National Library of Energy BETA

Sample records for materials transportation safety

  1. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. Enhancing Railroad Hazardous Materials...

  2. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

  3. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  4. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  5. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Safety Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Transportation Safety Transportation SafetyTara...

  6. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  7. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  8. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  9. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  10. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  11. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  12. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Conroy U S Department of Transportation - 1 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety...

  13. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  14. Transportation Safety Excellence in Operations Through Improved Transportation Safety Document

    SciTech Connect (OSTI)

    Dr. Michael A. Lehto; MAL

    2007-05-01

    A recent accomplishment of the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Nuclear Safety analysis group was to obtain DOE-ID approval for the inter-facility transfer of greater-than-Hazard-Category-3 quantity radioactive/fissionable waste in Department of Transportation (DOT) Type A drums at MFC. This accomplishment supported excellence in operations through safety analysis by better integrating nuclear safety requirements with waste requirements in the Transportation Safety Document (TSD); reducing container and transport costs; and making facility operations more efficient. The MFC TSD governs and controls the inter-facility transfer of greater-than-Hazard-Category-3 radioactive and/or fissionable materials in non-DOT approved containers. Previously, the TSD did not include the capability to transfer payloads of greater-than-Hazard-Category-3 radioactive and/or fissionable materials using DOT Type A drums. Previous practice was to package the waste materials to less-than-Hazard-Category-3 quantities when loading DOT Type A drums for transfer out of facilities to reduce facility waste accumulations. This practice allowed operations to proceed, but resulted in drums being loaded to less than the Waste Isolation Pilot Plant (WIPP) waste acceptance criteria (WAC) waste limits, which was not cost effective or operations friendly. An improved and revised safety analysis was used to gain DOE-ID approval for adding this container configuration to the MFC TSD safety basis. In the process of obtaining approval of the revised safety basis, safety analysis practices were used effectively to directly support excellence in operations. Several factors contributed to the success of MFC’s effort to obtain approval for the use of DOT Type A drums, including two practices that could help in future safety basis changes at other facilities. 1) The process of incorporating the DOT Type A drums into the TSD at MFC helped to better integrate nuclear safety requirements with waste requirements. MFC’s efforts illustrate that utilizing the requirements of other disciplines, beyond nuclear safety, can provide an efficient process. Analyzing current processes to find better ways of meeting the requirements of multiple disciplines within a safety basis can lead to a more cost-effective, streamlined process. 2) Incorporating the DOT Type A drums into the MFC TSD was efficient because safety analysts utilized a transportation plan that provided analysis that could also be used for the change to the TSD addendum. In addition, because the plan they used had already been approved and was in use by the Idaho Cleanup Project (ICP) at the INL, justification for the change to the TSD was more compelling. MFC safety analysts proved that streamlining a process can be made more feasible by drawing from analysis that has already been completed.

  15. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  16. Midwestern Radioactive Materials Transportation Committee Agenda...

    Office of Environmental Management (EM)

    Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

  17. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  18. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel MagnetizationTransportation Energy Home

  19. Packaging and Transportation for Offsite Shipment of Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Materials of National Security Interests by Matthew Weber Functional areas: Defense Nuclear Facility Safety and Health Requirement, Packaging and Transportation, Security,...

  20. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  1. Fire and materials modeling for transportation systems

    SciTech Connect (OSTI)

    Skocypec, R.D.; Gritzo, L.A.; Moya, J.L.; Nicolette, V.F.; Tieszen, S.R.; Thomas, R.

    1994-10-01

    Fire is an important threat to the safety of transportation systems. Therefore, understanding the effects of fire (and its interaction with materials) on transportation systems is crucial to quantifying and mitigating the impact of fire on the safety of those systems. Research and development directed toward improving the fire safety of transportation systems must address a broad range of phenomena and technologies, including: crash dynamics, fuel dispersion, fire environment characterization, material characterization, and system/cargo thermal response modeling. In addition, if the goal of the work is an assessment and/or reduction of risk due to fires, probabilistic risk assessment technology is also required. The research currently underway at Sandia National Laboratories in each of these areas is summarized in this paper.

  2. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  3. Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY...

    Office of Environmental Management (EM)

    DOE O 460.2A, DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY, DOE O 460.2A, DEPARTMENTAL...

  4. Safety analysis report for packaging (onsite) sample pig transport system

    SciTech Connect (OSTI)

    MCCOY, J.C.

    1999-03-16

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  5. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being shipped, and will otherwise maintain it as nearly as possible in its original condition.The recommendations provided are short-term solutions to the problems of shipping evidence, and have considered only currently commercially available containers. These containers may not be appropriate for all cases. Design, testing, and certification of new transportation containers would be necessary to provide a container appropriate for all cases.Table 1 provides a summary of the recommendations for each class of hazardous material.Table 1: Summary of RecommendationsContainerCost1-quart paint can with ArmlockTM seal ringLabelMaster(r)%242.90 eachHazard Class 3, 4, 5, 8, or 9 Small ContainersTC Hazardous Material Transport ContainerCurrently in Use4 DraftDraftDraftTable 1: Summary of Recommendations (continued)ContainerCost55-gallon open or closed-head steel drumsAll-Pak, Inc.%2458.28 - %2473.62 eachHazard Class 3, 4, 5, 8, or 9 Large Containers95-gallon poly overpack LabelMaster(r)%24194.50 each1-liter glass container with plastic coatingLabelMaster(r)%243.35 - %243.70 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Small ContainersTC Hazardous Material Transport ContainerCurrently in Use20 to 55-gallon PIH overpacksLabelMaster(r)%24142.50 - %24170.50 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Large Containers65 to 95-gallon poly overpacksLabelMaster(r)%24163.30 - %24194.50 each1-liter transparent containerCurrently in UseHazard Class 6 Division 6.2 Infectious Material Small ContainersInfectious Substance ShipperSource Packaging of NE, Inc.%24336.00 eachNone Commercially AvailableN/AHazard Class 6 Division 6.2 Infectious Material Large ContainersNone Commercially Available N/A5

  6. Packaging and Transportation for Offsite Shipment of Materials of National Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest.

  7. A critical review of world jet transport safety

    E-Print Network [OSTI]

    Achtmann, Eric D.

    1995-01-01

    This thesis is intended to serve as a comprehensive introduction to world jet transport safety and aviation fire safety. Divided into six sections, this thesis contains: 1) a statistical review of overall levels of safety ...

  8. EM Waste and Materials Disposition & Transportation

    Office of Environmental Management (EM)

    On Closure Success 1 EM Waste and Materials Disposition & Transportation National Transportation Stakeholders Forum Chicago, Illinois May 26, 2010 Frank Marcinowski Acting Chief...

  9. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste inventories in a safe and compliant...

  10. Structural analysis in support of the waterborne transport of radioactive materials

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1996-08-01

    The safety of the transportation of radioactive materials by road and rail has been well studied and documented. However, the safety of waterborne transportation has received much less attention. Recent highly visible waterborne transportation campaigns have led to DOE and IAEA to focus attention on the safety of this transportation mode. In response, Sandia National Laboratories is conducting a program to establish a method to determine the safety of these shipments. As part of that program the mechanics involved in ship-to-ship collisions are being evaluated to determine the loadings imparted to radioactive material transportation packages during these collisions. This paper will report on the results of these evaluations.

  11. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    SciTech Connect (OSTI)

    MCCALL, D L

    2002-06-01

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  12. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  13. Commercial Vehicle Safety Alliance Commercial Vehicle Safety...

    Office of Environmental Management (EM)

    Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email:...

  14. Lessons learned by southern states in transportation of radioactive materials

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE`s Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board`s Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns.

  15. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications The...

  16. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications...

  17. DRAFT - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest.

  18. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-12-22

    The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

  19. Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1997-06-01

    Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

  20. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  1. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels: DOE 1540.1A, DOE 1540.2, and DOE 1540.3A.

  2. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels DOE 1540.1A, DOE 1540.2, DOE 1540.3A.

  3. Electronic transport in atomically thin layered materials

    E-Print Network [OSTI]

    Baugher, Britton William Herbert

    2014-01-01

    Electronic transport in atomically thin layered materials has been a burgeoning field of study since the discovery of isolated single layer graphene in 2004. Graphene, a semi-metal, has a unique gapless Dirac-like band ...

  4. Chemical and Hazardous Materials Department of Environmental Health and Safety

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Chemical and Hazardous Materials Safety Department of Environmental Health and Safety 800 West information useful in the recognition, evaluation, and control of workplace hazards and environmental factors safety, fire safety, and hazardous waste disposal. Many chemicals have properties that make them

  5. Materials and Heat Transport in Electrical Engineering

    E-Print Network [OSTI]

    Saskatchewan, University of

    EE 271.3 Materials and Heat Transport in Electrical Engineering Department of Electrical of the above concepts in electrical engineering. Practicum based on these topics. Prerequisites: CHEM 114 and Computer Engineering Winter 2015 Description: Basic concepts in materials science. Crystalline and non

  6. Heat transport system, method and material

    DOE Patents [OSTI]

    Musinski, Donald L. (Saline, MI)

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  7. Enhancing Railroad Hazardous Materials Transportation Safety

    Office of Environmental Management (EM)

    June 1 2009 * Production version online June 1, 2009 Introduction The Rail Corridor Risk Management System (RCRMS) is a tool to be used by rail carriers (RCRMS) is a tool to...

  8. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Mercury used in many laboratory areas on campus. All laboratory areas and former laboratory areas should. Cleanup by a hazardous materials contractor is required before demolition or construction can begin

  9. Heat transport system, method and material

    DOE Patents [OSTI]

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  10. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect (OSTI)

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong [Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Hirano, Fumio [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Tokai-mura, Ibaraki 319-1194 (Japan)

    2013-07-01

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  11. Hopping charge transport in organic materials

    E-Print Network [OSTI]

    Novikov, S V

    2013-01-01

    General properties of the transport of charge carriers (electrons and holes) in disordered organic materials are discussed. It was demonstrated that the dominant part of the total energetic disorder in organic material is usually provided by the electrostatic disorder, generated by randomly located and oriented dipoles and quadrupoles. For this reason this disorder is strongly spatially correlated. Spatial correlation directly governs the field dependence of the carrier drift mobility. Shape of the current transients, which is of primary importance for a correct determination of the carrier mobility, is considered. A notable feature of the electrostatic disorder is its modification in the vicinity of the electrode, and this modification takes place without modification of the structure of the material. It is shown how this phenomenon affects characteristics of the charge injection. We consider also effect of inter-charge interaction on charge transport.

  12. Materials Safety Liquid Nitrogen Safety! ! A Message from Rick Kelly

    E-Print Network [OSTI]

    (special cryo- gen gloves or leather) and safety glasses with side shields. When dispensing liquid nitrogen from a pressurized dewar, or at any time that a splash may occur, a face shield should also be used as possible. Dispensing from Bulk Stor! age Tanks: Anyone who will be handling liquid nitrogen must complete

  13. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    , chemical safety goggles, rubber boots, and ALDRICH - 439215 www.sigma-aldrich.com Page 2 #12;heavy rubber. Keep away from heat, sparks, and open flame. Store under nitrogen. SPECIAL REQUIREMENTS Test Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Use nonsparking tools. Mechanical exhaust

  14. Fire safety of LPG in marine transportation

    SciTech Connect (OSTI)

    Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

    1980-08-01

    This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

  15. Modeling of diffusive mass transport in micropores in cement based materials

    SciTech Connect (OSTI)

    Yamaguchi, Tetsuji, E-mail: yamaguchi.tetsuji@jaea.go.j [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan); Negishi, Kumi [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan); Taiheiyo Consultant Company Limited, 2-4-2, Osaku, Sakura, Chiba 285-8655 (Japan); Hoshino, Seiichi; Tanaka, Tadao [Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki 319-1195 (Japan)

    2009-12-15

    In order to predict long-term leaching behavior of cement constituents for safety assessments of radioactive waste disposal, we modeled diffusive mass transport in micropores in cement based materials. Based on available knowledge on the pore structure, we developed a transport porosity model that enables us to estimate effective porosity available for diffusion (transport porosity) in cement based materials. We microscopically examined the pore structure of hardened cement pastes to partially verify the model. Effective diffusivities of tritiated water in hardened cement pastes were also obtained experimentally, and were shown to be proportional to the estimated transport porosity.

  16. Safety evaluation for packaging 222-S laboratory cargo tank for onetime type B material shipment

    SciTech Connect (OSTI)

    Nguyen, P.M.

    1994-08-19

    The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a US Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number HO-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, Code of Federal Regulations (CFR). In accordance with the US Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents.

  17. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    * Phene * Phenyl hydride * Pyrobenzol * Pyrobenzole * RCRA waste number U019 RTECS Number: CY1400000 - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Use nonsparking tools. Use only

  18. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    -Hexane (ACGIH:OSHA) * Hexanen (Dutch) * Hexyl hydride * NCI-C60571 RTECS Number: MN9275000 Section 3 - Hazards in a cool dry place. Section 8 - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath

  19. HAZARDOUS MATERIAL SAFETY Effective Date: January 1, 1992

    E-Print Network [OSTI]

    Cui, Yan

    HAZARDOUS MATERIAL SAFETY PROCEDURES Effective Date: January 1, 1992 Revised Date: March 1993 UT Memphis shall implement a program that protects its employees from hazardous chemical in accordance with Section 1910.1200 of the Occupational Safety and Health Act (OSHA), entitled ³Hazard Communication

  20. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N

  1. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    % Upper: 8 % AUTOIGNITION TEMP 251 °C FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon Safety shower and eye bath. Mechanical exhaust required. ALDRICH - 258741 www.sigma-aldrich.com Page 2 Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N/A Decomposition

  2. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N

  3. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A EXTINGUISHING MEDIA Suitable: Carbon dioxide, dry chemical powder, or appropriate foam. Water spray - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required/A Odor Threshold N/A Volatile% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate

  4. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    : closed cup #12;AUTOIGNITION TEMP 480 °C FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE/A Volatile% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N

  5. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N/A Decomposition Temp. N/A Flash

  6. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    : Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment - 305197 www.sigma-aldrich.com Page 2 #12;ENGINEERING CONTROLS Safety shower and eye bath. Mechanical N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity 0.005 Pas 25 °C Surface

  7. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N/A Decomposition Temp. N/A Flash

  8. SIGMA-ALDRICH Material Safety Data Sheet

    E-Print Network [OSTI]

    Choi, Kyu Yong

    spray or fog nozzle to keep cylinder cool. Move cylinder away from fire if there is no risk. #12;SPECIAL ENGINEERING CONTROLS Mechanical exhaust required. Safety shower and eye bath. WORK PRACTICES Store and use/A Vapor Density 1.38 g/l 21 °C Saturated Vapor Conc. N/A Evaporation Rate N/A Bulk Density N

  9. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT SIGMA - MB1 www/A Volatile% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N

  10. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    Measures FLASH POINT N/A AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N

  11. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment: Wear place. Section 8 - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N

  12. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Vakni, David

    : Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

  13. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Vakni, David

    N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N

  14. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Wear% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface

  15. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    .1 % Upper: 13.7 % AUTOIGNITION TEMP 371 °C FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Use nonsparking tools. Mechanical exhaust/A Water Content N/A Solvent Content N/A Evaporation Rate 1 Viscosity 2 Pas Surface Tension N/A Partition

  16. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Site of specifications for projects in areas with site contamination. Overview Many locations on University of Washington industrial activities such as fuel storage or dispensing or hazardous material spills prior to University

  17. Base Technology for Radioactive Material Transportation Packaging Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08

    To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

  18. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on...

  19. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Part of a 100 million fuel cell award...

  20. Hazardous Material Identification and Material Safety Data Sheets UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Pennycook, Steve

    Hazardous Material Identification and Material Safety Data Sheets UT-B Contracts Div July 2006 Page 1 of 1 haz-mat-id-msds-ext-july06.doc HAZARDOUS MATERIAL IDENTIFICATION AND MATERIAL SAFETY DATA SHEETS (July 2006) (a) "Hazardous material," as used in this clause, means any material defined

  1. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Fluorescent are hazardous waste, so take care to ensure the tubes remain intact during removal and storage. Fluorescent offsite locations, the EH&S Environmental Programs Office (EPO) will arrange directly with the recycling

  2. STUDY CITIES IN THE TEXAS SAFETY BELT OBSERVATIONAL SURVEY CONDUCTED BY TEXAS TRANSPORTATION INSTITUTE

    E-Print Network [OSTI]

    STUDY CITIES IN THE TEXAS SAFETY BELT OBSERVATIONAL SURVEY CONDUCTED BY TEXAS TRANSPORTATION INSTITUTE #12;2010 SAFETY BELT USE BY CITY #12;2010 Safety Belt Use In the 18 Texas Cities City Total N Observed % Restrained Total Driver N % Belt Use Total Passenger N % Belt Use Abilene Amarillo Austin

  3. Gas Generation Test Support for Transportation and Storage of Plutonium Residue Materials - Part 1: Rocky Flats Sand, Slag, and Crucible Residues

    SciTech Connect (OSTI)

    Livingston, R.R.

    1999-08-24

    The purpose of this report is to present experimental results that can be used to establish one segment of the safety basis for transportation and storage of plutonium residue materials.

  4. School for Engineering of Matter, Transport and Energy Materials Science &

    E-Print Network [OSTI]

    School for Engineering of Matter, Transport and Energy Materials Science & Engineering Minor Requirements Why? Engineering or science majors who choose to minor in materials will enhance their education and increase their job opportunities by learning how to design, process, and select the best materials for any

  5. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  6. Transporting & Shipping Hazardous Materials at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >TransportationEHSS A-Z Site Map Organization

  7. Materials and Transportation Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDSMaterials and Transportation Services General

  8. Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.

    SciTech Connect (OSTI)

    Lord, David; Luketa, Anay; Wocken, Chad; Schlasner, Steve; Aulich, Ted; Allen, Ray; Rudeen, David Keith

    2015-03-01

    Several fiery rail accidents in 2013-2015 in the U.S. and Canada carrying crude oil produced from the Bakken region of North Dakota have raised questions at many levels on the safety of transporting this, and other types of crude oil, by rail. Sandia National Laboratories was commissioned by the U.S. Department of Energy to investigate the material properties of crude oils, and in particular the so-called "tight oils" like Bakken that comprise the majority of crude oil rail shipments in the U.S. at the current time. The current report is a literature survey of public sources of information on crude oil properties that have some bearing on the likelihood or severity of combustion events that may occur around spills associated with rail transport. The report also contains background information including a review of the notional "tight oil" field operating environment, as well a basic description of crude oils and potential combustion events in rail transport. This page intentionally blank

  9. BIOFUELS FOR TRANSPORT IN THE 21st WHY FIRE SAFETY IS A REAL ISSUE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BIOFUELS FOR TRANSPORT IN THE 21st CENTURY: WHY FIRE SAFETY IS A REAL ISSUE Guy Marlair1 , Patricia's), with thé new century venue we are assisting of a booming industry regarding biofuels of biofuels for transport. This contribution is a fîrst output from a National research program named

  10. Implementation Guide for Use with DOE O 460.1A, Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-06-05

    This Guide provides information concerning the use of current principles and practices, including regulatory guidance from the U. S. Department of Transportation and the U. S. Nuclear Regulatory Commission, where available, to establish and implement effective packaging and transportation safety programs. Does not cancel/supersede other directives.

  11. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  12. Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-01-05

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  13. Packaging and Transportation for Offsite Shipment of Materials of National Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-09-25

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  14. Use of inelastic design for radioactive material transportation packages

    SciTech Connect (OSTI)

    Heinstein, M.W.; Ammerman, D.J.

    1993-12-01

    There is much interest within the radioactive material transportation container design community in the use of inelastic analysis. In other industries where inelastic analysis is used in design there is typically an improved knowledge of the capacity of the structure and a more efficient use of material. This report describes the results of a program in which the incentives for inelastic analysis for radioactive material transport container design were investigated to determine if there are similar benefits. Detailed are the elastic and inelastic analyses of two containers subjected to impacts onto a rigid target following a thirty-foot free fall in end-on, side-on, and center-of-gravity- over-corner orientations.

  15. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    SciTech Connect (OSTI)

    Dunn, K.; Bellamy, S.; Daugherty, W.; Sindelar, R.; Skidmore, E.

    2013-08-18

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

  16. The Kiewit Center for Infrastructure & Transportation Fundamentals of Traffic Safety

    E-Print Network [OSTI]

    Tullos, Desiree

    Economic Appraisal & Project Prioritization Safety Effectiveness INSTRUCTORS Prof. Karen Dixon has broad and Environmental Engineering in the Maseeh College of Engineering & Computer Science at Portland State University, continental breakfast, break refreshments, and lunch. This two-day workshop provides basic training

  17. Heat resistant materials and their feasibility issues for a space nuclear transportation system

    SciTech Connect (OSTI)

    Olsen, C.S.

    1991-01-01

    A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs.

  18. Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY

  19. Hazardous Materials Packaging and Transportation Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-23

    This draft has been scheduled for final review before the Directives Review Board on 11-4-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 11-2-15.

  20. Hazardous Materials Packaging and Transportation Safety - DOE Directives,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of HazardousDelegations,

  1. Development on inelastic analysis acceptance criteria for radioactive material transportation packages

    SciTech Connect (OSTI)

    Ammerman, D.J.; Ludwigsen, J.S.

    1995-12-31

    The response of radioactive material transportation packages to mechanical accident loadings can be more accurately characterized by non-linear dynamic analysis than by the ``Equivalent dynamic`` static elastic analysis typically used in the design of these packages. This more accurate characterization of the response can lead to improved package safety and design efficiency. For non-linear dynamic analysis to become the preferred method of package design analysis, an acceptance criterion must be established that achieves an equivalent level of safety as the currently used criterion defined in NRC Regulatory Guide 7.6 (NRC 1978). Sandia National Laboratories has been conducting a study of possible acceptance criteria to meet this requirement. In this paper non-linear dynamic analysis acceptance criteria based on stress, strain, and strain-energy-density will be discussed. An example package design will be compared for each of the design criteria, including the approach of NRC Regulatory Guide 7.6.

  2. University of Connecticut Health Center Policy for Transporting, Shipping, Importing / Exporting Hazardous Materials

    E-Print Network [OSTI]

    Kim, Duck O.

    Hazardous Materials Policy The University of Connecticut Health Center requires that all materials classified as "hazardous materials" by the U.S. Department of Transportation and/or the State of Connecticut be transported in approved containers and in compliance with all transportation regulations. Hazardous materials

  3. Transportation CPS Safety Challenges Philip Koopman Michael Wagner

    E-Print Network [OSTI]

    Koopman, Philip

    in the context of normal human experience. In more everyday units, a 10-9 /hr failure rate is one 1 Permissible. To that end, transportation systems typically have an allowable catastrophic failure rate in the neighborhood a mishap involving the death of many people (e.g., airplane crash with hull loss; major train derailment

  4. Benchmarking of finite element codes for radioactive material transportation packages

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1996-10-01

    The increased power of computers and computer codes makes the use of nonlinear dynamic finite element analyses attractive for use as a tool used in the design and certification of radioactive material transportation packages. For this analysis technique to be acceptable it must be demonstrated. The technique has the ability to accurately capture the response of the packages to accident environments required by the regulations. The best method of demonstrating this ability is via a series of benchmark analyses. In this paper three benchmark problems involving significant inelastic deformations will be discussed. One of the problems has been analyzed using many different finite element codes. The other two problems involve comparison of finite element calculations to the results form physical tests. The ability of the finite element method to accurately capture the response in these three problems indicates the method should be acceptable for radioactive material transportation package design and certification.

  5. Safety and Security Technologies for Radioactive Material Shipments

    Office of Environmental Management (EM)

    Technologies Study Emerging Technologies Continued 7. Nanopiezoelectronics. 8. Plastic thin-film organic solar cells. 9. Container integrity. Safety & Security Technologies...

  6. Modelling Heat Transport Across Nano-scale Material Interfaces for Next-generation Electronic Devices

    E-Print Network [OSTI]

    Milgram, Paul

    ) thermal boundary resistance between two dissimilar semiconductor materials using a combinationModelling Heat Transport Across Nano-scale Material Interfaces for Next-generation Electronic) with customized thermal transport properties. The scattering of thermal energy carriers at fabricated interfaces

  7. Fire safety of LPG in marine transportation. Final report

    SciTech Connect (OSTI)

    Martinsen, W.E.; Johnson, D.W.; Welker, J.R.

    1980-06-01

    This report contains an analytical examination of cargo spill and fire hazard potential associated with the marine handling of liquefied petroleum gas (LPG) as cargo. Principal emphasis was on cargo transfer operations for ships unloading at receiving terminals, and barges loading or unloading at a terminal. Major safety systems, including emergency shutdown systems, hazard detection systems, and fire extinguishment and control systems were included in the analysis. Spill probabilities were obtained from fault tree analyses utilizing composite LPG tank ship and barge designs. Failure rates for hardware in the analyses were generally taken from historical data on similar generic classes of hardware, there being very little historical data on the specific items involved. Potential consequences of cargo spills of various sizes are discussed and compared to actual LPG vapor cloud incidents. The usefulness of hazard mitigation systems (particularly dry chemical fire extinguishers and water spray systems) in controlling the hazards posed by LPG spills and spill fires is also discussed. The analysis estimates the probability of fatality for a terminal operator is about 10/sup -6/ to 10/sup -5/ per cargo transfer operation. The probability of fatality for the general public is substantially less.

  8. Material Safety Data Sheet according to ANSI Z400.1-2004 and 29 CFR 1910.1200

    E-Print Network [OSTI]

    Wikswo, John

    Material Safety Data Sheet according to ANSI Z400.1- 2004 and 29 CFR 1910.1200 WINDEX® ORIGINAL;Material Safety Data Sheet according to ANSI Z400.1- 2004 and 29 CFR 1910.1200 WINDEX® ORIGINAL GLASS AND PETS. #12;Material Safety Data Sheet according to ANSI Z400.1- 2004 and 29 CFR 1910.1200 WINDEX

  9. Developing an institutional strategy for transporting defense transuranic waste materials

    SciTech Connect (OSTI)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.

  10. MATERIAL SAFETY DATA SHEET Virex II 256 One-Step Disinfectant Cleaner & Deodorant (CAN)

    E-Print Network [OSTI]

    Wikswo, John

    with good industrial hygiene and safety practice Corrosive material (See sections 8 and 10). Handling: Avoid be more susceptible to irritating effects Unusual hazards: Hygiene measures: Handle in accordance

  11. Integrated approach to nuclear materials safety management in the U.S. and Russia

    SciTech Connect (OSTI)

    Jardine, L.J.

    1997-06-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and the Ministry of the Russian Federation for Atomic Energy (Minatom) organizations are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an integrated and improved common safety culture for handling these materials. The development and use of personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment.

  12. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    SciTech Connect (OSTI)

    Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Peddicord, K.L. [Texas A and M Univ., College Station, TX (United States); Witmer, F.E.; Krumpe, P.F. [USDOE, Washington, DC (United States); Lazarev, L.; Moshkov, M. [Radievyj Inst., Leningrad (Russian Federation)

    1997-04-09

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment.

  13. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  14. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    SciTech Connect (OSTI)

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision points such as; crash, location, etc. For each pass through the routines, when a crash is randomly selected, crash parameters are then used to determine if failure has occurred using either external look up tables, correlations functions from deterministic calculations, or built in data libraries. The effectiveness of the software was recently demonstrated in safety analyses of the transportation of radioisotope systems for the US Dept. of Energy. These methods are readily adaptable to estimating risks associated with a variety of hazardous shipments such as spent nuclear fuel, explosives, and chemicals.

  15. Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177

    SciTech Connect (OSTI)

    Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (?49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of written guidance to capture 'administrative and technical' knowledge (e.g., office instructions (OIs), generic communications (e.g., bulletins, generic letters, regulatory issue summary), standard review plans (SRPs), interim staff guidance (ISGs)); (5) use of mentoring strategies for experienced staff to train new staff members; (6) use of Microsoft SharePoint portals in capturing, transferring, and documenting knowledge for staff across the Division from Division management and administrative assistants to the project managers, inspectors, and technical reviewers; and (7) development and implementation of a Division KM Plan. A discussion and description of the successes and challenges of implementing these KM strategies at the NRC/SFST will be provided. (authors)

  16. Transportation legislative data base: State radioactive materials transportation statute compilation, 1989--1993

    SciTech Connect (OSTI)

    NONE

    1994-04-01

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United States. The TLDB has been operated by the National Conference of State Legislatures (NCSL) under cooperative agreement with the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management since 1992. The data base system serves the legislative and regulatory information needs of federal, state, tribal and local governments, the affected private sector and interested members of the general public. Users must be approved by DOE and NCSL. This report is a state statute compilation that updates the 1989 compilation produced by Battelle Memorial Institute, the previous manager of the data base. This compilation includes statutes not included in the prior compilation, as well as newly enacted laws. Statutes not included in the prior compilation show an enactment date prior to 1989. Statutes that deal with low-level radioactive waste transportation are included in the data base as are statutes from the states of Alaska and Hawaii. Over 155 new entries to the data base are summarized in this compilation.

  17. Inelastic analysis acceptance criteria for radioactive material transportation containers

    SciTech Connect (OSTI)

    Ammerman, D.J.; Ludwigsen, J.S.

    1993-06-01

    The design criteria currently used in the design of radioactive material (RAM) transportation containers are taken from the ASME Boiler and Pressure Vessel Code (ASME, 1992). These load-based criteria are ideally suited for pressure vessels where the loading is quasistatic and all stresses are in equilibrium with externally applied loads. For impact events, the use of load-based criteria is less supportable. Impact events tend to be energy controlled, and thus, energy-based acceptance criteria would appear to be more appropriate. Determination of an ideal design criteria depends on what behavior is desired. Currently there is not a design criteria for inelastic analysis for RAM nation packages that is accepted by the regulatory agencies. This lack of acceptance criteria is one of the major factors in limiting the use of inelastic analysis. In this paper inelastic analysis acceptance criteria based on stress and strain-energy density will be compared for two stainless steel test units subjected to impacts onto an unyielding target. Two different material models are considered for the inelastic analysis, a bilinear fit of the stress-strain curve and a power law hardening model that very closely follows the stress-strain curve. It is the purpose of this paper to stimulate discussion and research into the area of strain-energy density based inelastic analysis acceptance criteria.

  18. COGEMA operating experience in the transportation of spent fuel, nuclear materials and radioactive waste

    SciTech Connect (OSTI)

    Bernard, H. [COGEMA, Velizy-Villacoublay (France)

    1993-12-31

    Were a spent fuel transportation accident to occur, no matter how insignificant, the public outcry could jeopardize both reprocessing operations and power plant operations for utilities that have elected to reprocess their spent fuel. Aware of this possibility, COGEMA has become deeply involved in spent fuel transportation to ensure that it is performed according to the highest standards of transportation safety. Spent fuel transportation is a vital link between the reactor site and the reprocessing plant. This paper gives an overview of COGEMA`s experience in the transportation of spent fuel.

  19. Material Safety Data Sheet acc. to OSHA and ANSI

    E-Print Network [OSTI]

    Garmestani, Hamid

    , the following can be released: Carbon monoxide and carbon dioxide ¡ Protective equipment: Wear self immediate medical advice. l 5 Fire fighting measures ¡ Suitable extinguishing agents Carbon dioxide hazards caused by the material, its products of combustion or resulting gases: In case of fire

  20. How to Translate a Material Safety Data Sheet (MSDS)

    E-Print Network [OSTI]

    Sherrill, David

    will determine how to get it out before it reaches the water system. Vapor Pressure The pressure exerted Alcohol = 33 mm Hg (20C) Vapor Pressure is Important Because... · It determines how easily a substance at which the material's vapor pressure equals atmospheric pressure. Examples: Water = 212F(100C), Propane

  1. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    to construction debris recycling facilities even if the lead concentrations are below Hazardous Waste levels in construction debris. It is most often found in pipes, copper pipes with lead solder, and interior and exterior, lead-containing materials have the potential to negatively impact the health of construction workers

  2. Exploring transport and phase behavior in nanoporous carbon materials

    E-Print Network [OSTI]

    Shimizu, Steven (Steven Franklin Esau)

    2015-01-01

    Understanding transport and phase behavior in nanopores has a substantial impact on applications involving membrane fabrication, single-molecule detection, oil reservoir modeling, and drug delivery. While transport and ...

  3. Packaging and Transfer or Transportation of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-09-29

    To establish requirements and responsibilities for the Transportation Safeguards System (TSS) packaging and transportation and onsite transfer of nuclear explosives, nuclear components, Naval nuclear fuel elements, Category I and Category II special nuclear materials, special assemblies, and other materials of national security interest. Cancels: DOE 5610.12 and DOE 5610.14.

  4. CARBON DIOXIDE -CO2 MSDS (DOCUMENT #001013) PAGE 1 OF 12 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    CARBON DIOXIDE - CO2 MSDS (DOCUMENT #001013) PAGE 1 OF 12 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: CARBON DIOXIDE - CO2, GASEOUS CARBON DIOXIDE - CO2, CRYOGENIC CARBON DIOXIDE - CO2, SOLID Document Number: 001013 PRODUCT USE: For general analytical

  5. PROPANE -C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    PROPANE - C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: PROPANE - C3H8 Document Number: 001045 PRODUCT IN AIR ACGIH OSHA TLV STEL PEL STEL IDLH OTHER ppm ppm ppm ppm ppm Propane 74-98-6 > 96.0 Simple

  6. Materials SafetyProper Disposal of Waste Contaminated with Hazardous Solvents

    E-Print Network [OSTI]

    Materials SafetyProper Disposal of Waste Contaminated with Hazardous Solvents A M e s s a g e f r o released from solvent-soaked polishing cloths that had been improperly tossed in a general trash can in the hallway. As the janitor removed the bag from the trashcan, she inhaled concentrated solvent vapor

  7. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    SciTech Connect (OSTI)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  8. Multibounce light transport analysis using ultrafast imaging for material acquisition

    E-Print Network [OSTI]

    Naik, Nikhil, S.M. Massachusetts Institute of Technology

    2012-01-01

    This thesis introduces a novel framework for analysis of multibounce light transport using time-of-flight imaging for the applications of ultrafast reflectance acquisition and imaging through scattering media. Using ultrafast ...

  9. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    SciTech Connect (OSTI)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  10. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    SciTech Connect (OSTI)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  11. An evaluation of current hazardous material management procedures for the Texas Department of Transportation 

    E-Print Network [OSTI]

    Lovell, Cheryl Alane

    1993-01-01

    with all current regulatory requirements. This study evaluates the current hazardous material management procedures that the Texas Department of Transportation (TXDOT) is utilizing to ensure that if falls within the legal scope of the law and to provide...

  12. Implementation Guide for Use with DOE O 460.2 Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-11-15

    The purpose of this guide is to assist those responsible for transporting and packaging Department materials, and to provide an understanding of Department policies on activities which supplement regulatory requirements. Does not cancel/supersede other directives.

  13. Notice of Intent to Revise Department of Energy Order 460.1C, Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-15

    The purpose of this memorandum is to provide justification for the proposed revision of Department of Energy (DOE} Order (O} 460.lC, Packaging and Transportation Safety as part of the quadrennial review and recertification required by DOE O 251.lC, Departmental Directives Program.

  14. Disposed Material Mobility and Transport in the Vicinity of the

    E-Print Network [OSTI]

    Voulgaris, George

    after the day of deployment. A 1-D sediment resuspension and transport model was verified using to be in suspension for the majority of the time and in particular following a resuspension event. The low settling velocities allow them to be in resuspension for long times (over 24 hours). Finally, we recommend monitoring

  15. MATERIALS WITH ENGINEERED MESOPOROSITY FOR PROGRAMMED MASS TRANSPORT

    E-Print Network [OSTI]

    Braun, Paul

    , artificial photosynthesis and energy storage. This thesis will present work on the transport of molecular electrode. Finally, a model !-bactiophage was developed to study the electromigration of charged molecules porous gold film and a higher surface area than a gold opal. An equivalent circuit model was presented

  16. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Employee Radiological HS4240-W Chemical Safety HS4680-W PPE To access these training modules link here LTRAIN from inside LLNL, or here from anywhere. All JLF...

  17. Multiscale Defect Formation and Transport in Materials in Extreme Environments

    E-Print Network [OSTI]

    Seif, Dariush

    2013-01-01

    material symmetry (Iso, Anis) in the defect dipole tensors (through the [110]: Iso. P , Iso. ? (a) [110]: Anis. P ,Iso. ? [110]: Anis. P (1) , Anis. ? [100]: Iso. P , Iso. ? (

  18. Framework for a flexible, real-time controller for automated material transport systems 

    E-Print Network [OSTI]

    Edlabadkar, Abhay

    1995-01-01

    The functions of a material transport system (MTS) in a manufacturing facility is to move raw materials, work-in-process, finished parts, tools and supplies from one location to another in an efficient and timely manner. This thesis presents a...

  19. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    SciTech Connect (OSTI)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  20. Reducing the Risk of Rail Transport of Hazardous Materials by Route Rationalization

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Reducing the Risk of Rail Transport of Hazardous Materials by Route Rationalization Athaphon;Kawprasert & Barkan 08-2801 2 ABSTRACT Hazardous materials traffic originates and terminates at numerous different locations throughout the North American railroad network. Rerouting of this traffic, especially

  1. Assuring safety through operational approval : challenges in assessing and approving the safety of systems-level changes in air transportation

    E-Print Network [OSTI]

    Weibel, Roland E. (Roland Everett)

    2010-01-01

    To improve capacity and efficiency of the air transportation system, a number of new systems-level changes have been proposed. Key aspects of the proposed changes are combined functionality across technology and procedures ...

  2. Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

    SciTech Connect (OSTI)

    Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

    2010-10-27

    Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging not exceed the regulatory limits prescribed by 10 CFR 71 for non-exclusive shipments. The mass of each radioisotope presented in this paper is limited by the radiation dose rate on the external surface of the package, which per the regulatory limit should not exceed 200 mrem/hr. The results presented are a compendium of allowable masses of a variety of different isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term 'Small Gram Quantity' (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. The isotopes presented in this paper were chosen as the isotopes that Department of Energy (DOE) sites most likely need to ship. Other more rarely shipped isotopes, along with industrial and medical isotopes, are planned to be included in subsequent extensions of this work.

  3. Development of a container for the transportation and storage of plutonium bearing materials

    SciTech Connect (OSTI)

    Ammerman, D.; Geinitz, R.; Thorp, D.; Rivera, M.

    1998-03-01

    There is a large backlog of plutonium contaminated materials at the Rocky Flats Environmental Technology Site near Denver, Colorado, USA. The clean-up of this site requires this material to be packaged in such a way as to allow for efficient transportation to other sites or to a permanent geologic repository. Prior to off-site shipment of the material, it may be stored on-site for a period of time. For this reason, it is desirable to have a container capable of meeting the requirements for storage as well as the requirements for transportation. Most of the off-site transportation is envisioned to take place using the TRUPACT-II Type B package, with the Waste Isolation Pilot Plant (WIPP) as the destination. Prior to the development of this new container, the TRUPACT-II had a limit of 325 FGE (fissile gram equivalents) of plutonium due to criticality control concerns. Because of the relatively high plutonium content in the material to be transported, transporting 325 FGE per TRUPACT-II is uneconomical. Thus, the purpose of the new containers is to provide criticality control to increase the allowed TRUPACT-II payload and to provide a safe method for on-site storage prior to transport. This paper will describe the analysis and testing used to demonstrate that the Pipe Overpack Container provides safe on-site storage of plutonium bearing materials in unhardened buildings and provides criticality control during transportation within the TRUPACT-II. Analyses included worst-case criticality analyses, analyses of fork-lift time impacts, and analyses of roof structure collapse onto the container. Testing included dynamic crush tests, bare pipe impact tests, a 30-minute totally engulfing pool-fire test, and multiple package impact tests in end-on and side-on orientations.

  4. Transporting TMI-2 (Three Mile Island Unit 2) core debris to INEL: Public safety and public response

    SciTech Connect (OSTI)

    Schmitt, R.C.; Reno, H.W.; Young, W.R.; Hamric, J.P.

    1987-01-01

    This paper describes the approach taken by the US Department of Energy (DOE) to ensure that public safety is maintained during transport of core debris from the Unit-2 reactor at the Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID. It provides up-to-date information about public response to the transport action and discusses DOE's position on several institutional issues. The authors advise that planners of future transport operations be prepared for a multitude of comments from all levels of federal, state, and local governments, special interest groups, and private citizens. They also advise planners to keep meticulous records concerning all informational transactions.

  5. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing,

    E-Print Network [OSTI]

    Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff MeetingWater Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design fuel cell design and operation; Demonstrate improvements in water management resulting in improved

  6. Emergency response planning for railroad transportation related spills of oil or other hazardous materials 

    E-Print Network [OSTI]

    Reeder, Geoffrey Benton

    1995-01-01

    In December 1984 an unintentional release of poison gas from a chemical plant in Bhopal, India killed over 2,500 people. Thousands of others were injured. Although this material was not in transportation at the time, this accident raised public...

  7. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    SciTech Connect (OSTI)

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  8. MATERIAL SAFETY DATA SHEET Glance SC Glass Multi-Surface Cleaner

    E-Print Network [OSTI]

    Wikswo, John

    hazards: Hygiene measures: Handle in accordance with good industrial hygiene and safety practice Corrosive

  9. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  10. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  11. Environment, safety and health compliance assessment, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The Secretary of Energy established independent Tiger Teams to conduct environment, safety, and health (ES H) compliance assessments at US Department of Energy (DOE) facilities. This report presents the assessment of the Feed Materials Production Center (FMPC) at Fernald, Ohio. The purpose of the assessment at FMPC is to provide the Secretary with information regarding current ES H compliance status, specific ES H noncompliance items, evaluation of the adequacy of the ES H organizations and resources (DOE and contractor), and root causes for noncompliance items. Areas reviewed included performance under Federal, state, and local agreements and permits; compliance with Federal, state and DOE orders and requirements; adequacy of operations and other site activities, such as training, procedures, document control, quality assurance, and emergency preparedness; and management and staff, including resources, planning, and interactions with outside agencies.

  12. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  13. Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518

    SciTech Connect (OSTI)

    Dilger, Fred C.; Ballard, James D.; Halstead, Robert J.

    2013-07-01

    As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

  14. Ferromagnetism and Nonmetallic Transport of Thin-Film ? - FeSi 2 : A Stabilized Metastable Material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Guixin; Singh, D.?J.; Zhang, X.-G.; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; et al

    2015-04-07

    A metastable phase ?-FeSi? was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on ?-FeSi? (111) thin films, while the bulk material of ?-FeSi? is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of ?-FeSi? obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding shedsmore »light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.« less

  15. Ferromagnetism and Nonmetallic Transport of Thin-Film ? - FeSi 2 : A Stabilized Metastable Material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Guixin; Singh, D.?J.; Zhang, X.-G.; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E. Andrew; Biegalski, Michael; Ward, T.?Z.; Mandrus, David; Stocks, G.?M.; Gai, Zheng

    2015-04-01

    A metastable phase ?-FeSi? was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on ?-FeSi? (111) thin films, while the bulk material of ?-FeSi? is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of ?-FeSi? obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding sheds light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.

  16. Legal aspects of the maritime transport of radioactive materials its regulation in Mexico

    E-Print Network [OSTI]

    Aguilar, S

    2001-01-01

    This work has the object to analyse the International as much as National legal frameworks, the scopes and limits of the instruments which form it as well as the congruous that exist between them and the situation which actually prevails in the maritime transport field of radioactive materials in worldwide level and in Mexico taking into account the technical advances, the operational experience and radiological protection principles. In the chapter 1, the background on the uses of nuclear energy are described and its development by more of fifty years. The chapter 2 analyses about the establishment of nuclear technologies in Mexico as well as their evolution in medicine, agriculture, research and electric power generation areas. In chapter 3 it was analysed the role what the International Organizations have been playing for the establish of an International legal framework in the maritime transport of radioactive materials field. In the chapter 4, the International legal framework was analysed which is appli...

  17. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  18. Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-20

    The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE must be conducted in accordance with DOT and Nuclear Regulatory Commission (NRC) regulations that would be applicable to comparable commercial shipments, except where an alternative course of action is identified in this Order. Supersedes DOE O 461.1A.

  19. Radioactive Material Transportation Considerations with Respect to DOE 3013 Storage Containers

    SciTech Connect (OSTI)

    HENSEL, SJ

    2004-04-15

    This paper evaluates sealed hardware that meets the requirements of DOE-STD-3013, ''Criteria for Preparing and packaging Plutonium Metals and Oxides for Long-Term Storage'' with respect to radioactive material (Type B quantity) transportation requirements. The Standard provides criteria for packaging of the plutonium materials for storage periods of at least 50 years. The standard requires the hardware to maintain integrity under both normal storage conditions and under anticipated handling conditions. To accomplish this, the standard requires that the plutonium be loaded in a minimum of two nested stainless steel sealed containers that are both tested for leak-tightness per ANSI N14.5. As such the 3013 hardware is robust. While the 3013 STD may provide appropriate storage criteria, it is not intended to provide criteria for transporting the material under the requirements of the Department of Transportation (DOT). In this evaluation, it is assumed that the activity of plutonium exceeds A1 and/or A2 curies as defined in DOT 49 CFR 173.431 and therefore must be shipped as a Type B package meeting the Nuclear Regulatory Commission (NRC) requirements of 10 CFR 71. The evaluation considers Type B shipment of plutonium in the 3013 hardware within a certified package for such contents.

  20. Hole-transport material variation in fully vacuum deposited perovskite solar cells

    SciTech Connect (OSTI)

    Polander, Lauren E.; Pahner, Paul; Schwarze, Martin; Saalfrank, Matthias; Koerner, Christian; Leo, Karl

    2014-08-01

    This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH{sub 3}NH{sub 3}PbI{sub x?3}Cl{sub x} perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.

  1. Controlling charge transport in blue organic light-emitting devices by chemical functionalization of host materials

    SciTech Connect (OSTI)

    Polikarpov, Evgueni; Koech, Phillip K.; Wang, Liang; Swensen, James S.; Cosimbescu, Lelia; Rainbolt, James E.; Von Ruden, Amber L.; Gaspar, Daniel J.; Padmaperuma, Asanga B.

    2011-01-18

    Generation of white light from OLEDs for general lighting applications requires a highly efficient blue component. However, a stable and power efficient blue OLED component with simple device architecture remains a significant challenge partly due to lack of appropriate host materials. Here we report the photophysical and device properties of ambipolar host phosphine oxide based materials. In this work, we studied the effect of the structural modification made to phosphine oxide-based hosts on the charge balance. We observed significant changes in charge transport within the host occurred upon small modifications to their chemical structure. As a result, an alteration of the chemical design of these materials allows for the control of charge balance of the OLED.

  2. Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis

    SciTech Connect (OSTI)

    Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

    2003-02-26

    The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

  3. MATERIAL SAFETY DATA SHEET Glance SC Glass Multi-Surface Cleaner (1:20 Dilution)

    E-Print Network [OSTI]

    Wikswo, John

    under normal use conditions. Handling: Handle in accordance with good industrial hygiene and safety practice. FOR COMMERCIAL AND INDUSTRIAL USE ONLY. Hygiene measures: Handle in accordance with good industrial hygiene and safety practice. 6. ACCIDENTAL RELEASE MEASURES Storage: Protect from freezing. Keep

  4. R&D for Safety Codes and Standards: Materials and Components Compatibility

    SciTech Connect (OSTI)

    Somerday, Brian P.; LaFleur, Chris; Marchi, Chris San

    2015-08-01

    This project addresses the following technical barriers from the Safety, Codes and Standards section of the 2012 Fuel Cell Technologies Office Multi-Year Research, Development and Demonstration Plan (section 3.8): (A) Safety data and information: limited access and availability (F) Enabling national and international markets requires consistent RCS (G) Insufficient technical data to revise standards.

  5. Safety Analysis: Evaluation of Accident Risks in the Transporation of Hazardous Materials by Truck and Rail at the Savannah River Plant

    SciTech Connect (OSTI)

    Blanchard, A.

    1999-04-15

    This report presents an analysis of the consequences and risks of accidents resulting from hazardous material transportation at the Savannah River Plant.

  6. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    SciTech Connect (OSTI)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning.

  7. Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1985-07-09

    Cancels Chapter 3 of DOE 5480.1A. Canceled by DOE O 460.1 of 9-27-1995 and by DOE N 251.4 & Para. 9c canceled by DOE O 231.1 of 9-30-1995.

  8. The Evolution of U.S. Transportation Regulations for Radioactive Materials?A Retrospective

    SciTech Connect (OSTI)

    Hafner, R

    2008-04-28

    The discussion in this Chapter is a highly condensed version of the information presented previously in Chapter 52 of the 2nd Edition of the Companion Guide to the ASME Boiler & Pressure Vessel Code.[1] The full text of the previous Chapter 52, i.e., Development of U.S. Regulations for the Transportation of Radioactive Materials - A Look Back over the Past 40 Years, could not be reproduced here. Therefore, this Chapter offers a high-level overview of the information presented previously, including all of the appropriate references. For the most part, the material that was not included in this version of Chapter 52 is available in the public domain. Due to the sheer volume of the information, readers interested in the preamble-only versions of the material referenced in this Chapter are redirected to Reference [1]. Readers interested in the full-text versions of the material referenced in this Chapter are redirected to the appropriate Federal Register and/or U.S. Nuclear Regulatory Commission (NRC) websites. Because some of the material dates back to pre-website times, readers interested in the full-text versions of some of the references may have to rely on the services of their local libraries.

  9. Assessment of the safety of spent fuel transportation in urban environs

    SciTech Connect (OSTI)

    Sandoval, R.P.; Weber, J.P.; Levine, H.S.; Romig, A.D.; Johnson, J.D.; Luna, R.E.; Newton, G.J.; Wong, B.A.; Marshall, R.W. Jr.; Alvarez, J.L.

    1983-06-01

    The results of a program to provide an experimental data base for estimating the radiological consequences from a hypothetical sabotage attack on a light-water-reactor spent fuel shipping cask in a densely populated area are presented. The results of subscale and full-scale experiments in conjunction with an analytical modeling study are described. The experimental data were used as input to a reactor-safety consequence model to predict radiological health consequences resulting from a hypothetical sabotage attack on a spent-fuel shipping cask in the Manhattan borough of New York City. The results of these calculations are presented.

  10. Management of radioactive material safety programs at medical facilities. Final report

    SciTech Connect (OSTI)

    Camper, L.W.; Schlueter, J.; Woods, S. [and others

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  11. ZAMM Z. Angew. Math. Mech. 90, No. 3, 241 256 (2010) / DOI 10.1002/zamm.200900314 Dynamic materials with formation of clots: optimal mass transport

    E-Print Network [OSTI]

    Weekes, Suzanne L.

    2010-01-01

    materials with formation of clots: optimal mass transport in one spatial dimension without takeover K. A Key words Dynamic materials, clots, no takeover transport. The concept of dynamic materials (DM 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 Introduction Heterogeneous material structures

  12. Page 1 of 5 Issue date 01-Feb-2012 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Wikswo, John

    . Handling and Storage space Handling Use good industrial hygiene practices in handling this material. space

  13. Environmental Health and Safety Department

    E-Print Network [OSTI]

    . Fire Safety, Radiation Safety and Hazardous Materials Facility are at other locations on campus://www.ehs.gatech.edu/EHS_Policy_Statement.pdf #12;EHS The main Georgia Tech Environmental Health and Safety Office is located at 490 Tenth Street: Radiation Safety Fire SafetyHazardous Materials #12;SAFETY RESPONSIBILITY Safety is a shared responsibility

  14. Constraint-Based Routing Models for the Transport of Radioactive Materials

    SciTech Connect (OSTI)

    Peterson, Steven K

    2015-01-01

    The Department of Energy (DOE) has a historic programmatic interest in the safe and secure routing, tracking, and transportation risk analysis of radiological materials in the United States. In order to address these program goals, DOE has funded the development of several tools and related systems designed to provide insight to planners and other professionals handling radioactive materials shipments. These systems include the WebTRAGIS (Transportation Routing Analysis Geographic Information System) platform. WebTRAGIS is a browser-based routing application developed at Oak Ridge National Laboratory (ORNL) focused primarily on the safe transport of spent nuclear fuel from US nuclear reactors via railway, highway, or waterway. It is also used for the transport planning of low-level radiological waste to depositories such as the Waste Isolation Pilot Plant (WIPP) facility. One particular feature of WebTRAGIS is its coupling with high-resolution population data from ORNL s LandScan project. This allows users to obtain highly accurate population count and density information for use in route planning and risk analysis. To perform the routing and risk analysis WebTRAGIS incorporates a basic routing model methodology, with the additional application of various constraints designed to mimic US Department of Transportation (DOT), DOE, and Nuclear Regulatory Commission (NRC) regulations. Aside from the routing models available in WebTRAGIS, the system relies on detailed or specialized modal networks for the route solutions. These include a highly detailed network model of the US railroad system, the inland and coastal waterways, and a specialized highway network that focuses on the US interstate system and the designated hazardous materials and Highway Route Controlled Quantity (HRCQ) -designated roadways. The route constraints in WebTRAGIS rely upon a series of attributes assigned to the various components of the different modal networks. Routes are determined via a constrained shortest-path Dijkstra algorithm that has an assigned impedance factor. The route constraints modify the various impedance weights to bias or prefer particular network characteristics as desired by the user. Both the basic route model and the constrained impedance function calculations are determined by a series of network characteristics and shipment types. The study examines solutions under various constraints modeled by WebTRAGIS including possible routes from select shut-down reactor sites in the US to specific locations in the US. For purposes of illustration, the designated destinations are Oak Ridge National Laboratory in Tennessee and the Savannah River Site in South Carolina. To the degree that routes express sameness or variety under constraints serves to illustrate either a) the determinism of particular transport modes by either configuration or regulatory compliance, and/or b) the variety of constrained routes that are regulation compliant but may not be operationally feasible.

  15. Study on release and transport of aerial radioactive materials in reprocessing plants

    SciTech Connect (OSTI)

    Amano, Y.; Tashiro, S.; Uchiyama, G.; Abe, H.; Yamane, Y.; Yoshida, K.; Kodama, T.

    2013-07-01

    The release and transport characteristics of radioactive materials at a boiling accident of the high active liquid waste (HALW) in a reprocessing plant have been studied for improving experimental data of source terms of the boiling accident. In the study, a heating test and a thermogravimetry and differential thermal analysis (TG-DTA) test were conducted. In the heating test using a simulated HALW, it was found that ruthenium was mainly released into the air in the form of gas and that non-volatile elements were released into the air in the form of mist. In the TG-DTA test, the rate constants and reaction heat of thermal decomposition of ruthenium nitrosyl nitrate were obtained from TG and DTA curves. (authors)

  16. Quantitative transportation risk analysis based on available data/databases: decision support tools for hazardous materials transportation 

    E-Print Network [OSTI]

    Qiao, Yuanhua

    2007-09-17

    raised questions about the potential consequences of incidents involving LNG transportation. One of those consequences, rapid phase transition (RPT), is studied in this dissertation. The incidents and experiments of LNG-water RPT and theoretical analysis...

  17. Safety considerations for the use of sulfur in sulfur-modified pavement materials 

    E-Print Network [OSTI]

    Jacobs, Carolyn Yuriko

    1980-01-01

    Liquid Sulfur Page v111 ix 33 33 35 IV Symptoms of Poisoning . First Aid SULFUR IN THE PAVING INDUSTRY General Sand-Asphalt-Sulfur Pavements (SAS) ', , Sulfur-Extended Asphalt Pavements (SEA) Sulfur Concrete EVALUATION OF RISKS AND SAFETY... RECOMMENDATIONS General Stationary Sources Mobile Sources Maintenance 40 41 43 43 44 45 46 Hot-Mix Recycling VI EMISSIONS MONITORING METHODS General Area Monitoring - Continuous Samplina Short Term Sampling (" Grab" Sampling) Personnel Monitoring...

  18. THE ODTX SYSTEM FOR THERMAL IGNITION AND THERMAL SAFETY STUDY OF ENERGETIC MATERIALS

    SciTech Connect (OSTI)

    Hsu, P C; Hust, G; Howard, M; Maienschein, J L

    2010-03-03

    Understanding the response of energetic material to thermal event is very important for the storage and handling of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) can precisely measure times to explosion and minimum ignition temperatures of energetic materials at elevated temperatures. These measurements provide insight into the relative ease of thermal ignition and allow for the determination of kinetic parameters. The ODTX system can potentialy be a good tool to measure violence of the thermal ignition by monitoring the size of anvil cavity. Recent ODTX experimental data on various energetic materials (solid and liquids) are reported in this paper.

  19. SR-30 Soluble Support Material Safety Data Sheet 108454-0002

    E-Print Network [OSTI]

    Rollins, Andrew M.

    equipment. Extinguishing Media Water spray, dry powder, carbon dioxide, or foam. Avoid using solid water jet: carbon monoxide, carbon dioxide. 6. ACCIDENTAL RELEASE MEASURES General Allow molten material to solidify/molten material, wear heat resistant clothing, gloves, and footwear. 9. PHYSICAL & CHEMICAL PROPERTIES Physical

  20. What Every Public Safety Officer Should Know About Radiation and Radioactive Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminars andWeyl FermionsEvery Public Safety

  1. Open literature review of threats including sabotage and theft of fissile material transport in Japan.

    SciTech Connect (OSTI)

    Cochran, John Russell; Furaus, James Phillip; Marincel, Michelle K.

    2005-06-01

    This report is a review of open literature concerning threats including sabotage and theft related to fissile material transport in Japan. It is intended to aid Japanese officials in the development of a design basis threat. This threat includes the external threats of the terrorist, criminal, and extremist, and the insider threats of the disgruntled employee, the employee forced into cooperation via coercion, the psychotic employee, and the criminal employee. Examination of the external terrorist threat considers Japanese demographics, known terrorist groups in Japan, and the international relations of Japan. Demographically, Japan has a relatively homogenous population, both ethnically and religiously. Japan is a relatively peaceful nation, but its history illustrates that it is not immune to terrorism. It has a history of domestic terrorism and the open literature points to the Red Army, Aum Shinrikyo, Chukaku-Ha, and Seikijuku. Japan supports the United States in its war on terrorism and in Iraq, which may make Japan a target for both international and domestic terrorists. Crime appears to remain low in Japan; however sources note that the foreign crime rate is increasing as the number of foreign nationals in the country increases. Antinuclear groups' recent foci have been nuclear reprocessing technology, transportation of MOX fuel, and possible related nuclear proliferation issues. The insider threat is first defined by the threat of the disgruntled employee. This threat can be determined by studying the history of Japan's employment system, where Keiretsu have provided company stability and lifetime employment. Recent economic difficulties and an increase of corporate crime, due to sole reliability on the honor code, have begun to erode employee loyalty.

  2. FUNCTIONAL AND SMART MATERIALS -Structural evolution and structure analysis

    E-Print Network [OSTI]

    Wang, Zhong L.

    are a new emerging materials system which combines contemporary materials science with information science algorithm. Science and technology in the 21st century will rely heavily on the development of new materials, life science, energy, transportation, safety engineering and military technologies. Materials

  3. Calcium niobate nanosheets as a novel electron transport material for solution-processed multi-junction polymer solar cells

    E-Print Network [OSTI]

    Osterloh, Frank

    Calcium niobate nanosheets as a novel electron transport material for solution-processed multi-junction polymer solar cells Lilian Chang,a Michael A. Holmes,b Mollie Waller,b Frank E. Osterlohb and Adam J-processed tandem polymer solar cells are demonstrated using stacked perovskite, (TBA,H) Ca2Nb3O10 (CNO

  4. Interagency cooperation in the development of a cost-effective transportation and disposal solution for vitrified radium bearing material

    SciTech Connect (OSTI)

    Smith, M.L.; Nixon, D.A.; Stone, T.J.; Tope, W.G.; Vogel, R.A.; Allen, R.B.; Schofield, W.D.

    1996-02-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3 waste, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, shielding requirements, packaging, and transportation alternatives was completed to identify the safest, most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-resonably-achievable principles, and material handling costs were factored into the recommended approach. Through cooperative work between the U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT), the vitrified K-65 and Silo 3 radioactive material will be classified consistent with the regulations promulgated by DOT in the September 28, 1995 Federal Register. These new regulations adopt International Atomic Energy Agency language to promote a consistent approach for the transportation and management of radioactive material between the international community and the DOT. Use of the new regulations allows classification of the vitrified radioactive material from the Fernald silos under the designation of low specific activity-II and allows the development of a container that is optimized to maximize payload while minimizing internal void space, external surface radiation levels, and external volume. This approach minimizes the required number of containers and shipments, and the related transportation and disposal costs.

  5. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  6. Pipeline Safety Program Oak Ridge National Laboratory

    E-Print Network [OSTI]

    .S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows support to the U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration and hazardous liquid pipelines. To assist PHMSA accomplish this mission, ORNL Subject Matter Experts (SMEs) who

  7. GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report

    SciTech Connect (OSTI)

    Halsey, W

    2009-01-15

    This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing waste

  8. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network

    SciTech Connect (OSTI)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-01-01

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  9. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network

    SciTech Connect (OSTI)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-10-28

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  10. TRUE COLORS: LEDS AND THE RELATIONSHIP BETWEEN CCT, CRI, OPTICAL SAFETY, MATERIAL DEGRADATION, AND PHOTOBIOLOGICAL STIMULATION

    SciTech Connect (OSTI)

    Royer, Michael P.

    2014-08-30

    This document analyzes the optical, material, and photobiological hazards of LED light sources compared to conventional light sources. It documents that LEDs generally produce the same amount of blue light, which is the primary contributor to the risks, as other sources at the same CCT. Duv may have some effect on the amount of blue light, but CRI does not.

  11. Motor carrier safety evaluation conducted at University of California, Los Alamos National Laboratory (UC/LANL), Los Alamos, NM

    SciTech Connect (OSTI)

    Garrison, R.F.

    1992-11-01

    The U.S. Department of Transportation Federal Highway Administration (DOT) conducts motor carrier safety evaluations for the purpose of determining a motor carrier`s safety fitness rating. Because it was believed that DOT or the State of New Mexico may not recognize UC/LANL exempt status and desire to inspect its transportation system and evaluate compliance with applicable laws and regulations, the lab contracted Garrison Associates to conduct a simulated motor carrier safety evaluation. This report enumerates the goals of this evaluation relevant to the Hazardous Materials Transportation Uniform Safety Act (HMTUSA) of 1990. The report describes the methodology of the evaluation and lists observations in order of importance.

  12. Update on EM Transportation Program Activities

    Office of Environmental Management (EM)

    Organizations * DOE Orders, Policy, Guidance Transportation Risk Reduction * Motor Carrier Evaluations * Physical Protection * Transportation Compliance Reviews * Safety...

  13. Emergency preparedness source term development for the Office of Nuclear Material Safety and Safeguards-Licensed Facilities

    SciTech Connect (OSTI)

    Sutter, S.L.; Mishima, J.; Ballinger, M.Y.; Lindsey, C.G.

    1984-08-01

    In order to establish requirements for emergency preparedness plans at facilities licensed by the Office of Nuclear Materials Safety and Safeguards, the Nuclear Regulatory Commission (NRC) needs to develop source terms (the amount of material made airborne) in accidents. These source terms are used to estimate the potential public doses from the events, which, in turn, will be used to judge whether emergency preparedness plans are needed for a particular type of facility. Pacific Northwest Laboratory is providing the NRC with source terms by developing several accident scenarios for eleven types of fuel cycle and by-product operations. Several scenarios are developed for each operation, leading to the identification of the maximum release considered for emergency preparedness planning (MREPP) scenario. The MREPP scenarios postulated were of three types: fire, tornado, and criticality. Fire was significant at oxide fuel fabrication, UF/sub 6/ production, radiopharmaceutical manufacturing, radiopharmacy, sealed source manufacturing, waste warehousing, and university research and development facilities. Tornadoes were MREPP events for uranium mills and plutonium contaminated facilities, and criticalities were significant at nonoxide fuel fabrication and nuclear research and development facilities. Techniques for adjusting the MREPP release to different facilities are also described.

  14. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign InTransportation

  15. Ferrocyanide safety program: Final report on adiabatic calorimetry and tube propagation tests with synthetic ferrocyanide materials

    SciTech Connect (OSTI)

    Fauske, H.F. [Fauske and Associates, Inc. (United States); Meacham, J.E.; Cash, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-09-29

    Based on Fauske and Associates, Inc. Reactive System Screening Tool tests, the onset or initiation temperature for a ferrocyanide-nitrate propagating reaction is about 250 degrees Celcius. This is at about 200 degrees Celcius higher than current waste temperatures in the highest temperature ferrocyanide tanks. Furthermore, for current ambient waste temperatures, the tube propagation tests show that a ferrocyanide concentration of 15.5 wt% or more is required to sustain a propagation reaction in the complete absence of free water. Ignoring the presence of free water, this finding rules out propagating reactions for all the Hanford flowsheet materials with the exception of the ferrocyanide waste produced by the original In Farm flowsheet

  16. LONG TERM SIMULATIONS OF LEACHATE GENERATION AND TRANSPORT FROM

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    confirmed the importance of point-of-compliance specifications in landfill performance criteria. Key Words generation and transport · Cover Design · Heat generation and transport · Side Walls Material · Liner is a serious environmental pollution concern and a threat to public health and safety at both old and new

  17. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  18. Non-equilibrium thermodynamics in porous media : battery degradation, and sorption and transport in porous materials

    E-Print Network [OSTI]

    Pinson, Matthew Bede

    2015-01-01

    Porous media offer many interesting problems in physics and engineering due to the interaction of phase transitions, surface effects and transport. In this thesis I examine two such problems: the degradation of lithium-ion ...

  19. Computational study of the transport mechanisms of molecules and ions in solid materials 

    E-Print Network [OSTI]

    Zhang, Yingchun

    2009-06-02

    Transport of ions and molecules in solids is a very important process in many technological applications, for example, in drug delivery, separation processes, and in power sources such as ion diffusion in electrodes or in ...

  20. NMR and Transport Studies on Group IV Clathrates and Related Intermetallic Materials 

    E-Print Network [OSTI]

    Zheng, Xiang

    2012-10-19

    thermoelectric materials are the intermetallic clathrates. Clathrates are cage-structured materials with guest atoms enclosed. Previous studies have shown lower thermal conductivities compared with many other bulk compounds, and it is believed that guest atom...

  1. Capital requirements for the transportation of energy materials: 1979 arc estimates

    SciTech Connect (OSTI)

    Not Available

    1980-08-29

    Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

  2. Transportation Plan 

    E-Print Network [OSTI]

    Boreo, Andrea; Li, Wei; Wunnenbuger, Douglas; Giusti, Cecilia; Cooper, John T.; Masterson, Jaimie

    2015-01-01

    Mobility throughout a community ensures freedom of movement and enhances quality of life. Traffic congestion, pollution, urban sprawl, social exclusion, safety and health can decrease mobility and should be a part of a sustainable transportation...

  3. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  4. Preliminary characterization of materials for a reactive transport model validation experiment

    SciTech Connect (OSTI)

    Siegel, M.D.; Ward, D.B.; Cheng, W.C.; Bryant, C.; Chocas, C.S.; Reynolds, C.G.

    1993-03-01

    The geochemical properties of a porous sand and several tracers (Ni, Br, and Li) have been characterized for use in a caisson experiment designed to validate sorption models used in models of inactive transport. The surfaces of the sand grains have been examined by a combination of techniques including potentiometric titration, acid leaching, optical microscopy, and scanning electron microscopy with energy-dispersive spectroscopy. The surface studies indicate the presence of small amounts of carbonate, kaolinite and iron-oxyhydroxides. Adsorption of nickel, lithium and bromide by the sand was measured using batch techniques. Bromide was not sorbed by the sand. A linear (K{sub d}) or an isotherm sorption model may adequately describe transport of Li; however, a model describing the changes of pH and the concentrations of other solution species as a function of time and position within the caisson and the concomitant effects on Ni sorption may be required for accurate predictions of nickel transport.

  5. ONSITE TRANSPORTATION AUTHORIZATION CHALLENGES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Watkins, R.; Loftin, B.; Hoang, D.; Maxted, M.

    2012-05-30

    Prior to 2008, transfers of radioactive material within the Savannah River Site (SRS) boundary, referred to as onsite transfers, were authorized by Transportation Safety Basis (TSB) documents that only required approval by the SRS contractor. This practice was in accordance with the existing SRS Transportation Safety Document (TSD). In 2008 the Department of Energy Savannah River Field Office (DOE-SR) requested that the SRS TSD be revised to require DOE-SR approval of all Transportation Safety Basis (TSB) documents. As a result, the primary SRS contractor embarked on a multi-year campaign to consolidate old or generate new TSB documents and obtain DOE-SR approval for each. This paper focuses on the challenges incurred during the rewriting or writing of and obtaining DOE-SR approval of all Savannah River Site Onsite Transportation Safety Basis documents.

  6. Packaging and Transfer or Transportation of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-26

    To establish requirements and responsibilities for offsite shipments of naval nuclear fuel elements, Category I and Category II special nuclear material, nuclear explosives, nuclear components, special assemblies, and other materials of national security interest. Cancels DOE O 461.1. Canceled by DOE O 461.1B and DOE O 461.2.

  7. Understanding and engineering molecular interactions and electronic transport at 2D materials interfaces

    E-Print Network [OSTI]

    Shih, Chih-Jen, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    2D materials are defined as solids with strong in-plane chemical bonds but weak out-of-plane, van der Waals (vdW) interactions. In order to realize potential applications of 2D materials in the areas of optoelectronics, ...

  8. Material Safety Data Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter By Sarah Schlieder * JulyUsing VASP at NERSCMaterial

  9. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    SciTech Connect (OSTI)

    Osswald, F. Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A.

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  10. Effect of flow oscillations on axial energy transport in a porous material

    SciTech Connect (OSTI)

    Siegel, R. (NASA Lewis Research Center, Cleveland, OH (USA))

    1987-02-01

    It has been shown analytically and experimentally that flow oscillations of a fluid within a channel can enhance the axial transfer of energy. The transport arises from an axial gradient in fluid temperature resulting from having reservoirs at different temperatures at either end of the channel. The present analysis develops relations for axial energy diffusion in a porous medium with oscillating flow. In some devices, such as the Sterling engine, there are regenerators with oscillating flow. Axial transport in the regenerator provides an energy loss; hence it is desirable to determine what factors can limit this diffusion. A regenerator in the form of a porous medium is difficult to model since the flow is continually disrupted by the irregularities of the porous structure. The formulation here will employ an internal heat transfer coefficient that couples the fluid and solid temperatures. The final result shows how the diffusion depends on the magnitude of the heat transfer coefficient and the maximum fluid displacement.

  11. Revealing origin of quasi-one dimensional current transport in defect rich two dimensional materials

    SciTech Connect (OSTI)

    Lotz, Mikkel R.; Boll, Mads; Bøggild, Peter; Petersen, Dirch H., E-mail: dirch.petersen@nanotech.dtu.dk [Center for Nanostructured Graphene (CNG), Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark); Hansen, Ole [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark); Danish National Research Foundation's Center for Individual Nanoparticle Functionality (CINF), Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Kjær, Daniel [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 East, DK-2800 Kgs. Lyngby (Denmark); CAPRES A/S, Scion-DTU, Building 373, DK-2800 Kgs. Lyngby (Denmark)

    2014-08-04

    The presence of defects in graphene have for a long time been recognized as a bottleneck for its utilization in electronic and mechanical devices. We recently showed that micro four-point probes may be used to evaluate if a graphene film is truly 2D or if defects in proximity of the probe will lead to a non-uniform current flow characteristic of lower dimensionality. In this work, simulations based on a finite element method together with a Monte Carlo approach are used to establish the transition from 2D to quasi-1D current transport, when applying a micro four-point probe to measure on 2D conductors with an increasing amount of line-shaped defects. Clear 2D and 1D signatures are observed at low and high defect densities, respectively, and current density plots reveal the presence of current channels or branches in defect configurations yielding 1D current transport. A strong correlation is found between the density filling factor and the simulation yield, the fraction of cases with 1D transport and the mean sheet conductance. The upper transition limit is shown to agree with the percolation threshold for sticks. Finally, the conductance of a square sample evaluated with macroscopic edge contacts is compared to the micro four-point probe conductance measurements and we find that the micro four-point probe tends to measure a slightly higher conductance in samples containing defects.

  12. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    SciTech Connect (OSTI)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard

    2013-07-01

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

  13. Molten Salt Heat Transport Loop: Materials Corrosion and Heat Transfer Phenomena

    SciTech Connect (OSTI)

    Dr. Kumar Sridharan; Dr. Mark Anderson; Dr. Michael Corradini; Dr. Todd Allen; Luke Olson; James Ambrosek; Daniel Ludwig

    2008-07-09

    An experimental system for corrosion testing of candidate materials in molten FLiNaK salt at 850 degree C has been designed and constructed. While molten FLiNaK salt was the focus of this study, the system can be utilized for evaluation of materials in other molten salts that may be of interest in the future. Using this system, the corrosion performance of a number of code-certified alloys of interest to NGNP as well as the efficacy of Ni-electroplating have been investigated. The mechanisums underlying corrosion processes have been elucidated using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy of the materials after the corrosion tests, as well as by the post-corrosion analysis of the salts using inductively coupled plasma (ICP) and neutron activation analysis (NAA) techniques.

  14. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  15. Capital requirements for the transportation of energy materials: 1979 ARC estimates. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1980-08-13

    This report contains TERA's estimates of capital requirements to transport natural gas, crude oil, petroleum products, and coal in the United States by 1990. The low, medium, and high world-oil-price scenarios from the EIA's Mid-range Energy Forecasting System (MEFS), as used in the 1979 Annual Report to Congress (ARC), were provided as a basis for the analysis and represent three alternative futures. TERA's approach varies by energy commodity to make best use of the information and analytical tools available. Summaries of transportation investment requirements through 1990 are given. Total investment requirements for three modes (pipelines, rails, waterways and the three energy commodities can accumulate to a $49.9 to $50.9 billion range depending on the scenario. The scenarios are distinguished primarily by the world price of oil which, given deregulation of domestic oil prices, affects US oil prices even more profoundly than in the past. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past.

  16. New Alkali Doped Pillared Carbon Materials Designed to Achieve Practical Reversible Hydrogen Storage for Transportation

    E-Print Network [OSTI]

    Goddard III, William A.

    and room temperature. This satisfies the DOE (Department of Energy) target of hydrogen-storage materials single-wall nanotubes can lead to a hydrogen-storage capacity of 6.0 mass% and 61:7 kg=m3 at 50 bars of roughly 1­20 bars and ambient temperature. Chen et al. reported remarkable hydrogen-storage capacities

  17. Development and evaluation of measurement devices used to support testing of radioactive material transportation packages

    SciTech Connect (OSTI)

    Uncapher, W. L.; Ammerman, D. J.; Stenberg, D.R.; Bronowski, D. R.; Arviso, M.

    1992-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of instrumentation measurement data. Sandia National Laboratories (SNL) has an ongoing program to develop and evaluate measurement devices to support testing of radioactive material packages. Measurement devices developed in support of this activity include evaluation channels, ruggedly constructed linear variable differential transformers, and piezoresistive accelerometers with enhanced measurement capabilities. In addition to developing measurement devices, a method has been derived to evaluate accelerometers and strain gages for measurement repeatability, ruggedness, and manufacturers' calibration data under both laboratory and field conditions. The developed measurement devices and evaluation technique will be discussed and the results of the evaluation will be presented.

  18. Comments on a paper tilted `The sea transport of vitrified high-level radioactive wastes: Unresolved safety issues`

    SciTech Connect (OSTI)

    Sprung, J.L.; McConnell, P.E.; Nigrey, P.J.; Ammerman, D.J. [and others

    1997-05-01

    The cited paper estimates the consequences that might occur should a purpose-built ship transporting Vitrified High Level Waste (VHLW) be involved in a severe collision that causes the VHLW canisters in one Type-B package to spill onto the floor of a major ocean fishing region. Release of radioactivity from VHLW glass logs, failure of elastomer cask seals, failure of VHLW canisters due to stress corrosion cracking (SCC), and the probabilities of the hypothesized accident scenario, of catastrophic cask failure, and of cask recovery from the sea are all discussed.

  19. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  2. Radiation Safety Reference Material Policy: 7.01 Created: 08/29/2014 Version: 1.0 Revised

    E-Print Network [OSTI]

    Jia, Songtao

    ­ National Council on Radiation Protection and Measurements NRC ­ United States Nuclear Regulatory Commission NUREG ­ Regulatory guides published by NRC NYC ­ New York City NYS ­ New York State RARAF Safety program. After the list of regulatory codes there are some guidance documents listed for use

  3. ENVIRONMENTAL HEALTH AND PUBLIC SAFETY Hazardous Materials Management Trailer 201 S. Ahlers Rd. West Lafayette, IN 47907-5991

    E-Print Network [OSTI]

    Pittendrigh, Barry

    of the University or his designee may declare a Wind Chill, Snow, or Ice Emergency for the West Lafayette campus, and Lafayette municipal offices by Environmental Health and Public Safety staff members. Wind Chill Emergency Conditions When existing or predicted low temperatures and wind conditions have the potential to pose

  4. Generic safety documentation model

    SciTech Connect (OSTI)

    Mahn, J.A.

    1994-04-01

    This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ``core`` upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information.

  5. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  6. DOE Order Self Study Modules - DOE O 460.1C Packaging and Transportation Safety and DOE O 460.2A Departmental Materials Transportation and Packaging Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About UsEnergyofSoftware EngineeringofCleanDoesDevelopmentO 203.2Order14.1DGO60.1C

  7. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  8. Design and optimization of a multi-particle accelerator beam transport and delivery system for material irradiation in nuclear and fusion science

    E-Print Network [OSTI]

    Sordelet, Tyler Christopher

    2012-01-01

    A beam delivery and transport system were designed for the use in MIT Materials Test Facility (M2TF). The purpose of this beam delivery system was to design a 36 MeV Proton Cyclotron for DPA accumulation and a 100 MeV ...

  9. To be presented at ACI Fall 2009 Session on "Material Science Modeling as a Solution to Concrete Problems" (New Orleans) Virtual Testing of Concrete Transport Properties

    E-Print Network [OSTI]

    Bentz, Dale P.

    To be presented at ACI Fall 2009 Session on "Material Science Modeling as a Solution to Concrete permeability test (RCPT) that simulates the standard ASTM test method for conductivity of concrete cylinders; durability; microstructure; permeability; transport; virtual testing. #12;Biography: ACI member Dale P. Bentz

  10. Notice of Intent to Revise Department of Energy Order 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-15

    The purpose of this memorandum is to provide justification for the proposed revision of DOE O 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest, dated 12-16-2010, as part of the the quadrennial review and recertification as required by DOE O 251.1C, Departmental Directives Program.

  11. Received 14 Aug 2013 | Accepted 8 Sep 2014 | Published 13 Oct 2014 Improving battery safety by early detection of

    E-Print Network [OSTI]

    Cui, Yi

    and show great promise for emerging applications in transportation and wind­solar-grid energy storage Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. 3 for improved safety. DOI: 10.1038/ncomms6193 1 Department of Materials Science and Engineering, Stanford

  12. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  13. What Can We Learn from Hydrogen Safety Event Databases?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transportation 4 | Fuel Cell Technologies Office eere.energy.gov Safety Information Portal Information Portal will serve as a central point for access to the hydrogen safety...

  14. POLICY FOR THE MANAGEMENT OF HAZARDOUS MATERIALS Effective Date: February 15, 2010 Originating Office: Office of the

    E-Print Network [OSTI]

    Doedel, Eusebius

    is responsible for the safe handling and disposal of hazardous waste (including transport as per TDG regulations. For the purposes of this Policy, hazardous materials includes chemicals, biological, and radioactive materials. Radiation Safety Policy (VPS-46) outlines the management of radioactive materials as required

  15. Incompatible Chemicals The following list is to be used only as a general guideline. Please refer to your Material Safety

    E-Print Network [OSTI]

    Slatton, Clint

    : Acetic acid Chromic acid, nitric acid, hydroxyl compounds, ethylene glycol, perchloric acid, peroxides, sulfur, finely divided organic or combustible materials Chromic acid and chromium trioxide Acetic acid, ammonia Nitrates Acids Nitric acid (concentrated) Acetic acid, aniline, chromic acid, hydrocyanic acid

  16. Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory

    SciTech Connect (OSTI)

    Smith, R.J.

    1998-03-31

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

  17. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    SciTech Connect (OSTI)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  18. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  19. Job Safety

    Broader source: Energy.gov (indexed) [DOE]

    Job Safety and Health It's the law EMPLOYEES: Must have access to: DOE safety and health publications; The worker safety and health program for their location; This...

  20. pamphlet04.doc SAFETY INFORMATION

    E-Print Network [OSTI]

    pamphlet04.doc SAFETY INFORMATION EMPLOYEE HANDOUT EMERGENCY ASSISTANCE (Fire, Police, Accident of Hazardous Materials Into/Outside the UCHC #12;pamphlet04.doc 1. SAFETY POLICY: The Health Center continually

  1. 1Page ofProduct Code: 944000 Revision: 1 03 OCT 2000Issued: 7 Material Safety Data Sheet

    E-Print Network [OSTI]

    Choi, Kyu Yong

    (t-amylperoxy) propane Di-t-amyl peroxide 67567-23-1 64742-48-9 64741-65-7 26760-64-5 3052-70-8 10508-09-5 This material containers exposed to fire. Fire fighters and others who may be exposed to products of combustion should wear

  2. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  3. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering The development of new high-performance materials for energy Use of Advanced Characterization Techniques for Materials Development in Energy and Transportation and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  4. US Department of Transportation specification packages evaluation

    SciTech Connect (OSTI)

    Ratledge, J.E.; Rawl, R.R.

    1992-01-01

    Specification packages are broad families of package designs and approved by the Department of Transportation (DOT) for transport of certain classes of radioactive materials, with each specification containing a number of designs of various sizes. Many of the individual package designs are not supported by reasonably current safety analyses. The Nuclear Regulatory Commission (NRC) asked Oak Ridge National Laboratory (ORNL) staff to collect all related information, perform analyses, and identify alternative actions that will enable NRC and DOT to make informed decisions on whether to retain, withdraw, or modify the existing regulatory permission for the use of specification packages to transport radioactive and fissile materials. This paper presents the background, issues, and progress made in this activity.

  5. US Department of Transportation specification packages evaluation

    SciTech Connect (OSTI)

    Ratledge, J.E.; Rawl, R.R.

    1992-03-01

    Specification packages are broad families of package designs and approved by the Department of Transportation (DOT) for transport of certain classes of radioactive materials, with each specification containing a number of designs of various sizes. Many of the individual package designs are not supported by reasonably current safety analyses. The Nuclear Regulatory Commission (NRC) asked Oak Ridge National Laboratory (ORNL) staff to collect all related information, perform analyses, and identify alternative actions that will enable NRC and DOT to make informed decisions on whether to retain, withdraw, or modify the existing regulatory permission for the use of specification packages to transport radioactive and fissile materials. This paper presents the background, issues, and progress made in this activity.

  6. The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including

    E-Print Network [OSTI]

    The Safety Data Sheet, or SDS, is written or printed material used to convey the hazards of a hazardous chemical product. It contains 16 sections of important chemical information, including: Chemical characteristics; Physical and health hazards, including relevant exposure limits; Precautions for safe handling

  7. CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY-ITS-CWP-2011-6 ISSN 1557-2269 The California Center for Innovative Transportation works with researchers that improve the efficiency, safety, and security of the transportation system. #12;#12;CALIFORNIA CENTER

  8. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  9. VOLUME 81, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 16 NOVEMBER 1998 Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials

    E-Print Network [OSTI]

    Kenkre, V.M.

    of Correlations in Governing Charge Transport in Disordered Organic Materials S. V. Novikov,1,2 D. H. Dunlap,2 V (Received 26 May 1998) The transport of photoinjected charges in disordered organic films is often interpreted using a formula based on a Gaussian disorder model (GDM) that neglects spatial correlations due

  10. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Health & Safety1354608000000Health & SafetySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Health &...

  11. Radiation Safety Manual March 21, 2015 RADIATION SAFETY

    E-Print Network [OSTI]

    Lance, Veronica P.

    . Radioactive Drug Research Committee D. Radiation Safety Officers E. Authorized Users Chapter II: Radiation. Clinical Applications C. Loans and Transfers of Radioactive Materials Chapter VI: Occupational Exposure of Packages Containing Radioactive Materials A. Packages Delivered to the Radiation Safety Office B. Packages

  12. __________________________________ Environment, Health, & Safety ________________________________ Training Program

    E-Print Network [OSTI]

    Eisen, Michael

    commercial drivers license endorsement to transport radioactive or hazardous waste. Course Objectives: After to transport Radioactive materials to an offsite location. Recall who is allowed to prepare and package radioactive materials for delivery to an offsite locations Select an appropriate vehicle for transporting

  13. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    SciTech Connect (OSTI)

    Wright, A.L.

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art.

  14. Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

  15. Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

  16. Nuclear Safety Information Agreement Between the U.S. Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    Environment, Health, Safety and Security (EHSS DOE), Cathy Haney (Director, Office of Nuclear Materials Safety and Safeguards (NRC)), Marissa Bailey (Director, Division of Fuel...

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  18. Intelligent Transportation Systems: A Compendium of Technology Summaries

    E-Print Network [OSTI]

    Deakin, Elizabeth

    2003-01-01

    interoperability of transport systems across and within the Member States; focusing on user safety, costs, and intermodal movement; rational energy

  19. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  20. Electronic transport in Lithium Nickel Manganese Oxide, a high-voltage cathode material for Lithium-Ion batteries

    E-Print Network [OSTI]

    Ransil, Alan Patrick Adams

    2013-01-01

    Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears ...

  1. Transportation Energy Futures

    E-Print Network [OSTI]

    Sperling, Daniel

    1989-01-01

    TRANSPORTATION ment of Oil Shale Technology. Washing- ton,interest and investments in oil shale, ethanol, coal liquidsbiomass materials, coal, oil shale, tar sands, natural gas,

  2. August 2004 Radiation Safety Manual Section 5 -Training

    E-Print Network [OSTI]

    Wilcock, William

    August 2004 Radiation Safety Manual Section 5 - Training UW Environmental Health and Safety Page 5-1 Section 5 Radiation Safety Training Contents A. Individuals Directly Using Radioactive Materials..........................................5-1 1. Regulations for Training.................................................................. 5

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  4. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  5. Langevin and Fokker-Planck analyses of inhibited molecular passing processes controlling transport and reactivity in nanoporous materials

    SciTech Connect (OSTI)

    Wang, Chi-Jen [Ames Laboratory; Ackerman, David M. [Ames Laboratory; Slowing, Igor I. [Ames Laboratory; Evans, James W. [Ames Laboratory

    2014-07-14

    Inhibited passing of reactant and product molecules within the linear pores of nanoporous catalytic materials strongly reduces reactivity. The dependence of the passing propensity P on pore radius R is analyzed utilizing Langevin dynamics to account for solvent effects. We find that P?(R?Rc)?, where passing is sterically blocked for R?Rc, with ? below the transition state theory value. Deeper insight comes from analysis of the corresponding high-dimensional Fokker-Planck equation, which facilitates an effective small-P approximation, and dimensional reduction enabling utilization of conformal mapping ideas. We analyze passing for spherical molecules and also assess the effect of rotational degrees of freedom for elongated molecules.

  6. Product name: THERMINOL XP Heat transfer fluid Page 1 / 6 Solutia Inc. Material Safety Data Sheet Date: 11/07/2003

    E-Print Network [OSTI]

    Choi, Kyu Yong

    (less than a mouthful) are swallowed. Coughing, choking and shortness of breath may occur if material

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  10. Computational analysis of coupled fluid, heat, and mass transport in ferrocyanide single-shell tanks: FY 1994 interim report. Ferrocyanide Tank Safety Project

    SciTech Connect (OSTI)

    McGrail, B.P.

    1994-11-01

    A computer modeling study was conducted to determine whether natural convection processes in single-shell tanks containing ferrocyanide wastes could generate localized precipitation zones that significantly concentrate the major heat-generating radionuclide, {sup 137}Cs. A computer code was developed that simulates coupled fluid, heat, and single-species mass transport on a regular, orthogonal finite-difference grid. The analysis showed that development of a ``hot spot`` is critically dependent on the temperature dependence for the solubility of Cs{sub 2}NiFe(CN){sub 6} or CsNaNiFe(CN){sub 6}. For the normal case, where solubility increases with increasing temperature, the net effect of fluid flow, heat, and mass transport is to disperse any local zones of high heat generation rate. As a result, hot spots cannot physically develop for this case. However, assuming a retrograde solubility dependence, the simulations indicate the formation of localized deposition zones that concentrate the {sup 137}Cs near the bottom center of the tank where the temperatures are highest. Recent experimental studies suggest that Cs{sub 2}NiFe(CN){sub 6}(c) does not exhibit retrograde solubility over the temperature range 25{degree}C to 90{degree}C and NaOH concentrations to 5 M. Assuming these preliminary results are confirmed, no natural mass transport process exists for generating a hot spot in the ferrocyanide single-shell tanks.

  11. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  12. 2005 International Truck & Bus Safety & Security Symposium 447 SAFETY AND SECURITY TECHNOLOGIES OF IMPORTANCE TO

    E-Print Network [OSTI]

    2005 International Truck & Bus Safety & Security Symposium 447 SAFETY AND SECURITY TECHNOLOGIES Ridge National Laboratory National Transportation Research Center 2360 Cherahala Boulevard Knoxville, Tennessee USA 37932 E-mail: TruettLF@ORNL.gov ABSTRACT All travelers have concerns about safety and security

  13. Investigation of criticality safety control infraction data at a nuclear facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore »Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  14. Investigation of criticality safety control infraction data at a nuclear facility

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; Art, Blair M.; Gubernatis, David C.

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing and Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.

  15. Sandia Energy - Materials Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Chemistry Home Transportation Energy Predictive Simulation of Engines Clean FuelsPower Materials Chemistry Materials ChemistryAshley Otero2015-10-28T02:42:21+00:00...

  16. CCB Laboratory Safety Orientation Checklist Laboratory Safety Training Review

    E-Print Network [OSTI]

    Heller, Eric

    ) Location and use of hazardous waste accumulation areas Location of Safety Data hazardous materials, equipment, or processes that pertain to the research program and meeting area Location of fire extinguishers and closest pull station Location

  17. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    SciTech Connect (OSTI)

    Romano, T.

    1997-09-29

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  18. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    SciTech Connect (OSTI)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation. The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.

  19. Dualmode transportation - impact on the electric grid 

    E-Print Network [OSTI]

    Azcarate Lara, Francisco Javier

    2008-10-10

    with numerous challenges including traffic congestion, environmental pollution, safety and energy dependence. Texas particularly, has a challenge to grow transportation capacity at a pace adequate to meet the demand driven by population increases. The Texas... the most cost effective energy source for transportation. Cleaner alternatives do not have access to the transportation market. This thesis follows the style of the Journal of the Transportation Research Record. 2 On the safety front...

  20. Cesium-137 inventories in Alaskan Tundra, lake and marine sediments: An indicator of recent organic material transport?

    SciTech Connect (OSTI)

    Grebmeier, J.M.; Cooper, L.W. |; Larsen, I.L.; Solis, C.; Olsen, C.R.

    1993-06-01

    Tundra sampling was accomplished in 1989--1990 at Imnavait Creek, Alaska (68{degree}37` N, 149{degree}17` W). Inventories of {sup 137}Cs (102--162 mBq/cm{sup 2}) are close to expectations, based upon measured atmospheric deposition for this latitude. Accumulated inventories of {sup 137}Cs in tundra decrease by up to 50% along a transect to Prudhoe Bay (70{degree}13` N, 148{degree}30` W). Atmospheric deposition of {sup 137}Cs decreased with latitude in the Arctic, but declines in deposition would have been relatively small over this distance (200 km). This suggests a recent loss of {sup 137}Cs and possibly associated organic matter from tundra over the northern portions of the transect between Imnavait Creek and Prudhoe Bay. Sediments from Toolik Lake (68{degree}38` N, 149{degree}38` W) showed widely varying {sup 137}Cs inventories, from a low of 22 mBq/cm{sup 2} away from the lake inlet, to a high between 140 to >200 mBq/cm{sup 2} near the main stream inflow. This was indicative of recent accumulation of cesium and possibly organic material associated with it in arctic lakes, although additional sampling is needed.

  1. General Radiation Safety Information About USF Research Small amounts of radioactive materials are used in research work at the University of South Florida

    E-Print Network [OSTI]

    Arslan, Hüseyin

    Radiation Safety office strives to keep radiation doses to workers, the public, and the environment As Low in a person, he or she receives a radiation dose. Radiation doses are measured in millirems (mrem) or rems, the average background radiation dose is 300 mrem/yr. Manufactured sources contribute an additional background

  2. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Results for Advanced Thermoelectric Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations...

  3. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  4. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    SciTech Connect (OSTI)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-02-25

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research.

  5. Packaging and Transfer of Materials of National Security Interest Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-09-29

    This Technical Manual establishes requirements for operational safety controls for onsite operations and provides Department of Energy (DOE) technical safety requirements and policy objectives for development of an Onsite Packaging and Transfer Program, pursuant to DOE O 461.1A, Packaging and Transfer or Transportation of Materials of National Security Interest. The DOE contractor must document this program in its Onsite Packaging and Transfer Manual/Procedures. Admin Chg 1, 7-26-05. Certified 2-2-07. Canceled by DOE O 461.2.

  6. Safety Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will ensure DOE Federal personnel and contractors develop effective safety programs and continuously evaluates those activities to ensure compliance with DOE...

  7. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet

  8. Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF

    SciTech Connect (OSTI)

    Not Available

    1991-10-18

    The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173.

  9. Management of Transuranic Contaminated Material

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-09-30

    To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

  10. Material transport method and apparatus

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Ramsey, Roswitha S. (Knoxville, TN)

    2000-01-01

    An electrospray apparatus uses a microchannel formed in a microchip. Fluid is pumped through the channel to an outlet orifice using either hydraulic or electrokinetic means. An electrospray is generated by establishing a sufficient potential difference between the fluid at the outlet orifice and a target electrode spaced from the outlet orifice. Electrokinetic pumping is also utilized to provide additional benefits to microchip devices.

  11. Material transport method and apparatus

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Ramsey, Roswitha S. (Knoxville, TN)

    2001-01-01

    An electrospray apparatus uses a microchannel formed in a microchip. Fluid is pumped through the channel to an outlet orifice using either hydraulic or electrokinetic means. An electrospray is generated by establishing a sufficient potential difference between the fluid at the outlet orifice and a target electrode spaced from the outlet orifice. Electrokinetic pumping is also utilized to provide additional benefits to microchip devices.

  12. Charge Transport Across Insulating Self-Assembled Mono layers...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials...

  13. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12University SafetyHealthSafetySafety,

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  15. A New Charge Transporting Host Material for Short Wavelength Organic Electrophosphorescence: 2,7–Bis(diphenylphosphine oxide)–9,9–dimethylfluorene

    SciTech Connect (OSTI)

    Padmaperuma, Asanga B.; Sapochak, Linda S.; Burrows, Paul E.

    2006-05-01

    We report the synthesis, crystal structure, photophysical and electroluminescent properties of a new charge transporting host material for short wavelength phosphor-doped organic light emitting devices (OLEDs) based on 2,7-bis(diphenylphosphine oxide)-9,9-dimethylfluorene (PO6). The P=O moiety is used as a point of saturation between the fluorene bridge and outer phenyl groups so that the triplet exciton energy of PO6 is 2.72 eV, similar to that of a dibromo substituted fluorene, but it is more amenable to vacuum sublimation and has good film forming properties. Computational analysis (B3LYP/6-31G*) predicts the HOMO and LUMO energies of PO6 to be lower by 1.5 eV and 0.59 eV, respectively, compared to a similar diphenylamino substituted derivative. In a simple bilayer OLED device, PO6 exhibits structured UV electroluminescence (EL) at a peak wavelength of 335 nm and structured lower energy emission with peaks at 380 nm and 397 nm, similar to the solid film and crystalline solid photoluminescence spectra. The longer wavelength peaks are attributed to aggregate formation via strong intermolecular interactions (P-O---H-C and edge-to-face C-H---??contacts?) and longer range electrostatic interactions between P=O moieties leading to ordered regions in the film. Devices incorporating PO6 as the host material doped with iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N,C2.)picolinate (FIrpic) exhibited sky blue emission with peak external quantum efficiency (?ext,max) of 8.1 % and luminous power efficiency (?p,max) of 25.3 lm/W. At a brightness of 800 cd/m2, generally considered to be sufficient for lighting applications, the ?ext and ?p are 6.7 % and 11.8 lm/W and the operating voltage is 5.6 V, which is significantly lower than has been demonstrated previously using this dopant.

  16. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  17. Building a Weather-Ready Nation Fall Weather Safety

    E-Print Network [OSTI]

    Building a Weather-Ready Nation Fall Weather Safety www.weather.gov/safety Wildfire ­ Drought ­ Hurricanes ­ Wind ­ Early Season Winter ­ Flood #12;Building a Weather-Ready Nation Wildfire Safety smoking materials. weather.gov/wildfire www.weather.gov/safety #12;Building a Weather-Ready Nation

  18. Sustainable Transport

    E-Print Network [OSTI]

    Webber, Melvin

    2006-01-01

    THOUGHT PIECE Sustainable Transport by Melvin M. Webberwant to sustain any mode of transport only if we judge it todraconian in rejecting transport modes that have failed in

  19. Lightweighting Materials | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with lightweight materials can directly reduce fuel consump-tion. It also allows cars to carry advanced emissions control equipment, safety devices, and integrated...

  20. Safety analysis report for packaging a DOT 7A specification container for tritiated liquid wastes

    SciTech Connect (OSTI)

    Alford, E.

    1980-08-01

    This Safety Analysis Report for Packaging (SARP) was prepared in accordance with ERDA (DOE) Appendix 5201 for DOE/ALO review and approval of packaging of tritiated liquid wastes to be shipped from Sandia National Laboratories, Livermore, (SNLL) California. This report presents information pertinent to the construction of tritiated liquid waste shipping containers. It contains design and development considerations, explains tests and evaluations required to prove the container can withstand normal transportation conditions, and demonstrates that the Sandia container-and-radioactive-material shipment package is in compliance with DOE and Department of Transportation (DOT) safety requirements. An internal review of this SARP has been performed in compliance with the ERDA (DOE) Manual, 5201 Appendix V.

  1. Shipping Biological Materials Quick Reference Guide Office of Environment, Health & Safety, 642-3073 Page 1 of 5 3/9/2007

    E-Print Network [OSTI]

    California at Berkeley, University of

    ............................................................................................................................................................. 1 Infectious agents .................................................................... 3 Plants, plant materials/products, plant pests/pathogens, soil, biocontrol organisms.dhs.ca.gov/ps/dcdc/disb/disbindex.htm Animals (all living or dead vertebrates and invertebrates not known to contain an infectious agent) (for

  2. Reliability of Transport Properties for Bulk Thermoelectrics

    Broader source: Energy.gov [DOE]

    Presents international round-robin study to ensure quality of transport data and figure of merit of thermoelectric materials

  3. Transport in granular systems

    E-Print Network [OSTI]

    Wendell, Dawn M. (Dawn Marie), 1983-

    2011-01-01

    There are many situations in which a continuum view of granular systems does not fully capture the relevant mechanics. In order for engineers to be able to design systems for transporting granular materials, there needs ...

  4. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  5. Columbia University Medical Center Environmental Health & Safety

    E-Print Network [OSTI]

    Jia, Songtao

    of radioactive materials. §175.104 Waste disposal. §175.105 Transportation of radioactive materials. Microwave of radiation equipment. #12;Radioactive Materials §175.101 General requirements for radioactive materials licenses. §175.102 Requirements for specific types of radioactive materials licenses. §175.103 Medical use

  6. Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042

    SciTech Connect (OSTI)

    Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle; Wagner, John C.

    2013-07-01

    The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup fuel storage and transportation. This paper discusses the staff's preliminary considerations on the safety implication of fuel reconfiguration with respect to nuclear safety (subcriticality control), radiation shielding, containment, the performance of the thermal functions of the packages, and the retrievability of the contents from regulatory perspective. (authors)

  7. Baseline requirements of the proposed action for the Transportation Management Division routing models

    SciTech Connect (OSTI)

    Johnson, P.E.; Joy, D.S.

    1995-02-01

    The potential impacts associated with the transportation of hazardous materials are important to shippers, carriers, and the general public. This is particularly true for shipments of radioactive material. The shippers are primarily concerned with safety, security, efficiency, and equipment requirements. The carriers are concerned with the potential impact that radioactive shipments may have on their operations--particularly if such materials are involved in an accident. The general public has also expressed concerns regarding the safety of transporting radioactive and other hazardous materials through their communities. Because transportation routes are a central concern in hazardous material transport, the prediction of likely routes is the first step toward resolution of these issues. In response to these routing needs, several models have been developed over the past fifteen years at Oak Ridge National Laboratory (ORNL). The HIGHWAY routing model is used to predict routes for truck transportation, the INTERLINE routing model is used to predict both rail and barge routes, and the AIRPORT locator model is used to determine airports with specified criteria near a specific location. As part of the ongoing improvement of the US Department of Energy`s (DOE) Environmental Management Transportation Management Division`s (EM-261) computer systems and development efforts, a Baseline Requirements Assessment Session on the HIGHWAY, INTERLINE, and AIRPORT models was held at ORNL on April 27, 1994. The purpose of this meeting was to discuss the existing capabilities of the models and data bases and to review enhancements of the models and data bases to expand their usefulness. The results of the Baseline Requirements Assessment Section will be discussed in this report. The discussions pertaining to the different models are contained in separate sections.

  8. A Unified Approach for Active Safety in Automotive Cyber Physical Annalisa Scacchioli

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    A Unified Approach for Active Safety in Automotive Cyber Physical Systems Annalisa Scacchioli Abstract-- This position paper discusses limitations of the current automotive transportation active safety of safety remains one of the most serious challenges in automotive transportation at a global scale

  9. LNG Safety Assessment Evaluation Methods

    SciTech Connect (OSTI)

    Muna, Alice Baca; LaFleur, Angela Christine

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  10. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  11. National Transportation Safety Board FACTUAL REPORT

    E-Print Network [OSTI]

    Ladkin, Peter B.

    , between a Boeing 737-800 (PR-GTD) operated by Gol Airlines of Brazil, and an Embraer Legacy 600 business Center (DIPAA). Under the provisions of ICAO Annex 13, the United States, as state of registry carrier flight enroute from the Eduardo Gomes International Airport, Manaus, Brazil; to the Presidente

  12. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect (OSTI)

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  13. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  14. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    SciTech Connect (OSTI)

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  15. A review of extended-range operations by transport aircraft

    E-Print Network [OSTI]

    Simpson, R. W.

    1987-01-01

    Introduction: The safety of enroute operations of aircraft engaged in public transport has been a continuous concern since the early days of air transportation. There are a variety of inflight emergency situations which ...

  16. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  17. Nanoengineered membranes for controlled transport

    DOE Patents [OSTI]

    Doktycz, Mitchel J. (Oak Ridge, TN) [Oak Ridge, TN; Simpson, Michael L. (Knoxville, TN) [Knoxville, TN; McKnight, Timothy E. (Greenback, TN) [Greenback, TN; Melechko, Anatoli V. (Oak Ridge, TN) [Oak Ridge, TN; Lowndes, Douglas H. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael A. (Knoxville, TN) [Knoxville, TN; Merkulov, Vladimir I. (Oak Ridge, TN) [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  18. OCCUPATIONAL HEALTH AND SAFETY

    E-Print Network [OSTI]

    OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM Department of Occupational Health and Safety Revised December 2009 #12;Occupational Health and Safety (OHS) Management System 1. Introduction.............................................................................................................. 3 2.2 Management of Health and Safety

  19. Safety harness

    DOE Patents [OSTI]

    Gunter, Larry W. (615 Sand Pit Rd., Leesville, SC 29070)

    1993-01-01

    A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

  20. Safety valve

    DOE Patents [OSTI]

    Bergman, Ulf C. (Malmoe, SE)

    1984-01-01

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  2. MODEL 9977 B(M)F-96 SAFETY ANALYSIS REPORT FOR PACKAGING

    SciTech Connect (OSTI)

    Abramczyk, G; Paul Blanton, P; Kurt Eberl, K

    2006-05-18

    This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on and for the 9977 Shipping Package, referred to as the General Purpose Fissile Package (GPFP). The performance evaluation presented in this SARP documents the compliance of the 9977 package with the regulatory safety requirements for Type B packages. Per 10 CFR 71.59, for the 9977 packages evaluated in this SARP, the value of ''N'' is 50, and the Transport Index based on nuclear criticality control is 1.0. The 9977 package is designed with a high degree of single containment. The 9977 complies with 10 CFR 71 (2002), Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10 CFR 20 (2003) for As Low As Reasonably Achievable (ALARA) principles. The 9977 also satisfies the requirements of the Regulations for the Safe Transport of Radioactive Material--1996 Edition (Revised)--Requirements. IAEA Safety Standards, Safety Series No. TS-R-1 (ST-1, Rev.), International Atomic Energy Agency, Vienna, Austria (2000). The 9977 package is designed, analyzed and fabricated in accordance with Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, 1992 edition.

  3. Solid waste burial grounds interim safety analysis

    SciTech Connect (OSTI)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  4. Radiation Safety Manual August 1999 UW Environmental Health and Safety

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    principle of keeping radiation doses and releases of radioactive material to the environment as low as can - An acronym formed from the phrase "As Low as Reasonably Achievable." The phrase refers to a radiation safety it into another type of atom and resulting in the emission of radiation. dose (absorbed dose) - Radiation dose

  5. Metals and Ceramics Division Heavy Vehicle Propulsion Materials Program

    E-Print Network [OSTI]

    Pennycook, Steve

    (NIST) IEA Annex on Materials for Transportation Applications (ORNL) IEA ­ Rolling Contact Fatigue (ORNL

  6. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS.

    SciTech Connect (OSTI)

    A. K. MAJI; B. MARSHALL; ET AL

    2000-10-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation from nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and subsequent accumulation of debris on the sump screen. The complete methodology will, of course, include a means of estimating debris generation, transport to the containment floor, transport to the sump screen, and the resulting loss of NPSH.

  7. RADIATION SAFETY MANUAL 2014 RICE UNIVERSITY 1

    E-Print Network [OSTI]

    Natelson, Douglas

    microscopes. Notify the RSO of any new radiation sources. Notify the RSO if any radiation sources with radioactive materials must attend formal radiation safety training provided by EHS. #12;RADIATION SAFETY with information concerning risk. 4. Provide suggestions for reducing exposure. 5. Monitor your radiation dose wit

  8. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  9. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  10. Thermoelectric transport in the coupled valence-band model

    E-Print Network [OSTI]

    Ramu, Ashok; Cassels, Laura; Hackman, Nathan; Lu, Hong; Zide, Joshua; Bowers, John E.

    2011-01-01

    109, 033704 ?2011? Thermoelectric transport in the coupledapplied to the problem of thermoelectric transport in p-typeef?ciency p-type thermoelectric material, are calculated and

  11. Intermetallic Electrodes Improve Safety and Performance in Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermetallic Electrodes Improve Safety and Performance in Lithium-Ion Batteries Technology available for licensing: A new class of intermetallic material that can be used as a...

  12. AWEA Wind Project Operations and Maintenance and Safety Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

  13. Negative Electrodes Improve Safety in Lithium Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intermetallic material for the negative electrode that offers a significantly higher volumetric and gravimetric capacity and improves battery stability and safety. PDF icon...

  14. THEORETICAL AND EXPERIMENTAL EVALUATION OF WASTE TRANS -PORT IN SELECTED ROCKS: 1977 ANNUAL REPORT OF LBL CONTRACT NO. 45901AK. Waste Isolation Safety Assessment Program-Collection and Generation of Transport Data.

    E-Print Network [OSTI]

    Apps, J.A.

    2011-01-01

    in Proceedings of Rocky Flats Symposium on Safety in Pucm) III Source Colorado A (Rocky Flats) Colorado B (SugarLoaf) Colorado C (Rocky Flats) Idaho A (ERDA) Idaho B Idaho

  15. An evaluation of Department of Transportation specification packages

    SciTech Connect (OSTI)

    Ratledge, J.E.; Rawl, R.R.

    1992-01-01

    Specification packages are broad families of package designs developed and authorized by the US Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC) for transport of certain Type B and fissile radioactive materials, with each specification containing a number of designs of various sizes. The specification package designs have remained essentially unchanged in a changing regulatory environment. Changes to package designs or authorized contents under the DOT system can be accomplished by rule making action, but there has been little updating of the designs over the years. Many of the individual package designs are no longer supported by reasonably current safety analyses. Since the publication of these specifications, there have been changes in regulatory requirements and improvements in methods of testing and analysis. Additionally, contemplated revisions to the DOT and NRC regulations to bring design requirements into accord with IAEA Safety Series No. 6, 1985 Edition would eliminate fissile classes and require resistance to a crush test for small Type B packages meeting certain criteria. The NRC has requested that the Oak Ridge National Laboratory (ORNL) staff review the safety documentation of the specification packages to determine the possible need for further testing and analysis, modifications to the designs, and, perhaps, elimination of any designs for which there is insufficient demonstration of compliance with current and proposed requirements. This paper will present a summary of the technical data and information concerning the use of the packages that has been received to date.

  16. An evaluation of Department of Transportation specification packages

    SciTech Connect (OSTI)

    Ratledge, J.E.; Rawl, R.R.

    1992-11-01

    Specification packages are broad families of package designs developed and authorized by the US Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC) for transport of certain Type B and fissile radioactive materials, with each specification containing a number of designs of various sizes. The specification package designs have remained essentially unchanged in a changing regulatory environment. Changes to package designs or authorized contents under the DOT system can be accomplished by rule making action, but there has been little updating of the designs over the years. Many of the individual package designs are no longer supported by reasonably current safety analyses. Since the publication of these specifications, there have been changes in regulatory requirements and improvements in methods of testing and analysis. Additionally, contemplated revisions to the DOT and NRC regulations to bring design requirements into accord with IAEA Safety Series No. 6, 1985 Edition would eliminate fissile classes and require resistance to a crush test for small Type B packages meeting certain criteria. The NRC has requested that the Oak Ridge National Laboratory (ORNL) staff review the safety documentation of the specification packages to determine the possible need for further testing and analysis, modifications to the designs, and, perhaps, elimination of any designs for which there is insufficient demonstration of compliance with current and proposed requirements. This paper will present a summary of the technical data and information concerning the use of the packages that has been received to date.

  17. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P.

    2007-07-01

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  18. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV6STATDecember29/2011 Page 1 of 6Site Safety

  19. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel Ruggirello RachelRadiation DrySafety Home

  20. Job Safety

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guidephysics_today_article.pdf MoreEnergy JulyTemansonupdatedJob Safety

  1. Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns

    SciTech Connect (OSTI)

    Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

    2003-02-27

    Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

  2. Transportation Baseline Report

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOE’s projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  3. Criticality Safety Validation of SCALE 6.1 with ENDF/B-VII.0 Libraries

    SciTech Connect (OSTI)

    Marshall, William BJ J [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL

    2012-01-01

    ANSI/ANS-8.1-1998;2007, Nuclear Criticality Safety in Operations with Fissionable Material Outside Reactors, and ANSI/ANS-8.24-2007, Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations, require validation of a computer code and the associated data through benchmark evaluations based on physical experiments. The performance of the code and data are validated by comparing the calculated and the benchmark results. A SCALE procedure has been established to generate a Verified, Archived Library of Inputs and Data (VALID). This procedure provides a framework for preparing, peer reviewing, and controlling models and data sets derived from benchmark definitions so that the models and data can be used with confidence. The procedure ensures that the models and data were correctly generated using appropriate references with documented checks and reviews. Configuration management is implemented to prevent inadvertent modification of the models and data or inclusion of models that have not been subjected to the rigorous review process. VALID entries for criticality safety are based on critical experiments documented in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE). The findings of a criticality safety validation of SCALE 6.1 utilizing the benchmark models vetted in the VALID library at Oak Ridge National Laboratory are summarized here.

  4. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect (OSTI)

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  5. Recommended research on LNG safety

    SciTech Connect (OSTI)

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  6. Advanced materials research areas | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy, national security, and industrial competitiveness. For instance, lightweight materials are fundamental to the future of transportation and in other energy-related...

  7. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  8. Safety evaluation for packaging (onsite) for cesium chloride capsules with type W overpacks

    SciTech Connect (OSTI)

    McCoy, J.C.

    1997-09-15

    This Safety Evaluation for Packaging (SEP) documents the evaluation of a new basket design and overpacked cesium chloride capsule payload for the Beneficial Uses Shipping System (BUSS) Cask in accordance with the onsite transportation requirements of the Hazardous Material Packaging and Shipping manual, WHC-CM-2-14. This design supports the one-time onsite shipment of 16 cesium chloride capsules with Type W overpacks from the 324 Building to the 224T Building at the Waste Encapsulation and Storage Facility (WESF). The SEP is valid for a one-time onsite shipment or until August 1, 1998, whichever occurs first.

  9. Criticality safety basics, a study guide

    SciTech Connect (OSTI)

    V. L. Putman

    1999-09-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

  10. ENVIRONMENTAL, HEALTH AND SAFETY

    E-Print Network [OSTI]

    California at Davis, University of

    ENVIRONMENTAL, HEALTH AND SAFETY PROGRAMS SPRING 2012 Including: Free Information Session New Program in Health and Safety CONTINUING AND PROFESSIONAL EDUCATION #12;2 Our Health and Safety Programs Workplace Health and Safety Certificate Program For every dollar invested in workplace safety, organizations

  11. Nuclear Safety | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Nuclear Safety The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and guidance including policy and requirements relating to...

  12. Street typology and bicyclist safety : a systems approach

    E-Print Network [OSTI]

    Minikel, Eric Vallabh

    2010-01-01

    Cycling is an attractive transportation mode but has not attained a large mode share in the United States, in part because it is correctly perceived as dangerous. Much literature on cyclist safety and the built environment ...

  13. Simulation of human factors for material safety

    SciTech Connect (OSTI)

    Koehler, A. C. (Andrew C.); Gonzales-Lujan, J. M. (Johnell M.); Tompkins, G. (George); Burnside, R. J. (Robert J.); Kornreich, D. E. (Drew E.)

    2003-01-01

    The D-1 (Statistical Sciences) and D-2 (Stockpile Complex Modeling and Analysis) groups frequently collaborate to analyze production capabilities at Los Alamos National Laboratory. The facilities in question run the gamut from traditional machining to the fabrication of Plutonium components. This paper documents our efforts to extend our modeling capabilities from traditional discrete event simulation modeling to include agent based models.

  14. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    thoroughly after handling. Wash contaminated clothing before reuse. EXPOSURE LIMITS, RTECS Country Source DECOMPOSITION PRODUCTS Hazardous Decomposition Products: Carbon monoxide, Car

  15. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    414 °C FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder and the fire should be fought from a remote explosion-resistant location. EXPLOSION DATA Dust Potential

  16. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    480 °C FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Carbon dioxide, dry chemical powder the area should be evacuated and the fire should be fought from a remote explosion-resistant location

  17. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Carbon dioxide, dry chemical powder, or appropriate foam. Use should be evacuated and the fire should be fought from a remote explosion-resistant location. FLASH POINT

  18. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    : Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment be fought from a remote explosion-resistant location. FLASH POINT 81 °F 27 °C Method: closed cup EXPLOSION

  19. SIGMA-ALDRICH Material Safety Data Sheet

    E-Print Network [OSTI]

    Rubloff, Gary W.

    # +61 2 9841 0555 (1800 800 097) Fax +61 2 9841 0500 (1800 800 096) Emergency Phone # +44 8701906777

  20. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    ) * Bis(4-hydroxyphenyl) dimethylmethane * Bis(4-hydroxyphenyl)propane * 2,2-Bis(p-hydroxyphenyl)propane * 2,2-Bis(4-hydroxyphenyl)propane * Bisphenol * Bisphenol A (OSHA) * 4,4'-Bisphenol A * DIAN * p,p'-Dihydroxydiphenyldimethylmethane * 4,4'-Dihydroxydiphenyldimethylmethane * p,p'-Dihydroxydiphenylpropane * 2,2-(4,4'-Dihydroxydiphenyl)propane

  1. DOW CORNING CORPORATION Material Safety Data Sheet

    E-Print Network [OSTI]

    Garmestani, Hamid

    : On large fires use dry chemical, foam or water spray. On small fires use carbon dioxide (CO2), dry chemical

  2. Material Safety Data Sheet Detachol Adhesive Remover

    E-Print Network [OSTI]

    Wikswo, John

    (246°C) Extinguishing Media: Water fog, CO2, foam or dry chemical Special Fire Fighting Procedures, basements or confined areas. A vapor suppressing foam may be used to reduce vapors. Use clean non- sparking

  3. Material Safety Data Sheet Mastisol Liquid Adhesive

    E-Print Network [OSTI]

    Wikswo, John

    ): LEL: 3.3 UEL: 19.0 Autoignition Temperature: Not available Extinguishing Media: Small fire: CO2 or dry chemical Large fire: Water spray or foam Special Fire Fighting Procedures: Self-contained breathing

  4. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A EXTINGUISHING MEDIA Suitable: Carbon dioxide, dry chemical powder, or appropriate foam. Water spray shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government N/A Volatile% N/A VOC Content N/A Water Content Evaporation Rate N

  5. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Vakni, David

    Method: closed cup AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT SIGMA - S9273 www.sigma-aldrich.com Page 2 #12/A Volatile% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N

  6. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING and eye bath. Mechanical exhaust required. ALDRICH - 239321 www.sigma-aldrich.com Page 2 #12;PERSONAL Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

  7. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Wear dust mask. Hand: Protective/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

  8. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

  9. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Wear dust/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface

  10. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate. SPECIAL REQUIREMENTS Light sensitive. Section 8 - Exposure Controls / PPE ENGINEERING CONTROLS Mechanical Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition

  11. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    /A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface

  12. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    : Carbon dioxide, dry chemical powder, or appropriate foam. Water spray. FIREFIGHTING Protective Equipment and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT ALDRICH - 240559 www/A Volatile% N/A VOC Content N/A Water Content N/A Solvent Content N/A Evaporation Rate N/A Viscosity N

  13. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    : Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. FIREFIGHTING Protective Equipment and eye bath. Mechanical exhaust required. ALDRICH - M18655 www.sigma-aldrich.com Page 2 #12;PERSONAL/A Solvent Content N/A Evaporation Rate N/A Viscosity N/A Surface Tension N/A Partition Coefficient N

  14. MATERIAL SAFETY DATA SHEET 1. IDENTIFICATION

    E-Print Network [OSTI]

    Alpay, S. Pamir

    the first 5 minutes, then continue rinsing eye. Call a poison control center or doctor for treatment advice. Call a poison control center or doctor for treatment advice. If Swallowed: Call poison control center not induce vomiting unless told to do so by the poison control center or doctor. Do not give anything

  15. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    VIOLET 548-62-9 Yes Ingredient Name CAS # Percent SARA 313 CRYSTAL VIOLET 548-62-9 90 No ZINC FOIL 7440 - Hazards Identification EMERGENCY OVERVIEW Toxic. Dangerous for the environment. #12;May cause cancer. May clothing to prevent contact with skin and eyes. Specific Hazard(s): Emits toxic fumes under fire conditions

  16. KOLORSAFE® acid neutralizer Material Safety Data Sheet

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  17. "Safety Concrete" A Material Designed to Fail

    E-Print Network [OSTI]

    High sand/binder ratio Introduces stress-concentrating defects Low-slump water/binder ratio Ideal for rapid molding and demolding, increases strength Controlled hydration time at RT or 60°C Balance

  18. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    Method: closed cup AUTOIGNITION TEMP N/A FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: Carbon dioxide Decomposition Products: Carbon monoxide, Carbon dioxide. Section 11 - Toxicological Information ROUTE thoroughly after handling. Wash contaminated clothing before reuse. Section 9 - Physical/Chemical Properties

  19. Nanoscale Materials Safety at the Department's Laboratories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1forEnergyatEnergy Nanomaterials

  20. SHIPBOARD LABORATORY SAFETY PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD LABORATORY SAFETY PROGRAM INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION AUGUST 2013 #12;IODP Shipboard Laboratory Safety: Introduction 2 CONTENTS Introduction ................................................................................................................................6 TAMU EHSD: Laboratory Safety Manual

  1. Vehicle Technologies Office: Materials Technologies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced materials are essential for boosting the fuel economy of modern automobiles while maintaining safety and performance. Because it takes less energy to accelerate a lighter...

  2. Non-Tracial Free Transport and Applications

    E-Print Network [OSTI]

    Nelson, Brent Andrew

    2015-01-01

    tracial transport . . . . . . . . . . . . . . . . . . . .the transport element . . . . . . . . . . . . . .Free Transport . . . . . . . . . . . .

  3. Chapter 13 Employee Health and Safety 13.04 Safety Committees

    E-Print Network [OSTI]

    Sheridan, Jennifer

    compliance in hazardous waste management, environmental permits and other issues related to chemical safety involving use of hazardous biological materials including recombinant DNA for compliance with NIH guidelines and tuberculosis prevention are areas of special concern. Contacts can be made with these committees or with safety

  4. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  5. August 2012 Safety Forecast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During the month of August, the focus safety areas be ramp safety and seat belt awareness. Heat continues to be a factor during the month of August. Continue...

  6. FIRE SAFETY REPORT ENVIRONMENTAL HEALTH & SAFETY SERVICES

    E-Print Network [OSTI]

    Hong, Don

    FIRE SAFETY REPORT 2014 ENVIRONMENTAL HEALTH & SAFETY SERVICES #12;1 | M T S U F I R E S A F E T Y R E P O R T FIRE SAFETY REPORT TABLE OF CONTENTS INTRODUCTION 2 RESPONSIBILITIES AND DUTIES OF THE MTSU FIRE MARSHAL 2 GENERAL 3 SMOKING POLICY 3 CLASS A COMBUSTIBLES 4 CLASS B COMBUSTIBLES 4 FIRE

  7. DOE explosives safety manual. Revision 7

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

  8. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect (OSTI)

    Botsch, W.; Smalian, S.; Hinterding, P.

    2013-07-01

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  9. Technical safety appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The existing Elk Hills facilities for fluid production consist of tank settings, gas and oil/water gathering pipelines, gas plants, compressor facilities, lease automatic custody transfer units which meter the crude oil going to sales, and natural gas sales meters and pipelines, water injection and source wells, and gas injection pipelines and wells. The principal safety concerns presented by operations at Elk Hills are fire, occupational safety and industrial hygiene considerations. Transportation and motor vehicle accidents are also of great concern because of the large amount of miles driven on more than 900 miles of roads. Typical operations involve hazardous materials and processing equipment such as vessels, compressors, boilers, piping and valves. The aging facilities, specifically the 35R Gas Plant (constructed in 1952) and many of the pipelines, introduce an additional element of hazard to the operations.

  10. DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2012-07-10

    An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

  11. Sediment transport in the Mississippi Canyon: the role of currents and storm events on optical variability 

    E-Print Network [OSTI]

    Burden, Cheryl A

    1999-01-01

    Two modes of sediment transport were found to exist in the Mississippi Canyon: the offshelf transport of material in intermediate nepheloid layers originating at depths of 50-175 m and the resuspension and transport of material within the canyon...

  12. Electrical and Thermoelectrical Transport Properties of Graphene

    E-Print Network [OSTI]

    Wang, Deqi

    2011-01-01

    IV Large Memory Effect in Graphene Based Devices IV-1Transport Properties of Graphene A Dissertation submitted into study the new material, graphene. By investigating the

  13. Preface: Nonclassical Transport

    E-Print Network [OSTI]

    Bolshov, L.

    2010-01-01

    and P. Kondratenko, Nuclear Safety Institute, Russianperformed at the Nuclear Safety Institute of the Russian

  14. TRANSPORTATION Objectives

    E-Print Network [OSTI]

    Koopman, Philip

    -the-shelf networks l Apply to specially designed safety-critical embedded networks l Lightweight mechanisms for safe (automotive application reference protocol) CAN (automotive application non-critical reference protocol) Mechanisms to provide basic safety building blocks (should be in hardware/firmware) Policies to manage

  15. Levitation is a useful scientific tool to study materials in extreme, metastable and often tran-sient states, encompassing a wide range of disciplines from pharmaceutics to nuclear safety.

    E-Print Network [OSTI]

    Kilian, Kristopher A.

    - sient states, encompassing a wide range of disciplines from pharmaceutics to nuclear safety. Acoustic, simulating the melting of a nuclear fuel rod. Future plans to alter the oxidation state of levitat- ed oxide

  16. Automatic safety rod for reactors

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  17. 2011 Annual Criticality Safety Program Performance Summary

    SciTech Connect (OSTI)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is

  18. Simplifying documentation while approaching site closure: integrated health & safety plans as documented safety analysis

    SciTech Connect (OSTI)

    Brown, Tulanda

    2003-06-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D&D I-HASP as an example.

  19. FY 2009 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development

    Broader source: Energy.gov [DOE]

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

  20. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  1. Effect of doping, microstructure, and CO{sub 2} on La{sub 2}NiO{sub 4+{delta}}-based oxygen-transporting materials

    SciTech Connect (OSTI)

    Klande, Tobias, E-mail: tobias.klande@pci.uni-hannover.de [Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3-3a, D-30179 Hannover (Germany); Efimov, Konstantin [Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3-3a, D-30179 Hannover (Germany); Cusenza, Salvatore; Becker, Klaus-Dieter [Institute of Physical and Theoretical Chemistry, Technische Universitaet Braunschweig, Hans-Sommer-Str. 10, D-38106 Braunschweig (Germany); Feldhoff, Armin [Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstr. 3-3a, D-30179 Hannover (Germany)

    2011-12-15

    Alkaline earth-free La{sub 2}NiO{sub 4+{delta}} based materials were synthesized by a sol-gel method and studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques as well as oxygen permeation experiments. Effects of doping the nickel position with a variety of cations (Al, Co, Cu, Fe, Mg, Ta, and Zr) were investigated with regards to oxygen flux and microstructure. Doping was always found to diminish the oxygen flux as compared to the reference composition. However, larger grains, which were achieved by longer annealing times at 1723 K have a minor negative impact on oxygen permeation flux in case of La{sub 2}NiO{sub 4+{delta}} and La{sub 2}Ni{sub 0.9}Fe{sub 0.1}O{sub 4+{delta}} system. Moessbauer spectroscopy shows that the iron-doped system exhibits a secondary phase, which was identified by high-resolution transmission electron microscopy (HRTEM) as a higher Ruddlesden-Popper phase. In-situ XRD in an atmosphere containing 50 vol% CO{sub 2} and long-term oxygen permeation experiments using pure CO{sub 2} as the sweep gas revealed a high tolerance of the materials towards CO{sub 2}. - Graphical Abstract: The vibrational polished La{sub 2}Ni{sub 0.9}Fe{sub 0.1}O{sub 4+{delta}} membrane revealed formation of secondary phases, which were confirmed by Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer La{sub 2}NiO{sub 4+{delta}} systematically doped with different valent cations. Black-Right-Pointing-Pointer Large grains have a negative impact on oxygen-permeation performance. Black-Right-Pointing-Pointer CO{sub 2}-stability proved by in-situ XRD in 50 vol% CO{sub 2}. Black-Right-Pointing-Pointer Constant long-term permeation in presence of CO{sub 2}. Black-Right-Pointing-Pointer Moessbauer and TEM reveal multiple phases in La{sub 2}Ni{sub 0.9}Fe{sub 0.1}O{sub 4+{delta}} system.

  2. Department of Energy Construction Safety Reference Guide

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    DOE has adopted the Occupational Safety and Health Administration (OSHA) regulations Title 29 Code of Federal Regulations (CFR) 1926 ``Safety and Health Regulations for Construction,`` and related parts of 29 CFR 1910, ``Occupational Safety and Health Standards.`` This nonmandatory reference guide is based on these OSHA regulations and, where appropriate, incorporates additional standards, codes, directives, and work practices that are recognized and accepted by DOE and the construction industry. It covers excavation, scaffolding, electricity, fire, signs/barricades, cranes/hoists/conveyors, hand and power tools, concrete/masonry, stairways/ladders, welding/cutting, motor vehicles/mechanical equipment, demolition, materials, blasting, steel erection, etc.

  3. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira

    2000-10-30

    This is the first quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between July 14, 2000 and September 30, 2000. This report presents information on the following specific tasks: (a) Progress in Advanced Cuttings Transport Facility design and development (Task 2), (b) Progress on research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress on research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress on research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress on research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Initiate research on project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Progress on instrumentation tasks to measure: Cuttings concentration and distribution (Tasks 11), and Foam properties (Task 12), (h) Initiate a comprehensive safety review of all flow-loop components and operational procedures. Since the previous Task 1 has been completed, we will now designate this new task as: (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  4. Environmental Health and Safety -Safety Manual Table of Contents

    E-Print Network [OSTI]

    Li, X. Rong

    1 Environmental Health and Safety - Safety Manual Table of Contents I. Assignment of Responsibility Management Program..................................81 XIX. Water Vessel Safety Program

  5. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  6. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  7. Design approaches and parameters for magnetically levitated transport systems. [Null flux suspension (Maglev)

    SciTech Connect (OSTI)

    Danby, G.T.; Powell, J.R.

    1988-01-01

    Mechanically levitated transport system approaches are assessed with regard to thrust power needs, track cost, suspension stability, and safety. The null flux suspension appears as the favored approach, having the least thrust power requirements, highest stability, and lowest amount of track material. Various null flux configurations are described together with their operating parameters. The Linear Synchronous Motor (LSM) propulsion system is also described for propelling the suspended vehicles. Cryogenics and superconductivity aspects are discussed and the effect of high T/sub c/ superconductors evaluated. 13 refs., 16 figs., 2 tabs.

  8. Georgia Institute of Laboratory Safety

    E-Print Network [OSTI]

    ENVIRONMENTAL HEALTH AND SAFETY POLICY.......................................10 Purpose Institute Council for Environmental Health and Safety (IC.........................................................................................12 Chemical and Environmental Safety Committee (CESC

  9. Criticality Safety | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Management American Nuclear Society, Nuclear Criticality Safety Division ANSIANS-8 Standards U.S. Department of Energy Nuclear Criticality Safety Program Orders,...

  10. Occupational Health and Safety Manual

    E-Print Network [OSTI]

    Occupational Health and Safety Manual #12;1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 York University Occupational Health and Safety Policy and Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Occupational Health and Safety Legislation

  11. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  12. Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

    E-Print Network [OSTI]

    2006-01-01

    enhance criticality safety for spent nuclear fuel in basketsNuclear Fuel (SNF) Container to Enhance Criticality SafetyNuclear Fuel (SNF) Containers: Use of Novel Coating Materials to Enhance Criticality Safety

  13. Assessment of the US regulations for fissile exemptions and fissile material general licenses

    SciTech Connect (OSTI)

    Parks, C.V.; Hopper, C.M.; Lichtenwalter, J.J. [Oak Ridge National Lab., TN (United States); Easton, E.P.; Brochman, P.G. [NRC, Washington, DC (United States)

    1997-05-01

    The paragraphs for general licenses for fissile material and exemptions (often termed exceptions in the international community) for fissile material have long been a part of the US Code of Federal Regulations (CFR) 10 CFR Part 71, Packaging and Transportation of Radioactive Material. More recently, the Nuclear Regulatory Commission (NRC) issued a final rule on Part 71 via emergency rule-making procedures in order to address an identified deficiency related to one of the fissile exemptions. To address the specified deficiency in a general fashion, the emergency rule adopted the approach of the 1996 Edition of the IAEA: Regulations for the Safe Transport of Radioactive Material (IAEA 1996), which places restrictions on certain moderating materials and limits the quantity of fissile material in a consignment. The public comments received by the NRC indicated general agreement with the need for restrictions on certain moderators (beryllium, deuterium, and graphite). The comments indicated concern relative to both the degree of restriction imposed (not more than 0.1% of fissile material mass) and the need to limit the fissile material mass of the consignment, particularly in light of the subsequent NRC staff position that the true intent was to provide control for limiting the fissile mass of the conveyance. The purpose of the review is to identify potential deficiencies that might be adverse to maintaining adequate subcriticality under normal conditions of transport and hypothetical accident conditions. In addition, ORNL has been asked to identify changes that would address any identified safety issues, enable inherently safe packages to continue to be unencumbered in transport, and seek to minimize the impact on current safe practices.

  14. NREL Simulations Provide New Insight on Polymer-Based Energy Storage Materials (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    Atomistic simulations correlate molecular packing and electron transport in polymer-based energy storage materials.

  15. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  16. Optical Safety of LEDs

    SciTech Connect (OSTI)

    none,

    2013-06-01

    Solid-state lighting program technology fact sheet that clarifies the issue of LED lighting safety for the human eye and takes a look at current standards for photobiological safety.

  17. Aviation safety analysis

    E-Print Network [OSTI]

    Ausrotas, Raymond A.

    1984-01-01

    Introduction: Just as the aviation system is complex and interrelated, so is aviation safety. Aviation safety involves design of aircraft and airports, training of ground personnel and flight crew members' maintenance of ...

  18. Complete Safety Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Safety Training Print All users are required to take online safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator...

  19. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  20. Preliminary Safety Design RM

    Office of Environmental Management (EM)

    Preliminary Safety Design Review Module March 2010 CD-0 O 0 OFFICE OF Pr C CD-1 F ENVIRO Standard R reliminar Rev Critical Decis CD-2 M ONMENTAL Review Plan ry Safety view Module...

  1. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  2. Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society

    SciTech Connect (OSTI)

    Koponen, B.L.; Hampel, V.E.

    1982-10-21

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

  3. DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules June 14, 2005 - 4:53pm Addthis...

  4. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  5. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  6. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  7. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  8. Annual Fire Safety Report

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    1 2014 Annual Fire Safety Report University of California Campus Fire Marshals HIGHER EDUCATION to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported INTRODUCTION Fire Safety is an essential tool in protecting a campus community from injuries, deaths, business

  9. Annual Fire Safety Report

    E-Print Network [OSTI]

    2014 Annual Fire Safety Report University of California, Santa Barbara Fire Marshals) requires that certain information pertaining to the Fire Safety in Student Housing Buildings of current. #12; 2 9/19/14 HIGHER EDUCATION OPPORTUNITY ACT INTRODUCTION Fire Safety is an essential tool

  10. Fire Safety January 2011

    E-Print Network [OSTI]

    Lennard, William N.

    1 Fire Safety PROCEDURES January 2011 firesafety@uwo.ca Campus Phones ­ EMERGENCY ­ Dial 911 Fire Safety Service is the focal point for the coordinated administration of the University Fire Safety program and plans, and is the University's representative in contacts dealing with all aspects of Fire

  11. Residence Hall Fire Safety

    E-Print Network [OSTI]

    Residence Hall Fire Safety Information Department of Public Safety Residential Life & Housing #12;Part 1 ! Building Information Pursuant to New York City Fire Code and Local Law 10, this Fire Safety, as well as what to do in a fire emergency. Building Construction Residential buildings built before 1968

  12. SYSTEM SAFETY PROGRESS REPORT,

    E-Print Network [OSTI]

    Rathbun, Julie A.

    . The Lead Assembly contains between 150 and 200 mg of HNS and, therefore, will require manufacturing explosive potential. The additional safety effort required has been defined to the LSP Experiment Manager will be tested for manufacturing safety. System Safety will participate in the test which will consist 26 July

  13. Health, Safety & Wellbeing Policy

    E-Print Network [OSTI]

    Mottram, Nigel

    Health, Safety & Wellbeing Policy Statement The University of Glasgow is one of the four oldest our very best to minimise the risk to the health, safety and wellbeing of staff, students, researchers resource and our students as our valued customers and partners. We acknowledge health and safety as a core

  14. OCCUPATIONAL SAFETY and HEALTH

    E-Print Network [OSTI]

    MARYLAND OCCUPATIONAL SAFETY and HEALTH ACT safety and health protection on the job STATE OCCUPATIONAL SAFETY AND HEALTH STANDARDS, AND OTHER APPLICABLE REGULATIONS MAY BE OBTAINED FROM and Health Administration, The Curtis Center, Suite 740 West, 170 S. Independence Mall West, Philadelphia, PA

  15. PNNL Coal Gasifier Transportation Logistics

    SciTech Connect (OSTI)

    Reid, Douglas J.; Guzman, Anthony D.

    2011-04-13

    This report provides Pacific Northwest National laboratory (PNNL) craftspeople with the necessary information and suggested configurations to transport PNNL’s coal gasifier from its current location at the InEnTec facility in Richland, Washington, to PNNL’s Laboratory Support Warehouse (LSW) for short-term storage. A method of securing the gasifier equipment is provided that complies with the tie-down requirements of the Federal Motor Carrier Safety Administration’s Cargo Securement Rules.

  16. Safety Criteria and Safety Lifecycle for Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Criteria and Safety Lifecycle for Artificial Neural Networks Zeshan Kurd, Tim Kelly and Jim performance based techniques that aim to improve the safety of neural networks for safety critical for safety assurance. As a result, neural networks are typically restricted to advisory roles in safety

  17. September 2013 Laboratory Safety Manual Section 7 -Safety Training

    E-Print Network [OSTI]

    Wilcock, William

    September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

  18. Transportation scenarios for risk analysis.

    SciTech Connect (OSTI)

    Weiner, Ruth F.

    2010-09-01

    Transportation risk, like any risk, is defined by the risk triplet: what can happen (the scenario), how likely it is (the probability), and the resulting consequences. This paper evaluates the development of transportation scenarios, the associated probabilities, and the consequences. The most likely radioactive materials transportation scenario is routine, incident-free transportation, which has a probability indistinguishable from unity. Accident scenarios in radioactive materials transportation are of three different types: accidents in which there is no impact on the radioactive cargo, accidents in which some gamma shielding may be lost but there is no release of radioactive material, and accident in which radioactive material may potentially be released. Accident frequencies, obtainable from recorded data validated by the U.S. Department of Transportation, are considered equivalent to accident probabilities in this study. Probabilities of different types of accidents are conditional probabilities, conditional on an accident occurring, and are developed from event trees. Development of all of these probabilities and the associated highway and rail accident event trees are discussed in this paper.

  19. K Basin sludge packaging design criteria (PDC) and safety analysis report for packaging (SARP) approval plan

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1996-03-06

    This document delineates the plan for preparation, review, and approval of the Packaging Design Crieteria for the K Basin Sludge Transportation System and the Associated on-site Safety Analysis Report for Packaging. The transportation system addressed in the subject documents will be used to transport sludge from the K Basins using bulk packaging.

  20. Pressure Safety Program Implementation at ORNL

    SciTech Connect (OSTI)

    Lower, Mark; Etheridge, Tom; Oland, C. Barry

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNL’s Pressure Safety Program.

  1. Safety Training for the Hydrogen Economy

    SciTech Connect (OSTI)

    Fassbender, Linda L.; Kinzey, Bruce R.; Akers, Bret M.

    2006-04-11

    PNNL and the Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Training and Education Center are helping to prepare emergency responders and permitting/code enforcement officials for their respective roles in the future Hydrogen Economy. Safety will be a critical component of the anticipated hydrogen transition. Public confidence goes hand in hand with perceived safety to such an extent that, without it, the envisioned transition is unlikely to occur. Stakeholders and the public must be reassured that hydrogen, although very different from gasoline and other conventional fuels, is no more dangerous. Ensuring safety in the hydrogen infrastructure will require a suitably trained emergency response force for containing the inevitable incidents as they occur, coupled with knowledgeable code officials to ensure that such incidents are kept to a minimum. PNNL and HAMMER are, therefore, designing a hydrogen safety training program, funded by DOE's Hydrogen, Fuel Cells, and Infrastructure Technologies Program, and modeled after the Occupational Safety and Health Administration’s multi-tiered approach to hazardous materials training. Capabilities under development at HAMMER include classroom and long-distance (i.e., satellite and internet broadcast) learning, as well as life-size, hands-on hydrogen burn props for “training as real as it gets.” This paper presents insights gained from the early emergency response hydrogen safety training courses held in 2005 and current plans for design and construction of a number of hydrogen burn props.

  2. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  3. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    SciTech Connect (OSTI)

    Bougaenko, S.E.; Kraev, A.E. [International Nuclear Safety Center of the Russian MINATOM, Moscow (Russian Federation); Hill, D.L.; Braun, J.C.; Klickman, A.E. [Argonne National Lab., IL (United States). International Nuclear Safety Center

    1998-08-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project.

  4. FY2008 Report on GADRAS Radiation Transport Methods.

    SciTech Connect (OSTI)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee; Varley, Eric S.; Hilton, Nathan R.

    2008-10-01

    The primary function of the Gamma Detector Response and Analysis Software (GADRAS) is the solution of inverse radiation transport problems, by which the con-figuration of an unknown radiation source is inferred from one or more measured radia-tion signatures. GADRAS was originally developed for the analysis of gamma spec-trometry measurements. During fiscal years 2007 and 2008, GADRAS was augmented to implement the simultaneous analysis of neutron multiplicity measurements. This report describes the radiation transport methods developed to implement this new capability. This work was performed at the direction of the National Nuclear Security Administration's Office of Nonproliferation Research and Development. It was executed as an element of the Proliferation Detection Program's Simulation, Algorithm, and Modeling element. Acronyms BNL Brookhaven National Laboratory CSD Continuous Slowing-Down DU depleted uranium ENSDF Evaluated Nuclear Structure Data Files GADRAS Gamma Detector Response and Analysis Software HEU highly enriched uranium LANL Los Alamos National Laboratory LLNL Lawrence Livermore National Laboratory NA-22 Office of Nonproliferation Research and Development NNDC National Nuclear Data Center NNSA National Nuclear Security Administration ODE ordinary differential equation ONEDANT One-dimensional diffusion accelerated neutral particle transport ORNL Oak Ridge National Laboratory PARTISN Parallel time-dependent SN PDP Proliferation Detection Program RADSAT Radiation Scenario Analysis Toolkit RSICC Radiation Safety Information Computational Center SAM Simulation, Algorithms, and Modeling SNL Sandia National Laboratories SNM special nuclear material ToRI Table of Radioactive Isotopes URI uniform resource identifier XML Extensible Markup Language

  5. ANS materials databook

    SciTech Connect (OSTI)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  6. electrifyingthefuture transportation

    E-Print Network [OSTI]

    Birmingham, University of

    programme of electrification and the potential introduction of diesel hybrids. The Department for Transport vehicles Wind turbine systems Industrial equipment The lab has full ethernet capability which will enable

  7. Plutonium Finishing Plant safety evaluation report

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  8. Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental

    E-Print Network [OSTI]

    Huennekens, John

    1 Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental Health and Safety using the following reference materials: I. American National Standards for Safe Use of Lasers - ANSI Z

  9. Radiation Sources and Radioactive Materials (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

  10. Radiation Machines and Radioactive Materials (Iowa)

    Broader source: Energy.gov [DOE]

    These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

  11. Construction safety program for the National Ignition Facility, Appendix B

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26

    This Appendix contains material from the LLNL Health and Safety Manual as listed below. For sections not included in this list, please refer to the Manual itself. The areas covered are: asbestos, lead, fire prevention, lockout, and tag program confined space traffic safety.

  12. Construction safety in DOE. Part 1, Students guide

    SciTech Connect (OSTI)

    Handwerk, E C

    1993-08-01

    This report is the first part of a compilation of safety standards for construction activities on DOE facilities. This report covers the following areas: general safety and health provisions; occupational health and environmental control/haz mat; personal protective equipment; fire protection and prevention; signs, signals, and barricades; materials handling, storage, use, and disposal; hand and power tools; welding and cutting; electrical; and scaffolding.

  13. OSHA safety regulation calls for step-by-step approach

    SciTech Connect (OSTI)

    Bellomo, P.J. (Arthur D. Little Inc., Houston, TX (US))

    1992-06-01

    The U.S. Occupational Safety and Health Administration's long-awaited process safety management (PSM) regulation mandates the implementation of a PSM program at facilities handling highly hazardous materials, including oil refineries and petrochemical plants. This article presents a step-by-step PSM program compliance strategy, delineated and explored through practical examples.

  14. CNG Cylinder Safety - Education, Outreach, and Next Steps (Presentation)

    SciTech Connect (OSTI)

    Smith, M.; Schroeder, A.

    2014-01-01

    Mr. Schroeder discussed the work that NREL is performing for the U.S. Department of Transportation on compressed natural gas cylinder end-of-life requirements. CNG vehicles are different from most other vehicles in that the CNG fuel storage cylinders have a pre-determined lifetime that may be shorter than the expected life of the vehicle. The end-of-life date for a cylinder is based on construction and test protocols, and is specific to the construction and material of each cylinder. The end-of-life date is important because it provides a safe margin of error against catastrophic cylinder failure or rupture. The end-of-life dates range from 15 to 25 years from the date of manufacture. NREL worked to develop outreach materials to increase awareness of cylinder end-of-life dates, has provided technical support for individual efforts related to cylinder safety and removal, and also worked with CVEF to document best practices for cylinder removal or inspection after an accident. Mr. Smith discussed the engagement of the DOE Clean Fleets Partners, which were surveyed to identify best practices on managing cylinder inventories and approached to provide initial data on cylinder age in a fleet environment. Both DOE and NREL will continue to engage these fleets and other stakeholders to determine how to best address this issue moving forward.

  15. Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns

    SciTech Connect (OSTI)

    Marsha Keister; Kathryn McBride

    2006-08-01

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge—to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.

  16. Biomimetic materials for protein storage and transport

    DOE Patents [OSTI]

    Firestone, Millicent A. (Elmhurst, IL); Laible, Philip D. (Villa Park, IL)

    2012-05-01

    The invention provides a method for the insertion of protein in storage vehicles and the recovery of the proteins from the vehicles, the method comprising supplying isolated protein; mixing the isolated protein with a fluid so as to form a mixture, the fluid comprising saturated phospholipids, lipopolymers, and a surfactant; cycling the mixture between a first temperature and a second temperature; maintaining the mixture as a solid for an indefinite period of time; diluting the mixture in detergent buffer so as to disrupt the composition of the mixture, and diluting to disrupt the fluid in its low viscosity state for removal of the guest molecules by, for example, dialysis, filtering or chromatography dialyzing/filtering the emulsified solid.

  17. Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness...

    Office of Environmental Management (EM)

    (variable) (2 mSvyr) According to NCRP Report 160, the average Annual Dose in the United States from Natural and Man-made Sources is Approximately 620 mrem Radiation exposure or...

  18. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect (OSTI)

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  19. Radioactive Materials Transportation and Incident Response

    Office of Energy Efficiency and Renewable Energy (EERE)

    This booklet was written to answer questions most frequently asked by fire fighters, law enforcement officers, and emergency medical services personnel. The booklet is not intended as a substitute...

  20. Weather and the Transport of Hazardous Materials

    Office of Environmental Management (EM)

    route so that the vehicle travels on the downwind side of a populated area; wind speed wind speed, , which could be used to determine if there will be excessive buffeting (hi h...

  1. Midwestern Radioactive Materials Transportation Committee Agenda

    Office of Environmental Management (EM)

    and Communications Work Group Lisa Janairo 9:45 - 10:45 am Committee Discussion Blue Ribbon Commission final report: state reactions, next steps Regional Planning Guide:...

  2. Transportation of Nuclear Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency| DepartmentSecurity | Department ofeffort toon legal

  3. Radiation Safety Manual Policies and Procedures

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    - Notification of Nuclear Energy Worker Status 81 APPENDIX IX Liquid Scintillation Counting 82 APPENDIX X TO PROMOTE THE SAFE USE OF RADIOLOGICAL MATERIALS 7 III. TRAINING REQUIREMENTS 9 IV. AUTHORIZATION TO USE APPENDIX XIII ­ Procedures For Using The Nuclear Gauge 101 #12;Radiation Safety Manual ­ Table

  4. UW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206-543-0463 206.543.9726 (fax) FORM 160 RADIOACTIVE MATERIAL DELIVERY AND USAGE RECORD (9/12)

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    and that radioactive labels are defaced prior to their disposal into the normal waste stream. RESULT OF WIPE SAMPLE.543.9726 (fax) FORM 160 RADIOACTIVE MATERIAL DELIVERY AND USAGE RECORD (9/12) AUI Name PO # AUI # Item # Order receiving shipments of radioactive materials to monitor the inside of packages in order to detect a leaking

  5. UW EH&S Radiation Safety Section Box 354400 201 Hall Health Seattle WA 98195-4400 206-543-0463 FORM 160T RADIOACTIVE MATERIAL TRANSFER AND USAGE RECORD (9/12)

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    for 5 calendar years after disposal of material! Collected by RSS mCi A. Animal Carcasses & Waste B to delete previously reported disposal en 160T RADIOACTIVE MATERIAL TRANSFER AND USAGE RECORD (9/12) I. Transferred From AUI transferring

  6. Cavity enhanced transport of excitons

    E-Print Network [OSTI]

    Johannes Schachenmayer; Claudiu Genes; Edoardo Tignone; Guido Pupillo

    2015-05-20

    We show that exciton-type transport in certain materials can be dramatically modified by their inclusion in an optical cavity: the modification of the electromagnetic vacuum mode structure introduced by the cavity leads to transport via delocalized polariton modes rather than through tunneling processes in the material itself. This can help overcome exponential suppression of transmission properties as a function of the system size in the case of disorder and other imperfections. We exemplify massive improvement of transmission for excitonic wave-packets through a cavity, as well as enhancement of steady-state exciton currents under incoherent pumping. These results may have implications for experiments of exciton transport in disordered organic materials. We propose that the basic phenomena can be observed in quantum simulators made of Rydberg atoms, cold molecules in optical lattices, as well as in experiments with trapped ions.

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  8. Momentum Transport in Granular Flows

    E-Print Network [OSTI]

    Gregg Lois; Anael Lemaitre; Jean M. Carlson

    2006-02-10

    We investigate the error induced by only considering binary collisions in the momentum transport of hard-sphere granular materials, as is done in kinetic theories. In this process, we first present a general microscopic derivation of the momentum transport equation and compare it to the kinetic theory derivation, which relies on the binary collision assumption. These two derivations yield different microscopic expressions for the stress tensor, which we compare using simulations. This provides a quantitative bound on the regime where binary collisions dominate momentum transport and reveals that most realistic granular flows occur in the region of phase space where the binary collision assumption does not apply.

  9. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  10. TWRS safety management plan

    SciTech Connect (OSTI)

    Popielarczyk, R.S., Westinghouse Hanford

    1996-08-01

    The Tank Waste Remediation System (TWRS) Safety Management Program Plan for development, implementation and maintenance of the tank farm authorization basis is described. The plan includes activities and procedures for: (a) Updating the current Interim Safety Basis, (b) Development,implementation and maintenance of a Basis for Interim Operations, (c) Development, implementation and maintenance of the Final Safety Analyses Report, (d) Development and implementation of a TWRS information Management System for monitoring the authorization basis.

  11. FY 2009 Progress Report for Lightweighting Materials- 11. Recycling

    Broader source: Energy.gov [DOE]

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

  12. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance,recyclabilit...

  13. FY 2009 Progress Report for Lightweighting Materials- Cover and Contents

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

  14. FY 2009 Progress Report for Lightweighting Materials- 10. Nondestructive Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

  15. Plutonium Certified Reference Materials Price List | U.S. DOE...

    Office of Science (SC) Website

    Laboratory (NBL) NBL Home About Programs Certified Reference Materials (CRMs) Prices and Certificates Ordering Information Training NEPA Documents News Safety Data Sheets...

  16. Heat transport system

    DOE Patents [OSTI]

    Harkness, Samuel D. (McMurray, PA)

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  17. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  18. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  19. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Supersedes DOE O 440.2B.

  20. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

  1. 1 Food Safety Policy July 2010 Food Safety Policy

    E-Print Network [OSTI]

    Sussex, University of

    1 Food Safety Policy July 2010 Food Safety Policy Food Safety Policy 19.7.2010 19.7.2014 #12;2 Food 5. Organisational Responsibilities 6. The Legal References 7. Glossary of Terms #12;3 Food Safety Policy July 2010 Food Safety Policy 1. Introduction 1.1 The University has a duty to assess the risks

  2. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    SciTech Connect (OSTI)

    Khalil, Y. F

    2015-01-05

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  3. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physic

  4. Student manual, Book 2: Orientation to occupational safety compliance in DOE

    SciTech Connect (OSTI)

    Colley, D.L.

    1993-10-01

    This is a student hand-book an Occupational Safety Compliance in DOE. Topics include the following: Electrical; materials handling & storage; inspection responsibilities & procedures; general environmental controls; confined space entry; lockout/tagout; office safety, ergonomics & human factors; medical & first aid, access to records; construction safety; injury/illness reporting system; and accident investigation procedures.

  5. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  6. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Supersedes DOE P 450.4, DOE P 411.1, DOE P 441.1, DOE P 450.2A, and DOE P 450.7

  7. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  8. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  9. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect (OSTI)

    Maloy, Stuart A.; Busby, Jeremy T.

    2012-06-12

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  10. Design of the EURISOL multi-MW target assembly radiation and safety issues

    E-Print Network [OSTI]

    Felcini, Marta; Kadi, Yacine; Otto, Thomas; Tecchio, L

    2006-01-01

    The multi-MW target proposed for the EURISOL facility will be based on fission of uranium (or thorium) compounds to produce rare isotopes far from stability. A two-step process is used for the isotope production. First, neutrons are generated in a liquid mercury target, irradiated by the 1 GeV proton or deuteron beam, provided by the EURISOL linac driver. Then, the neutrons induce fission in a surrounding assembly of uranium carbide. R&D projects on several aspects of the target assembly are ongoing. Key criteria for the target design are a maximum beam power capability of 4 MW, a remote handling system with minimum downtime and maximum reliability, as well as radiation safety, minimization of hazards and the classification of the facility. In the framework of the ongoing radiation characterization and safety studies, radiation transport simulations have been performed to calculate the prompt radiation dose in the target and surrounding materials, as well as to determine shielding material and angle-depen...

  11. Design of the EURISOL multi-MW target assembly: radiation and safety issues

    E-Print Network [OSTI]

    Felcini, M; Kadi, Y; Otto, T; Tecchio, L; Otto, Th.

    2006-01-01

    The multi-MW target proposed for the EURISOL facility will be based on fission of uranium (or thorium) compounds to produce rare isotopes far from stability. A two-step process is used for the isotope production. First, neutrons are generated in a liquid mercury target, irradiated by the 1 GeV proton or deuteron beam, provided by the EURISOL linac driver. Then, the neutrons induce fission in a surrounding assembly of uranium carbide. R&D projects on several aspects of the target assembly are ongoing. Key criteria for the target design are a maximum beam power capability of 4 MW, a remote handling system with minimum downtime and maximum reliability, as well as radiation safety, minimization of hazards and the classification of the facility. In the framework of the ongoing radiation characterization and safety studies, radiation transport simulations have been performed to calculate the prompt radiation dose in the target and surrounding materials, as well as to determine shielding material and angle-depen...

  12. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  13. Sandia Energy - Risk and Safety Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk and Safety Assessment Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Risk and Safety AssessmentTara...

  14. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  15. Entry Survey for Laboratories Using Radioactive Materials

    E-Print Network [OSTI]

    Jia, Songtao

    Entry Survey for Laboratories Using Radioactive Materials Procedure: 7.50 Created: 11 materials or radiation-generating devices is restricted to those facilities, spaces and/or rooms that have materials (RAM) in this location. The entry survey will be performed by Radiation Safety Program personnel

  16. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  17. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  18. California's Safe Routes to School Program: Impacts on Walking, Bicycling, and Pedestrian Safety

    E-Print Network [OSTI]

    Boarnet, Marlon G.; Day, Kristen; Anderson, Craig; McMillan, Tracy; Alfonzo, Mariela

    2006-01-01

    an evaluation of school pedestrian safety programs. PaperK. (????). Site design and pedestrian travel. TransportationThe effect of site design on pedestrian travel in mixed-use,

  19. CRAD, Facility Safety- Technical Safety Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

  20. CRAD, Facility Safety- Unreviewed Safety Question Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Unreviewed Safety Question (USQ) process.