National Library of Energy BETA

Sample records for materials synthesis self-assembly

  1. Self-assembly of nanocomposite materials

    DOE Patents [OSTI]

    Brinker, C. Jeffrey (Albuquerque, NM); Sellinger, Alan (Palo Alto, CA); Lu, Yunfeng (New Orleans, LA)

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  2. Self-assembled lipid bilayer materials

    DOE Patents [OSTI]

    Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.

    2005-11-08

    The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.

  3. Self-Assembled ErSb Nanostructures with Optical Applications...

    Office of Scientific and Technical Information (OSTI)

    electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable...

  4. Department of Chemistry "Self-Assembled Soft Materials from Sugar

    E-Print Network [OSTI]

    Mark, James E.

    new structures and multifunctional nanocomposites. Prof. John's research on biobased materials has resources to generate soft materials such as new surfactants, liquid crystals, lipid nanotubes and molecularDepartment of Chemistry "Self-Assembled Soft Materials from Sugar Amphiphiles, and the In Situ

  5. Simulation of Indentation Fracture in Crystalline Materials Using Mesoscale Self-Assembly

    E-Print Network [OSTI]

    Hutchinson, John W.

    Simulation of Indentation Fracture in Crystalline Materials Using Mesoscale Self-Assembly Venkat R Abstract: A new physical model based on mesoscale self-assembly is developed to simulate indentation

  6. Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces: Synthesis Using the "Capillary Bond"

    E-Print Network [OSTI]

    Prentiss, Mara

    Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces: Synthesis Using examines self-assembly in a quasi-two-dimensional, mesoscale system. The system studied here involves-assembly from the molecular to the mesoscale, (ii) the demonstration of a system in which small objects can

  7. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    SciTech Connect (OSTI)

    Michael Duane Determan

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi-responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.

  8. LIFE, NEW MATERIALS AND PLASMONICS Photonics and plasmonics go viral: self-assembly of hierarchical

    E-Print Network [OSTI]

    Podgornik, Rudolf

    LIFE, NEW MATERIALS AND PLASMONICS Photonics and plasmonics go viral: self-assembly of hierarchical of a paper presented in one of the two conferences ``From Life to Life: Through New Materials and Plasmonics-performing products and at the same time unveil completely new phenomena. This review article discusses recent

  9. Controlled synthesis of snowflake-like self-assemblies palladium nanostructures under microwave irradiation

    SciTech Connect (OSTI)

    Xie, Ting; Ma, Yue; Yang, Hanmin, E-mail: yanghanmin@hotmail.com; Li, Jinlin

    2013-08-01

    Graphical abstract: - Highlights: • We demonstrated the synthesis of snowflake-like palladium nanostructures for the first time. • We discussed the influencing factors on the synthesis of snowflake-like Pd nanostructures. • The molar ratio of H{sub 2}Pd{sub 4} to PVP at 5 is the optimal selection. • The growth process was discussed. - Abstract: Self-assembly snowflake-like palladium nanostructures were synthesized under microwave irradiation using H{sub 2}PdCl{sub 4} as precursor, benzyl alcohol as both solvent and reducing agent, and PVP as stabilizer. The Pd snowflake-like nanostructures were formed and then characterized by transmission electron microscopy (TEM) and X-ray powder diffraction. The TEM images showed that the Pd nano-snowflakes were self-assemblies organized by hundreds of small spherical nanoparticles. Pd snowflake-like nanostructures with well-defined shape and uniform size can be obtained by tuning the concentration of palladium precursor, the molar ratio of H{sub 2}PdCl{sub 4}/PVP, as well as the heating time by microwave irradiation. The possible growing process of the snowflake-like Pd structures was also proposed on the basis of investigating the properties of as-synthesized Pd nanostructures under different conditions.

  10. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    DOE Patents [OSTI]

    Lindsey, Jonathan S. (Raleigh, NC); Chinnasamy, Muthiah (Raleigh, NC); Fan, Dazhong (Raleigh, NC)

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  11. Polar self-assembled thin films for non-linear optical materials

    DOE Patents [OSTI]

    Yang, XiaoGuang (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM); Li, DeQuan (Los Alamos, NM)

    2000-01-01

    The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-.pi.-A units bridged by methylene groups. These molecules were synthesized such that four D-.pi.-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d.sub.33, and the average molecular alignment, .PSI.. A value of d.sub.33 =60 pm/V at a fundamental wavelength of 890 nm, and .PSI..about.36.degree. was found with respect to the surface normal.

  12. De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls

    SciTech Connect (OSTI)

    Mass, Olga [North Carolina State Univ., Raleigh, NC (United States); Pandithavidana, Dinesh R. [North Carolina State Univ., Raleigh, NC (United States); Ptaszek, Marcin [North Carolina State Univ., Raleigh, NC (United States); Santiago, Koraliz [North Carolina State Univ., Raleigh, NC (United States); Springer, Joseph W. [Washington Univ., St. Louis, MO (United States); Jiao, Jieying [Univ. Of California, Riverside, CA (United States); Tang, Qun [Univ. Of California, Riverside, CA (United States); Kirmaier, Christine [Washington Univ., St. Louis, MO (United States); Bocian, David F. [Univ. Of California, Riverside, CA (United States); Holten, Dewey [Washington Univ., St. Louis, MO (United States); Lindsey, Jonathan S. [North Carolina State Univ., Raleigh, NC (United States)

    2011-01-01

    Natural photosynthetic pigments bacteriochlorophyllsc, d and e in green bacteria undergo self-assembly to create an organized antenna system known as the chlorosome, which collects photons and funnels the resulting excitation energy toward the reaction centers. Mimicry of chlorosome function is a central problem in supramolecular chemistry and artificial photosynthesis, and may have relevance for the design of photosynthesis-inspired solar cells. The main challenge in preparing artificial chlorosomes remains the synthesis of the appropriate pigment (chlorin) equipped with a set of functional groups suitable to direct the assembly and assure efficient energy transfer. Prior approaches have entailed derivatization of porphyrins or semisynthesis beginning with chlorophylls. This paper reports a third approach, the de novo synthesis of macrocycles that contain the same hydrocarbon skeleton as chlorosomal bacteriochlorophylls. The synthesis here of Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines (the aryl group consists of phenyl, mesityl, or pentafluorophenyl) entails selective bromination of a 3,13-diacetyl-10-arylchlorin, palladium-catalyzed 13¹-oxophorbine formation, and selective reduction of the 3-acetyl group using BH?·tBuNH?. Each macrocycle contains a geminal dimethyl group in the pyrroline ring to provide stability toward adventitious dehydrogenation. A Zn(II) 7-(1-hydroxyethyl)-10-phenyl-17-oxochlorin also has been prepared. Altogether, 30 new hydroporphyrins were synthesized. The UV-Vis absorption spectra of the new chlorosomal bacteriochlorophyll mimics reveal a bathochromic shift of [similar]1800 cm-1 of the Qy band in nonpolar solvent, indicating extensive assembly in solution. The Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines differ in the propensity to form assemblies based on the 10-substituent in the following order: mesityl

  13. Molecular Modeling of Self-assembling Hybrid Materials (PhD Thesis)

    E-Print Network [OSTI]

    Alessandro Patti

    2010-06-04

    Lattice Monte Carlo simulations are used to study the phase behavior of self-assembling ordered mesoporous materials formed by an organic template with amphiphilic properties and an inorganic precursor in a model solvent. Three classes of inorganic precursors have been modeled: terminal (R-Si-(OEt)3) and bridging ((EtO)3-Si-R-Si-(OEt)3)) organosilica precursors (OSPs), along with pure silica precursors (Si-(OEt)4). Each class has been studied by analyzing its solubility in the solvent and the solvophobicity of the inorganic group. At high surfactant concentrations, periodic ordered structures, such as hexagonally-ordered cylinders or lamellas, can be obtained depending on the OSPs used. Ordered structures were obtained in a wider range of conditions when bridging hydrophilic OSPs have been used, because a higher surfactant concentration was reached in the phase where the material was formed. Terminal and bridging OSPs produced ordered structures only when the organic group is solvophilic. In this case, a partial solubility between the precursor and the solvent or a lower temperature favored the formation of ordered phases. With particular interest, we have analyzed the range of conditions leaving to the formation of cylindrical structures, which have been evaluated according to the pore size distribution, the pore wall thickness, the distribution and the accessibility of the functional organic groups around the pores. The phase behavior has been also evaluated by applying the quasi-chemical theory, which cannot predict the formation of ordered structures, but confirmed the results of simulations when no ordered structures were observed. The study of the phase and aggregation behavior of two different surfactants, one modeled by a linear chain of head segments and the other modeled by a branched-head, permitted us to evaluate some structural differences of the materials obtained.

  14. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  15. Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

    SciTech Connect (OSTI)

    Coker, Eric Nicholas; Haddad, Raid Edward; Fan, Hongyou; Ta, Anh; Bai, Feng; Rodriguez, Mark Andrew; Huang, Jian Yu

    2011-10-01

    In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  16. Synthesis and characteristic of self-assembled diamond/copper nanocomposites

    SciTech Connect (OSTI)

    Shi Xiaoqn; Jiang Xiaohong Lu Lude; Yang Xujie; Wang Xin

    2008-11-03

    Nanodiamond (ND) supported metal oxide or metal catalysts exhibit excellent catalytic activity. ND/Cu nanocomposites and Cu nanoparticles were prepared by reducing Cu(NO{sub 3}){sub 2} in reverses micelle solution. Products were analyzed by X-ray diffraction (XRD), electron paramagnetic resonance (EPR) spectra, UV-vis optical characteristic and transmission electron microscopy (TEM). From the point of nucleation and grow of crystal, ND contributed to heterogeneous nucleation of Cu nanocrystal. The reactive mechanism was explored based on theory of free energy. The formation of resultant self-assembled structures was explained through diffusion-limited aggregation model and Marangoni effect. Both Cu and ND/Cu nanoparticles were strong catalysts on decomposition of NH{sub 4}ClO{sub 4} (AP), and ND/Cu is more effective.

  17. Fluorine-Containing ABC Linear Triblock Terpolymers: Synthesis and Self-assembly in Solution

    SciTech Connect (OSTI)

    He, Lihong [ORNL; Hinestrosa Salazar, Juan P [ORNL; Pickel, Joseph M [ORNL; Kilbey, II, S Michael [ORNL; Mays, Jimmy [ORNL; Zhang, Shanju [Georgia Institute of Technology; Bucknall, David G. [Georgia Institute of Technology; Hong, Kunlun [ORNL

    2011-01-01

    In this paper a fluorine-containing monomer, 2-fluroroethyl methacrylate (2FEMA) was used to synthesize the linear triblock terpolymer poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBMA-PMMA-P2FEMA). A kinetic study of the homopolymerization of 2FEMA by reversible addition-fragmentation chain transfer (RAFT) polymerization showed that it demonstrates living character and produces well defined polymers with reasonably narrow polydispersities (~1.30). Triblock terpolymers were prepared sequentially using a purified Macro-CTA at 70 oC, resulting in final terpolymers with high Dp for each block (>150) and with polydispersities between 1.6 and 2.1. The structure and molecular weights of the resultant PnBMA-PMMA-P2FEMA triblock terpolymers were characterized via 1H NMR, 19F NMR, and gel permeation chromatography (GPC). Self-assembly of these polymers was carried out in a selective solvent and the micellar aggregates (MAs) thereby formed were analyzed using scanning electron microscopy (SEM) and dynamic light scattering (DLS). It was confirmed from SEM that these copolymers could directly self-organize into large compound micelles in tetrahydrofuran/methanol with different diameters, depending on polymer composition.

  18. Studies of block copolypeptide synthesis, self-assembly, and structure-directing ability 

    E-Print Network [OSTI]

    Jan, Jeng-Shiung

    2007-04-25

    The use of organic compounds as templates to assemble inorganic materials with structures over multiple length scales has received much attention due to the potential applications that can be developed from these materials. Many organisms synthesize...

  19. Microfluidic self assembly

    E-Print Network [OSTI]

    Bingqing Shen; Joshua Ricouvier; Mathilde Reyssat; Florent Malloggi; Patrick Tabeling

    2014-09-14

    Recent progress in colloidal science has led to elaborate self-assembled structures whose complexity raises hopes for elaborating new materials. However, the throughputs are extremely low and consequently, the chance to produce materials of industrial interest, for instance, groundbreaking optical devices, harnessing complete three-dimensional band gaps, is markedly low. We discovered a novel hydrodynamic effect that may unlock this bottleneck. It is based on the dipolar flow interactions that build up when droplets are slowed down by the microchannel walls along which they are transported. Coupled with depletion forces, we succeeded to form, via a continuous flow process, at unprecedented speeds and under exquisite control, a rich ensemble of monodisperse planar and tridimensional clusters, such as chains, triangles, diamonds, tetahedrons, heterotrimers, possessing geometrical, chemical, and/or magnetic anisotropies enabling directional bonding. Continuous productions of millions of building blocks per second for elaborating new functional materials can be envisioned.

  20. Palladium catalyzed reactions executed on solid-phase peptide synthesis supports for the production of self-assembling peptides embedded with complex organic electronic subunits

    DOE Patents [OSTI]

    Tovar, John D; Sanders, Allix M

    2014-10-28

    Methods to synthesize self-assembling peptides embedded with complex organic electronic subunits are provided.

  1. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOE Patents [OSTI]

    King, D.E.; Herdt, G.C.; Czanderna, A.W.

    1997-01-07

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.

  2. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOE Patents [OSTI]

    King, David E. (Lakewood, CO); Herdt, Gregory C. (Denver, CO); Czanderna, Alvin W. (Denver, CO)

    1997-01-01

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.

  3. Self-assembled materials and devices that process light Peiwang Zhua

    E-Print Network [OSTI]

    Ho, Seng-Tiong

    Department of Electrical and Computer Engineering and Materials Research Center, Northwestern University, thermal, and orientational stabilities. In this paper, a greatly improved two-step all "wet-chemical" self* a Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL 60208-3113 b

  4. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  5. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  6. Molecular Self-Assembly

    SciTech Connect (OSTI)

    CURRO, JOHN G.; MCCOY, JOHN DWANE; FRISCHKNECHT, AMALIE L.; YU, KUI

    2001-11-01

    This report is divided into two parts: a study of the glass transition in confined geometries, and formation mechanisms of block copolymer mesophases by solvent evaporation-induced self-assembly. The effect of geometrical confinement on the glass transition of polymers is a very important consideration for applications of polymers in nanotechnology applications. We hypothesize that the shift of the glass transition temperature of polymers in confined geometries can be attributed to the inhomogeneous density profile of the liquid. Accordingly, we assume that the glass temperature in the inhomogeneous state can be approximated by the Tg of a corresponding homogeneous, bulk polymer, but at a density equal to the average density of the inhomogeneous system. Simple models based on this hypothesis give results that are in remarkable agreement with experimental measurements of the glass transition of confined liquids. Evaporation-induced self-assembly (EISA) of block copolymers is a versatile process for producing novel, nanostructured materials and is the focus of much of the experimental work at Sandia in the Brinker group. In the EISA process, as the solvent preferentially evaporates from a cast film, two possible scenarios can occur: microphase separation or micellization of the block copolymers in solution. In the present investigation, we established the conditions that dictate which scenario takes place. Our approach makes use of scaling arguments to determine whether the overlap concentration c* occurs before or after the critical micelle concentration (CMC). These theoretical arguments are used to interpret recent experimental results of Yu and collaborators on EISA experiments on Silica/PS-PEO systems.

  7. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials

    E-Print Network [OSTI]

    K. Stratford; O. Henrich; J. S. Lintuvuori; M. E. Cates; D. Marenduzzo

    2015-04-19

    Colloidal particles dispersed in liquid crystals can form new materials with tunable elastic and electro-optic properties. In a periodic `blue phase' host, particles should template into colloidal crystals with potential uses in photonics, metamaterials, and transformational optics. Here we show by computer simulation that colloid/cholesteric mixtures can give rise to regular crystals, glasses, percolating gels, isolated clusters, twisted rings and undulating colloidal ropes. This structure can be tuned via particle concentration, and by varying the surface interactions of the cholesteric host with both the particles and confining walls. Many of these new materials are metastable: two or more structures can arise under identical thermodynamic conditions. The observed structure depends not only on the formulation protocol, but also on the history of an applied electric field. This new class of soft materials should thus be relevant to design of switchable, multistable devices for optical technologies such as smart glass and e-paper.

  8. Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly

    DOE Patents [OSTI]

    Warren, Scott; Wiesner, Ulrich; DiSalvo, Jr., Francis J

    2013-10-29

    The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

  9. Defects in Self Assembled Colloidal Crystals

    E-Print Network [OSTI]

    Koh, Yaw Koon

    Colloidal self assembly is an efficient method for making 3-D ordered nanostructures suitable for materials such as photonic crystals and macroscopic solids for catalysis and sensor applications. Colloidal crystals grown ...

  10. Self assembling proteins

    DOE Patents [OSTI]

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  11. Directed Self-Assembly of Nanodispersions

    SciTech Connect (OSTI)

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the directed self-assembly of anisotropic nanoparticles and their unique physical properties.

  12. Synthesis and Self-Assembly of a Heteroarm Star Amphiphile with 12 Alternating Arms and a Well-Defined Core

    E-Print Network [OSTI]

    Zubarev, Eugene

    and wormlike super- micelles5 in aqueous and methanol solutions, and forms reverse micelles in chloroform by flash chromatography. The second part of the synthesis involved prepara- tion of an aromatic core which

  13. Self-assembled nanolaminate coatings (SV)

    SciTech Connect (OSTI)

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV, etc.). The SANC technologies will establish LMA and related US manufacturing capability for commercial and military applications therefore reducing reliance on off-shore development and production of related critical technologies. If these technologies are successfully licensed, production of these coatings in manufactory will create significant technical employment opportunities.

  14. Assessment of colloidal self-assembly for photonic crystal

    E-Print Network [OSTI]

    Yip, Chan Hoe

    2006-01-01

    A suspension of monodisperse colloids has an interesting property of self-assembling into a three-dimensional ordered structure. This crystalline material has attracted significant interest on the implementation of photonic ...

  15. Magnetic manipulation of self-assembled colloidal asters.

    SciTech Connect (OSTI)

    Snezhko, A.; Aranson, I. S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  16. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOE Patents [OSTI]

    Alivisatos, A.P.; Colvin, V.L.

    1998-05-12

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

  17. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Berkeley, CA); Colvin, Vicki L. (Berkeley, CA)

    1998-01-01

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.

  18. Directing Self-Assembly of Heterogeneous NanoSystems | MIT-Harvard...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Material Science and Engineering, Massachusetts Institute of Technology alexander-katz004 Abstract: Directed self-assembly of block copolymers is a route...

  19. Synthesis and Characterization of Self-assembled c-axis Oriented Bi2Sr3Co2Oy Thin Films by the Sol gel Method

    SciTech Connect (OSTI)

    Lei H.; Zhu, X.; Tang, X.; Shi, D.; Jian, H.; Yeoh, W.K.; Zhao, B.; Yang, J.; Li, Q.; Zheng, R.; Dou, S.; Sun, Y.

    2011-08-18

    Bi{sub 2}Sr{sub 3}Co{sub 2}Oy thin films are prepared on SrTiO{sub 3} (100), (110) and (111) single crystal substrates using the sol-gel method. All the thin films are c-axis oriented regardless of the orientation of the substrate suggesting self-assembled c-axis orientation, and X-ray photoelectron spectroscopy results give evidence of coexistence of Co{sup 3+} and Co{sup 2+} ions in the derived films. Transmission electronic microscopy observations reveal that all samples are c-axis oriented with no obvious differences for different samples, and the c-axis lattice constant is determined as 15 {angstrom} suggesting the misfit structure. A phenomenological thermodynamic phase diagram for self-assembled c-axis orientation is established for misfit cobaltate-based films using chemical solution deposition. All samples behave like semiconductors due to the coexistence of Co{sup 3+}/Co{sup 2+} ions, and the resistivity at 350 K is 47, 39 and 17 m{Omega} cm for the thin films on SrTiO{sub 3} (100), (110) and (111), respectively, whereas the Seebeck coefficient at 300 K is 97, 89 and 77 {micro}V K{sup -1}. The successful attainment of Bi{sub 2}Sr{sub 3}Co{sub 2}O{sub y} thin films with self-assembled c-axis orientation will provide an effective prototype for investigation of growth mechanisms in complex oxide thin films with a misfit structure.

  20. Solder self-assembly for MEMS fabrication

    E-Print Network [OSTI]

    Au, Hin Meng, 1977-

    2004-01-01

    This thesis examines and demonstrates self-assembly of MEMS components on the 25 micron scale onto substrates using the capillary force of solder. This is an order of magnitude smaller than current solder self-assembly in ...

  1. X-shaped Electro-Optic Chromophore with Remarkably Blue-Shifted Optical Absorption. Synthesis, Characterization, Linear/Nonlinear Optical Properties, Self-Assembly, and Thin Film Microstructural Characteristics

    SciTech Connect (OSTI)

    Kang,H.; Evmenenko, G.; Dutta, P.; Clays, K.; Song, K.; Marks, T.

    2006-01-01

    A novel type of 'X-shaped' two-dimensional electro-optic (EO) chromophore with extended conjugation has been synthesized and characterized. This chromophore is found to exhibit a remarkably blue-shifted optical maximum (357 nm in CH{sub 2}Cl{sub 2}) while maintaining a very large first hyperpolarizability ({beta}). Hyper-Rayleigh Scattering (HRS) measurements at 800 nm provide a {beta}{sub zzz} value of 1840 x 10{sup -30} esu. Self-assembled thin films of this chromophore were fabricated via a layer-by-layer chemisorptive siloxane-based approach. The chromophoric multilayers have been characterized by transmission optical spectroscopy, advancing contact angle measurements, synchrotron X-ray reflectivity, atomic force microscopy, and angle-dependent polarized second harmonic generation spectroscopy. The self-assembled chromophoric films exhibit a dramatically blue-shifted optical maximum (325 nm) while maintaining a large EO response ({chi}({sup 2}){sub 333} {approx} 232 pm/V at 1064 nm; r{sub 33} {approx} 45 pm/V at 1310 nm). This work demonstrates an attractive approach to developing EO materials offering improved nonlinearity-transparency trade-offs.

  2. Nano-engineering by optically directed self-assembly.

    SciTech Connect (OSTI)

    Furst, Eric; Dunn, Elissa; Park, Jin-Gyu; Brinker, C. Jeffrey; Sainis, Sunil; Merrill, Jason; Dufresne, Eric; Reichert, Matthew D.; Brotherton, Christopher M.; Bogart, Katherine Huderle Andersen; Molecke, Ryan A.; Koehler, Timothy P.; Bell, Nelson Simmons; Grillet, Anne Mary; Gorby, Allen D.; Singh, John; Lele, Pushkar; Mittal, Manish

    2009-09-01

    Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

  3. Templated self-assembly for complex pattern fabrication

    E-Print Network [OSTI]

    Chang, Jae-Byum

    2014-01-01

    The long-term goal of my Ph.D. study has been controlling the self-assembly of various materials using state-of-the-art nanofabrication techniques. Electron-beam lithography has been used for decades to generate nanoscale ...

  4. THERMAL TRANSPORT IN SELF-ASSEMBLED NANOSTRUCTURES IAN PEARSON BLITZ

    E-Print Network [OSTI]

    Braun, Paul

    THERMAL TRANSPORT IN SELF-ASSEMBLED NANOSTRUCTURES BY IAN PEARSON BLITZ THESIS Submitted in partial Understanding of phonon mediated thermal transport properties in nanostructured materials is essential of the thermal transport properties of model organic- inorganic, nanoscopically layered systems for the purpose

  5. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Assembly of Polymer Nano-Elements on Sapphire Print Self-assembly of polymers promises to vastly improve the properties and manufacturing processes of nanostructured...

  6. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

  7. "Plastic" Solar Cells: Self-Assembly of Bulk HeterojunctionNano...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Plastic" Solar Cells: Self-Assembly of Bulk Heterojunction Nano-Materials by Spontaneous Phase Separation October 20, 2009 at 3pm36-428 Alan Heeger Department of Chemistry,...

  8. Ultralow Thermal Conductivity in Organoclay Nanolaminates Synthesized via Simple Self-Assembly

    E-Print Network [OSTI]

    Braun, Paul

    Information ABSTRACT: Because interfaces impede phonon transport of thermal energy, nanostructuring canUltralow Thermal Conductivity in Organoclay Nanolaminates Synthesized via Simple Self-Assembly Mark of Chemistry, University of Illinois, Urbana Illinois 61801, United States § Materials and Manufacturing

  9. Modeling and theoretical design methods for directed self-assembly of thin film block copolymer systems

    E-Print Network [OSTI]

    Hannon, Adam Floyd

    2014-01-01

    Block copolymers (BCPs) have become a highly studied material for lithographic applications due to their ability to self-assemble into complex periodic patterns with feature resolutions ranging from a few to 100s nm. BCPs ...

  10. University of Kentucky Chemical and Materials Engineering Department

    E-Print Network [OSTI]

    Rankin, Stephen E.

    synthesis and characterization of materials with advanced nanostructure and properties. Examples and control the "bottom- up" formation of these inorganic materials by polymerization, controlled. Understand self-assembly and its use for materials synthesis 6. Be able to apply physical chemical

  11. Integrated Nanosystems Templated by Self-assembled Virus Capsids

    E-Print Network [OSTI]

    Stephanopoulos, Nicholas

    2010-01-01

    Harrison, S. C. “Principles of Virus Structure” in Virology,self-assembling spherical virus was modified on the interiorTemplated by Self-assembled Virus Capsids by Nicholas

  12. Final Report for Grant # DE-FG02-02ER46000 Simulations of Self-Assembly of Tethered Nanoparticle Shape Amphiphiles

    SciTech Connect (OSTI)

    Glotzer, Sharon C.

    2014-08-25

    Self-assembly of nanoparticle building blocks including nanospheres, nanorods, nanocubes, nano plates, nanoprisms, etc., may provide a promising means for manipulating these building blocks into functional and useful materials. One increasingly popular method for self-assembly involves functionalizing nanoparticles and nanostructured molecules with “tethers” of organic polymers or biomolecules with specific or nonspecific interactions to facilitate their assembly. However, there is little theory and little understanding of the general principles underlying self-assembly in these complex materials. Using computer simulation to elucidate the principles of self-assembly and develop a predictive theoretical framework was the central goal of this project.

  13. Self-assembling membranes and related methods thereof

    SciTech Connect (OSTI)

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  14. Electrostatically Self-assembled Amphiplexes

    SciTech Connect (OSTI)

    Helmut H. Strey

    2011-02-15

    This research will focus on characterizing the phase behavior of polyelectrolyte-surfactant microemulsions (PSM) that were recently discovered in our lab and indentifing possible uses of their long-range ordered nanostructures towards bioseparation, oil-recovery and drug delivery systems. In addition, we are proposing strategies for synthesizing solid and long-range ordered materials with unit cells on the nanometer scale using polymerization and/or cross-linking to solidify the soft template.

  15. Templated Self Assemble of Nano-Structures

    SciTech Connect (OSTI)

    Suo, Zhigang [Harvard University

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  16. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    SciTech Connect (OSTI)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup ?1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 ?m in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup ?2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  17. Emergence of reconfigurable wires and spinners via dynamic self-assembly

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kokot, Gasper; Piet, David; Whitesides, George M.; Aranson, Igor S.; Snezhko, Alexey

    2015-03-26

    Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregationmore »of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.« less

  18. Fabrication of Transparent Capacitive Structure by Self-Assembled Thin Films

    SciTech Connect (OSTI)

    Zhang, Q.; Shing, Y. J.; Hua, Feng; Saraf, Laxmikant V.; Matson, Dean W.

    2008-06-01

    An approach to fabricating transparent electronic devices by using nanomaterial and nanofabrication is presented in this paper. A see-through capacitor is constructed from selfassembled silica nanoparticle layers that are stacked on the transparent substrate. The electrodes are made of indium tin oxide. Unlike the traditional processes used to fabricate such devices, the self-assembly approach enables one to synthesize the thin film layers at lower temperature and cost, and with a broader availability of nanomaterials. The vertical dimension of the selfassembled thin films can be precisely controlled, as well as the molecular order in the thin film layers. The shape of the capacitor is generated by planar micropatterning. The quartz crystal demonstrates the steady growth of the silica nanoparticle multilayer. In addition, because the nanomaterial synthesis and the device fabrication steps are separate, the device is not affected by the harsh conditions required for the material synthesis. A clear pattern is allowed over a large area on the substrate. The prepared capacitive structure has an optical transparency higher than 92% over the visible spectrum. The capacitive impedance is measured at different frequencies and fit the theoretical results. As one of the fundamental components, this type of capacitive structure can serve in the transparent circuits, interactive media and sensors, as well as being applicable to other transparent devices.

  19. Self-assembled software and method of overriding software execution

    DOE Patents [OSTI]

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  20. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    had separately been working on understanding, and ideally controlling, the hierarchical self-assembly of complex systems. In their ideal scenario, one would be able to throw a...

  1. Nanoparticle Superlattices by Self-Assembly | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoparticle Superlattices by Self-Assembly The project involves using state of the art computational tools: Python programming and Graphic Processing Units (GPUs) to develop...

  2. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smaller than today's microtechnologies. Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into...

  3. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the microelectronic and storage industries and perhaps others, such as photovoltaics. Self-Assembling Molecular Legos Tom Russell (UMass) and Ting Xu (UCBerkeley) had...

  4. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others, such as photovoltaics. Self-Assembling Molecular Legos...

  5. Ternary Self-Assembly of Ordered Metal Oxide Graphene Nanocomposites for

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    , or polymer-based nanocomposites.4,5,16,17 Recently, a range of nanoscale building blocks, including carbon to achieve similar control is to use amphiphilic polymer or surfactant to direct the self-assembly of nanostructured metal oxides, semiconductors, and polymer materials.11 15 There has been a growing in- terest

  6. Nonlinear Machine Learning of Patchy Colloid Self-Assembly Pathways and Mechanisms

    E-Print Network [OSTI]

    Ferguson, Andrew

    and Andrew L. Ferguson* Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States *S Supporting Information ABSTRACT: Bottom-up self-assembly offers to understand aggregate formation and predict phase behavior35,36 and to develop design rules to optimize

  7. Residual stress and self-assembly during deposition and etching of MEMS 

    E-Print Network [OSTI]

    Mani, Sathyanarayanan

    2002-01-01

    with no residual stresses. Residual stresses are investigated as a means of self-assembling MEMS and NEMS during material deposition and etching. The assembly of two components is considered: one component is subjected to deposition or etching and is modeled...

  8. Polymer Photonic Crystals by Self-Assembly From the Resnick Sustainability Institute

    E-Print Network [OSTI]

    RESEARCH HIGHLIGHTS Polymer Photonic Crystals by Self-Assembly From the Resnick Sustainability such as paints and films. An array of polymer photonic crystals, synthesized by blending the two samples on each temperature of building materials compared to plants. image per www.sciencemediacentre.co.nz Polymer Photonic

  9. Self-Assembly of Faceted Particles Triggered by a Moving Ice Front

    E-Print Network [OSTI]

    Florian Bouville; Eric Maire; Sylvain Deville

    2015-06-30

    The possibility to align and organize faceted particles in the bulk offers intriguing possibilities for the design and discovery of materials and architectures exhibiting novel functional properties. The growth of ice crystals can be used to trigger the self-assembly of large, anisotropic particles and consequently to obtain three-dimensional porous materials of large dimensions in a limited amount of time. These mechanisms have not been explored so far due to the difficulty to experimentally investigate these systems. Here we elucidate the self-assembly mechanisms of faceted particles driven by ice growth by a combination of X-ray holotomography and discrete element modeling, providing insights into both the dynamics of self-assembly and their final packing. The encapsulation of particles is the result of a delicate balance between the force exerted by the percolating network of concentrated particles and the force exerted by the moving interface. We illustrate the benefits of such self-assembly for thermal management composite materials.

  10. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  11. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  12. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  13. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  14. Synthesis and Characterization of Cathode Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cathode Materials Synthesis and Characterization of Cathode Materials Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in...

  15. Molecule-Mimetic Chemistry and Mesoscale Self-Assembly

    E-Print Network [OSTI]

    Prentiss, Mara

    Molecule-Mimetic Chemistry and Mesoscale Self-Assembly NED B. BOWDEN, MARCUS WECK, INSUNG S. CHOI, and possible uses for these processes and assemblies.6-22 Mesoscale Self-Assembly (MESA) Mesoscale Self technically, and especially in physics, a mesoscale object is one whose dimensions are comparable to the scale

  16. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, Charles R. (Boston, MA); Niemeyer, Christof M. (Bremen, DE); Smith, Cassandra L. (Boston, MA); Sano, Takeshi (Boston, MA); Hnatowich, Donald J. (Brookline, MA); Rusckowski, Mary (Southborough, MA)

    1996-01-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  17. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, Charles R. (Boston, MA); Niemeyer, Christof M. (Bremen, DE); Smith, Cassandra L. (Boston, MA); Sano, Takeshi (Boston, MA); Hnatowich, Donald J. (Brookline, MA); Rusckowski, Mary (Southborough, MA)

    1999-10-12

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  18. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  19. Self-assembled magnetic surface swimmers.

    SciTech Connect (OSTI)

    Snezhko, A.; Belkin, M.; Aranson, I. S.; Kwok, W.-K.; Materials Science Division; Illinois Inst. of Tech.

    2009-03-20

    We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation.

  20. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    1983-08-16

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  1. Self-assembling holographic biosensors and biocomputers.

    SciTech Connect (OSTI)

    Light, Yooli Kim; Bachand, George David (Sandia National Laboratories, Albuquerque, NM); Schoeniger, Joseph S.; Trent, Amanda M. (Sandia National Laboratories, Albuquerque, NM)

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins and amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.

  2. Materials Synthesis from Atoms to Systems | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fundamental mechanisms and processes as well as for the ultimate deployment of new materials in new energy technologies. Thus, synthesis is a key component of ORNL's...

  3. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Print Nanoparticles-man-made atoms with unique optical, electrical, and mechanical properties-have become key components in many fields of...

  4. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nano Self-Assembly Print If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of themselves. An important...

  5. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Nano Self-Assembly Print Wednesday, 24 February 2010 00:00 If the promise of nanotechnology is to be fulfilled, nanoparticles will have to be able to make something of...

  6. Self-assembly of helical ribbons from chiral amphiphiles

    E-Print Network [OSTI]

    Zastavker, Yevgeniya Vladimirovna, 1971-

    2001-01-01

    The study of the self-assembly of helical structures has been motivated by their newly found biological and technological importance. In many systems, helical ribbons are precursors to the formation of tubules, which may ...

  7. Self-assembly of globular protein-polymer diblock copolymers

    E-Print Network [OSTI]

    Thomas, Carla S. (Carla Stephanie)

    2014-01-01

    Self-assembly of protein-polymer block copolymers provides a simple bottom-up approach towards protein nanopatteming for the fabrication of more effective and efficient bioelectronic and biocatalytic devices. Changes in ...

  8. Ordering Control of Self-Assembled Colloidal Crystals

    E-Print Network [OSTI]

    Koh, Yaw Koon

    Colloidal crystals are 3D nanostructures formed by self assembly of nanoparticles in suspension. The interaction forces between the colloid particles are expected to affect the ordering and the defect density in the resultant ...

  9. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays. By adding specific types of small molecules to mixtures of nanoparticles and polymers, they were able to direct the self-assembly of the nanoparticles into arrays of one,...

  10. COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS

    E-Print Network [OSTI]

    Mukasyan, Alexander

    COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS Arvind Varma, Alexander S. Gasless Combustion SynthesisFrom Elements B. Combustion Synthesis in Gas-Solid Systems C. Products of Thermite-vpe SHS D. Commercial Aspects IV. Theoretical Considerations A. Combustion Wave Propagation Theory

  11. Design principles for non-equilibrium self-assembly

    E-Print Network [OSTI]

    Suriyanarayanan Vaikuntanathan

    2015-07-31

    We consider an important class of self-assembly problems and using the formalism of stochastic thermodynamics, we derive a set of design principles for growing controlled assemblies far from equilibrium. The design principles constrain the set of structures that can be obtained under non-equilibrium conditions. Our central result provides intuition for how equilibrium self-assembly landscapes are modified under finite non-equilibrium drive.

  12. Self-assembly of amphiphilic peanut-shaped nanoparticles

    E-Print Network [OSTI]

    Stephen Whitelam; Stefan A. F. Bon

    2010-02-19

    We use computer simulation to investigate the self-assembly of Janus-like amphiphilic peanut-shaped nanoparticles, finding phases of clusters, bilayers and micelles in accord with ideas of packing familiar from the study of molecular surfactants. However, packing arguments do not explain the hierarchical self-assembly dynamics that we observe, nor the coexistence of bilayers and faceted polyhedra. This coexistence suggests that experimental realizations of our model can achieve multipotent assembly of either of two competing ordered structures.

  13. Design Strategies for Self-Assembly of Discrete Targets

    E-Print Network [OSTI]

    Jim Madge; Mark A. Miller

    2015-08-11

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks, to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic and steric challenges typically faced by self-assembly processes, including competition between multiple partially-completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority.

  14. Self-assembled monolayer and method of making

    DOE Patents [OSTI]

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  15. Self-Assembled Monolayer And Method Of Making

    DOE Patents [OSTI]

    Fryxell, Glen E. (Kennewick, WA); Zemanian, Thomas S. (Richland, WA); Liu, Jun (West Richland, WA); Shin, Yongsoon (Richland, WA)

    2004-06-22

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  16. Self-Assembled Monolayer And Method Of Making

    DOE Patents [OSTI]

    Fryxell, Glen E. (Kennewick, WA); Zemanian, Thomas S. (Richland, WA); Liu, Jun (West Richland, WA); Shin, Yongsoon (Richland, WA)

    2005-01-25

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  17. Self-assembled monolayer and method of making

    DOE Patents [OSTI]

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-05-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  18. STRUCTURAL COMPLEXITIES SYNTHETIC SELF-ASSEMBLING NANOMATERIALS

    E-Print Network [OSTI]

    Gruner, Sol M.

    applications in catalysis, next-generation energy production and storage devices, optical metamaterials for the formation of metal-based nanostructures from designer blocked macromolecules. Finally, a facile synthesis

  19. Theoretical Synthesis of Mixed Materials for CO2 Capture Applications...

    Office of Scientific and Technical Information (OSTI)

    Theoretical Synthesis of Mixed Materials for CO2 Capture Applications Citation Details In-Document Search Title: Theoretical Synthesis of Mixed Materials for CO2 Capture...

  20. "Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices"

    SciTech Connect (OSTI)

    Henzie, Joel; Grunwald, Michael; Widmer-Cooper, Asaph; Geissler, Phillip L.; Yang, Peidong

    2011-03-01

    Understanding how polyhedra pack into extended arrangements is integral to the design and discovery of crystalline materials at all length scales. Much progress has been made in enumerating and characterizing the packing of polyhedral shapes, and the self-assembly of polyhedral nanocrystals into ordered superstructures. However, directing the self-assembly of polyhedral nanocrystals into densest packings requires precise control of particle shape, polydispersity,interactions and driving forces. Here we show with experiment and computer simulation that a range of nanoscale Ag polyhedra can self-assemble into their conjectured densest packings. When passivated with adsorbing polymer, the polyhedra behave as quasi-hard particles and assemble into millimetre-sized three-dimensional supercrystals by sedimentation.We also show, by inducing depletion attraction through excess polymer in solution, that octahedra form an exotic superstructure with complex helical motifs rather than the densest Minkowski lattice. Such large-scale Ag supercrystals may facilitate the design of scalable three-dimensional plasmonic metamaterials for sensing, nanophotonics, and photocatalysis.

  1. Examples of molecular self-assembly at surfaces

    E-Print Network [OSTI]

    Stephen Whitelam

    2014-12-05

    The self-assembly of molecules at surfaces can be caused by a range of physical mechanisms. Assembly can be driven by intermolecular forces, or molecule-surface forces, or both; it can result in structures that are in equilibrium or that are kinetically trapped. Here we review examples of self-assembly at surfaces that have been studied within the User program of the Molecular Foundry at Lawrence Berkeley National Laboratory, focusing on a physical understanding of what causes patterns seen in experiment. Some apparently disparate systems can be described in similar physical terms, indicating that simple factors -- such as the geometry and energy scale of intermolecular binding -- are key to understanding the self-assembly of those systems.

  2. Synthesis of a Cationic Inorganic Layered Material for Trapping Anionic Pharmaceutical Pollutants

    E-Print Network [OSTI]

    Sergo, Kevin Michael

    2013-01-01

    CRUZ SYNTHESIS OF A CATIONIC INORGANIC LAYERED MATERIAL FORAbstract Synthesis of a Cationic Inorganic Layered Material

  3. Nanotechnology and Quasicrystals: From self assembly to photonic applications

    E-Print Network [OSTI]

    Ron Lifshitz

    2008-10-28

    After providing a concise overview on quasicrystals and their discovery more than a quarter of a century ago, I consider the unexpected interplay between nanotechnology and quasiperiodic crystals. Of particular relevance are efforts to fabricate artificial functional micro- or nanostructures, as well as efforts to control the self-assembly of nanostructures, where current knowledge about the possibility of having long-range order without periodicity can provide significant advantages. I discuss examples of systems ranging from artificial metamaterials for photonic applications, through self-assembled soft matter, to surface waves and optically-induced nonlinear photonic quasicrystals.

  4. Structural simulations of nanomaterials self-assembled from ionic macrocycles.

    SciTech Connect (OSTI)

    van Swol, Frank B.; Medforth, Craig John

    2010-10-01

    Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.

  5. Photo-Definable Self Assembled Maerials

    DOE Patents [OSTI]

    DOSHI, DHAVAL; [et al

    2004-10-26

    The present invention provides a mesoporous material comprising at least one region of mesoporous material patterned at a lithographic scale. The present invention also provides a a method for forming a patterned mesoporous material comprising: coating a sol on a substrate to form a film, the sol comprising: a templating molecule, a photoactivator generator, a material capable of being sol-gel processed, water, and a solvent; and exposing the film to light to form a patterned mesoporous material.

  6. High-pressure synthesis of electronic materials 

    E-Print Network [OSTI]

    Penny, George B. S.

    2010-01-01

    High-pressure techniques have become increasingly important in the synthesis of ceramic and metallic solids allowing the discovery of new materials with interesting properties. In this research dense solid oxides have ...

  7. COMPLEX MATERIALS SCATTERING SCIENTIFIC SCOPE

    E-Print Network [OSTI]

    Ohta, Shigemi

    solar cell, batteries, supercapacitors, fuel cells #12; optimize synthesis (e.g. of nanoparticles) Assembly: Tuning the self-assembly energy landscape with applied

  8. Motor transport of self-assembled cargos in crowded environments

    E-Print Network [OSTI]

    Ross, Jennifer

    Motor transport of self-assembled cargos in crowded environments Leslie Conwaya , Derek Woodb is performed by multiple motors working in concert. However, the mechanism of motor association to cargos is unknown. It is also unknown how long individual motors stay attached, how many are active, and how

  9. Self-Assembled Polymer Membrane Capsules Inflated by Osmotic Pressure

    E-Print Network [OSTI]

    Bausch, Andreas

    Self-Assembled Polymer Membrane Capsules Inflated by Osmotic Pressure Vernita D. Gordon,, Xi Chen stabilized by adsorption to colloids and inflated by osmotic pressure from internal free polyelectrolyte deformation. The osmotic pressure inflating these capsules has the potential to trigger release of contents

  10. NANOSTRUCTURED CERAMICS THROUGH SELF-ASSEMBLY Ilhan A. Aksay

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    always starts at the nanometer length scale, in which case, nanostructural design is the building block for Page 1 of 6Chp. 4: Nanostructured Ceramics through Self-assembly 3/15/2005http) controlling the mesophase pore structure and (2) synthesizing large monolithic and mesoporous "building blocks

  11. Supplementary Information Programming Biomolecular Self-Assembly Pathways

    E-Print Network [OSTI]

    Pierce, Niles A.

    Supplementary Information Programming Biomolecular Self-Assembly Pathways Peng Yin1,2 , Harry M.T. Choi1 , Colby R. Calvert1 & Niles A. Pierce1,3, 1Department of Bioengineering, 2Department of Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 S6.7 Statistical analysis

  12. Nanostructured gene and drug delivery systems based on molecular self-assembly

    E-Print Network [OSTI]

    Wood, Kris Cameron

    2007-01-01

    Molecular self-assembly describes the assembly of molecular components into complex, supramolecular structures governed by weak, non-covalent interactions. In recent years, molecular self-assembly has been used extensively ...

  13. Parallel Molecular Computations of Pairwise Exclusive-Or (XOR) Using DNA "String Tile" Self-Assembly

    E-Print Network [OSTI]

    LaBean, Thomas H.

    Parallel Molecular Computations of Pairwise Exclusive-Or (XOR) Using DNA "String Tile" Self-Assembly, we describe the first parallel molecular computation using DNA tiling self-assembly in which a large strands that self-assemble through Watson-Crick base pairing to produce two double helices which

  14. Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom

    E-Print Network [OSTI]

    Menon, Govind

    Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom Shivendra Pandey1 geometric path sampling and a mesoscale experimental model to investigate the self-assembly of a model. Citation: Pandey S, Johnson D, Kaplan R, Klobusicky J, Menon G, et al. (2014) Self-Assembly of Mesoscale

  15. Advanced Battery Materials Synthesis and Manufacturing R&D Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Battery Materials Synthesis and Manufacturing R&D Program Argonne's Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials...

  16. Stable doping of carbon nanotubes via molecular self assembly

    SciTech Connect (OSTI)

    Lee, B.; Chen, Y.; Podzorov, V.; Cook, A.; Zakhidov, A.

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V?¹s?¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹?cm?². We also show that FTS doping of CNT anodes greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.

  17. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistanceand GovernmentmSelf-Assembly of Polymer

  18. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistanceand GovernmentmSelf-Assembly of

  19. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN) [Oak Ridge, TN; Walls, Claudia A. (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn A. (Oak Ridge, TN) [Oak Ridge, TN

    2010-02-23

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  20. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

    2006-11-14

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  1. Nanoparticle flow, ordering and self-assembly.

    SciTech Connect (OSTI)

    Schunk, Peter Randall; Brown, William Michael; Plimpton, Steven James; Lechman, Jeremy B.; Grest, Gary Stephen; Petersen, Matthew K.; in't Veld, Pieter J.

    2008-10-01

    Nanoparticles are now more than ever being used to tailor materials function and performance in differentiating technologies because of their profound effect on thermo-physical, mechanical and optical properties. The most feasible way to disperse particles in a bulk material or control their packing at a substrate is through fluidization in a carrier, followed by solidification through solvent evaporation/drying/curing/sintering. Unfortunately processing particles as concentrated, fluidized suspensions into useful products remains an art largely because the effect of particle shape and volume fraction on fluidic properties and suspension stability remains unexplored in a regime where particle-particle interaction mechanics is prevalent. To achieve a stronger scientific understanding of the factors that control nanoparticle dispersion and rheology we have developed a multiscale modeling approach to bridge scales between atomistic and molecular-level forces active in dense nanoparticle suspensions. At the largest length scale, two 'coarse-grained' numerical techniques have been developed and implemented to provide for high-fidelity numerical simulations of the rheological response and dispersion characteristics typical in a processing flow. The first is a coupled Navier-Stokes/discrete element method in which the background solvent is treated by finite element methods. The second is a particle based method known as stochastic rotational dynamics. These two methods provide a new capability representing a 'bridge' between the molecular scale and the engineering scale, allowing the study of fluid-nanoparticle systems over a wide range of length and timescales as well as particle concentrations. To validate these new methodologies, multi-million atoms simulations explicitly including the solvent have been carried out. These simulations have been vital in establishing the necessary 'subgrid' models for accurate prediction at a larger scale and refining the two coarse-grained methodologies.

  2. Drying/self-assembly of nanoparticle suspensions.

    SciTech Connect (OSTI)

    Cheng, Shengfeng; Plimpton, Steven James; Lechman, Jeremy B.; Grest, Gary Stephen

    2010-10-01

    The most feasible way to disperse particles in a bulk material or control their packing at a substrate is through fluidization in a carrier that can be processed with well-known techniques such as spin, drip and spray coating, fiber drawing, and casting. The next stage in the processing is often solidification involving drying by solvent evaporation. While there has been significant progress in the past few years in developing discrete element numerical methods to model dense nanoparticle dispersion/suspension rheology which properly treat the hydrodynamic interactions of the solvent, these methods cannot at present account for the volume reduction of the suspension due to solvent evaporation. As part of LDRD project FY-101285 we have developed and implemented methods in the current suite of discrete element methods to remove solvent particles and volume, and hence solvent mass from the liquid/vapor interface of a suspension to account for volume reduction (solvent drying) effects. To validate the methods large scale molecular dynamics simulations have been carried out to follow the evaporation process at the microscopic scale.

  3. Metal-Driven Hierarchical Self-Assembled One-Dimensional

    E-Print Network [OSTI]

    Huang, Jianbin

    helical inorganic materials. In preliminary attempts, helical silica and ZnS nanomaterials have been helical inorganic nanomaterials (i.e., SiO2 and ZnS) have been prepared based on metal to fabricate helical as- semblies from artificial molecules considering complicated organic synthesis

  4. DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    E-Print Network [OSTI]

    Kuzyk, Anton; Fan, Zhiyuan; Pardatscher, Günther; Roller, Eva-Maria; Högele, Alexander; Simmel, Friedrich C; Govorov, Alexander O; Liedl, Tim

    2011-01-01

    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arran...

  5. Combinatorial synthesis of inorganic or composite materials

    DOE Patents [OSTI]

    Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Materials Synthesis and Integrated Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter By Sarah Schlieder *8 Materials Science in11 Materials

  7. Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Self-Assembly of Metal Oxide-Graphene Nanocomposites

    SciTech Connect (OSTI)

    Li, Xiaolin; Qi, Wen N.; Mei, Donghai; Sushko, Maria L.; Aksay, Ilhan A.; Liu, Jun

    2012-09-25

    Graphene sheets have been extensively studied as a key functional component of graphene-based nanocomposites for electronics, energy, catalysis,and sensing applications. However, fundamental understanding of the interfacial binding and nucleation processes at graphene surfaces remains lacking, and the range of controlled structures that can be produced are limited. Here, by using a combination of theoretical and experimental approaches, we demonstrate that functionalized graphene sheets (FGS) can function as a new class of molecular templates to direct nucleation and self-assembly and produce novel, three-dimensional nanocomposite materials. Two key aspects are demonstrated: First, the functional groups on FGS surface determine the nucleation energy, and thus control the nucleation sites and nucleation density, as well as the preferred crystalline phases. Second, FGS can function as a template to direct the self-assembly of surfactant micelles and produce ordered, mesoporous arrays of crystalline metal oxides and composites.

  8. Fabrication of polyhedral particles from spherical colloids and their self-assembly into rotator phases

    E-Print Network [OSTI]

    Hanumantha Rao Vutukuri; Arnout Imhof; Alfons van Blaaderen

    2015-01-12

    Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. In the last decades an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micron-sized colloidal building blocks of particles with flat facets, i.e., particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that, contrary to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. Herein, we demonstrate that the simplest building block, such as the micron-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies we demonstrate the formation of 3D rotator phases of fluorescently labelled, micron-sized and charged rhombic dodecahedron particles. Our method for fabricating polyhedral particles opens a new avenue for designing new materials.

  9. Role of dynamic capsomere supply for viral capsid self-assembly

    E-Print Network [OSTI]

    Marvin A. Boettcher; Heinrich C. R. Klein; Ulrich S. Schwarz

    2015-01-31

    Many viruses rely on the self-assembly of their capsids to protect and transport their genomic material. For many viral systems, in particular for human viruses like hepatitis B, adeno or human immunodeficiency virus, that lead to persistent infections, capsomeres are continuously produced in the cytoplasm of the host cell while completed capsids exit the cell for a new round of infection. Here we use coarse-grained Brownian dynamics simulations of a generic patchy particle model to elucidate the role of the dynamic supply of capsomeres for the reversible self-assembly of empty T1 icosahedral virus capsids. We find that for high rates of capsomere influx only a narrow range of bond strengths exists for which a steady state of continuous capsid production is possible. For bond strengths smaller and larger than this optimal value, the reaction volume becomes crowded by small and large intermediates, respectively. For lower rates of capsomere influx a broader range of bond strengths exists for which a steady state of continuous capsid production is established, although now the production rate of capsids is smaller. Thus our simulations suggest that the importance of an optimal bond strength for viral capsid assembly typical for in vitro conditions can be reduced by the dynamic influx of capsomeres in a cellular environment.

  10. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOE Patents [OSTI]

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  11. Confirmation of the Electrostatic Self-Assembly of Nanodiamonds

    E-Print Network [OSTI]

    Lan-Yun Chang; Eiji ?sawa; Amanda S. Barnard

    2010-12-20

    A reliable explanation for the underlying mechanism responsible for the persistent aggregation and self-assembly of colloidal 5 nm diamond nanoparticles is critical to the development of nanodiamond-based technologies. Although a number of mechanisms have been proposed, validation has been hindered by the inherent difficulty associated with the identification and characterisation of the inter-particle interfaces. In this paper we present results of high resolution aberration corrected electron microscopy and complementary computer simulations to explicate the features involved, and confirm the electrostatic interaction mechanism as the most probable cause for the formation of agglutinates and agglomerates of primary particles.

  12. Confirmation of the Electrostatic Self-Assembly of Nanodiamonds

    E-Print Network [OSTI]

    Chang, Lan-Yun; Barnard, Amanda S

    2010-01-01

    A reliable explanation for the underlying mechanism responsible for the persistent aggregation and self-assembly of colloidal 5 nm diamond nanoparticles is critical to the development of nanodiamond-based technologies. Although a number of mechanisms have been proposed, validation has been hindered by the inherent difficulty associated with the identification and characterisation of the inter-particle interfaces. In this paper we present results of high resolution aberration corrected electron microscopy and complementary computer simulations to explicate the features involved, and confirm the electrostatic interaction mechanism as the most probable cause for the formation of agglutinates and agglomerates of primary particles.

  13. Customizing mesoscale self-assembly with 3D printing

    E-Print Network [OSTI]

    M. Poty; G. Lumay; N. Vandewalle

    2013-10-17

    Self-assembly due to capillary forces is a common method for generating 2D mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost 3D printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new ways to low cost microfabrication.

  14. Phenotypic Characterization of Self- Assembling Protein Fragments Using Negative Dominance 

    E-Print Network [OSTI]

    Zweifel, Adrienne Elizabeth

    2011-08-08

    Zweifel, B.S., University of Missouri-Columbia Chair of Advisory Committee: Dr. James C. Hu Protein oligomerization provides a way for cells to modulate function in vivo. In this study, self-assembling protein fragments from ParC, DnaX, and proteins...-752 and ParC332-752) yielded filamentous cells with several different nucleoid segregation phenotypes. Another ParC fragment containing only the oligomerization domain of ParC (ranging from 333-485) yields a recA-dependent septation defect in a subset...

  15. Model for dynamic self-assembled magnetic surface structures.

    SciTech Connect (OSTI)

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.; Materials Science Division; Northwestern Univ.

    2010-07-07

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  16. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistanceand Governmentm D(SC)Ā»Self-Assembly of

  17. Self-Assembly of Polymer Nano-Elements on Sapphire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistanceand Governmentm D(SC)Ā»Self-Assembly

  18. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowļ‚— WeUpdate JonGuided Self-Assembly of Gold Thin

  19. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowļ‚— WeUpdate JonGuided Self-Assembly of Gold

  20. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowļ‚— WeUpdate JonGuided Self-Assembly of GoldGuided

  1. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowļ‚— WeUpdate JonGuided Self-Assembly of

  2. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    SciTech Connect (OSTI)

    Ye, L.; Pearson, T.; Crawford, T. M., E-mail: crawftm@mailbox.sc.edu [Department of Physics and Astronomy, University of South Carolina, 712 Main Street, Columbia, South Carolina 29208 (United States); Qi, B.; Cordeau, Y.; Mefford, O. T. [Department of Materials Science and Engineering, Clemson University, 161 Sirrine Hall, Clemson, South Carolina 29634 (United States); Center for Optical Materials Science and Engineering Technologies (COMSET), 91 Technology Dr., Anderson, South Carolina 29625 (United States)

    2014-05-07

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability.

  3. Self-assembly and Design of Tunable Soft Materials

    E-Print Network [OSTI]

    Pandolfi, Ronald J.

    2014-01-01

    driver chips using a Raspberry Pi. 6.3 beamline apparatusPolulu DRV8834). A Raspberry Pi cobbler and protoboard con-GPIO output pins of the Raspberry Pi to the stepper motor

  4. DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    E-Print Network [OSTI]

    Anton Kuzyk; Robert Schreiber; Zhiyuan Fan; Günther Pardatscher; Eva-Maria Roller; Alexander Högele; Friedrich C. Simmel; Alexander O. Govorov; Tim Liedl

    2011-08-18

    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.

  5. Self-assembled Ni/TiO{sub 2} nanocomposite anodes synthesized...

    Office of Scientific and Technical Information (OSTI)

    were fabricated on three-dimensional, self-assembled nanotemplates of Tobacco mosaic virus using atomic layer deposition, exhibiting high capacities and rate capability and...

  6. Height control of self-assembled quantum dots by strain engineering during capping

    SciTech Connect (OSTI)

    Grossi, D. F., E-mail: d.grossi@tue.nl; Koenraad, P. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Smereka, P. [Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Keizer, J. G. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands); Australian Research Council Centre of Excellence for Quantum Computation and Communications, School of Physics, University of New South Wales, Sydney 2052 (Australia); Ulloa, J. M. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), Universidad Politecnica de Madrid, Avenida Complutense 30, 28040 Madrid (Spain)

    2014-10-06

    Strain engineering during the capping of III-V quantum dots has been explored as a means to control the height of strained self-assembled quantum dots. Results of Kinetic Monte Carlo simulations are confronted with cross-sectional Scanning Tunnel Microscopy (STM) measurements performed on InAs quantum dots grown by molecular beam epitaxy. We studied InAs quantum dots that are capped by In{sub x}Ga{sub (1?x)}As layers of different indium compositions. Both from our realistic 3D kinetic Monte Carlo simulations and the X-STM measurements on real samples, a trend in the height of the capped quantum dot is found as a function of the lattice mismatch between the quantum dot material and the capping layer. Results obtained on additional material combinations show a generic role of the elastic energy in the control of the quantum dot morphology by strain engineering during capping.

  7. Cyclization and Catenation Directed by Molecular Self-Assembly

    SciTech Connect (OSTI)

    Wang, Wei; Wang, Li Q.; Palmer, Bruce J.; Exarhos, Gregory J.; Li, Alexander D.

    2006-08-30

    We report here that molecular self-assembly can effectively direct and enhance specific reaction pathways. Using perylene??-??stacking weak attractive forces, we succeeded in synthesizing perylene bisimide macrocyclic dimer and a concatenated dimer-dimer ring from dynamic self-assembly of monomeric bis-N, N’-(2-(2-(2-(2-thioacetyl ethoxy) ethoxy) ethoxy) ethyl) perylene tetracarboxylic diimide. The monocyclic ring closure and the dimer-dimer ring concatenation were accomplished through formation of disulfide bonds, which was readily triggered by air oxidization under basic deacetylation conditions. The perylene cyclic dimer and its concatenated tetramer were characterized using both structural methods (NMR, mass spectroscopy) and photophysical measurements (UV-vis spectroscopy). Kinetic analyses offer informative insights about reaction pathways and possible mechanisms, which lead to the formation of fascinating concatenated rings. Molecular dynamic behaviors of both the monocyclic dimer and the concatenated dimer-dimer ring were modeled with the NWChem molecular dynamics software module, which shows distinct stacking activities for the monocyclic dimer and the concatenated tetramer.

  8. Infrared and photoluminescence spectroscopy of p-doped self-assembled Ge dots on Si

    E-Print Network [OSTI]

    Rokhinson, Leonid

    Infrared and photoluminescence spectroscopy of p-doped self-assembled Ge dots on Si L. P and photoluminescence PL spectroscopy of self-assembled Ge dots grown on Si 100 by molecular beam epitaxy. PL spectra show a transition from two- to three-dimensional growth as the Ge thickness exceeds 7 Å. The sum

  9. Molecular Self-assembly-Based Language Generation Using the Hypernetwork Model: Design of DNA Computing Experiments

    E-Print Network [OSTI]

    Molecular Self-assembly-Based Language Generation Using the Hypernetwork Model: Design of DNA Intelligence Magazine, vol.3, no.3, pp.49-63, 2008. [4] Zhang, B.-T. and Park, C.-H., Self-assembling.-H., Lee, E.-S. and Zhang, B.-T., A hypernetwork memory-Based model of sentence learning and generation

  10. Molecular Rectification in a Metal-Insulator-Metal Junction Based on Self-Assembled Monolayers

    E-Print Network [OSTI]

    Jacobs, Heiko O.

    Molecular Rectification in a Metal-Insulator-Metal Junction Based on Self-Assembled Monolayers Received April 8, 2002 Abstract: An electrical junction formed by mechanical contact between two self-assembled. The hypothesis underlying this design is based on the relative energies of the highest occupied molecular orbital

  11. On Self-Assembling Graphs in vitro The Molecular Computing Group

    E-Print Network [OSTI]

    Deaton, Russell J.

    On Self-Assembling Graphs in vitro The Molecular Computing Group Max H. Garzon, Rusell J. Deaton in vitro by self-regulating molecular processes. This type of structure, the so-called automatic graphs how the navigator can be implemented as a moleculethat directs the self-assembly process to build

  12. Hydrotropic salt promotes anionic surfactant self-assembly into vesicles and ultralong fibers

    E-Print Network [OSTI]

    Huang, Jianbin

    Hydrotropic salt promotes anionic surfactant self-assembly into vesicles and ultralong fibers November 2011 Available online 6 December 2011 Keywords: Surfactant self-assembly Hydrotropic salt Fiber dodecylbenzene sulfo- nate, SDBS) and a hydrotropic salt (benzylamine hydrochloride, BzCl) in aqueous solution

  13. Lithographically induced self-assembly of periodic polymer micropillar Stephen Y. Choua)

    E-Print Network [OSTI]

    importance to science and technology. Technologi- cally, self-assembly promises not only low cost and highLithographically induced self-assembly of periodic polymer micropillar arrays Stephen Y. Choua by placing a second plate called a mask a distance above the polymer film. The pillars, formed by rising

  14. Novel Polymer Patterns Formed by Lithographically Induced Self-Assembly (LISA)

    E-Print Network [OSTI]

    Novel Polymer Patterns Formed by Lithographically Induced Self-Assembly (LISA) Lei Chen,* Lei, 2004 A variety of self-assembly patterns, e.g., concentric rings, rods, and pillars, in polymer thin of the LISA patterns are controlled by many operation factors, such as the choice of the polymers, mask

  15. Self-Assembly, Molecular Ordering, and Charge Mobility in Solution-Processed Ultrathin Oligothiophene Films

    SciTech Connect (OSTI)

    Murphy,A.; Chang, P.; VanDyke, P.; Liu, J.; Frechet, J.; Subramanian, V.; Delongchamp, D.; Sambasivan, S.; Fischer, D.; Lin, E.

    2005-01-01

    Symmetrical {alpha}, {omega}-substituted quarter-(T4), penta-(T5), sexi-(T6), and heptathiophene (T7) oligomers containing thermally removable aliphatic ester solubilizing groups were synthesized, and their UV-vis and thermal characteristics were compared. Spun-cast thin films of each oligomer were examined with atomic force microscopy and near-edge X-ray absorption fine structure spectroscopy to evaluate the ability of the material to self-assemble from a solution-based process while maintaining complete surface coverage. Films of the T5-T7 oligomers self-assemble into crystalline terraces after thermal annealing with higher temperatures required to affect this transformation as the size of the oligomers increases. A symmetrical {alpha}, {omega}-substituted sexithiophene (T6-acid) that reveals carboxylic acids after thermolysis was also prepared to evaluate the effect of the presence of hydrogen-bonding moieties. The charge transport properties for these materials evaluated in top-contact thin film transistor devices were found to correlate with the observed morphology of the films. Therefore, the T4 and the T6-acid performed poorly because of incomplete surface coverage after thermolysis, while T5-T7 exhibited much higher performance as a result of molecular ordering. Increases in charge mobility correlated to increasing conjugation length with measured mobilities ranging from 0.02 to 0.06 cm2/(V{center_dot}s). The highest mobilities were measured when films of each oligomer had an average thickness between one and two monolayers, indicating that the molecules become exceptionally well-ordered during the thermolysis process. This unprecedented ordering of the solution-cast molecules results in efficient charge mobility rarely seen in such ultrathin films.

  16. Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation

    SciTech Connect (OSTI)

    Vempati, Sesha; Ozcan, Sefika; Uyar, Tamer

    2015-02-02

    We report on controlling the optoelectronic properties of self-assembled intercalating compound of graphene oxide (GO) and HCl doped polyaniline (PANI). Optical emission and X-ray diffraction studies revealed a secondary doping phenomenon of PANI with –OH and –COOH groups of GO, which essentially arbitrate the intercalation. A control on the polarity and the magnitude of the photoresponse (PR) is harnessed by manipulating the weight ratios of PANI to GO (viz., 1:1.5 and 1:2.2 are abbreviated as PG1.5 and PG2.2, respectively), where ±PR?=?100(R{sub Dark} – R{sub UV-Vis})/R{sub Dark} and R corresponds to the resistance of the device in dark or UV-Vis illumination. To be precise, the PR from GO, PANI, PG1.5, and PG2.2 are +34%, ?111%, ?51%, and +58%, respectively.

  17. Model for Dynamic Self-Assembled Magnetic Surface Structures

    E-Print Network [OSTI]

    M. Belkin; A. Glatz; A. Snezhko; I. S. Aranson

    2010-02-02

    We propose a first-principles model for self-assembled magnetic surface structures on the water-air interface reported in earlier experiments \\cite{snezhko2,snezhko4}. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended on the water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snake-like structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids. The model provides valuable insights into self-organization phenomena in a broad range of non-equilibrium magnetic and electrostatic systems with competing interactions.

  18. Bicontinuous surfaces in self-assembling amphiphilic systems

    E-Print Network [OSTI]

    U. S. Schwarz; G. Gompper

    2003-01-17

    Amphiphiles are molecules which have both hydrophilic and hydrophobic parts. In water- and/or oil-like solvent, they self-assemble into extended sheet-like structures due to the hydrophobic effect. The free energy of an amphiphilic system can be written as a functional of its interfacial geometry, and phase diagrams can be calculated by comparing the free energies following from different geometries. Here we focus on bicontinuous structures, where one highly convoluted interface spans the whole sample and thereby divides it into two separate labyrinths. The main models for surfaces of this class are triply periodic minimal surfaces, their constant mean curvature and parallel surface companions, and random surfaces. We discuss the geometrical properties of each of these types of surfaces and how they translate into the experimentally observed phase behavior of amphiphilic systems.

  19. 2012 BIOINSPIRED MATERIALS GORDON RESEARCH CONFERENCE, JUNE 24-29, 2012

    SciTech Connect (OSTI)

    Chilkoti, Ashutosh

    2013-06-29

    The emerging, interdisciplinary field of Bioinspired Materials focuses on developing a fundamental understanding of the synthesis, directed self-assembly and hierarchical organization of natural occurring materials, and uses this understanding to engineer new bioinspired artificial materials for diverse applications. The inaugural 2012 Gordon Conference on Bioinspired Materials seeks to capture the excitement of this burgeoning field by a cutting-edge scientific program and roster of distinguished invited speakers and discussion leaders who will address the key issues in the field. The Conference will feature a wide range of topics, such as materials and devices from DNA, reprogramming the genetic code for design of new materials, peptide, protein and carbohydrate based materials, biomimetic systems, complexity in self-assembly, and biomedical applications of bioinspired materials.

  20. Self-assembly of photo-reduced graphene-titania films.

    SciTech Connect (OSTI)

    Lambert, Timothy N.; Chavez, Carlos A.; Bell, Nelson Simmons; Washburn, Cody M.; Brumbach, Michael Todd; Wheeler, David Roger; McKenzie, Bonnie Beth

    2010-07-01

    In an aim to develop photo-responsive composites, the UV photo-reduction of aqueous titanium oxide nanoparticle-graphene oxide (TiO{sub 2}-GO) dispersions (Lambert et al. J Phys. Chem. 2010 113 (46), 19812-19823) was undertaken. Photo-reduction led to the formation of a black precipitate as well as a soluble portion, comprised of titanium oxide nanoparticle-reduced graphene oxide (TiO{sub 2}-RGO). When allowed to slowly evaporate, self assembled titanium oxide nanoparticle-graphene oxide (SA-TiO{sub 2}-RGO) films formed at the air-liquid interface of the solution. The thickness of SARGO-TiO{sub 2} films range from {approx}30-100 nm when deposited on substrates, and appear to be comprised of a mosaic assembly of graphene nanosheets and TiO{sub 2}, as observed by scanning electron microscopy. Raman spectroscopy and X-ray photoelectron spectroscopy indicate that the graphene oxide is only partially reduced in the SA-TiO{sub 2}-RGO material. These films were also deposited onto inter-digitated electrodes and their photo-responsive behavior was examined. UV-exposure lead to a {approx} 200 kOhm decrease in resistance across the device, resulting in a cathodically biased film. The cathodic bias of the films was utilized for the subsequent reduction of Ag(NO{sub 3}) into silver (Ag) nanoparticles, forming a ternary Ag-(SA-RGO-TiO{sub 2}) composite. Various aspects of the self assembled films, their photoconductive properties as well as potential applications will be presented.

  1. Global-to-Local Rule Generation for Self-Assembly and Self-Repair by Robot Swarms

    E-Print Network [OSTI]

    Southern California, University of

    Global-to-Local Rule Generation for Self-Assembly and Self-Repair by Robot Swarms Daniel Arbuckle a reactive self-assembly technique intended for use in swarms of simple robots, the other a distributed in the possibility that swarms of general-purpose self-assembling robots might be used to replace many such objects

  2. Controlling n-Type Carrier Density from Er Doping of InGaAs with...

    Office of Scientific and Technical Information (OSTI)

    electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable...

  3. Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches (474th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Gang, Oleg

    2012-01-18

    In the field of nanoscience, if you can control how nanoparticles self-assemble in particular structures — joining each other, for example, as molecules can form, atom-by-atom — you can design new materials that have unique properties that industry needs. Nature already uses the DNA genetic code to instruct the building of specific proteins and whole organisms in both plants and people. Taking a cue from nature, scientists at BNL devised a way of using strands of synthetic DNA attached to the surface of nanoparticles to instruct them to self-assemble into specific nanoscale structures, clusters, and three-dimensional organizations. Novel materials designed and fabricated this way promise use in photovoltaics, energy storage, catalysis, cell-targeted systems for more effective medical treatments, and biomolecular sensing for environmental monitoring and medical applications. To find out more about the rapid evolution of this nanoassembly method and its applications, join Physicist Oleg Gang of the Center for Functional Nanomaterials (CFN) as he gives the 474th Brookhaven Lecture, titled “Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches." Gang, who has led this work at the CFN, will explain the rapid evolution of this nanoassembly method, and discuss its present and future applications in highly specific biosensors, optically active nano-materials, and new ways to fabricate complex architectures in a rational manner via self-assembly. Gang and his colleagues used the CFN and the National Synchrotron Light Source (NSLS) facilities to perform their groundbreaking research. At the CFN, the scientists used electron microscopes and optical methods to visualize the clusters that they fabricated. At the NSLS, they applied x-rays to study a particles-assembly process in solution, DNA’s natural environment. Gang earned a Ph.D. in soft matter physics from Bar-Ilan University in 2000, and he was a Rothschild Fellow at Harvard University from 1999 to 2002. After joining BNL as a Goldhaber Fellow in 2002, he became an assistant scientist at the CFN in 2004. He became the CFN’s leader for Soft and Biological Nanomaterials Theme Group in 2006, and earned the title of scientist in 2009. Gang has received numerous honors and recognitions, including the 2010 Gordon Battelle Prize for Scientific Discovery.

  4. Energy, Charge, and Spin Transport in Molecules and Self-Assembled Nanostructures Inspired by Photosynthesis

    SciTech Connect (OSTI)

    Wasielewski, Michael R. (NWU)

    2008-10-03

    Electron transfer in biological molecules provides both insight and inspiration for developing chemical systems having similar functionality. Photosynthesis is an example of an integrated system in which light harvesting, photoinduced charge separation, and catalysis combine to carry out two thermodynamically demanding processes, the oxidation of water and the reduction of carbon dioxide. The development of artificial photosynthetic systems for solar energy conversion requires a fundamental understanding of electron-transfer reactions between organic molecules. Since these reactions most often involve single-electron transfers, the spin dynamics of photogenerated radical ion pairs provide important information on how the rates and efficiencies of these reactions depend on molecular structure. Given this knowledge, the design and synthesis of large integrated structures to carry out artificial photosynthesis is moving forward. An important approach to achieving this goal is the development of small, functional building blocks, having a minimum number of covalent bonds, which also have the appropriate molecular recognition sites to facilitate self-assembly into a complete, functional artificial photosynthetic system.

  5. Self-assembly molecular squares with metal complexes as bridging ligands

    SciTech Connect (OSTI)

    Sun, S.S.; Silva, A.S.; Brinn, I.M.; Lees, A.J.

    2000-04-03

    Polynuclear transition metal complexes containing multichromophoric units, such as metal polypyridyl complexes, are of considerable current interest. Much attention has been paid to the synthesis of multicomponent systems that exhibit photoinduced intercomponent electron and/or energy-transfer processes and to their potential applications for photonic and electronic devices. Systems incorporating Re(I)- Ru(II)-, and Os(II)-based polypyridyl chromophores are the most commonly studied because of their favorable redox and spectroscopic characteristics. In this communication, the authors combine the concepts of self-assembly and complexes as ligands and report the preparation of a series of molecular squares with the general molecular formula [fac-Br(CO){sub 3}Re({mu}-(pyterpy){sub 2}M)]{sub 4}(PF{sub 6}){sub 8}, where pyterpy is 4{prime}-(4{prime}{double_prime}-pyridyl)-2,2{prime}:6{prime}2{double_prime}-terpyridine and M = Fe, Ru, or Os. The spectroscopic properties and a preliminary anion binding study of these novel octanuclear molecular squares are also presented.

  6. Self-assembling paramagnetic colloids in oscillating magnetic fields

    E-Print Network [OSTI]

    Alison E. Koser; Nathan C. Keim; Paulo E. Arratia

    2013-11-06

    Many fascinating phenomena such as large-scale collective flows, enhanced fluid mixing and pattern formation have been observed in so-called active fluids, which are composed of particles that can absorb energy and dissipate it into the fluid medium. In order to investigate the role of hydrodynamic interactions in the collective behavior of an active fluid, we choose a model system: paramagnetic particles submerged in water and activated by an oscillating magnetic field. The magnetic field induces magnetic attractions among the paramagnetic particles, activating the particles, and injecting energy into the fluid. Over many cycles, the particles aggregate together and form clusters. In order to form clusters, however, the particles must overcome viscous drag. We investigate the relative roles of viscosity and magnetism. When the role of viscosity is important, the particles cannot form large clusters. But when the role of magnetism is important, the particles rapidly form organized, large clusters. Our results shown in this fluid dynamics video suggest that viscous stresses slow the clustering rate and decrease the size of clusters in a self-assembling colloidal system.

  7. Light-induced self-assembly of active rectification devices

    E-Print Network [OSTI]

    J. Stenhammar; R. Wittkowski; D. Marenduzzo; M. E. Cates

    2015-07-07

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics - a feature they share with all living systems. The incoherent behaviour of individual swimmers can then be harnessed (or "rectified") by microfluidic devices that create systematic motions impossible in equilibrium. Examples include flow of rotor particles round a circuit, steady rotation of a gear wheel in a bacterial bath, and pumping of bacteria between chambers by "funnel gates". Here we present a computational proof-of-concept study, showing that such active rectification devices might be created directly from an unstructured "primordial soup" of motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion causing a collisional slow-down at high density. These four factors create a many-body rectification mechanism that generically differs from one-body microfluidic antecedents. Our work suggests that standard spatial-light-modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.

  8. Modeling capsid self-assembly: Design and analysis

    E-Print Network [OSTI]

    D. C. Rapaport

    2010-06-22

    A series of simulations aimed at elucidating the self-assembly dynamics of spherical virus capsids is described. This little-understood phenomenon is a fascinating example of the complex processes that occur in the simplest of organisms. The fact that different viruses adopt similar structural forms is an indication of a common underlying design, motivating the use of simplified, low-resolution models in exploring the assembly process. Several versions of a molecular dynamics approach are described. Polyhedral shells of different sizes are involved, the assembly pathways are either irreversible or reversible, and an explicit solvent is optionally included. Model design, simulation methodology and analysis techniques are discussed. The analysis focuses on the growth pathways and the nature of the intermediate states, properties that are hard to access experimentally. Among the key observations are that efficient growth proceeds by means of a cascade of highly reversible stages, and that while there are a large variety of possible partial assemblies, only a relatively small number of strongly bonded configurations are actually encountered.

  9. Tribological properties of alkylsilane self-assembled monolayers.

    SciTech Connect (OSTI)

    Webb, Edmund Blackburn, III; Chandross, Michael Evan; Grest, Gary Stephen; Lorenz, Christian Douglas; Stevens, Mark Jackson

    2005-05-01

    In this study, we perform molecular dynamics simulations of adhesive contact and friction between alkylsilane Si(OH){sub 3}(CX{sub 2}){sub 10}CX{sub 3} and alkoxylsilane Si(OH){sub 2}(CX{sub 2}){sub 10}CX{sub 3} (where X = H or F) self-assembled monolayers (SAMs) on an amorphous silica substrate. The alkylsilane SAMs are primarily hydrogen-bonded or physisorbed to the surface. The alkoxylsilane SAMs are covalently bonded or chemisorbed to the surface. Previously, we studied the chemisorbed systems. In this work, we study the physisorbed systems and compare the tribological properties with the chemisorbed systems. Furthermore, we examine how water at the interface of the SAMs and substrate affects the tribological properties of the physisorbed systems. When less than a third of a monolayer is present, very little difference in the microscopic friction coefficient {mu} or shear stresses is observed. For increasing amounts of water, the values of {mu} and the shear stresses decrease; this effect is somewhat more pronounced for fluorocarbon alkylsilane SAMs than for the hydrocarbon SAMs. The observed decrease in friction is a consequence of a slip plane that occurs in the water as the amount of water is increased. We studied the frictional behavior using relative shear velocities ranging from v = 2 cm/s to 2 m/s. Similar to previously reported results for alkoxylsilane SAMs, the values of the measured stress and {mu} for the alkylsilane SAM systems decrease monotonically with v.

  10. Stoichiometric control of DNA-grafted colloid self-assembly

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat; Srinivasan, Babji; Pal, Suchetan; Zhang, Yugang; Gang, Oleg

    2015-04-06

    In this study, there has been considerable interest in understanding the self-assembly of DNA-grafted nanoparticles into different crystal structures, e.g., CsCl, AlB?, and Cr?Si. Although there are important exceptions, a generally accepted view is that the right stoichiometry of the two building block colloids needs to be mixed to form the desired crystal structure. To incisively probe this issue, we combine experiments and theory on a series of DNA-grafted nanoparticles at varying stoichiometries, including noninteger values. We show that stoichiometry can couple with the geometries of the building blocks to tune the resulting equilibrium crystal morphology. As a concrete example,more »a stoichiometric ratio of 3:1 typically results in the Cr?Si structure. However, AlB? can form when appropriate building blocks are used so that the AlB? standard-state free energy is low enough to overcome the entropic preference for Cr?Si. These situations can also lead to an undesirable phase coexistence between crystal polymorphs. Thus, whereas stoichiometry can be a powerful handle for direct control of lattice formation, care must be taken in its design and selection to avoid polymorph coexistence.« less

  11. Self-assembly of Active Colloidal Molecules with Dynamic Function

    E-Print Network [OSTI]

    Rodrigo Soto; Ramin Golestanian

    2015-02-25

    Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as $1/r$ and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds, and discuss how we can achieve structures with time dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations, and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that posses dynamical functionalities that are determined by their prescribed 3D structures, a strategy that follows the design principle of proteins.

  12. Molecular design of conjugated polymers for the control of conformation, electronics and self-assembly

    E-Print Network [OSTI]

    Bouffard, Jean, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    The design, synthesis and characterization of organic electronic materials, in particular luminescent conjugated polymers, with structural motifs that allow for the controlled modulation of their photophysical properties ...

  13. Templated self-assembly of Si-containing block copolymers for nanoscale device fabrication

    E-Print Network [OSTI]

    Ross, Caroline A.

    Block copolymers have been proposed for self-assembled nanolithography because they can spontaneously form well-ordered nanoscale periodic patterns of lines or dots in a rapid, low-cost process. By templating the selfassembly, ...

  14. Templating Three-Dimensional Self-Assembled Structures in Bilayer Block Copolymer Films

    E-Print Network [OSTI]

    Gotrik, Kevin W.

    The registration and alignment of a monolayer of microdomains in a self-assembled block copolymer thin film can be controlled by chemical or physical templating methods. Although planar patterns are useful for nanoscale ...

  15. Design rules for self-assembled block copolymer patterns using tiled templates

    E-Print Network [OSTI]

    Chang, Jae-Byum

    Directed self-assembly of block copolymers has been used for fabricating various nanoscale patterns, ranging from periodic lines to simple bends. However, assemblies of dense bends, junctions and line segments in a single ...

  16. Sacrificial-Post Templating Method for Block Copolymer Self-Assembly

    E-Print Network [OSTI]

    Alexander-Katz, Alfredo

    A sacrificial-post templating method is presented for directing block copolymer self-assembly to form nanostructures consisting of monolayers and bilayers of microdomains. In this approach, the topographical post template ...

  17. Characterization of self-assembling peptide nanofibers of KLD12 and RID 12

    E-Print Network [OSTI]

    Dai, Jessica, 1981-

    2004-01-01

    Self-assembling peptides are a promising new area of research with usage in numerous areas, from tissue engineering to membrane protein biology. This work is to further study the characteristics of the peptides KLD12 and ...

  18. Fabrication and characterization of nanostructures from self-assembled block copolymers

    E-Print Network [OSTI]

    Cheng, Joy, 1974-

    2003-01-01

    Nanoscale magnetic dot arrays have attracted considerable interest, both for fundamental studies of micromagnetism and for possible applications in high-density magnetic data storage. Self-assembled block copolymers provide ...

  19. Modeling and fabrication of self-assembling micron-scale rollup structures

    E-Print Network [OSTI]

    Cybulski, James Stanley, 1979-

    2004-01-01

    Self-assembling micron-scale structures based on standard photolithographic and thin film deposition techniques are investigated. Differences in residual stress between successive thin film layers causes the structures to ...

  20. A self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs

    E-Print Network [OSTI]

    Zhao, Xiaojun

    Mechanical strength of nanofiber scaffolds formed by the self-assembling peptide RADA16-I or its derivatives is not very good and limits their application. To address this problem, we inserted spidroin uncrystalline motifs, ...

  1. Geometric and elastic properties and mechanical phase separation phenomena in self-assembling mesoscopic helical springs

    E-Print Network [OSTI]

    Smith, Brice Christopher, 1976-

    2003-01-01

    Helical ribbons with pitch angles of either 11? or 54? self-assemble in a wide variety of quaternary surfactant-phospholipid/fatty acid-sterol-water systems. In all of the systems studied, the thermodynamically stable state ...

  2. Complexity of Graph Self-Assembly in Accretive Systems and Self-Destructible Systems

    E-Print Network [OSTI]

    Yin, Peng

    ]. Self-assembly is also used for mesoscale construction, for example, via the use of capillary forces [29] or magnetic forces [1] to provide attraction and repulsion between mesoscale tiles and other objects. Building

  3. Dynamics of the self-assembly of nanovoids and nanobubbles Hui-Chia Yu, Wei Lu *

    E-Print Network [OSTI]

    Lu, Wei

    Dynamics of the self-assembly of nanovoids and nanobubbles in solids Hui-Chia Yu, Wei Lu.actamat-journals.com #12;from many early formed small ``seed'' regions to other regions. There exists a threshold value

  4. Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells

    E-Print Network [OSTI]

    Kopesky, Paul Wayne

    Our objective was to test the hypothesis that self-assembling peptide hydrogel scaffolds provide cues that enhance the chondrogenic differentiation of bone marrow stromal cells (BMSCs). BMSCs were encapsulated within two ...

  5. Optimal self assembly of modular manipulators with active and passive modules

    E-Print Network [OSTI]

    Yun, Seung-kook

    2009-01-01

    In this thesis, we describe algorithms to build self-assembling robot systems composed of active modular robots and passive bars. The robotic module is the Shady3D robot and the passive component is a rigid bar with embedded ...

  6. Depletion forces drive polymer-like self-assembly in vibrofluidized granular Jennifer Galanis,*ab

    E-Print Network [OSTI]

    Harries, Daniel

    to 2D environments. It is unclear, however, if self-assembly principles governing thermally, entropy driven, order­disorder type phase transitions and steady-state granular experiments,17­21 even

  7. Programmable Self-Assembly: Constructing Global Shape using Biologically-inspired Local

    E-Print Network [OSTI]

    Napp, Nils

    Programmable Self-Assembly: Constructing Global Shape using Biologically-inspired Local Accepted-Assembly: Constructing Global Shape using Biologically-inspired Local Interactions and Origami Mathematics by Radhika

  8. GeSi strained nanostructure self-assembly for nano- and opto-electronics.

    SciTech Connect (OSTI)

    Means, Joel L.; Floro, Jerrold Anthony

    2001-07-01

    Strain-induced self-assembly during semiconductor heteroepitaxy offers a promising approach to produce quantum nanostructures for nanologic and optoelectronics applications. Our current research direction aims to move beyond self-assembly of the basic quantum dot towards the fabrication of more complex, potentially functional structures such as quantum dot molecules and quantum wires. This report summarizes the steps taken to improve the growth quality of our GeSi molecular beam epitaxy process, and then highlights the outcomes of this effort.

  9. Self-Assembly of Rod-Coil Block Copolymers And Their Application in Electroluminescent Devices

    SciTech Connect (OSTI)

    Tao, Y.; Ma, B.; Segalman, R.A.

    2009-05-26

    The formation of alternating electron transporting and hole transporting 15 nm lamellae within the active layer of an organic light-emitting diode (OLED) is demonstrated to improve device performance. A new multifunctional bipolar rod-coil block copolymer containing a poly(alkoxy phenylenevinylene) (PPV) rod-shaped block as the hole transporting and emitting material and a poly(vinyloxadiazole) coil-shaped electron transporting block is synthesized. This new block copolymer is the active material of a self-assembling multicomponent electroluminescent device that can be deposited in a single step. In the thin film, grazing incidence X-ray scattering and transmission electron microscopy demonstrate that the layers form grains which are oriented bimodally: parallel and perpendicular from the anode. In this mixed orientation, the device demonstrates better performance than those with either pure PPV or a blend of the two analogous homopolymers as the active materials, i.e., higher external quantum efficiency (EQE) and brightness. This improved device performance is mainly attributed to the bipolar functionality and microphase separation of the block copolymer, which provide highly efficient hole and electron recombination at the nanodomain interfaces.

  10. BE.442 Molecular Structure of Biological Materials, Fall 2002

    E-Print Network [OSTI]

    Zhang, Shuguang, Dr.

    Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular ...

  11. BE.442 Molecular Structure of Biological Materials, Fall 2005

    E-Print Network [OSTI]

    Zhang, Shuguang, Dr.

    Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular ...

  12. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Broader source: Energy.gov (indexed) [DOE]

    January 2011 Development of High Capacity Anode for Li-ion Batteries Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders...

  13. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, Hyosung; Mike, Jared; Smith, Kendall A.; Swank, Lisa; Lin, Yen-Hao; L. Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L.

    2015-09-22

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued togethermore »with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects.« less

  14. Nanoscale Synthesis and Functional Assembly Center for Nanophase Materials

    E-Print Network [OSTI]

    Pennycook, Steve

    Kai Xiao R&D Staff Nanoscale Synthesis and Functional Assembly Center for Nanophase Materials Oak materials; #12;3. Inorganic/organic nanoscale electronics. Fabrication 1D and 2D nanoscale electronic of Technology, China Chemistry B.A., 1998 Institute of Metal Research, Chinese Acad. of Sci., China Material

  15. Water confined in self-assembled ionic surfactants nano-structures

    E-Print Network [OSTI]

    Samuel Hanot; Sandrine Lyonnard; Stefano Mossa

    2014-12-02

    We present a coarse-grained model for ionic surfactants in explicit aqueous solutions, and study by computer simulation both the impact of water content on the morphology of the system, and the consequent effect of the formed interfaces on the structural features of the adsorbed fluid. On increasing the hydration level at ambient conditions, the model exhibits a series of three distinct phases: lamellar, cylindrical and micellar. We characterize the different structures in terms of diffraction patterns and neutron scattering static structure factors. We demonstrate that the rate of variation of the nano-metric sizes of the self-assembled water domains shows peculiar changes in the different phases. We also analyse in depth the structure of the water/confining matrix interfaces, the implications of their tunable degree of curvature, and the properties of water molecules in the different restricted environments. Finally, we discuss our results compared to experimental data and their impact on a wide range of important scientific and technological domains, where the behavior of water at the interface with soft materials is crucial.

  16. Directed nanoscale self-assembly of molecular wires interconnecting nodal points using Monte Carlo simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.

    2015-09-10

    The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochasticmore »methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.« less

  17. Charge Transport Across Insulating Self-Assembled Mono layers...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials...

  18. From ripples to spikes: a hydro-dynamical physical mechanism to interpret femtosecond laser induced self-assembled structures

    E-Print Network [OSTI]

    Tsibidis, George D; Stratakis, Emmanuel

    2015-01-01

    Materials irradiated with multiple femtosecond laser pulses in sub-ablation conditions are observed to develop various types of self-assembled morphologies that range from nano-ripples to periodic micro-grooves and quasi-periodic micro-spikes. Here, we present a physical scenario that couples electrodynamics, describing surface plasmon excitation, with hydrodynamics, describing Marangoni convection, to elucidate this important sub-ablation regime of light matter interaction in which matter is being modified, however, the underlying process is not yet fully understood. The proposed physical mechanism could be generally applicable to practically any conductive material structured by ultrashort laser pulses, therefore it can be useful for the interpretation of further critical aspects of light matter interaction.

  19. Electron Transfer within Self-Assembling Cyclic Tetramers Using Chlorophyll-Based Donor?Acceptor Building Blocks

    SciTech Connect (OSTI)

    Gunderson, Victoria L.; Smeigh, Amanda L.; Kim, Chul Hoon; Co, Dick T.; Wasielewski, Michael R. (NWU)

    2012-05-09

    The synthesis and photoinduced charge transfer properties of a series of Chl-based donor-acceptor triad building blocks that self-assemble into cyclic tetramers are reported. Chlorophyll a was converted into zinc methyl 3-ethylpyrochlorophyllide a (Chl) and then further modified at its 20-position to covalently attach a pyromellitimide (PI) acceptor bearing a pyridine ligand and one or two naphthalene-1,8:4,5-bis(dicarboximide) (NDI) secondary electron acceptors to give Chl-PI-NDI and Chl-PI-NDI2. The pyridine ligand within each ambident triad enables intermolecular Chl metal-ligand coordination in dry toluene, which results in the formation of cyclic tetramers in solution, as determined using small- and wide-angle X-ray scattering at a synchrotron source. Femtosecond and nanosecond transient absorption spectroscopy of the monomers in toluene-1% pyridine and the cyclic tetramers in toluene shows that the selective photoexcitation of Chl results in intramolecular electron transfer from 1*Chl to PI to form Chl+{lg_bullet}-PI-{lg_bullet}-NDI and Chl+{lg_bullet}-PI-{lg_bullet}-NDI2. This initial charge separation is followed by a rapid charge shift from PI-{lg_bullet} to NDI and subsequent charge recombination of Chl+{lg_bullet}-PI-NDI-{lg_bullet} and Chl+{lg_bullet}-PI-(NDI)NDI-{lg_bullet} on a 5-30 ns time scale. Charge recombination in the Chl-PI-NDI2 cyclic tetramer ({tau}CR = 30 {+-} 1 ns in toluene) is slower by a factor of 3 relative to the monomeric building blocks ({tau}CR = 10 {+-} 1 ns in toluene-1% pyridine). This indicates that the self-assembly of these building blocks into the cyclic tetramers alters their structures in a way that lengthens their charge separation lifetimes, which is an advantageous strategy for artificial photosynthetic systems.

  20. Strain-induced self-assembly of Ge nanodashes, nanodumbbells, and dot chains on Si(001)

    SciTech Connect (OSTI)

    Zhang, J. J. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, 01069 Dresden (Germany) [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, 01069 Dresden (Germany); Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schmidt, O. G. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, 01069 Dresden (Germany) [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, 01069 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden (Germany)

    2013-09-30

    We investigate the growth of self-assembled Ge nanostructures on top of embedded Ge nanowires on Si(001) substrates. Ge nanostructures, such as nanodashes, nanodumbbells, and dot chains are observed simply by tuning the growth temperature and thickness of the Si spacer between the Ge layers. The self-assembly process is governed by the surface strain fields generated by the embedded Ge nanowires and is well-described by our theoretical calculations. The catalyst-free and horizontal growth of such Ge nanostructures directly on Si(001) is attractive for investigating exotic transport properties through Si/Ge-based quantum devices.

  1. New self-assembly luminescent molecular triangle and square rhenium(I) complexes

    SciTech Connect (OSTI)

    Sun, S.S.; Lees, A.J.

    1999-09-20

    The design and study of well-arranged metal-containing macrocycles is one of the major current research areas in modern supramolecular chemistry. Apart from their particular structural features, supramolecular species formed by self-assembly of transition metals introduce many special functional properties such as luminescence, redox activity, and magnetism into the structure. More recently, transition metal based molecular squares have been synthesized by utilizing self-assembly of preorganized metal centers and pyridine-based bridging ligands. The 90{degree} bonding angles between ligands in transition metal complexes provide an attractive feature for constructing macrocyclic structures.

  2. Novel polymer nanocomposite composed of organic nanoparticles via self-assembly

    E-Print Network [OSTI]

    Dequan Xiao; Kunhua Lin; Qiang Fu; Qinjian Yin

    2009-03-20

    We report a novel class of polymer nanocomposite composed of organic nanoparticles dispersed in polymer matrix, with the particle sizes of 30-120 nm in radius. The organic nanoparticles were formed by the self-assembly of protonated poly(4-vinyl-pyridine)-r-poly(acrylonitrile) and amphiphilic metanil yellow dye molecules through electrostatic interactions in aqueous solution. A strongly broadened Raman shift band was probed, suggesting the presence of enhanced optoelectronic property from the polymer nanocomposite. Here, using random-copolymer polyelectrolytes and mesogenic amphiphiles as the designed building blocks for self-assembly, a new approach is acutally provided to fabricate organic nanoparticles.

  3. Synthesis of Functional Nanomaterials Nanocarbon Materials

    E-Print Network [OSTI]

    Dutta, Indranath

    of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties." RSC Advances 4 (3), 1120-1127 o Carbon Nanotubes · Ye S, F Wu, X Ye, and Y Lin. 2009. "Supercritical Fluid Assisted Synthesis and Processing of Carbon Nanotubes ." Journal of Nanoscience

  4. Structural Analysis of Self-Assembling Nanocrystal Superlattices**

    E-Print Network [OSTI]

    Wang, Zhong L.

    . Introduction Nanophase and nanoparticle materials are a new genera- tion of advanced materials to optimize and enhance the properties and perfor- mance of the materials. This is a new initiative, which are a new form of materials of fundamental interest and technological importance. There are four

  5. Engineered biomolecular interactions with inorganic materials : sequence, binding, and assembly

    E-Print Network [OSTI]

    Peelle, Beau R

    2005-01-01

    Nanobiotechnology aims to exploit biomolecular recognition and self-assembly capabilities for integrating advanced materials into medicine and electronics. In particular, peptides have exhibited the ability to specifically ...

  6. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals

    E-Print Network [OSTI]

    Ian B. Burgess; Joanna Aizenberg; Marko Loncar

    2012-11-29

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  7. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals

    E-Print Network [OSTI]

    Burgess, Ian B; Loncar, Marko

    2012-01-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  8. Self-Assembled Monolayers on Pt(111): Molecular Packing Structure and Strain Effects Observed by Scanning Tunneling

    E-Print Network [OSTI]

    Kim, Sehun

    Self-Assembled Monolayers on Pt(111): Molecular Packing Structure and Strain Effects Observed@uci.edu Abstract: Self-assembled monolayers (SAMs) of octanethiol and benzeneethanethiol were deposited on clean Pt° unit cell for the octanethiol SAMs and a 4( 3 × 3)R30° periodicity based on 2 × 2 basic molecular

  9. Self-assembled gels of liquid crystals: hydrogen-bonded aggregates formed in various liquid crystalline textures

    E-Print Network [OSTI]

    Zhao, Yue

    Self-assembled gels of liquid crystals: hydrogen-bonded aggregates formed in various liquid as an Advance Article on the web 30th March 2001 An azobenzene-containing gelator can gel the nematic liquid crystal BL006 through self-assembly of hydrogen- bonded aggregates. Due to the high nematic

  10. A FULLY DRY SELFA FULLY DRY SELF--ASSEMBLY PROCESS WITHASSEMBLY PROCESS WITH PROPER INPROPER IN--PLANE ORIENTATIONPLANE ORIENTATION

    E-Print Network [OSTI]

    A FULLY DRY SELFA FULLY DRY SELF--ASSEMBLY PROCESS WITHASSEMBLY PROCESS WITH PROPER INPROPER IN consumption byimprove the performance and reduce the power consumption by eliminating long horizontal wiring strategy with parallel self--assembly isassembly is necessary for high throughput.necessary for high

  11. Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography

    E-Print Network [OSTI]

    Parikh, Atul N.

    Pattern transfer of electron beam modified self-assembled monolayers for high-resolution electron beam lithography. Focused electron beams from 1 to 50 keV and scanning tunneling microscopy at 10 of electron beam damage on the monolayers and the subsequent etching reactions has been explored through x

  12. Shot noise in self-assembled InAs quantum dots A. Nauen,1,

    E-Print Network [OSTI]

    Hohls, Frank

    Shot noise in self-assembled InAs quantum dots A. Nauen,1, * I. Hapke-Wurst,1 F. Hohls,1 U. Zeitler Braunschweig, Germany Received 10 July 2002; published 4 October 2002 We investigate the noise properties-electron tunneling regime. We analyze the dependence of the relative noise amplitude of the shot noise on bias

  13. Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic Applications**

    E-Print Network [OSTI]

    McGehee, Michael

    Infiltrating Semiconducting Polymers into Self-Assembled Mesoporous Titania Films for Photovoltaic. Introduction A promising approach for making inexpensive photovoltaic cells is to fill nanoporous titania films there have been several reports on photovoltaic cells made in this way, there have been no studies that show

  14. Self-assembly of functionally gradient nanoparticle structures Jonghyun Park and Wei Lua

    E-Print Network [OSTI]

    Lu, Wei

    on the particle, with superscripts D, R, and E denoting the drag force, random force, and electrostatic force­3 Among a variety of driving forces for self-assembly, electrostatic interaction plays an important role for dipolar hard spheres obtained from Monte Carlo simulations shows the possibility of multiple phases includ

  15. Molecular self-assembly with scaffolded DNA origami enables building custom-shaped

    E-Print Network [OSTI]

    Cai, Long

    Molecular self-assembly with scaffolded DNA origami enables building custom-shaped nanometer-scale objects with molecular weights in the megadalton regime. Here we provide a practical guide for design and assembly of scaffolded DNA origami objects. We also introduce a computational tool for predicting

  16. NEST Scientific Report 2007-2009 Transport phenomena in self-assembled nanowires

    E-Print Network [OSTI]

    Abbondandolo, Alberto

    and heat transport in nanoscale self-assembled structures ­ is being pursued by the development of hybrid charge and heat transport at the nanoscale. The first aim has started to be pursued in mid 2008 at NEST while an example of SAW-induced charge pumping can be seen in panel (b). In the studied devices both

  17. Novel collaboration and situational awareness environment for leaders and their support staff via self assembling software.

    SciTech Connect (OSTI)

    Bouchard, Ann Marie; Osbourn, Gordon Cecil (Org. 1001 : Complex Systems Science Department); Bartholomew, John Warren

    2008-02-01

    This is the final report on the Sandia Fellow LDRD, project 117865, 08-0281. This presents an investigation of self-assembling software intended to create shared workspace environment to allow online collaboration and situational awareness for use by high level managers and their teams.

  18. Theory of self-assembly of microtubules and motors Igor S. Aranson1

    E-Print Network [OSTI]

    Tsimring, Lev S.

    Theory of self-assembly of microtubules and motors Igor S. Aranson1 and Lev S. Tsimring2 1 Argonne describing spatiotemporal organization of an array of microtubules interacting via molecular motors. Starting of rods and concentration of motors, the model describes an orientational instability. We demonstrate

  19. SELF-ASSEMBLY OF MICRO PUMPS WITH HIGH UNIFORMITY IN PERFORMANCE

    E-Print Network [OSTI]

    SELF-ASSEMBLY OF MICRO PUMPS WITH HIGH UNIFORMITY IN PERFORMANCE Jiandong Fang, Kerwin Wang, Karl F and conductive physical contact between the PZT actuators and the substrate. 28 pumps are fabricated on a 4-inch bonded pyrex/silicon substrate. The resonance frequencies of all the pumps show high performance

  20. Ternary Oil-Water-Amphiphile Systems: Self-Assembly and Phase Equilibria

    E-Print Network [OSTI]

    Ternary Oil-Water-Amphiphile Systems: Self-Assembly and Phase Equilibria Seung-Yeon Kim surfactant - oil - water systems were studied by grand-canonical Monte Carlo simulations assisted H represents hydrophilic and T hydrophobic groups. In contrast to earlier studies, we studied oil

  1. Self-assembly of 21-arm star-like diblock copolymer in bulk and under cylindrical

    E-Print Network [OSTI]

    Lin, Zhiqun

    Self-assembly of 21-arm star-like diblock copolymer in bulk and under cylindrical confinement Yuci Xu,ab Weihua Li,*c Feng Qiuc and Zhiqun Lin*b Phase behaviors of a 21-arm star-like diblock copolymer the period of lamellae Dmultiarms formed from multi- arm star-like block copolymers with the number of arms f

  2. Emission of neutral molecules from ion-bombarded thiol self-assembled monolayers

    E-Print Network [OSTI]

    Zbigniew, Postawa

    from 8 keV Ar ion-bombarded self- assembled monolayers (SAMs) of phenethyl mercaptan (PEM) C6H5CH2CH2 electrons). The formed fragments are loosely bound to the surface and can be removed by evaporation of hydrocarbon chains with functional groups at either end [2]. The molecules within the SAM are covalently bound

  3. Self-Assembled Micro-Honeycomb Network of Single-Walled Carbon Nanotubes for Solar Cells

    E-Print Network [OSTI]

    Maruyama, Shigeo

    ") are most intensively investigated for this kind of solar cells10-16 . Efforts in improving the properties1 Self-Assembled Micro-Honeycomb Network of Single-Walled Carbon Nanotubes for Solar Cells Kehang. The pristine -HN SWNT-Si solar cell shows a record-high fill factor of 72% as well as a power conversion

  4. Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites

    E-Print Network [OSTI]

    Li, Jiangyu

    Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites to exhibit colossal dielectric and electromechanical responses with very low volume fraction of the high composite with much higher o-CuPc content 16% of o-CuPc shows much lower dielectric and electromechanical

  5. Self-Assembly of Carboxylated Poly(styrene-b-ethylene-co-butylene-b-styrene) Triblock Copolymer

    E-Print Network [OSTI]

    Wu, Chi

    Self-Assembly of Carboxylated Poly(styrene-b-ethylene-co-butylene-b-styrene) Triblock Copolymer Manuscript Received June 8, 2000 ABSTRACT: Carboxylated poly(styrene-b-ethylene-co-butylene-b-styrene) (CSEBS of this balance, in the present study, we systematically in- creased the carboxylation extent of the styrene

  6. Solution Self-Assembly of Magnetic Light Modulators from Exfoliated Perovskite and Magnetite Nanoparticles

    E-Print Network [OSTI]

    Osterloh, Frank

    Solution Self-Assembly of Magnetic Light Modulators from Exfoliated Perovskite and Magnetite a layered perovskite) and superparamagnetic Fe3O4 spheres.4 Due to optical anisotropy of the sheets particles precipitate onto the perovskite sheets, and the product forms. After centrifugation and washing

  7. Nonequilibrium Self-Assembly of a Filament Coupled to ATP/GTP Padinhateeri Ranjith,

    E-Print Network [OSTI]

    Lacoste, David

    Nonequilibrium Self-Assembly of a Filament Coupled to ATP/GTP Hydrolysis Padinhateeri Ranjith filaments or microtubules taking into account insertion, removal, and ATP/GTP hydrolysis of subunits needed for the ATP/GTP cap to disappear as well as the time needed for the filament to reach a length

  8. Spectroscopic Properties of a Self-Assembled Zinc Porphyrin Tetramer II. Time-Resolved Fluorescence Spectroscopy

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Spectroscopic Properties of a Self-Assembled Zinc Porphyrin Tetramer II. Time-Resolved Fluorescence tetramer [Part I], with a 1 ns rotational correlation time at 10 °C. The initial fluorescence anisotropy of the monomer is found to be 0.1. In the tetramer an additional depolarization process occurs with a correlation

  9. Cosurfactant and cosolvent effects on surfactant self-assembly in supercritical carbon dioxide

    E-Print Network [OSTI]

    Siperstein, Flor R.

    Cosurfactant and cosolvent effects on surfactant self-assembly in supercritical carbon dioxide the alcohol concentration. Short-chain alcohols are found to concentrate in the surfactant layer=methylene or methyl and E=ethylene oxide with increasing alcohol concentration at all temperatures and CO2 pressures

  10. Magnetic Effects in Nanomaterials Flux Closure in Self-Assembled Cobalt

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    and chains) is optimal at an initial concentration of 1012 particlesmLĄ1 and surfactant concen- trationsMagnetic Effects in Nanomaterials Flux Closure in Self-Assembled Cobalt Nanoparticle Rings** Steven that single- walled Co nanoparticle rings can support stable FC states at room temperature, using off

  11. Thermodynamic Analysis of Self-Assembly in Coiled-Coil Biomaterials

    E-Print Network [OSTI]

    Manning, Robert

    Thermodynamic Analysis of Self-Assembly in Coiled-Coil Biomaterials Betty P. Tsang, Heidi S well-defined biomaterials. Mesoscale structural properties can be fairly well predicted based on rules this intermediate might relate to the monomer and polymer states. The successful engineering of biomaterials has led

  12. Self-assembly of three-dimensional photonic-crystals with air-core line defects

    E-Print Network [OSTI]

    is a colloidal crystal film that is grown on a silicon or glass substrate patterned with photoresist lines, and the 3D photonic crystal with air-core line defects is obtained by infiltrating the colloidal crystal the self-assembly of colloidal micro- spheres.5­11 Though the currently available colloidal crystals do

  13. Two-dimensional 1,3,5-Tris(4-carboxyphenyl)benzene self-assembly at

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Two-dimensional 1,3,5-Tris(4-carboxyphenyl)benzene self-assembly at the 1-phenyloctane-assembly of star-shaped 1,3,5-Tris(4-carboxyphenyl)benzene molecules is investigated. Scanning tunneling microscopy.22 showed that 1,3,5-Tris(4-carboxyphenyl)benzene star-shaped molecules can form two distinc self

  14. Controlled Self Assembly of Conjugated Polymer Containing Block Copolymers

    E-Print Network [OSTI]

    McCulloch, Bryan

    2012-01-01

    in dye/polymer blend photovoltaic cells. Advanced MaterialsA. J. , Polymer Photovoltaic Cells - Enhanced Efficiencies2-Layer Organic Photovoltaic Cell. Applied Physics Letters

  15. Transport and Self-Assembly in Molecular Nanosystems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other...

  16. Self-Assembly of Nanorods in Ternary Mixtures: Promoting the...

    Office of Scientific and Technical Information (OSTI)

    Org: Energy Frontier Research Centers (EFRC); Polymer-Based Materials for Harvesting Solar Energy (PHaSE) Sponsoring Org: USDOE SC Office of Basic Energy Sciences (SC-22)...

  17. DNA Guided Self-Assembly of Nanocrystals for Optoelectronic Devices /

    E-Print Network [OSTI]

    Noh, Hyunwoo

    2013-01-01

    3D nanocrystal superlattices 68 4.1 Introduction 68 4.2 Materials and Methods .68 4.2.1 Dual subtraction printing ..

  18. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this new family of materials, but also the fabrication of a wide range of next-generation nanodevices including optical lenses and polarizers, memory storage,...

  19. Hydrophobically-Driven Self-Assembly: A Geometric Packing Analysis

    E-Print Network [OSTI]

    4, 2003 ABSTRACT We present a new approach to the problem of finding the minimum-energy structures which have served as guides in designing new nanoscale-structured materials. Significant progress has been made in synthesizing a variety of new materials based on the so-called "bottom-up" ap- proach

  20. Self-assembly of water-soluble nanocrystals

    DOE Patents [OSTI]

    Fan, Hongyou (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Lopez, Gabriel P. (Albuquerque, NM)

    2012-01-10

    A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that can co-assemble with individual micelles formed in the micellar solution of nanocrystals can be added to this micellar solution under specified reaction conditions (for example, pH conditions) to form an ordered-array mesophase material. For example, basic conditions are used to precipitate an ordered nanocrystal/silica array material in bulk form and acidic conditions are used to form an ordered nanocrystal/silica array material as a thin film.

  1. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  2. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays of nanoparticles will enable not only a better understanding of this new family of materials, but also the fabrication of a wide range of next-generation nanodevices...

  3. Synthesis and design of silicide intermetallic materials

    SciTech Connect (OSTI)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.

    1998-11-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  4. Direct synthesis of ordered mesoporous materials constructed with polymersilica hybrid frameworks

    E-Print Network [OSTI]

    Kim, Ji Man

    to obtain the organic­inorganic hybrid mesoporous materials. The post-synthesis procedure via graftingDirect synthesis of ordered mesoporous materials constructed with polymer­silica hybrid frameworks for pore surface modification.5 Second is the one-pot synthesis of mesoporous materials with an organically

  5. Secondary battery material and synthesis method

    DOE Patents [OSTI]

    Liu, Hongjian; Kepler, Keith Douglas; Wang, Yu

    2013-10-22

    A composite Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material stabilized by treatment with a second transition metal oxide phase that is highly suitable for use in high power and energy density Li-ion cells and batteries. A method for treating a Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material utilizing a dry mixing and firing process.

  6. Intersubband absorption in CdSe/Zn{sub x}Cd{sub y}Mg{sub 1-x-y}Se self-assembled quantum dot multilayers

    SciTech Connect (OSTI)

    Shen, A.; Lu, H.; Charles, W.; Yokomizo, I.; Tamargo, M. C.; Franz, K. J.; Gmachl, C.; Zhang, S. K.; Zhou, X.; Alfano, R. R.; Liu, H. C.

    2007-02-12

    The authors report the observation of intersubband absorption in multilayers of CdSe/Zn{sub x}Cd{sub y}Mg{sub 1-x-y}Se self-assembled quantum dots. The samples were grown by molecular beam epitaxy on InP substrates. For samples with the CdSe dot layers doped with Cl and with the deposited CdSe equivalent layer thickness between 5.2 and 6.9 ML, peak absorption between 2.5 and 3.5 {mu}m was observed. These materials are promising for intersubband devices operating in the mid- and near-infrared ranges.

  7. Synthesis of Two-Dimensional Materials by Selective Extraction

    SciTech Connect (OSTI)

    Abdelmalak, Michael Naguib; Gogotsi, Yury

    2015-01-01

    Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from the precursor materials releases 2D structures. In this Account, in addition to graphene and TMO, we focused on MXenes as an example for the use of selective extraction synthesis to produce novel 2D materials. About 10 new carbides and carbonitrides of transition metals have been produced by this method in the past 3 years. They offer an unusual combination of metallic conductivity and hydrophilicity and show very attractive electrochemical properties. We hope that this Account will encourage researchers to extend the use of selective extraction to other layered material systems that in turn will result in expanding the world of nanomaterials in general and 2D materials in particular, generating new materials that cannot be produced by other means.

  8. Development of Materials for Future Energy Systems using Combinatorial Synthesis of Thin Film Materials

    E-Print Network [OSTI]

    production/storage/conversion of energy carriers are necessary to improve existing and enable future energyDevelopment of Materials for Future Energy Systems using Combinatorial Synthesis of Thin Film Professor Alfred Ludwig Institute for Materials, Ruhr-Universität Bochum, Bochum, Germany THE RESNICK

  9. Polymer arrays from the combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong

    2004-09-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes

    SciTech Connect (OSTI)

    Grilli, S.; Coppola, S.; Vespini, V.; Pagliarulo, V.; Ferraro, P.; Nasti, G.; Carfagna, C.

    2014-10-13

    Here, we report on a single step approach for fabricating free-standing polymer membranes reinforced with arrayed self-assembled carbon nanotubes (CNTs). The CNTs are self-assembled spontaneously by electrode-free DC dielectrophoresis based on surface charge templates. The electrical charge template is generated through the pyroelectric effect onto periodically poled lithium niobate ferroelectric crystals. A thermal stimulus enables simultaneously the self-assembly of the CNTs and the cross-linking of the host polymer. Examples of thin polydimethylsiloxane membranes reinforced with CNT patterns are shown.

  11. Controlling self-assembly within nanospace for peptide nanoparticle fabrication

    E-Print Network [OSTI]

    Chau, Ying

    ,5 Moreover, short peptide building blocks can be designed to enable a bottom-up construction of smart provide natural building blocks for the fabrication of well-ordered structures and advanced materials.4 simultaneously be obtained from the same building blocks.9 Different nanostructure morphologies are desired

  12. New self-assembled nanocrystal micelles for biolabels and biosensors.

    SciTech Connect (OSTI)

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate the magnetic micelles, we can kill live cells, presenting a new magnetodynamic therapy without side effects.

  13. Self-assembled molecular films incorporating a ligand

    DOE Patents [OSTI]

    Bednarski, M.D.; Wilson, T.E.; Mastandra, M.S.

    1996-04-23

    Functionalized monomers are presented which can be used in the fabrication of molecular films for controlling adhesion, detection of receptor-ligand binding and enzymatic reactions; new coatings for lithography; and for semiconductor materials. The monomers are a combination of a ligand, a linker, optionally including a polymerizable group, and a surface attachment group. The processes and an apparatus for making films from these monomers, as well as methods of using the films are also provided. 7 figs.

  14. Self-assembled molecular films incorporating a ligand

    DOE Patents [OSTI]

    Bednarski, Mark D. (Berkeley, CA); Wilson, Troy E. (Berkeley, CA); Mastandra, Mark S. (Brookline, MA)

    1996-01-01

    Functionalized monomers are presented which can be used in the fabrication of molecular films for controlling adhesion, detection of receptor-ligand binding and enzymatic reactions; new coatings for lithography; and for semiconductor materials. The monomers are a combination of a ligand, a linker, optionally including a polymerizable group, and a surface attachment group. The processes and an apparatus for making films from these monomers, as well as methods of using the films are also provided.

  15. Self-Assembled Biosensors on a Solid Interface for Rapid Detection and Growth Monitoring of Bacteria

    E-Print Network [OSTI]

    Kinnunen, Paivo; Craig, Elizabeth; Brahmasandra, Sundu; McNaughton, Brandon H

    2012-01-01

    Developing rapid methods for pathogen detection and growth monitoring at low cell and analyte concentrations is an important goal, which numerous technologies are working towards solving. Rapid biosensors have already made a dramatic impact on improving patient outcomes and with continued development, these technologies may also help limit the emergence of antimicrobial resistance and reduce the ever expanding risk of foodborne illnesses. One technology that is being developed with these goals in mind is asynchronous magnetic bead rotation (AMBR) biosensors. Self-assembled AMBR biosensors have been demonstrated at water/air and water/oil interfaces, and here, for the first time, we report on self-assembled AMBR biosensors used at a solid interface. The solid interface configuration was used to measure the growth of Escherichia coli with two distinct phenomena at low cell concentrations: firstly, the AMBR rotational period decreased and secondly, the rotational period increased after several division times. Ta...

  16. Structural and optical properties of self-assembled chains of plasmonic nanocubes

    SciTech Connect (OSTI)

    Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; Ahmed, Aftab; Nykypanchuk, Dmytro; Choueiri, Rachelle M.; Gagnon, Brandon; Muntyanu, Anastasiya; Walker, Gilbert C.; Kumacheva, Eugenia

    2014-10-10

    Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, composition and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.

  17. Activity-induced phase separation and self-assembly in mixtures of active and passive particles

    E-Print Network [OSTI]

    Joakim Stenhammar; Raphael Wittkowski; Davide Marenduzzo; Michael E. Cates

    2015-01-07

    We investigate the phase behavior and kinetics of a monodisperse mixture of active (\\textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the active component triggers phase separation into a dense and a dilute phase; in the dense phase we further find active-passive segregation, with "rafts" of passive particles in a "sea" of active particles. We find that phase separation from an initially disordered mixture can occur with as little as 15 percent of the particles being active. Finally, we show that a system prepared in a suitable fully segregated initial state reproducibly self-assembles an active "corona" which triggers crystallization of the passive core by initiating a compression wave. Our findings are relevant to the experimental pursuit of directed self-assembly using active particles.

  18. Structural and optical properties of self-assembled chains of plasmonic nanocubes

    SciTech Connect (OSTI)

    Klinkova, Anna [Univ., of Toronto, Toronto, Ontario (Canada); Gang, Oleg [Brookhaven National Lab. (BNL), Upton, NY (United States); Therien-Aubin, Heloise [Univ., of Toronto, Toronto, Ontario (Canada); Ahmed, Aftab [Argonne National Lab. (ANL), Argonne, IL (United States); Nykypanchuk, Dmytro [Brookhaven National Lab. (BNL), Upton, NY (United States); Choueiri, Rachelle M. [Univ., of Toronto, Toronto, Ontario (Canada); Gagnon, Brandon [Univ., of Toronto, Toronto, Ontario (Canada); Muntyanu, Anastasiya [Univ., of Toronto, Toronto, Ontario (Canada); Walker, Gilbert C. [Univ., of Toronto, Toronto, Ontario (Canada); Kumacheva, Eugenia [Univ., of Toronto, Toronto, Ontario (Canada)

    2014-11-12

    Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, composition and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.

  19. Structural and optical properties of self-assembled chains of plasmonic nanocubes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; Ahmed, Aftab; Nykypanchuk, Dmytro; Choueiri, Rachelle M.; Gagnon, Brandon; Muntyanu, Anastasiya; Walker, Gilbert C.; Kumacheva, Eugenia

    2014-10-10

    Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, compositionmore »and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.« less

  20. Method of synthesis of proton conducting materials

    DOE Patents [OSTI]

    Garzon, Fernando Henry; Einsla, Melinda Lou; Mukundan, Rangachary

    2010-06-15

    A method of producing a proton conducting material, comprising adding a pyrophosphate salt to a solvent to produce a dissolved pyrophosphate salt; adding an inorganic acid salt to a solvent to produce a dissolved inorganic acid salt; adding the dissolved inorganic acid salt to the dissolved pyrophosphate salt to produce a mixture; substantially evaporating the solvent from the mixture to produce a precipitate; and calcining the precipitate at a temperature of from about 400.degree. C. to about 1200.degree. C.

  1. Magnetic spectroscopy and microscopy of functional materials

    E-Print Network [OSTI]

    Jenkins, C.A.

    2012-01-01

    in the classical Heusler material Co 2 FeSi (Appendix B).plated self-assembly. Nature Materials, 3:823–828, 2004.1 Concepts Functional materials are those with an industrial

  2. Simulation and dynamics of entropy-driven, molecular self-assembly processes

    SciTech Connect (OSTI)

    Mayer, B.; Kohler, G.,; Rasmussen, S.,

    1997-04-01

    Molecular self-assembly is frequently found to generate higher-order functional structures in biochemical systems. One such example is the self-assembly of lipids in aqueous solution forming membranes, micelles, and vesicles; another is the dynamic formation and rearrangement of the cytoskeleton. These processes are often driven by local, short-range forces and therefore the dynamics is solely based on local interactions. In this paper, we introduce a cellular automata based simulation, the lattice molecular automaton, in which data structures, representing different molecular entities such as water and hydrophilic and hydrophobic monomers, share locally propagated force information on a hexagonal, two-dimensional lattice. The purpose of this level of description is the simulation of entropic and enthalpic flows in a microcanonical, molecular ensemble to gain insight about entropy-driven processes in molecular many-particle systems. Three applications are shown, i.e., modeling structural features of a polar solvent, cluster formation of hydrophobic monomers in a polar environment, and the self-assembly of polymers. Processes leading to phase separation on a molecular level are discussed. A thorough discussion of the computational details, advantages, and limitations of the lattice molecular automaton approach is given elsewhere [B. Mayer and S. Rasmussen (unpublished)]. {copyright} {ital 1997} {ital The American Physical Society}

  3. Rational design of self-assembly pathways for complex multicomponent structures

    E-Print Network [OSTI]

    William M. Jacobs; Aleks Reinhardt; Daan Frenkel

    2015-02-04

    The field of complex self-assembly is moving toward the design of multi-particle structures consisting of thousands of distinct building blocks. To exploit the potential benefits of structures with such `addressable complexity,' we need to understand the factors that optimize the yield and the kinetics of self-assembly. Here we use a simple theoretical method to explain the key features responsible for the unexpected success of DNA-brick experiments, which are currently the only demonstration of reliable self-assembly with such a large number of components. Simulations confirm that our theory accurately predicts the narrow temperature window in which error-free assembly can occur. Even more strikingly, our theory predicts that correct assembly of the complete structure may require a time-dependent experimental protocol. Furthermore, we predict that low coordination numbers result in non-classical nucleation behavior, which we find to be essential for achieving optimal nucleation kinetics under mild growth conditions. We also show that, rather surprisingly, the use of heterogeneous bond energies improves the nucleation kinetics and in fact appears to be necessary for assembling certain intricate three-dimensional structures. This observation makes it possible to sculpt nucleation pathways by tuning the distribution of interaction strengths. These insights not only suggest how to improve the design of structures based on DNA bricks, but also point the way toward the creation of a much wider class of chemical or colloidal structures with addressable complexity.

  4. Lower pressure synthesis of diamond material

    DOE Patents [OSTI]

    Lueking, Angela (State College, PA); Gutierrez, Humberto (State College, PA); Narayanan, Deepa (Redmond, WA); Burgess Clifford, Caroline E. (State College, PA); Jain, Puja (King Of Prussia, PA)

    2010-07-13

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  5. DNA Self-Assembly of Targeted Near-Infrared-Responsive Gold Nanoparticles for Cancer Thermo-Chemotherapy

    E-Print Network [OSTI]

    Xiao, Zeyu

    Targeted cancer therapy: Inspired by the ability of DNA hybridization, a targeted near-infrared (NIR) light-responsive delivery system has been developed through simple DNA self-assembly (see picture; PEG=polyethylene ...

  6. Using Differential Adhesion to Control Self-Assembly and Self-Repair of Collections of Modular Mobile Robots 

    E-Print Network [OSTI]

    Ottery, Peter

    This thesis presents a novel distributed control method which allows a collection of independently mobile robotic units, with two or three dimensional movement, to self-assemble into self-repairing hierarchical structures. ...

  7. Design and fabrication of high-index-contrast self-assembled texture for light extraction enhancement in LEDs

    E-Print Network [OSTI]

    Sheng, Xing

    We developed a high-index-contrast photonic structure for improving the light extraction efficiency of light-emitting diodes (LEDs) by a self-assembly approach. In this approach, a two-dimensional grating can be ...

  8. Cermet materials prepared by combustion synthesis and metal infiltration

    DOE Patents [OSTI]

    Holt, Joseph B. (San Jose, CA); Dunmead, Stephen D. (Davis, CA); Halverson, Danny C. (Modesto, CA); Landingham, Richard L. (Livermore, CA)

    1991-01-01

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.

  9. Cermet materials prepared by combustion synthesis and metal infiltration

    DOE Patents [OSTI]

    Holt, J.B.; Dunmead, S.D.; Halverson, D.C.; Landingham, R.L.

    1991-01-29

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced. 6 figures.

  10. Grained composite materials prepared by combustion synthesis under mechanical pressure

    DOE Patents [OSTI]

    Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  11. Interfacial Properties and Design of Functional Energy Materials

    SciTech Connect (OSTI)

    Sumpter, Bobby G [ORNL; Liang, Liangbo [ORNL; Nicolai, Adrien [Rensselaer Polytechnic Institute (RPI); Meunier, V. [Rensselaer Polytechnic Institute (RPI)

    2014-01-01

    The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality, such as efficient energy conversion/storage/transmission, over multiple length scales. This demand can potentially be realized by harnessing the power of self-assembly a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately non-covalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, e.g., lithographic approach. However, while function (e.g., charge mobility) in simple systems such as single crystals can often be predicted, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale (long-range) order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various substrates. Typically molecular self-assembly involves poorly understood non-covalent intermolecular and substrate-molecule interactions compounded by local and/or collective influences from the substrate atomic lattice (symmetry and/or topological features) and electronic structure. Thus, progress towards unraveling the underlying physicochemical processes that control the structure and macroscopic physical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling and simulation with precision synthesis, advanced experimental characterization, and device measurements. In this mode, theory and simulation can greatly accelerate the process of materials discovery by providing atomic level understanding of physicochemical phenomena and for making predictions of trends. In particular, this approach can provide understanding, prediction and exploration of new materials and conditions before they are realized in the lab, to illuminate connections between experimental observations, and help identify new materials for targeted synthesis. Toward this end, Density Functional Theory (DFT) can provide a suitable computational framework for investigating the inter- and intramolecular bonding, molecular conformation, charge and spin configurations that are intrinsic to self-assembly of molecules on substrates. This Account highlights recent advances in using an integrated approach based on DFT and scanning probe microscopy [STM(s), AFM] to study/develop electronic materials formed from the self-assembly of molecules into supramolecular or polymeric architectures on substrates. Here it is the interplay between molecular interactions and surface electrons that is used to control the final architecture and subsequent bulk properties of the two-dimensional patterns/assemblies. Indeed a rich variety of functional energy materials become possible.

  12. Non-degenerate magnetic alignment of self-assembled mesophases Pawel W. Majewski* Chinedum O. Osuji

    E-Print Network [OSTI]

    Haller, Gary L.

    and photonic crystals2­4 to high-density storage media5,6 and templates for materials synthesis.7­9 In many) offer promise as a flexible tool for nanostructure alignment in these systems. They circumvent be conveniently applied over macroscopic length scales (> 10 cm) and to geometries or devices that are ill

  13. Phase Separation and Liquid Crystal Self-Assembly in Surfactant-Inorganic-Solvent Systems

    E-Print Network [OSTI]

    Siperstein, Flor R.

    phases is observed in the phase containing a high surfactant concentration, and the structure on the formation of surfactant-silica liquid crystals and the synthesis of MCM-41 type materials. The effects of temperature and surfactant architecture are also investigated. We show that the increase in surfactant

  14. SHORT PROGRAMS Materials By Design

    E-Print Network [OSTI]

    Entekhabi, Dara

    techniques including 3D printing, self-assembly, microfluidics and other technologies. We will distribute and analyze material samples designed based on multiscale simulations and manufactured using 3D printing

  15. Arc Plasma Synthesis of Nanostructured Materials: Techniques and Innovations

    SciTech Connect (OSTI)

    Das, A. K.; Bhoraskar, S. V.; Kakati, M.; Karmakar, Soumen

    2008-10-23

    Arc plasma aided synthesis of nanostructured materials has the potential of producing complex nano phase structures in bulk quantities. Successful implementation of this potential capability to industrial scale nano generation needs establishment of a plasma parameter control regime in terms of plasma gas, flow pattern, pressure, local temperature and the plasma fields to obtain the desired nano phase structures. However, there is a need to design innovative in situ experiments for generation of an extensive database and subsequently to correlate plasma parameters to the size, shape and phase of the generated nanostructures. The present paper reviews the various approaches utilized in the field of arc plasma nanosynthesis in general and in the authors' laboratories in particular. Simple plasma diagnostics and monitoring schemes have been used in conjunction with nano materials characterization tools to explore the possibility of controlling the size, shape, yield and phase composition of the arc generated nanostructures through plasma control. Case studies related to synthesis of AlN, Al2O3, TiO2, ZrO2, ZnO), magnetic (e.g. {gamma}-Fe2O3, Fe3O4) and single elemental materials (e.g. carbon nanotubes) are presented.

  16. Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly

    E-Print Network [OSTI]

    Johanna E. Baschek; Heinrich C. R. Klein; Ulrich S. Schwarz

    2015-01-31

    In order to replicate within their cellular host, many viruses have developed self-assembly strategies for their capsids which are sufficiently robust as to be reconstituted in vitro. Mathematical models for virus self-assembly usually assume that the bonds leading to cluster formation have constant reactivity over the time course of assembly (direct assembly). In some cases, however, binding sites between the capsomers have been reported to be activated during the self-assembly process (hierarchical assembly). In order to study possible advantages of such hierarchical schemes for icosahedral virus capsid assembly, we use Brownian dynamics simulations of a patchy particle model that allows us to switch binding sites on and off during assembly. For T1 viruses, we implement a hierarchical assembly scheme where inter-capsomer bonds become active only if a complete pentamer has been assembled. We find direct assembly to be favorable for reversible bonds allowing for repeated structural reorganizations, while hierarchical assembly is favorable for strong bonds with small dissociation rate, as this situation is less prone to kinetic trapping. However, at the same time it is more vulnerable to monomer starvation during the final phase. Increasing the number of initial monomers does have only a weak effect on these general features. The differences between the two assembly schemes become more pronounced for more complex virus geometries, as shown here for T3 viruses, which assemble through homogeneous pentamers and heterogeneous hexamers in the hierarchical scheme. In order to complement the simulations for this more complicated case, we introduce a master equation approach that agrees well with the simulation results.

  17. Controlling the self-assembly of binary copolymer mixtures in solution through molecular architecture

    E-Print Network [OSTI]

    M. J. Greenall; P. Schuetz; S. Furzeland; D. Atkins; D. M. A. Buzza; M. F. Butler; T. C. B. McLeish

    2011-04-13

    We present a combined experimental and theoretical study on the role of copolymer architecture in the self-assembly of binary PEO-PCL mixtures in water-THF, and show that altering the chain geometry and composition of the copolymers can control the form of the self-assembled structures and lead to the formation of novel aggregates. First, using transmission electron microscopy and turbidity measurements, we study a mixture of sphere-forming and lamella-forming PEO-PCL copolymers, and show that increasing the molecular weight of the lamella-former at a constant ratio of its hydrophilic and hydrophobic components leads to the formation of highly-curved structures even at low sphere-former concentrations. This result is explained using a simple argument based on the effective volumes of the two sections of the diblock and is reproduced in a coarse-grained mean-field model: self-consistent field theory (SCFT). Using further SCFT calculations, we study the distribution of the two copolymer species within the individual aggregates and discuss how this affects the self-assembled structures. We also investigate a binary mixture of lamella-formers of different molecular weights, and find that this system forms vesicles with a wall thickness intermediate to those of the vesicles formed by the two copolymers individually. This result is also reproduced using SCFT. Finally, a mixture of sphere-former and a copolymer with a large hydrophobic block is shown to form a range of structures, including novel elongated vesicles.

  18. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect (OSTI)

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  19. Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials

    E-Print Network [OSTI]

    Parikh, Atul N.

    Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials Atul N-directing agents in the synthesis of microporous materials. The method relies on the exposure of the sample. This method is applicable in making new materials from organic­inorganic pre- cursors and holds promise

  20. Method for selective immobilization of macromolecules on self assembled monolayer surfaces

    DOE Patents [OSTI]

    Laskin, Julia (Richland, WA); Wang, Peng (Billerica, MA)

    2011-11-29

    Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.

  1. Predicting self-assembled patterns on spheres with multi-component coatings

    E-Print Network [OSTI]

    Erik Edlund; Oskar Lindgren; Martin Nilsson Jacobi

    2013-10-14

    Interactions between the components in many-body systems can give rise to spontaneous formation of complex structures. Usually very little is known about the connection between the interactions and the resulting structure. Here we present a theory for self-assembling pattern formation in multi-component systems, formulated as an analytic technique that predicts morphologies directly from the interactions in an effective model. As a demonstration we apply the method to a model of alkanethiols on spherical gold particles, successfully predicting its morphologies and transitions as a function of the interaction parameters. This system is interesting because it has been suggested to provide an effective route to produce patchy colloids.

  2. The nucleation and growth of calcium oxalate monohydrate on self- assembled monolayers (SAMs)

    SciTech Connect (OSTI)

    Campbell, A.A.; Tarasevich, B.J.; Graff, G.L.; Fryxell, G.E.; Rieke, P.C.

    1992-05-01

    A physical chemical approach was used to study calcium oxalate monohydrate (COM) nucleation and growth on various organic interfaces. Self-assembling monolayers (SAMs), containing derivatized organic functional groups, were designed to mimic various amino acid residues present in both urine and stone matrix macromolecules. Derivatized surfaces include SAMs with terminal methyl, bromo, imidazole, and thiazolidine-carboxylic acid functional groups. Pronounced differences in COM deposition were observed for the various interfaces with the imidazole and thiazolidine surfaces having the greatest effect and the methyl and bromo groups having little or no nucleating potential.

  3. Covalent Immobilization of Peptides on Self-Assembled Monolayer Surfaces Using Soft-Landing of Mass-Selected Ions

    SciTech Connect (OSTI)

    Wang, Peng; Hadjar, Omar; Laskin, Julia

    2007-06-23

    Covalent immobilization of peptides on solid supports plays an important role in biochemistry with applications ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins to development of novel biosensors and substrates for improved cell adhesion. Self-assembled monolayer surfaces (SAMs) provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. Existing techniques for linking peptides to SAMs are based on solution-phase synthetic strategies and require relatively large quantities of purified material. Here, we report a novel approach for highly selective covalent binding of peptides to SAMs using soft-landing (SL) of mass-selected ions. SL is defined as intact deposition of ions onto suitable substrates at hyperthermal (<100 eV) energies.Recent studies have demonstrated that SAMs are excellent deposition targets for SL due to their ability to dissipate kinetic energies of the projectiles and their efficiency in trapping captured species. It has been proposed that SL could be utilized for controlled preparation of protein arrays.

  4. Shock-induced synthesis of high temperature superconducting materials

    DOE Patents [OSTI]

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  5. Matching field effects at tesla-level magnetic fields in critical current density in high-Tc superconductors containing self-assembled columnar defects

    SciTech Connect (OSTI)

    Sinclair, J. [University of Tennessee, Knoxville (UTK); Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Wee, Sung Hun [ORNL; Varanasi, C. V. [University of Dayton Research Institute; Thompson, James R [ORNL; Christen, David K [ORNL

    2012-01-01

    We have investigated the superconductive transport properties of YBa2Cu3O7 films containing self-assembled columnar arrays of second phase SrZrO3 or BaSnO3 precipitates. A matching condition between columnar pinning sites (aligned at or near the c axis) and external magnetic flux, tilted with respect to them, is identified in the critical current JC.H/ data. The results for the material containing SrZrO3-based pins are analyzed within a simple intuitive model. At matching, the critical current is enhanced above the model prediction. In complementary contact-free investigations of BaSnO3-doped material, matching effects are observed over a wide range of temperatures in the field dependence of JC.H/. The deduced matching fields agree reasonably well with the densities of columnar pins directly observed by scanning electron microscopy.

  6. Nano-Structured Mesoporous Silica Wires with Intra-Wire Lamellae via Evaporation-Induced Self-Assembly in Space-Confined Channels

    SciTech Connect (OSTI)

    Hu, Michael Z. [ORNL; Shi, Donglu [University of Cincinnati; Blom, Douglas Allen [ORNL

    2014-01-01

    Evaporation-induced self-assembly (EISA) of silica sol-gel ethanol-water solution mixtures with block-copolymer were studied inside uniform micro/nano channels. Nano-structured mesoporous silica wires, with various intra-wire self-assembly structures including lamellae, were prepared via EISA process but in space-confined channels with the diameter ranging from 50 nm to 200 nm. Membranes made of anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC) were utilized as the arrays of space-confined channels (i.e., 50, 100, and 200-nm EPC and 200-nm AAO) for infiltration and drying of mixture solutions; these substrate membranes were submerged in mixture solutions consisting of a silica precursor, a structure-directing agent, ethanol, and water. After the substrate channels were filled with the solution under vacuum impregnation, the membrane was removed from the solution and dried in air. The silica precursor used was tetra-ethyl othosilicate (TEOS), and the structure-directing agent employed was triblock copolymer Pluronic-123 (P123). It was found that the formation of the mesoporous nanostructures in silica wires within uniform channels were significantly affected by the synthesis conditions including (1) pre-assemble TEOS aging time, (2) the evaporation rate during the vacuum impregnation, and (3) the air-dry temperature. The obtained intra-wire structures, including 2D-hexagonal rods and lamellae, were studied by scanning transmission electron microscopy (STEM). A steric hindrance effect seems to explain well the observed polymer-silica mesophase formation tailored by TEOS aging time. The evaporation effect, air-drying effect, and AAO-vs-EPC substrate effect on the mesoporous structure of the formed silica wires were also presented and discussed.

  7. The structure and dynamics of self-assembling colloidal monolayers in oscillating magnetic fields

    E-Print Network [OSTI]

    Alison E. Koser; Nathan C. Keim; Paulo E. Arratia

    2013-11-18

    Many fascinating phenomena such as large-scale collective flows, enhanced fluid mixing and pattern formation have been observed in so-called active fluids, which are composed of particles that can absorb energy and dissipate it into the fluid medium. For active particles immersed in liquids, fluid-mediated viscous stresses can play an important role on the emergence of collective behavior. Here, we experimentally investigate their role in the dynamics of self-assembling magnetically-driven colloidal particles which can rapidly form organized hexagonal structures. We find that viscous stresses reduce hexagonal ordering, generate smaller clusters, and significantly decrease the rate of cluster formation, all while holding the system at constant number density. Furthermore, we show that time and length scales of cluster formation depend on the Mason number (Mn), or ratio of viscous to magnetic forces, scaling as t / Mn and L / Mn^(1/2). Our results suggest that viscous stresses hinder collective behavior in a self-assembling colloidal system.

  8. Molecular Behavior of DNA Origami in Higher-Order Self-Assembly

    SciTech Connect (OSTI)

    Li, Zhe; Liu, Minghui; Lei, Wang; Nangreave, Jeanette; Yan, Hao; Liu, Yan

    2010-09-08

    DNA-based self-assembly is a unique method for achieving higher-order molecular architectures made possible by the fact that DNA is a programmable information-coding polymer. In the past decade, two main types of DNA nanostructures have been developed: branch-shaped DNA tiles with small dimensions (commonly up to ~20 nm) and DNA origami tiles with larger dimensions (up to ~100 nm). Here we aimed to determine the important factors involved in the assembly of DNA origami superstructures. We constructed a new series of rectangular-shaped DNA origami tiles in which parallel DNA helices are arranged in a zigzag pattern when viewed along the DNA helical axis, a design conceived in order to relax an intrinsic global twist found in the original planar, rectangular origami tiles. Self-associating zigzag tiles were found to form linear arrays in both diagonal directions, while planar tiles showed significant growth in only one direction. Although the series of zigzag tiles were designed to promote two-dimensional array formation, one-dimensional linear arrays and tubular structures were observed instead. We discovered that the dimensional aspect ratio of the origami unit tiles and intertile connection design play important roles in determining the final products, as revealed by atomic force microscopy imaging. This study provides insight into the formation of higher-order structures from self-assembling DNA origami tiles, revealing their unique behavior in comparison with conventional DNA tiles having smaller dimensions.

  9. Cooperative, Multicentered CH/ Interaction-Controlled Supramolecular Self-Assembly Processes

    SciTech Connect (OSTI)

    Li, Qing; Han, Chengbo; Horton, Scott R; Fuentes-Cabrera, Miguel A; Sumpter, Bobby G; Lu, Wenchang; Bernholc, J.; Maksymovych, Petro; Pan, Minghu

    2012-01-01

    Supramolecular self-assembly on well-defined surfaces provides access to a multitude of nanoscale architectures, including clusters of distinct symmetry and size. The driving forces underlying supramolecular structures generally involve both graphoepitaxy and weak directional nonconvalent interactions. Here we show that functionalizing a benzene molecule with an ethyne group introduces attractive interactions in a 2D geometry, which would otherwise be dominated by intermolecular repulsion. Furthermore, the attractive interactions enable supramolecular self-assembly, wherein a subtle balance between very weak CH/{pi} bonding and molecule-surface interactions produces a well-defined 'magic' dimension and chirality of supramolecular clusters. The nature of the process is corroborated by extensive scanning tunneling microscopy/spectroscopy (STM/S) measurements and ab initio calculations, which emphasize the cooperative, multicenter characters of the CH/{pi} interaction. This work points out new possibilities for chemical functionalization of {pi}-conjugated hydrocarbon molecules that may allow for the rational design of supramolecular clusters with a desired shape and size.

  10. Testing a Novel Self-Assembling Data Paradigm in the Context of IACT Data

    E-Print Network [OSTI]

    Amanda Weinstein; Lucy Fortson; Thomas Brantseg; Cameron Rulten; Robyn Lutz; Jarvis Haupt; Mojtaba Kakhodaie Elyaderani; John Quinn

    2015-09-07

    The process of gathering and associating data from multiple sensors or sub-detectors due to a common physical event (the process of event-building) is used in many fields, including high-energy physics and $\\gamma$-ray astronomy. Fault tolerance in event-building is a challenging problem that increases in difficulty with higher data throughput rates and increasing numbers of sub-detectors. We draw on biological self-assembly models in the development of a novel event-building paradigm that treats each packet of data from an individual sensor or sub-detector as if it were a molecule in solution. Just as molecules are capable of forming chemical bonds, "bonds" can be defined between data packets using metadata-based discriminants. A database -- which plays the role of a beaker of solution -- continually selects pairs of assemblies at random to test for bonds, which allows single packets and small assemblies to aggregate into larger assemblies. During this process higher-quality associations supersede spurious ones. The database thereby becomes fluid, dynamic, and self-correcting rather than static. We will describe tests of the self-assembly paradigm using our first fluid database prototype and data from the VERITAS $\\gamma$-ray telescope.

  11. Chemical Functionalization, Self-Assembly, and Applications of Nanomaterials and Nanocomposites

    SciTech Connect (OSTI)

    Jiao, Tifeng [Yanshan University; Yan, Xingbin [Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Balan, Lavinia [French National Centre for Scientific Research (CNRS), Institute of Materials Science of Mulhouse (IS2M), France; Stepanov, Andrey [Russian Academy of Sciences (RAS), Kazan Physical-Technical Institute, Russia; Chen, Xinqing [Hong Kong University of Science and Technology, Hong Kong; Hu, Michael Z. [ORNL

    2014-01-01

    This special issue addresses the research studies on chemical functionalization, self-assembly, and applications of nanomaterials and nanocomposites. It contains twentyfour articles including two reviews and twenty-two research articles. It is used to create new functional nanomaterials and nanocomposites with a variety of sizes and morphologies such as Zn/Al layered double hydroxide, tin oxide nanowires, FeOOH-modified anion resin, Au nanoclusters silica composite nanospheres, Ti-doped ZnO sol-composite films, TiO2/ZnO composite, graphene oxide nanocomposites, LiFePO4/C nanocomposites, and chitosan nanoparticles. These nanomaterials and nanocomposites have widespread applications in tissue engineering, antitumor, sensors, photoluminescence, electrochemical, and catalytic properties. In addition, this themed issue includes some research articles about self-assembly systems covering organogels and Langmuir films. Furthermore, B. Blasiak et al. performed a literature survey on the recent advances in production, functionalization, toxicity reduction, and application of nanoparticles in cancer diagnosis, treatment, and treatment monitoring. P. Colson et al. performed a literature survey on the recent advances in nanosphere lithography due to its compatibility with wafer-scale processes as well as its potential to manufacture a wide variety of homogeneous one-, two-, or three-dimensional nanostructures.

  12. Self-Assembled Silica Nano-Composite Polymer Electrolytes: Synthesis, Rheology & Electrochemistry

    SciTech Connect (OSTI)

    Khan, Saad A.: Fedkiw Peter S.; Baker, Gregory L.

    2007-01-24

    The ultimate objectives of this research are to understand the principles underpinning nano-composite polymer electrolytes (CPEs) and facilitate development of novel CPEs that are low-cost, have high conductivities, large Li+ transference numbers, improved electrolyte-electrode interfacial stability, yield long cycle life, exhibit mechanical stability and are easily processable. Our approach is to use nanoparticulate silica fillers to formulate novel composite electrolytes consisting of surface-modified fumed silica nano-particles in polyethylene oxides (PEO) in the presence of lithium salts. We intend to design single-ion conducting silica nanoparticles which provide CPEs with high Li+ transference numbers. We also will develop low-Mw (molecular weight), high-Mw and crosslinked PEO electrolytes with tunable properties in terms of conductivity, transference number, interfacial stability, processability and mechanical strength

  13. Synthesis, Self-Assembly, and Switching of One-Dimensional Nanostructures from New Crowded Aromatics

    E-Print Network [OSTI]

    in a face- to-face geometry including semiconductors,2 ionic conductors,3 light emitting diodes,4, 2252- 68. (2) (a) Boden, N.; Movaghar, B. Handbook of Liquid Crystals; Wiley-VCH: New York, 1998; Vol

  14. Synthesis and characterization of activated carbo-aluminosilicate material from oil shale

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    Synthesis and characterization of activated carbo-aluminosilicate material from oil shale Reyad activated carbo-aluminosilicate materials were prepared from oil shale by chemical activation. The chemical Published by Elsevier Inc. Keywords: Synthesis; Activated carbo-aluminosilicate; Adsorption; Oil shale

  15. Alignment of benzene thin films on self-assembled monolayers by surface templating Hanqiu Yuan, K.D. Gibson, Daniel R. Killelea 1

    E-Print Network [OSTI]

    Sibener, Steven

    Alignment of benzene thin films on self-assembled monolayers by surface templating Hanqiu Yuan, K Keywords: Self-assembled monolayers Benzene adsorption Surface templating Vapor-phase deposition of the initial interface. In particular, we have examined benzene growth on gold, alkanethiol and phenoxy

  16. Self-Assembly of Conjugated Polymers at the Air/Water Interface. Structure and Properties of Langmuir and Langmuir-Blodgett Films

    E-Print Network [OSTI]

    McCullough, Richard D.

    Self-Assembly of Conjugated Polymers at the Air/Water Interface. Structure and Properties direct structural evidence describing conjugated polymer self-assembly at the air-water interface of amphiphilic regioregular polythiophenes (e.g., poly(3-dodecyl-3-(2,5,8- trioxanonyl)-2,5-bithiophene), polymer

  17. Surface acoustic wave controlled carrier injection into self-assembled quantum dots and quantum posts

    E-Print Network [OSTI]

    Hubert J. Krenner; Stefan Völk; Florian J. R. Schülein; Florian Knall; Achim Wixforth; Dirk Reuter; Andreas D. Wieck; Hyochul Kim; Tuan A. Truong; Pierre M. Petroff

    2011-10-20

    We report on recent progress in the acousto-electrical control of self-assembled quantum dot and quantum post using radio frequency surface acoustic waves (SAWs). We show that the occupancy state of these optically active nanostructures can be controlled via the SAW-induced dissociation of photogenerated excitons and the resulting sequential bipolar carrier injection which strongly favors the formation of neutral excitons for quantum posts in contrast to conventional quantum dots. We demonstrate high fidelity preparation of the neutral biexciton which makes this approach suitable for deterministic entangled photon pair generation. The SAW driven acoustic charge conveyance is found to be highly efficient within the wide quantum well surrounding the quantum posts. Finally we present the direct observation of acoustically triggered carrier injection into remotely positioned, individual quantum posts which is required for a low-jitter SAW-triggered single photon source.

  18. Effects of self-assembled monolayer and PFPE lubricant on wear characteristics of flat silicon tips.

    SciTech Connect (OSTI)

    Kim, H. J.; Jang, C. E.; Kim, D. E.; Kim, Y. K.; Choa, S. H.; Hong, S.; Materials Science Division; Yonsei Univ.; Samsung Adv. Inst. Science and Technology; Seoul National Univ. of Technology

    2009-01-01

    The effects of self-assembled monolayer (SAM) and perfluoropolyether (PFPE) lubricant on the wear characteristics of flat silicon tips were investigated. The wear test consisted of sliding the silicon tips fabricated on a flat silicon specimen against SAM and PFPE (Z-tetraol) coated silicon (100) wafer. The tips were slid at a low speed for about 15 km under an applied load of 39.2 {micro}N. The wear volume of the tip was obtained by measuring the tip profile using an Atomic Force Microscope (AFM). It was found that the coatings were effective in reducing the wear of the tips by an order of magnitude from 10{sup -6} to 10{sup -7}.

  19. Pseudorotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinrück, H. -G.; Magerl, A.; Deutsch, M.; Ocko, B. M.

    2014-10-06

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in themore »crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. As a result, the increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.« less

  20. Pseudo-rotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    SciTech Connect (OSTI)

    Steinruck, H. -G.; Ocko, B. M.; Magerl, A.; Deutsch, M.

    2014-10-06

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in the crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. The increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.

  1. Pseudo-rotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    SciTech Connect (OSTI)

    Steinruck, H. -G. [Univ. of Erlangen-Nurnberg, Erlangen (Germany); Ocko, B. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Magerl, A. [Univ. of Erlangen-Nurnberg, Erlangen (Germany); Deutsch, M. [Bar-Ilan Univ., Ramat-Gan (Israel)

    2014-10-01

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in the crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. The increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.

  2. ELEMENTARY APPROACH TO SELF-ASSEMBLY AND ELASTIC PROPERTIES OF RANDOM COPOLYMERS

    SciTech Connect (OSTI)

    S. M. CHITANVIS

    2000-10-01

    The authors have mapped the physics of a system of random copolymers onto a time-dependent density functional-type field theory using techniques of functional integration. Time in the theory is merely a label for the location of a given monomer along the extent of a flexible chain. We derive heuristically within this approach a non-local constraint which prevents segments on chains in the system from straying too far from each other, and leads to self-assembly. The structure factor is then computed in a straightforward fashion. The long wave-length limit of the structure factor is used to obtain the elastic modulus of the network. It is shown that there is a surprising competition between the degree of micro-phase separation and the elastic moduli of the system.

  3. Final LDRD report : infrared detection and power generation using self-assembled quantum dots.

    SciTech Connect (OSTI)

    Cederberg, Jeffrey George; Ellis, Robert; Shaner, Eric Arthur

    2008-02-01

    Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.

  4. Self-assembling multiblock amphiphiles: Molecular design, supramolecular structure, and mechanical properties

    E-Print Network [OSTI]

    Mortazavi, Hamed

    2015-01-01

    We perform off-lattice, canonical ensemble molecular dynamics simulations of the self-assembly of long segmented copolymers consisting of alternating, tunably attractive and hydrophobic {\\em binder} domains, connected by hydrophilic {\\em linker} chains whose length may be separately controlled. In such systems, the molecular design of the molecule directly determines the balance between energetic and entropic tendencies. We determine the structural phase diagram of this system, which shows collapsed states (dominated by the attractive linkers' energies), swollen states (dominated by the random coil linkers' entropies) as well as intermediate network hydrogel phases, where the long molecules exhibit partial collapse to a {\\em single molecule network} state. We present an analysis of the connectivity and spatial structure of this network phase, and relate its basic topology to mechanical properties, using a modified rubber elasticity model. The mechanical properties are further characterized in a direct computa...

  5. Pseudo-rotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinruck, H. -G.; Ocko, B. M.; Magerl, A.; Deutsch, M.

    2014-10-06

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in themore »crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. The increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.« less

  6. Free-Energy Functional Method for Inverse Problem of Self Assembly

    E-Print Network [OSTI]

    Masashi Torikai

    2015-04-09

    A new theoretical approach is described for the inverse self-assembly problem, i.e., the reconstruction of the interparticle interaction from a given structure. This theory is based on the variational principle for the functional that is constructed from a free energy functional in combination with Percus's approach [J. Percus, Phys. Rev. Lett. vol.8, 462 (1962)]. In this theory, the interparticle interaction potential for the given structure is obtained as the function that maximizes the functional. As test cases, the interparticle potentials for two-dimensional crystals, such as square, honeycomb, and kagome lattices, are predicted by this theory. The formation of each target lattice from an initial random particle configuration in Monte Carlo simulations with the predicted interparticle interaction indicates that the theory is successfully applied to the test cases.

  7. Biologically-Inspired Self-Assembly of Two-Dimensional Shapes Using Global-to-Local Compilation

    E-Print Network [OSTI]

    Batzoglou, Serafim

    Biologically-Inspired Self-Assembly of Two-Dimensional Shapes Using Global-to-Local Compilation by decentralized, identically- programmed agents. Our system compiles a prede- termined global shape into a program. In the global- to-local compilation phase, an input shape is de- composed into a network of covering

  8. Self-Assembly of Virus-Structured High Surface Area Nanomaterials and Their Application as Battery Electrodes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Self-Assembly of Virus-Structured High Surface Area Nanomaterials and Their Application as Battery mosaic Virus (TMV) templates. Rod-shaped TMV templates (300 × 18 nm) engineered to encode unique cysteine-fold increase in surface area. Electroless deposition of ionic metals onto surface-assembled virus

  9. Optimal Efficiency of Self-Assembling Light-Harvesting Arrays Ji-Hyun Kim and Jianshu Cao*

    E-Print Network [OSTI]

    Cao, Jianshu

    Optimal Efficiency of Self-Assembling Light-Harvesting Arrays Ji-Hyun Kim and Jianshu Cao equation that describes energy transfer over a given lattice, we explore how energy transfer efficiency (derived in Appendix A) for efficiency shows a steep increase with a D-to-A transfer rate when

  10. Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self-Assembled Alkanethiols

    E-Print Network [OSTI]

    Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self each atomic layer deposition (ALD) cycle to an analytical island-growth model that enables moderately optimized conditions. KEYWORDS: atomic layer deposition, self-assembled monolayers, quartz crystal

  11. Self-Assembly of DNA Double-Double Crossover Complexes into High-Density, Doubly Connected, Planar Structures

    E-Print Network [OSTI]

    Brun, Yuriy

    consisting of two DNA double helices connected by two reciprocal exchanges (crossovers). In 1998, Winfree et connected by a total of six reciprocal exchanges. We use DDX complexes to self-assemble high-density, doubly reciprocal exchanges connecting each pair of adjacent helices. Figure 1b shows how the complexes might tile

  12. Effects of Metal Coating on Self-Assembled Monolayers on Gold. 1. Copper on Dodecanethiol and Octadecanethiol

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Effects of Metal Coating on Self-Assembled Monolayers on Gold. 1. Copper on Dodecanethiol on copper-coated SAMsconductedinourlaboratories.2 Inourpreviouswork, we fabricated gold-conjugated oligomer to characterize the SAM after the copper coating process. Prior studies on SAM/metal interfaces have been reported

  13. Material synthesis and hydrogen storage of palladium-rhodium alloy.

    SciTech Connect (OSTI)

    Lavernia, Enrique J.; Yang, Nancy Y. C.; Ong, Markus D.

    2011-08-01

    Pd and Pd alloys are candidate material systems for Tr or H storage. We have actively engaged in material synthesis and studied the material science of hydrogen storage for Pd-Rh alloys. In collaboration with UC Davis, we successfully developed/optimized a supersonic gas atomization system, including its processing parameters, for Pd-Rh-based alloy powders. This optimized system and processing enable us to produce {le} 50-{mu}m powders with suitable metallurgical properties for H-storage R&D. In addition, we studied hydrogen absorption-desorption pressure-composition-temperature (PCT) behavior using these gas-atomized Pd-Rh alloy powders. The study shows that the pressure-composition-temperature (PCT) behavior of Pd-Rh alloys is strongly influenced by its metallurgy. The plateau pressure, slope, and H/metal capacity are highly dependent on alloy composition and its chemical distribution. For the gas-atomized Pd-10 wt% Rh, the absorption plateau pressure is relatively high and consistent. However, the absorption-desorption PCT exhibits a significant hysteresis loop that is not seen from the 30-nm nanopowders produced by chemical precipitation. In addition, we observed that the presence of hydrogen introduces strong lattice strain, plastic deformation, and dislocation networking that lead to material hardening, lattice distortions, and volume expansion. The above observations suggest that the H-induced dislocation networking is responsible for the hysteresis loop seen in the current atomized Pd-10 wt% Rh powders. This conclusion is consistent with the hypothesis suggested by Flanagan and others (Ref 1) that plastic deformation or dislocations control the hysteresis loop.

  14. Self-Assembled Materials as Novel Nanotechnology-Enabled Ultrafiltration Membranes

    E-Print Network [OSTI]

    Pendergast, MaryTheresa Monahan

    2014-01-01

    RO membranes for seawater desalination, J. Membrane Sci.J. Diniz da Costa, Seawater desalination performance of MFImembranes for seawater desalination, Desalination, 1994, 96,

  15. Manipulating Conjugation in electronic polymers and graphitic materials: chemosensors, precursor routes, and self-assembly

    E-Print Network [OSTI]

    Weis, Jonathan G. (Jonathan Garrett)

    2015-01-01

    In Chapter 1, we synthesize dithienobenzotropone-based conjugated alternating copolymers by direct arylation polycondensation. Post-polymerization hydride reduction furnishes cross-conjugated copolymeric hydrogels that ...

  16. MoS{sub 2} nanotube exfoliation as new synthesis pathway to molybdenum blue

    SciTech Connect (OSTI)

    Visic, B.; Gunde, M. Klanjsek; Kovac, J.; Iskra, I.; Jelenc, J.; Remskar, M.; Centre of Excellence Namaste, Jamova cesta 39, SI-1000 Ljubljana

    2013-02-15

    Graphical abstract: . Display Omitted Highlights: ? New synthesis approach to obtaining molybdenum blue via exfoliated MoS{sub 2} nanotubes. ? Material is prone to self assembly and is stable in high vacuum. ? Molecules are as small as 2 nm and their clusters are up to tens of nanometers. ? Change in absorption and oxidation states from the precursor MoS{sub 2}. -- Abstract: Molybdenum blue-type materials are usually obtained by partially reducing Mo{sup VI+} in acidic solutions, while in the presented method it is formed in ethanol solution of exfoliated MoS{sub 2} nanotubes, where the MoS{sub 2} flakes are the preferential location for their growth. Material was investigated by means of scanning electron and atomic force microscopy, showing the structure and self assembly, while also confirming that it is stable in high vacuum with molecules as small as 1.6 nm and the agglomerates of few tens of nanometres. The ultraviolet–visible and photoelectron spectrometry show the change in absorption properties and oxidation states from MoS{sub 2} structure to molybdenum blue, while the presence of sulphur suggests that this is a new type of molybdenum blue material.

  17. Combustion/micropyretic synthesis of atomically thin two-dimensional materials for energy applications

    E-Print Network [OSTI]

    Mukasyan, Alexander

    Combustion/micropyretic synthesis of atomically thin two-dimensional materials for energy unique inexpensive combustion-based approaches have been developed to prepare the nanomaterials. This article specifically aims to be an overview of current trends and as a perspective of combustion synthesis

  18. JOURNAL OF MATERIALS SCIENCE 36 (2001) 77 86 Synthesis of yttria-doped strontium-zirconium

    E-Print Network [OSTI]

    Iglesia, Enrique

    2001-01-01

    JOURNAL OF MATERIALS SCIENCE 36 (2001) 77­ 86 Synthesis of yttria-doped strontium-zirconium oxide zirconium yttrium oxide, SrZr1-x Yx O3-x/2, forms crystallites with perovskite structure, which se

  19. UNIVERSITY OF CALIFORNIA, SAN DIEGO Towards Realistic Image Synthesis of Scattering Materials

    E-Print Network [OSTI]

    Kazhdan, Michael

    UNIVERSITY OF CALIFORNIA, SAN DIEGO Towards Realistic Image Synthesis of Scattering Materials, and it is acceptable in quality and form for publication on microfilm: Chair University of California, San Diego 2006 Radiative Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 The Radiative Transport

  20. What happens to allochthonous material that falls into streams? A synthesis of new and published information

    E-Print Network [OSTI]

    Hutchens, John

    What happens to allochthonous material that falls into streams? A synthesis of new and published, Blacksburg, Virginia, U.S.A. SUMMARY 1. One of two things can happen to allochthonous material once it enters allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2

  1. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials

    E-Print Network [OSTI]

    Cho, Jaephil

    Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials Hyesun materials for lithium batteries were prepared using KIT-6 and SBA-15 SiO2 templates as an anode material for lithium batteries due to its high capacity (>600 mAh gĄ1 ) compared with graphite

  2. Laterally Mobile, Functionalized Self-Assembled Monolayers at the Fluorous?Aqueous Interface in a Plug-Based Microfluidic System: Characterization and Testing with Membrane Protein Crystallization

    SciTech Connect (OSTI)

    Kreutz, Jason E.; Li, Liang; Roach, L. Spencer; Hatakeyama, Takuji; Ismagilov, Rustem F.; (UC)

    2009-11-04

    This paper describes a method to generate functionalizable, mobile self-assembled monolayers (SAMs) in plug-based microfluidics. Control of interfaces is advancing studies of biological interfaces, heterogeneous reactions, and nanotechnology. SAMs have been useful for such studies, but they are not laterally mobile. Lipid-based methods, though mobile, are not easily amenable to setting up the hundreds of experiments necessary for crystallization screening. Here we demonstrate a method, complementary to current SAM and lipid methods, for rapidly generating mobile, functionalized SAMs. This method relies on plugs, droplets surrounded by a fluorous carrier fluid, to rapidly explore chemical space. Specifically, we implemented his-tag binding chemistry to design a new fluorinated amphiphile, RfNTA, using an improved one-step synthesis of RfOEG under Mitsunobu conditions. RfNTA introduces specific binding of protein at the fluorous-aqueous interface, which concentrates and orients proteins at the interface, even in the presence of other surfactants. We then applied this approach to the crystallization of a his-tagged membrane protein, Reaction Center from Rhodobacter sphaeroides, performed 2400 crystallization trials, and showed that this approach can increase the range of crystal-producing conditions, the success rate at a given condition, the rate of nucleation, and the quality of the crystal formed.

  3. The influence of self-assembly behavior of nanoparticles on the dielectric polymer composites

    SciTech Connect (OSTI)

    Lu, Xin; Li, Weiping, E-mail: liweiping@nbu.edu.cn; Wang, Tingting; Jiang, Long; Luo, Laihui; Hua, Dayin; Zhu, Yuejin [Department of Microelectronic Science and Engineering, Facuty of Science, Ningbo University, Ningbo, 315211 (China)] [Department of Microelectronic Science and Engineering, Facuty of Science, Ningbo University, Ningbo, 315211 (China)

    2013-11-15

    To clearify the influence of the distribution of the conductive nanoparticles on the dielectric properties of the corresponding polymer composites, the microstructure and dielectric character of the composites based on the oleic acid modified ferroferric oxide and polyvinylidene fluoride (PVDF) polymer have been studied experimentally. It is found that these composites exhibit a normal percolative phase transition over the filler content from insulator to conductor, consistent with the classical percolation theory. However, when the percentage of fillers is at a certain value which is below the percolation threshold, these nanoparticles can assemble into a special porous structure in the PVDF matrix, associated with the enhancement of dielectric constant at low frequency. In addition, the controllable dispersion of conducting nanoparticles in a polymer matrix can prevent premature agglomeration at low filling fractions and avoid the appearance of anomalously early percolation. Therefore, the self-assembly behavior of nanoparticles can be beneficial to preparation of the high dielectric constant and low loss composites for the application of electric energy storage.

  4. Testing a Novel Self-Assembling Data Paradigm in the Context of IACT Data

    E-Print Network [OSTI]

    Weinstein, Amanda; Brantseg, Thomas; Rulten, Cameron; Lutz, Robyn; Haupt, Jarvis; Elyaderani, Mojtaba Kakhodaie; Quinn, John

    2015-01-01

    The process of gathering and associating data from multiple sensors or sub-detectors due to a common physical event (the process of event-building) is used in many fields, including high-energy physics and $\\gamma$-ray astronomy. Fault tolerance in event-building is a challenging problem that increases in difficulty with higher data throughput rates and increasing numbers of sub-detectors. We draw on biological self-assembly models in the development of a novel event-building paradigm that treats each packet of data from an individual sensor or sub-detector as if it were a molecule in solution. Just as molecules are capable of forming chemical bonds, "bonds" can be defined between data packets using metadata-based discriminants. A database -- which plays the role of a beaker of solution -- continually selects pairs of assemblies at random to test for bonds, which allows single packets and small assemblies to aggregate into larger assemblies. During this process higher-quality associations supersede spurious o...

  5. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    SciTech Connect (OSTI)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2015-11-17

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  6. Self-assembling multiblock amphiphiles: Molecular design, supramolecular structure, and mechanical properties

    E-Print Network [OSTI]

    Hamed Mortazavi; Cornelis Storm

    2015-07-20

    We perform off-lattice, canonical ensemble molecular dynamics simulations of the self-assembly of long segmented copolymers consisting of alternating, tunably attractive and hydrophobic {\\em binder} domains, connected by hydrophilic {\\em linker} chains whose length may be separately controlled. In such systems, the molecular design of the molecule directly determines the balance between energetic and entropic tendencies. We determine the structural phase diagram of this system, which shows collapsed states (dominated by the attractive linkers' energies), swollen states (dominated by the random coil linkers' entropies) as well as intermediate network hydrogel phases, where the long molecules exhibit partial collapse to a {\\em single molecule network} state. We present an analysis of the connectivity and spatial structure of this network phase, and relate its basic topology to mechanical properties, using a modified rubber elasticity model. The mechanical properties are further characterized in a direct computational implementation of oscillatory rheology measurements. We find that it is possible to optimize the mechanical performance by an appropriate choice of molecular design, which may point the way to novel synthetics that make optimal mechanical use of constituent polymers.

  7. The "magic" angle in the self-assembly of colloids suspended in a nematic host phase

    E-Print Network [OSTI]

    Sergej Schlotthauer; Tillmann Stieger; Michael Melle; Marco G. Mazza; Martin Schoen

    2015-05-21

    Using extensive Monte Carlo (MC) simulations of colloids immersed in a nematic liquid crystal we compute an effective interaction potential via the local nematic director field and its associated order parameter. The effective potential consists of a local Landau-de Gennes (LdG) and a Frank elastic contribution. Molecular expressions for the LdG expansion coefficients are obtained via classical density functional theory (DFT). The DFT result for the LdG parameter $A$ is improved by locating the phase transition through finite-size scaling theory. We consider effective interactions between a pair of homogeneous colloids with Boojum defect topology. In particular, colloids attract each other if the angle between their center-of-mass distance vector and the far-field nematic director is about $30^{\\circ}$ which settles a long-standing discrepancy between theory and experiment. Using the effective potential in two-dimensional MC simulations we show that self-assembled structures formed by the colloids are in excellent agreement with experimental data.

  8. Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels

    E-Print Network [OSTI]

    Achyuthan, Komandoor

    2014-01-01

    thereby  cost-­? effective  biofuels  production.   PMID:  effective  lignocellulosic  biofuels.   Achyuthan  KE,  effective   lignocellulosic  biofuels.  Post-­?synthesis  

  9. Steering the Self-Assembly of Octadecylamine Monolayers on Mica by Controlled Mechanical Energy Transfer from the AFM Tip

    SciTech Connect (OSTI)

    Benitez, J.J.; Heredia-Guerrero, J.A.; Salmeron, M.

    2010-06-24

    We have studied the effect of mechanical energy transfer from the tip of an Atomic Force Microscope on the dynamics of self-assembly of monolayer films of octadecylamine on mica. The formation of the self-assembled film proceeds in two successive stages, the first being a fast adsorption from solution that follows a Langmuir isotherm. The second is a slower process of island growth by aggregation of the molecules dispersed on the surface. We found that the dynamics of aggregation can be altered substantially by the addition of mechanical energy into the system through controlled tip-surface interactions. This leads to either the creation of pinholes in existing islands as a consequence of vacancy concentration, and to the assembly of residual molecules into more compact islands.

  10. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    SciTech Connect (OSTI)

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE); (CSIRO/LW)

    2014-09-24

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  11. Characterization of Photo-Induced Charge Transfer and Hot Carrier...

    Office of Scientific and Technical Information (OSTI)

    phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) Word Cloud More Like This Full...

  12. Systems and methods for creation of conducting networks of magnetic particles through dynamic self-assembly process

    DOE Patents [OSTI]

    Snezhko, Oleksiy (Woodridge, IL); Aronson, Igor (Darien, IL); Kwok, Wai-Kwong (Downers Grove, IL)

    2011-01-25

    Self-assembly of magnetic microparticles in AC magnetic fields. Excitation of the system by an AC magnetic field provides a variety of patterns that can be controlled by adjusting the frequency and the amplitude of the field. At low particle densities the low-frequency magnetic excitation favors cluster phase formation, while high frequency excitation favors chains and netlike structures. For denser configurations, an abrupt transition to the network phase was obtained.

  13. Growth and self-assembly of BaTiO{sub 3} nanocubes for resistive switching memory cells

    SciTech Connect (OSTI)

    Chu, Dewei, E-mail: D.Chu@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Lin, Xi; Younis, Adnan [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Li, Chang Ming [Chongqing Key Lab for Advanced Materials and Clean Energies of Techonologies Dean, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing (China); Dang, Feng [Research Center for Materials Back Casting Technology (MBT Center), Nagoya University, Nagoya 464-8603 (Japan); Li, Sean [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)

    2014-06-01

    In this work, the self-assembled BaTiO{sub 3} nanocubes based resistive switching memory capacitors are fabricated with hydrothermal and drop-coating approaches. The device exhibits excellent bipolar resistance switching characteristics with ON/OFF ratio of 58–70, better reliability and stability over various polycrystalline BaTiO{sub 3} nanostructures. It is believed that the inter cube junctions is responsible for such a switching behaviour and it can be described by the filament model. The effect of film thickness on switching ratio (ON/OFF) was also investigated in details. - Graphical abstract: This work describes a novel resistive switching memory cell based on self-assembled BaTiO{sub 3} nanocubes. - Highlights: • BaTiO{sub 3} nanocubes were prepared by one step facile hydrothermal method. • Self-assembled BaTiO{sub 3} nanocubes thin films were obtained by drop-coating approach. • The BaTiO{sub 3} nanocubes show excellent resistive switching properties for memory applications.

  14. Self-Assembly and Chain-Folding in Hybrid Coil-Coil-Cube Triblock Oligomers of Polyethylene-b-Poly(ethylene

    E-Print Network [OSTI]

    Mather, Patrick T.

    Self-Assembly and Chain-Folding in Hybrid Coil-Coil-Cube Triblock Oligomers of Polyethylene-defined oligomeric polyethylene-block-poly(ethylene oxide)- block-polyhedral oligomeric silsesquioxane (PE

  15. Self-Assembly and Self-Metallization of Porphyrin Nanosheets Zhongchun Wang, Zhiyong Li, Craig J. Medforth, and John A. Shelnutt*,,

    E-Print Network [OSTI]

    Shelnutt, John A.

    attractive building blocks for self-assembly because the intimate packing of these aromatic macrocycles can obtained using chilled water (4 °C) (data not shown). Methanol could also be used as the porphyrin solvent

  16. Towards rational design of peptides for selective interaction with inorganic materials

    E-Print Network [OSTI]

    Krauland, Eric Mark

    2007-01-01

    Utilizing molecular recognition and self-assembly, material-specific biomolecules have shown great promise for engineering and ordering materials at the nanoscale. These molecules, inspired from natural biomineralization ...

  17. Electronic structure of self-assembled InAs quantum dots in InP: An anisotropic quantum-dot system

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    Electronic structure of self-assembled InAs quantum dots in InP: An anisotropic quantum-dot system properties of InAs dots in GaAs for example, Refs. 1­3 and InP dots in GaxIn1 xP.4 An interesting quantum dot; revised manuscript received 9 March 1999 The electronic structure of self-assembled InAs quantum dots

  18. A model of HIV budding and self-assembly, role of cell membrane

    E-Print Network [OSTI]

    Rui Zhang; Toan T. Nguyen

    2008-03-19

    Budding from the plasma membrane of the host cell is an indispensable step in the life cycle of the Human Immunodeficiency Virus (HIV), which belongs to a large family of enveloped RNA viruses, retroviruses. Unlike regular enveloped viruses, retrovirus budding happens {\\em concurrently} with the self-assembly of retrovirus protein subunits (Gags) into spherical virus capsids on the cell membrane. Led by this unique budding and assembly mechanism, we study the free energy profile of retrovirus budding, taking into account of the Gag-Gag attraction energy and the membrane elastic energy. We find that if the Gag-Gag attraction is strong, budding always proceeds to completion. During early stage of budding, the zenith angle of partial budded capsids, $\\alpha$, increases with time as $\\alpha \\propto t^{1/3}$. However, when Gag-Gag attraction is weak, a metastable state of partial budding appears. The zenith angle of these partially spherical capsids is given by $\\alpha_0\\simeq(\\tau^2/\\kappa\\sigma)^{1/4}$ in a linear approximation, where $\\kappa$ and $\\sigma$ are the bending modulus and the surface tension of the membrane, and $\\tau$ is a line tension of the capsid proportional to the strength of Gag-Gag attraction. Numerically, we find $\\alpha_0<0.3\\pi$ without any approximations. Using experimental parameters, we show that HIV budding and assembly always proceed to completion in normal biological conditions. On the other hand, by changing Gag-Gag interaction strength or membrane rigidity, it is relatively easy to tune it back and forth between complete budding and partial budding. Our model agrees reasonably well with experiments observing partial budding of retroviruses including HIV.

  19. Materials design and the study of active interfaces for solar fuel synthesis devices

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR Materials design and the study of active interfaces for solar fuel synthesis devices Dr devices. This is especially true for solar photoelectrocatalytic devices for fuel production, which and of active sites for electrocatalytic reactions. In this talk, I will discuss the design of materials

  20. Synthesis and Hydrogen Sorption Properties of Carborane Based Metal-Organic Framework Materials

    E-Print Network [OSTI]

    Synthesis and Hydrogen Sorption Properties of Carborane Based Metal-Organic Framework Materials@northwestern.edu Tailorable inorganic coordination polymers,1-7 in particular, metal-organic frameworks (MOFs)2-7 comprise an important emerging class of materials. They are noteworthy for their structural and chemical diversity, high

  1. From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal

    SciTech Connect (OSTI)

    Zheng, J.; Birktoft, J; Yi, C; Tong, W; Ruojie, S; Constantinou, P; Ginell, S; Chenge, M; Seeman, N

    2009-01-01

    We live in a macroscopic three-dimensional (3D) world, but our best description of the structure of matter is at the atomic and molecular scale. Understanding the relationship between the two scales requires a bridge from the molecular world to the macroscopic world. Connecting these two domains with atomic precision is a central goal of the natural sciences, but it requires high spatial control of the 3D structure of matter1. The simplest practical route to producing precisely designed 3D macroscopic objects is to form a crystalline arrangement by self-assembly, because such a periodic array has only conceptually simple requirements: a motif that has a robust 3D structure, dominant affinity interactions between parts of the motif when it self-associates, and predictable structures for these affinity interactions. Fulfilling these three criteria to produce a 3D periodic system is not easy, but should readily be achieved with well-structured branched DNA motifs tailed by sticky ends2. Complementary sticky ends associate with each other preferentially and assume the well-known B-DNA structure when they do so3; the helically repeating nature of DNA facilitates the construction of a periodic array. It is essential that the directions of propagation associated with the sticky ends do not share the same plane, but extend to form a 3D arrangement of matter. Here we report the crystal structure at 4?Angstroms resolution of a designed, self-assembled, 3D crystal based on the DNA tensegrity triangle4. The data demonstrate clearly that it is possible to design and self-assemble a well-ordered macromolecular 3D crystalline lattice with precise control.

  2. Self-Assembled Bilayers on Indium–Tin Oxide (SAB-ITO) Electrodes. A Design for Chromophore–Catalyst Photoanodes

    SciTech Connect (OSTI)

    Glasson, Christopher R. K. [Univ. of North Carolina, Chapel Hill, NC (United States); Song, Wenjing [Univ. of North Carolina, Chapel Hill, NC (United States); Ashford, Dennis L. [Univ. of North Carolina, Chapel Hill, NC (United States); Vannucci, Aaron K. [Univ. of North Carolina, Chapel Hill, NC (United States); Chen, Zuofeng [Univ. of North Carolina, Chapel Hill, NC (United States); Concepcion, Javier J. [Univ. of North Carolina, Chapel Hill, NC (United States); Holland, Patrick L. [Univ. of Rochester, NY (United States); Meyer, Thomas J. [Univ. of North Carolina, Chapel Hill, NC (United States)

    2012-08-02

    A novel approach for creating assemblies on metal oxide surfaces via the addition of a catalyst overlayer on a chomophore monolayer derivatized surface is described. It is based on the sequential self-assembly of a chromophore, [Ru(bpy)(4,4'-(PO3H2bpy)2)]2+, and oxidation catalyst, [Ru(bpy)(P2Mebim2py)OH2]2+, pair, resulting in a spatially separated chromophore–catalyst assembly.

  3. Hypermodular Self-Assembling Space Solar Power -- Design Option for Mid-Term GEO Utility-Scale Power Plants

    E-Print Network [OSTI]

    Leitgab, Martin

    2013-01-01

    This paper presents a design for scaleable space solar power systems based on free-flying reflectors and module self-assembly. Lower system cost of utility-scale space solar power is achieved by design independence of yet-to-be-built in-space assembly or transportation infrastructure. Using current and expected near-term technology, this study describe a design for mid-term utility-scale power plants in geosynchronous orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

  4. Synthesis and study of frustrated oxide and mixed anion materials 

    E-Print Network [OSTI]

    Clark, Lucy

    2013-11-28

    Mixed anion systems, such as oxynitrides and oxyfluorides, are an emerging class of interesting materials. The lower stability of mixed anion systems in comparison to oxide materials has had the consequence that this ...

  5. "Tailoring synthesis of new materials at multiple length scales."

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    to provide energy for intermittent renewable energy sources such as wind and solar when weather conditions limit energy generation. Improving battery performance will require new innovations in battery materials-ion battery anode material, Li4Ti5O12, which we are currently researching to improve. Materials for Energy

  6. Synthesis of bulk superhard semiconducting B-C material

    SciTech Connect (OSTI)

    Solozhenko, Vladimir L.; Dubrovinskaia, Natalia A.; Dubrovinsky, Leonid S.

    2004-08-30

    A bulk composite superhard material was synthesized from graphitelike BC{sub 3} at 20 GPa and 2300 K using a multianvil press. The material consists of intergrown boron carbide B{sub 4}C and B-doped diamond with 1.8 at.%B. The material exhibits semiconducting behavior and extreme hardness comparable with that of single-crystal diamond.

  7. Field-structured material media and methods for synthesis thereof

    DOE Patents [OSTI]

    Martin, James E. (Tijeras, NM); Hughes, Robert C. (Albuquerque, NM); Anderson, Robert A. (Albuquerque, NM)

    2001-09-18

    The present application is directed to a new class of composite materials, called field-structured composite (FSC) materials, which comprise a oriented aggregate structure made of magnetic particles suspended in a nonmagnetic medium, and to a new class of processes for their manufacture. FSC materials have much potential for application, including use in chemical, optical, environmental, and mechanical sensors.

  8. The synthesis and characterization of porous, conductive, and ordered materials

    E-Print Network [OSTI]

    Narayan, Tarun Chandru

    2013-01-01

    Two different classes of polymers were pursued as candidates for materials possessing porosity, conductivity, and crystalline order. Attempts were made with hexaazatrinaphthylene- and dibenzotetrathiafulvalene-based ...

  9. Synthesis, characterization and photocatalytic properties of novel zinc germanate nano-materials

    SciTech Connect (OSTI)

    Boppana, Venkata Bharat Ram; Hould, Nathan D.; Lobo, Raul F.

    2011-05-15

    We report the first instance of a hydrothermal synthesis of zinc germanate (Zn{sub 2}GeO{sub 4}) nano-materials having a variety of morphologies and photochemical properties in surfactant, template and catalyst-free conditions. A systematic variation of synthesis conditions and detailed characterization using X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy and small angle X-ray scattering led to a better understanding of the growth of these particles from solution. At 140 {sup o}C, the zinc germanate particle morphology changes with pH from flower-shaped at pH 6.0, to poly-disperse nano-rods at pH 10 when the Zn to Ge ratio in the synthesis solution is 2. When the Zn to Ge ratio is reduced to 1.25, mono-disperse nano-rods could be prepared at pH 7.5. Nanorod formation is also independent of the addition of cetyltrimethylammonium bromide (CTAB), in contrast to previous reports. Photocatalytic tests show that Zn{sub 2}GeO{sub 4} nano-rods (by weight) and flower shaped (by surface area) are the most active for methylene blue dye degradation among the synthesized zinc germanate materials. -- Graphical abstract: Zinc germanate materials were synthesized possessing unique morphologies dependent on the hydrothermal synthesis conditions in the absence of surfactant, catalyst or template. These novel materials are characterized and evaluated for their photocatalytic activities. Display Omitted highlights: > Zinc germanate synthesized hydrothermally (surfactant free) with unique morphologies. > Flower-shaped, nano-rods, globular particles obtained dependent on synthesis pH. > At 140 {sup o}C, they possess the rhombohedral crystal irrespective of synthesis conditions. > They are photocatalytically active for the degradation of methylene blue. > Potential applications could be photocatalytic water splitting and CO{sub 2} reduction.

  10. De novo synthesis of a metalorganic framework material featuring ultrahigh surface area and gas

    E-Print Network [OSTI]

    . Among the many potential applications that can be extrapolated from these properties are gas storage4 high gas storage capacities and one of the highest reported surface areas to date. ResultsDe novo synthesis of a metal­organic framework material featuring ultrahigh surface area and gas

  11. Systems and methods for the combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Wu, Xin Di (San Jose, CA); Wang, Youqi (Palo Alto, CA); Goldwasser, Isy (Menlo Park, CA)

    2000-01-01

    Methods and apparatus for the preparation of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by depositing components of target materials to predefined regions on the substrate, and, in some embodiments, simultaneously reacting the components to form at least two resulting materials. In particular, the present invention provides novel masking systems and methods for applying components of target materials onto a substrate in a combinatorial fashion, thus creating arrays of resulting materials that differ slightly in composition, stoichiometry, and/or thickness. Using the novel masking systems of the present invention, components can be delivered to each site in a uniform distribution, or in a gradient of stoichiometries, thicknesses, compositions, etc. Resulting materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. Once prepared, these resulting materials can be screened sequentially, or in parallel, for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical and other properties.

  12. Characterization of Self-Assembly and Charge Transport in Model Polymer Electrolyte Membranes

    E-Print Network [OSTI]

    Beers, Keith Morgan

    2012-01-01

    Qiu, Y. Solar Energy Materials and Solar Cells 2006, 90, (Qiu, Y. Solar Energy Materials and Solar Cells 2006, 90, (Qiu, Y. Solar Energy Materials and Solar Cells 2006, 90, (

  13. High-throughput Synthesis and Metrology of Graphene Materials

    E-Print Network [OSTI]

    Ghazinejad, Maziar Ghazinejad

    2012-01-01

    adjusted as an in-line graphene measurement technique.fabrication and metrology of graphene materials. Our mainof Large-Area Hybrid Graphene-CNT Architectures 2.1

  14. The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

  15. Self-assembly and selective swelling in Lamellar block copolymer photonic gels

    E-Print Network [OSTI]

    Fan, Yin, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    Materials with responsive structural color have broad applications ranging from sensing to smart coating. Nature provides inspirations for the design of such materials. Mimicking the structure of the skin elements responsible ...

  16. Block copolymer photonic crystals : towards self-assembled active optical elements

    E-Print Network [OSTI]

    Yoon, Jongseung

    2006-01-01

    Block copolymers have proven to be a unique materials platform for easily fabricated large-area photonic crystals. While the basic concept of block copolymer based photonic band gap materials has been well demonstrated, ...

  17. Sealing off a carbon nanotube with a self-assembled aqueous valve for the storage of hydrogen in GPa pressure

    E-Print Network [OSTI]

    Chen, H Y; Gong, X G; Liu, Zhi-Feng

    2012-01-01

    The end section of a carbon nanotube, cut by acid treatment, contains hydrophillic oxygen groups. Water molecules can self-assemble around these groups to seal off a carbon nanotube and form an "aqueous valve". Molecular dynamics simulations on single-wall (12,12) and (15,15) tubes with dangling carboxyl groups show that the formation of aqueous valves can be achieved both in the absence of and in the presence of high pressure hydrogen. Furthermore, significant diffusion barriers through aqueous valves are identified. It indicates that such valves could hold hydrogen inside the tube with GPa pressure. Releasing hydrogen is easily achieved by melting the "aqueous valve". Such a design provides a recyclable and non- destructive way to store hydrogen in GPa pressure. Under the storage conditions dictated by sealing off the container in liquid water, the hydrogen density inside the container is higher than that for solid hydrogen, which promises excellent weight storage efficiency.

  18. Fabrication of FCC-SiO{sub 2} colloidal crystals using the vertical convective self-assemble method

    SciTech Connect (OSTI)

    Castańeda-Uribe, O. A.; Salcedo-Reyes, J. C.; Méndez-Pinzón, H. A.; Pedroza-Rodrķguez, A. M.

    2014-05-15

    In order to determine the optimal conditions for the growth of high-quality 250 nm-SiO{sub 2} colloidal crystals by the vertical convective self-assemble method, the Design of Experiments (DoE) methodology is applied. The influence of the evaporation temperature, the volume fraction, and the pH of the colloidal suspension is studied by means of an analysis of variance (ANOVA) in a 3{sup 3} factorial design. Characteristics of the stacking lattice of the resulting colloidal crystals are determined by scanning electron microscopy and angle-resolved transmittance spectroscopy. Quantitative results from the statistical test show that the temperature is the most critical factor influencing the quality of the colloidal crystal, obtaining highly ordered structures with FCC stacking lattice at a growth temperature of 40°C.

  19. CdSe self-assembled quantum dots with ZnCdMgSe barriers emitting throughout the visible spectrum

    SciTech Connect (OSTI)

    Perez-Paz, M. Noemi; Zhou Xuecong; Munoz, Martin; Lu Hong; Sohel, Mohammad; Tamargo, Maria C.; Jean-Mary, Fleumingue; Akins, Daniel L.

    2004-12-27

    Self-assembled quantum dots of CdSe with ZnCdMgSe barriers have been grown by molecular beam epitaxy on InP substrates. The optical and microstructural properties were investigated using photoluminescence (PL) and atomic force microscopy (AFM) measurements. Control and reproducibility of the quantum dot (QD) size leading to light emission throughout the entire visible spectrum range has been obtained by varying the CdSe deposition time. Longer CdSe deposition times result in a redshift of the PL peaks as a consequence of an increase of QD size. AFM studies demonstrate the presence of QDs in uncapped structures. A comparison of this QD system with CdSe/ZnSe shows that not only the strain but also the chemical properties of the system play an important role in QD formation.

  20. Structural engineering of epitaxial, self-assembled ferromagnetic cobalt/yttria-stabilized zirconia nanocomposites for ultrahigh-density storage media

    SciTech Connect (OSTI)

    Shin, Junsoo; Goyal, Amit; Cantoni, Claudia; Sinclair, J.; Thompson, James R

    2012-01-01

    We report on a low-cost, innovative approach for synthesizing prepatterned, magnetic nanostructures, the shapes and dimensions of which can be easily tuned to meet requirements for next-generation data storage technology. The magnetic nanostructures consist of self-assembled Co nanodots and nanowires embedded in yttria-stabilized zirconia (YSZ) matrices. The controllable size and aspect ratio of the nanostructures allows the selection of morphologies ranging from nanodots to nanowires. Co nanowires show strong shape anisotropy and large remanence at 300 K. In contrast, Co nanodots display minimal effects of magnetocrystalline anisotropy and superparamagnetic relaxation above the blocking temperature. These prepatterned magnetic nanostructures are very promising candidates for data storage technology with an ultrahigh density of 1 terabit in{sup -2} or higher.

  1. Self-Assembled Monolayers of n-Alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes

    SciTech Connect (OSTI)

    Malkhandi, S; Yang, B; Manohar, AK; Prakash, GKS; Narayanan, SR

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  2. Electron-Beam-Induced Damage in Self-Assembled Monolayers Kannan Seshadri, Karl Froyd, Atul N. Parikh, and David L. Allara*,,

    E-Print Network [OSTI]

    Parikh, Atul N.

    Electron-Beam-Induced Damage in Self-Assembled Monolayers Kannan Seshadri, Karl Froyd, Atul N-assembly of octadecyl derivatives on oxide-covered Si and Ti substrates have been exposed to electron beam impact under, lithographic patterning at the nanometer-scale is most easily achieved using highly focused electron beams (e-beams

  3. Lattice model for self-assembly with application to the formation of cytoskeletal-like structures Shannon F. Stewman and Aaron R. Dinner*

    E-Print Network [OSTI]

    Dinner, Aaron

    Lattice model for self-assembly with application to the formation of cytoskeletal-like structures for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA Received. By enabling the de novo formation of coexisting morphologies without the computational cost of explicit

  4. Self-Assembly of Multiwall Carbon Nanotubes from Quench-Condensed CNi3 Films D.P. Young, A.B. Karki, and P. W. Adams

    E-Print Network [OSTI]

    Adams, Philip W.

    Self-Assembly of Multiwall Carbon Nanotubes from Quench-Condensed CNi3 Films D.P. Young, A.B. Karki deposition of thin films of the metastable carbides CT3 (T = Ni, Co) onto fire-polished glass sub- strates of carbon out of hot CT3 nanoparticles as they quench-condense onto the substrate. This process is extremely

  5. Electrochemical Synthesis of Nanostructured ZnO Films Utilizing Self-Assembly of Surfactant Molecules at Solid-Liquid Interfaces

    E-Print Network [OSTI]

    Lichtenegger, Helga C.

    , cetyl trimethylammonium bromide (CTAB), or anionic surfactant, sodium dodecyl sulfate (SDS).6 coordinate zinc species (i.e., [Zn(H2O)4]2+)7 and fail to form organized nanostructured surfactant

  6. Rational Synthesis, Self-Assembly, and Optical Properties of PbS-Au Heterogeneous Nanostructures via Preferential

    E-Print Network [OSTI]

    Wei, Ji

    to their narrow size distribution and intrinsic high-symmetry, the resulting PbS-Au4 and PbS-Aun heterogeneous the solution growth of gold tips on hexagonal-phase CdSe nanorods at room temperature.1 This selective growth. (3) Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. Nano Lett. 2005, 5, 379. Li, Y

  7. Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal -Co nanoparticles

    E-Print Network [OSTI]

    Krishnan, Kannan M.

    oxides and acids, etc. , its concentration, and the reaction temperature. These particles have been distribution and the shape of the nanocrystals were controlled by varying the surfactant oleic acid, phosphonic-size effects were recognized1 with more subtle effects noted later in nonmagnetic metals such as semiconductors

  8. Synthesis and Engineering Materials Properties of Fluid Phase Chemical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)Feedback System inStatusandArticle) |Hydrogen Storage Materials for

  9. Materials synthesis at the CNM | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter By Sarah Schlieder *8 Materials Science

  10. Nanosized copper ferrite materials: Mechanochemical synthesis and characterization

    SciTech Connect (OSTI)

    Manova, Elina [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia (Bulgaria); Tsoncheva, Tanya, E-mail: tsoncheva@orgchm.bas.b [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia (Bulgaria); Paneva, Daniela [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia (Bulgaria); Popova, Margarita [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia (Bulgaria); Velinov, Nikolay; Kunev, Boris; Tenchev, Krassimir; Mitov, Ivan [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia (Bulgaria)

    2011-05-15

    Nanodimensional powders of cubic copper ferrite are synthesized by two-steps procedure of co-precipitation of copper and iron hydroxide carbonates, followed by mechanochemical treatment. X-ray powder diffraction, Moessbauer spectroscopy and temperature-programmed reduction are used for the characterization of the obtained materials. Their catalytic behavior is tested in methanol decomposition to hydrogen and CO and total oxidation of toluene. Formation of nanosized ferrite material is registered even after one hour of milling time. It is established that the prolonging of treatment procedure decreases the dispersion of the obtained product with the appearance of Fe{sub 2}O{sub 3}. It is demonstrated that the catalytic behavior of the samples depends not only on their initial phase composition, but on the concomitant ferrite phase transformations by the influence of the reaction medium. -- Graphical abstract: It is demonstrated that the catalytic behavior of the obtained copper ferrites depends not only on their initial phase composition, but on the concomitant phase transformations by the influence of the reaction medium. Display Omitted Highlights: {yields} Two-step co-precipitation-ball-milling procedure for copper ferrites preparation. {yields} The phase composition of ferrites depends on the milling duration. {yields} Ferrites transforms under the reaction medium, which affects their catalytic behavior. {yields} Ferrites decompose to magnetite and carbides during methanol decomposition. {yields} Agglomeration and further crystallization of ferrite occur during toluene oxidation.

  11. ORIGINAL ARTICLE Temperature and light-induced self-assembly changes

    E-Print Network [OSTI]

    Cai, Long

    materials such as polymer electrolyte membranes, gas separation membranes and catalytic membranes.9 copolymer membranes or dilute solutions exhibit useful nanostructures due to intramolecular segregation

  12. Bridged polysilsesquioxanes: A molecular based approach for the synthesis of functional hybrid materials

    SciTech Connect (OSTI)

    SHEA,KENNETH J.; LOY,DOUGLAS A.

    2000-05-09

    Bridged polysilsesquioxanes (BPS) are a family of hybrid organic-inorganic materials prepared by sol-gel polymerization of molecular building blocks that contain a variable organic component and at least two trifunctional silyl groups. The resulting xerogels and aerogels have physical and mechanical properties that are strongly influenced by the organic bridging group. This talk focuses on the synthesis of functional bridged polysilsesquioxanes. Incorporation of functional groups that respond to chemical, photochemical, or thermal stimuli can provide handles for modifying bulk morphology and/or provide function. These materials can find use as ion exchange media, chromatographic stationary phases, photoresists and high capacity selective chemical absorbents.

  13. Metal-oxide-based energetic materials and synthesis thereof

    DOE Patents [OSTI]

    Tillotson, Thomas M. (Tracy, CA), Simpson; Randall L. (Livermore, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  14. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    SciTech Connect (OSTI)

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  15. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    SciTech Connect (OSTI)

    Martino, Anthony (Albuquerque, NM); Yamanaka, Stacey A. (Dallas, TX); Kawola, Jeffrey S. (Albuquerque, NM); Showalter, Steven K. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM)

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  16. Self-Assembly of Azulenic Monolayer Films on Metallic Gold Surfaces

    E-Print Network [OSTI]

    Neal, Brad

    2012-08-31

    Derivatives of azulene, an unusual nonbenzenoid aromatic hydrocarbon featuring fused five- and seven-membered sp2 carbon rings, are of substantial current interest in the design of advanced functional materials such as ...

  17. Nanostructured electrospun fibers : from superhydrophobicity to block copolymer self-assembly

    E-Print Network [OSTI]

    Ma, Minglin

    2008-01-01

    Electrospinning has emerged in recent years as a relatively easy, efficient and robust method to make ultrafine continuous fibers with diameter on the order of -100 nm from a variety of materials. As a result, numerous ...

  18. Self-assembly of conformal polymer electrolyte film for lithium ion microbatteries

    E-Print Network [OSTI]

    Bieber, Christalee

    2007-01-01

    I apply the theory of polar and apolar intermolecular interactions to predict the behavior of combinations of common battery materials, specifically the cathode substrate lithium cobalt oxide (LCO) and the polymer separator ...

  19. Templated self-assembly of nanoporous alumina : pore formation and ordering mechanisms, methodologies, and applications

    E-Print Network [OSTI]

    Krishnan, Ramkumar, 1975-

    2005-01-01

    Porous anodic aluminum oxide (AAO), also known as porous alumina, is a self-ordered nanostructured material well-suited for use in electronic, magnetic, optical and biological applications due to its small pore size (4-200nm) ...

  20. Erratum: "Conformations and charge transport characteristics of biphenyldithiol self-assembled-monolayer molecular electronic devices

    E-Print Network [OSTI]

    Goddard III, William A.

    Erratum: "Conformations and charge transport characteristics of biphenyldithiol self-Hoon Kim Materials and Process Simulation Center, California Institute of Technology, Pasadena, California, California Institute of Technology, Pasadena, California 91125-7400 Received 18 August 2005; accepted 6

  1. Conformations and charge transport characteristics of biphenyldithiol self-assembled-monolayer molecular electronic devices

    E-Print Network [OSTI]

    Goddard III, William A.

    Conformations and charge transport characteristics of biphenyldithiol self Simulation Center, California Institute of Technology, Pasadena, California 91125-7400 and Korea Institute and William A. Goddard IIIb Materials and Process Simulation Center, California Institute of Technology

  2. Synthesis of High-Purity alpha-and beta-PbO and Possible Applications to Synthesis and Processing of Other Lead Oxide Materials

    SciTech Connect (OSTI)

    Perry, Dale L.; Wilkinson, T. J.

    2009-11-12

    The red, tetragonal form of lead oxide, alpha-PbO, litharge, and the yellow, orthorhombic form, beta-PbO, massicot, have been synthesized from lead(II) salts in aqueous media at elevated temperature. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the size, morphology, and crystallographic structural forms of the products. The role of impurities in the experimental synthesis of the materials and microstructural variations in the final products are described, and the implications of these observations with respect to the synthesis of different conducting lead oxides and other related materials are discussed.

  3. Ordered mesoporous crystalline aluminas from self-assembly of ABC triblock terpolymer

    E-Print Network [OSTI]

    Gruner, Sol M.

    of metal oxide a Department of Materials Science and Engineering, Cornell University, Ithaca, New York for various high temperature catalysis, separation, and energy- related applications. Introduction Porous-b-PPO-b-PEO) triblock copolymers and Al2O3 sol precursors with controlled hydrolysis rates.21 An alternative route

  4. Intramolecular Energy Transfer within Butadiyne-Linked Chlorophyll and Porphyrin Dimer-Faced, Self-Assembled

    E-Print Network [OSTI]

    photosynthesis and solar cell applications. Introduction Photofunctional materials for use in organic-Northwestern Solar Energy Research (ANSER) Center, Northwestern UniVersity, EVanston, Illinois 60208-3113, Chemistry axes of the dimers. These transitions greatly increase the ability of these dimers to absorb the solar

  5. Geometric Nanoconfinement Effects on the Electronic and Mechanical Properties of Self-Assembled Molecular Systems 

    E-Print Network [OSTI]

    Ewers, Bradley William

    2014-08-20

    as a quantum dot (QD), capacitively coupled to a three-electrode system. ............................................................................ 32 Figure 2.1. CHIK potential (A) and force field (B) for silicon and oxygen atom interactions... down of solid state materials, with the size dependence of the electronic properties of metal nanoparticles and semiconductor quantum dots well-established. The use of molecules in nanoscale systems is, on the other hand, a largely different problem...

  6. Experimental study of the residual stress-induced self-assembly of MEMS structures during deposition 

    E-Print Network [OSTI]

    Kim, Sang-Hyun

    2005-11-01

    the composition and the operating parameters of the plating solution [30]-[33]. A typical electroplating cell consists of an anode, cathode, aqueous- metal solution, and a power supply. The sacrificial anode is made of nickel, the cathode is made of another... conductive material, and the aqueous-metal solution consists of nickel ( 2 Ni + ), hydrogen ( H + ), and sulfate ions ( 2 4 SO ? ). When a voltage supply is turned on, the positive ions in the solution are attracted to the negatively biased cathode...

  7. Molecular dynamics simulations of water confined between matched pairs of hydrophobic and hydrophilic self-assembled monolayers.

    SciTech Connect (OSTI)

    Chandross, Michael Evan; Grest, Gary Stephen; Lane, J. Matthew D.; Lorenz, Christian Douglas (King's College London, London, UK); Stevens, Mark Jackson

    2008-12-01

    We have conducted a molecular dynamics (MD) simulation study of water confined between methyl-terminated and carboxyl-terminated alkylsilane self-assembled monolayers (SAMs) on amorphous silica substrates. In doing so, we have investigated the dynamic and structural behavior of the water molecules when compressed to loads ranging from 20 to 950 MPa for two different amounts of water (27 and 58 water molecules/nm{sup 2}). Within the studied range of loads, we observe that no water molecules penetrate the hydrophobic region of the carboxyl-terminated SAMs. However, we observe that at loads larger than 150 MPa water molecules penetrate the methyl-terminated SAMs and form hydrogen-bonded chains that connect to the bulk water. The diffusion coefficient of the water molecules decreases as the water film becomes thinner and pressure increases. When compared to bulk diffusion coefficients of water molecules at the various loads, we found that the diffusion coefficients for the systems with 27 water molecules/nm{sup 2} are reduced by a factor of 20 at low loads and by a factor of 40 at high loads, while the diffusion coefficients for the systems with 58 water molecules/nm{sup 2} are reduced by a factor of 25 at all loads.

  8. Highly ordered nanocomposites via a monomer self-assembly in situ condensation approach

    DOE Patents [OSTI]

    Gin, D.L.; Fischer, W.M.; Gray, D.H.; Smith, R.C.

    1998-12-15

    A method for synthesizing composites with architectural control on the nanometer scale is described. A polymerizable lyotropic liquid-crystalline monomer is used to form an inverse hexagonal phase in the presence of a second polymer precursor solution. The monomer system acts as an organic template, providing the underlying matrix and order of the composite system. Polymerization of the template in the presence of an optional cross-linking agent with retention of the liquid-crystalline order is carried out followed by a second polymerization of the second polymer precursor within the channels of the polymer template to provide an ordered nanocomposite material. 13 figs.

  9. Three dimensional, bulk nanostructured materials and composites have matured into a new class of materials that is being considered in a variety of engineering applications. The successful synthesis of large-scale nanostructured materials is of

    E-Print Network [OSTI]

    Three dimensional, bulk nanostructured materials and composites have matured into a new class of materials that is being considered in a variety of engineering applications. The successful synthesis of large-scale nanostructured materials is of technological and scientific significance. From

  10. Self-assembling peptide hydrogels promote in vitro chondrogenesis of bone marrow-derived stromal cells : effects of peptide sequence, cell donor age, and method of growth factor delivery

    E-Print Network [OSTI]

    Kopesky, Paul Wayne

    2009-01-01

    The inability of articular cartilage to heal after damage or disease has motivated investigation of novel cartilage tissue engineering technologies. The objective of this thesis was to advance the use of self-assembling ...

  11. Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash

    SciTech Connect (OSTI)

    Liu, Zhen-Shu Li, Wen-Kai; Huang, Chun-Yi

    2014-05-01

    Highlights: • The optimal alkaline agent for the extraction of silica from bottom ash was Na{sub 2}CO{sub 3}. • The pore sizes for the mesoporous silica synthesized from bottom ash were 2–3.8 nm. • The synthesized materials exhibited a hexagonal pore structure with a smaller order. • The materials have potential for the removal of heavy metals from aqueous solutions. - Abstract: Incinerator bottom ash contains a large amount of silica and can hence be used as a silica source for the synthesis of mesoporous silica materials. In this study, the conditions for alkaline fusion to extract silica from incinerator bottom ash were investigated, and the resulting supernatant solution was used as the silica source for synthesizing mesoporous silica materials. The physical and chemical characteristics of the mesoporous silica materials were analyzed using BET, XRD, FTIR, SEM, and solid-state NMR. The results indicated that the BET surface area and pore size distribution of the synthesized silica materials were 992 m{sup 2}/g and 2–3.8 nm, respectively. The XRD patterns showed that the synthesized materials exhibited a hexagonal pore structure with a smaller order. The NMR spectra of the synthesized materials exhibited three peaks, corresponding to Q{sup 2} [Si(OSi){sub 2}(OH){sub 2}], Q{sup 3} [Si(OSi){sub 3}(OH)], and Q{sup 4} [Si(OSi){sub 4}]. The FTIR spectra confirmed the existence of a surface hydroxyl group and the occurrence of symmetric Si–O stretching. Thus, mesoporous silica was successfully synthesized from incinerator bottom ash. Finally, the effectiveness of the synthesized silica in removing heavy metals (Pb{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, and Cr{sup 2+}) from aqueous solutions was also determined. The results showed that the silica materials synthesized from incinerator bottom ash have potential for use as an adsorbent for the removal of heavy metals from aqueous solutions.

  12. Final report : LDRD project 79824 carbon nanotube sorting via DNA-directed self-assembly.

    SciTech Connect (OSTI)

    Robinson, David B; Leung, Kevin; Rempe, Susan B.; Dossa, Paul D.; Frischknecht, Amalie Lucile; Martin, Marcus Gary

    2007-10-01

    Single-wall carbon nanotubes (SWNTs) have shown great promise in novel applications in molecular electronics, biohazard detection, and composite materials. Commercially synthesized nanotubes exhibit a wide dispersion of geometries and conductivities, and tend to aggregate. Hence the key to using these materials is the ability to solubilize and sort carbon nanotubes according to their geometric/electronic properties. One of the most effective dispersants is single-stranded DNA (ssDNA), but there are many outstanding questions regarding the interaction between nucleic acids and SWNTs. In this work we focus on the interactions of SWNTs with single monomers of nucleic acids, as a first step to answering these outstanding questions. We use atomistic molecular dynamics simulations to calculate the binding energy of six different nucleotide monophosphates (NMPs) to a (6,0) single-wall carbon nanotube in aqueous solution. We find that the binding energies are generally favorable, of the order of a few kcal/mol. The binding energies of the different NMPs were very similar in salt solution, whereas we found a range of binding energies for NMPs in pure water. The binding energies are sensitive to the details of the association of the sodium ions with the phosphate groups and also to the average conformations of the nucleotides. We use electronic structure (Density Functional Theory (DFT) and Moller-Plesset second order perturbation to uncorrelated Hartree Fock theory (MP2)) methods to complement the classical force field study. With judicious choices of DFT exchange correlation functionals, we find that DFT, MP2, and classical force field predictions are in qualitative and even quantitative agreement; all three methods should give reliable and valid predictions. However, in one important case, the interactions between ions and metallic carbon nanotubes--the SWNT polarization-induced affinity for ions, neglected in most classical force field studies, is found to be extremely large (on the order of electron volts) and may have important consequences for various SWNT applications. Finally, the adsorption of NMPs onto single-walled carbon nanotubes were studied experimentally. The nanotubes were sonicated in the presence of the nucleotides at various weight fractions and centrifuged before examining the ultraviolet absorbance of the resulting supernatant. A distinct Langmuir adsorption isotherm was obtained for each nucleotide. All of the nucleotides differ in their saturation value as well as their initial slope, which we attribute to differences both in nucleotide structure and in the binding ability of different types or clusters of tubes. Results from this simple system provide insights toward development of dispersion and separation methods for nanotubes: strongly binding nucleotides are likely to help disperse, whereas weaker ones may provide selectivity that may be beneficial to a separation process.

  13. Solution Synthesis and Processing of PZT Materials for Neutron Generator Applications

    SciTech Connect (OSTI)

    Anderson, M.A.; Ewsuk, K.G.; Montoya, T.V.; Moore, R.H.; Sipola, D.L.; Tuttle, B.A.; Voigt, J.A.

    1998-12-01

    A new solution synthesis route has been developed for the preparation of lead-based ferroelectric materials (patent filed). The process produces controlled stoichiometry precursor powders by non-aqueous precipitation. For a given ferroelectric material to be prepared, a metal acetate/alkoxide solution containing constituent metal species in the appropriate ratio is mixed with an oxalic acid/n-propanol precipitant solution. An oxalate coprecipitate is instantly fonned upon mixing that quantitatively removes the metals from solution. Most of the process development was focused on the synthesis and processing of niobium-substituted lead zirconate titanate with a Zr-to-Ti ratio of 95:5 (PNZT 95/5) that has an application in neutron generator power supplies. The process was scaled to produce 1.6 kg of the PNZT 95/5 powder using either a sen-ii-batch or a continuous precipitation scheme. Several of the PNZT 95/5 powder lots were processed into ceramic slug form. The slugs in turn were processed into components and characterized. The physical properties and electrical performance (including explosive functional testing of the components met the requirements set for the neutron generator application. Also, it has been demonstrated that the process is highly reproducible with respect to the properties of the powders it produces and the properties of the ceramics prepared from its powders. The work described in this report was funded by Sandia's Laboratory Directed Research and Development Program.

  14. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    SciTech Connect (OSTI)

    Pyrak-Nolte, Laura J.

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a ā??sub-porosityā?¯ within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The ā??sub-porosityā?¯ may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in the report and the full details of the research and approach are contained in the publications found in the Attachment section of this report. A list of presentation and publications of all work associated with this grant is also provided.

  15. Self-Assembly of Charged Amphiphilic Diblock Copolymers with Insoluble Blocks of Decreasing Hydrophobicity: From Kinetically Frozen Colloids to Macrosurfactants

    SciTech Connect (OSTI)

    M Jacquin; P Muller; H Cottet; O Theodoly

    2011-12-31

    We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 C and 1 M.

  16. Self-assembled nano- to micron-size fibers from molten R11Ni4In9 intermetallics

    SciTech Connect (OSTI)

    Provino, Alessia; Manfrinetti, Pietro; Gschneidner, Karl A.; Dhar, Sudesh K.; Schlagel, Deborah L.; Lograsso, Thomas A.; Miller, Gordon J.; Thimmaiah, Srinivasa; Wang, Hui; Russell, Alan M.; Becker, Andrew; Mudryk, Yaroslav

    2014-07-01

    A study of the formation of Gd11M4In9 (M = Ni, Pd, Pt) and R11Ni4In9 (R = rare earth) compounds revealed a unique and peculiar property, which is to naturally crystallize in a bundle of self-assembled fibers when cooled from the melt. The fibers, which are nano- to millimeters in cross-section and approximate to 11-40 mm long, grow unidirectionally along a temperature gradient. These compounds adopt the orthorhombic Nd11Pd4In9 structure type (oC48-Cmmm). This structure is layered, with slabs of R atoms alternating with slabs of Ni/In atoms along a short c-axis (much shorter than either the a- or b-axis). The growth direction of the fibers is along the crystallographic c-axis, orthogonal to the a-b plane. Two strong and short In In bonds lie in the a-b plane, which are even shorter than in In metal. Integrated crystal orbital Hamilton population calculations show that the In In bonds create isolated "R8Ni4In9" rods growing along the c-axis, with the In In bonds being part of the rods. This appears to be an important factor explaining the microfibrous nature of these phases. Some physical properties have been measured on the Gd11Ni4In9 homolog. The compound orders ferrimagnetically at T-c approximate to 88 K, and at lower temperatures (46 and 10 K), two other magnetic anomalies were observed, probably due to spin reorientations. As expected from the bonding features, the mechanical, magnetic and electrical properties are strongly anisotropic. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Dynamics of Energy Transfer and Soft-Landing in Collisions of Protonated Dialanine with Perfluorinated Self-Assembled Monolayer Surfaces

    SciTech Connect (OSTI)

    Pratihar, Subha; Kohale, Swapnil C.; Bhakta, Dhruv G.; Laskin, Julia; Hase, William L.

    2014-11-21

    Chemical dynamics simulations are reported which provide atomistic details of collisions of protonated dialanine, ala2-H+, with a perfluorinateted octanethiolate self-assembled monolayer (F-SAM ) surface. The simulations are performed at collisions energy Ei of 5.0, 13.5, 22.5, 30.00, and 70 eV, and incident angles 0o 0 (normal) and grazing 45o. Excellent agreement with experiment (J. Am. Chem. Soc. 2000, 122, 9703-9714) is found for both the average fraction and distribution of the collision energy transferred to the ala2-H+ internal degrees of freedom. The dominant pathway for this energy transfer is to ala2-H+ vibration, but for Ei = 5.0 eV ~20% of the energy transfer is to ala2-H+ rotation. Energy transfer to ala2-H+ rotation decreases with increase in Ei and becomes negligible at high Ei. Three types of collisions are observed in the simulations: i.e. those for which ala2-H+ (1) directly scatters off the F-SAM surface; (2) sticks/physisorbs on//in the surface, but desorbs within the 10 ps numerical integration of the simulations; and (3) remains trapped (i.e. soft-landed) on/in the surface when the simulations are terminated. Penetration of the F-SAM by ala2-H+ is important for the latter two types of events. The trapped trajectories are expected to have relatively long residence times on the surface, since a previous molecular dynamics simulation (J. Phys. Chem. B 2014, 118, 5577-5588) shows that thermally accommodated ala2-H+ ions have an binding energy with the F-SAM surface of at least ~15 kcal/mol.

  18. Journal of Hazardous Materials B132 (2006) 244252 Zeolite synthesis from paper sludge ash at low temperature

    E-Print Network [OSTI]

    Downs, Robert T.

    2006-01-01

    Journal of Hazardous Materials B132 (2006) 244­252 Zeolite synthesis from paper sludge ash at low 2005 Available online 4 November 2005 Abstract Paper sludge ash was partially converted into zeolites by reaction with 3 M NaOH solution at 90 C for 24 h. The paper sludge ash had a low abundance of Si

  19. Z .Diamond and Related Materials 10 2001 1947 1951 Synthesis of high-density carbon nanotube films by microwave

    E-Print Network [OSTI]

    Tomįnek, David

    and vertical growth rate of nanotubes. The growth rate on an iron-coated substrate is higher than on a nickel. Nanotubes in the present study are fabricated by MPCVD using iron Z . Z .Fe or nickel Ni as transition metalZ .Diamond and Related Materials 10 2001 1947 1951 Synthesis of high-density carbon nanotube films

  20. Atom beam triangulation of organic layers at 100 meV normal energy: self-assembled perylene on Ag(110) at room temperature

    E-Print Network [OSTI]

    Kalashnyk, Nataliya

    2015-01-01

    The controlled growth of organic layer on surface is still awaiting for an on-line reliable monitoring that would allow improvement of its quality. We show here that the self-assembly of the perylene monolayer deposited on Ag(110) at room temperature can be tracked with low energy atoms in a regime where the energy perpendicular to the layer is less than 0.1 eV preventing damage to the layer. The image processing required for this triangulation technique with atoms is described in details.

  1. Controlling the Morphology of Polymer and Fullerene Blends in Organic Photovoltaics Through Sequential Processing and Self-Assembly

    E-Print Network [OSTI]

    Aguirre, Jordan C.

    2015-01-01

    analysis,” Solar Energy Materials and Solar Cells, no. 0,cells,” So- lar Energy Materials and Solar Cells, vol. 100,solar cell re- search in molecularly engineered energy materials (

  2. Effects of Dopant Metal Variation and Material Synthesis Method on the Material Properties of Mixed Metal Ferrites in Yttria Stabilized Zirconia for Solar Thermochemical Fuel Production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leonard, Jeffrey; Reyes, Nichole; Allen, Kyle M.; Randhir, Kelvin; Li, Like; AuYeung, Nick; Grunewald, Jeremy; Rhodes, Nathan; Bobek, Michael; Klausner, James F.

    2015-01-01

    Mixed metal ferrites have shown much promise in two-step solar-thermochemical fuel production. Previous work has typically focused on evaluating a particular metal ferrite produced by a particular synthesis process, which makes comparisons between studies performed by independent researchers difficult. A comparative study was undertaken to explore the effects different synthesis methods have on the performance of a particular material during redox cycling using thermogravimetry. This study revealed that materials made via wet chemistry methods and extended periods of high temperature calcination yield better redox performance. Differences in redox performance between materials made via wet chemistry methods were minimal andmore »these demonstrated much better performance than those synthesized via the solid state method. Subsequently, various metal ferrite samples (NiFe 2 O 4 , MgFe 2 O 4 , CoFe 2 O 4 , and MnFe 2 O 4 ) in yttria stabilized zirconia (8YSZ) were synthesized via coprecipitation and tested to determine the most promising metal ferrite combination. It was determined that 10?wt.% CoFe 2 O 4 in 8YSZ produced the highest and most consistent yields of O 2 and CO. By testing the effects of synthesis methods and dopants in a consistent fashion, those aspects of ferrite preparation which are most significant can be revealed. More importantly, these insights can guide future efforts in developing the next generation of thermochemical fuel production materials. « less

  3. Synthesis of Cationic Extended Frameworks for Anion-Based Applications

    E-Print Network [OSTI]

    Fei, Honghan

    2012-01-01

    in the synthesis of cationic inorganic materials andmetals lead to synthesis of cationic inorganic materials andthe synthesis of cationic inorganic layered materials, which

  4. Encapsulation of metal nanocluster catalysts in silica materials via an inverse micelle/sol-gel synthesis

    SciTech Connect (OSTI)

    Martino, A.; Kawola, J.S.; Yamanaka, S.A.; Loy, D.A.

    1997-05-01

    Nanometer sized metal particles were encapsulated in the micropores of xerogels and aerogels. The synthesis involves the sequential reduction of a metal salt followed by sol-gel processing in an inverse micelle solution. The inverse micelle solution solubilizes the metal salt and provides a micro-reactor for the nucleation, growth, and stabilization of the nanometer sized clusters. Hydrolysis and condensation of an added siloxane precursor produces a wet gel embedding the particles. Characterization of the particle size and composition and the particle growth process was completed with transmission electron microscopy (TEM), electron diffraction, and UV-visible absorption spectrometry. Characterization of the gel surface areas was completed with N{sub 2} porosimetry. Material properties determined as a function of the gel precursor (TEOS vs. a pre-hydrolyzed form of TEOS), the water to gel precursor reaction stoichiometry, and surfactant concentration are discussed in terms of the unique solution chemistry occurring in the micro-heterogeneous inverse micelle solutions. Finally, catalyst development and catalyst activity of the materials are discussed. 1-hexene hydrogenation was chosen as a model reaction.

  5. Effect of parameter variations on the static and dynamic behaviour of a self-assembled quantum-dot laser using circuit-level modelling

    SciTech Connect (OSTI)

    Razm-Pa, M; Emami, F

    2015-01-31

    We report a new circuit model for a self-assembled quantum-dot (SAQD) laser made of InGaAs/GaAs structures. The model is based on the excited state and standard rate equations, improves the previously suggested circuit models and also provides and investigates the performance of this kind of laser. The carrier dynamic effects on static and dynamic characteristics of a SAQD laser are analysed. The phonon bottleneck problem is simulated. Quantum-dot lasers are shown to be quite sensitive to the crystal quality outside and inside quantum dots. The effects of QD coverage factor, inhomogeneous broadening, the physical source of which is the size fluctuation of quantum dots formed by self-assembly of atoms, and cavity length on the SAQD laser characteristics are analysed. The results of simulation show that an increase in the cavity length and in the QD coverage factor results in the growth of the output power. On the other hand, an increase in the coverage factor and a degradation of inhomogeneous broadening lead to an increase in the modulation bandwidth. The effect of the QD height (cylindrical shape) and stripe width of the laser cavity on QD laser modulation is also analysed. (lasers)

  6. Supplementary Material A Molecular Dynamics Approach to the Structural

    E-Print Network [OSTI]

    Caflisch, Amedeo

    , the self-assembly process of hexamers was considered. Eighteen MD simulations of six peptides wereSupplementary Material A Molecular Dynamics Approach to the Structural Characterization of Amyloid trajectory, underwent a cluster analysis based on structural similarity1 . Single-peptide conformations were

  7. Materials synthesis and investigation of itinerant ferromagnetism in the UCo?-xFex Ge system

    E-Print Network [OSTI]

    Huang, Kevin

    2009-01-01

    1. Arc Furnace . . . . . . . . . . . . 2. Czochralskiviii Figure II.3: Tetra arc furnace used to grow bulk singleFigure II.5: Image furnace used to synthesis large single

  8. Controlling the Morphology of Polymer and Fullerene Blends in Organic Photovoltaics Through Sequential Processing and Self-Assembly

    E-Print Network [OSTI]

    Aguirre, Jordan C.

    2015-01-01

    by device optimization,” Advanced Materials, vol. 22, no.Optimization Differences in Sequentially Processed and Blendcast Films Much research goes into developing and testing novel photovoltaic materials

  9. Encapsulation of gold nanoclusters in silica materials via an inverse micelle/sol-gel synthesis

    SciTech Connect (OSTI)

    Martino, A.; Kawola, J.S.; Loy, D.A. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Yamanaka, S.A. [Texas Instruments, Dallas, TX (United States)] [Texas Instruments, Dallas, TX (United States)

    1997-02-01

    Nanometer-sized gold particles were encapsulated in the micropores of xerogels and aerogels. The synthesis involves the sequential reduction of a gold salt followed by sol-gel processing in an inverse micelle solution. The inverse micelle solution solubilizes the metal salt and provides a microreactor for the nucleation, growth, and stabilization of the nanometer-sized clusters. Hydrolysis and condensation of an added siloxane precursor produces a wet gel embedding the particles. Characterization of the particle size and composition and the particle growth process was completed with transmission electron microscopy (TEM), electron diffraction, and UV-visible absorption spectrometry. Characterization of the gel surface areas was completed with N{sub 2} porosimetry. Material properties determined as a function of the gel precursor (TEOS vs a prehydrolyzed form of TEOS), the water to gel precursor reaction stoichiometry, and surfactant concentration are discussed in terms of the unique solution chemistry occurring in the microheterogeneous inverse micelle solutions. 73 refs., 7 figs., 1 tab.

  10. Reusable biocompatible interface for immobilization of materials on a solid support

    DOE Patents [OSTI]

    Salamon, Z.; Schmidt, R.A.; Tollin, G.; Macleod, H.A.

    1996-05-28

    A method is presented for the formation of a biocompatible film composed of a self-assembled bilayer membrane deposited on a planar surface. This bilayer membrane is capable of immobilizing materials to be analyzed in an environment very similar to their native state. Materials so immobilized may be subject to any of a number of analytical techniques. 3 figs.

  11. Plant virus directed fabrication of nanoscale materials and devices James N. Culver a,b,n

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Review Plant virus directed fabrication of nanoscale materials and devices James N. Culver a Accepted 2 March 2015 Available online 26 March 2015 Keywords: Nanotechnology Bio-materials Virus particles Virus assembly Virus-like particles a b s t r a c t Bottom-up self-assembly methods in which individual

  12. nature materials | VOL 2 | OCTOBER 2003 | www.nature.com/naturematerials 689 ver the past decade great progress has been made on synthesis of

    E-Print Network [OSTI]

    Natelson, Douglas

    the past decade great progress has been made on synthesis of nanostructures as a tool-set for new materials containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid materialARTICLES nature materials | VOL 2 | OCTOBER 2003 | www.nature.com/naturematerials 689 O ver

  13. Exciton and biexciton dynamics in single self-assembled InAs/InGaAlAs/InP quantum dash emitting near 1.55??m

    SciTech Connect (OSTI)

    Dusanowski, ?.; Syperek, M. Rudno-Rudzi?ski, W.; Mrowi?ski, P.; Sek, G.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Forchel, A.

    2013-12-16

    Exciton and biexciton dynamics in a single self-assembled InAs/In{sub 0.53}Ga{sub 0.23}Al{sub 0.24}As/InP(001) quantum dash emitting near 1.55??m has been investigated by micro-photoluminescence and time-resolved micro-photoluminescence at T?=?4.2?K. The exciton and biexciton fine structure splitting of ?60??eV, the biexciton binding energy of ?3.5?meV, and the characteristic exciton and biexciton decay times of 2.0?±?0.1?ns and 1.1?±?0.1?ns, respectively, have been determined. The measurement of the biexciton and exciton cross-correlation statistics of the photon emission confirmed the cascaded relaxation process. The exciton-to-biexciton decay time ratio and a small fine structure splitting suggest carrier localization within the investigated quantum dash.

  14. Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker

    SciTech Connect (OSTI)

    Wang, Ying; Zhang, Sheng; Du, Dan; Shao, Yuyan; Li, Zhaohui; Wang, Jun; Engelhard, Mark H.; Li, Jinghong; Lin, Yuehe

    2011-04-14

    A nanohybrid of gold nanoparticles (Au NPs) and chemically reduced graphene oxide nanosheets (cr-Gs) was synthesized by in situ growth of Au NPs on the surface of graphene nanosheets in the presence of poly(diallyldimethylammonium chloride) (PDDA), which not only improved the dispersion of Au NPs but also stabilized cholinesterase with high activity and loading efficiency. The obtained nanohybrid was characterized by TEM, XRD, XPS, and electrochemistry. Then an enzyme nanoassembly (AChE/Au NPs/cr-Gs) was prepared by self-assembling acetylcholinesterase (AChE) on Au NP/cr-Gs nanohybrid. An electrochemical sensor based on AChE/Au NPs/cr-Gs was further developed for ultrasensitive detection of organophosphate pesticide. The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.

  15. Spin and phonon anomalies in epitaxial self-assembled CoFe{sub 2}O{sub 4}-BaTiO{sub 3} multiferroic nanostructures

    SciTech Connect (OSTI)

    Tsai, C. Y.; Chen, H. R.; Hsieh, W. F., E-mail: wfhsieh@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan (China); Cheng, H. M.; Tsai, L. N. [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Huang, K. F.; Lai, C. H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 31013, Taiwan (China); Chu, Y. H. [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 31040, Taiwan (China)

    2014-06-23

    Temperature dependent magnetic and phonon anomalies in epitaxial self-assembled CoFe{sub 2}O{sub 4} (CFO) rods embedded in BaTiO{sub 3} (BTO) matrix nanostructures were investigated. The temperature dependence of A{sub 1}(2TO) phonon frequency of BTO indicates that the BTO matrix experiences structural transformations. The lattice strain produced during the structural transformations drives spin reorientation in CFO rods, resulting in anomalous changes of magnetization. Through correlating the phonon anomalies with the increase of in-plane spin ordering, we show the spin-phonon coupling induces the softening of A{sub 1g} and A{sub 1}(2TO) phonons. It suggests that spin strongly couples with lattice strain and phonons in this nanostructure.

  16. Low-dislocation-density epitatial layers grown by defect filtering by self-assembled layers of spheres

    DOE Patents [OSTI]

    Wang, George T.; Li, Qiming

    2013-04-23

    A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.

  17. Design, synthesis, and characterization of conjugated polymers and functional paramagnetic materials for dynamic nuclear polarization

    E-Print Network [OSTI]

    Dane, Eric Lawrence

    2010-01-01

    The design, synthesis, and characterization of a series of radicals and biradicals for use as dynamic nuclear polarization (DNP) agents is described. DNP is a method to enhance the S/N-ratio in solid-state nuclear magnetic ...

  18. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOE Patents [OSTI]

    Cornelius, Christopher J. (Albuquerque, NM)

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  19. Eugene R. Zubarev Department of Chemistry

    E-Print Network [OSTI]

    Natelson, Douglas

    -2005 Assistant Professor of Materials Science and Engineering, Iowa State University 2000-2002 Research Associate of nanomaterials and supramolecular chemistry, molecular self-assembly, organic- inorganic hybrid structures, nanoparticle catalysts, amphiphilic polymers. Experimental: organic synthesis, polymerization, synthesis

  20. Eugene R. Zubarev Department of Chemistry

    E-Print Network [OSTI]

    Natelson, Douglas

    , amphiphilic structures. Experimental: organic synthesis, polymerization, synthesis of inorganic nanocrystals-2005 Assistant Professor of Materials Science and Engineering, Iowa State University 2000-2002 Research Associate and supramolecular chemistry, molecular self-assembly, organic-inorganic hybrid structures, nanoparticle catalysts

  1. Orthogonal Labeling of M13 Minor Capsid Proteins with DNA to Self-Assemble End-to-End Multiphage Structures

    E-Print Network [OSTI]

    Hess, Gaelen T.

    M13 bacteriophage has been used as a scaffold to organize materials for various applications. Building more complex multiphage devices requires precise control of interactions between the M13 capsid proteins. Toward this ...

  2. Synthesis and applications of materials and polymers containing graphenic and/or triptycene moities

    E-Print Network [OSTI]

    Sydlik, Stefanie A. (Stefanie Arlene)

    2013-01-01

    In this thesis, molecular design is used to synthesize novel materials with specific properties. The materials presented herein are based on two motifs. In part I, new methods of functionalizing graphenic materials and the ...

  3. Synthesis and Self-Assembly of fcc Phase FePt Nanorods Min Chen,*,, Timothy Pica, Ying-Bing Jiang, Peng Li, Kazuaki Yano,# J. Ping Liu,#

    E-Print Network [OSTI]

    Liu, J. Ping

    (Figure 2C). We found that the uniformity of FePt nanorods was sensitive to heating rate. Reactions at a heating rate of 1 °C/min led to fairly monodisperse nanorods, while reactions at a heating rate of 10 °C with sizes ranging from 2 to 20 nm are an important class of magnetic nanomaterials.1 The promising ap

  4. Synthesis and characterization of covalently-linked dendrimer bioconjugates and the non-covalent self-assembly of streptavidin-based megamers 

    E-Print Network [OSTI]

    McLean, Megan Elizabeth

    2005-02-17

    Alan E. Pepper (Member) (Member) ________________________ Emile A Schweikert (Head of Department) December 2004 Major Subject: Chemistry iii....D. as long as she has passion and determination. Thanks to my committee members: Dr. Gary Sulikowski, Dr. Richard Crooks, Dr. Alan Pepper, and former member and mentor Dr. Frank Raushel for their guidance and support. Much thanks to the entire Simanek...

  5. Perfect Orientation Ordered in-Situ One-Dimensional Self-Assembly of Mn-Doped PbSe Nanocrystals

    E-Print Network [OSTI]

    Wang, Zhong L.

    of Chemistry and AdVanced Materials Research Institute, UniVersity of New Orleans, New Orleans, Louisiana 70148 postannealing process). The self- organization of NCs involves various forces such as hydrogen bonding, dipolar produce 1D nanomaterials using a simple solution approach, and we recently achieved a one-step preparation

  6. Investigation of the deposition and thermal behavior of striped phases of unsymmetric disulfide self-assembled monolayers on Au(111): The case of 11-hydroxyundecyl decyl disulfide

    SciTech Connect (OSTI)

    Albayrak, Erol; Karabuga, Semistan; Bracco, Gianangelo; Dan??man, M. Fatih

    2015-01-07

    Self-assembled monolayers (SAMs) of unsymmetric disulfides on Au(111) are used to form mixed SAMs that can be utilized in many applications. Here, we have studied 11-hydroxyundecyl decyl disulfide (CH{sub 3}–(CH{sub 2}){sub 9}–S–S–(CH{sub 2}){sub 11}–OH, HDD) SAMs produced by supersonic molecular beam deposition and characterized by He diffraction. The film growth was monitored at different temperatures up to a coverage which corresponds to a full lying down phase and the diffraction analysis shows that below 250 K the phase is different from the phase measured above 300 K. During the annealing of the film, two phase transitions were observed, at 250 K and 350 K. The overall data suggest that the former is related to an irreversible phase separation of HDD above 250 K to decanethiolate (–S–(CH{sub 2}){sub 9}–CH{sub 3}, DTT) and hydroxyundecylthiolate (–S–(CH{sub 2}){sub 11}–OH, MUDT), while the latter to a reversible melting of the film. Above 450 K, the specular intensity shows an increase related to film desorption and different chemisorbed states were observed with energies in the same range as observed for decanethiol (H–S–(CH{sub 2}){sub 9}–CH{sub 3}, DT) and mercaptoundecanol (H–S–(CH{sub 2}){sub 11}–OH, MUD) SAMs.

  7. Electron and hole g factors in InAs/InAlGaAs self-assembled quantum dots emitting at telecom wavelengths

    E-Print Network [OSTI]

    V. V. Belykh; A. Greilich; D. R. Yakovlev; M. Yacob; J. P. Reithmaier; M. Benyoucef; M. Bayer

    2015-10-08

    We extend the range of quantum dot (QD) emission energies where electron and hole $g$ factors have been measured to the practically important telecom range. The spin dynamics in InAs/In$_{0.53}$Al$_{0.24}$Ga$_{0.23}$As self-assembled QDs with emission wavelengths at about 1.6 $\\mu$m grown on InP substrate is investigated by pump-probe Faraday rotation spectroscopy in a magnetic field. Pronounced oscillations on two different frequencies, corresponding to the QD electron and hole spin precessions about the field are observed from which the corresponding $g$ factors are determined. The electron $g$ factor of about $-1.9$ has the largest negative value so far measured for III-V QDs by optical methods. This value, as well as the $g$ factors reported for other III-V QDs, differ from those expected for bulk semiconductors at the same emission energies, and this difference increases significantly for decreasing energies.

  8. Synthesis and Characterization of High Temperature Cement-Based Hydroceramic Materials 

    E-Print Network [OSTI]

    Kyritsis, Konstantinos

    2009-01-01

    Cement-based materials are of importance in the construction of geothermal wells and high-temperature oil and gas wells. These materials fill the annulus between the well casing and the rock forming a protective layer, ...

  9. Synthesis of Novel Polypeptide-Silica Hybrid Materials through Surface-Initiated N-carboxyanhydride Polymerization 

    E-Print Network [OSTI]

    Lunn, Jonathan D.

    2011-08-08

    There is an increasing demand for materials that are physically robust, easily recovered, and able to perform a wide variety of chemical functions. By combining hard and soft matter synergistically, organic-inorganic hybrid materials are potentially...

  10. The Art of Chemical Synthesis Controlled Synthesis of Nanomaterials

    E-Print Network [OSTI]

    Subramanian, Venkat

    inorganic materials at the nanoscale remains challenging, these nanostructures should be well controlledThe Art of Chemical Synthesis Controlled Synthesis of Nanomaterials Sample List of Nanomaterials Life-time: 8 weeks #12;Highlights Custom synthesis available Universal synthetic methodology

  11. Helical Peptide Arrays on Self-Assembled Monolayer Surfaces Through Soft and Reactive Landing of Mass-Selected Ions

    SciTech Connect (OSTI)

    Wang, Peng; Laskin, Julia

    2008-08-01

    The ?-helix – the common building block of the protein secondary structure - plays an important role in determining protein structure and function. The biological function of the ?-helix is mainly attributed to its large macrodipole originating from the alignment of individual dipole moments of peptide bonds. Preparation of directionally aligned ?-helical peptide layers on substrates has attracted significant attention because the resulting strong net dipole is useful for a variety of applications in photonics, , molecular electronics, and catalysis. - In addition, conformationally-selected ?-helical peptide arrays can be used for detailed characterization of molecular recognition steps critical for protein folding, enzyme function and DNA binding by proteins. Existing technologies for the production of ?-helical peptide surfaces are based on a variety of solution phase synthetic strategies - that usually require relatively large quantities of purified materials.

  12. Synthesis and application of melamine-based dendrimer/sba-15 hybrid materials 

    E-Print Network [OSTI]

    Lunn, Jonathan David

    2007-09-17

    at the University of Bath. 14 Their work showed that phenyl and n-octyl groups could be directly incorporated into MCM-41 by adding phenyltriethoxysilane and n- octyltriethoxysilane, respectively, to the synthesis mixture. In 1997, Mann’s group published... then reacting the organotrialkoxysiloxane with the surface silanols, “indirectly” incorporating it into the solid. 11 An example of postsynthetic grafting is shown in Figure 1.3. 6 Si O Si O Si O Si * O OH OH OH OH OSi OSi OSi OSi Si * OSi OH n...

  13. Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality

    SciTech Connect (OSTI)

    LU,YUNFENG; FAN,HONGYOU; DOKE,NILESH; LOY,DOUGLAS A.; ASSINK,ROGER A.; LAVAN,DAVID A.; BRINKER,C. JEFFREY

    2000-06-12

    Since the discovery of surfactant-templated silica mesophases, the development of organic modification schemes to impart functionality to the pore surfaces has received much attention. Most recently, using the general class of compounds referred to as bridged silsesquioxanes (RO){sub 3}Si-R{prime}-Si(OR){sub 3} (Scheme 1), three research groups have reported the formation of a new class of poly(bridgedsilsesquioxane) mesophases BSQMs with integral organic functionality. In contrast to previous hybrid mesophases where organic ligands or molecules are situated on pore surfaces, this class of materials necessarily incorporates the organic constituents into the framework as molecularly dispersed bridging ligands. Although it is anticipated that this new mesostructural organization should result in synergistic properties derived from the molecular scale mixing of the inorganic and organic components, few properties of BSQMs have been measured. In addition samples prepared to date have been in the form of granular precipitates, precluding their use in applications like membranes, fluidics, and low k dielectric films needed for all foreseeable future generations of microelectronics.

  14. Synthesis and characterization of next-generation multifunctional material architectures : aligned carbon nanotube carbon matrix nanocomposites

    E-Print Network [OSTI]

    Stein, Itai Y

    2013-01-01

    Materials comprising carbon nanotube (CNT) aligned nanowire (NW) polymer nanocomposites (A-PNCs) have emerged as promising architectures for next-generation multifunctional applications. Enhanced operating regimes, such ...

  15. Design, Synthesis, and Evaluation of Next Generation Technologies in Stimulus-Responsive Materials and Organic Electronics

    E-Print Network [OSTI]

    Unruh, Jr, David Allen

    2011-01-01

    Building Blocks in Organic Electronics Abstract The donor-performing organic electronics. Inspired by the desirableMaterials and Organic Electronics by David Allen Unruh, Jr.

  16. Condensation of Self-assembled Lyotropic Chromonic Liquid Crystal Sunset Yellow in Aqueous Solutions Crowded with Polyethylene glycol and Doped with Salt

    E-Print Network [OSTI]

    Heung-Shik Park; Shin-Woong Kang; Luana Tortora; Satyendra Kumar; Oleg D. Lavrentovich

    2011-04-06

    We use optical and fluorescence microscopy, densitometry, cryo-transmission electron microscopy (cryo-TEM), spectroscopy, and synchrotron X-ray scattering, to study the phase behavior of the reversible self-assembled chromonic aggregates of an anionic dye Sunset Yellow (SSY) in aqueous solutions crowded with an electrically neutral polymer polyethylene glycol (PEG) and doped with the salt NaCl. PEG causes the isotropic SSY solutions to condense into a liquid-crystalline region with a high concentration of SSY aggregates, coexisting with a PEG-rich isotropic (I) region. PEG added to the homogeneous nematic (N) phase causes separation into the coexisting N and I domains; the SSY concentration in the N domains is higher than the original concentration of PEG-free N phase. Finally, addition of PEG to the highly concentrated homogeneous N phase causes separation into the coexisting columnar hexagonal (C) phase and I phase. This behavior can be qualitatively explained by the depletion (excluded volume) effects that act at two different levels: at the level of aggregate assembly from monomers and short aggregates and at the level of inter-aggregate packing. We also show a strong effect of a monovalent salt NaCl on phase diagrams that is different for high and low concentrations of SSY. Upon the addition of salt, dilute I solutions of SSY show appearance of the condensed N domains, but the highly concentrated C phase transforms into a coexisting I and N domains. We suggest that the salt-induced screening of electric charges at the surface of chromonic aggregates leads to two different effects: (a) increase of the scission energy and the contour length of aggregates, and (b) decrease of the persistence length of SSY aggregates.

  17. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200

    SciTech Connect (OSTI)

    Xie, Xin-yuan; Li, Li-yun; Zheng, Pu-sheng; Zheng, Wen-jie; Bai, Yan; Cheng, Tian-feng; Liu, Jie

    2012-11-15

    Graphical abstract: Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of about 6–8 was obtained. The sulfur nanoparticles could self-assemble from spherical particles to nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift which was due to the production of nanorods. Highlights: ? A novel, facile and greener method to synthesize sulfur nanorods by the solubilizing and templating effect of PEG-200 was reported. ? S{sup 0} nanoparticles could self assemble in PEG-200 and finally form monodisperse and homogeneous rod-like structure with an average diameter of about 80 nm, the length ca. 600 nm. ? The absorption band showed a red shift and the RRS intensity enhanced continuously during the self-assembling process. ? PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. -- Abstract: The synthesis of nano-sulfur sol by dissolving sublimed sulfur in a green solvent-PEG-200 was studied. Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of 6–8 was obtained. The structure, morphology, size, and stability of the products were investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The spectral properties of the products were investigated by ultraviolet-visible (UV–vis) absorption and resonance Rayleigh scattering spectroscopy (RRS). The results showed that the spherical sulfur nanoparticles could self-assemble into nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift and the RRS intensity enhanced continuously. There was physical cross-linking between PEG and sulfur nanoparticles. PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. This research provides a greener and more environment-friendly synthetic method for the production of sulfur nanorods.

  18. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    DOE Patents [OSTI]

    Lueking, Angela (State College, PA); Narayanan, Deepa (Redmond, WA)

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  19. Synthesis and Characterization of Rationally Designed Porous Materials for Energy Storage and Carbon Capture 

    E-Print Network [OSTI]

    Sculley, Julian Patrick

    2013-04-30

    energy landscape, the specific materials needed to solve these problems must have significantly different properties. High pressure gas storage is most often linked with high surface areas and pore volumes, while carbon capture sorbents require high...

  20. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhak, Debasis; Hong, Seungbum; Das, Soma; Dhak, Prasanta

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolutionmore »of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices.« less

  1. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    SciTech Connect (OSTI)

    Dhak, Debasis [Sidho-Kanho-Birsha Univ., West Bengal (India). Dept. of Chemistry.; Hong, Seungbum [Argonne National Lab. (ANL), Argonne, IL (United States); Das, Soma [Institute of Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur (India). Electronics & Communication Engineering.; Dhak, Prasanta [Seoul National Univ., Seoul (Republic of Korea). Dept. of Materials Science and Engineering.

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolution of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices.

  2. Multifunctional Energetic Materials* Materials Research Society (MRS) Symposium H, November 28-30, 2005, Boston, MA

    E-Print Network [OSTI]

    Maryland at College Park, University of

    evaluations for reactive materials, new techniques for synthesis of energetic materials including thermites

  3. Structural and functional biological materials : abalone nacre, sharp materials, and abalone foot adhesion

    E-Print Network [OSTI]

    Lin, Albert Yu-Min

    2008-01-01

    inorganic materials could lead to significant advances in materials science, opening the door to novel synthesis

  4. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    SciTech Connect (OSTI)

    Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Igarashi, Shota, E-mail: uxei_yoshi_yoshi@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Sato, Soh, E-mail: rookie_so_sleepy@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan)

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.

  5. Self-assembling software generator

    DOE Patents [OSTI]

    Bouchard, Ann M. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

    2011-11-25

    A technique to generate an executable task includes inspecting a task specification data structure to determine what software entities are to be generated to create the executable task, inspecting the task specification data structure to determine how the software entities will be linked after generating the software entities, inspecting the task specification data structure to determine logic to be executed by the software entities, and generating the software entities to create the executable task.

  6. Sol-gel synthesis of hybrid organic-inorganic materials. Hexylene- and phenylene-bridged polysiloxanes

    SciTech Connect (OSTI)

    Loy, D.A.; Jamison, G.M.; Baugher, B.M.; Myers, S.A.; Assink, R.A.; Shea, K.J. [Sandia National Laboratories, Albuquerque, NM (United States)] [Sandia National Laboratories, Albuquerque, NM (United States); [Univ. of California, Irvine, CA (United States)

    1996-03-01

    New highly cross-linked polysiloxanes were prepared by sol-gel polymerization of 1,6-bis(diethoxymethylsilyl)hexane (1) and 1,4-bis(diethoxymethylsilyl)benzene (2). Hydrolysis and condensation of 1 and 2 under acidic and basic conditions with 4 equiv of water led to the rapid formation of hexylene- and phenylene-bridged polysiloxane gels. The dry gels (xerogels) were intractable, insoluble materials that were noticeably hydrophobic, exhibiting no swelling in organic solvents or water. Most of the xerogels were high surface area, mesoporous materials. Hexylene-bridged polysiloxanes prepared under acidic conditions were always nonporous regardless of whether they were processed to afford xerogels or supercritically dried as aerogels. Hexylene-bridged polysiloxanes prepared under basic conditions and all of the phenylene-bridged polysiloxanes were mesoporous with surface areas as high as 1025 m{sup 2}/g. 35 refs., 9 figs., 3 tabs.

  7. Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    -ion batteries Yanyi Liu,a Evan Uchaker,a Nan Zhou,ab Jiangang Li,ac Qifeng Zhanga and Guozhong Cao*a Received 23 and VO2 (B) nanorods were tested as active cathode materials for Li-ion batteries. The V2O5 sheet for efficient Li-ion batteries. Introduction The expansion and demands for energy use in the past several

  8. Dispersions of Aramid Nanofibers: A New Piece of Nanoscale Toolset

    E-Print Network [OSTI]

    Thouless, Michael

    chemical and materials research. Polymeric nanofibers are typically produced by electrospinning,2 drawing,3 template synthesis,4 phase separation,5 and self-assembly.6 Electrospinning is probably the most widely

  9. Powder-based synthesis of nanocrystalline material components for structural application. Final report

    SciTech Connect (OSTI)

    Ilyuschenko, A.F.; Ivashko, V.S.; Okovity, V.A. [Powder Metallurgy Research Inst., Minsk (Belarus)] [and others

    1998-12-01

    Hydroxiapate spray coatings and substrates for implant production as well as multilayered metal ceramic coatings from nanocrystalline materials are a subject of the investigation. The work aims at the improvement of quality of said objects. This study has investigated the processes of hydroxiapatite powder production. Sizes, shapes and relief of initial HA powder surface are analyzed using SEM and TEM. Modes of HA plasma spraying on a substrate from titanium and associated compositions of traditional and nanocrystalline structure are optimized. The quality of the sprayed samples are studied using X-ray phase analysis and metallographic analysis. The results of investigations of bioceramic coating spraying on titanium are theoretically generalized, taking into account obtained experimental data. The results of investigations of ion-beam technology are presented for spraying multilayered coatings consisting of alternating metal-ceramic layers of nanocrystalline structure.

  10. Sono synthesis and characterization of nanophase molybdenum-based materials for catalytic hydrodesulfurization.

    SciTech Connect (OSTI)

    Mahajan, D.; Marshall, C. L.; Castagnola, N.; Hanson, J. C.; BNL

    2004-02-10

    Unsupported nano-phase MoS{sub 2}, CoS, and CoS-MoS{sub 2} (Mo/Co mole ratio {approx}6/1) materials were prepared in hexadecane by sonolysis of the corresponding metal carbonyls at {approx}50 {sup o}C in high (>90%) yields as measured by the evolved carbon monoxide. Direct sonolysis of commercial micron-sized MoS{sub 2} in hexadecane did not result in nano-sizing. The TEM images showed that the synthesized MoS{sub 2} were aggregates of {approx}20 nm mean particle diameter, CoS was {approx}50 nm and the mixed-metal CoS-MoS{sub 2} could be viewed as a composite in which smaller MoS{sub 2} particles resided on the larger crystallites of CoS. The broad XRD peaks were consistent with nano-structured MoS{sub 2} and the sharp peaks were consistent with a more crystalline CoS-MoS{sub 2} species. The sharp peaks did not fit any single CoS pattern suggesting multiple phases. The XRD data showed that sonolysis did not alter the morphology of the micron-sized commercial MoS{sub 2} sample. In the HDS comparative activity study of dibenzothiophene, the synthesized nano-phase MoS{sub 2} exhibited more than an order of magnitude higher activity than its commercial micron-sized counterpart and the addition of Co further enhanced the activity. The HDS activity mirrored the temperature programmed reduction data. Interestingly, the nano-phase materials were less active for hydrogenation of 1-octene during the HDS study.

  11. Pulsed-Laser Deposited Amorphous Diamond and Related Materials: Synthesis, Characterization, and Field Emission Properties

    SciTech Connect (OSTI)

    Baylor, L.R.; Geohegan, D.B.; Jellison, G.E., Jr.; Lowndes, D.H.; Merkulov, V.I.; Puretzky, A.A.

    1999-01-23

    Amorphous carbon films with variable sp{sup 3} content were produced by ArF (193nm) pulsed laser deposition. An in-situ ion probe was used to measure kinetic energy of C{sup +} ions. In contrast to measurements made as a function of laser fluence, ion probe measurements of kinetic energy are a convenient as well as more accurate and fundamental method for monitoring deposition conditions, with the advantage of being readily transferable for inter-laboratory comparisons. Electron energy loss spectroscopy (EELS) and spectroscopic ellipsometry measurements reveal that tetrahedral amorphous carbon (ta-C) films with the most diamond-like properties are obtained at the C ion kinetic energy of {approximately}90 eV. Film properties are uniform within a 12-15{degree} angle from the plume centerline. Tapping-mode atomic force microscope measurements show that films deposited at near-optimum kinetic energy are extremely smooth, with rms roughness of only {approximately} 1 {angstrom} over distances of several hundred nm. Field emission (FE) measurements show that ta-C does not appear to be a good electron emitter. After conditioning of ta-C films deposited on n-type Si a rather high turn-on voltage of {approximately}50 V/{micro}m was required to draw current of {approximately}1 nA to the probe. The emission was unstable and typically ceased after a few minutes of operation. The FE tests of ta-C and other materials strongly suggest that surface morphology plays a dominant role in the FE process, in agreement with conventional Fowler-Nordheim theory.

  12. Variable dimensionality in the uranium fluoride/2-methyl-piperazine system: Synthesis and structures of UFO-5, -6, and -7; Zero-, one-, and two-dimensional materials with unprecedented topologies

    SciTech Connect (OSTI)

    Francis, R.J.; Halasyamani, P.S.; Bee, J.S.; O'Hare, D.

    1999-02-24

    Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-, and two-dimensional materials.

  13. Biomimetic Synthesis of Noble Metal Nanoparticles and Their Applications as Electro-catalysts in Fuel Cells

    E-Print Network [OSTI]

    Li, Yujing

    2012-01-01

    Y. , Biomimetic Synthesis of Inorganic Materials and Theirsynthesis of inorganic materials .NPs. 1.2 Biomimetic synthesis of inorganic materials Through

  14. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01

    materials .. 310 CVD OptimizationOptimization and Characterization of Multiwalled Carbon Nanotubes”, Journal of Electronic Materials,of the material as it appears in “Synthesis Optimization and

  15. Suslick, K. S.; Fang, M. M.; Hyeon, T.; Mdleleni, M. M. "Applications of Sonochemistry to Materials Synthesis" in

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    , Netherlands, 1999, pp. 291-320. p. 292 we will describe the sonochemical synthesis and heterogeneous catalytic/ Reforming Oxidation Sono- Catalysis With Cavitation Enhancement of Mass Transport Without Cavitation Liquid

  16. Synthesis of High-Purity alpha-and beta-PbO and Possible Applications to Synthesis and Processing of Other Lead Oxide Materials

    E-Print Network [OSTI]

    Perry, Dale L.

    2011-01-01

    and Processing of Other Lead Oxide Materials D. L. PERRY andred, tetragonal form of lead oxide, ?-PbO, litharge, and thedifferent conducting lead oxides and other related materials

  17. Synthesis and characterization of thermally stable polymers containing phenazine

    E-Print Network [OSTI]

    Zand, Robert

    : Polybenzimidazole; Ladder polymer; Phenazine 1. Introduction The synthesis of high molecular weight polyimides crystalline materials and photosensitive materials. The synthesis of polyimides containing tricyclic previously reported the synthesis and characteriza- tion of several polyimides in which the tricyclic

  18. Synthesis and Morphological, Electrochemical Characterization of Sn92Co8 Nanoalloys for Anode Materials in Li Secondary

    E-Print Network [OSTI]

    Cho, Jaephil

    Materials in Li Secondary Batteries Hyunjung Kim and Jaephil Cho*,z Department of Applied Chemistry, Kumoh the capacity limits of graphite materials, Sn and Si anode materials have been investigated.1-3 However

  19. Synthesis of High-Purity alpha-and beta-PbO and Possible Applications to Synthesis and Processing of Other Lead Oxide Materials

    E-Print Network [OSTI]

    Perry, Dale L.

    2011-01-01

    structural forms of lead(II) oxide X-ray diffractionand Processing of Other Lead Oxide Materials D. L. PERRY andThe red, tetragonal form of lead oxide, ?-PbO, litharge, and

  20. Digital Alchemy for Materials Design and Optimization

    E-Print Network [OSTI]

    Greg van Anders; Daphne Klotsa; Andrew S. Karas; Paul M. Dodd; Sharon C. Glotzer

    2015-07-17

    Starting with the early alchemists, a holy grail of science has been to make desired materials by modifying the attributes of basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that making direct connection between building block attributes and bulk behavior is both necessary for rationally engineering materials, and difficult because building block attributes can be altered in many ways. Here we show how to exploit the malleability of the valence of colloidal nanoparticle "elements" to directly and quantitatively link building block attributes to bulk behavior through a statistical thermodynamic framework we term "digital alchemy". We use this framework to optimize building blocks for a given target structure, and to determine which building block attributes are most important to control for self assembly, through a set of novel thermodynamic response functions, moduli and susceptibilities. We thereby establish direct links between the attributes of colloidal building blocks and the bulk structures they form. Moreover, our results give concrete solutions to the more general conceptual challenge of optimizing emergent behaviors in nature, and can be applied to other types of matter. As examples, we apply digital alchemy to systems of truncated tetrahedra, rhombic dodecahedra, and isotropically interacting spheres that self assemble diamond, FCC, and icosahedral quasicrystal structures, respectively.

  1. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  2. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    synthesis of inorganic semiconductor-based nanostructured materials;inorganic materials. 16,35,62?72 In the synthesis, we begin

  3. Investigation of porous alumina as a self-assembled diffractive element to facilitate light trapping in thin film silicon solar cells

    E-Print Network [OSTI]

    Coronel, Naomi (Naomi Cristina)

    2009-01-01

    Thin film solar cells are currently being investigated as an affordable alternative energy source because of the reduced material cost. However, these devices suffer from low efficiencies, compared to silicon wafer solar ...

  4. Layer-By-Layer Self-Assembly of CIGS Nanoparticles and Polymers for All-Solution Processable Low-Cost, High-Efficiency Solar Cells

    E-Print Network [OSTI]

    Zhou, Yaoqi

    -Cost, High-Efficiency Solar Cells Tung Ho1 , Robert Vittoe3 , Namratha Kakumanu2 , Sudhir Shrestha2-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202 Thin film solar cells made from copper indium gallium thereby affecting solar cell efficiency. This research aims to study various polymer materials to replace

  5. Lasing characteristics of GaSb/GaAs self-assembled quantum dots embedded in an InGaAs quantum well

    E-Print Network [OSTI]

    Jalali. Bahram

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico, New Mexico 87545 Received 26 February 2007; accepted 1 June 2007; published online 28 June 2007 intriguing optoelectronic device possibilities on GaAs substrates including lasers, detectors, or solar cells

  6. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Together, these research capabilities in materials synthesis, characterization, and theory contribute to our leadership in basic and applied materials science that ultimately...

  7. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure, dynamics and functionality, and we use...

  8. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  9. Fiber draw synthesis

    E-Print Network [OSTI]

    Orf, Nicholas D.

    The synthesis of a high-melting temperature semiconductor in a low-temperature fiber drawing process is demonstrated, substantially expanding the set of materials that can be incorporated into fibers. Reagents in the solid ...

  10. Flux pinning enhancements in YBa2Cu3O7-8 superconductors through phase separated, self-assembled LaMnO3-MgO nanocomposite films.

    SciTech Connect (OSTI)

    Polat, Ozgur [ORNL; Aytug, Tolga [ORNL; Paranthaman, Mariappan Parans [ORNL; Leonard, Keith J [ORNL; Pennycook, Stephen J [ORNL; Kim, Kyunghoon [ORNL; Cook, Sylvester W [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; Goyal, Amit [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York; Lupini, Andrew R [ORNL; Meyer, Hendrik [ORNL; Qiu, Xiaofeng [ORNL; Xiong, X. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    Technological applications of high temperature superconductors (HTS) require high critical current density, Jc, under operation at high magnetic field strengths. This requires effective flux pinning by introducing artificial defects through creative processing. In this work, we generated correlated disorder for strong vortex pinning in the YBa2Cu3O7- (YBCO) films by replacing the standard LaMnO3 (LMO) cap buffer layers in ion beam assisted deposited MgO templates with LMO:MgO composite films. Such films revealed formation of two phase-separated, but at the same time vertically aligned, self-assembled composite nanostructures that extend throughout the entire thickness of the film. Measurements of magnetic-field orientation-dependent Jc of YBCO coatings deposited on these nanostructured cap layers showed correlated c-axis pinning and improved in-field Jc performance compared to those of YBCO films deposited on standard LMO buffers. The present results demonstrate feasibility of novel and potentially practical approaches in the pursuit of more efficient, economical, and high performance superconducting devices.

  11. Photopumped red-emitting InP/In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P self-assembled quantum dot heterostructure lasers grown by metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Ryou, J. H.; Dupuis, R. D.; Walter, G.; Kellogg, D. A.; Holonyak, N.; Mathes, D. T.; Hull, R.; Reddy, C. V.; Narayanamurti, V.

    2001-06-25

    We report the 300 K operation of optically pumped red-emitting lasers fabricated from InP self-assembled quantum dots embedded in In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P layers on GaAs (100) substrates grown by metalorganic chemical vapor deposition. Quantum dots grown at 650{degree}C on In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P layers have a high density on the order of 10{sup 10} cm{sup {minus}2} and the dominant size of individual quantum dots ranges from {similar_to}5 to {similar_to}10 nm for 7.5 monolayer {open_quotes}equivalent growth.{close_quotes} These InP/In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P quantum dot heterostructures are characterized by atomic force microscopy, high-resolution transmission electron microscopy, and photoluminescence. Laser structures are prepared from wafers having two vertically stacked InP quantum dot active layers within a 100-nm-thick In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P waveguide and upper and lower 600 nm InAlP cladding layers. We observe lasing at {lambda}{similar_to}680 nm at room temperature in optically pumped samples. {copyright} 2001 American Institute of Physics.

  12. Digital Alchemy for Materials Design and Optimization

    E-Print Network [OSTI]

    van Anders, Greg; Karas, Andrew S; Dodd, Paul M; Glotzer, Sharon C

    2015-01-01

    Starting with the early alchemists, a holy grail of science has been to make desired materials by modifying the attributes of basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that making direct connection between building block attributes and bulk behavior is both necessary for rationally engineering materials, and difficult because building block attributes can be altered in many ways. Here we show how to exploit the malleability of the valence of colloidal nanoparticle "elements" to directly and quantitatively link building block attributes to bulk behavior through a statistical thermodynamic framework we term "digital alchemy". We use this framework to optimize building blocks for a given target structure, and to determine which building block attributes are most important to control for self assembly, through a set...

  13. The design and synthesis of polymeric assemblies for materials applications : chemosensing, liquid crystal alignment and block copolymers

    E-Print Network [OSTI]

    Cox, Jason R. (Jason Robert)

    2012-01-01

    Conjugated polymers are an indispensable class of materials that have advanced the development of optoelectronic device architectures; in part, due to their outstanding electronic and mechanical properties. This thesis ...

  14. Microstructural, magnetic, and optical properties of the self-assembled (III{sub 1-x}Mn{sub x})V quantum structure

    SciTech Connect (OSTI)

    Jeon, H. C.; Lee, S. J.; Kang, T. W.

    2010-01-04

    Diluted magnetic semiconductor (DMS) materials have attracted much attention because of the interest in both investigations of fundamental physical properties and promising applications for various spintronic devices. Among many DMS structures, (III{sub 1-x}Mn{sub x})V ferromagnetic semiconductor quantum structures have been particularly attractive due to their potential applications in spintronic devices and they have combined properties of both III-V semiconductors and Mn ferromagnetic compounds, and the excellent advantages derived by utilizing mature III-V based heterostructure technology. Even though not many papers have been reported on the formation of one layer of (III{sub 1-x}Mn{sub x})V Quantum structure-Quantum Dots(QDs) and Quantum Wires(Q-Wire), systematic studies concerning microstructural, magnetic, and optical properties of the (III{sub 1-x}Mn{sub x})V quantum structure have been more attractive because of the interest in promising applications in optoelectronic devices, such as spin injection lasers and spin switching devices.

  15. Cr-Ga-N materials for negative electrodes in Li rechargeable batteries : structure, synthesis and electrochemical performance

    E-Print Network [OSTI]

    Kim, Miso

    2007-01-01

    Electrochemical performances of two ternary compounds (Cr2GaN and Cr3GaN) in the Cr-Ga-N system as possible future anode materials for lithium rechargeable batteries were studied. Motivation for this study was dealt in ...

  16. Sol-gel synthesis and characterization of tetra-alkoxysilane and bridged-polysilsesquioxane materials in non-polar solvents

    SciTech Connect (OSTI)

    Yamanaka, S.A.; Martino, A.; Kawola, J.S.; Loy, D.A. [Sandia National Laboratories, Albuquerque, NM (United States)

    1996-10-01

    Although the sol-gel method has widely been used for the encapsulation of molecules in porous glass materials, the variety of dopants has been limited by the solvents used in processing. Polar solvents, such as ethanol, methanol or tetrahydrofuran, are typically added as cosolvents to prevent phase separation between the organic metal alkoxide and water. Non-polar solvents are generally not suitable for sol-gel processing since they are immicible with the aqueous phase. Our study increases the availability of solvents that may be used in sol-gel processing and therefore expands the range of molecules suitable for encapsulation. Here, we report a novel method for preparing both silica sol-gel materials and bridged-polysilsesquioxane materials in a non-polar, hydrocarbon solvent. The method involves the formation of an inverse micelle upon addition of the surfactant, didodecyldimethylammonium bromide, to toluene. The dynamic nature of the micelle allows sol-gel reactions to occur between water (soluble in the polar core of the micelle) and the metal alkoxide precursor (soluble in the solvent phase). Materials prepared by this technique have been characterized by nitrogen sorption porosimetry, SEM, solid state {sup 29}Si NMR, TGA and XRD. Photochemical conversion of technetium fluorides and oxyfluorides is largely uninvestigated. Because technetium was introduced into U.S. uranium enrichment plants, decommissioning and decontamination of these plants will involve technetium fluorides and oxyfluorides. Photochemical conversion of such compounds may facilitate waste minimization and cost avoidance goals during plant clean-up. Photochemical fluorination using ultraviolet photolysis of a mixture of fluorine and oxygen gases is an effective means of converting solid, nonvolatile fluorides of fight actinides, such as U, Np, and Pu, into volatile hexafluorides thereby removing surface radioactive contamination.

  17. Tetrides and Pnictides for Fast-Ion Conductors, Phosphor-Hosts, Structural Materials and Improved Thermoelectrics

    E-Print Network [OSTI]

    Hick, Sandra Marie

    2013-01-01

    Synthesis of Lanthanide Doped Nitride Phosphors. in UC Inorganic MaterialsSynthesis of Alkaline Earth Carbides and Intercalation Compounds. in Florida Inorganic & Materials

  18. RE/ZrO{sub 2} (RE = Sm, Eu) composite oxide nano-materials: Synthesis and applications in photocatalysis

    SciTech Connect (OSTI)

    Du, Weimin, E-mail: duweimin75@gmail.com [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002 (China); Zhu, Zhaoqiang [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001 (China); Zhang, Xiaofen; Wang, Dacheng; Liu, Donghe [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002 (China); Qian, Xuefeng [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Du, Jimin, E-mail: djm@aynu.edu.cn [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002 (China)

    2013-10-15

    Graphical abstract: - Highlights: • RE/ZrO{sub 2} (RE = Sm, Eu) nano-materials have been successfully synthesized. • Defect and electron structures determine the absorption properties on visible light. • Nano-sized Zr{sub 0.8}Sm{sub 0.2}O{sub 2??} has good visible-light-responsive photocatalytic activities. • In the future, it can be used in wastewater treatment and environmental protection. - Abstract: Zirconia modified by Samarium/Europium, RE/ZrO{sub 2} (RE = Sm, Eu), composite oxide nano-materials have been successfully synthesized by improved sol–gel method. Characterization results show that X-ray diffraction (XRD) peaks of products gradually shift to the lower angle with the increase of rare earth which implies that the lattice distances of RE/ZrO{sub 2} nano-materials are gradually enlarged. Moreover, the molar ratios between zirconium and rare earth are consistent with the chemical formula and both of them are uniformly distributed in samples. Optical properties indicate that defect structures and electron configurations of RE/ZrO{sub 2} (RE = Sm, Eu) with single phase determine their absorption properties on visible light. Photocatalytic experiments indicate Zr{sub 0.8}Sm{sub 0.2}O{sub 2??} nano-crystals have excellent visible-light-responsive photocatalytic activities on Methylene blue and Rhodamine B which results from the special defect structure, suitable electronic configuration, and larger specific surface area. It follows that Zr{sub 0.8}Sm{sub 0.2}O{sub 2??} nano-crystals are new visible-light-responsive photocatalysts which can be applied in dye wastewater treatment and environmental protection in the future.

  19. Synthesis of bulk FeHfBO soft magnetic materials and its loss characterization at megahertz frequency

    SciTech Connect (OSTI)

    Zhou Yang; Kou Xiaoming; Warsi Muhammad, Asif; Lin Shuo; Harris, Brendan S.; Parsons, Paul E.; Xiao, John Q. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Mu Mingkai; Lee, Fred C. [Center for Power Electronics System, Virginia Polytechnic and State University, Blacksburg, Virginia 24060 (United States); Zhu Hao [Spectrum Magnetics LLC, Wilmington, Delaware 19804 (United States)

    2013-05-07

    Magnetic core materials with low loss, high saturation magnetization, large permeability, and operating frequency above 1 MHz are in high demands for the next generation of miniaturized power electronics. Amorphous FeHfB ribbons with thickness around 20 {mu}m have been fabricated through melt-spinning. Different heat treatments were performed on the FeHfB ribbons, and the relations among heat treatments, microstructure, and magnetic properties have been explored. Properties such as coercivity (H{sub c}) of 2.0 Oe and saturation magnetic flux density (B{sub S}) of 1.2 T have been achieved in samples with exchange coupling. The losses can be minimized by balancing the hysteretic and eddy current losses and can be further reduced with additional magnetic field annealing. At 5 MHz with peak magnetic flux density of 20 mT, the materials show core losses comparable to the best ferrites, but with higher permeability value of about 200 and superior saturation induction of more than 1 T.

  20. A new copper borophosphate with novel polymeric chains and its structural correlation with raw materials in molten hydrated flux synthesis

    SciTech Connect (OSTI)

    Duan, Ruijing; Liu, Wei Cao, Lixin; Su, Ge; Xu, Hongmei; Zhao, Chenggong

    2014-02-15

    A novel copper borophosphate, Cu{sub 3}[B{sub 2}P{sub 3}O{sub 12}(OH){sub 3}] has been prepared by the molten hydrated flux method. Its crystal structure was determined by the single-crystal X-ray diffraction (monoclinic, Cc, a=6.1895 Å, b=13.6209 Å, c=11.9373 Å, ?=97.62°, V=997.5 Å{sup 3}, Z=4). The three-dimensional framework of the titled compound, is composed by two kinds of polymeric chains and isolated PO{sub 4} tetrahedral. One novel 4-membered tetrahedral rings has been observed in borophosphates. Magnetic measurements indicate that the title compound exits antiferromagnetic interactions. Due to the special reaction medium created by the molten hydrated flux method, a possible structural correlation between the final solids and the raw materials has been noted. - Graphical abstract: The 3D structure consists of a framework composed of CuO{sub x} polyhedra, BO{sub 4} and PO{sub 4} tetrahedra. A intersection angle between the metal chains and borophosphate chains can be noted. Display Omitted - Highlights: • A novel copper borophosphate has been prepared by the molten hydrated flux method. • One novel 4-membered tetrahedral ring has been observed firstly in borophosphates. • A possible structural correlation between the final solids and the raw materials has been noted.

  1. Functionalized Methionine Polypeptides And Their Self Assembly

    E-Print Network [OSTI]

    Higgins, Robin

    2013-01-01

    0.2 weight % respectively. Uranyl acetate stain applied forcomputer program EMMENU4. Uranyl acetate was used to stain

  2. Metal-directed protein self-assembly

    E-Print Network [OSTI]

    Salgado. Eric N.

    2010-01-01

    density map calculated using 1.378-Å radiation (Cu K-edge)density map (12! ) calculated using 1.485-Å radiation (Ni K

  3. Metal-directed protein self-assembly

    E-Print Network [OSTI]

    Salgado. Eric N.

    2010-01-01

    MBPC-1 4 , determined using the PISA server……………………………determined using the PISA server. ………………………………..………….C82 RIDC-1 2,BMH …… PISA server output for the analysis

  4. Self-Assembly of Organic Nanostructures 

    E-Print Network [OSTI]

    Wan, Albert

    2012-10-19

    of octadecyltrichlorosilane (OTS) by UV-ozone. The nanoparticles disassemble into smaller nanoparticles with narrower size distribution on the surface with higher surface energy. Lastly, we engaged in characterizing the morphologies of polymer nanocomposites prepared by layer...

  5. Algorithmic design of self-assembling structures

    E-Print Network [OSTI]

    Henry Cohn; Abhinav Kumar

    2009-06-18

    We study inverse statistical mechanics: how can one design a potential function so as to produce a specified ground state? In this paper, we show that unexpectedly simple potential functions suffice for certain symmetrical configurations, and we apply techniques from coding and information theory to provide mathematical proof that the ground state has been achieved. These potential functions are required to be decreasing and convex, which rules out the use of potential wells. Furthermore, we give an algorithm for constructing a potential function with a desired ground state.

  6. Inorganic Nanoarchitectures by Organic Self Assembly

    E-Print Network [OSTI]

    Guldin, Stefan

    2014-05-27

    fundamental characteristics N and a through the volume filling condition ?d/2 = Na3 (assuming incompressibility). By minimising Equation 1.7 with respect to d follows an expression for the equilibrium lamellar period (d0): d0/2 ? a?1/6N2/3. (1.8) The optimum... 0 20 40 60 80 c N f A 0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 c N f A S C G G C SL S G PL LC C S G LC C CPS CPS S Figure 1.3: Phase separation of diblock copolymers. a) Schematic of diblock copolymer chain asymmetry and corresponding morphological...

  7. Metal-directed protein self-assembly

    E-Print Network [OSTI]

    Salgado. Eric N.

    2010-01-01

    of a Metal-Templated Protein Tetramer Introduction ThoroughRIDC-2 4 Zn-mediated RIDC-2 tetramer viii Zn 4 : C82 RIDC-1mediated C82 RIDC-1 2,BMB tetramer Zn 4 : C82 RIDC-1 2,BMH

  8. Metal-directed protein self-assembly

    E-Print Network [OSTI]

    Salgado. Eric N.

    2010-01-01

    F. A. 2010. Evolution of metal selectivity in templatedR. J. , Tezcan, F. A. 2010. Metal-Directed Protein Self-B. , Tezcan, F. A. 2010. Metal templated design of protein

  9. Templated self-assembly of multiferroic nanocomposites

    E-Print Network [OSTI]

    Aimon, Nicolas M

    2014-01-01

    To respond to the growing demand for smart and connected devices, such as smartphones, tablet PCs arid other mobile hardware, while meeting the needs for increased power efficiency, miniaturization and reduced manufacturing ...

  10. Modeling triblock surfactant-templated mesostructured cellular foams Supriyo Bhattacharyaa

    E-Print Network [OSTI]

    Bhattacharya, Supriyo

    to understand the role of surfactant self-assembly in the synthesis of templated mesoporous materials, and inorganic oxide. Depending on the temperature and component concentrations, these systems phase separate to sphere transition associated with the synthesis of the mesostructured cellular foams MCFs . Pore size

  11. Discovery of New Alloys by Bulk Combinatorial Synthesis | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of New Alloys by Bulk Combinatorial Synthesis The Critical Materials Institute (CMI) is developing new capabilities in the search for new materials or substitutions in...

  12. LANL: Ion Beam Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion...

  13. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using VitaminB2: Catalytic Polymerisation of Aniline and Pyrrole

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2008-01-01

    For the first time, we report green chemistry approach using vitaminB2in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires, and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4) or hydroxylamine hydrochloride and any special capping or dispersing agent. VitaminB2was used as reducing agent as well as capping agent due to its high-water solubility, biodegradability, and low-toxicity compared with other reducing agents. The average particle size of nanoprticle was found to be Ag (average size 6.1±0.1?nm) and Pd (average size 4.1±0.1?nm) nanoparticles in ethylene glycol and Agmore »(average size 5.9±0.1?nm, and average size 6.1±0.1) nanoparticles in acetic acid and NMP, respectively. The formation of noble multiple shape nanostructures and their self assembly were dependent on the solvent employed for the preparation. When water was used as solvent media, Ag and Pd nanoparticles started to self-assemble into rod-like structures and in isopropanol Ag and Pd nanoparticles yielded wire-like structures with a thickness in the range of 10 to 20?nm and several hundred microns in length. In acetone and acetonitrile medium, the Ag and Pd nanoparticles are self-assembled into a regular pattern making nanorod structures with thicknesses ranging from 100 to 200?nm and lengths of a few microns. The so-synthesized nanostructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and UV spectroscopy. The ensuing Ag and Pd nanoparticles catalyzed the reactions of aniline and pyrrole to generate polyaniline and polypyrrole nanofibers and may find various technological and biological applications. This single-step greener approach is general and can be extended to other noble metals and transition metal oxides.« less

  14. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    E-Print Network [OSTI]

    2010-01-01

    R.G.B and J.A.E. ). Keywords: biomass · carboxylic acids ·10.1002/cssc.201000111 A Direct, Biomass-Based Synthesis ofaro- matic compounds from biomass resources could provide a

  15. Design and Implementation of a Facility for Discovering New Scintillator Materials

    E-Print Network [OSTI]

    Derenzo, Stephen E

    2008-01-01

    synthesis of inorganic compounds in crystalline powder form and their characterization as potential scintillator detector materials.

  16. Materials Synthesis and Integrated Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    involves interactions with industrial sponsors and partners. Key capabilities Electrochemistry and electrocatalysis Fuel cell modeling, design, fabrication, testing Design and...

  17. Biomimetic synthesis of noble metal nanocrystals

    E-Print Network [OSTI]

    Chiu, Chin-Yi

    2013-01-01

    Directed Syntheses of Inorganic Materials. Chem. Rev. 108,synthesis and further investigate the interfaces between biomolecule and inorganic materialssynthesis and has inspired the mechanistic studies on the specific interfacial interactions between biomolecules and inorganic materials.

  18. Combustion synthesis method and products

    DOE Patents [OSTI]

    Holt, J.B.; Kelly, M.

    1993-03-30

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  19. Materials Today Volume 16, Number 9 September 2013 RESEARCH Lighting up micro-structured materials

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Smaller is better in the field of material synthesis, and progress made toward fabricating and controlling new materials on smaller and smaller scales is truly astonishing. Materials such as metals, inorganic progress in material synthesis has also triggered a need for tools to analyze the optical characteristics

  20. Synthesis of zeolite beta in fluoride media under microwave irradiation

    E-Print Network [OSTI]

    Kim, Ji Man

    at the nucleation step, resulting in the rapid synthesis of the material. Ó 2003 Elsevier Inc. All rights reserved of inorganic materials are generally known to be faster and simpler than conven- tional methods [15]. Energy in the synthesis of nanoporous materials have been shown to provide versatile effects, for instance, short heating