operations (STOP) Box Security of radioactive material while...

194

Environmental Health and Safety  

E-Print Network [OSTI]

Environmental Health and Safety EHS-FORM-022 v.1.1 Page 1 of 1 Laboratory safety self NA Radioactive materials [MNI Radiation Safety Manua ]l MNI: contact Christian Janicki christian.janicki@mcgill.ca 8888-43866 ANSI (American National Standards Institute) Class 3b or 4 lasers Biological safety

Shoubridge, Eric

195

SAFETY MANUAL ENVIRONMENTAL  

E-Print Network [OSTI]

HAZARDOUS MATERIALS SAFETY MANUAL ENVIRONMENTAL HEALTH & SAFETY #12;Emergency Phone Numbers Newark-800-722-7112 National .....................................1-800-222-1222 July 2007 Environmental Health and Safety://www.udel.edu/ehs #12;University Of Delaware Safety Policy Number 7-1 The policy of the University of Delaware

Firestone, Jeremy

196

Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes  

SciTech Connect (OSTI)

We report that the representative arylamine hole transport materials undergo chemical transformations in operating organic light-emitting diode (OLED) devices. Although the underlying chemical mechanisms are too complex to be completely elucidated, structures of several identified degradation products point at dissociations of relatively weak carbon-nitrogen and carbon-carbon bonds in arylamine molecules as the initiating step. Considering the photochemical reactivities, the bond dissociation reactions of arylamines occur by the homolysis of the lowest singlet excited states formed by recombining charge carriers in the operating OLED device. The subsequent chemical reactions are likely to yield long-lived, stabilized free radicals capable of acting as deep traps--nonradiative recombination centers and fluorescence quenchers. Their presence in the hole transport layer results in irreversible hole trapping and manifests as a positive fixed charge. The extent and localization of chemical transformations in several exemplary devices suggest that the free radical reactions of hole transporting materials, arylamines, can be sufficient to account for the observed luminance efficiency loss and voltage rise in operating OLEDs. The relative bond strengths and excited state energies of OLED materials appear to have a determining effect on the operational stability of OLED devices.

Kondakov, Denis Y. [Eastman Kodak Company, Rochester, New York 14650-2103 (United States)

2008-10-15T23:59:59.000Z

197

MATERIAL SAFETY Flammability: 0  

E-Print Network [OSTI]

peligrosos (Identidad Quimica Especifica; Nombre(s) Común(es)) OSHA1 PEL2 ACGIH3 TLV4 Otros limites

Rollins, Andrew M.

198

Capital requirements for the transportation of energy materials: 1979 arc estimates  

SciTech Connect (OSTI)

Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

Not Available

1980-08-29T23:59:59.000Z

199

An evaluation of current hazardous material management procedures for the Texas Department of Transportation  

E-Print Network [OSTI]

Dealing with hazardous materials on a day-to-day basis requires a fine--tuned material management system to minimize risk of exposure or injury to workers or to the public. An effective hazardous material management system should also keep up...

Lovell, Cheryl Alane

1993-01-01T23:59:59.000Z

200

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1xZn2Sb2**  

E-Print Network [OSTI]

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1±xZn2Sb. Introduction Because of their ability to convert waste heat into electricity, thermoelectric materials have in efficiency, thermoelectric materials could pro- vide a substantial amount of electrical power from automotive

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Safety Research and Outreach IN THIS ISSUE  

E-Print Network [OSTI]

cameras Envisioning a traffic safety culture CTS marks first decade Teens in the Driver Seat receives ITE FOR TRANSPORTATION SAFETY Envisioning a traffic safety culture Guest editorial from Dr. Bella Dinh-Zarr, SafetySafety Research and Outreach IN THIS ISSUE TTI study underscores safety benefits of red light

202

Waste management facilities cost information for transportation of radioactive and hazardous materials  

SciTech Connect (OSTI)

This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

Feizollahi, F.; Shropshire, D.; Burton, D.

1995-06-01T23:59:59.000Z

203

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission SignTransport

204

NMR and Transport Studies on Group IV Clathrates and Related Intermetallic Materials  

E-Print Network [OSTI]

challenge. In this work, Nuclear Magnetic Resonance (NMR), heat capacity and transport measurements have been used to study several clathrate systems, especially the well- known type-I Ba8Ga16Sn30, which has been reported to have one of the lowest thermal...

Zheng, Xiang

2012-10-19T23:59:59.000Z

205

Understanding and engineering molecular interactions and electronic transport at 2D materials interfaces  

E-Print Network [OSTI]

2D materials are defined as solids with strong in-plane chemical bonds but weak out-of-plane, van der Waals (vdW) interactions. In order to realize potential applications of 2D materials in the areas of optoelectronics, ...

Shih, Chih-Jen, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

206

Packaging and Transfer or Transportation of Materials of National Security Interest  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements and responsibilities for offsite shipments of naval nuclear fuel elements, Category I and Category II special nuclear material, nuclear explosives, nuclear components, special assemblies, and other materials of national security interest. Cancels DOE O 461.1. Canceled by DOE O 461.1B and DOE O 461.2.

2004-04-26T23:59:59.000Z

207

ONSITE TRANSPORTATION AUTHORIZATION CHALLENGES AT THE SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Prior to 2008, transfers of radioactive material within the Savannah River Site (SRS) boundary, referred to as onsite transfers, were authorized by Transportation Safety Basis (TSB) documents that only required approval by the SRS contractor. This practice was in accordance with the existing SRS Transportation Safety Document (TSD). In 2008 the Department of Energy Savannah River Field Office (DOE-SR) requested that the SRS TSD be revised to require DOE-SR approval of all Transportation Safety Basis (TSB) documents. As a result, the primary SRS contractor embarked on a multi-year campaign to consolidate old or generate new TSB documents and obtain DOE-SR approval for each. This paper focuses on the challenges incurred during the rewriting or writing of and obtaining DOE-SR approval of all Savannah River Site Onsite Transportation Safety Basis documents.

Watkins, R.; Loftin, B.; Hoang, D.; Maxted, M.

2012-05-30T23:59:59.000Z

208

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

209

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

210

Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282  

SciTech Connect (OSTI)

The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

Komann, Steffen; Groeke, Carsten; Droste, Bernhard [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin (Germany)

2013-07-01T23:59:59.000Z

211

Materials Science and Technology Division light-water-reactor safety research program: quarterly progress report, January-March 1983  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during January, February and March 1983 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, and Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems.

Not Available

1984-04-01T23:59:59.000Z

212

Materials Science Division light-water-reactor safety-research program. Quarterly progress report, April-June 1982. Volume 2  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during April, May, and June 1982 on water-reactor-safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, and Clad Properties for Code Verification.

Shack, W.J.; Rest, J.; Kassner, T.F.; Chung, H.M.; Claytor, T.N.; Kupperman, D.S.; Maiya, P.S.; Nichols, F.A.; Park, J.Y.; Ruther, W.E.; Yaggee, F.L.

1983-05-01T23:59:59.000Z

213

Materials Science Division light-water-reactor safety research program. Quarterly progress report, July-September 1982  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during July, August, and September 1982 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, Posttest Fuel Examination of the ORNL Fission Product Release Tests, and Examination of TMI-2 Fuel Specimens.

Shack, W.J.; Rest, J.; Kassner, T.F.; Neimark, L.A.; Chung, H.M.; Claytor, T.N.; Kupperman, D.S.; Maiya, P.S.; Nichols, F.A.; Park, J.Y.

1983-08-01T23:59:59.000Z

214

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report  

SciTech Connect (OSTI)

This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

1997-05-01T23:59:59.000Z

215

Natural Gas Pipeline Safety (Kansas)  

Broader source: Energy.gov [DOE]

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

216

Molten Salt Heat Transport Loop: Materials Corrosion and Heat Transfer Phenomena  

SciTech Connect (OSTI)

An experimental system for corrosion testing of candidate materials in molten FLiNaK salt at 850 degree C has been designed and constructed. While molten FLiNaK salt was the focus of this study, the system can be utilized for evaluation of materials in other molten salts that may be of interest in the future. Using this system, the corrosion performance of a number of code-certified alloys of interest to NGNP as well as the efficacy of Ni-electroplating have been investigated. The mechanisums underlying corrosion processes have been elucidated using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy of the materials after the corrosion tests, as well as by the post-corrosion analysis of the salts using inductively coupled plasma (ICP) and neutron activation analysis (NAA) techniques.

Dr. Kumar Sridharan; Dr. Mark Anderson; Dr. Michael Corradini; Dr. Todd Allen; Luke Olson; James Ambrosek; Daniel Ludwig

2008-07-09T23:59:59.000Z

217

New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation  

E-Print Network [OSTI]

and room temperature. This satisfies the DOE (Department of Energy) target of hydrogen-storage materials single-wall nanotubes can lead to a hydrogen-storage capacity of 6.0 mass% and 61:7 kg=m3 at 50 bars of roughly 1­20 bars and ambient temperature. Chen et al. reported remarkable hydrogen-storage capacities

Goddard III, William A.

218

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

219

__________________________________ Environment, Health, & Safety ________________________________ Training Program  

E-Print Network [OSTI]

commercial drivers license endorsement to transport radioactive or hazardous waste. Course Objectives: After ________________________________ Training Program EHS0476~ Radioactive Materials Driver Training Subject Category: Radioactive Materials function specific drivers training for LBNL personnel who transport radioactive materials, via government

Eisen, Michael

220

Comments on a paper tilted `The sea transport of vitrified high-level radioactive wastes: Unresolved safety issues`  

SciTech Connect (OSTI)

The cited paper estimates the consequences that might occur should a purpose-built ship transporting Vitrified High Level Waste (VHLW) be involved in a severe collision that causes the VHLW canisters in one Type-B package to spill onto the floor of a major ocean fishing region. Release of radioactivity from VHLW glass logs, failure of elastomer cask seals, failure of VHLW canisters due to stress corrosion cracking (SCC), and the probabilities of the hypothesized accident scenario, of catastrophic cask failure, and of cask recovery from the sea are all discussed.

Sprung, J.L.; McConnell, P.E.; Nigrey, P.J.; Ammerman, D.J. [and others

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thermal reactor safety  

SciTech Connect (OSTI)

Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

Not Available

1980-06-01T23:59:59.000Z

222

Safety First Safety Last Safety Always Safety Shoes  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Safety Shoes and Boots Safety Tip #21 Don't let your day guards) can be used in conjunction with standard safety shoes. Safety boots Safety boots come in many varieties, and which you will use will depend on the specific hazards you face. Boots offer more protection

Minnesota, University of

223

WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization  

SciTech Connect (OSTI)

Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

2012-10-02T23:59:59.000Z

224

DOE Order Self Study Modules - DOE O 460.1C Packaging and Transportation Safety and DOE O 460.2A Departmental Materials Transportation and Packaging Management  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5OperateInfrastructure WorkingOrder 482.160.1C

225

Safety evaluation for packaging (onsite) SERF cask  

SciTech Connect (OSTI)

This safety evaluation for packaging (SEP) documents the ability of the Special Environmental Radiometallurgy Facility (SERF) Cask to meet the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B quantities (up to highway route controlled quantities) of radioactive material within the 300 Area of the Hanford Site. This document shall be used to ensure that loading, tie down, transport, and unloading of the SERF Cask are performed in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

Edwards, W.S.

1997-10-24T23:59:59.000Z

226

Safety First Safety Last Safety Always General site safety  

E-Print Network [OSTI]

Safety First Safety Last Safety Always General site safety During the course of construction barrier at least 5 feet (1.5m) high having a fire-resistance rating of at least one half hour. Site Safety and Clean-up Safety Tip #20 Safety has no quitting time. All contractors should clean up their debris, trash

Minnesota, University of

227

Safety First Safety Last Safety Always Safety Tip #22  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Safety Tip #22 Mowing Operations Mowing unsafely just doesn for out-of-control vehicles. Wear hearing protection and a safety vest. Wear a hard hat and safety goggles of this safety tip sheet. Please refrain from reading the information verbatim--paraphrase it instead

Minnesota, University of

228

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices  

SciTech Connect (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

229

TRANSPORTATION Annual Report  

E-Print Network [OSTI]

2003 CENTER FOR TRANSPORTATION STUDIES Annual Report #12;Center for Transportation Studies University of Minnesota 200 Transportation and Safety Building 511 Washington Avenue S.E. Minneapolis, MN publication is a report of transportation research, education, and outreach activities for the period July

Minnesota, University of

230

Transportation Analysis, Modeling, and Simulation (TAMS) Application  

E-Print Network [OSTI]

Transportation Analysis, Modeling, and Simulation (TAMS) Application Center for Transportation Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Center for Transportation Analysis (CTA) TAMS application is a web-based tool that supports

231

Design and optimization of a multi-particle accelerator beam transport and delivery system for material irradiation in nuclear and fusion science  

E-Print Network [OSTI]

A beam delivery and transport system were designed for the use in MIT Materials Test Facility (M2TF). The purpose of this beam delivery system was to design a 36 MeV Proton Cyclotron for DPA accumulation and a 100 MeV ...

Sordelet, Tyler Christopher

2012-01-01T23:59:59.000Z

232

INMM 55th Annual Meeting, July 2024, 2014, Atlanta Marriott Marquis, Atlanta, Georgia, USA Transport Security for Nuclear and Other Radioactive Materials --A DOE Training Course  

E-Print Network [OSTI]

Laboratory. The course was developed by Argonne for the U.S. Department of Energy Packaging Certification of Energy, Washington, D.C. 20585 ABSTRACT In early December of 2013, a weeklong training course on security Transport Security for Nuclear and Other Radioactive Materials -- A DOE Training Course Ronald B. Pope, Yung

Kemner, Ken

233

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

234

A high integrity transportable supercompactor  

SciTech Connect (OSTI)

Current transportable equipment produced to utilize high force compaction to reduce the overall volume of drums containing solid radioactive material prior to disposal, were originally designed to standards which will eventually become obsolete. At the time these machines were produced, they were state-of-the-art, but are now indicating their weaknesses in operational and safety aspects. This paper formulates a concept for a Transportable Supercompactor for handling alpha and beta/gamma bearing wastes, low operator dose uptake, contamination and radiation control systems, liquids collection, the maintenance demands of a contained press, etc., taking into account the latest technical and safety considerations. The possibility of using the concept as a skid mounted fixed Supercompactor is also reviewed in this paper.

Sims, J.; Schmidt, G.

1993-12-31T23:59:59.000Z

235

Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory  

SciTech Connect (OSTI)

This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

Smith, R.J.

1998-03-31T23:59:59.000Z

236

Alternative p-doped hole transport material for low operating voltage and high efficiency organic light-emitting diodes  

SciTech Connect (OSTI)

We investigate the properties of N,N?-[(Diphenyl-N,N?-bis)9,9,-dimethyl-fluoren-2-yl]-benzidine (BF-DPB) as hole transport material (HTL) in organic light-emitting diodes (OLEDs) and compare BF-DPB to the commonly used HTLs N,N,N?,N?-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), 2,2?,7,7?-tetrakis(N,N?-di-p-methylphenylamino)-9,9?-spirobifluorene (Spiro-TTB), and N,N?-di(naphtalene-1-yl)-N,N?-diphenylbenzidine (NPB). The influence of 2,2?-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ p-dopant) concentration in BF-DPB on the operation voltage and efficiency of red and green phosphorescent OLEDs is studied; best results are achieved at 4?wt. % doping. Without any light extraction structure, BF-DPB based red (green) OLEDs achieve a luminous efficacy of 35?.1?lm/W (74?.0?lm/W) at 1000?cd/m{sup 2} and reach a very high brightness of 10?000 cd/m{sup 2} at a very low voltage of 3.2 V (3.1 V). We attribute this exceptionally low driving voltage to the high ionization potential of BF-DPB which enables more efficient hole injection from BF-DPB to the adjacent electron blocking layer. The high efficiency and low driving voltage lead to a significantly lower luminous efficacy roll-off compared to the other compounds and render BF-DPB an excellent HTL material for highly efficient OLEDs.

Murawski, Caroline, E-mail: caroline.murawski@iapp.de; Fuchs, Cornelius; Hofmann, Simone; Leo, Karl [Institut fr Angewandte Photophysik, Technische Universitt Dresden, George-Bhr-Str. 1, 01062 Dresden (Germany); Gather, Malte C. [Institut fr Angewandte Photophysik, Technische Universitt Dresden, George-Bhr-Str. 1, 01062 Dresden (Germany); SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS Scotland (United Kingdom)

2014-09-15T23:59:59.000Z

237

Transportation Issues and Resolutions Compilation of Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Transportation Team identified the retrievability and subcriticality safety functions to be of primary importance to the transportation of UNF after extended storage and to...

238

Transportation of medical isotopes  

SciTech Connect (OSTI)

A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

Nielsen, D.L.

1997-11-19T23:59:59.000Z

239

UNBC SAFETY CHECKLIST SAFETY CHECKLIST  

E-Print Network [OSTI]

1 UNBC SAFETY CHECKLIST SAFETY CHECKLIST INSTRUCTIONS PAGE Please use the following table below needs, contact the Risk & Safety Department at 250-960- (5530) for further instructions. This safety. The safety checklist also helps you to establish due diligence under Federal and Provincial safety laws

Northern British Columbia, University of

240

Toolbox Safety Talk Ladder Safety  

E-Print Network [OSTI]

Toolbox Safety Talk Ladder Safety Environmental Health & Safety Facilities Safety & Health Section Health & Safety for recordkeeping. Slips, trips, and falls constitute the majority of general industry elevated work tasks. Like any tool, ladders must be used properly to ensure employee safety. GENERAL

Pawlowski, Wojtek

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Safety, Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterialsSafety

242

Office of Environment, Safety and Health Evaluations Appraisal...  

Broader source: Energy.gov (indexed) [DOE]

transportation, radioactive waste management, quality assurance, procurement, conduct of operations, design and system facility engineering, safety system maintenance,...

243

Office of Enforcement and Oversight's Office of Safety and Emergency...  

Broader source: Energy.gov (indexed) [DOE]

protection; fire protection; safety basis; quality assurance; civil, structural, and seismic design requirements; engineering design; configuration management; and transportation...

244

Radiation Safety Program Annual Review  

E-Print Network [OSTI]

........................................................................10 AREA RADIATION SURVEYS AND CONTAMINATION CONTROL...........................................11.....................................................................................................13 RADIOACTIVE WASTE MANAGEMENT meetings of the Radiation Safety Committee where new users and uses of radioactive materials, radiation

Lyubomirsky, Ilya

245

Improving Transportation Safety Through Accident  

E-Print Network [OSTI]

;10! Investigative Groups " Highway Factors & Bridge Construction " Bridge Design " Witness " Survival accidents. " Major Railroad accidents. " Major Pipeline accidents. " Major marine accidents of the U10 gusset plates, due to a design error by the bridge design firm . . . Contributing to the design

Minnesota, University of

246

Sandia National Laboratories: Transportation Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(NESL) Brayton Lab SCO2 Brayton Cycle Technology Videos Heat Exchanger Development Diffusion Bonding Characterization Mechanical Testing Deep Borehole Disposal Nuclear...

247

Sandia National Laboratories: Transportation Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI Researchers

248

Safety First Safety Last Safety Always Requirements for employers  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Requirements for employers · Fallprotectionsandproperuseofrelated-safety equipmentsuchaslifelines,harness · Properuseofdangeroustools,thenecessaryprecautionstotake,andtheuseof theprotectiveandemergencyequipmentrequired. Safety Training and Education Safety Tip #18 Get smart. Use safety from the start. All

Minnesota, University of

249

UNBC SAFETY CHECKLIST SAFETY CHECKLIST  

E-Print Network [OSTI]

1 UNBC SAFETY CHECKLIST SAFETY CHECKLIST INSTRUCTIONS PAGE Please use the following table below needs, contact the Risk & Safety Department at 250-960- (5530) for further instructions. This safety to remain safe here at UNBC. The safety checklist also helps you to establish due diligence under Federal

Northern British Columbia, University of

250

BIOLOGICAL SAFETY TABLE OF CONTENTS  

E-Print Network [OSTI]

SERVICES BIOLOGICAL AND CHEMICAL SAFETY PROGRAM...4 1.3 LABORATORY MANAGEMENT COMMITTEE.........................................5 2.0 GENERAL GUIDELINES FOR HANDLING BIOLOGICAL AGENTS...........................................................11 5.0 TRANSPORTATION AND TRANSFER OF BIOLOGICAL AGENTS ........................11 5.1 INTRODUCTION

O'Toole, Alice J.

251

BIOLOGICAL SAFETY POLICY PROGRAM TOPICS  

E-Print Network [OSTI]

research protocols involving hazardous materials, reviews construction design for safety features with or near biologically hazardous materials (infectious agents, biohazards or recombinant DNA). 1.3 "Infectious waste" or "biohazardous waste" is defined by the Pennsylvania Department of Environmental

Fang-Yen, Christopher

252

Toolbox Safety Talk Safety Data Sheets (SDS)  

E-Print Network [OSTI]

Toolbox Safety Talk Safety Data Sheets (SDS) Environmental Health & Safety Facilities Safety-in sheet to Environmental Health & Safety for recordkeeping. Chemical manufacturers are required to produce Safety Data Sheets (SDS) for all chemicals produced. "Safety Data Sheets", previously referred

Pawlowski, Wojtek

253

Toolbox Safety Talk Material Handling  

E-Print Network [OSTI]

hazards. Know your limit and don't try to exceed it. Ask for help if needed, or divide the load to make can be useful for light, awkward loads, while hand trucks and fork-lifts can help move heavier: ____________________ Location:______

Pawlowski, Wojtek

254

Automated Transportation Management System (ATMS) Software Project Management Plan (SPMP). Revision 2  

SciTech Connect (OSTI)

As a cabinet level federal agency with a diverse range of missions and an infrastructure spanning the United States, the US Department of Energy (DOE) has extensive freight transportation requirements. Performance and management of this freight activity is a critical function. DOE`s Transportation Management Division (TMD) has an agency-wide responsibility for overseeing transportation activities. Actual transportation operations are handled by government or contractor staff at the field locations. These staff have evolved a diverse range of techniques and procedures for performing transportation functions. In addition to minimizing the economic impact of transportation on programs, facility transportation staff must be concerned with the increasingly complex task of complying with complex shipment safety regulations. Maintaining the department`s safety record for shipping hazardous and radioactive materials is a primary goal. Use of automation to aid transportation functions is not widespread within DOE, though TMD has a number of software systems designed to gather and analyze data pertaining to field transportation activities. These systems are not integrated. Historically, most field facilities have accomplished transportation-related tasks manually or with minimal computer assistance. At best, information and decision support systems available to transportation staffs within the facilities are fragmented. In deciding where to allocate resources for automation, facility managers have not tended to give the needs of transportation departments a high priority. This diversity causes TMD significant difficulty in collecting data for use in managing department-wide transportation activities.

Weidert, R.S.

1995-05-26T23:59:59.000Z

255

Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)  

SciTech Connect (OSTI)

Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

Estrella, R.

1994-10-01T23:59:59.000Z

256

Safety analysis report for packaging (onsite) doorstop samplecarrier system  

SciTech Connect (OSTI)

The Doorstop Sample Carrier System consists of a Type B certified N-55 overpack, U.S. Department of Transportation (DOT) specification or performance-oriented 208-L (55-gal) drum (DOT 208-L drum), and Doorstop containers. The purpose of the Doorstop Sample Carrier System is to transport samples onsite for characterization. This safety analysis report for packaging (SARP) provides the analyses and evaluation necessary to demonstrate that the Doorstop Sample Carrier System meets the requirements and acceptance criteria for both Hanford Site normal transport conditions and accident condition events for a Type B package. This SARP also establishes operational, acceptance, maintenance, and quality assurance (QA) guidelines to ensure that the method of transport for the Doorstop Sample Carrier System is performed safely in accordance with WHC-CM-2-14, Hazardous Material Packaging and Shipping.

Obrien, J.H.

1997-02-24T23:59:59.000Z

257

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

258

Received 14 Aug 2013 | Accepted 8 Sep 2014 | Published 13 Oct 2014 Improving battery safety by early detection of  

E-Print Network [OSTI]

Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill and show great promise for emerging applications in transportation and wind­solar-grid energy storage report a new strategy for improving safety by designing a smart battery that allows internal battery

Cui, Yi

259

K Basin safety analysis  

SciTech Connect (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

260

Wisconsin Strategic Highway Safety Plan 2011 2013  

E-Print Network [OSTI]

will also play key roles in establishing and nurturing a culture of highway safety values in the BadgerWisconsin Strategic Highway Safety Plan 2011 ­ 2013 Published by the Wisconsin Department of Transportation Mark Gottlieb, P.E., Secretary Wisconsin DOT Traffic Safety Council #12;Zero in Wisconsin ­ Any

Sheridan, Jennifer

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electric transport properties of the pentatelluride materials HfTe{sub 5} and ZrTe{sub 5}  

SciTech Connect (OSTI)

The authors have measured the resistivity and thermopower of single crystals as well as polycrystalline pressed powders of the low-dimensional pentatelluride materials: HfTe{sub 5} and ZrTe{sub 5}. They have performed these measurements as a function of temperature between 5K and 320K. In the single crystals there is a peak in the resistivity for both materials at a peak temperature, T{sub p} where T{sub p} {approx} 80K for HfTe{sub 5} and T{sub p} {approx} 145K for ZrTe{sub 5}. Both materials exhibit a large p-type thermopower around room temperature which undergoes a change to n-type below the peak. These data are similar to behavior observed previously in these materials. They have also synthesized pressed powders of polycrystalline pentatelluride materials, HfTe{sub 5} and ZrTe{sub 5}. They have measured the resistivity and thermopower of these polycrystalline materials as a function of temperature between 5K and 320K. For the polycrystalline material, the room temperature thermopower for each of these materials is relatively high, +95 {micro}V/K and +65 {micro}V/K for HfTe{sub 5} and ZrTe{sub 5}, respectively. These values compare closely to thermopower values for single crystals of these materials. At 77 K, the thermopower is +55 {micro}V/K for HfTe{sub 5} and +35 {micro}V/K for ZrTe{sub 5}. In fact, the thermopower for the polycrystals decreases monotonically with temperature to T {approx} 5K, thus exhibiting p-type behavior over the entire range of temperature. As expected, the resistivity for the polycrystals is higher than the single crystal material, with values of 430 m{Omega}-cm and 24 m{Omega}-cm for HfTe{sub 5} and ZrTe{sub 5} respectively, compared to single crystal values of 0.35 m{Omega}-cm (HfTe{sub 5}) and 1.0 m{Omega}-cm (ZrTe{sub 5}). The authors have found that the peak in the resistivity evident in both single crystal materials is absent in these polycrystalline materials. They will discuss these materials in relation to their potential as candidates for thermoelectric applications.

Tritt, T.M.; Wilson, M.L.; Littleton, R.L. [and others

1997-07-01T23:59:59.000Z

262

Materials Science and Materials Chemistry for Large Scale Electrochemi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

263

A monthly report on transportation research, education, and outreach activities at the University of Minnesota September 2007 Rural safety institute.............. 2  

E-Print Network [OSTI]

A monthly report on transportation research, education, and outreach activities at the University-624-3708, cceconf5@umn.edu. Updates are posted on the Oberstar Forum Web page at www.cts.umn.edu/oberstarforum. CTS

Minnesota, University of

264

Tag: Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8all en Best Practices Workshop for Safety Culture http:www.y12.doe.goveshbest-practices-workshop-safety-culture

265

Safety Information for Families  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Information for Families Checking your home for hazards 22 safety items no home should be without Home Safety Checklists Helpful links Home Safety Council Hunter Safety:...

266

August 2004 Radiation Safety Manual Section 5 -Training  

E-Print Network [OSTI]

August 2004 Radiation Safety Manual Section 5 - Training UW Environmental Health and Safety Page 5-1 Section 5 Radiation Safety Training Contents A. Individuals Directly Using Radioactive Materials..........................................5-1 1. Regulations for Training.................................................................. 5

Wilcock, William

267

UTCA Project 00214 Environmental Health, Public Safety, and Social Impacts  

E-Print Network [OSTI]

UTCA Project 00214 July 2001 Environmental Health, Public Safety, and Social Impacts Associated Environmental Health, Public Safety, and Social Impacts Associated with Transportation Accidents Involving-term environmental health, public safety, and social impacts that are often overlooked after major transportation

Pitt, Robert E.

268

Biological Safety  

Broader source: Energy.gov [DOE]

The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

269

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

270

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

271

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

272

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

273

Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1  

SciTech Connect (OSTI)

This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met.

NONE

1995-01-18T23:59:59.000Z

274

Safety of magnetic fusion facilities: Requirements  

SciTech Connect (OSTI)

This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved.

NONE

1996-05-01T23:59:59.000Z

275

Transportation Faculty Position The Department of Civil and Environmental Engineering at the University of Washington continues  

E-Print Network [OSTI]

Transportation Faculty Position The Department of Civil and Environmental Engineering of this action, applications are being solicited for a full-time, tenure-track faculty position in transportation in traffic operations, freight transportation, transportation planning, transportation safety

276

Electronic transport in Lithium Nickel Manganese Oxide, a high-voltage cathode material for Lithium-Ion batteries  

E-Print Network [OSTI]

Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears ...

Ransil, Alan Patrick Adams

2013-01-01T23:59:59.000Z

277

Materials Science and Technology Division Light-Water-Reactor Safety Research Program. Quarterly progress report, April-June 1983. Volume 2  

SciTech Connect (OSTI)

The progress report summarizes the Argonne National Laboratory work performed during April, May, and June 1983 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, and Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems.

Shack, W.J.

1984-06-01T23:59:59.000Z

278

Materials Science and Technology Division light-water-reactor safety research program. Quarterly progress report, July-September 1983. Volume 3  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during July, August, and September 1983 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors (reported elsewhere), Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, and Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems (reported elsewhere).

Not Available

1984-07-01T23:59:59.000Z

279

ENVIRONMENTAL HEALTH & SAFETY EMPLOYEE SAFETY ORIENTATION  

E-Print Network [OSTI]

: FS Vancouver: Ops CHEMICAL SAFETY 27265 CONTRACTOR SAFETY 23867 EARLY RETURN TO WORK 23011 EMERGENCYENVIRONMENTAL HEALTH & SAFETY EMPLOYEE SAFETY ORIENTATION SIMON FRASER UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY DEPARTMENT Discovery Park - MTF 8888 University Drive Burnaby, British Columbia Canada V5

280

Final Safety Evaluation Report to license the construction and operation of a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)  

SciTech Connect (OSTI)

The Final Safety Evaluation Report (FSER) summarizes the US Nuclear Regulatory Commission (NRC) staff`s review of Envirocare of Utah, Inc.`s (Envirocare`s) application for a license to receive, store, and dispose of uranium and thorium byproduct material (as defined in Section 11e.(2) of the Atomic Energy Act of 1954, as amended) at a site near Clive, Utah. Envirocare proposes to dispose of high-volume, low-activity Section 11e.(2) byproduct material in separate earthen disposal cells on a site where the applicant currently disposes of naturally occurring radioactive material (NORM), low-level waste, and mixed waste under license by the Utah Department of Environmental Quality. The NRC staff review of the December 23, 1991, license application, as revised by page changes dated July 2 and August 10, 1992, April 5, 7, and 10, 1993, and May 3, 6, 7, 11, and 21, 1993, has identified open issues in geotechnical engineering, water resources protection, radon attenuation, financial assurance, and radiological safety. The NRC will not issue a license for the proposed action until Envirocare adequately resolves these open issues.

Not Available

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reactor safety method  

DOE Patents [OSTI]

This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

Vachon, Lawrence J. (Clairton, PA)

1980-03-11T23:59:59.000Z

282

Safety Values  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Work-related injuries, illnesses and environmental incidents are preventable. * A just culture exists where safety and environmental concerns are brought forward without fear of...

283

Radiation Safety  

Broader source: Energy.gov (indexed) [DOE]

Weeks of training * 15 of that is OJT * General Code of Operating Rules * Air Brake & Train Handling * System Special Instructions * Safety Instructions * Federal Regulations *...

284

Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask  

SciTech Connect (OSTI)

This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

Romano, T.

1997-09-29T23:59:59.000Z

285

Packaging and Transfer of Materials of National Security Interest Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Technical Manual establishes requirements for operational safety controls for onsite operations and provides Department of Energy (DOE) technical safety requirements and policy objectives for development of an Onsite Packaging and Transfer Program, pursuant to DOE O 461.1A, Packaging and Transfer or Transportation of Materials of National Security Interest. The DOE contractor must document this program in its Onsite Packaging and Transfer Manual/Procedures. Admin Chg 1, 7-26-05. Certified 2-2-07. Canceled by DOE O 461.2.

2000-09-29T23:59:59.000Z

286

Spring 2014 National Transportation Stakeholder Forum Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Commission Commercial Vehicle Safety Alliance NTSF Tribal Caucus Section 180(c) Ad Hoc Working Group Transportation Plan Ad Hoc Working Group PRESENTATIONS - MAY 14, 2014...

287

Revised 4/15/2002 _____________________________ Environment, Health, & Safety _________ __________________  

E-Print Network [OSTI]

Revised 4/15/2002 _____________________________ Environment, Health, & Safety, medium, and large dewars o Recognize policy concerning transporting dewars in an elevator Written Exam

Eisen, Michael

288

Safety evaluation for packaging (onsite) product removal can containers  

SciTech Connect (OSTI)

This safety evaluation for packaging allows the transport of nine Product Removal (PR) Cans with their Containers from the PUREX Facility to the Plutonium Finishing Plant.

Boettger, J.S.

1997-04-29T23:59:59.000Z

289

Recent Theoretical Results for Advanced Thermoelectric Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and...

290

Radiation Safety Edward O'Connell  

E-Print Network [OSTI]

tissues) #12;Sources of Background Radiation Exposure · Naturally occurring radioactive materialsRadiation Safety Edward O'Connell Radiation Safety Officer Stony Brook University New York #12;STONY BROOK UNIVERSITY & U. HOSPITAL MEDICAL CENTER #12;Why Radiation Safety · Working with radioactive

291

HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS  

SciTech Connect (OSTI)

The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.

Farmer, J C

2007-12-04T23:59:59.000Z

292

Transportation Baseline Schedule  

SciTech Connect (OSTI)

The 1999 National Transportation Program - Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste/material transportation. The companion 1999 Transportation Barriers Analysis analyzes the data and identifies existing and potential problems that may prevent or delay transportation activities based on the data presented. The 1999 Transportation Baseline Schedule (this report) uses the same data to provide an overview of the transportation activities of DOE EM waste/materials. This report can be used to identify areas where stakeholder interface is needed, and to communicate to stakeholders the quantity/schedule of shipments going through their area. Potential bottlenecks in the transportation system can be identified; the number of packages needed, and the capacity needed at receiving facilities can be planned. This report offers a visualization of baseline DOE EM transportation activities for the 11 major sites and the Geologic Repository Disposal site (GRD).

Fawcett, Ricky Lee; John, Mark Earl

2000-01-01T23:59:59.000Z

293

Transportation Decision Support Systems Oak Ridge National Laboratory  

E-Print Network [OSTI]

Transportation Decision Support Systems Oak Ridge National Laboratory managed by UT-Battelle, LLC Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle and implementation of automated transportation decision support models for the scheduling and routing of cargo

294

Department Safety Representatives Department Safety Representative  

E-Print Network [OSTI]

Department Safety Representatives Overview Department Safety Representative Program/Operations Guidance Document The Department Safety Representative (DSR) serves a very important role with implementation of safety, health, and environmental programs on campus. The role of the DSR is to assist

Pawlowski, Wojtek

295

Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF  

SciTech Connect (OSTI)

The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173.

Not Available

1991-10-18T23:59:59.000Z

296

Idaho National Laboratory Safety Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Hand Tool Safety * Protect Your Hearing * Water Safety * Home Firearms Safety * Bicycle Safety * Pedestrian Safety * Others Outdoor Survival Safety (K-Middle School) What to...

297

Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel  

SciTech Connect (OSTI)

Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., <40 years). Extended storage (ES) time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k{sub eff}. Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

Marshall, William BJ J [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

298

Safety Bulletin  

Broader source: Energy.gov (indexed) [DOE]

in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the...

299

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

300

Toolbox Safety Talk Hot Work Safety Procedures  

E-Print Network [OSTI]

Toolbox Safety Talk Hot Work Safety Procedures Environmental Health & Safety Facilities Safety-in sheet to Environmental Health & Safety for recordkeeping. "Hot Work" is defined as any temporary WORK Obtain a hot work permit from your supervisor or safety rep. Ensure fire/smoke detection

Pawlowski, Wojtek

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Toolbox Safety Talk Machine Shop Safety  

E-Print Network [OSTI]

Toolbox Safety Talk Machine Shop Safety Environmental Health & Safety Facilities Safety & Health to Environmental Health & Safety for recordkeeping. Machine shops are an integral part of the Cornell University be taken seriously. Many of the most frequently cited OSHA safety standards pertain to machine safeguarding

Pawlowski, Wojtek

302

ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL  

E-Print Network [OSTI]

ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL May 10, 2002 #12;i Acknowledgements Environmental Health and Safety gratefully acknowledges the assistance provided by the University Safety Council extremely helpful. #12;ii Environmental Health and Safety General Safety Manual Table of Contents Section

Maroncelli, Mark

303

LASER SAFETY POLICY MANUAL ENVIRONMENTAL HEALTH & SAFETY  

E-Print Network [OSTI]

LASER SAFETY POLICY MANUAL ISSUED BY ENVIRONMENTAL HEALTH & SAFETY OFFICE OF RADIOLOGICAL SAFETY and GEORGIA TECH LASER SAFETY COMMITTEE July 1, 2010 Revised July 31, 2012 #12;Laser Safety Program 1-1 #12;Laser Safety Policy Manual TABLE OF CONTENTS 1. POLICY AND SCOPE

Houston, Paul L.

304

Management of Transuranic Contaminated Material  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

1982-09-30T23:59:59.000Z

305

Hazardous Material Security (Maryland)  

Broader source: Energy.gov [DOE]

All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

306

Nuclear reactor safety device  

DOE Patents [OSTI]

A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

Hutter, Ernest (Wilmette, IL)

1986-01-01T23:59:59.000Z

307

Lightweighting Materials | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with lightweight materials can directly reduce fuel consump-tion. It also allows cars to carry advanced emissions control equipment, safety devices, and integrated...

308

Rev: 04.2014 Page 1 of 2 Safety Training Matrix Safety Training Matrix  

E-Print Network [OSTI]

? * will use pyrophorics, explosives or large quantities of flammables? * Shop Safety will use shop equipment? * Radiation Safety will handle radioactive materials? * will work with lasers? will work with X-Ray equipment EHS 16 New Radiation Worker Qualification (NRWQ) Annual EHS 5 Lab-Specific Safety Training required

Jalali. Bahram

309

Material transport method and apparatus  

DOE Patents [OSTI]

An electrospray apparatus uses a microchannel formed in a microchip. Fluid is pumped through the channel to an outlet orifice using either hydraulic or electrokinetic means. An electrospray is generated by establishing a sufficient potential difference between the fluid at the outlet orifice and a target electrode spaced from the outlet orifice. Electrokinetic pumping is also utilized to provide additional benefits to microchip devices.

Ramsey, J. Michael (Knoxville, TN); Ramsey, Roswitha S. (Knoxville, TN)

2001-01-01T23:59:59.000Z

310

Material transport method and apparatus  

DOE Patents [OSTI]

An electrospray apparatus uses a microchannel formed in a microchip. Fluid is pumped through the channel to an outlet orifice using either hydraulic or electrokinetic means. An electrospray is generated by establishing a sufficient potential difference between the fluid at the outlet orifice and a target electrode spaced from the outlet orifice. Electrokinetic pumping is also utilized to provide additional benefits to microchip devices.

Ramsey, J. Michael (Knoxville, TN); Ramsey, Roswitha S. (Knoxville, TN)

2000-01-01T23:59:59.000Z

311

E-Print Network 3.0 - atmospheric chemical transport Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

290, Health and Safety Services Summary: Chemical Use, Storage, Transportation, and Disposal Date: 73007 Supersedes: 113005 Responsible... Davis to transport, use, and store...

312

U.S. Department Of Transportation  

E-Print Network [OSTI]

data. As we continue to make improvements to our safety culture, we must ensure that we move toward a just culture in which blame is not associated with reporting of safety information of Safety CHANGE U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION JO 7210.56C CHG 2 Air

313

Chemical Hazards and Safety Issues in Fusion Safety Design  

SciTech Connect (OSTI)

Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard.

Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

2003-09-15T23:59:59.000Z

314

Reactor operation safety information document  

SciTech Connect (OSTI)

The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

Not Available

1990-01-01T23:59:59.000Z

315

Passive Safety of the STAR-LM HLMC Natural Convection Reactor  

SciTech Connect (OSTI)

The STAR-LM 300 to 400 MWt class modular, factory fabricated, fully transportable, proliferation resistant, autonomous, reactor system achieves passive safety by taking advantage of the intrinsic benefits of inert lead-bismuth eutectic heavy liquid metal coolant, 100+% natural circulation heat transport, a fast neutron spectrum core utilizing high thermal conductivity transuranic nitride fuel, redundant passive air cooling of the outside of the guard/containment vessel driven by natural circulation, and seismic isolation where required by site conditions. Postulated loss-of-heat sink without scram, overcooling without scram, and unprotected transient overpower accidents are analyzed for the 300 MWt STAR-LM design using a coupled thermal hydraulics-neutron kinetics plant dynamics analysis computer code. In all cases, STAR-LM is calculated to exhibit passive safety with peak cladding and coolant temperatures remaining within the existing database for lead-bismuth eutectic coolant and ferritic steel core materials. (authors)

Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL 60439 (United States); Petkov, Plamen V. [University of Illinois at Urbana Champaign, Urbana, IL 61801 (United States)

2002-07-01T23:59:59.000Z

316

ENVIRONMENTAL HEALTH & SAFETY  

E-Print Network [OSTI]

ENVIRONMENTAL HEALTH & SAFETY ORIENTATION HANDBOOK Environmental Health and Safety Office safety & Safety Office 494-2495 (Phone) 494-2996 (Fax) Safety.Office@dal.ca (E-mail) www.dal.ca/safety (Web) Radiation Safety Office 494-1938 (Phone) 494-2996 (Fax) Melissa.Michaud@dal.ca (E-mail) University

Brownstone, Rob

317

Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Control  

SciTech Connect (OSTI)

This report describes the analysis and modeling approaches used in the evaluation for criticality-control applications of the neutron-absorbing structural-amorphous metal (SAM) coatings. The applications of boron-containing high-performance corrosion-resistant material (HPCRM)--amorphous metal as the neutron-absorbing coatings to the metallic support structure can enhance criticality safety controls for spent nuclear fuel in baskets inside storage containers, transportation casks, and disposal containers. The use of these advanced iron-based, corrosion-resistant materials to prevent nuclear criticality in transportation, aging, and disposal containers would be extremely beneficial to the nuclear waste management programs.

Choi, J

2007-01-12T23:59:59.000Z

318

Gas Pipeline Safety (Indiana)  

Broader source: Energy.gov [DOE]

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

319

Electrical Safety Committee Charter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANL Electrical Safety Page DOE Electrical Safety Handbook General Statement Home & Office Equipment Statement APS Electrical Safety Update Guidelines for Working on Voltages < 240...

320

Safety Overview Committee (SOC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(SOC) Charter 1. Purpose The Safety Overview Committee establishes safety policies and ad hoc safety committees. 2. Membership Membership will include the following individuals:...

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear Safety Regulatory Framework  

Broader source: Energy.gov (indexed) [DOE]

overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

322

Asymptotic Safety  

E-Print Network [OSTI]

Asymptotic safety is a set of conditions, based on the existence of a nontrivial fixed point for the renormalization group flow, which would make a quantum field theory consistent up to arbitrarily high energies. After introducing the basic ideas of this approach, I review the present evidence in favor of an asymptotically safe quantum field theory of gravity.

R. Percacci

2008-11-18T23:59:59.000Z

323

Criticality Safety Evaluation of a LLNL Training Assembly for Criticality Safety (TACS)  

SciTech Connect (OSTI)

Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, ''Guidance for Nuclear Criticality Safety Engineer Training and Qualification''. This document is a criticality safety evaluation of the training activities (or operations) associated with HS-3200, ''Laboratory Class for Criticality Safety''. These activities utilize the Training Assembly for Criticality Safety (TACS). The original intent of HS-3200 was to provide LLNL fissile material handlers with a practical hands-on experience as a supplement to the academic training they receive biennially in HS-3100, ''Fundamentals of Criticality Safety'', as required by ANSI/ANS-8.20-1991, ''Nuclear Criticality Safety Training''. HS-3200 is to be enhanced to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program.

Heinrichs, D P

2006-06-26T23:59:59.000Z

324

Module Safety Issues (Presentation)  

SciTech Connect (OSTI)

Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

Wohlgemuth, J.

2012-02-01T23:59:59.000Z

325

Columbia University Medical Center Environmental Health & Safety  

E-Print Network [OSTI]

of radioactive materials. §175.104 Waste disposal. §175.105 Transportation of radioactive materials. Microwave of radiation equipment. #12;Radioactive Materials §175.101 General requirements for radioactive materials licenses. §175.102 Requirements for specific types of radioactive materials licenses. §175.103 Medical use

Grishok, Alla

326

Machine Shop Safety Tips & Safety Guidelines GENERAL SAFETY TIPS  

E-Print Network [OSTI]

Machine Shop Safety Tips & Safety Guidelines GENERAL SAFETY TIPS · Safety glasses with side shields distance away from moving machine parts, work pieces, and cutters. · Use hand tools for their designed to oil, clean, adjust, or repair any machine while it is running. Stop the machine and lock the power

Veiga, Pedro Manuel Barbosa

327

OCCUPATIONAL SAFETY and HEALTH  

E-Print Network [OSTI]

MARYLAND OCCUPATIONAL SAFETY and HEALTH ACT safety and health protection on the job STATE OCCUPATIONAL SAFETY AND HEALTH STANDARDS, AND OTHER APPLICABLE REGULATIONS MAY BE OBTAINED FROM Complaints about State Program administration may be made to Regional Administrator, Occupational Safety

Weaver, Harold A. "Hal"

328

OCCUPATIONAL HEALTH AND SAFETY  

E-Print Network [OSTI]

OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM Department of Occupational Health and Safety Revised December 2009 #12;Occupational Health and Safety (OHS) Management System 1. Introduction.............................................................................................................. 3 2.2 Management of Health and Safety

329

NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING  

SciTech Connect (OSTI)

Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

Watkins, R; Leduc, D; Askew, N

2009-06-25T23:59:59.000Z

330

Safety harness  

DOE Patents [OSTI]

A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

Gunter, Larry W. (615 Sand Pit Rd., Leesville, SC 29070)

1993-01-01T23:59:59.000Z

331

Nuclear reactor safety device  

DOE Patents [OSTI]

A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

Hutter, E.

1983-08-15T23:59:59.000Z

332

Electrical safety device  

DOE Patents [OSTI]

An electrical safety device for use in power tools that is designed to automatically discontinue operation of the power tool upon physical contact of the tool with a concealed conductive material. A step down transformer is used to supply the operating power for a disconnect relay and a reset relay. When physical contact is made between the power tool and the conductive material, an electrical circuit through the disconnect relay is completed and the operation of the power tool is automatically interrupted. Once the contact between the tool and conductive material is broken, the power tool can be quickly and easily reactivated by a reset push button activating the reset relay. A remote reset is provided for convenience and efficiency of operation.

White, David B. (Greenock, PA)

1991-01-01T23:59:59.000Z

333

Safety valve  

DOE Patents [OSTI]

The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

Bergman, Ulf C. (Malmoe, SE)

1984-01-01T23:59:59.000Z

334

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

335

Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables  

SciTech Connect (OSTI)

This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

Koponen, B.L.; Hampel, V.E.

1982-10-21T23:59:59.000Z

336

Gas Generation from Actinide Oxide Materials  

SciTech Connect (OSTI)

This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents.

George Bailey; Elizabeth Bluhm; John Lyman; Richard Mason; Mark Paffett; Gary Polansky; G. D. Roberson; Martin Sherman; Kirk Veirs; Laura Worl

2000-12-01T23:59:59.000Z

337

Russell Furr Laboratory Safety &  

E-Print Network [OSTI]

Russell Furr Director 8/20/13 Laboratory Safety & Compliance #12;#12;Research Safety Full Time Students Part- Time #12; Organizational Changes Office of Research Safety Research Safety Advisors Safety Culture Survey Fire Marshal Inspections Laboratory Plans Review New Research Safety Initiatives

338

Nuclear Criticality Safety Application Guide: Safety Analysis Report Update Program  

SciTech Connect (OSTI)

Martin Marietta Energy Systems, Inc. (MMES) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Safety analyses are performed to identify hazards and potential accidents; to analyze the adequacy of measures taken to eliminate, control, or mitigate hazards; and to evaluate potential accidents and determine associated risks. Safety Analysis Reports (SARs) are prepared to document the safety analysis to ensure facilities can be operated safely and in accordance with regulations. Many of the facilities requiring a SAR process fissionable material creating the potential for a nuclear criticality accident. MMES has long had a nuclear criticality safety program that provides the technical support to fissionable material operations to ensure the safe processing and storage of fissionable materials. The guiding philosophy of the program has always been the application of the double-contingency principle, which states: {open_quotes}process designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible.{close_quotes} At Energy Systems analyses have generally been maintained to document that no single normal or abnormal operating conditions that could reasonably be expected to occur can cause a nuclear criticality accident. This application guide provides a summary description of the MMES Nuclear Criticality Safety Program and the MMES Criticality Accident Alarm System requirements for inclusion in facility SARs. The guide also suggests a way to incorporate the analyses conducted pursuant to the double-contingency principle into the SAR. The prime objective is to minimize duplicative effort between the NCSA process and the SAR process and yet adequately describe the methodology utilized to prevent a nuclear criticality accident.

Not Available

1994-02-01T23:59:59.000Z

339

ANNUAL SAFETY REFRESHER TRAINING FOR LABORATORY EMPLOYEES IN THE DEPT OF PLANT PATHOLOGY & NEMATOLOGY  

E-Print Network [OSTI]

practices. Chemical storage & handling [including transport]. (SafetyNet #42) Flammables Corrosives, and emergency measures for your workplace. 3. Follow all rules, safety guidelines and established safe work(s) noted. SafetyNet #66 General Earthquake Safety, Bomb Threat, and Disaster Procedures Chemical spill kits

Ferrara, Katherine W.

340

Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042  

SciTech Connect (OSTI)

The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup fuel storage and transportation. This paper discusses the staff's preliminary considerations on the safety implication of fuel reconfiguration with respect to nuclear safety (subcriticality control), radiation shielding, containment, the performance of the thermal functions of the packages, and the retrievability of the contents from regulatory perspective. (authors)

Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States)] [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States); Wagner, John C. [Oak Ridge National Laboratory (United States)] [Oak Ridge National Laboratory (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chemical Transport Policy Virginia Tech Chemistry Department  

E-Print Network [OSTI]

Chemical Transport Policy Virginia Tech Chemistry Department This policy was enacted. The purpose of this policy is to ensure the safety of personnel transporting chemicals and anyone who might from undue liability. No exceptions to this policy will be tolerated. 2. All chemicals transported

Crawford, T. Daniel

342

NREL: Transportation Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to heavy-duty freight trucks. Female researcher holding coin cell battery. NREL's transportation research spans from the materials to the systems level. Fuel cell electric sports...

343

Environmental Health & Safety Office of Radiological Safety  

E-Print Network [OSTI]

Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

Houston, Paul L.

344

Environmental Health and Instructional Safety Employee Safety  

E-Print Network [OSTI]

Environmental Health and Instructional Safety #12;Employee Safety Page 1 To our University an environment for students, faculty, staff, and visitors that will not adversely affect their health and safety task that is unsafe or hazardous. Environmental Health and Instructional Safety can assist departments

de Lijser, Peter

345

Safety Share from National Safety Council  

Broader source: Energy.gov [DOE]

Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the Environmental, Health and Safety (EHS) Center of Excellence at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

346

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect (OSTI)

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

347

MODEL 9977 B(M)F-96 SAFETY ANALYSIS REPORT FOR PACKAGING  

SciTech Connect (OSTI)

This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on and for the 9977 Shipping Package, referred to as the General Purpose Fissile Package (GPFP). The performance evaluation presented in this SARP documents the compliance of the 9977 package with the regulatory safety requirements for Type B packages. Per 10 CFR 71.59, for the 9977 packages evaluated in this SARP, the value of ''N'' is 50, and the Transport Index based on nuclear criticality control is 1.0. The 9977 package is designed with a high degree of single containment. The 9977 complies with 10 CFR 71 (2002), Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10 CFR 20 (2003) for As Low As Reasonably Achievable (ALARA) principles. The 9977 also satisfies the requirements of the Regulations for the Safe Transport of Radioactive Material--1996 Edition (Revised)--Requirements. IAEA Safety Standards, Safety Series No. TS-R-1 (ST-1, Rev.), International Atomic Energy Agency, Vienna, Austria (2000). The 9977 package is designed, analyzed and fabricated in accordance with Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, 1992 edition.

Abramczyk, G; Paul Blanton, P; Kurt Eberl, K

2006-05-18T23:59:59.000Z

348

Chapter 10 -Elevated Work Surface Safety Rules  

E-Print Network [OSTI]

and edges of the roof using one of the following: a. Motion stopping safety device b. Warning line system c. Safety monitoring system on roofs of 50 feet or less in width 4. A warning line system consists of a rope and locked into safe position. 10. All portable ladders should have insulating non-slip material supplied

349

Safety, Health, and Environmental (SHE) Program  

E-Print Network [OSTI]

Safety, Health, and Environmental (SHE) Program Construction Awareness Training (SHE 101C) Marshall Space Flight Center Safety, Health, & Environmental (SHE) Program SHE 101C Presented By: MSFC Industrial personnel to avoid critical delays If there is an injury to personnel or damage to MSFC property, material

Waliser, Duane E.

350

ENVIRONMENTAL HEALTH & SAFETY University of Rochester  

E-Print Network [OSTI]

contain finish materials that are wood or combustible products. Doors, flooring, paneling, trim://www.safety.rochester.edu/fire/pdf/flammabilityguideline.pdf c. The materials used in furniture upholstery and mattresses can be extremely combustible. Various materials used on floors and walls of buildings are designed to reduce the generation of smoke, heat, flames

Portman, Douglas

351

MSE 410: Materials Foundations for Energy Applications MSE 810: Materials for Energy Applications  

E-Print Network [OSTI]

; materials for future wind energy needs; thermoelectric materials for solid state energy conversion II: thermoelectric materials Introduction; the design of thermoelectric materials Morelli Jan 31, Feb 2 Module II: thermoelectric materials Thermal and electrical transport properties; model systems

352

Safety Shoe Mobile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterials (CRM) |Safety and

353

Safety Staff Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterials (CRM) |Safety

354

Safety for Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterialsSafety for Users

355

Radiation Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 RS-PO-0001-001.docW. J:.EnergySafety Home

356

JLF Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan Target Chamber The JupiterJLF Safety

357

Safety Guidelines for Fieldwork Industrial Hygiene and Occupational Safety Department  

E-Print Network [OSTI]

Safety Guidelines for Fieldwork Industrial Hygiene and Occupational Safety Department Environmental Safety Division University of Georgia Adapted from the Safety Guidelines for Field Researchers published by the Office of Environment, Health & Safety at University of California, Berkeley #12;Safety Guidelines

Arnold, Jonathan

358

Nuclear Power - Operation, Safety and Environment  

E-Print Network [OSTI]

as operation, safety, environment and radiation effects. The book is not offering a comprehensive coverage of the material in each area. Instead, selected themes are highlighted by authors of individual chapters representing contemporary interests worldwide...

359

Nuclear Safety Component and Services Procurement, June 29, 2011...  

Office of Environmental Management (EM)

require component and materials replacement identified and implemented? * Are appropriate preventive maintenance requirements for stored safety-related equipment identified and...

360

Intermetallic Electrodes Improve Safety and Performance in Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intermetallic Electrodes Improve Safety and Performance in Lithium-Ion Batteries Technology available for licensing: A new class of intermetallic material that can be used as a...

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

AWEA Wind Project Operations and Maintenance and Safety Seminar  

Office of Energy Efficiency and Renewable Energy (EERE)

The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

362

Formal Management Review of the Safety Basis Calculations Noncompliance  

SciTech Connect (OSTI)

In Reference 1, LLNL identified a failure to adequately implement an institutional commitment concerning administrative requirements governing the documentation of Safety Basis calculations supporting the Documented Safety Analysis (DSA) process for LLNL Hazard Category 2 and Category 3 nuclear facilities. The AB Section has discovered that the administrative requirements of AB procedure AB-006, 'Safety Basis Calculation Procedure for Category 2 and 3 Nuclear Facilities', have not been uniformly or consistently applied in the preparation of Safety Basis calculations for LLNL Hazard Category 2 and 3 Nuclear Facilities. The SEP Associated Director has directed the AB Section to initiate a formal management review of the issue that includes, but is not necessarily limited to the following topics: (1) the basis establishing Ab-006 as a required internal procedure for Safety Basis calculations; (2) how requirements for Safety Basis calculations flow down in the institutional DSA process; (3) the extent to which affected Laboratory organizations have explicitly complied with the requirements of Procedure AB-006; (4) what alternative approaches LLNL organizations has used for Safety Basis calculations and how these alternate approaches compare with Procedure AB-006 requirements; and (5) how to reconcile Safety Basis calculations that were performed before Procedure AB-006 came into existence (i.e., August 2001). The management review2 also includes an extent-of-condition evaluation to determine how widespread the discovered issue is throughout Laboratory organizations responsible for operating nuclear facilities, and to determine if implementation of AB procedures other than AB-006 has been similarly affected. In Reference 2, Corrective Action 1 was established whereby the SEP Directorate will develop a plan for performing a formal management review of the discovered condition, including an extent-of condition evaluation. In Reference 3, a plan was provided to prepare a formal management review, satisfying Corrective Action 1. An AB-006 Working Group was formed,led by the AB Section, with representatives from the Nuclear Materials Technology Program (NMTP), the Radioactive and Hazardous Waste Management (RHWM) Division, and the Packaging and Transportation Safety (PATS) Program. The key action of this management review was for Working Group members to conduct an assessment of all safety basis calculations referenced in their respective DSAs. Those assessments were tasked to provide the following information: (1) list which safety basis calculations correctly follow AB-006 and therefore require no additional documentation; (2) identify and list which safety basis calculations do not strictly follow AB-006, these include NMTP Engineering Notes, Engineering Safety Notes, and calculations by organizations external to the nuclear facilities (such as Plant Engineering), subcontractor calculations, and other internally generated calculations. Each of these will be reviewed and listed on a memorandum with the facility manager's (or designee's) signature accepting that calculation for use in the DSA. If any of these calculations are lacking the signature of a technical reviewer, they must also be reviewed for technical content and that review documented per AB-006.

Altenbach, T J

2008-06-24T23:59:59.000Z

363

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of  

E-Print Network [OSTI]

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of Transportation Systems (Infrastructure, Systems, Organization and Services) to Deter, Detect Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle

364

SCHOOL OF EDUCATION SAFETY STATEMENT  

E-Print Network [OSTI]

................................................................... 13 #12;HEALTH & SAFETY Health & Safety is important. The Safety, Health and Welfare at Work Act 1989SCHOOL OF EDUCATION SAFETY STATEMENT March 2009 1 #12;2 Health & Safety Statement Contents HEALTH & SAFETY................................................................... 3 EMERGENCY DETAILS

O'Mahony, Donal E.

365

Campus Public Safety Office Michael Soto, Director of Public Safety  

E-Print Network [OSTI]

Campus Public Safety Office Michael Soto, Director of Public Safety Service Resource, teaching, research and service. Michael D. Soto Director of Public Safety Public Safety Office Service

Bertini, Robert L.

366

National Safety Council Safety Share | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Safety Council Safety Share National Safety Council Safety Share May 16, 2013 Presenter: Joe Yanek, Fluor Government Group, Washington, D.C. Topics Covered: The Campbell Institute...

367

Recommended research on LNG safety  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

Carpenter, H.J.; Gilmore, F.R.

1981-03-01T23:59:59.000Z

368

EMPLOYEE SAFETY ORIENTATION  

E-Print Network [OSTI]

Page | 0 EMPLOYEE SAFETY ORIENTATION _________________ Risk, Safety & Security 3333 University Way to be acquainted with the safety program, welcome! Risk, Safety & Security at UNBC is dynamic. With more than 3 worksite and safe work procedures which pertain to your job. The role of the Risk and Safety Office

Bolch, Tobias

369

ENVIRONMENTAL, HEALTH AND SAFETY  

E-Print Network [OSTI]

ENVIRONMENTAL, HEALTH AND SAFETY PROGRAMS SPRING 2012 Including: Free Information Session New Program in Health and Safety CONTINUING AND PROFESSIONAL EDUCATION #12;2 Our Health and Safety Programs Workplace Health and Safety Certificate Program For every dollar invested in workplace safety, organizations

California at Davis, University of

370

E-Print Network 3.0 - aviation safety Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: aviation safety Page: << < 1 2 3 4 5 > >> 1 Bachelor of Science in Aviation Air Transport...

371

Criticality Safety Validation of SCALE 6.1 with ENDF/B-VII.0 Libraries  

SciTech Connect (OSTI)

ANSI/ANS-8.1-1998;2007, Nuclear Criticality Safety in Operations with Fissionable Material Outside Reactors, and ANSI/ANS-8.24-2007, Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations, require validation of a computer code and the associated data through benchmark evaluations based on physical experiments. The performance of the code and data are validated by comparing the calculated and the benchmark results. A SCALE procedure has been established to generate a Verified, Archived Library of Inputs and Data (VALID). This procedure provides a framework for preparing, peer reviewing, and controlling models and data sets derived from benchmark definitions so that the models and data can be used with confidence. The procedure ensures that the models and data were correctly generated using appropriate references with documented checks and reviews. Configuration management is implemented to prevent inadvertent modification of the models and data or inclusion of models that have not been subjected to the rigorous review process. VALID entries for criticality safety are based on critical experiments documented in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE). The findings of a criticality safety validation of SCALE 6.1 utilizing the benchmark models vetted in the VALID library at Oak Ridge National Laboratory are summarized here.

Marshall, William BJ J [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL

2012-01-01T23:59:59.000Z

372

RADIATION SAFETY OFFICE UNIVERSITYOF MARYLAND  

E-Print Network [OSTI]

RADIATION SAFETY OFFICE UNIVERSITYOF MARYLAND RADIATION SAFETY MANUAL UNIVERSITY OF MARYLAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Radiation Safety Committee (RSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4. Radiation Safety Office (RSO

Rubloff, Gary W.

373

Safety Responsibilities of Faculty & Lab Managers D. Heeley (14  

E-Print Network [OSTI]

Safety Responsibilities of Faculty & Lab Managers D. Heeley (14 th June 2010) 1 1) Primary responsibility for safety within their own laboratory or work space rests with the individual faculty member of their employment, on good safety practice. This will include: (i) Handling of hazardous materials (e.g. metabolic

Oyet, Alwell

374

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

propenoate * Ethyl 2-propenoate * Etil acrilato (Italian) * Etilacrilatului (Romanian) * NCI-C50384 * 2

Choi, Kyu Yong

375

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

1.3 Section 1 - Product and Company Information Product Name 2,2-DIMETHOXY-2-PHENYLACETOPHENONE, 99% Product Number 196118 Brand ALDRICH Company Sigma-Aldrich Street Address 3050 Spruce Street City, State Coefficient Log Kow: 3.42 Decomposition Temp. N/A Flash Point > 374 °F > 190 °C Explosion Limits N

Choi, Kyu Yong

376

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

1.1 Section 1 - Product and Company Information Product Name BUTYL ACRYLATE, 99+% Product Number 234923 Brand ALDRICH Company Sigma-Aldrich Street Address 3050 Spruce Street City, State, Zip, Country °C Partition Coefficient Log Kow: 2.38 Decomposition Temp. N/A Flash Point 96.8 °F 36 °C Method

Choi, Kyu Yong

377

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

1.4 Section 1 - Product and Company Information Product Name 4-TERT-BUTYLPHENOL, 99% Product Number B99901 Brand ALDRICH Company Sigma-Aldrich Street Address 3050 Spruce Street City, State, Zip/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient Log Kow: 3.29 Decomposition Temp

Choi, Kyu Yong

378

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

1.7 Section 1 - Product and Company Information Product Name TRIFLUOROACETIC ACID, REDISTILLED, 99+%,SUITABLE FOR PROTEIN SEQUENCING Product Number 299537 Brand ALDRICH Company Sigma-Aldrich Street Address/A Partition Coefficient Log Kow: -2.1 Decomposition Temp. N/A Flash Point N/A Explosion

Choi, Kyu Yong

379

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

1.5 Section 1 - Product and Company Information Product Name 1-PROPANOL, 99.5+%, HPLC GRADE Product Number 293288 Brand ALDRICH Company Sigma-Aldrich Street Address 3050 Spruce Street City, State, Zip Coefficient Log Kow: 0.25 - 0.

Choi, Kyu Yong

380

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

1.6 Section 1 - Product and Company Information Product Name BENZYL ALCOHOL, ANHYDROUS, 99.8% Product Number 305197 Brand ALDRICH Company Sigma-Aldrich Street Address 3050 Spruce Street City, State Tension 39 mN/m 20 °C Partition Coefficient Log Kow: 1.1 Decomposition Temp. N/A Flash Point 204.8 °F 96

Choi, Kyu Yong

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

-contained breathing apparatus and protective clothing to prevent contact with skin and eyes. Specific Hazard(s): Emits FOR CLEANING UP Sweep up, place in a bag and hold for waste disposal. Avoid raising dust. Ventilate area: closed cup Explosion Limits N/A Flammability N/A Autoignition Temp 480 °C Refractive Index N/A Optical

Choi, Kyu Yong

382

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

precautions to minimize direct contact with skin or eyes and prevent inhalation of dust. METHODS FOR CLEANING decompose to form flammable and/or explosive mixtures in air. FLASH POINT N/A AUTOIGNITION TEMP N clothing to prevent contact with skin and eyes. Specific Hazard(s): Emits toxic fumes under fire conditions

Choi, Kyu Yong

383

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

.2 °F 79 °C Method: closed cup EXPLOSION LIMITS Lower: 1.7 % Upper: 8.6 % AUTOIGNITION TEMP 715 °C. FIREFIGHTING Protective Equipment: Wear self-contained breathing apparatus and protective clothing to prevent rubber gloves. METHODS FOR CLEANING UP Avoid raising dust. Ventilate area and wash spill site after

Choi, Kyu Yong

384

Material Safety Data Sheet HMIS FLAMMABILITY  

E-Print Network [OSTI]

.0 Extinguishing Media - Use water fog, foam, dry chemical or CO2. Use water spray to cool fire-exposed containers spray. Prevent spill from entering drains, sewers, streams or other bodies of water. If run-off occurs shield, bunker coats, gloves and rubber boots), including a positive pressure NIOSH approved self

Rollins, Andrew M.

385

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

) * Bis(4-hydroxyphenyl) dimethylmethane * Bis(4-hydroxyphenyl)propane * 2,2-Bis(p-hydroxyphenyl)propane * 2,2-Bis(4-hydroxyphenyl)propane * Bisphenol * Bisphenol A (OSHA) * 4,4'-Bisphenol A * DIAN * p,p'-Dihydroxydiphenyldimethylmethane * 4,4'-Dihydroxydiphenyldimethylmethane * p,p'-Dihydroxydiphenylpropane * 2,2-(4,4'-Dihydroxydiphenyl)propane

Choi, Kyu Yong

386

SIGMA-ALDRICH Material Safety Data Sheet  

E-Print Network [OSTI]

a physician. 5 - Fire Fighting Measures EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry/A SG/Density 0.97 g/cm3 Partition Coefficient N/A Viscosity N/A Vapor Density N/A Saturated Vapor Conc

Rubloff, Gary W.

387

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N/A Decomposition Temp. N/A Flash

Choi, Kyu Yong

388

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N

Choi, Kyu Yong

389

SIGMA-ALDRICH Material Safety Data Sheet  

E-Print Network [OSTI]

spray or fog nozzle to keep cylinder cool. Move cylinder away from fire if there is no risk. #12;SPECIAL/A Explosive Properties N/A Explosion Limits N/A Vapor Pressure N/A Partition Coefficient N/A Viscosity N

Choi, Kyu Yong

390

SIGMA-ALDRICH Material Safety Data Sheet  

E-Print Network [OSTI]

Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. SPECIAL RISKS Specific N/A Viscosity N/A Vapor Density

Choi, Kyu Yong

391

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

Vakni, David

392

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

/A EXTINGUISHING MEDIA Suitable: Carbon dioxide, dry chemical powder, or appropriate foam. Water spray/A Viscosity 38 Pas 20 °C Surface Tension 48.5 mN/m 25 °C Partition Coeffi

Choi, Kyu Yong

393

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

Choi, Kyu Yong

394

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

of ignition and flash back. Specific Method(s) of Fire Fighting: Use water spray to cool fire Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

Choi, Kyu Yong

395

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

/A AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface

Choi, Kyu Yong

396

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

Choi, Kyu Yong

397

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

: Carbon dioxide, dry chemical powder, or appropriate foam. Water spray. FIREFIGHTING Protective Equipment/A Volatile% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N

Choi, Kyu Yong

398

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N

Vakni, David

399

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N/A Decomposition Temp. N/A Flash Point

Choi, Kyu Yong

400

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface

Choi, Kyu Yong

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

/A FLAMMABILITY N/A #12;EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N/A Decomposition Temp. N/A Flash

Choi, Kyu Yong

402

"Safety Concrete" A Material Designed to Fail  

E-Print Network [OSTI]

platen Bottom steel platen 10 ft tall PVC pipe (3" ID) Outer PVC shield collects fragments Sample #12

403

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

-propylalkohol (German) * IPS 1 (alcohol) * Lutosol * 1-Methylethanol * 1-Methylethyl alcohol * Petrohol * PRO * 2-Propanol * i-Propanol (German) * n-Propan-2-ol * sec-Propyl alcohol * 2-Propyl alcohol * i

Choi, Kyu Yong

404

Paint Thinner MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

solvent {Mineral spirits; Aliphatic Petroleum Distillates; White spirits} 8052-41-3 CAS # 95.0 -100 as hazardous under OSHA regulations. OSHA Regulatory Status: Inhalation Acute Exposure Effects: May cause: Reports have associated repeated and prolonged overexposure to solvents with neurological and other

Rollins, Andrew M.

405

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Identification EMERGENCY OVERVIEW Irritant. Irritating to eyes, respiratory system and skin. HMIS RATING HEALTH. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand

Choi, Kyu Yong

406

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

. Highly flammable. Irritating to eyes, respiratory system and skin. Very toxic to aquatic organisms, may. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand

Choi, Kyu Yong

407

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

3 - Hazards Identification EMERGENCY OVERVIEW Irritant. Irritating to eyes, respiratory system. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand

Choi, Kyu Yong

408

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

for the environment. Harmful by inhalation and if swallowed. Irritating to eyes, respiratory system and skin. Toxic nonsparking tools. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved

Choi, Kyu Yong

409

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Section 3 - Hazards Identification EMERGENCY OVERVIEW Irritant. Irritating to eyes, respiratory system. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT SIGMA - S9273 www.sigma-aldrich.com Page 2 #12;Respiratory: Use respirators and components tested and approved under appropriate government standards

Vakni, David

410

Material Safety Data Sheet 1. PRODUCT IDENTIFICATION  

E-Print Network [OSTI]

Weight% ACGIH; TLV-TWA OSHA PEL DISTILLATES (PETROLEUM), HYDROTREATED HEAVY NAPHTHENIC 64742-52-5 >50

Rollins, Andrew M.

411

Nanoscale Materials Safety at the Department's Laboratories  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor U.S. Department of Energy

412

Nuclear reactor safety heat transfer  

SciTech Connect (OSTI)

Reviewed is a book which has 5 parts: Overview, Fundamental Concepts, Design Basis Accident-Light Water Reactors (LWRs), Design Basis Accident-Liquid-Metal Fast Breeder Reactors (LMFBRs), and Special Topics. It combines a historical overview, textbook material, handbook information, and the editor's personal philosophy on safety of nuclear power plants. Topics include thermal-hydraulic considerations; transient response of LWRs and LMFBRs following initiating events; various accident scenarios; single- and two-phase flow; single- and two-phase heat transfer; nuclear systems safety modeling; startup and shutdown; transient response during normal and upset conditions; vapor explosions, natural convection cooling; blockages in LMFBR subassemblies; sodium boiling; and Three Mile Island.

Jones, O.C.

1982-07-01T23:59:59.000Z

413

Safety | Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterialsSafety forSafety

414

Acceptable NSLS Safety Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

415

Nanoengineered membranes for controlled transport  

DOE Patents [OSTI]

A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

Doktycz, Mitchel J. (Oak Ridge, TN) [Oak Ridge, TN; Simpson, Michael L. (Knoxville, TN) [Knoxville, TN; McKnight, Timothy E. (Greenback, TN) [Greenback, TN; Melechko, Anatoli V. (Oak Ridge, TN) [Oak Ridge, TN; Lowndes, Douglas H. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael A. (Knoxville, TN) [Knoxville, TN; Merkulov, Vladimir I. (Oak Ridge, TN) [Oak Ridge, TN

2010-01-05T23:59:59.000Z

416

BIOLOGICAL SAFETY O N/A Biosafety Cabinets  

E-Print Network [OSTI]

: _________________________________________________ _________________________________________________ _________________________________________________ RADIATION SAFETY O N/A ___RS-1 Radioactive Material Inventory / Use Logs out of date ___RS-2 Radioactive Material waste inventory cards improperly filled out ___RS-3 Stock radioactive material not secure ___RS-4 __Accelerator __PressureVessels __HiReactMaterials __Rad Material __PwIndV / __PwTools __>55g Oil __X

Entekhabi, Dara

417

Safety control circuit for a neutronic reactor  

DOE Patents [OSTI]

A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

Ellsworth, Howard C. (Richland, WA)

2004-04-27T23:59:59.000Z

418

Pipeline Safety (Pennsylvania)  

Broader source: Energy.gov [DOE]

The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

419

Unreviewed Safety Question Requirements  

Broader source: Energy.gov (indexed) [DOE]

Unreviewed Safety Question Requirements FUNCTIONAL AREA GOAL: A fully compliant Unreviewed Safety Question (USQ) program is implemented and maintained across the site....

420

Nuclear criticality safety guide  

SciTech Connect (OSTI)

This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dam Safety (Pennsylvania)  

Broader source: Energy.gov [DOE]

The Pennsylvania Department of Environmental Protection's Division of Dam Safety provides for the regulation and safety of dams and reservoirs throughout the Commonwealth in order to protect the...

422

RADIATION SAFETY TRAINING MANUAL Radiation Safety Office  

E-Print Network [OSTI]

RADIATION SAFETY TRAINING MANUAL Radiation Safety Office 130 DeSoto Street G-7 Parran with sources of ionizing radiation are required to be instructed in the basic principles of radiation protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide

Sibille, Etienne

423

September 2013 Laboratory Safety Manual Section 2 -Chemical Management  

E-Print Network [OSTI]

. General Chemical Storage Guidelines ............................................2-9 a. Good Storage..............................................................2-13 d. Globally Harmonized System (GHS) Labels ..............2-13 F. TRANSPORTING CHEMICALSSeptember 2013 Laboratory Safety Manual Section 2 - Chemical Management Page 2-1 Section 2

Wilcock, William

424

Street typology and bicyclist safety : a systems approach  

E-Print Network [OSTI]

Cycling is an attractive transportation mode but has not attained a large mode share in the United States, in part because it is correctly perceived as dangerous. Much literature on cyclist safety and the built environment ...

Minikel, Eric Vallabh

2010-01-01T23:59:59.000Z

425

3.205 Thermodynamics and Kinetics of Materials, Fall 2003  

E-Print Network [OSTI]

Laws of thermodynamics applied to materials and materials processes. Solution theory. Equilibrium diagrams. Overview of fluid transport processes. Kinetics of processes that occur in materials, including diffusion, phase ...

Allen, Samuel M.

426

Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns  

SciTech Connect (OSTI)

Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

2003-02-27T23:59:59.000Z

427

Update to ANSI/ANS-6.4.3-1991 for low-Z and compound materials and review of particle transport theory.  

E-Print Network [OSTI]

??The ANSI/ANS-6.4.3-1991 Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials Standard (herein known as ANS Standard), contains derived gamma-ray attenuation coefficients and buildup factors (more)

Durani, Luis

2009-01-01T23:59:59.000Z

428

For decades, traffic safety improvements have relied primarily upon engineering and enforcement solutions. If we are limited to those options, further  

E-Print Network [OSTI]

Traffic Safety Culture For decades, traffic safety improvements have relied primarily upon about driving ­ changing our traffic safety culture. A survey by the Center for Transportation Safety on the roads than drivers nationwide, as measured in the 2010 Traffic Safety Culture Index published by the AAA

429

Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric  

Broader source: Energy.gov [DOE]

Thermoelectric materials transport properties measurements improvement and standardization is undertaken by new IEA annex under the Advanced Materials for Transportation implementing agreement

430

Rice University Environmental Health and Safety Laboratory-Specific Radiological Safety Training Attendance Record  

E-Print Network [OSTI]

. [ ] Radioactive material waste segregation and disposal forms and inventory forms properly signed and dated. [ ] Review of written protocols involving radioactive material. [ ] Radiological safety considerations with the material. Such training shall include: 1. A brief discussion of the hazards of radiation and radioactive

Natelson, Douglas

431

Radiation Safety Refresher Training 2011 Page 1 of 12 Radiation Safety Retraining  

E-Print Network [OSTI]

$ Radioactive Material Authorization Fee $ Sulfur-35 Contamination Issues $ Endnotes Thank You During the past year EHS staff have performed over nine hundred radioactive material safety audits and have not found with your radioactive material have changed. The first page of the "User's Copy" of the form has all

Kaye, Jason P.

432

SHSD Manager Safety Engineering Group Manager  

E-Print Network [OSTI]

Safety, Machine Shop Safety, Tier I Program, Traffic Safety S. Moss: Nuclear Criticality Safety G. Shepherd: Explosives Safety, Facility Authorization Basis, Nuclear Safety R. Travis: Readiness Evaluations

433

DOE explosives safety manual. Revision 7  

SciTech Connect (OSTI)

This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

Not Available

1994-08-01T23:59:59.000Z

434

SAFETY AND THE Office of Environmental Health and Instructional Safety  

E-Print Network [OSTI]

SAFETY AND THE SUPERVISOR Office of Environmental Health and Instructional Safety #12;Safety to University safety, health, and environmental compliance strategies. Every employee is entitled to a safe standard practices, and administering your overall safety, health, and environmental responsibilities

de Lijser, Peter

435

The Regional Role in Addressing DOE Transportation Concerns  

Broader source: Energy.gov (indexed) [DOE]

CSG's Midwestern Radioactive Materials Transportation Project Presented to the U.S. Department of Energy's Transportation External Coordination Working Group April 21, 2004 Lisa R....

436

Phosphine Oxide Based Electron Transporting and Hole Blocking...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxide Based Electron Transporting and Hole Blocking Materials for Blue Electrophosphorescent Organic Light Emitting Phosphine Oxide Based Electron Transporting and Hole Blocking...

437

COG - Special Features of Interest to Criticality Safety Practitioners  

SciTech Connect (OSTI)

COG is a modern, general-purpose, high fidelity, multi-particle transport code developed at the Lawrence Livermore National Laboratory specifically for use in deep penetration (shielding) and criticality safety calculations. This paper describes some features in COG of special interest to criticality safety practitioners.

Buck, R M; Heinrichs, D P; Krass, A W; Lent, E M

2010-01-14T23:59:59.000Z

438

Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559  

SciTech Connect (OSTI)

Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

Botsch, W.; Smalian, S.; Hinterding, P. [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany)] [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany); Voelzke, H.; Wolff, D.; Kasparek, E. [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)

2013-07-01T23:59:59.000Z

439

TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW  

SciTech Connect (OSTI)

This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

Eberl, K.; Blanton, P.

2013-10-11T23:59:59.000Z

440

Safety Notices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02 SeptemberMaterials (CRM) |

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tank farms criticality safety manual  

SciTech Connect (OSTI)

This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

FORT, L.A.

2003-03-27T23:59:59.000Z

442

Local Safety Committee Engineering  

E-Print Network [OSTI]

Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code J. Pannell ECE Support Engineer x Ken Jodrey E-Shops, for B. Wilson x * co-chairs Brad Hayes Safety, no report. Pending C. Safety Day Planning Committee Planning for Safety Days on Sept. 10 & 11 continues

Saskatchewan, University of

443

Effectiveness Safety Committee  

E-Print Network [OSTI]

Increase the Effectiveness of Your Safety Committee Lisa Tobiason An equal opportunity educator 302 Acres. ­ East Campus 338 Acres. #12;UNL Safety Committees · Chancellors University Safety Committee (CUSC). · Unit Safety Committees. ­ Thirty-two active committees representing Lincoln campuses

Farritor, Shane

444

Local Safety Committee Engineering  

E-Print Network [OSTI]

Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code-Shops Tech x R. Dahlgren Safety Resources x L. Wilson (support) Dean's Office x D. Hart Safety Resources x T involving chemicals. C. Safety Day Planning Committee L. Roth reported that the schedule of speakers

Saskatchewan, University of

445

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

446

Local Transportation  

E-Print Network [OSTI]

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

447

Greening Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work...

448

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect (OSTI)

This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

2003-01-30T23:59:59.000Z

449

Transportation Baseline Report  

SciTech Connect (OSTI)

The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOEs projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

Fawcett, Ricky Lee; Kramer, George Leroy Jr.

1999-12-01T23:59:59.000Z

450

Chamber transport  

SciTech Connect (OSTI)

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

451

2011 Annual Criticality Safety Program Performance Summary  

SciTech Connect (OSTI)

The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is

Andrea Hoffman

2011-12-01T23:59:59.000Z

452

Safety Case Construction and Reuse using Patterns T P Kelly, J A McDermid  

E-Print Network [OSTI]

Safety Case Construction and Reuse using Patterns T P Kelly, J A McDermid High Integrity Systems of common structures in safety case arguments through their documentation as `Safety Case Patterns'. Problems with the existing, informal and ad-hoc approaches to safety case material reuse are highlighted

Kelly, Tim

453

Automatic safety rod for reactors  

DOE Patents [OSTI]

An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

Germer, John H. (San Jose, CA)

1988-01-01T23:59:59.000Z

454

Porous Materials Porous Materials  

E-Print Network [OSTI]

1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

Berlin,Technische Universität

455

CyberSafety: On the Interactions between CyberSecurity and the  

E-Print Network [OSTI]

CyberSafety: On the Interactions between CyberSecurity and the Software Engineering of SafetyRZ. johnson@dcs.gla.ac.uk, http://www.dcs.gla.ac.uk/~johnson Keywords: Cyber Security, Cyber Safety security concerns. Malware has been detected in power distribution, healthcare, military and transportation

Johnson, Chris

456

Proving the Absence of RunTime Errors in SafetyCritical Avionics Code  

E-Print Network [OSTI]

, timetriggered, realtime, safety critical, embedded software as found in earth transportation, nuclearProving the Absence of RunTime Errors in SafetyCritical Avionics Code Patrick Cousot cole is not acceptable in safety and mission crit ical applications. An avenue is therefore opened for formal methods

Cousot, Patrick

457

Small Column Ion Exchange Design and Safety Strategy  

SciTech Connect (OSTI)

Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and includes provisions for equipment maintenance including remote handling. The design includes a robust set of nuclear safety controls compliant with DOE Standard (STD)-1189, Integration of Safety into the Design Process. The controls cover explosions, spills, boiling, aerosolization, and criticality. Natural Phenomena Hazards (NPH) including seismic event, tornado/high wind, and wildland fire are considered. In addition, the SCIX process equipment was evaluated for impact to existing facility safety equipment including the waste tank itself. SCIX is an innovative program which leverages DOE's technology development capabilities to provide a basis for a successful field deployment.

Huff, T.; Rios-Armstrong, M.; Edwards, R.; Herman, D.

2011-02-07T23:59:59.000Z

458

CRAD, Nuclear Safety Delegations for Documented Safety Analysis...  

Office of Environmental Management (EM)

Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD...

459

Department of Energy Construction Safety Reference Guide  

SciTech Connect (OSTI)

DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

Not Available

1993-09-01T23:59:59.000Z

460

CHEM 5510 Introduction to Laboratory Safety 1 credit course on chemical safety (1 hour course, Friday afternoons, Fall Semester)  

E-Print Network [OSTI]

of the Cylinder, Cylinder Pressure Regulator, Stor- age Guidelines, Transporting Cylinders, Handling Compressed, Disposal/Removal of PPE) IV. Emergency Equipment Safety Showers/Eye Washes V. Key Campus and Department with Chemicals. I (Heemstra) I. General Considerations (Chemical Segregation, Transfer and Transport, Chemical

Simons, Jack

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE  

SciTech Connect (OSTI)

An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

Blanton, P.; Eberl, K.

2012-07-10T23:59:59.000Z

462

Construction safety program for the National Ignition Facility, Appendix A  

SciTech Connect (OSTI)

Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

Cerruti, S.J.

1997-06-26T23:59:59.000Z

463

Health & Safety Plan Last Updated  

E-Print Network [OSTI]

Health & Safety Plan Last Updated March 2008 1 #12;A. SCOPE AND RESPONSIBILITY....................................................................................................................................... 3 2. Safety and Health Policy...................................................................................................................... 3 4. Safety Coordinator

Anderson, Richard

464

INL Fusion Safety Program - Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brad Merrill Fusion Safety Program Group Leader Group Leader for the Fusion Safety Program. Technical lead for computer code development for fusion safety. Work in licensing,...

465

Nuclear Safety Research and Development...  

Energy Savers [EERE]

Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

466

Coal Mine Safety Act (Virginia)  

Broader source: Energy.gov [DOE]

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

467

Magnetic Field Safety Magnetic Field Safety  

E-Print Network [OSTI]

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

468

Safety Case Depictions vs. Safety Cases Would the Real Safety Case Please Stand Up?  

E-Print Network [OSTI]

Safety Case Depictions vs. Safety Cases ­ Would the Real Safety Case Please Stand Up? Ibrahim Habli York, UK ibrahim.habli@cs.york.ac.uk, tim.kelly@cs.york.ac.uk Keywords: Safety Cases, Safety Arguments, GSN, Safety Assurance, Certification Abstract The integrity of the safety case depends primarily

Kelly, Tim

469

PHENOMENON OF CORROSION AND THE INDUSTRIAL SAFETY  

E-Print Network [OSTI]

The problem of corrosion has taken nowadays a considerable importance considering the great use more and more of metals and alloys in our modern life. From the economic point of view and safety, the corrosion is a real thread. The replacement of corroded material composes for the industrie a financial burden which is very high. I taws estimated that more than 100 milliards of dollars constituting the yearly lusts caused by the corrosion in the American economy. The corrosion also can be translated by a modification and weakening of mechanical properties of corroded materials, consequentially it cant fill in all safety its functions to which it is distinated. The aim of this study is to evident links which existed between corrosion and safety of materials and persons.

Bensaada S; Bouziane M. T; Mohammedi F; Achour B

470

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the...

471

Dam Safety (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety,...

472

Dam Safety Program (Maryland)  

Broader source: Energy.gov [DOE]

The Dam Safety Division within the Department of the Environment is responsible for administering a dam safety program to regulate the construction, operation, and maintenance of dams to prevent...

473

Nuclear Engineer (Criticality Safety)  

Broader source: Energy.gov [DOE]

This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

474

General Engineer (Nuclear Safety)  

Broader source: Energy.gov [DOE]

The Chief of Nuclear Safety (CNS) reports the US/M&P; in serving as the Central Technical Authority (CTA) for M&P; activities, ensuring the Departments nuclear safety policies and...

475

Annual Security and Fire Safety Report | 2010 public safety  

E-Print Network [OSTI]

Annual Security and Fire Safety Report | 2010 col u m bia univer sity public safety #12;Contents A Message from the Vice President for Public Safety.............................................1 The Clery .............................................................................................................2 The Department of Public Safety

Kim, Philip

476

Sediment transport in the Mississippi Canyon: the role of currents and storm events on optical variability  

E-Print Network [OSTI]

Two modes of sediment transport were found to exist in the Mississippi Canyon: the offshelf transport of material in intermediate nepheloid layers originating at depths of 50-175 m and the resuspension and transport of material within the canyon...

Burden, Cheryl A

1999-01-01T23:59:59.000Z

477

Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

2007-02-07T23:59:59.000Z

478

If laboratory safety were com-pared to a research project, the  

E-Print Network [OSTI]

If laboratory safety were com- pared to a research project, the "materials" would consist procedures and equipment operation manuals, protective clothing, fume hoods, biosafety cabinets and eye equipment, failing to follow safety procedures or inadequate emergency response actions. These incident

Liebling, Michael

479

Environmental Health & Safety Department -Chemical Storage and Distribution Facility (CSDF) Use this form if you would like the EH&S Department to ship DOT regulated materials. Contact the Chemical Hygiene  

E-Print Network [OSTI]

will be charged for packaging materials, labels, customs fee, and shipping costs. Please allow 7-10 business days hazards of material to be shipped. (e.g. flammable liquid, solid or gas, corrosive, pyrophoric, toxic, etc

480

SciTech Connect: Atomistic mechanisms of rapid energy transport...  

Office of Scientific and Technical Information (OSTI)

(fuels), solid state lighting, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable...

Note: This page contains sample records for the topic "materials transportation safety" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

DOE handbook electrical safety  

SciTech Connect (OSTI)

Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

NONE

1998-01-01T23:59:59.000Z

482

Electrical safety guidelines  

SciTech Connect (OSTI)

The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

Not Available

1993-09-01T23:59:59.000Z

483

Nuclear Explosive Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

2009-04-14T23:59:59.000Z

484

Radiation transport in inhomogeneous media  

SciTech Connect (OSTI)

Calculations of radiation transport in heated materials are greatly complicated by the presence of regions in which two or more materials are inhomogeneously mixed. This phenomenon is important in many systems, such as astrophysical systems where density clumps can be found in star-forming regions and molecular clouds. Laboratory experiments have been designed to test the modeling of radiation transport through inhomogeneous plasmas. A laser-heated hohlraum is used as a thermal source to drive radiation through polymer foam containing randomly distributed gold particles. Experimental measurements of radiation transport in foams with gold particle sizes ranging from 5-9 {mu}m to submicrometer diameters as well as the homogeneous foam case are presented. The simulation results of the radiation transport are compared to the experiment and show that an inhomogeneous transport model must be applied to explain radiation transport in foams loaded with 5 {mu}m diameter gold particles.

Keiter, Paul; Gunderson, Mark [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Foster, John; Rosen, Paula; Comley, Andrew; Taylor, Mark [AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Perry, Ted [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2008-05-15T23:59:59.000Z

485

Earth Sciences Safety Handbook  

E-Print Network [OSTI]

Report of Earth Sciences Departmental Safety Committee 2011 - 12 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

Cambridge, University of

486

Earth Sciences Safety Handbook  

E-Print Network [OSTI]

Report of Earth Sciences Departmental Safety Committee 2012 - 13 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

Cambridge, University of

487

Health, Safety & Wellbeing Policy  

E-Print Network [OSTI]

Health, Safety & Wellbeing Policy Statement The University of Glasgow is one of the four oldest our very best to minimise the risk to the health, safety and wellbeing of staff, students, researchers resource and our students as our valued customers and partners. We acknowledge health and safety as a core

Mottram, Nigel

488

Environmental Health and Safety  

E-Print Network [OSTI]

Environmental Health and Safety Approved by Document No. Version Date Replaces Page EHS EHS-FORM-072 1.0 15-May-2008 N/A 1 of 4 Laboratory Safety Orientation Checklist Name (Print) Department Supervisor Date (DD/MM/YY) A Laboratory Safety Orientation Checklist should be completed within one month

Shoubridge, Eric

489

SYSTEM SAFETY PROGRESS REPORT,  

E-Print Network [OSTI]

SYSTEM SAFETY PROGRESS REPORT, ALSEP Array E NO. ATM 1034 1 PAGE REV. NO. OF 3 DATE 26 July 1971 This A TM documents the progress of the System Safety Program for ALSEP Array E. -~/ Prepared by: · /~t:A~.., Approved by: W. · Lavin, Jr System Safety Engineer / /' J. P. ~/ es, Supervisor · , ALSEF Support

Rathbun, Julie A.

490

Environmental Health & Safety  

E-Print Network [OSTI]

Environmental Health & Safety Sub Department Name 480 Oak Rd, Stanford, CA 94305 T 650.723.0448 F 650.725.3468 DEPUTY DIRECTOR, ENVIRONMENTAL HEALTH AND SAFETY Exempt, Full-Time (100% FTE) Posted May 1, 2014 The Department of Environmental Health and Safety (EH&S) at Stanford University seeks

491

Annual Fire Safety Report  

E-Print Network [OSTI]

2010 Annual Fire Safety Report University of California, Irvine HIGHER EDUCATION OPPORTUNITY to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported publish an annual fire safety report, keep a fire log, and report fire statistics to the Secretary

Loudon, Catherine

492

Electrical and Thermoelectrical Transport Properties of Graphene  

E-Print Network [OSTI]

IV Large Memory Effect in Graphene Based Devices IV-1Transport Properties of Graphene A Dissertation submitted into study the new material, graphene. By investigating the

Wang, Deqi

2011-01-01T23:59:59.000Z

493

September 2013 Laboratory Safety Manual Section 7 -Safety Training  

E-Print Network [OSTI]

September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

Wilcock, William

494

Radiation Safety (Revised March 2010)  

E-Print Network [OSTI]

Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated Environmental Health and Safety, Stanford University, Stanford California #12; CREDITS This Radiation Safety

Kay, Mark A.

495

E-Print Network 3.0 - air transportation policy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis (CTA) Research Areas Aviation Safety Air Traffic Management... Analysis Data, Statistical Analysis Geo-Spatial Information Tools Defense Transportation Energy...

496

E-Print Network 3.0 - access control transportation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Analysis (4) CE 551 Traffic Control & Analysis (4) CE 552 Highway Design for Capacity... 559 Transportation Operations (4) CE 560 Access Management (4) ...

497

Appendix A. Material Safety Data Sheets for Drilling Mud MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Trade Name: EZ-MUD® GOLD Revision Date: 01-Aug-2011 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Not applicable 3. HAZARDS IDENTIFICATION Hazard Overview May cause eye and skin irritation. Airborne dust may./gallon): 6.66-8.33 Bulk Density @ 20 C (lbs/ft3): 52 Boiling Point/Range (F): Not Determined Boiling Point

Torgersen, Christian

498

Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society  

SciTech Connect (OSTI)

This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

Koponen, B.L.; Hampel, V.E.

1982-10-21T23:59:59.000Z

499

Pressure Safety Program Implementation at ORNL  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNLs Pressure Safety Program.

Lower, Mark [ORNL; Etheridge, Tom [ORNL; Oland, C. Barry [XCEL Engineering, Inc.

2013-01-01T23:59:59.000Z

500

Total safety: A new safety culture to integrate nuclear safety and operational safety  

SciTech Connect (OSTI)

The creation of a complete and thorough safety culture is proposed for the purpose of providing additional assurance about nuclear safety and improving the performance of nuclear power plants. The safety philosophy developed a combination of the former hardware-oriented nuclear safety approach and recent operational safety concepts. The improvement of the latter, after TMI-2 and Chernobyl, has been proven very effective in reducing the total risk associated with nuclear power plants. The first part of this article introduces a {open_quotes}total safety{close_quotes} concept. This extends the concept of {open_quotes}nuclear safety{close_quotes} and makes it closer to the public perception of safety. This concept is defined by means of a taxonomy of total safety. The second part of the article shows that total safety can be achieved by integrating it into a modern quality assurance (QA) system since it is tailored to make implementation into a framework of QA easier. The author believes that the outstanding success experienced by various industries as a result of introducing the modern QA system should lead to its application for ensuring the safety and performance of nuclear facilities. 15 refs., 3 figs.

Saji, G. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Murphy, G.A. [ed.

1991-07-01T23:59:59.000Z