Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LANL: Facility Focus, MST-6 Materials Surface Science Investigations Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

07-018 Spring 2007 07-018 Spring 2007 T he MST-6 Materials Surface Science Investigations Laboratory is home to a one-of-a-kind integrated instrument for surface science and materials research, allowing scientists at Los Alamos National Laboratory the unique opportunity to perform coordinated research using ultra-high vacuum surface measurements, in situ reactions, and materials synthesis tools. Housed in the Materials Science Laboratory, the surface science instrument features an ultra-clean integrated system for surface analysis and in situ surface modification, thin film deposition, and surface gas reactions. This integrated system is used for analytical surface science; materials electronic

2

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

3

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

4

NREL: Energy Sciences - Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Materials Science Learn about our...

5

NEWTON's Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Archive: Materials Science Archive: Loading Most Recent Materials Science Questions: Hydrogen Compounds and Heat Conduction Weaving Carbon Nanotubes Metal as Electrical Conductor, Not Thermal Steel Changes with Age PETE, Ultraviolet Light, Benefits Strength of Yarn by Spinning Each Substance Unique Density Alloy versus Constituent Density Knowing When Material is Melted Crystalline Metal Versus Metallic Glass and Conduction Super Glue, Surgery, and Skin Silica Gel Teflon Non-Stick Property Salt Crystal Formation Lubricating Rubber Bands and Elasticity Materials for Venus Probe Crystalline Solids and Lowest Energy Sodium Polycarbonate and Salt Water Early Adhesives Surface Energy and Temperature Separating Polypropylene, Polyester, and Nylon Factors Effecting Polymer Flexibility

6

SC e-journals, Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface Engineering - OAJ Archives of Materials Science and Engineering - OAJ Carbohydrate Polymers Carbon Catalysis Science & Technology Cellulose Cement and Concrete Research Ceramic Engineering and Science Proceedings Ceramics International Chalcogenide Letters - OAJ Chemical and Petroleum Engineering

7

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

8

NEWTON's Material Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

9

Educational Material Science Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

10

surface science | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

surface science surface science Leads No leads are available at this time. Metal-Insulator Photocathode Heterojunction for Directed Electron Emission. Abstract: New photocathode...

11

Materials Science Division - Argonne National Laboratories, Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

12

Materials Sciences Division 1990 annual report  

SciTech Connect

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

13

Materials Sciences Division 1990 annual report  

SciTech Connect

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

14

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

15

Materials Science & Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

16

The surface and materials science of tin oxide Matthias Batzill *, Ulrike Diebold  

E-Print Network (OSTI)

com- position from stoichiometric surfaces with Sn4+ surface cations into a reduced surface with Sn2 adsorption and reaction studies on SnO2 sur- faces have been hampered by the challenges of preparing well

Diebold, Ulrike

17

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2013, in Capabilities, Customers & Partners, Energy, Energy Efficiency, Materials Science, News, News & Events, Office of Science, Partnership, Research & Capabilities,...

18

Materials Science & Engineering  

E-Print Network (OSTI)

. Aucierllo has edited 19 books, published about 450 articles, holds 14 patents, and has organized, chaired and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry

19

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project On May 22,...

20

Bespoke Materials Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Bespoke Materials Surfaces Bespoke Materials Surfaces Background The Department of Energy (DOE) has established performance and efficiency goals for power generation systems which will improve the ability of the U.S. energy sector to produce electricity efficiently with less impact to the environment. Power systems showing the most promise for reaching these goals require corrosion resistance alloys able to perform at very high pressures and temperatures. Increasing both the

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SURFACE SCIENCE, WETTING, CONDENSATION, ENGINEERED Correspondence and requests for materials: konradr@asu.edu and varanasi@mit.edu  

E-Print Network (OSTI)

coefficients has potential for efficiency enhancements. Here we investigate condensation behavior of a variety of fluids with high or moderate surface tension27­31 or Marangoni dropwise condensation of binary mixtures1 SURFACE SCIENCE, WETTING, CONDENSATION, ENGINEERED SURFACES Correspondence and requests

22

NREL: Energy Sciences - Theoretical Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Science Solid-State Theory Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Theoretical Materials Science Learn about our research staff including staff profiles, publications, and contact information. Using modern computational techniques, the Theoretical Materials Science Group, within NREL's Chemical and Materials Science Center, applies quantum mechanics to complex materials, yielding quantitative predictions to guide and interact with experimental explorations. Current research focuses on the following efforts: Design new photovoltaic materials that can improve solar cell efficiency and reduce its cost. Explain the underlying physics of new

23

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network (OSTI)

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

24

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network (OSTI)

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

25

Nuclear Materials Science:Materials Science Technology:MST-16...  

NLE Websites -- All DOE Office Websites (Extended Search)

and actinide fundamental science. Alison Costello One for the team by Diana Del Mauro Alison Costello Surface Science and Corrosion team staff member Alison Costello and...

26

Chemistry and Materials Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights NERSC Citations HPC Requirements Reviews Home Science at NERSC Chemistry & Materials Science Chemistry & Materials Science Simulation plays an indispensable...

27

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

28

Materials Science and Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Science and Engineering Materials Science and Engineering 1 Fe---Cr A lloys f or A dvanced N uclear E nergy A pplica9ons Ron S caMaterials Science and Engineering 2 Thermodynamic S tabiliza9on o f G rain S ize The concept is that non---equilibrium solutes introduced by mechanical alloying can segregate to grain b oundaries, p roducing

29

Materials sciences programs, Fiscal year 1997  

SciTech Connect

The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

NONE

1998-10-01T23:59:59.000Z

30

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

31

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

20, 2013, in CINT, Facilities, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research & Capabilities, Transmission Grid Integration The nation's...

32

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid Integration, Infrastructure Security, Materials Science, News, News & Events,...

33

Materials Sciences and Engineering Program | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

34

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

at the ASME 12th Fuel Cell Science, Engineering and Technology Conference in Boston, Massachusetts. One pathway for delivering H2 ... Combining 'Tinkertoy' Materials with...

35

Materials Science Graduate Student Handbook  

E-Print Network (OSTI)

Materials Science Program Graduate Student Handbook Fall 2010 #12;1 http://www.engr.wisc.ede/interd/msp/handbook year are eligible to run for office. This handbook was written by materials science graduate students Assistance (page 5): How does research funding work? Course Registration (page 7): What classes should I

Evans, Paul G.

36

Department of Advanced Materials Science  

E-Print Network (OSTI)

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

37

Materials Science & Engineering  

E-Print Network (OSTI)

and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

38

Sandia National Labs: PCNSC: Departments: Surface and Interface Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Carlos Gutierrez Carlos Gutierrez Manager Resources Department Folder 01114 Sharepoint Visit Our Labs Grest Group Nanorheology Research (514 KB PDF) Interfacial Force Microscopy Group (701 KB PDF) Research Image Gallery (3,698 KB PDF) Surface Imaging Laboratory Technology - Metals for tomorrow Tina Nenoff Departments Surface and Interface Sciences The Surface and Interface Sciences Department is engaged in a diverse portfolio of leading-edge research projects related to the understanding

39

Recent Advances in Computational Materials Science and Multiscale Materials Modeling  

E-Print Network (OSTI)

Recent Advances in Computational Materials Science and Multiscale Materials Modeling Guest Editors Advances in Computational Materials Science and Multiscale Materials Modeling. These symposia provide. Professor Karel Matous Aerospace and Mechanical Engineering Department University of Notre Dame Email

Matous, Karel

40

Center for Nanophase Materials Sciences (CNMS) - News  

NLE Websites -- All DOE Office Websites (Extended Search)

94720 6 Institute for Problems of Materials Science, National Academy of Science of Ukraine, Kiev, Ukraine 7 Institute of Semiconductor Physics, National Academy of Science of...

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Bayer MaterialScience | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Bayer MaterialScience Place: Leverkusen, Germany Website: http:www.bayermaterialscienc References: Bayer Material Science1...

42

Sandia National Laboratories: materials science and engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

43

Chemistry and Material Sciences Codes at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 L ast edited: 2014-06-02 08:59:45...

44

Materials Science & Engineering  

E-Print Network (OSTI)

technologies used to develop energy sources, protect the environment, preserve the national infrastructure, electronic materials, composites, biomaterials, nuclear materials and nanomaterials. The common thread and Engineering program. Effective 2014-2015 1 Updated May 2014 #12;Additionally, here are some helpful

Simons, Jack

45

Materials science Nanotubes get hard  

E-Print Network (OSTI)

Materials science Nanotubes get hard under pressure Proc. Natl Acad. Sci. USA doi:10.1073/pnas.0405877101 (2004) When Zhongwu Wang et al. squeezed carbon nanotubes in a diamond anvil cell, they made nanotubes into diamond itself: the carbon material formed under compression at room temperature seems

Downs, Robert T.

46

Surface science | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface science Surface science Subscribe to RSS - Surface science The study of the chemical and physical processes that occur in the interface between two phases of matter, such as solid to liquid or liquid to gas. Bruce E Koel Bruce Koel is professor of chemical and biological engineering at Princeton University. He is associated faculty in chemistry at the Princeton Institute for the Science and Technology of Materials (PRISM); associated faculty in the Princeton Department of Mechanical and Aerospace Engineering, and a collaborator on the National Spherical Torus Experiment at PPPL. Koel is a Fellow of the American Association for the Advancement of Science, the American Physical Society and the American Vacuum Society, and a member of the governing board of the Council for Chemical Research.

47

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

48

Introduction Materials science and engineering is on  

E-Print Network (OSTI)

is biomaterials. A Short History of Materials Science and Engineering Materials science and engineering (MS&E) has and engineering. What is the Next BigThing for Materials Science? A50-year history of productive reinven- tionIntroduction Materials science and engineering is on a plateau. As a field, it has been one

Prentiss, Mara

49

Materials Science Program Graduate Studies Handbook  

E-Print Network (OSTI)

Training For Chemical/Physical Labs 26 #12;University of Rochester Graduate Handbook Materials ScienceMaterials Science Program Graduate Studies Handbook 2012-2014 Lynda McGarry, Materials Science@chem.rochester.edu #12;University of Rochester Graduate Handbook Materials Science Program updated December 2012 Page 2

Mahon, Bradford Z.

50

Center for Nanophase Materials Sciences | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences The Center for Nanophase Materials Sciences (CNMS), one of five DOE-funded nanoscience research centers (NSRCs). CNMS has established itself as an internationally...

51

Applications of Secondary Ion Mass Spectrometry (SIMS) in Materials Science  

Science Journals Connector (OSTI)

Secondary Ion Mass Spectrometry (SIMS) is a mature surface analysis technique with ... Materials Science. In this review article the SIMS process is described, the fundamental SIMS equations are derived and the m...

D. S. McPhail

2006-02-01T23:59:59.000Z

52

Sandia National Laboratories: Materials Science and Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

itiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Materials...

53

Center for Nanophase Materials Sciences - Newsletter January...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

54

The Department of Materials Science and Engineering  

E-Print Network (OSTI)

The Department of Materials Science and Engineering 325 Woolf Hall · Box 19031 · 817-272-2398 www.uta.edu/mse Overview The interdisciplinary field of materials science and engineering has become critical to many emerging areas of science and advanced technology. As a result, there is a growing demand for engineers

Texas at Arlington, University of

55

FWP executive summaries: Basic energy sciences materials sciences programs  

SciTech Connect

This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

Samara, G.A.

1996-02-01T23:59:59.000Z

56

Teacher Resource Center: Fermilab Science Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Science Materials Fermilab Science Materials TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources Select from several categories of items available from the Fermilab Education Office. Teachers created these classroom materials as part of Fermilab educational programs. The following materials may be ordered either through the Education Office or through the Fermilab Friends for Science Education Online Store. ** Use the online order form (pdf).** You can fill it out online, save it, print it and send it by US mail.

57

Chemical Sciences Division | Advanced Materials |ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

58

NREL: Energy Sciences - Chemical and Materials Science Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Materials Science Staff Chemical and Materials Science Staff The Chemical and Materials Science staff members at the National Renewable Energy Laboratory work within one of five groups: the Chemical and Nanoscale Science Group, the Theoretical Materials Science Group, the Materials Science Group, the Process Technology and Advanced Concepts Group, and the Fuel Cells Group. Access the staff members' background, areas of expertise, and contact information below. Jao van de Lagemaat Director Marisa Howe Project Specialist Chemical & Nanoscale Science Group Nicole Campos Administrative Professional Paul Ackerman Natalia Azarova Brian Bailey Matthew C. Beard Matt Bergren Raghu N. Bhattacharya Julio Villanueva Cab Rebecca Callahan Russ Cormier Ryan Crisp Alex Dixon Andrew J. Ferguson Arthur J. Frank

59

What is Materials Science and Engineering?  

E-Print Network (OSTI)

-Madison Chapter UW-Madison College of Engineering UW-Madison Engineering Career Services MS&E DepartmentalWhat is Materials Science and Engineering? Materials Science and Engineering (MS&E one of the smallest departments in the College of Engineering. Because of this, most classes contain

Wisconsin at Madison, University of

60

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

MTG MTG For the Public News & Highlights Publications Seminars Workshops Our People Group Leader, Staff Members Find People Fact Sheet Energy Frontier Research Center Center for Defect Physics (EFRC) Related Groups Computational Materials Science Group (CSMD) Nanomaterials Theory Institute (CNMS) Single Crystal Diffraction Group (NScD) University of Tennesee (MSE) ORNL Materials in Extreme Environments Other Useful Links American Physical Society DOE Office of Science Institute of Physics Office of Basic Energy Sciences National Energy Research Scientific Computing Center The Minerals, Metals & Materials Society U.S. Department of Energy Advanced Materials Group In The News PSD Directorate › MST Division › Materials Theory Group The Materials Theory Group (MTG) of the Materials Science and Technology

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NREL: Energy Sciences - Chemical and Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and conducts theoretical studies and fundamental experimental research on optoelectronic materials. The center is led by Acting Director Jao van de Lagemaat. The Center...

62

ELSEVIER Surface Science 385 (1997) L971-L977 surface science  

E-Print Network (OSTI)

methanol. Though both produce methoxy intermediates, the three-dimensional oxide surface is much lessELSEVIER Surface Science 385 (1997) L971-L977 surface science Surface Science Letters Methanol on O for publication 12 May 1997 Abstract The adsorption and decomposition of methanol on the variously oxidized Mo(110

Goodman, Wayne

63

Materials Science and Engineering Program Objectives  

E-Print Network (OSTI)

necessary to understand the impact of engineering solutions in a global, economic, environmentalMaterials Science and Engineering Program Objectives Within the scope of the MSE mission, the objectives of the Materials Engineering Program are to produce graduates who: A. practice materials

Lin, Zhiqun

64

Chemical and Materials Science (XSD) | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Materials Science (X-ray Science Division) Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for four experiment stations at sector 12 including: three undulator stations (12-ID-B, -C, and -D), and a spectroscopy and scattering bending magnet beamline (12-BM), and USAXS at 15-ID. As part of the APS Strategic Plan, canted undulators have been installed on 12-ID and 12-ID-B has become a full-time dedicated SAXS beamline and 12-ID-C and 12-ID-D are shared between TRSAXS, ASAXS, and surface scattering. Time-resolved and anomalous SAXS experiments on photosystems, biopolymers, polymers, ceramics, and catalytic systems are some of the focus areas for 12-ID-B and -C. At 12-ID-D surface scattering are used to study MOCVD growth, ferroelectrics, liquid solid interfaces and

65

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network (OSTI)

..........................................................................................................................................2! 1.1 SAFETY CULTURE .......................................................4! 3. SAFETY RESPONSIBILITY, AUTHORITY, ACCOUNTABILITY AND A JUST CULTURE.........5! 3Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by

66

SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE  

NLE Websites -- All DOE Office Websites (Extended Search)

ATOMIC, MOLECULAR AND MATERIALS SCIENCE A semiempirical scaling law for target K x-ray production in heavy ion collisions... IV-1 R. L. Watson, Y. Peng, V. Horvat, and A....

67

Sandia National Laboratories: materials science  

NLE Websites -- All DOE Office Websites (Extended Search)

of microsystems-enabled PV (MEPV) technology and ... Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

68

Center for Nanophase Materials Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

the functionality of nanoscale materials and interacting assemblies * Research on optoelectronic, ferroelectric, ionic and electronic transport, and catalytic phenomena at the...

69

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

70

Other: Advancing Materials Science using Neutrons at Oak Ridge...  

Office of Scientific and Technical Information (OSTI)

Advancing Materials Science using Neutrons at Oak Ridge National Laboratory Citation Details Title: Advancing Materials Science using Neutrons at Oak Ridge National Laboratory...

71

Chemistry and Material Sciences Applications Training at NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June 26, 2012 Jack Zhengji NERSC Training Event 09:00 - 12:00 PST June 26, 2012...

72

Chemistry and Material Sciences Applications Training at NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 or 510-486-8611 Home For Users Training & Tutorials Training Events Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications...

73

Materials science aspects of coal  

Science Journals Connector (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber fossilized organic matter used for centuries for ornamentation.

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

74

Field of Expertise Materials Science  

E-Print Network (OSTI)

structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

75

Materials Highlights | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials SHARE Materials Highlights 1-7 of 7 Results Neutron scattering characterizes dynamics in polymer family December 01, 2012 - Understanding the interplay between structure and dynamics is the key to obtaining tailor-made materials. In the last few years, a large effort has been devoted to characterizing and relating the structure and dynamic properties in families of polymers with alkyl side groups. Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells December 01, 2012 - Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in

76

NETL: Onsite Research: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Metallography Metallography NETL has a state-of-the art metallographic facility staffed with world renowned experts with experience on a wide range of alloys and materials with the tools to get the job done. Our metallography staff works with their customers to reveal the microstructure contained within the specimens using sophisticated polishing, staining, and microscopic techniques to develop new techniques and improve upon old ones. An understanding of the microstructure is a useful tool in a wide range of situations from developing processing techniques on new material to evaluating the performance of new and existing materials after exposure to aggressive conditions. The information our staff obtains is an invaluable part of a research program. For example:

77

Materials Science and Technology Teachers Handbook  

SciTech Connect

The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

2008-09-04T23:59:59.000Z

78

Department of Advanced Materials Science  

E-Print Network (OSTI)

device, Bioconjugate matsuura@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials Nuclear magnetic resonance, Quantum spin systems, Low temperature physics, Strongly correlated electron Effect takatama@spring8.or.jpe-mail 0791-58-2942T E L Synchrotron Radiation, X-ray Free Electron Laser

Katsumoto, Shingo

79

Department of Chemical Engineering & Materials Science College of Engineering  

E-Print Network (OSTI)

Department of Chemical Engineering & Materials Science College of Engineering Michigan State................................................................................. 19 7. Integrity and Safety in Research and Creative Activities of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree

80

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Publications J. R. I. Lee, H. D. Whitley, R. W. Meulenberg, A. Wolcott, J. Z. Zhang, D. Prendergast, D. D. Lovingood, G. F. Strouse, T. Ogitsu, E. Schwegler, L. J. Terminello and T. van Buuren. Ligand-Mediated Modification of the Electronic Structure of CdSe Quantum Dots. Nano Letters 12, 2763 (2012). abstract » B. Zamft, L. Bintu, T. Ishibashi and C. Bustamante. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proceedings of the National Academy of Sciences 109, 8948 (2012). abstract » W. Morris, B. Volosskiy, S. Demir, F. Gandara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart and O. M. Yaghi. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorganic chemistry 51, 6443 (2012). abstract »

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Materials Sciences programs, Fiscal year 1993  

SciTech Connect

This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

NONE

1994-02-01T23:59:59.000Z

82

Dynamic Glazing from a Material Science Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Glazing from a Material Science Perspective Dynamic Glazing from a Material Science Perspective Speaker(s): Sunnie Lim Date: February 16, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Advanced window technology has been identified as a component which can greatly reduce the energy consumption of the building envelope. The next generation of advanced windows will involve a "smart-coating" technology where the optical and solar properties can be dynamically controlled. The performance of such coating is ultimately linked to its materials properties such as chemical composition and microstructure. These properties are directly influenced by the deposition process conditions. A promising dynamic windows technology is based upon the electrochromism process. An electrochromic window system consists of a sandwich of

83

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

3Lashkaryov Institute for Semiconductor Physics, National Academy of Science of Ukraine; 4Department of Materials Science and Engineering, Pennsylvania State University...

84

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Ridge, TN, 37831 2 Institute of Semiconductor Physics, National Academy of Science of Ukraine,41, pr. Nauki, 03028 Kiev, Ukraine 3 Institute for Problems of Materials Science,...

85

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

CST CST For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Capabilities Current Research Materials Our People Group Leader, Staff Members Find People Fact Sheet Group Poster Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Corrosion Science and Technology Group Corrosion Kinetics in simulated high-temperature/high-pressure environments

86

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Selected Publications Our People Contacts by Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment ShaRE User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Correlated Electron Materials Group In The News PSD Directorate › MST Division › Correlated Electron Materials Group CdSiP2Tin Flux The ultimate aim of our research is to attain a better understanding of complex materials, particularly those that are important to clean energy technologies. For example, we are currently investigating the relationship between magnetism and superconductivity, new mechanisms for enhancing

87

Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering  

E-Print Network (OSTI)

Minor Form Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering College of Engineering San José State University Name_______________________________________ Requirements for the Minor in Materials Science and Engineering: · 12 units of approved academic work

Gleixner, Stacy

88

Polymer/Elastomer and Composite Material Science  

NLE Websites -- All DOE Office Websites (Extended Search)

/ Elastomer and / Elastomer and Composite Material Science KEVIN L. SIMMONS Pacific Northwest National Laboratory, Richland, WA DOE Headquarters, Forrestal Bldg. October 17-18, 2012 January 17, 2013 Kevin.simmons@pnnl.gov 1 Outline Hydrogen production, transmission, distribution, delivery system Common themes in the hydrogen system Automotive vs infrastructure Hydrogen use conditions Polymer/elastomer and composites compatibility? Common materials in BOP components, hoses, and liners Common materials in composite tank and piping Material issues Polymers/Elastomers Composites Questions 2 Main Points to Remember 1) Polymers are extensively used in hydrogen and fuel cell applications 2) Hydrogen impact on polymers is not well understood 3) Next steps 3 4 Hydrogen Production Systems

89

Materials sciences programs: Fiscal year 1995  

SciTech Connect

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

NONE

1996-05-01T23:59:59.000Z

90

Condensed Matter and Materials Physics | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Condensed Matter and Materials Physics Condensed Matter and Materials Physics Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Condensed Matter and Materials Physics Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported to understand, design, and control materials properties and function. These goals are accomplished through studies of the relationship of materials structures to their electrical, optical, magnetic, surface reactivity, and mechanical properties and of the way in

91

XG Sciences, ORNL partner on titanium-graphene composite materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

XG Sciences, ORNL partner on titaniumgraphene composite materials January 01, 2013 Titaniumgraphene composite specimens prepared for flash thermal diffusivity measurement....

92

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

93

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science  

E-Print Network (OSTI)

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science ...........................................................................................................................................4 Chemistry & Biochemistry Undergraduate Office..............................................................................................6 Majors in Chemistry & Biochemistry

Levine, Alex J.

94

Chemistry and materials science research report  

SciTech Connect

The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

Not Available

1990-05-31T23:59:59.000Z

95

Land Surface Reflectance: A Possible Earth Science  

E-Print Network (OSTI)

are in magenta, water bodies are outlined in white. MODIS Surface Reflectance South Africa From: E. Vermote, UMD information ­ Viewing geometry (view and solar zenith and azimuth angles) ­ Geolocation (lat 15, 2005 - Wolfe - San Diego 5 Target Communities · Land earth science community ­ Energy Balance

96

Physical Behavior of Materials | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Behavior of Materials Physical Behavior of Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Physical Behavior of Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports basic research on the behavior of materials in response to external stimuli, such as temperature, electromagnetic fields, chemical environments, and the proximity effects of surfaces and interfaces. Emphasis is on the relationships between performance (such as

97

Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Science newsroomassetsimagesscience-icon.png Science Cutting edge, multidisciplinary national-security science. Health Space Computing Energy Earth Materials Science...

98

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

TFN TFN For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Core Compentencies Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Thin Films and Nanostructures Group Complex oxide thin films and heterostructures are important for not only fundamental physics, but also a wide range of exciting opportunities in

99

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

SPNM SPNM For the Public Awards Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Capabilities Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive | Honors and Awards Archive Lynn Boatner, Joanne Ramey, Hu Longmire, research featured in the 2013 Allied High Tech Products, Inc. Calendar in the form of a color micrograph for the month of March, 2013.

100

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

ABD ABD For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Research Projects Our People Group Leader, Staff Members, Facilities Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Alloy Behavior and Design Group The principal technical contact for discussing potential projects in the Alloy Behavior and Design Group is Dr. Easo P. George, Group Leader.

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL Earns Carnegie Science Awards for Advanced Materials, Corporate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earns Carnegie Science Awards for Advanced Materials, Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation NETL Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation March 5, 2013 - 9:16am Addthis WASHINGTON, D.C. - For its leadership and innovation in science and technology, the National Energy Technology Laboratory has earned two Carnegie Science Awards from the Carnegie Science Center. NETL representatives will pick up the Advanced Materials Award and the Corporate Innovation Award at the 17th annual award ceremony to be held May 3, 2013, at Carnegie Music Hall in Pittsburgh. The Carnegie Science Center established the Carnegie Science Awards program in 1997 "to recognize and promote innovation in science and technology across western Pennsylvania." The awards not only identify the innovators

102

Surface Acoustic Waves in an Infinite Plate of Functionally Graded Materials  

E-Print Network (OSTI)

and thermal constants, to improve certain functions like thermal resistance and local strength in variousSurface Acoustic Waves in an Infinite Plate of Functionally Graded Materials Ji Wang, Lehui Zhou, and Jianke Du Piezoelectric Device Laboratory, Mechanics and Materials Science Research Center, School

Wang, Ji

103

Center for Nanophase Materials Sciences (CNMS) - Chemical Functionalit...  

NLE Websites -- All DOE Office Websites (Extended Search)

materials (metals, oxides) Atomic layer deposition (ALD) and surface sol-gel processing (SSG) for conformal functionalization of support surfaces (located outside of...

104

Materials Science Division Project Safety Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Miller, Electron Microscopes Miller, Electron Microscopes Project No. 20006.3 Materials Science Division Project Safety Review Safety Analysis Form (03/08) Date of Submission March 12, 2010 FWP No.: 58405 Project Title User Experimental Work with Electron Microscopes in the Electron Microscopy Center This Safety Analysis Form (SAF) supersedes previous versions of 20006 and its modifications. Is this a (check one) new submission renewal supplemental modification X Principal Investigator(s) Dean Miller Other Participants (excluding administrative support personnel) EMC staff and EMC users (Attach participant signature sheet) Project dates: Start: March 2010 End: Open-ended This form is to be completed for all new investigations or experimental projects that are conducted in MSD laboratories, and for all ongoing such projects that undergo significant change from their original

105

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

most recent user project involved the synthesis of partially deuterated asymmetric polyethylene stars for Michaela Zamponi from Juelich Centre for Neutron Science. These materials...

106

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

NSK, BR) and the Scientific User Facilities Division (XGZ, EAK, APL) and the Division of Materials Sciences and Engineering (DMN), U.S. Department of Energy. Citation for...

107

Center for Nanophase Materials Sciences (CNMS) - About CNMS  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) is one of five nanoscience research centers (NSRCs) funded by the U.S. Department of Energy (DOE) Scientific...

108

Iver Anderson, Division of Materials Sciences and Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver Anderson, Division of Materials Sciences and...

109

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films  

E-Print Network (OSTI)

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films is critical of these materials could open new opportunities for introducing thin-film solar technologies that combine both low near the FeS2 thin-film surfaces and grain boundaries that limit its open-circuit voltage, rather than

110

The Materials Science of Titanium Dioxide Memristors  

E-Print Network (OSTI)

unipolar resistance switching, Advanced Materials, vol. 20,A variety of resistance switching materials could be used3 for resistance-change memory, Advanced Materials, vol.

Pickett, Matthew

2010-01-01T23:59:59.000Z

111

The Physics of Ultrahigh-Density Magnetic Recording Series in Surface Sciences, 41)  

E-Print Network (OSTI)

1 The Physics of Ultrahigh-Density Magnetic Recording (Springer Series in Surface Sciences, 41. #550, Pittsburgh, PA 15203 + Materials Science and Engineering Department and Data Storage Systems an overview of the effects of various microstructural features on the resulting magnetic properties

Laughlin, David E.

112

Materials and Chemical Sciences Division annual report 1989  

SciTech Connect

This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

Not Available

1990-07-01T23:59:59.000Z

113

Conference on Advances in Materials Science - Presentations | National  

NLE Websites -- All DOE Office Websites (Extended Search)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

114

Conference on Advances in Materials Science - Presentations | National  

National Nuclear Security Administration (NNSA)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

115

Graphene: from materials science to particle physics  

E-Print Network (OSTI)

Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

Joaqun E. Drut; Timo A. Lhde; Eero Tl

2010-11-02T23:59:59.000Z

116

June 26 Training: Using Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

June June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0 Comments) NERSC will present a three-hour training class focussed on Chemistry and Material Sciences applications on Tuesday, June 26, from 9:00 to 12:00 Pacific Time. The first hour of the training is targeted at beginners. We will show you how to get started running material science and chemistry application codes at NERSC. We will demonstrate how to use the preinstalled VASP and Gaussian applications at NERSC efficiently. In the second hour, we will discuss more advanced use cases, such as managing workflows, compiling optimized versions of custom material science and chemistry applications.

117

FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).  

SciTech Connect

This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

Samara, George A.; Simmons, Jerry A.

2006-07-01T23:59:59.000Z

118

Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)  

Energy.gov (U.S. Department of Energy (DOE))

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

119

Complex curvilinear surfaces in composite materials  

E-Print Network (OSTI)

The thesis will propose a method of architectural design that applies the use of continuous and curvilinear surfaces. It will explore a method of engaging the continuous surface as an expression and response to t he dynamic ...

Liao, Nancy Han, 1975-

2001-01-01T23:59:59.000Z

120

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

People People Facilities Publications Presentations Organizational Chart Other Information Basic Energy Sciences Directorate BNL Site Index Can't View PDFs? :: Next CMPMS Seminar There are no seminars scheduled at this time. Advanced Energy Materials Group We study both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies Group Leader: Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov AEM group news: Current research topics include: Superconducting Materials Nano-scale Materials (S. Wong) Applied Superconductivity Thermoelectric Materials

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY  

SciTech Connect

This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

HOLM MJ

2009-06-25T23:59:59.000Z

122

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

phenomena in strongly correlated electronic materials, including Mott insulators and high-temperature superconductors. The fundamental understanding of these materials can...

123

SCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials Research  

E-Print Network (OSTI)

and colleagues.They initially reported that an iron-based material can conduct electricity without resistance close to conducting electric- ity with zero resistance at room temperature. Such materials wouldSCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials

124

Center for Nanophase Materials Sciences (CNMS) - Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

Policies and Procedures for User Access to the DOE Nanoscale Science Research Centers Peer Review and Advisory Bodies Evaluation Criteria and Process Modes of User Access...

125

Center for Nanophase Materials Sciences (CNMS) - News  

NLE Websites -- All DOE Office Websites (Extended Search)

of Minnesota - September 12, 2014 Norman J. Wagner, University of Delaware - April 4, 2014 Dieter Richter, Jlich Centre for Neutron Science, Institute for Complex Systems,...

126

21. Materials and methods are available as supporting material on Science Online.  

E-Print Network (OSTI)

21. Materials and methods are available as supporting material on Science Online. 22. N. Shakhova. Mar. Syst. 66, 227 (2007). 24. All the seawater-dissolved CH4 concentration data are publicly Online Material www.sciencemag.org/cgi/content/full/327/5970/1246/DC1 Materials and Methods SOM Text Figs

Newman, Eric A.

127

2004 research briefs :Materials and Process Sciences Center.  

SciTech Connect

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

128

Nanoclay Paste as a Thermal Interface Material for Smooth Surfaces  

E-Print Network (OSTI)

Nanoclay Paste as a Thermal Interface Material for Smooth Surfaces CHUANGANG LIN1 and D.D.L. CHUNG1 vehicle (liquid) containing 0.6 vol.% nanoclay is an effective thermal interface material. Nanoclay copper surfaces (12 lm), the conductance provided by the nanoclay paste is slightly below those

Chung, Deborah D.L.

129

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

130

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

131

Static High Magnetic Fields and Materials Science  

Science Journals Connector (OSTI)

Like temperature or pressure, the magnetic field is one of the important thermodynamic parameters that are used to change the inner energies of materials. Materials are essentially composed of atomic nuclei an...

M. Motokawa; K. Watanabe; F. Herlach

2002-01-01T23:59:59.000Z

132

Materials Science and Engineering at TCCC  

E-Print Network (OSTI)

BILLION A DAY... RESPONSIBLY Technical Community ­ R&D #12;5 · Cold Drink Equipment · Energy efficiency High barrier plastic materials Don't underestimate the mundane. #12;88 Where are materials going

Li, Mo

133

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

134

DOE fundamentals handbook: Material science. Volume 1  

SciTech Connect

The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

135

Biomolecular Materials | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Biomolecular Materials Biomolecular Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Biomolecular Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research in the discovery, design and synthesis of biomimetic and bioinspired functional materials and complex structures, and materials aspects of energy conversion processes based on principles and concepts of biology. The major program emphasis is the creation of robust, scalable, energy-relevant materials and systems with

136

The Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical  

E-Print Network (OSTI)

and exacting process and the pharmaceutical industry strives to increase efficiency and productivityThe Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical Materials Science #12;The Pfizer Institute for Pharmaceutical Materials Science Modelling and Experimental

Lasenby, Joan

137

3.012 Fundamentals of Materials Science, Fall 2003  

E-Print Network (OSTI)

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and ...

Marzari, Nicola

138

DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NIST Joint Workshop on Combinatorial Materials Science for Applications in Energy The Hydrogen Storage Subprogram of the U.S. Department of Energy co-hosted with the NIST...

139

Oak Ridge Integrated Center for Radiation Materials Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

ORIC Home ORIC Home About ORIC Contacts Specialists Capabilities Irradiation Campaigns Nuclear Fuels Radiation Effects and Defect Modeling Structural Materials Dual Purpose Radiological Characterization Equipment Working with Us Related Links HFIR MSTD NSTD NNFD Comments Welcome to Oak Ridge Integrated Center for Radiation Materials Science & Technology The Oak Ridge National Laboratory ranks among the founding laboratories for the scientific field of radiation materials science. Since the creation of the laboratory, we have maintained strong ties to both the technology and scientific underpinning of nuclear materials research as evidenced by the experience and capabilities across our research divisions. The capabilities at ORNL enjoys include the highest neutron flux nuclear

140

Surface Science Letters Structures of adsorbed water layers  

E-Print Network (OSTI)

Surface Science Letters Structures of adsorbed water layers on MgO: an ab initio study R.M. Lynden; Single crystal surfaces 1. Introduction The structure of adsorbed ®lms of water on a perfect surface. Experimentally, water is found to adsorb reversibly on a ¯at MgO surface to form a monolayer at temperatures

Alavi, Ali

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Curriculum vitae Andr Schleife Department of Materials Science and Engineering  

E-Print Network (OSTI)

Andr� Schleife 07/2012: Physical and Life Sciences Directorate Poster Award 10/2010: "Young ScientistCurriculum vitae Andr� Schleife Department of Materials Science and Engineering University://schleife.matse.illinois.edu Education 10/2006 � 06/2010: Ph.D. student in the group of Prof. Dr. Friedhelm Bechstedt, Friedrich

Schleife, André

142

The Center for Interface Science: Solar Electric Materials  

E-Print Network (OSTI)

The Center for Interface Science: Solar Electric Materials Chemistry and Biochemistry alumni, on page 6, is written by Dr. Neal Armstrong, Director of the UA Center for Interface Science: Solar | teaches chemistry as a part-time in- structor at Central New Mexico Community College. Anne Simon | Ph

Ziurys, Lucy M.

143

EMSL: Science: Energy Materials and Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

144

Materials science: Radicals promote magnetic gel assembly  

Science Journals Connector (OSTI)

... are assembled from smaller components, may thus be better suited for replicating biological complexity. 3D printing, in which the direct deposition of material creates precise 3D structures, embodies this strategy ... material creates precise 3D structures, embodies this strategy. Recent advances in technology have allowed 3D printing of tissues through the deposition of cellular aggregates or cell-laden materials. However, these ...

Christopher B. Rodell; Jason A. Burdick

2014-10-29T23:59:59.000Z

145

Center for Nanophase Materials Sciences - Newsletter January...  

NLE Websites -- All DOE Office Websites (Extended Search)

TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the cleanroom, advanced optical profilometry. There were 166 proposals reviewed for the 2011A...

146

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating...

147

Center for Nanophase Materials Sciences (CNMS) - Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

that have hindered the scalable growth and pattering of such materials for optoelectronic and energy related applications. "Digital Transfer Growth of Patterned 2D Metal...

148

Materials Science and Engineering Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

systems. R&D 070, November 2011 Research facilities include the Severe Environment Corrosion Erosion Research Facility (SECERF) for assessing materials performance in a variety...

149

Sandia National Laboratories: Research: Materials Science: About...  

NLE Websites -- All DOE Office Websites (Extended Search)

our products will perform in demanding missions over time. We must understand the fundamentals of the materials involved - over time and in demanding environments....

150

E-Print Network 3.0 - alloying materials science Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

materials science Search Powered by Explorit Topic List Advanced Search Sample search results for: alloying materials science Page: << < 1 2 3 4 5 > >> 1 JOURNAL DE PHYSIQUE IV...

151

E-Print Network 3.0 - adsorption material science Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

material science Search Powered by Explorit Topic List Advanced Search Sample search results for: adsorption material science Page: << < 1 2 3 4 5 > >> 1 Modeling Thermodynamics...

152

E-Print Network 3.0 - applied materials science Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

materials science Search Powered by Explorit Topic List Advanced Search Sample search results for: applied materials science Page: << < 1 2 3 4 5 > >> 1 Apply today for the...

153

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

FRM FRM For the Public Awards and Honors Highlights Publications U.S. Program Planning Visiting ORNL For Researchers Profiles Program Manager Program Management ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles Accessing LAMDA Facility Our People Program Manager, Program Management, Facilities Find People ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles

154

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network (OSTI)

573 Solar Energy Systems MS 779/ME 779 Solid State Ionics and Electrochemistry D. Nanomaterials MS 530 Introduction to Solid State Physics Course/Semester/Grade ______________________________ * Both courses listed Characterization of Materials MS 784 Topics in Materials Science ME 502 Intellectual Assets: Creation, Protection

Lin, Xi

155

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Low-Temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-Intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H....

156

Polymer/Elastomer and Composite Material Science  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Kevin Simmons, Pacific Northwest National Laboratory, at the U.S. Department of Energy's Polymer and Composite Materials Meeting, held October 17-18, 2012, in Washington, D.C.

157

BACHELOR OF MATERIALS SCIENCE AND ENGINEERING  

E-Print Network (OSTI)

; strong, light-weight alloys and improved battery materials increase the energy efficiency of cars; polymeric contact lenses are available as an alternative to traditional eyewear; ceramic space shuttle tiles

Thomas, David D.

158

The New Materials Science Beamline HARWI-II at DESY  

SciTech Connect

In autumn 2005, the GKSS-Research Center Geesthacht in cooperation with Deutsches Elektronen-Synchrotron DESY, Hamburg, started operation of the new synchrotron radiation beamline HARWI-II. The beamline is specialized for performing materials science experiments using hard X-rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate, the texture of cold extruded Al90-Cu10 composites, and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI-II, the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Beckmann, Felix; Dose, Thomas; Lippmann, Thomas; Lottermoser, Lars; Martins, Rene-V.; Schreyer, Andreas [GKSS-Research Center Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

159

The New Materials Science Beamline HARWI?II at DESY  

Science Journals Connector (OSTI)

In autumn 2005 the GKSS?Research Center Geesthacht in cooperation with Deutsches Elektronen?Synchrotron DESY Hamburg started operation of the new synchrotron radiation beamline HARWI?II. The beamline is specialized for performing materials science experiments using hard X?rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate the texture of cold extruded Al90?Cu10 composites and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI?II the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Felix Beckmann; Thomas Dose; Thomas Lippmann; Lars Lottermoser; Rene?V. Martins; Andreas Schreyer

2007-01-01T23:59:59.000Z

160

Center for Nanophase Materials Sciences (CNMS)  

NLE Websites -- All DOE Office Websites

Science User Facilities Science User Facilities Search Go Home About Advisory Committee CNMS Fact Sheet CNMS Organizational Chart Research Themes Publications Journal Cover Gallery Research Highlights Related ORNL User Facilities User Program Becoming A User Acknowledgement Guidelines CNMS Capabilities Active Projects User Group Data Management Policy Working at CNMS Jobs ES&H Obtaining Entry Hours of Operation Local Information News & Events News Events CNMS User Newsletters People Contact Us Visit us on Wikipedia. Visit us on FaceBook. Visit us on YouTube. Upcoming Events and Latest News Call For Proposals - Next cycle is Spring 2014 Neutrons and Nano Workshops and User Meetings - TALKS Postdoctoral Opportunities CNMS Discovery Seminars Opening the Eye-Popping Possibilities of the Smallest Scales

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nanoclay Paste as a Thermal Interface Material for Smooth Surfaces  

Science Journals Connector (OSTI)

A paste in the form of a polyol ester vehicle (liquid) containing 0.6vol.% nanoclay is an effective thermal interface material. Nanoclay with a high conformability and hence a...?m) copper surfaces at a pressure...

Chuangang Lin; D.D.L. Chung

2008-11-01T23:59:59.000Z

162

Fusion power: a challenge for materials science  

Science Journals Connector (OSTI)

...schematic representation of a fusion power plant is shown in figure-1...the harshest environments in fusion power plants are those that...broadly classified into three types. The conditions experienced...materials The first wall of a fusion power plant must contain the...

2010-01-01T23:59:59.000Z

163

"The Future of Materials Science and Engineering  

E-Print Network (OSTI)

with increased wear characteristics · Additive Manufacturing Processing speed, material strength, verification&D is limited and traditionally provided by device manufacturers · Technology adapted from other industries tools Opportunities #12;· Manufacturing Time and Process Step Reduction Patient digitizer to definitive

Li, Mo

164

Nanomaterials for Energy and Electronics Materials Science  

E-Print Network (OSTI)

crystalline silicon solar cells suffer from both high materials costs and energy-intensive production-sensitized solar cells (DSCs) based on oxide semiconductors and organic dyes have recently emerged as a promising Synthesis of ZnO Aggregates and Their Application in Dye-sensitized Solar Cells Nanomaterials for Energy

Cao, Guozhong

165

Diamond: glittering prize for materials science  

Science Journals Connector (OSTI)

...light, airy materials. The most airy aerogel prepared to date consists of 99.8...and windows. Halfan inch ofa silica aerogel can do what it takes 31/2 inches ofa...fast-moving particles. The prepara-tion of an aerogel begins with the preparation of a gelatinous...

RL Guyer; DE Koshland Jr

1990-12-21T23:59:59.000Z

166

Faculty Search Materials Science and Engineering  

E-Print Network (OSTI)

/ sensors, nuclear security, and/or nuclear medical applications are especially encouraged to apply. The MSE candidate will be expected to conduct scholarly research in an area of nuclear materials as evidenced department participates in the Nuclear Engineering Program at Virginia Tech (http://www.nuclear

Buehrer, R. Michael

167

Theoretical Surface Science Wintersemester 2007/08  

E-Print Network (OSTI)

. Introduction Surfaces · Processes on surfaces play an enormous- ly important technological role · Harmful processes: 1. Rust, corrosion 2. Wear · Advantageous processes: 1. Production of chemicals 2. Conversion) DFT surface band structure M F M 0 5 -10 -5 Energy(eV) Cu(111): Band gas and parabolic surface band

Pfeifer, Holger

168

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Summer Newsletter 2010 What's New @ CNMS Small Angle X-ray Scattering (SAXS) Small Angle X-ray Scattering (SAXS) is an analytical method to determine the structure of particle systems in terms of averaged particle sizes or shapes. The materials can be solid or liquid and they can contain solid, liquid or gaseous domains of the same or another material. The method is accurate, non-destructive and often requires only a minimum of sample preparation. The concentration ranges between 0.1 wt.% and 99.9 wt.%. The particle or structure sizes that can be resolved range from 1 to 50 nm in a typical set-up but can be extended to larger angles than between the typical 0.1° and 10° of SAXS, through simultaneous collection of Wide-Angle X-Ray Scattering (WAXS) data. The CNMS has recently added an

169

Surface Science 175 (1986) 215-225 North-Holland, Amsterdam  

E-Print Network (OSTI)

-Tropsch, and ammonia synthesis. The penetration of hydrogen into the bulk causing embrittlement of materialsSurface Science 175 (1986) 215-225 North-Holland, Amsterdam 215 KINETICS OF HYDROGEN ABSORPTION The kinetics of hydrogen absorption by Pd(ll0) have been measured as a function of impurity sulfur coverage

Goodman, Wayne

170

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science, Superconductivity & Energy News Materials Science, Superconductivity & Energy News This page displays news items tagged as "materials science," "superconductivity," and "energy." For a complete index of all topics, click here. Jon Rameau receives The Julian Baumert Thesis Award for his work carried out at NSLS. Htay Hlaing receives the 2010 Di Tian Award from the Department of Physics at Stony Brook University. Adrian Gozar receives one of sixty nine DOE Early Career Scientists awards selected from a pool of 1750 applicants. Enlisting Cells' Protein Recycling Machinery to Regulate Plant Products December 20, 2013 Scientists have developed a new set of molecular tools for controlling the production of plant compounds important for flavors, human health, and biofuels.

171

Training April 5 - Material Science and Chemistry Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

April 5 April 5 Training April 5 - Material Science and Chemistry Applications March 9, 2011 by Francesca Verdier Training on "Using Chemistry and Material Sciences Applications" will be held April 5, presented simultaneously on the web and at NERSC. See Chemistry and Material Sciences Applications. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 August 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011

172

Center for Nanophase Materials Sciences (CNMS) - Macromolecular  

NLE Websites -- All DOE Office Websites (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) Polymer Synthesis The Macromolecular Nanomaterials laboratories include a wide range of polymer synthesis capabilities, with extensive fume hoods (including walk-in hoods for large scale apparatus) and glove boxes for handling sensitive materials. Polymerization Techniques Ionic Polymerizations: World-class expertise in the preparation of well-defined, narrow molecular distribution polymers and copolymers including complex polymer architectures (i.e. block, star, comb, graft and hyperbranched polymers) by anionic and cationic polymerizations. Controlled Radical Polymerization: Extensive expertise in free radical and controlled radical (ATRP, NMP, RAFT) polymerizations. Ring Opening Polymerization: Expertise in the controlled

173

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

Connect with PJG Connect with PJG For the Public Awards & Honors R&D100 Awards R&D100 Award Posters For Researchers Profiles For Industry Research Thrust Areas Advanced Alloys Advanced Steels Amorphous Bulk Metallic Glasses Nano Crystalline Composites Ni-Based Alloys Ti Alloys Advanced Processing Additive Manufacturing Electronic Packaging Gelcasting Infrared/Photonic Processing Laser Interference Patterning Magnetic Field Processing Powder Metallurgy Pulse Thermal-Processing (PTP) Ceramics Ceramics Conventional Metals Processing Casting Extrusion Forging Lightweight Metals Aluminum Magnesium Titanium Modeling Materials Behavior Under Severe Environments Microstructure Modeling During Phase Transformations Process Modeling and Simulation: Energy Transport Sensors and Data Acquisition Techniques

174

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

9 PUBLICATIONS 9 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Alonzo, J.; Mays, J. W.; Kilbey II, S. M., "Forces of Interaction Between Surfaces Bearing Looped Polymer Brushes in Good Solvent," Soft Matter 5 (9), 1897-1904 (2009). Arenholz, E.; van der Laan, G.; Yang, F.; Kemik, N.; Biegalski, M. D.; Christen, H. M.; Takamura, Y, "Magnetic Structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3," Appl. Phys. Lett. 94 (7), 072503 (2009). Bai, X.; Sandukas, S.; Appleford, M. R.; Ong, J. L.; Rabiei, A., "Deposition and Investigation of Functionality Graded Calcium Phosphase Coatings in Titanium," Acta Biomater. 5, 3563-3572 (2009).

175

Bayer Material Science (TRL 1 2 3 System) - River Devices to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM) Bayer Material Science (TRL 1 2 3 System) - River Devices to...

176

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

STG STG For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Sponsored Research Programs Our People Contacts by Group Leader, Staff Members Find People Related Cooperative Research and Development Agreement Work for Others Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Scattering and Thermophysics Group The Scattering and Thermophysics Group aims to be a national leader in materials characterization using diffraction and thermophysical property measurement methods. The diffraction portion of the Group utilizes laboratory x-ray, synchrotron x-ray, and neutron diffraction facilties to solve problems from phase stability to residual stress and texture. The thermography and thermophysical properties of the Group has exceptional

177

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

PCM PCM For the Public Visiting ORNL For Researchers Profiles Group Leader Program Manager Staff Members Facilities Final Report on Economic Analysis of Deploying Used Batteries in Power Systems Document For Industry Research Catalysis by Design Zeolites Materials for Catalysis Photocatalytic C02 Our People Group Leader, Program Manager, Staff Members, Facilities Find People Programs Thin-Film Rechargeable Lithium, Lithium-Ion, and Li-Free Batteries Program Membrane Separations Research Program Related Programs ORNL Technologies Recent News & Features News Releases Archive | Features Archive Recent Honors & Awards Award Archives Honors & Awards Achives | ORNL Spotlight Archives] Nancy Dudney, was recently elected as a Electrochemical Society Fellow in recognition of her scientific achievements and service to the

178

The Computational Materials and Chemical Sciences Network (CMCSN) | U.S.  

Office of Science (SC) Website

The Computational Materials and Chemical Sciences Network (CMCSN) The Computational Materials and Chemical Sciences Network (CMCSN) Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas The Computational Materials and Chemical Sciences Network (CMCSN) Print Text Size: A A A RSS Feeds FeedbackShare Page The U.S. Department of Energy, Office of Basic Energy Sciences, provides support for Computational Materials and Chemical Sciences Network (CMCSN) projects through the Theoretical Condensed Matter Physics & Theoretical

179

The Departments of Chemical Engineering, Materials Science and Engineering and  

E-Print Network (OSTI)

setting will be facilitated by McMaster's Engineering Co-op and Career Services (ECCS). Applicants shouldThe Departments of Chemical Engineering, Materials Science and Engineering and Mechanical Engineering offer a program of study to students seeking the degree of Master of Engineering in Manufacturing

Thompson, Michael

180

Mork Family Department of Chemical Engineering & Materials Science  

E-Print Network (OSTI)

by incorporating mod- ern concepts such as nanotechnology and biotechnology into a traditional approach that has, nanotechnology, petroleum engi- neering, polymer/materials science, or envi- ronmental engineering), while of Dentistry) » Edward D. Crandall, M.D. (Hastings Professor of Medicine, Norris Chair of Medicine

Zhou, Chongwu

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wood September 28, 2002 DEPARTMENT OF MATERIALS SCIENCE  

E-Print Network (OSTI)

Wood September 28, 2002 1 DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CARNEGIE MELLON: Microstructure-Sensitive Mechanical Properties #12;Wood September 28, 2002 2 Introduction Reading will also have an opportunity to perform similar experiments on various types of wood. These will illustrate

Rollett, Anthony D.

182

A. A. Abrikosov Materials Science Division Argonne National Moratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments in the Theory of HTSC Developments in the Theory of HTSC A. A. Abrikosov Materials Science Division Argonne National Moratory Argonne, IL 60439 Distribution: 1-2. M. J. Masek 3. B. D. Dunlap 4. G. W. Crabtree 5 . A. A. Abrikosov 6 - Editorial Office 7. Authors September, 1994 This work is supported by the Division of Materials Sciences, Office of Basic Energy Sciences of DOE, under contract No. W-31- 109-ENG-38, DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or as sun^^ any legal liabili- ty or responsibility for the accuracy, completenes, or usefulness of any information, appa-

183

Materials Science and Engineering B 157 (2009) 101104 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

) method [6], calcination process [7], chemical vapor deposition [8], thermal evaporation [1], hydrothermalDirect Materials Science and Engineering B journal homepage: www.elsevier.com/locate/mseb A rapid hydrothermal Court, S111, Lake Mary, FL 32746, USA d Advanced Materials Processing and Analysis Center

Chow, Lee

184

Titan's Inventory of Organic Surface Materials Ralph D. Lorenz1,*  

E-Print Network (OSTI)

1 Titan's Inventory of Organic Surface Materials Ralph D. Lorenz1,* , Karl L. Mitchell2 , Randolph observations now permit an initial assessment of the inventory of two classes, presumed to be organic, of Titan observed, of which dozens are each estimated to contain more hydrocarbon liquid than the entire known oil

Paris-Sud XI, Université de

185

Material Surface Design to Counter Electromagnetic Interrogation of Targets  

E-Print Network (OSTI)

Material Surface Design to Counter Electromagnetic Interrogation of Targets H.T. Banks, K. Ito, G and ferromagnetic layers coat- ing a conducting object to provide an attenuation capability against electro. Fresnel's law for the reflectance index is extended to the electromagnetic propagation in anisotropic

186

Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies  

DOE Patents (OSTI)

A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

Lim, Chong Wee (Urbana, IL); Ohmori, Kenji (Urbana, IL); Petrov, Ivan Georgiev (Champaign, IL); Greene, Joseph E. (Champaign, IL)

2004-07-13T23:59:59.000Z

187

Surface modification of polymeric materials by cold atmospheric plasma jet  

Science Journals Connector (OSTI)

Abstract In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10kV, 37kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40 in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

K.G. Kostov; T.M.C. Nishime; A.H.R. Castro; A. Toth; L.R.O. Hein

2014-01-01T23:59:59.000Z

188

JOYCE Y. WONG Departments of Biomedical Engineering and Materials Science & Engineering  

E-Print Network (OSTI)

JOYCE Y. WONG Professor Departments of Biomedical Engineering and Materials Science & Engineering, Departments of Biomedical Engineering & Materials Science & Engineering (2013-) Co-Director, Affinity Research - ) Associate Chair, Graduate Studies, Department of Biomedical Engineering (2006-2010) Associate Director

189

Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering  

E-Print Network (OSTI)

& Engineering Materials for nuclear energy system, fission reactors, nuclear fuels, energy policy, sustainability of nuclear energy. Mark A Eriksson Professor, Physics and Materials Science & Engineering

Wisconsin at Madison, University of

190

Chemistry and Materials Science. Progress report, first half, FY 1993  

SciTech Connect

Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

Not Available

1993-07-01T23:59:59.000Z

191

Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators  

SciTech Connect

Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

Anne Seifert; Louis Nadelson

2011-06-01T23:59:59.000Z

192

Science for Problems Under the Surface  

SciTech Connect

Humans have entered into and explored a wide range of environments, ranging from the deep ocean to the upper atmosphere and even outer space. But for the most part, the subsurface environment hidden beneath the surface of our planet remains enigmatic and directly observable only through limited points of access. Nevertheless, physical, chemical and biological processes in Earths subsurface are central players in several interrelated energy and environmental issues critical to the worlds security and economy. Leadership-class computing will soon be brought to bear on understanding and predicting these processes across a wide range of time and space scales.

Scheibe, Timothy D.; Meakin, Paul; Lichtner, Peter C.; Zachmann, David

2008-03-12T23:59:59.000Z

193

Microsoft Word - Poster Abstract_2010_CMU_High Surface Area Materials.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

1th Annual SECA Workshop Poster Abstract 1th Annual SECA Workshop Poster Abstract Topic: High Surface Area, Mesoporous (La, Sr)MnO 3 For Solid Oxide Fuel Cell Cathodes Robin Chao, Graduate Student in Carnegie Mellon University 5700 Bunkerhill St. Apt 705, Pittsburgh, PA 15206 USA, hchao@andrew.cmu.edu, 412-260-5687 Dr. John Kitchin, Professor of Chemical Engineering in Carnegie Mellon University 5000 Forbes Ave, Pittsburgh PA, 15213, jkitchin@andrew.cmu.edu, 412-268-7803 Dr. Paul Salvador, Professor of Material Science and Engineering in Carnegie Mellon University 149 Roberts Eng Hall, Pittsburgh, PA 15213, paul7@andrew.cmu.edu, 412-268-2702 Abstract: The efficiency of the solid oxide fuel cell is limited by the cathode polarizations. One essential approach is to include high-surface-area cathode materials into the fabrication. However, conventional synthesis methods to

194

University of Virginia, Dept. of Materials Science and Engineering Topic 8a -FIB  

E-Print Network (OSTI)

;University of Virginia, Dept. of Materials Science and Engineering Dynamic Secondary Ion Mass Spectrometry;University of Virginia, Dept. of Materials Science and Engineering q The focused ion beam (FIB) employsUniversity of Virginia, Dept. of Materials Science and Engineering Topic 8a - FIB q Introduction

Moeck, Peter

195

The surface science of titanium dioxide Ulrike Diebold*  

E-Print Network (OSTI)

The surface science of titanium dioxide Ulrike Diebold* Department of Physics, Tulane University, New Orleans, LA 70118, USA Manuscript received in final form 7 October 2002 Abstract Titanium dioxide is reviewed on the adsorption and reaction of a wide variety of inorganic molecules (H2, O2, H2O, CO, CO2, N2

Diebold, Ulrike

196

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

197

EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering  

E-Print Network (OSTI)

115 CSE Electrical and Computer Engineering 225 Nuclear Science-8pd / 407 Nuclear Science 9-10pd Engineering 221 MAE-A Nuclear Engineering Sciences 214 Nuclear Science (Next to Journalism Bldg) StudentEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

Schwartz, Eric M.

198

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology  

E-Print Network (OSTI)

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials and spacious clean room laboratories for nanofabrication of devices. Interested candidates are urged to submit. of Micro/Nanometer Sci. & Technology 800 Dongchuan Road, Shanghai, China 200240 e-mail:

Alpay, S. Pamir

199

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length Gang Cheng,1 Yuri B. Melnichenko,1 George D. Wignall,1 Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: The cooperative interactions among functional segments of biopolymers have led to attempts to create novel synthetic polymers, which are environmentally responsive to various stimuli, such as temperature or pH, in a controlled manner. Understanding the nanoscale conformational changes and phase behavior upon exposure of these polymers to external stimuli is

200

Radon-222 progeny surface deposition and resuspension - residential materials  

SciTech Connect

In evaluating the hazards from indoor {sup 222}Rn, it is imperative that the behavior of the four short-lived particulate progeny are fully understood since they are the radioisotopes that deliver most of the radiobiological damage to occupants. One known characteristic of these radon progeny is that they deposit (plate out) onto macroscopic surfaces. Some of these plated-out atoms become resuspended when they disintegrate and decay to the next progeny, in particular, {sup 218}Po. Both of these mechanisms, plateout and resuspension, affect the airborne population of the individual daughters and their impact on the radiation energy delivered to the human respiratory system. There are two specific and separate areas of concern, One is that monitoring {sup 222} Rn levels alone, such as with charcoal canisters, is obviously not sufficient to determine the radiation dose since the daughters are never in absolute equilibrium with {sup 222}Rn. Further, from an internal dose standpoint, the {open_quotes}unattached{close_quotes} fraction (free ions) of the daughters are believed, by virtue of their deeper tissue depositions in the tracheo-bronchial tract, to deliver the greatest dose in the body. Currently, there are virtually no data on the measurements of both plateout rates and resuspension factors for specific individual residential material surfaces. This report presents experimental data of plateout rates in an indoor house for typical indoor materials. Results of measurements of resuspension factors for some of the materials are provided.

Leonard, B.E.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Journal of Materials Education Vol. 33 (3-4): 141 -148 (2011) INTEGRATION OF MATERIALS SCIENCE IN THE EDUCATION OF  

E-Print Network (OSTI)

Chemistry, University Siegen, 57068 Siegen, Germany; and Department of Polymer Science and Engineering Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, 3940 North creativity and curiosity for scientific problems are challenged. This ambitious concept that can be conducted

North Texas, University of

202

Comparison of glass surfaces as a countertop material to existing surfaces  

SciTech Connect

Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

Turo, Laura A.; Winschell, Abigail E.

2011-09-01T23:59:59.000Z

203

DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory  

SciTech Connect

The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

Lewis, Jennifer A.

2009-03-24T23:59:59.000Z

204

Soft Matter Group, Condensed Matter Physics & Materials Science Department,  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Information (pdf) Research Information (pdf) Publications Seminars Journal Club Staff Information Other Information Basic Energy Sciences Directorate Related Sites BNL Site Index Can't View PDFs? Soft Matter Group Confinement and Template Directed Assembly in Chemical and Biomolecular Materials We use synchrotron x-ray scattering, scanning probe and optical microscopy techniques to study fundamental properties of complex fluids, simple liquids, macromolecular assemblies, polymers, and biomolecular materials under confinement and on templates. The challenges are: To understand liquids under nano-confinement. How templates and confinement can be used to direct the assembly. To understand the fundamental interactions which give rise to similar self-assembly behavior for a wide variety of systems.

205

The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications and  

E-Print Network (OSTI)

The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications Centers of Economic Excellence Act,both of which stipulated that the chaired professor encourage knowledge

Stuart, Steven J.

206

Thin Films Department of Materials Science and Engineering, Carnegie Mellon University  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Department of Materials Science and Engineering, Carnegie Mellon University Lu Yan, K.R. Balasubramaniam, Shanling Wang, Hui Du, and Paul Salvador Funded b y: U.S. D epartment o f E nergy, S olid S tate E nergy C onversion A lliance ( SECA) Introduction The oxygen reduction reaction (ORR) takes place in the solid oxide fuel cell (SOFC) cathode and the overall reaction is rather complex; it involves a variety of sub-reactions, such as surface adsorption, dissociation, election transfer, incorporation, and bulk diffusion. Although a considerable amount of effort has been expended in correlating processing / microstructural features to cathode performance, there is unfortunately relatively little known about the fundamental surface properties of oxide surfaces and their relation

207

Surface Science Letters Bulk-defect dependent adsorption on a metal oxide surface  

E-Print Network (OSTI)

-6028(01)01067-6 #12;Titanium dioxide is a wide-band gap semicon- ductor (Egap 3 eV) that can easily be reducedSurface Science Letters Bulk-defect dependent adsorption on a metal oxide surface: S/TiO2(1 1 0) E Abstract The adsorption of molecular sulfur on TiO2(1 1 0)(1 ? 1) has been studied with scanning tunneling

Diebold, Ulrike

208

Condensed Matter Physics and Materials Science Department (PM)  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Matter Physics and Materials Science Department (PM) Condensed Matter Physics and Materials Science Department (PM) Last modified 12/7/2012 LastName First MI Bldg Room Ext1 Ext2 Fax E-mail ABEYKOON MILINDA 510B 1-21 2915 3827 2739 aabeykoon@bnl.gov AKHANJEE SHIMUL 510A 2-6 5089 3995 2918 sakhanjee@bnl.gov ARONSON MEIGAN 703 2A 4915 7090 4071 maronson@bnl.gov BERLIJN TOM COS 3995 3995 tberlijn@bnl.gov BILLINGE SIMON 510B 1-29 5661 3827 2739 sb2896@columbia.edu BLUME MARTIN 510A 1-6 3735 3995 2739 blume@bnl.gov BOLLINGER ANTHONY 480 139 2601 7090 4071 abolling@bnl.gov BOZIN EMIL 510B 1-26 4963 3827 2739 bozin@bnl.gov BOZOVIC IVAN 480 126 4973 7090 4071 bozovic@bnl.gov CHECCO ANTONIO 510B 1-20 3319 3827 2739 checco@bnl.gov CHOU CHUNG-PIN 510A 2-12 3784 3995 2918 cpchou@bnl.gov DAI YAOMIN 510B 1-18 3788 3827 2739 ymdai@bnl.gov DAVIS SEAMUS 480 3827 4071 jcdavis@ccmr.cornell.edu and/or sdavis@bnl.gov DEAN

209

National Science Bowl® Competition Buzzer Materials List | U.S. DOE Office  

Office of Science (SC) Website

Materials List Materials List National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Academic Question Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List

210

National Science Bowl® Competition Buzzer Materials List | U.S. DOE Office  

Office of Science (SC) Website

Materials List Materials List National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List Print

211

MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering  

E-Print Network (OSTI)

MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering Chairs Science and Engineering I am very pleased to announce the re-appointment of Professor Jun Nogami as Chair of the Department of Materials Science and Engineering (MSE) for a second five-year term beginning July 1, 2014. Jun

Prodiæ, Aleksandar

212

Overview of surface science and catalysis by Qifei Wu  

E-Print Network (OSTI)

surfaces: single crystal transition metals, metal nanoparticles (Au), metal oxides, sulfides, carbides: · Metcars are the better catalysts for HDS than the other metal carbide materials. · Metcars have better: Sulfides (RuS2), carbides (MoC, TiC) #12;Density Functional Theory in Catalysis Employ DFT to understand

213

EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering  

E-Print Network (OSTI)

& Engineering E115 CSE Electrical and Computer Engineering 1084 Weimer Hall 8pd / 407 Nuclear Science 9-10 pd-A Nuclear Engineering Science 214 Nuclear Science (Next to Journalism Bldg) Student Success 210 Weil HallEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

Schwartz, Eric M.

214

Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering  

E-Print Network (OSTI)

conditions-- stress, strain rate, gaseous and chemical environments and radiation. Todd R. Allen Professor; nanoelectronics. Paul G. Evans Professor, Materials Science & Eng X-ray diffraction, microscopy, and optics; x. James A. Clum Visiting Professor, Materials Science & Engineering Materials and manufacturing processes

Wisconsin at Madison, University of

215

Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980  

SciTech Connect

Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research.

Truhan, J.J.; Hopper, R.W.; Gordon, K.M. (eds.)

1980-10-28T23:59:59.000Z

216

Advances in materials science, Metals and Ceramics Division. Triannual progress report, February-May 1980  

SciTech Connect

Research is reported in the magnetic fusion energy and laser fusion energy programs, aluminium-air battery and vehicle research, geothermal research, nuclear waste management, basic energy science, and chemistry and materials science. (FS)

Truhan, J.J.; Gordon, K.M. (eds.)

1980-08-01T23:59:59.000Z

217

Investigation into the Effect of Surface Treatment on the Wettability and the Bondability of Low Surface Energy Materials  

Science Journals Connector (OSTI)

An experimental effort has been undertaken to examine the effect of surface treatment on various low surface energy thermoplastic materials to promote wettability and ... measurements were correlated with the bon...

J. P. Jeandrau

1984-01-01T23:59:59.000Z

218

Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

CNMS USER RESEARCH CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature. E.g., homeostasis - regulation of a cell's internal environment to maintain stability and function at the mesoscale (i.e., cell) in the face of an unpredictable environment - is maintained even though there is considerable noise at the nanoscale (protein, RNA, molecular motor). A recent ACS Nano

219

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Transient-Mediated fate determination in a transcriptional circuit of HIV Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a novel technique of discovering the details of these interactions through the measurement of the structure of stochastic fluctuations that occur in neighboring nanoscale system components that can be directly imaged. In this work [Nature Genetics, 40(4), 466-470 (2008)], in collaboration with a

220

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Nanowires K. Xiao, M. Yoon, A. J. Rondinone, E. A. Payzant, and D. B. Geohegan Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement Combined experimental and theoretical studies revealed the nucleation and growth mechanisms of M-TCNQF4 crystalline organic nanowires grown on different metals by vapor-solid chemical reaction (VSCR). Real-time x-ray diffraction was used to measure the growth kinetics of the nanowires, and a modified Avrami model of the data showed that growth proceeds via a 1D ion diffusion-controlled reaction at their tips. First principles atomistic calculations were used to understand how charge transfer interactions govern the reactivity of different metals in the growth process through the

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Optical Science and Engineering Program Center for High Technology Materials  

E-Print Network (OSTI)

& Administration GA Graduate Assistantship HSC Health Sciences Center HVAC Heating, ventilation, and cooling IARPA for Standards and Technology NRL Naval Research Laboratory NSF National Science Foundation NSMS Nanoscience

New Mexico, University of

222

Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97  

SciTech Connect

This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

Newkirk, L.

1997-12-01T23:59:59.000Z

223

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

transition metal oxide surface, exhibits a number of surface defects, such as oxygen vacancies, hydroxyl groups, and 1-D sub-oxidized strands. All these surface defects have...

224

Applied Surface Science 292 (2014) 10301039 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Surface Science journal homepage: www.elsevier.com/locate/apsusc Micro-arc oxidization of a novel Mg­1Ca Keywords: Mg­1Ca alloy Micro-arc oxidation (MAO) Electrolyte Corrosion resistance Cytotoxicity a b s t r a c t A newly-developed Mg­1Ca (wt%) alloy was treated by micro-arc oxidization (MAO) in KF

Zheng, Yufeng

225

The Department of Chemical Engineering and Materials Science Michigan State University  

E-Print Network (OSTI)

AND NANOSTRUCTURE INFLUENCES ON MECHANICAL PROPERTIES OF THERMOELECTRIC MATERIALS Thermoelectric (TE) materials in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forcesThe Department of Chemical Engineering and Materials Science Michigan State University Ph

226

p s sapplications and materials science www.pss-a.com  

E-Print Network (OSTI)

- dicted theoretically [11] and observed experimentally us- ing angle-resolved electron energy lossp s sapplications and materials science a status solidi www.pss-a.com physica REPRINT phys. stat s sapplications and materials science a status solidi www.pss-a.com physica Band structure effects on the Be(0001

Pohl, Karsten

227

Journal of Hazardous Materials 194 (2011) 1523 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chromate reduction in FeJournal of Hazardous Materials 194 (2011) 15­23 Contents lists available at ScienceDirect Journal Engineering, University of Leeds, Leeds LS2 9JT, UK d Diamond Light Source, Harwell Science and Innovation

Burke, Ian

228

Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology  

SciTech Connect

Progress in science often follows or parallels the development of new techniques. The optical microscope helped convert medicine and biology from a speculative activity in old times to today's sophisticated scientific disciplines. The telescope changed the study and interpretation of heavens from mythology to science. X-ray diffraction enabled the flourishing of solid state physics and materials science. The technique object of this review, Ambient Pressure Photoelectron Spectroscopy or APPES for short, has also the potential of producing dramatic changes in the study of liquid and solid surfaces, particularly in areas such as atmospheric, environment and catalysis sciences. APPES adds an important missing element to the host of techniques that give fundamental information, i.e., spectroscopy and microscopy, about surfaces in the presence of gases and vapors, as encountered in industrial catalysis and atmospheric environments. APPES brings electron spectroscopy into the realm of techniques that can be used in practical environments. Decades of surface science in ultra high vacuum (UHV) has shown the power of electron spectroscopy in its various manifestations. Their unique property is the extremely short elastic mean free path of electrons as they travel through condensed matter, of the order of a few atomic distances in the energy range from a few eV to a few thousand eV. As a consequence of this the information obtained by analyzing electrons emitted or scattered from a surface refers to the top first few atomic layers, which is what surface science is all about. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and other such techniques have been used for decades and provided some of the most fundamental knowledge about surface crystallography, composition and electronic structure available today. Unfortunately the high interaction cross section of electrons with matter also prevents them from traveling long distances unscattered in gas environments. Above the millibar pressure range this distance is reduced to less that a millimeter, effectively preventing its use in the most relevant environments, usually between millibars and atmospheric pressures. There is therefore a large gap of several orders of magnitude where information about surfaces is scarce because these powerful electron spectroscopies cannot operate. One characteristic of surfaces in ambient pressure environments is that they are covered by dense layers of molecules, even when their binding energy is weak. Water for example is known to form layers several molecules thick at room temperature in humid environments. Metals readily form oxide films several layers thick in oxygen atmospheres. Dense layers of adsorbed molecules can also be produced in ultra high vacuum, often by the simple and expedient method of cooling the sample to cryogenic temperatures. A large amount of data has been obtained in the past in UHV by surface scientists using this method. While this has provided valuable information it begs the question of whether the structures formed in this manner represent equilibrium structures or metastable ones, kinetically trapped due to high activation energies that cannot be overcome at low temperature. From a thermodynamic point of view is interesting to consider the entropic contribution to the Gibbs free energy, which we can call 'the pressure factor', equal to kT.logP. This factor amounts to a sizeable 0.3 eV difference at room temperature between UHV (<10{sup -8} Pascal) and atmospheric pressures. Such change if free energy can definitely result in changes in surface structure and stability. Entire areas of the phase diagram are out of reach due to the pressure gap. Even when cooling is not necessary, many surface treatments and most chemical reactions necessitate the presence of gases at pressures ranging from millibar to bars. What is the structure and chemical nature of the species formed on the surface in equilibrium with suc

Salmeron, Miquel; Salmeron, Miquel; Schlogl, Robert

2008-03-12T23:59:59.000Z

229

Surface chemistry of mesoporous materials : effect of nanopore confinement.  

SciTech Connect

Acid-base titration and metal sorption experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. It has been demonstrated that surface chemistry and ion sorption within nanopores can be significantly modified by a nano-scale space confinement. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined solid-solution interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on that nanopore surfaces.

Wang, Yifeng (Sandia National Laboratories, Carlsbad, NM); Bryan, Charles R. (Sandia National Laboratories, Carlsbad, NM); Xu, Huifang (University of New Mexico, Albuquerque, NM); Gao, Huizhen (Sandia National Laboratories, Carlsbad, NM)

2003-03-01T23:59:59.000Z

230

From material flow analysis to material flow management Part I: social sciences modeling approaches coupled to MFA  

Science Journals Connector (OSTI)

This paper presents social sciences modeling approaches (SSMA) that have been coupled to material flow analyses in order to support management of material flows. The presented literature review revealed that the large share of these approaches stem from economics, as these models have similar data and modeling structure than the material flow models. The discussed modeling approaches support a better system understanding and allow for estimating the potential effects of economic policies on material flows. However, it has been shown that these approaches lack important aspects of human decision-making and, thus, the designed economic measures might not always lead to the expected improvements of the material system.

Claudia R. Binder

2007-01-01T23:59:59.000Z

231

Surface space : digital manufacturing techniques and emergent building material  

E-Print Network (OSTI)

This thesis explores tectonic possibilities of new material and forming techniques. The design process is catalyzed by experimenting different configurations of the material.This project attempts to develop inventive ways ...

Ho, Joseph Chi-Chen, 1975-

2002-01-01T23:59:59.000Z

232

Advances in the Surface Science of TiO2 A Global Perspective...  

NLE Websites -- All DOE Office Websites (Extended Search)

ultraviolet catalysis thin films semiconductors renewable energy ultra-high vacuum UHV VT SPM atomic-resolution imaging proteins surface science Volume: 28 Issue: 10 Pages:...

233

Center for Nanophase Materials Sciences (CNMS) - CNMS Discovery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dieter Richter, Jlich Centre for Neutron Science, Institute for Complex Systems, Germany - March 22,2013 CNMS and SNS Research Forum Annabella Selloni, Princeton University -...

234

Discovery of New Materials to Capture Methane | U.S. DOE Office of Science  

Office of Science (SC) Website

Discovery of New Materials to Capture Methane Discovery of New Materials to Capture Methane Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » April 2013 Discovery of New Materials to Capture Methane Predicted materials could economically produce high-purity methane from natural gas systems and separate methane from coal mine ventilation systems. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Berend Smit, UC-Berkeley

235

Christen leads ORNL's Center for Nanophase Materials Sciences | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 SHARE Media Contact: Bill Cabage Oak Ridge National Laboratory Communications (865) 574-4399 Christen leads ORNL's Center for Nanophase Materials Sciences Hans Christen Hans Christen (hi-res image) OAK RIDGE, Jan. 9, 2014 -- Hans M. Christen of the Department of Energy's Oak Ridge National Laboratory has been named director of ORNL's Center for Nanophase Materials Sciences, one of the five DOE Nanoscale Science Research Centers. Christen joined ORNL in 2000 and led the Thin Films and Nanostructures group from 2006 to 2013. In 2013, he became associate director within the Materials Science and Technology Division and has managed the DOE Materials Sciences & Engineering Program since 2011. His research has focused on the effects of epitaxial strain, spatial

236

The impact of surface science on the commercialization of chemical processes  

Science Journals Connector (OSTI)

Surface science developed instruments for atomic- and molecular-scale studies of catalyst surfaces, their composition and structure, both in a vacuum and at high pressures, under reaction conditions (bridging ...

Gabor A. Somorjai; Jeong Y. Park

2007-06-01T23:59:59.000Z

237

Materials Science and Engineering A 430 (2006) 189202 Grid indentation analysis of composite microstructure  

E-Print Network (OSTI)

Materials Science and Engineering A 430 (2006) 189­202 Grid indentation analysis of composite 17 May 2006 Abstract Several composites comprise material phases that cannot be recapitulated ex situ characteristics of naturally occurring material composites. Here, we propose a straightforward application

Van Vliet, Krystyn J.

238

Applications of focused ion beam SIMS in materials science  

Science Journals Connector (OSTI)

Focused ion beam instruments (FIB) can be used both for materials processing and materials analysis, since the ion beam used in the FIB milling process generates several potentially useful analytical signals such...

David S. McPhail; Richard J. Chater; Libing Li

2008-06-01T23:59:59.000Z

239

SCIENCE  

Science Journals Connector (OSTI)

SCIENCE ... Sedoheptulose phosphate may be an important intermediate in carbohydrate metabolism in animals as well as in plants, the NIH scientists observe. ... NOL Makes Magnetic Material ...

1952-06-23T23:59:59.000Z

240

Materials science and engineering at the Oak Ridge National Laboratory. Abstracts  

SciTech Connect

Abstracts of 31 papers are arranged under the following headings: surfaces and interfaces, advanced materials, and structural and electronic ceramics. (DLC)

Not Available

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

charge injection in organic semiconducting materials for improving the optoelectronic properties of organic semiconductor devices. Publication " Spin injection from...

242

Improved Bounds on the Effective Yield Surface of Inhomogeneous Rigid/Plastic Materials  

E-Print Network (OSTI)

Improved Bounds on the Effective Yield Surface of Inhomogeneous Rigid/Plastic Materials Tamara January 1993 Abstract The yield surface of a mixture of rigid/perfectly­plastic materials is examined plasticity under suffi­ ciently large stress. The set of stresses at which the deformation changes from

Olson, Tamara

243

Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near-surface materials  

E-Print Network (OSTI)

-surface materials. For both trends, the resistivity (r) and p-wave velocity (Vp) are related in the form Log10 r = m resistivity and seismic velocity in heterogeneous near-surface materials, Geophys. Res. Lett., 30(7), 1373Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near

Meju, Max

244

Fusion Materials Science Overview of Challenges and Recent Progress  

E-Print Network (OSTI)

resistance generally have very good high temperature capability (high thermal creep resistance) due to high, high fusion neutron flux) arguably makes fusion materials development the greatest challenge ever approach used to develop candidate materials for fusion reactors ­ Materials with high neutron radiation

245

Materials Science & Technology, MST: Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS MST Division Leader David F. Teter Bio MST Deputy Division...

246

Surface Finish Modeling in Micromilling of Biocompatible Materials  

E-Print Network (OSTI)

, and electronic devices tend to decrease in size. Along with the strong demand for miniaturization, new cutting-edge micromanufacturing techniques are developing in order to produce microcomponents with a smooth surface finish and high dimensional accuracy...

Berestovskyi, Dmytro V

2013-06-05T23:59:59.000Z

247

Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics and  

NLE Websites -- All DOE Office Websites (Extended Search)

feature banner feature banner banner Condensed Matter and Magnet Science The Condensed Matter and Magnet Science Group (MPA-CMMS) is comprised of research scientists, technicians, postdocs, and students specializing in experimental physics research, with a strong emphasis on fundamental condensed matter physics with complimentary thrusts in correlated electron materials, high magnetic-field science and technology, thermal physics, and actinide chemistry. MPA-CMMS hosts the Pulsed Field Facility of the National High Magnetic Field Laboratory (NHMFL-PFF) located at TA-35 while new material synthesis, low temperature expertise, and various low-energy spectroscopies are located at TA-3. Our actinide chemistry activities occur at RC-1 (TA-48). The NHMFL-PFF is a national user facility for high magnetic field science sponsored primarily by the National Science Foundation's Division of Materials Research, with branches at Florida State University, the University of Florida, and Los Alamos National Laboratory. (Check out NHMFL Web site for more details.)

248

Surface Properties of Advanced Materials and Their Applications in Ballistics  

E-Print Network (OSTI)

to facilitate design and development of new materials for tribological applications. The research will focus on improving of the gun barrel performances. Experimental approaches will be used for combining analysis with basic thermal energy transfer principles...

Yun, Huisung

2010-07-23T23:59:59.000Z

249

JOURNAL OF MATERIALS SCIENCE 36 (2001) 77 86 Synthesis of yttria-doped strontium-zirconium  

E-Print Network (OSTI)

JOURNAL OF MATERIALS SCIENCE 36 (2001) 77­ 86 Synthesis of yttria-doped strontium-zirconium oxide densification, than co-precipitated powders. C 2001 Kluwer Academic Publishers 1. Introduction Strontium

Iglesia, Enrique

250

Carbon-Based Materials, High-Surface-Area Sorbents, and New Materials and Concepts  

Energy.gov (U.S. Department of Energy (DOE))

This category of materials-based storage technologies includes a range of carbon-based materials such as carbon nanotubes, aerogels, nanofibers (including metal-doped hybrids), as well as metal...

251

Materials Science and Engineering A297 (2001) 235243 Plasma-sprayed ceramic coatings: anisotropic elastic and  

E-Print Network (OSTI)

anisotropic elastic stiffnesses and thermal conductivities of the plasma sprayed ceramic coatingMaterials Science and Engineering A297 (2001) 235­243 Plasma-sprayed ceramic coatings: anisotropic are derived. © 2001 Elsevier Science S.A. All rights reserved. Keywords: Thermal spray; Elastic properties

Sevostianov, Igor

252

JOURNAL OF MATERIALS SCIENCE 29 (1994) 4135-4151 Bismuth oxide-based solid electrolytes for  

E-Print Network (OSTI)

of investigations has been reported pertaining to the science and technology of solid oxide fuel cells (SOFCs) based as the electrolyte and are accordingly known as the molten carbonate fuel cells (MCFCs) and the solid oxide fuelJOURNAL OF MATERIALS SCIENCE 29 (1994) 4135-4151 Review Bismuth oxide-based solid electrolytes

Azad, Abdul-Majeed

253

Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM  

E-Print Network (OSTI)

Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 17 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

Sheridan, Scott

254

Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM  

E-Print Network (OSTI)

Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 30 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

Sheridan, Scott

255

New applications of particle accelerators in medicine, materials science, and industry  

SciTech Connect

Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

Knapp, E.A.

1981-01-01T23:59:59.000Z

256

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

257

Research Areas, Condensed Matter Physics & Materials Science Department,  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Studies of Nanoscale Structure and Structural Defects in Advanced Materials: The goal of this program is to study property sensitive structural defects in technologically-important materials such as superconductors, magnets, and other functional materials at nanoscale. Advanced quantitative electron microscopy techniques, such as coherent diffraction, atomic imaging, spectroscopy, and phase retrieval methods including electron holography are developed and employed to study material behaviors. Computer simulations and theoretical modeling are carried out to aid the interpretation of experimental data. Electron Spectroscopy Group's primary focus is on the electronic structure and dynamics of condensed matter systems. The group carries out studies on a range materials including strongly correlated systems and thin metallic films. A special emphasis is placed on studies of high-Tc superconductors and related materials.

258

A surface science investigation of silicon carbide: Oxidation, crystal growth and surface structural analysis  

SciTech Connect

For the semiconductor SiC to fulfill its potential as an electronic material, methods must be developed to produce insulating surface oxide layers in a reproducible fashion. Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS) were used to investigate the oxidation of single crystal {alpha}-SiC over a wide temperature and O{sub 2} pressure range. The {alpha}-SiC surface becomes graphitic at high temperatures and low O{sub 2} pressures due to Si and SiO sublimation from the surface. Amorphous SiO{sub 2} surface layers from on {alpha}-SiC at elevated O{sub 2} pressures and temperatures. Both the graphitization and oxidation of {alpha}-SiC appears to be enhanced by surface roughness. Chemical vapor deposition (CVD) is currently the preferred method of producing single crystal SiC, although the method is slow and prone to contamination. We have attempted to produce SiC films at lower temperatures and higher deposition rates using plasma enhanced CVD with CH{sub 3}SiH{sub 3}. Scanning AES, XPS and scanning electron microscopy (SEM) were utilized to study the composition and morphology of the deposited Si{sub x}C{sub y}H{sub z} films as a function of substrate temperature, plasma power and ion flux bombardment of the film during deposition. High energy ion bombardment during deposition was found to increase film density and substrate adhesion while simultaneously reducing hydrogen and oxygen incorporation in the film. Under all deposition conditions the Si{sub x}C{sub y}H{sub z} films were found to be amorphous, with the ion bombarded films showing promise as hard protective coatings. Studies with LEED and AES have shown that {beta}-SiC (100) exhibits multiple surface reconstructions, depending on the surface composition. These surface reconstructions possess substantially different surface reactivities at elevated temperatures, which can complicate the fabrication of metal on SiC junctions.

Powers, J.M.

1991-11-01T23:59:59.000Z

259

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

and surface profiles with sub-nanometer out-of-plane resolution. This tool employs coherence scanning interferometry combined with stroboscopic illumination and advanced image...

260

Reduction of surface leakage current by surface passivation of CdZn Te and other materials using hyperthermal oxygen atoms  

DOE Patents (OSTI)

Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.

Hoffbauer, Mark A. (Los Alamos, NM); Prettyman, Thomas H. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the cleanroom, advanced optical profilometry. (See the "What's New" section of this newsletter to...

262

Center for Nanophase Materials Sciences (CNMS) - Related ORNL...  

NLE Websites -- All DOE Office Websites (Extended Search)

offer a variety of capabilities for materials characterization and computational nanoscience that may enhance the research projects of CNMS users. The CNMS has established...

263

Center for Nanophase Materials Sciences (CNMS) - Call For Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

materials Deuterated vinyl and diene monomers and polymers Soft matter TEM OPTOELECTRONIC NANOSTRUCTURES Laser and CVD synthesis of carbon nanomaterials, oxide film...

264

NREL: Solar Research - Materials and Chemical Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and conducts theoretical studies and fundamental experimental research on optoelectronic materials. The center conducts research within three areas: Chemical and molecular...

265

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

types of systems could be of central importance to develop future electronic and optoelectronic devices with high-quality active materials. Significance One of the great...

266

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

despite the proposed use of organic thin-film materials in energy-related optoelectronic devices such as solid state lighting and photovoltaic cells. Although...

267

Science as Art: Materials Characterization Art | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

bamboo plant to grow. A porous "composite" structure as seen in the image would help in engineering structural materials capable of carrying fluids or gases internally." However,...

268

Achieving Transformational Materials Performance in a New Era of Science  

ScienceCinema (OSTI)

The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

John Sarrao

2010-01-08T23:59:59.000Z

269

Impact of active material surface area on thermal stability of LiCoO2 cathode  

Science Journals Connector (OSTI)

Abstract Thermal stability of charged LiCoO2 cathodes with various surface areas of active material is investigated in order to quantify the effect of LiCoO2 surface area on thermal stability of cathode. Thermogravimetric analyses and calorimetry have been conducted on charged cathodes with different active material surface areas. Besides reduced thermal stability, high surface area also changes the active material decomposition reaction and induces side reactions with additives. Thermal analyses of LiCoO2 delithiated chemically without any additives or with a single additive have been conducted to elaborate the effect of particle size on side reactions. Stability of cathodeelectrolyte system has been investigated by accelerating rate calorimetry (ARC). Arrhenius activation energy of cathode decomposition has been calculated as function of conversion at different surface area of active material.

Jan Geder; Harry E. Hoster; Andreas Jossen; Jrgen Garche; Denis Y.W. Yu

2014-01-01T23:59:59.000Z

270

Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis  

Science Journals Connector (OSTI)

Abstract Surface science research fixated on phenomena and processes that transpire at the electrode-electrolyte interface has been pursued in the past. A considerable proportion of the earlier work was on materials and reactions pertinent to the operation of small-molecule fuel cells. The experimental approach integrated a handful of surface-sensitive physicalanalytical methods with traditional electrochemical techniques, all harbored in a single environment-controlled electrochemistry-surface science apparatus (EC-SSA); the catalyst samples were typically precious noble metals constituted of well-defined single-crystal surfaces. More recently, attention has been diverted from fuel-to-energy generation to its converse, (solar) energy-to-fuel transformation; e.g., instead of water synthesis (from hydrogen and oxygen) in fuel cells, water decomposition (to hydrogen and oxygen) in artificial photosynthesis. The rigorous surface-science protocols remain unchanged but the experimental capabilities have been expanded by the addition of several characterization techniques, either as EC-SSA components or as stand-alone instruments. The present manuscript describes results selected from on-going studies of earth-abundant electrocatalysts for the reactions that underpin artificial photosynthesis: nickel-molybdenum alloys for the hydrogen evolution reaction, calcium birnessite as a heterogeneous analogue for the oxygen-evolving complex in natural photosynthesis, and single-crystalline copper in relation to the carbon dioxide reduction reaction.

Manuel P. Soriaga; Jack H. Baricuatro; Kyle D. Cummins; Youn-Geun Kim; Fadl H. Saadi; Guofeng Sun; Charles C.L. McCrory; James R. McKone; Jesus M. Velazquez; Ivonne M. Ferrer; Azhar I. Carim; Alnald Javier; Brian Chmielowiec; David C. Lacy; John M. Gregoire; Jean Sanabria-Chinchilla; Xenia Amashukeli; William J. Royea; Bruce S. Brunschwig; John C. Hemminger; Nathan S. Lewis; John L. Stickney

2015-01-01T23:59:59.000Z

271

Materials science issues and structural studies of topical  

E-Print Network (OSTI)

Foundation grants (DMR-9733895 and DMR-9601796 to Nigel Browning) and Engineering and Physical Science and dislocation-pair hypothesis 3.3. Semi-quantitative plastic deformation model 3.4. As grown six-inch diameter: different stacking sequences of same structural, e.g. SiC has 46 modifications, ZnS has 11 modifications

Moeck, Peter

272

Materials Science and Engineering A 432 (2006) 100107 Effect of annealing and initial temperature on mechanical  

E-Print Network (OSTI)

for Advanced Materials, Department of Mechanical and Aerospace Engineering, University of California, San DiegoMaterials Science and Engineering A 432 (2006) 100­107 Effect of annealing and initial temperature stress at some temperature above Ms. Recently, it has been suggested that this superelastic property may

Nemat-Nasser, Sia

273

JOURNAL OF MATERIALS SCIENCE 39 (2004) 4103 4106 Effect of fiber content on the thermoelectric  

E-Print Network (OSTI)

JOURNAL OF MATERIALS SCIENCE 39 (2004) 4103­ 4106 Effect of fiber content on the thermoelectric behavior of cement S. WEN, D. D. L. CHUNG Composite Materials Research Laboratory, University at Buffalo of discontinuous stainless steel fibers (diameter 60 µm) as an admixture in cement paste on the thermoelectric

Chung, Deborah D.L.

274

Bipolar Electrochemistry: From Materials Science to Motion and Beyond  

Science Journals Connector (OSTI)

Janus particles, named after the Roman god depicted with two faces, are currently in theheart of many original investigations. ... These surfaces are used to ensure the particle immobilization during the bipolar electrodeposition. ...

Gabriel Loget; Dodzi Zigah; Laurent Bouffier; Neso Sojic; Alexander Kuhn

2013-05-29T23:59:59.000Z

275

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H. Overbury,a,c Viviane...

276

Materials Science Under Extreme Conditions of Pressure and Strain Rate  

E-Print Network (OSTI)

at Lawrence Livermore National Laboratory. I. INTRODUCTION HIGH-STRAIN-RATE materials dynamics and solid-state experiments to much higher pressures, P 103 GPa (10 Mbar), on the National Ignition Facility (NIF) laser

Zhigilei, Leonid V.

277

Research and Devlopment Associate Center for Nanophase Materials Sciences Division  

E-Print Network (OSTI)

: i) selective conversion of biomass-derived compounds; ii) rechargeable metal-air batteries as next. · Heterogeneous catalysis and electrocatalysis on metals, metal compounds, and nano- materials. · Current focuses

Pennycook, Steve

278

Stanislav Golubov, and Roger Stoller - Materials Science and...  

NLE Websites -- All DOE Office Websites (Extended Search)

The team also investigated the response of textured materials, including rolled Zircaloy-2 and a random texture, both illustrated in Fig. 9. The results, plotted in Fig.10 and...

279

Surface Science 425 (1999) 114 Non-adiabatic charge transfer process of oxygen on  

E-Print Network (OSTI)

Surface Science 425 (1999) 1­14 Non-adiabatic charge transfer process of oxygen on metal surfaces November 1998 Abstract The dynamics of charge transfer processes of oxygen on metal surfaces a different charged oxygen species. Empirical universal potential energy functions have been constructed

Zeiri, Yehuda

280

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abécassis, Benjamin (Benjamin Abécassis) - Laboratoire de Physique des Solides, Université de Paris-Sud 11 Ackland, Graeme (Graeme Ackland) - Centre for Materials Science and Engineering & School of Physics, University of Edinburgh Adams, James B (James B Adams) - Department of Chemical and Materials Engineering, Arizona State University Adams, Philip W. (Philip W. Adams) - Department of Physics and Astronomy, Louisiana State University Adeyeye, Adekunle (Adekunle Adeyeye) - Department of Electrical and Computer Engineering, National University of Singapore Agrawal, Dinesh (Dinesh Agrawal) - Microwave Processing and

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - assisted materials surface Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

27 Abstract--In many robotics applications, knowing the material properties around a robot is often critical for the Summary: , of the surface. A lookup table and k-nearest...

282

Photoelectron spectroscopic study of the surface reactivity of the high T[c] material YBa?Cu?O?  

E-Print Network (OSTI)

states and segregation of the sample when heated in vacuum and oxygen, and when reacted with water vapor. In addition, the effect of plasma treatment on the surface was investigated. The surface chemistry of this material is very complex..., with the surface composition varying substantially with treatment conditions. The equilibrium surface composition of the material is determined by surface energy and reaction driven surface changes. Contamination and selective surface segregation operate...

Liu, Hong-Xia

2012-06-07T23:59:59.000Z

283

Postdoctoral Research Associate Center for Nanophase Materials Sciences  

E-Print Network (OSTI)

that can lead us to design superior devices for various applications. 2. Design of high capacity energy of energy storage systems. #12;3. Catalysis properties of low-dimensional materials: Most of the catalysts are noble metals. Wide efforts are being made to replace or reduce the usage of noble metals. Low

Pennycook, Steve

284

Effects of Surface Forces on Material Removal Rate in Chemical Mechanical Planarization  

E-Print Network (OSTI)

Effects of Surface Forces on Material Removal Rate in Chemical Mechanical Planarization Dinçer by a deformable pad. In addition to the pad­particle contact force, surface forces also act between the wafer removal rate MRR . In this work, a model for MRR, including the contact mechanics of multiple particles

Müftü, Sinan

285

Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations  

E-Print Network (OSTI)

Equilibrium behavior of sessile drops under surface tension, applied external fields, and material properties such as dielectric constants, resistivities, and surface tension coefficients. The analysis energy storage in the liquid, will lead to 1/R ``line-tension''-type terms if and only if the energy

Shapiro, Benjamin

286

Atomic Di usion from a Material Surface into a Grain Boundary  

E-Print Network (OSTI)

was #12;rst reduced to an eigen- value problem with a 1-d-integro-di#11;erential operator from the surface of a material into a semi-in#12;nite grain boundary orthogonal to the surface in a strip and then to a Riemann-Hilbert boundary- value problem for an open contour that admits solution

Bath, University of

287

Materials Discovery Design and Synthesis | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Design and Synthesis Discovery Design and Synthesis Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Materials Discovery Design and Synthesis Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported in the discovery and design of novel materials and the development of innovative materials synthesis and processing methods. This research is guided by applications of concepts learned from the interface between physics and biology and from nano-scale understanding of

288

Nanocluster-based white-light-emitting material employing surface tuning  

DOE Patents (OSTI)

A method for making a nanocrystal-based material capable of emitting light over a sufficiently broad spectral range to appear white. Surface-modifying ligands are used to shift and broaden the emission of semiconductor nanocrystals to produce nanoparticle-based materials that emit white light.

Wilcoxon, Jess P. (Albuquerque, NM); Abrams, Billie L. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM)

2007-06-26T23:59:59.000Z

289

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Thad M. Adams Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline Materials for Hydrogen Service Hydrogen Technology at the Savannah Hydrogen Technology at the Savannah River Site River Site * Tritium Production/Storage/Handling and Hydrogen Storage/Handling since 1955 - Designed, built and currently operate world's largest metal hydride based processing facility (RTF) - DOE lead site for tritium extraction/handling/separation/storage operations * Applied R&D provided by Savannah River National Laboratory - Largest hydrogen R&D staff in country * Recent Focus on Related National Energy Needs - Current major effort on hydrogen energy technology

290

Neutron Sciences - Electrode Material for Solid-oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory meets experiment: structure-property relationships in an electrode Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells Research Contact: Ana B. Munoz-Garcia December 2012, Written by Agatha Bardoel Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in liquid electrolyte cells. Using the Powder Diffractometer at the Spallation Neutron Source, researchers experimentally characterized the promising new SOFC electrode material strontium iron molybdenum oxide─Sr2Fe1.5Mo0.5O6-δ (SFMO). Combining the experimental results with insights from theory showed that the crystal structure is distorted from the ideal cubic simple perovskite

291

Surface Science 232 (1990) 353-366 North-Holland  

E-Print Network (OSTI)

in terms of beam energy and flux, crystal orientation, and surface environment, under both UHV (lo-" Torr) and non-UHV (lo-' Torr) conditions. The microscope vacuum was determined to be a major factor in the type of surface damage observed. Under UHV conditions, NiO showed only ballistic surface erosion. Under non-UHV

Marks, Laurence D.

292

Chemistry and Material Sciences Applications Training at NERSC April 5,  

NLE Websites -- All DOE Office Websites (Extended Search)

User Feedback JGI Intro to NERSC Data Transfer and Archiving Using the Cray XE6 Joint NERSC/OLCF/NICS Cray XT5 Workshop NERSC User Group Training Remote Setup Online Tutorials Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminiars Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Training & Tutorials » Training Events » Chemistry

293

DOE-HDBK-1017/1-93; DOE Fundamentals Handbook Material Science Volume 1 of 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-93 1-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK MATERIAL SCIENCE Volume 1 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE93012224 DOE-HDBK-1017/1-93 MATERIAL SCIENCE ABSTRACT The Material Science Handbook was developed to assist nuclear facility operating

294

DOE-HDBK-1017/2-93; DOE Fundamentals Handbook Material Science Volume 2 of 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-93 2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK MATERIAL SCIENCE Volume 2 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. Available to the public from the National Technical Information Services, U.S. Department of Commerce, 5285 Port Royal., Springfield, VA 22161. Order No. DE93012225 DOE-HDBK-1017/2-93 MATERIAL SCIENCE ABSTRACT The Material Science

295

The Project for the High Energy Materials Science Beamline at Petra III  

SciTech Connect

The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography.

Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A. [GKSS-Research Centre Geesthacht GmbH, Max-Planck-Strasse, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

296

ISSN 13921320 MATERIALS SCIENCE (MEDZIAGOTYRA). Vol. 10, No. 2. 2004 Classical Atomistic Simulations in Materials Sciences: An Introduction  

E-Print Network (OSTI)

, investigation of the dislocation formation from surface defects in a semiconductor, and study of the SiC/Si(001 defects, semiconductor, interface. 1. INTRODUCTION The last twenty years have seen a growing use. A good example is provided by crash test simulations used for improving cars safety. It is now possible

Boyer, Edmond

297

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

R S R S T U V W X Y Z Qasem, Apan (Apan Qasem) - Department of Computer Science, Texas State University - San Marcos Qi, Xiaojun (Xiaojun Qi) - Department of Computer Science, Utah State University Qi, Yuan "Alan" (Yuan "Alan" Qi) - Departments of Computer Sciences & Statistics, Purdue University Qian, Xiaoping (Xiaoping Qian) - Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology Qiao, Chunming (Chunming Qiao) - Department of Computer Science and Engineering, State University of New York at Buffalo Qiao, Daji (Daji Qiao) - Department of Electrical and Computer Engineering, Iowa State University Qiao, Sanzheng (Sanzheng Qiao) - Department of Computing and Software, McMaster University Qin, Feng (Feng Qin) - Department of Computer Science and

298

A Study on the acoustical properties of road surfaces of recycled CFB materials  

Science Journals Connector (OSTI)

Traffic noise and noise control are major concerns of transportation as noise and vibration will cause both psychological and physiological consequences. Great efforts have been made to use more sound absorbent road surfaces in order to reduce traffic noise. The raw materials under study are recycled byproducts from circulating fluidized bed boiler (CFB). The recycled CFB materials have been approved for use by the Environmental and Transportation Departments in various regions throughout the United States for road stabilization and base/surface installations. These (CFB) materials have shown good ecological civil and mechanical properties and are more environmentally friendly than asphalt and concrete. However the acoustical properties of the pavements are not known. Two types of measurements have been conducted. First the traffic noise was measured using the statistical pass-by method on various road surfaces and a comprehensive comparison was conducted. Second the sound absorption coefficients of the CFB materials were measured using impedance tubes.

Ha Ngo; Zhuang Li; Alan Davis

2012-01-01T23:59:59.000Z

299

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

300

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Presetations Presetations Homepage | Contacts "How can we make an isotropic high-temperature superconductor?," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, November 27 2007). PDF "Enhancement of Jc in thick MOD and BaF2 coatings through the structure improvement " DOE "Superconductivity for Power Systems" Annual Peer Review, (Arlington, VA, August 7-9 2007). PDF "Texture Development in 2-3 μm Thick YBCO Films Synthesized by BaF2 and MOD Processes on Metal RABiTS(tm) " Materials Research Society Spring Meeting, (San Francisco, CA, April 20 2007). PDF "Films and Crystals: Search for the Perfect Structure. ," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, March 12 2007). PDF

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurements of  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

302

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

303

Sandia National Labs: Materials Science and Engineering Center: Research &  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments Accomplishments Patents PATENTS Method for Making Surfactant-Templated Thin Films, Jeff Brinker, Hongyou Fan, Patent #RE41612, issued 8/13/10 Dendritic Metal Nanostructures, John Shelnutt, Yujiang Song, Patent #7,785,391, issued 8/13/10 Metal Nanoparticles as a Conductive Catalyst, Eric Coker, Patent #7,767,610, issued 8/13/10 Water-Soluable Titanium Alkoxide Material, Timothy Boyle, Patent # 7,741,486 B1, issued 6/22/10 Microfabricated Triggered Vacuum Switch, Alex W. Roesler, Joshua M. Schare,Kyle Bunch, Patent #7,714,240, issued 5/11/10 Method of Photocatalytic Nanotagging, John Shelnutt, Craig Medforth, Yujiang Song, Patent #7,704,489, issued 4/27/10 Correlation Spectrometer, Michael Sinclair, Kent Pfeifer, Jeb Flemming, Gary D Jones, Chris Tigges, Patent #7,697,134, issued 4/13/10

304

Center for Nanophase Materials Sciences (CNMS) - Functional Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) Synthesis of SWNT's, NT Arrays, NW's, NP's or thin films by CVD, Laser Vaporization, and PLD with in situ diagnostics ns-Laser Vaporization Synthesis of SWNTs, NWs, NPs SWNTs and nanowires are produced by pulsed Nd:YAG laser-irradiation (30 Hz, Q-switched or free-running) of composite pellets in a 2" tube furnace with variable pressure control. Excimer laser ablation of materials into variable pressure background gases is used for nanoparticle generation in proximity of ns-laser diagnostics. High-power ms-laser vaporization bulk production of nanomaterials SWNTs (primarily), SWNH (single-wall carbon nanohorns), nanoparticles and nanowires are produced by robotically-scanned 600W Nd:YAG laser-irradiation

305

Center for Nanophase Materials Sciences (CNMS) - Active CNMS User Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

ACTIVE USER PROJECTS ACTIVE USER PROJECTS Proposal Cycle 2013B: expire July 31, 2014 Proposal Cycle 2013A: expire January 31, 2014 Proposal Cycle 2012B (extended): expire July 31, 2014 Proposal Cycle 2012A: (extended): expire January 31, 2014 Proposal Cycle 2013B: expire January 31, 2014 X-ray diffraction and scattering techniques for the study of interfacial phenomena in energy storage materials Gabriel Veith, ORNL [CNMS2013-201] Atomic scale study of the reduction of metal oxides Guangwen Zhou, State University of New York at Binghamton [CNMS2013-210] Local Switching Studies in PbZr0.2Ti0.8O3 (001), (101), and (111) Films Lane Martin, University of Illinois, Urbana-Champaign [CNMS2013-211] Direct Observation of Domain Structure and Switching Process in Strained

306

Materials Sciences and Engineering (MSE) Division Homepage | U.S. DOE  

Office of Science (SC) Website

MSE Home MSE Home Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Materials Sciences and Engineering (MSE) Division supports fundamental experimental and theoretical research to provide the knowledge base for the discovery and design of new materials with novel structures, functions, and properties. This knowledge serves as a basis for the development of new materials for the generation, storage, and use of energy and for mitigation of the environmental impacts of energy use. (details) The MSE research portfolio consists of the research focus areas in the

307

ELSEVIER Surface Science 329 (1995) 255-268 Predicting STM images of molecular adsorbates  

E-Print Network (OSTI)

ELSEVIER Surface Science 329 (1995) 255-268 Predicting STM images of molecular adsorbates V of a simple computational method for predicting scanning tunneling microscopy images for molecules adsorbed onto metal surfaces. Development of the technique is described, including adsorbate geometry selection

Chiang, Shirley

308

Materials Science and Engineering A 496 (2008) 501-506 Joining Ceramics to Metals  

E-Print Network (OSTI)

ductility enhances the resistance of the joint to thermal cycling; AlN-Inconel 600 bonds exhibited good thermal shock resistance. Alumina- stainless steel bonds withstood more that 60 thermal cycles between 200Materials Science and Engineering A 496 (2008) 501-506 1 Joining Ceramics to Metals using Metallic

Cambridge, University of

309

Materials Science Forum, Vols. 426432, 2003, pp. 3542. Advances in the Kinetic Theory of Carbide Precipitation  

E-Print Network (OSTI)

Materials Science Forum, Vols. 426­432, 2003, pp. 35­42. Advances in the Kinetic Theory of Carbide Pembroke Street, Cambridge CB2 3QZ, U.K., www.msm.cam.ac.uk/phase­trans Keywords : Carbides, kinetics and reversion of carbides can determine the quality of steels. This paper is a review of efforts towards better

Cambridge, University of

310

Materials Science and Engineering A 445446 (2007) 186192 Plastic instabilities and dislocation densities during plastic  

E-Print Network (OSTI)

Materials Science and Engineering A 445­446 (2007) 186­192 Plastic instabilities and dislocation densities during plastic deformation in Al­Mg alloys Gyozo Horv´ath, Nguyen Q. Chinh, Jeno Gubicza, J 2006 Abstract Plastic deformation of Al­Mg alloys were investigated by analyzing the stress

Gubicza, Jenõ

311

Materials Science Forum, Vols. 539543 (2007) 611. Online available at: http://www.scientific.net  

E-Print Network (OSTI)

://www.scientific.net Copyright 2006 Trans Tech Publications, Switzerland Strong Ferritic­Steel Welds H. K. D. H. Bhadeshia University of Cambridge Materials Science and Metallurgy Pembroke Street, Cambridge CB2 3QZ, U.K. www of the synergy between manganese and nickel is discussed in the light of recent high­resolution experiments

Cambridge, University of

312

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822  

E-Print Network (OSTI)

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822 Research and education in nuclear engineering, waste management and decommissioning holds the key to sustainable energy production on an ambitious programme of commissioning nuclear energy, creating opportunities for graduates from plant design

Miall, Chris

313

JOURNAL OF MATERIALS SCIENCE 36 (2001) 4681 4686 Deformation and energy absorption of wood  

E-Print Network (OSTI)

JOURNAL OF MATERIALS SCIENCE 36 (2001) 4681­ 4686 Deformation and energy absorption of wood cell and Physics & Christian Doppler Laboratory for Fundamentals of Wood Machining, University of Agricultural of Meteorology and Physics & Christian Doppler Laboratory for Fundamentals of Wood Machining, University

Lichtenegger, Helga C.

314

Concepts, Instruments, and Model Systems that Enabled the Rapid Evolution of Surface Science  

SciTech Connect

Over the past forty years, surface science has evolved to become both an atomic scale and a molecular scale science. Gerhard Ertl's group has made major contributions in the field of molecular scale surface science, focusing on vacuum studies of adsorption chemistry on single crystal surfaces. In this review, we outline three important aspects which have led to recent advances in surface chemistry: the development of new concepts, in situ instruments for molecular scale surface studies at buried interfaces (solid-gas and solid-liquid), and new model nanoparticle surface systems, in addition to single crystals. Combined molecular beam surface scattering and low energy electron diffraction (LEED)- surface structure studies on metal single crystal surfaces revealed concepts, including adsorbate-induced surface restructuring and the unique activity of defects, atomic steps, and kinks on metal surfaces. We have combined high pressure catalytic reaction studies with ultra high vacuum (UHV) surface characterization techniques using a UHV chamber equipped with a high pressure reaction cell. New instruments, such as high pressure sum frequency generation (SFG) vibrational spectroscopy and scanning tunneling microscopy (STM) which permit molecular-level surface studies have been developed. Tools that access broad ranges of pressures can be used for both the in situ characterization of solid-gas and solid-liquid buried interfaces and the study of catalytic reaction intermediates. The model systems for the study of molecular surface chemistry have evolved from single crystals to nanoparticles in the 1-10 nm size range, which are currently the preferred media in catalytic reaction studies.

Somorjai, Gabor A.; Park, Jeong Y.

2009-01-10T23:59:59.000Z

315

Supplementary Material The Open Atmospheric Science Journal, 2008, Volume 2 i Supplementary Material  

E-Print Network (OSTI)

the sun, which is ~240 W/m2 . A blackbody temperature of ~255°K yields a heat flux of 240 W/m2 . Indeed in the calculated 3.5 W/m2 forcing due to surface changes (ice sheet area, vegetation distribution, shoreline with that approach is that, unlike long-lived GHGs, aerosols are distributed heterogeneously, so it is difficult

Royer, Dana

316

The New Structural Materials Science Beamlines BL8A and 8B at Photon Factory  

SciTech Connect

BL8A and 8B are new beamlines for structural materials science at Photon Factory. The primary characteristics of both beamlines are similar. The incident beam is monochromatized by the Si(111) double-flat crystal monochromator and focused at the sample position by a Rh-coated bent cylindrical quartz mirror. The Weissenberg-camera-type imaging-plate (IP) diffractometers were installed. The X-ray diffraction experiments for structural studies of strongly correlated materials, such as transition metals, molecular conductors, endohedral fullerenes, nano-materials, etc, are conducted at these stations.

Nakao, A.; Sugiyama, H.; Koyama, A.; Watanabe, K. [Insttitute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

317

Surface Science 430 (1999) L515L520 www.elsevier.nl/locate/susc Surface Science Letters  

E-Print Network (OSTI)

of Science and Technology, 790-784 Pohang, South Korea b Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin-Dahlem, Germany Received 14 October 1998; accepted for publication 11 January. This substrate was chosen since the clean W(001)* Corresponding author. Fax: +82-562-279-3099. E-mail address

318

Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details or contact  

E-Print Network (OSTI)

Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details. Chemistry, Materials Science and Engineering Emphasis Core courses, plus: MATH 2250 Differential Equations or contact Professor Richard Ernst (ernst@chem.utah.edu; 801-581-8639) Chemistry Core Courses (required

Simons, Jack

319

Momentum-resolved Electron Energy-Loss Spectroscopy Master Thesis, Electron Microscopy Group of Materials Science, Prof. Ute Kaiser  

E-Print Network (OSTI)

of Materials Science, Prof. Ute Kaiser Background Electron energy-loss spectroscopy (EELS) is a well like plasmons at a few 10eV, to core-shell excitations at high energy losses. In addition to the energy Microscopy group of Material Sciences in Ulm has gained experience in the acquisition and analysis of energy

Pfeifer, Holger

320

Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University  

E-Print Network (OSTI)

Contact: Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (i Cell-Material Sciences, iCeMS for short, I welcome you to the Seventh iCeMS International Symposium to develop them through evolution. They are also very important to design and create various novel "smart

Takada, Shoji

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Publications: Science Team Meeting Documents: The Effects of Surface  

NLE Websites -- All DOE Office Websites (Extended Search)

The Effects of Surface Interactions on Summertime Arctic Clouds at Coastal The Effects of Surface Interactions on Summertime Arctic Clouds at Coastal and Inland Locations Doran, J. Christopher Pacific Northwest National Laboratory Barnard, James Pacific Northwest National Laboratory Shaw, William Pacific Northwest National Laboratory Cloud optical depths, effective droplet radii, base heights, and liquid water paths at Barrow and Atqasuk have been compared for the warm months (mid-June through mid-September) for the years 2001-2003. The optical depths at Atqasuk were about 26% larger than those at Barrow, only 100 km away, and the ratio of measured irradiance to clear sly irradiance was almost 20% smaller at Atqasuk under cloudy conditions. The differences appear to be caused by enhanced surface fluxes of sensible and latent heat

322

Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data  

E-Print Network (OSTI)

Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity materials by joint 2D inversion of dc resistivity and seismic data, Geophys. Res. Lett., 30(13), 1658, doi electrical resistivity and seismic compressional (P) wave velocity in heterogeneous near-surface materials

Meju, Max

323

Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan, final report  

SciTech Connect

This project, Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan was carried out in two phases: (1) the 2009 2012 renovation of space in the new EMU Science Complex, which included the Surface Science Laboratory (SSL), a very vigorous research lab at EMU that carries on a variety of research projects to serve the auto and other industries in Michigan; and (2) the 2013 purchase of several pieces of equipment to further enhance the research capability of the SSL. The funding granted by the DoE was proposed to renovate the space in the Science Complex to include SSL and purchase equipment for tribological and electrochemical impedance measurements in the lab, thus SSL will serve the auto and other industries in Michigan better. We believe we have fully accomplished the mission.

Shen, Weidian

2013-09-27T23:59:59.000Z

324

Synchroton and Simulations Techniques Applied to Problems in Materials Science: Catalysts and Azul Maya Pigments  

SciTech Connect

Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past twenty years due to the increasing availability of high flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory (SSRL). In this article we review the application of multiple synchrotron characterization techniques to two classes of materials defined as ''surface compounds.'' One class of surface compounds are materials like MoS{sub 2-x}C{sub x} that are widely used petroleum catalysts used to improve the environmental properties of transportation fuels. These compounds may be viewed as ''sulfide supported carbides'' in their catalytically active states. The second class of ''surface compounds'' is the ''Maya Blue'' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic ''surface complexes'' consisting of the dye indigo and palygorskite, a common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described in this report.

Chianelli, R.

2005-01-12T23:59:59.000Z

325

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

326

Year 1 Progress Report Computational Materials and Chemical Sciences Network Administration  

SciTech Connect

This document reports progress on the project Computational Materials and Chemical Sciences Network Administration, which is supported by DOE BES Grant DE-FG02-02ER45990 MOD 08. As stated in the original proposal, the primary goal of this project is to carry out the scientific administrative responsibilities for the Computational Materials and Chemical Sciences Network (CMCSN) of the U.S. Department of Energy, Office of Basic Energy Sciences. These responsibilities include organizing meetings, publishing and maintaining CMCSNs website, publishing a periodic newsletter, writing original material for both the website and the newsletter, maintaining CMCSN documentation, editing scientific documents, as needed, serving as liaison for the entire Network, facilitating information exchange across the network, communicating CMCSNs success stories to the larger community and numerous other tasks outside the purview of the scientists in the CMCSN. Given the dramatic increase in computational power, advances in computational materials science can have an enormous impact in science and technology. For many of the questions that can be addressed by computation there is a choice of theoretical techniques available, yet often there is no accepted understanding of the relative strengths and effectiveness of the competing approaches. The CMCSN fosters progress in this understanding by providing modest additional funding to research groups which engage in collaborative activities to develop, compare, and test novel computational techniques. Thus, the CMCSN provides the glue money which enables different groups to work together, building on their existing programs and expertise while avoiding unnecessary duplication of effort. This includes travel funding, partial postdoc salaries, and funding for periodic scientific meetings. The activities supported by this grant are briefly summarized below.

Rehr, John J.

2012-08-02T23:59:59.000Z

327

The National Science Foundations Investment in Sustainable Chemistry, Engineering, and Materials  

Science Journals Connector (OSTI)

The National Science Foundations Investment in Sustainable Chemistry, Engineering, and Materials ... However, NSF recognizes the importance of social, behavioral, and economic science to any comprehensive long-term risk mitigation strategy, as well as the need to transform education to train scientists in the systems-based approaches required to make interdisciplinary research successful. ... The supply of many key elements can become critical due to low Earth abundance or because the world has become dependent on a single supplier that is susceptible to supply disruption due to natural disasters, conflict, or political manipulation. ...

Ashley A. White; Matthew S. Platz; Deborah M. Aruguete; Sean L. Jones; Lynnette D. Madsen; Rosemarie D. Wesson

2013-05-29T23:59:59.000Z

328

The putative mechanical strength of comet surface material applied to landing on a comet  

Science Journals Connector (OSTI)

The comet lander PHILAE (part of the ESA mission ROSETTA) is going to touch down on comet 67P/ChuryumovGerasimenko in 2014. Landing dynamics depend on the mechanical strength of the surface material: in an extremely soft material, the lander (100kg, 1m/s touch-down velocity) may sink in too deep for successful operation while on a very hard surface the probability for bouncing and overturning increases. It is shown that direct knowledge on the strength of cometary surface material is very limited. In our view, even the Deep Impact experiment could not provide a reliable value of the mechanical strength of comet Tempel 1. We discuss the definition of strength and revise the ideas on cometary surface strength and theories that describe the low-velocity (?1m/s) impact of blunt bodies into dust-rich, fluffy cometary materials. Available direct and indirect measurements and data are critically reviewed. Lessons learnt from laboratory measurements to verify our equations of motion are presented as well. Conclusions for Philae are drawn: most likely, the soft landing will lead to a typical penetration of the lander's feet of up to 20cm.

Jens Biele; Stephan Ulamec; Lutz Richter; Jrg Knollenberg; Ekkehard Khrt; Diedrich Mhlmann

2009-01-01T23:59:59.000Z

329

Materials Science and Engineering A 527 (2010) 62706282 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

that the change in preferred pore orientations with pressure is responsible for the higher thermal resistance) is the most widely used ceramic for TBC applications [2]. Thermal transport in this material occurs. At lower temperatures, conductive transport dom- inates, and the thermal resistance can be improved

Wadley, Haydn

330

System and method for non-destructive evaluation of surface characteristics of a magnetic material  

DOE Patents (OSTI)

A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

Jiles, David C. (Ames, IA); Sipahi, Levent B. (Ames, IA)

1994-05-17T23:59:59.000Z

331

The Strength of Cometary Surface Material: Relevance of Deep Impact Results for Philae Landing on a Comet  

Science Journals Connector (OSTI)

We discuss the Deep Impact estimates of strength of the surface material of comet Tempel 1. It appears doubtful that the ... order of ? 10 kPa for very soft comet surfaces. The Rosetta lander, Philae, will touchd...

J. Biele; S. Ulamec; L. Richter; E. Khrt

2009-01-01T23:59:59.000Z

332

Surface Reactivity and Plasma Energetics of SiH Radicals during Plasma Deposition of Silicon-Based Materials  

Science Journals Connector (OSTI)

The surface reactivity of the SiH radical was measured during plasma deposition of various silicon-based materials using the imaging of radicals interacting with surfaces (IRIS) method. In this technique, spatially resolved laser-induced fluorescence (LIF)...

W. M. M. Kessels; Patrick R. McCurdy; Keri L. Williams; G. R. Barker; Vincent A. Venturo; Ellen R. Fisher

2002-02-09T23:59:59.000Z

333

"New horizons in cryobiology could be explored by nanotechnology, which has revolutionized multiple fields in science. Some of the advances in materials science and  

E-Print Network (OSTI)

Editorial "New horizons in cryobiology could be explored by nanotechnology, which has revolutionized multiple fields in science. Some of the advances in materials science and nanotechnology ... can-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Medicine, Brigham & Women's Hospital, Harvard Medical

Demirci, Utkan

334

Materials Science and Engineering A231 (1997) 170182 Fatigue crack growth resistance in SiC particulate and whisker  

E-Print Network (OSTI)

Materials Science and Engineering A231 (1997) 170­182 Fatigue crack growth resistance in Si resulted in higher crack growth resistance at low growth rates in the particulate reinforced materials in these materials have indicated that many factors may be important in deter- mining the fatigue resistance of SiC/

Ritchie, Robert

335

Evolving research directions in Surface OceanLower Atmosphere (SOLAS) science  

E-Print Network (OSTI)

Evolving research directions in Surface Ocean­Lower Atmosphere (SOLAS) science Cliff S. Law. Understanding the exchange of energy, gases and particles at the ocean­atmosphere interface is critical­Lower Atmosphere Study (SOLAS) coordinates multi-disciplinary ocean­ atmosphere research projects that quantify

336

Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface  

SciTech Connect

The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

Allain, Jean Paul; Taylor, Chase N. [School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, Indiana 47907 (United States)

2012-05-15T23:59:59.000Z

337

Surface Science Reports 64 (2009) 233254 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

of these systems. The role of surfaces in these small-scale systems has led to natural interest in developing purification Energy generation a b s t r a c t Phenomena in microsystems and nanosystems are influenced

338

Solar-wind protons and heavy ions sputtering of lunar surface materials A.F. Barghouty a,  

E-Print Network (OSTI)

Solar-wind protons and heavy ions sputtering of lunar surface materials A.F. Barghouty a, , F Available online 21 December 2010 Keywords: Solar wind sputtering Lunar regolith KREEP soil Potential a c t Lunar surface materials are exposed to $1 keV/amu solar-wind protons and heavy ions on almost

339

Surface Science 415 (1998) 363375 Epitaxial growth of Cu onto Si(111) surfaces at low temperature  

E-Print Network (OSTI)

to 10 and 3 monolayers (ML), respectively. This change is attributed to the silicide formation on the Si(111)-(7?7) surface at 160 K is proposed. The changes in periodicity are due to the silicide rights reserved. Keywords: Copper; Epitaxy; Electron­solid diffraction; Metallic films; Metal

Hasegawa, Shuji

340

Marcus Wallace, Bryan Wiggins, K.W. Hipps Department of Chemistry and Materials Science and Engineering Program  

E-Print Network (OSTI)

Marcus Wallace, Bryan Wiggins, K.W. Hipps Department of Chemistry and Materials Science purified by both solvent extraction and sublimation methods in order to yield a high purity product

Collins, Gary S.

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Berry phase effects on electronic properties Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,  

E-Print Network (OSTI)

Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Ming-Che Chang Department of PhysicsBerry phase effects on electronic properties Di Xiao Materials Science and Technology Division, Oak

Wu, Zhigang

342

DEPARTMENT OF CHEMICAL ENGINEERING & MATERIALS SCIENCE Ph.D EXIT SEMINARS 2012-2013 (through Winter Quarter 2013)  

E-Print Network (OSTI)

DEPARTMENT OF CHEMICAL ENGINEERING & MATERIALS SCIENCE Ph.D EXIT SEMINARS 2012-2013 (through Winter Electrical Characteristics of Grain Boundaries in Oxygen Ion and Proton-Conducting Solid Oxide Electrolytes

Woodall, Jerry M.

343

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

344

Imaging the early material response associated with exit surface damage in fused silica  

SciTech Connect

The processes involved at the onset of damage initiation on the surface of fused silica have been a topic of extensive discussion and thought for more than four decades. Limited experimental results have helped develop models covering specific aspects of the process. In this work we present the results of an experimental study aiming at imaging the material response from the onset of the observation of material modification during exposure to the laser pulse through the time point at which material ejection begins. The system involves damage initiation using a 355 nm pulse, 7.8 ns FWHM in duration and imaging of the affected material volume with spatial resolution on the order of 1 {micro}m using as strobe light a 150 ps laser pulse that is appropriately timed with respect to the pump pulse. The observations reveal that the onset of material modification is associated with regions of increased absorption, i.e., formation of an electronic excitation, leading to a reduction in the probe transmission to only a few percent within a time interval of about 1 ns. This area is subsequently rapidly expanding with a speed of about 1.2 {micro}m/ns and is accompanied by the formation and propagation of radial cracks. These cracks appear to initiate about 2 ns after the start of the expansion of the modified region. The damage sites continue to grow for about 25 ns but the mechanism of expansion after the termination of the laser pulse is via formation and propagation of lateral cracks. During this time, the affected area of the surface appears to expand forming a bulge of about 40 {micro}m in height. The first clear observation of material cluster ejection is noted at about 50 ns delay.

Demos, S G; Raman, R N; Negres, R A

2010-11-05T23:59:59.000Z

345

Applied Surface Science 263 (2012) 712721 Contents lists available at SciVerse ScienceDirect  

E-Print Network (OSTI)

- ties make Pd a very useful element in a wide range of applications such as fuel cell catalysts [14 structures show promise in future applications such as sensors, water purification systems, fuel cell], sensors [15], dechlorination catalysts [16], and hydrogen storage media [17,18]. For surface dependent

Mukhopadhyay, Sharmila M.

346

Applied Surface Science 323 (2014) 7177 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

2 September 2014 Available online 18 September 2014 Keywords: Solid oxide fuel cells Cathode-i (LSCF-6428), is a commonly used perovskite-type material for cathodes in solid oxide fuel cells l e i n f o Article history: Received 29 April 2014 Received in revised form 27 August 2014 Accepted

Lin, Xi

347

Materials Science in Radiation and Dynamics Extremes:MST-8:LANL:Los Alamos  

NLE Websites -- All DOE Office Websites (Extended Search)

in Radiation and Dynamics Extremes (MST-8) in Radiation and Dynamics Extremes (MST-8) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS Group Leader, Anna Zurek Deputy Group Leader Ellen Cerreta Point of Contact Group Office 505-665-4735 He bubbles foming at a Cu twist grain boundary He bubbles forming at a Cu twist grain boundary Evaluating and predicting structure/property relationships Predict structure/property relationships of structural (metals, alloys, actinides, binders, energetic, and specialty) materials from atomistic to continuum length scales; Use computational materials modeling to inform and complement the measurements listed above;

348

J. DISPERSION SCIENCE AND TECHNOLOGY, 19(6&7) 1151-1162 (1998) SURFACE TENSION, STICKINESS AND ENGULFMENT  

E-Print Network (OSTI)

J. DISPERSION SCIENCE AND TECHNOLOGY, 19(6&7) 1151-1162 (1998) SURFACE TENSION, STICKINESS,2] that there were three important factors to consider in the mechanism of phagocytosis; these were surface tension] and Fowkes [10] then linked the Hamaker Constant to the dispersion contribution to surface tension. Van Oss

Schofield, Andrew B.

349

High resolution UHV-AFM surface analysis on polymeric materials: Baltic Amber  

Science Journals Connector (OSTI)

In this paper we present, for the first time, the results from Atomic Force Microscopy (AFM) surface studies from freshly fractured Baltic Amber samples, carried out under ultrahigh vacuum (UHV) conditions from micrometer to nanometer resolution. The micrometric AFM images provide a structural clue to the birefringent behavior occasionally observed with amber samples. Two-dimensional pair-distance distributions of the nanometric AFM images prove the completely amorphous structure of the material. This, together with the detection of individual motifs such as aromatic rings, supports the notion of amber being an amorphous polymeric organic network, consistent with the accompanying X-Ray Photoelectron spectroscopy (XPS) data. No nanocrystalline inclusions could be found. The results also show that it is possible to obtain atomically resolved AFM images from amorphous dielectric surfaces.

E. Barletta; K. Wandelt

2011-01-01T23:59:59.000Z

350

RF Surface Impedance Characterization of Potential New Materials for SRF-based Accelerators  

SciTech Connect

In the development of new superconducting materials for possible use in SRF-based accelerators, it is useful to work with small candidate samples rather than complete resonant cavities. The recently commissioned Jefferson Lab RF Surface Impedance Characterization (SIC) system can presently characterize the central region of 50 mm diameter disk samples of various materials from 2 to 40 K exposed to RF magnetic fields up to 14 mT at 7.4 GHz. We report the recent measurement results of bulk Nb, thin film Nb on Cu and sapphire substrates, Nb{sub 3}Sn sample, and thin film MgB{sub 2} on sapphire substrate provided by colleagues at JLab and Temple University.

Xiao, Binping [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) and College of William and Mary, Williamsburg, VA (United States); Eremeev, Grigory V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Phillips, H. Lawrence [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kelley, Michael J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

2012-09-01T23:59:59.000Z

351

ADVANCES IN APPLIED PLASMA SCIENCE, Vol.9, 2013 ISAPS '13, Istanbul Dynamic Simulation of Materials Modification and Deuterium  

E-Print Network (OSTI)

Hassanein Center for Materials Under eXtreme Environment, School of Nuclear Engineering Purdue University of Materials Modification and Deuterium Retention in Tokamak Fusion Environment Tatyana Sizyuk and Ahmed environment and plasma performance. In this regard, mixing and degradation of materials at the surface layers

Harilal, S. S.

352

W.E. Henry Symposium compendium: The importance of magnetism in physics and material science  

SciTech Connect

This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

Carwell, H.

1997-09-19T23:59:59.000Z

353

Surface Science Prospectives Weakly bound buffer layers: A versatile template for metallic nano-clusters  

E-Print Network (OSTI)

at sub-micron width, millimeter long, were obtained experimentally, with line width determined are often used as convenient model systems for industrial supported catalysts that could be studied under- tal particles supported on high surface area materials, e.g. silica, alumina, titania or carbon, under

Asscher, Micha

354

Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of ?-TiAl intermetallic  

Science Journals Connector (OSTI)

Titanium aluminide intermetallics offer an attractive combination of low density and good oxidation, corrosion and ignition resistance with unique mechanical properties. In this study two series of machining tests are designed. Firstly the powder mixed electrical discharge machining (PMEDM) of ?-TiAl by means of different powders such as aluminum, chrome, silicon carbide, graphite and iron is performed to investigate the output characteristics of surface roughness and topography, material removal rate (MRR), electrochemical corrosion resistance of machined samples and also the machined surfaces are investigated by means of EDS and XRD analyses. Secondly after selection the aluminum powder as the most appropriate kind of powder, the current, pulse on time, powder size and powder concentration are changed in different levels for overall comparison between EDM and PMEDM output characteristics. In the first setting of input machining parameters, aluminum powder improves the surface roughness of TiAl sample about 32% comparing with EDM case and also aluminum particles with the size of 2?m, in the second setting of input parameters lead to 54% enhancement of MRR comparing with EDM case. The electrochemical corrosion results show that, corrosion resistance of the samples which are machined by graphite and chrome powders respectively are about three and two times more than the sample which is machined without powder.

Behzad Jabbaripour; Mohammad Hossein Sadeghi; Mohammad Reza Shabgard; Hossein Faraji

2013-01-01T23:59:59.000Z

355

NERSC Science Gateways  

NLE Websites -- All DOE Office Websites (Extended Search)

QCD, Materials Science, Science Gateways About Science Gateways A science gateway is a web based interface to access HPC computers and storage systems. Gateways allow science...

356

HARWI-II, The New High-Energy Beamline for Materials Science at HASYLAB/DESY  

SciTech Connect

The GKSS Forschungszentrum Geesthacht, Germany, will setup a new high-energy beamline specialized for texture, strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen-Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI-II. The high pressure cell will be run by the GFZ Potsdam, Germany, the high-energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm x 0.5 mm) and a large monochromatic X-ray beam (50 mm x 10 mm) with an energy range of 20 to 250 keV.

Beckmann, Felix; Lippmann, Thomas; Metge, Joachim; Dose, Thomas; Donath, Tilman; Schreyer, Andreas [GKSS Forschungszentrum, Max-Planck-Strasse, 21502 Geesthacht (Germany); Tischer, Markus [HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Liss, Klaus Dieter [Technische Universitaet, Hamburg-Harburg, 21071 Hamburg (Germany)

2004-05-12T23:59:59.000Z

357

Science-Driven Candidate Search for New Scintillator Materials FY 2013 Annual Report  

SciTech Connect

This annual report presents work carried out during Fiscal Year (FY) 2013 at Pacific Northwest National Laboratory (PNNL) under the project entitled Science-Driven Candidate Search for New Scintillator Materials (Project number: PL13-SciDriScintMat-PD05) and led by Dr. Fei Gao. This project is divided into three tasks, namely (1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; (2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and (3) Kinetics and efficiency of scintillation: nonlinearity, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the findings and insights obtained in each of these three tasks are provided in this report. Additionally, papers published this fiscal year or currently in review are included in Appendix together with presentations given this fiscal year.

Gao, Fei; Kerisit, Sebastien N.; Xie, YuLong; Wu, Dangxin; Prange, Micah P.; Van Ginhoven, Renee M.; Campbell, Luke W.; Wang, Zhiguo

2013-10-01T23:59:59.000Z

358

HARWI?II, The New High?Energy Beamline for Materials Science at HASYLAB/DESY  

Science Journals Connector (OSTI)

The GKSS Forschungszentrum Geesthacht Germany will setup a new high?energy beamline specialized for texture strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen?Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI?II. The high pressure cell will be run by the GFZ Potsdam Germany the high?energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm 0.5 mm) and a large monochromatic X?ray beam (50 mm 10 mm) with an energy range of 20 to 250 keV.

Felix Beckmann; Thomas Lippmann; Joachim Metge; Thomas Dose; Tilman Donath; Markus Tischer; Klaus Dieter Liss

2004-01-01T23:59:59.000Z

359

High frequency atmospheric cold plasma treatment system for materials surface processing  

Science Journals Connector (OSTI)

The paper presents a new laboratory-made plasma treatment system. The power source which generates the plasma is based on a modern half-bridge type inverter circuit working at a frequency of 4 MHz and giving an output power of about 200 W. The inverter is fed directly from the mains voltage and features high speed protection circuits for both over voltage and over current protection making the system light and easy to operate. The output of the inverter is connected to the resonant circuit formed by a Tesla coil and the dielectric barrier discharge plasma chamber. The plasma is generated at atmospheric pressure in argon helium or mixtures of helium and small quantities of argon. It is a cold discharge (Tgas plasma generates chemically active species especially O and OH which could be important in various applications such as the treatment and processing of materials surfaces.

Cristian D. Tudoran; Vasile Surducan; Sorin D. Anghel

2012-01-01T23:59:59.000Z

360

Mechanical Behavior of a Ni-based Crystalline and a Zr-based Amorphous Materials Subjected to Surface Severe Plastic Deformation.  

E-Print Network (OSTI)

??A surface-treatment process, surface-severe-plastic deformation (S2PD), is developed and applied on both crystalline and amorphous materials to introduce the plastic deformation in the near-surface layer. (more)

Tian, Jiawan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Molecular environmental science using synchrotron radiation: Chemistry and physics of waste form materials  

E-Print Network (OSTI)

for radiation resistance in these materials. The ratio ofradiation resistance [4] of these same pyrochlore materials

Lindle, Dennis W.; Shuh, David K.

2005-01-01T23:59:59.000Z

362

Requirements for a Minor in Materials Science and Engineering 1. A minor in Materials Science and Engineering can be earned through completion of 20 credits  

E-Print Network (OSTI)

of Fuel Cells and Batteries ENG MS/ME 530 Introduction to Micro and Nanomechanics of Solids ENG MS/ME 555 MEMS Fabrication and Materials ENG MS/ME 534 Materials Technology for Microelectronics CAS PY 451 program. 4. Students must have a declared major on record in order to apply for the Minor in Materials

363

Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study  

SciTech Connect

This (<100 [Angstrom]) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 [times] r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm[sup 2] catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on Pt-on-alumina'' and on alumina-on-Pt'' are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

Boszormenyi, I.

1991-05-01T23:59:59.000Z

364

Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study  

SciTech Connect

This (<100 {Angstrom}) silica-alumina layers were tested as potential model heterogeneous acid catalysts for combined surface science and catalysis studies. Three preparation methods were used: oxidation of r3 {times} r3 R30 Al/Si(111) structure in UHV; deposition on Si(lll) from aqueous solution; and argon ion beam sputter deposition in UHV. The homogeneous thin layers are amorphous, and the chemical environment of surface atoms is similar to that of Si, Al and oxygen atoms on high surface area acid catalysts. Since the ion beam-deposited thin layer of silica-alumina has the same composition as the target zeolite this deposition method is a promising tool to prepare model catalysts using practical catalyst targets. The silica-alumina layers are active in cumene cracking, a typical acid catalyzed reaction. In order to clearly distinguish background reactions and the acid catalyzed reaction at least 20 cm{sup 2} catalyst surface area is needed. Two series of model platinum-alumina catalysts were prepared in a combined UHV -- high pressure reactor cell apparatus by depositing alumina on polycrystalline Pt foil and by vapor depositing Pt on a thin alumina layer on Au. Both model surfaces have been prepared with and without chlorine. AES, CO desorption as well as methyl cyclopentane (MCP) hydrogenolysis studies indicate that the Pt surface area is always higher if a chlorination step is involved. Selectivity patterns in MCP ring opening on ``Pt-on-alumina`` and on ``alumina-on-Pt`` are different; only the former is a linear combination of selective and statistical ring opening. Product distribution, however, changes with coverage and reaction time. The properties of the two model catalyst systems and role of chlorine in MCP hydrogenolysis are also discussed.

Boszormenyi, I.

1991-05-01T23:59:59.000Z

365

Chemistry | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry Nuclear Sciences Engineering Computer Science Earth and Atmospheric Sciences...

366

Science  

NLE Websites -- All DOE Office Websites (Extended Search)

149802 149802 , 1291 (2007); 318 Science et al. L. Ozyuzer, Superconductors Emission of Coherent THz Radiation from www.sciencemag.org (this information is current as of November 29, 2007 ): The following resources related to this article are available online at http://www.sciencemag.org/cgi/content/full/318/5854/1291 version of this article at: including high-resolution figures, can be found in the online Updated information and services, http://www.sciencemag.org/cgi/content/full/318/5854/1291/DC1 can be found at: Supporting Online Material found at: can be related to this article A list of selected additional articles on the Science Web sites http://www.sciencemag.org/cgi/content/full/318/5854/1291#related-content http://www.sciencemag.org/cgi/content/full/318/5854/1291#otherarticles

367

Materials and Design 24 (2003) 6978 0261-3069/03/$ -see front matter 2002 Elsevier Science Ltd. All rights reserved.  

E-Print Network (OSTI)

operate near their limits of thermal cracking and melting erosion resistances during long-burst firing. Due to their high melting temperature (controls melting- erosion resistance), high hotMaterials and Design 24 (2003) 69­78 0261-3069/03/$ - see front matter 2002 Elsevier Science Ltd

Grujicic, Mica

368

Materials Science and Engineering A245 (1998) 293299 The wettability of silicon carbide by AuSi alloys  

E-Print Network (OSTI)

Materials Science and Engineering A245 (1998) 293­299 The wettability of silicon carbide by Au. Keywords: Wettability; Contact angle; Liquid metals; Silicon carbide 1. Introduction The interface properties of silicon carbide­liquid metals (wetting, adhesion, contact interaction) are im- portant

Grigoriev, Alexei

369

Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials Science Subcommittee  

E-Print Network (OSTI)

1 Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials, Columbia University 2 Plasma Science and Fusion Center, MIT December 19, 2011 Summary The proposal for tritium-suppressed D-D fusion and the understanding of the turbulent pinch in magnetically confined plasma

370

JOURNAL OF MATERIALS SCIENCE LETTERS 21, 2002, 251 255 Organic-inorganic sol-gel coating for corrosion protection  

E-Print Network (OSTI)

for corrosion protection of stainless steel T. P. CHOU Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA E-mail: gzcao@u.washington.edu One of the most effective corrosion example. This is the main reason for the durability and corrosion resistance be- havior of this particular

Cao, Guozhong

371

Materials Science and Engineering A 418 (2006) 341356 Microstructural effects of AZ31 magnesium alloy on its  

E-Print Network (OSTI)

Materials Science and Engineering A 418 (2006) 341­356 Microstructural effects of AZ31 magnesium Magnesium alloys exhibit the attractive combination of low densities (1.74 g/cm3 versus 2.7 g/cm3 for Al

Tong, Wei

372

Karen I. Winey is Professor of Materials Science and Engineering at the University of Pennsylvania with a secondary appointment in  

E-Print Network (OSTI)

Karen I. Winey is Professor of Materials Science and Engineering at the University of Pennsylvania with a secondary appointment in Chemical and Biomolecular Engineering. She is also Penn's Director include both polymer nanocomposites and ion-containing polymers. In nanocomposites, she designs

373

Radioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and  

E-Print Network (OSTI)

contamination during transportation. Dispersible radioactive material must be placed in rigid, leak- tight inner be sufficient such that EMSL staff will not encounter radioactive contamination when they open the shippingRadioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located

374

Materials Science and Engineering A 445446 (2007) 669675 Degradation of elastomeric gasket materials in PEM fuel cells  

E-Print Network (OSTI)

to the overall durability of the fuel cell stacks. The degradation of four commercially available gasket as well. © 2006 Elsevier B.V. All rights reserved. Keywords: Gasket material; Fuel cell; Degradation; ATR materials in PEM fuel cells Jinzhu Tana,b,1, Y.J. Chaob,, J.W. Van Zeec, W.K. Leec a College of Mechanical

Van Zee, John W.

375

Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials  

E-Print Network (OSTI)

VOCs emitted by reactions of HVAC filters with ozone usingand Emissions on HVAC Filter Materials Hugo Destaillats andChemistry and Emissions on HVAC Filter Materials Authors:

Destaillats, Hugo

2010-01-01T23:59:59.000Z

376

Imaging System to Measure Kinetics of Material Cluster Ejection During Exit-Surface Damage Initiation and Growth in Fused Silica  

SciTech Connect

Laser-induced damage on the surface of optical components typically is manifested by the formation of microscopic craters that can ultimately degrade the optics performance characteristics. It is believed that the damage process is the result of the material exposure to high temperatures and pressures within a volume on the order of several cubic microns located just below the surface. The response of the material following initial localized energy deposition by the laser pulse, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work we introduce a time-resolved microscope system designed to enable a detailed investigation of the sequence of dynamic events involved during surface damage. To best capture individual aspects of the damage timeline, this system is employed in multiple imaging configurations (such as multi-view image acquisition at a single time point and multi-image acquisition at different time points of the same event) and offers sensitivity to phenomena at very early delay times. The capabilities of this system are demonstrated with preliminary results from the study of exit-surface damage in fused silica. The time-resolved images provide information on the material response immediately following laser energy deposition, the processes later involved during crater formation or growth, the material ejecta kinetics, and overall material motion and transformation. Such results offer insight into the mechanisms governing damage initiation and growth in the optical components of ICF class laser systems.

Raman, R N; Negres, R A; Demos, S G

2009-10-29T23:59:59.000Z

377

Control of magnetic vortex chirality in square ring micromagnets Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 and Materials Science  

E-Print Network (OSTI)

Control of magnetic vortex chirality in square ring micromagnets A. Libála Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 M. Grimsditch Materials Science Division, Argonne National Laboratory

Metlushko, Vitali

378

Study of Interfacial Interactions Using Thing Film Surface Modification: Radiation and Oxidation Effects in Materials  

SciTech Connect

Interfaces play a key role in dictating the long-term stability of materials under the influence of radiation and high temperatures. For example, grain boundaries affect corrosion by way of providing kinetically favorable paths for elemental diffusion, but they can also act as sinks for defects and helium generated during irradiation. Likewise, the retention of high-temperature strength in nanostructured, oxide-dispersion strengthened steels depends strongly on the stoichiometric and physical stability of the (Y, Ti)-oxide particles/matrix interface under radiation and high temperatures. An understanding of these interfacial effects at a fundamental level is important for the development of materials for extreme environments of nuclear reactors. The goal of this project is to develop an understanding stability of interfaces by depositing thin films of materials on substrates followed by ion irradiation of the film-substrate system at elevated temperatures followed by post-irradiation oxidation treatments. Specifically, the research will be performed by depositing thin films of yttrium and titanium (~500 nm) on Fe-12%Cr binary alloy substrate. Y and Ti have been selected as thin-film materials because they form highly stable protective oxides layers. The Fe-12%Cr binary alloy has been selected because it is representative of ferritic steels that are widely used in nuclear systems. The absence of other alloying elements in this binary alloy would allow for a clearer examination of structures and compositions that evolve during high-temperature irradiations and oxidation treatments. The research is divided into four specific tasks: (1) sputter deposition of 500 nm thick films of Y and Ti on Fe-12%Cr alloy substrates, (2) ion irradiation of the film-substrate system with 2MeV protons to a dose of 2 dpa at temperatures of 300C, 500C, and 700C, (3) oxidation of as-deposited and ion-irradiated samples in a controlled oxygen environment at 500C and 700C, (4) multi-scale computational modeling involving first- principle molecular dynamics (FPMD) and coarse-grained dissipative particle dynamics (DPD) approaches to develop theories underlying the evolution and stability of structures and phases. Samples from Tasks 1 to 3 (above) will be rigorously characterized and analyzed using scanning electron microscopy, Auger electron microscopy, x-ray diffraction, Rutherford back scatter spectroscopy, and transmission electron microscopy. Expected outcomes of the experimental work include a quantitative understanding film-substrate interface mixing, evolution of defects and other phases at the interface, interaction of interfaces with defects, and the ability of the Y and Ti films to mitigate irradiation-assisted oxidation. The aforementioned experimental work will be closely coupled with multi-scale molecular dynamics (MD) modeling to understand the reactions at the surface, the transport of oxidant through the thin film, and the stabilities of the deposited thin films under radiation and oxidation. Simulations of materials property changes under conditions of radiation and oxidation require multiple size domains and a different simulation scheme for each of these domains. This will be achieved by coupling the FPMD and coarse-grained kinetic Monte Carlo (KMC). This will enable the comparison of the results of each simulation approach with the experimental results.

Sridharan, Kumar; Zhang, Jinsuo

2014-01-09T23:59:59.000Z

379

Science-Driven Candidate Search for New Scintillator Materials: FY 2014 Annual Report  

SciTech Connect

This annual reports presents work carried out during Fiscal Year (FY) 2014 at Pacific Northwest National Laboratory (PNNL) under the project entitled Science-Driven Candidate Search for New Scintillator Materials (Project number: PL13-SciDriScintMat-PD05) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project is divided into three tasks: 1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; 2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and 3) Kinetics and efficiency of scintillation: nonproportionality, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the results obtained in each of the three tasks is provided in this Annual Report. Furthermore, peer-reviewed articles published this FY or currently under review and presentations given this FY are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Wu, Dangxin; Prange, Micah P.

2014-10-01T23:59:59.000Z

380

Progress towards materials science above 1000 GPa (10 Mbar) on the NIF laser  

SciTech Connect

Solid state dynamics experiments at extreme pressures, P > 1000 GPa (10 Mbar), and ultrahigh strain rates (1.e6-1.e8 1/s) are being developed for the National Ignition Facility (NIF) laser. These experiments will open up exploration of new regimes of materials science at an order of magnitude higher pressures than have been possible to date. Such extreme, solid state conditions can be accessed with a ramped pressure drive. The experimental, computational, and theoretical techniques are being developed and tested on the Omega laser. Velocity interferometer measurements (VISAR) establish the high pressure conditions generated by the ramped drive. Constitutive models for solid state strength under these conditions are tested by comparing simulations with experiments measuring perturbation growth from the Rayleigh-Taylor instability in solid state samples of vanadium. Radiography techniques using synchronized bursts of x-rays have been developed to diagnose this perturbation growth. Experiments on Omega demonstrating these techniques at peak pressures of {approx}1 Mbar will be discussed. The time resolved observation of foil cracking and void formation show the need for tamped samples and a planar drive.

Remington, B A; Park, H; Prisbrey, S T; Pollaine, S M; Cavallo, R M; Rudd, R E; Lorenz, K T; Becker, R; Bernier, J; Barton, N; Arsenlis, T; Glendinning, S G; Hamza, A; Swift, D; Jankowski, A; Meyers, M A

2009-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SCIENCE CHINA Technological Sciences  

E-Print Network (OSTI)

SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; 2 Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China; 3 School of Material Science and Engineering, Georgia Institute

Wang, Zhong L.

382

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

V W X Y Z V W X Y Z Vaandrager, Frits (Frits Vaandrager) - Institute for Computing and Information Sciences, Radboud Universiteit Vadhan, Salil (Salil Vadhan) - Electrical Engineering and Computer Science, School of Engineering and Applied Sciences, Harvard University Vahdat, Amin (Amin Vahdat) - Department of Computer Science and Engineering, University of California at San Diego Vahid, Frank (Frank Vahid) - Department of Computer Science and Engineering, University of California at Riverside Vaidyanathan, Ramachandran "Vaidy" (Ramachandran "Vaidy" Vaidyanathan) - Department of Electrical and Computer Engineering, Louisiana State University Vajnovszki, Vincent (Vincent Vajnovszki) - Laboratoire Electronique, Informatique et Image, Université de Bourgogne

383

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Y Z Y Z Xi, Hongwei (Hongwei Xi) - Department of Computer Science, Boston University Xia, Ge "Frank" (Ge "Frank" Xia) - Department of Computer Science, Lafayette College Xia, Xiang-Gen (Xiang-Gen Xia) - Department of Electrical and Computer Engineering, University of Delaware Xiang, Yang (Yang Xiang) - Department of Computing and Information Science, University of Guelph Xiao, Bin (Bin Xiao) - Department of Computing, Hong Kong Polytechnic University Xiao, Jing (Jing Xiao) - Department of Computer Science, University of North Carolina at Charlotte Xiao, Li (Li Xiao) - Department of Computer Science and Engineering, Michigan State University Xie, Fei (Fei Xie) - Department of Computer Science, Portland State University Xie, Geoffrey (Geoffrey Xie) - Department of Computer Science, Naval

384

A Study to Verify the Material Surface Concept of Water Table by Examining Analytical and Numerical Models.  

E-Print Network (OSTI)

. This term defines the water table as having two simultaneous properties: 1) the pressure along the surface is atmospheric pressure, and 2) the water table is fixed to the material, i.e., a set of water particles. This article makes an attempt to explain...

Dadi, Sireesh Kumar

2011-10-21T23:59:59.000Z

385

JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 9 (1998) 309 --311 Critical oxygen content in porous anodes of solid  

E-Print Network (OSTI)

in porous anodes of solid tantalum capacitors YU. POZDEEV-FREEMAN Vishay Israel Electronics Company anodes of solid tantalum capacitors and the current-voltage (I9V) characteristics of Ta2O5 amorphous layers formed on the anode surface have been performed. A strong correlation between a sharp increase

Palevski, Alexander

386

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Gabbard, Joseph L. (Joseph L. Gabbard) - Department of Computer Science, Virginia Tech Gabor, Adriana (Adriana Gabor) - Wiskunde en Informatica, Technische Universiteit Eindhoven Gaborit, Philippe (Philippe Gaborit) - Département Maths Informatique, Université de Limoges Gaborski, Roger S. (Roger S. Gaborski) - Department of Computer Science, Rochester Institute of Technology Gabow, Harold (Harold Gabow) - Department of Computer Science, University of Colorado at Boulder Gabriel, Edgar (Edgar Gabriel) - Department of Computer Science, University of Houston Gacek, Andrew (Andrew Gacek) - Department of Computer Science and Engineering, University of Minnesota Gacs, Peter (Peter Gacs) - Department of Computer Science, Boston

387

Materials Under Extremes | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Science & Discovery | Advanced Materials | Research Areas | Materials Under Extremes SHARE Materials Under Extremes Materials that can withstand extreme conditions such...

388

Ultrafast Materials and Chemical Sciences FOA | U.S. DOE Office...  

Office of Science (SC) Website

manipulation of highly correlated electron systems in condensed matter Free electron laser science to investigate time-resolved phenomena correlated electron excitations and...

389

Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office...  

Office of Science (SC) Website

(SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

390

Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science...  

Office of Science (SC) Website

(SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

391

LALP-07-018 Spring 2007 he MST-6 Materials Surface Science Investigations  

E-Print Network (OSTI)

Technology Division Facility Focus Collection of emitted photoelectrons along principal directions of an a-uranium(001 controlled water exposure indi- cates the clean conversion of Li2 O to LiOH and provides re- action kinetics

392

Materials Science and Engineering -Master Thesis -July 2011 Analysis and optimization of thin walled  

E-Print Network (OSTI)

. Materials and processes Work done Compounding realized either using pre-preg technology or Resin Infusion

Dalang, Robert C.

393

Department of Materials Science and Engineering University of Maryland, College Park, MD  

E-Print Network (OSTI)

. Scattering of Phonons, Materials: cage compounds and rattles, The Glass Limit E. Applications: Aerogels

Rubloff, Gary W.

394

Journal of Hazardous Materials 267 (2014) 6270 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

of Florida, Gainesville, FL 32611, USA b State Key Laboratory of Pollution Control and Resource Reuse, School,a, , Julia Gressa , Willie Harrisa , Yuncong Lic a Department of Soil and Water Science, University of the Environment, Nanjing University, Jiangsu 210046, China c Soil and Water Science Department, Tropical Research

Ma, Lena

395

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

C D E F G H I J K L M N O P Q R S C D E F G H I J K L M N O P Q R S T U V W X Y Z Babai, László (László Babai) - Departments of Computer Science & Mathematics, University of Chicago Babaoglu, Ozalp (Ozalp Babaoglu) - Dipartimento di Informatica: Scienza e Ingegneria, Università di Bologna Bacardit, Jaume (Jaume Bacardit) - School of Computer Science, University of Nottingham Bacchus, Fahiem (Fahiem Bacchus) - Department of Computer Science, University of Toronto Bach, Francis (Francis Bach) - Département d'Informatique, École Normale Supérieure Bachmat, Eitan (Eitan Bachmat) - Department of Computer Science, Ben-Gurion University Back, Godmar (Godmar Back) - Department of Computer Science, Virginia Tech Back, Jonathan (Jonathan Back) - UCL Interaction Centre, University

396

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

X Y Z X Y Z Wachsmut, Ipke (Ipke Wachsmut) - Technischen Fakultät, Universität Bielefeld Wactlar, Howard D. (Howard D. Wactlar) - School of Computer Science, Carnegie Mellon University Wadler, Philip (Philip Wadler) - School of Informatics, University of Edinburgh Waern, Annika (Annika Waern) - Human-Computer Interaction and Language Engineering Laboratory, Swedish Institute of Computer Science Wagner, Alan (Alan Wagner) - Department of Computer Science, University of British Columbia Wagner, David (David Wagner) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley Wagner, Flávio Rech (Flávio Rech Wagner) - Instituto de Informática, Universidade Federal do Rio Grande do Sul Wagner, Paul J. (Paul J. Wagner) - Department of Computer Science,

397

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Computer Technologies and Information Sciences Computer Technologies and Information Sciences Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aalst, W.M.P.van der (W.M.P.van der Aalst) - Wiskunde en Informatica, Technische Universiteit Eindhoven Aamodt, Agnar (Agnar Aamodt) - Department of Computer and Information Science, Norwegian University of Science and Technology Aamodt, Tor (Tor Aamodt) - Department of Electrical and Computer Engineering, University of British Columbia Aardal, Karen (Karen Aardal) - Centrum voor Wiskunde en Informatica Aaronson, Scott (Scott Aaronson) - Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT) Aazhang, Behnaam (Behnaam Aazhang) - Department of Electrical and

398

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

K L M N O P Q R S K L M N O P Q R S T U V W X Y Z Jaakkola, Tommi S. (Tommi S. Jaakkola) - Computer Science and Artificial Intelligence Laboratory & Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT) Jackson, Daniel (Daniel Jackson) - Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT) Jackson, Jeffrey (Jeffrey Jackson) - Department of Mathematics and Computer Science, Duquesne University Jackson, Paul (Paul Jackson) - School of Informatics, University of Edinburgh Jacob, Bruce (Bruce Jacob) - Institute for Advanced Computer Studies & Department of Electrical and Computer Engineering, University of Maryland at College Park Jacob, Christian (Christian Jacob) - Department of Computer Science,

399

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

F G H I J K L M N O P Q R S F G H I J K L M N O P Q R S T U V W X Y Z Eager, Derek (Derek Eager) - Department of Computer Science, University of Saskatchewan Easterbrook, Steve (Steve Easterbrook) - Department of Computer Science, University of Toronto Eberle, William (William Eberle) - Department of Computer Science, Tennessee Technological University Eberlein, Armin (Armin Eberlein) - Department of Electrical and Computer Engineering, University of Calgary Ebert, David S. (David S. Ebert) - School of Electrical and Computer Engineering, Purdue University Ebert, Todd (Todd Ebert) - Department of Computer Engineering and Computer Science, California State University, Long Beach Ebnenasir, Ali (Ali Ebnenasir) - Department of Computer Science, Michigan Technological University

400

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

J K L M N O P Q R S J K L M N O P Q R S T U V W X Y Z Iacono, John (John Iacono) - Department of Computer Science and Engineering, Polytechnic Institute of New York University Iamnitchi, Adriana (Adriana Iamnitchi) - Computer Science and Engineering, University of South Florida Iannone, Luigi (Luigi Iannone) - Institut Deutsche Telekom Laboratories, Technische Universität Berlin Ìayr, Richard (Richard Ìayr) - School of Informatics, University of Edinburgh Ibarra, Louis (Louis Ibarra) - School of Computer Science, Telecommunications and Information Systems, DePaul University Ichimura, Naoyuki (Naoyuki Ichimura) - Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Ide, Nancy (Nancy Ide) - Department of Computer Science, Vassar

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z Ma, Bin (Bin Ma) - School of Computer Science, University of Waterloo Ma, Jinwen (Jinwen Ma) - School of Mathematical Sciences, Peking University Ma, Kwan-Liu (Kwan-Liu Ma) - Institute for Ultra-Scale Visualization & Department of Computer Science, University of California, Davis Ma, Qing (Qing Ma) - Department of Applied Mathematics and Informatics, Ryukoku University Ma, Xiaosong (Xiaosong Ma) - Center for High Performance Simulation & Department of Computer Science, North Carolina State University Ma, Yi (Yi Ma) - Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Maass, Wolfgang (Wolfgang Maass) - Institute for Theoretical Computer Science, Technische Universität Graz

402

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

P Q R S P Q R S T U V W X Y Z Ó Conaire, Ciarán (Ciarán Ó Conaire) - Centre for Digital Video Processing, University College Dublin O'Boyle, Michael (Michael O'Boyle) - School of Informatics, University of Edinburgh O'Brien, James F. (James F. O'Brien) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley O'Connell, Tom (Tom O'Connell) - Department of Mathematics and Computer Science, Skidmore College O'Connor, Rory (Rory O'Connor) - School of Computing, Dublin City University O'Donnell, John (John O'Donnell) - Department of Computing Science, University of Glasgow O'Donnell, Michael J. (Michael J. O'Donnell) - Department of Computer Science, University of Chicago O'Donnell, Ryan (Ryan O'Donnell) - School of Computer Science,

403

Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials  

SciTech Connect

Chemical reactions involving ozone of outdoor origin and indoor materials are known to be significant sources of formaldehyde and other irritant gas-phase oxidation products in the indoor environment. HVAC filters are exposed to particularly high ozone concentrations--close to outdoor levels. In this study, we investigated chemical processes taking place on the surface of filters that included fiberglass, polyester, cotton/polyester blend and synthetic (e.g., polyolefin) filter media. Ozone reactions were studied on unused filter media, and on filters that were deployed for 3 months in two different locations: at the Lawrence Berkeley National Laboratory and at the Port of Oakland. Specimens from each filter were exposed to ozone under controlled conditions in a laboratory flow tube at a constant flow of dry or humidified air (50percent relative humidity). Ozone was generated with a UV source upstream of the flow tube, and monitored using a photometric detector. Ozone breakthrough curves were recorded for each sample exposed to ~;;150 ppbv O3 for periods of ~;;1000 min, from which we estimated their uptake rate. Most experiments were performed at 1.3 L/min (corresponding to a face velocity of 0.013 m/s), except for a few tests performed at a higher airflow rate, to obtain a face velocity of 0.093 m/s, slightly closer to HVAC operation conditions. Formaldehyde and acetaldehyde, two oxidation byproducts, were collected downstream of the filter and quantified. Emissions of these volatile aldehydes were consistently higher under humidified air than under dry conditions, at which levels were near the limit of detection. Our results confirm that there are significant reactions of ozone as air containing ozone flows through HVAC filters, particularly when the filters are loaded with particles and the air is humidified. The amount of ozone reacted was not clearly related to the types of filter media, e.g., fiberglass versus synthetic. Specific fiberglass filters that were coated with an impaction oil showed significantly higher formaldehyde emissions than most other samples. Those emissions were magnified in the presence of particles (i.e., in used filters), and were observed even in the absence of ozone, which suggests that hydrolysis of filter binder or tackifier additives may be the reason for those high emissions. Mass balance calculations indicate that the emission rates of formaldehyde and acetaldehyde from the filters are generally not large enough to substantially increase indoor formaldehyde or acetaldehyde concentrations.

Destaillats, Hugo; Fisk, William J.

2010-02-01T23:59:59.000Z

404

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network (OSTI)

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

405

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sabelfeld, Andrei (Andrei Sabelfeld) - Department of Computer Science and Engineering, Chalmers University of Technology Saber, Eli (Eli Saber) - Department of Electrical Engineering, Rochester Institute of Technology Saberi, Amin (Amin Saberi) - Institute for Computational and Mathematical Engineering, Stanford University Sabharwal, Ashutosh (Ashutosh Sabharwal) - Department of Electrical and Computer Engineering, Rice University Sabry, Amr (Amr Sabry) - Computer Science Department, Indiana University Sabuncu, Mert Rory (Mert Rory Sabuncu) - NMR Athinoula A. Martinos Center, Massachusetts General Hospital, Harvard University Sadayappan, P. "Saday" (P. "Saday" Sadayappan) - Department of Computer Science and Engineering, Ohio State University

406

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabaey, Jan M. (Jan M. Rabaey) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley Rabbah, Rodric (Rodric Rabbah) - Dynamic Optimization Group, IBM T.J. Watson Research Center Rabbat, Michael (Michael Rabbat) - Department of Electrical and Computer Engineering, McGill University Rabhi, Fethi A. (Fethi A. Rabhi) - School of Information Systems, Technology and Management, University of New South Wales Rabie, Tamer (Tamer Rabie) - College of Information Technology, United Arab Emirates University Rabinovich, Alexander (Alexander Rabinovich) - School of Computer Science, Tel Aviv University Rabinovich, Michael "Misha" (Michael "Misha" Rabinovich) - Department of Electrical Engineering and Computer Sciences, Case Western

407

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Z Z Yaakobi, Eitan (Eitan Yaakobi) - Department of Electrical Engineering, California Institute of Technology Yacci, Michael (Michael Yacci) - Department of Information Technology, Rochester Institute of Technology Yacef, Kalina (Kalina Yacef) - School of Information Technologies, University of Sydney Yacoob, Yaser (Yaser Yacoob) - Institute for Advanced Computer Studies, University of Maryland at College Park Yakovenko, Sergei (Sergei Yakovenko) - Department of Mathematics, Weizmann Institute of Science Yamamoto, Hitoshi (Hitoshi Yamamoto) - University of Electro-Communications Yamamoto, Mikio (Mikio Yamamoto) - Department of Computer Science, University of Tsukuba Yamashita, Yoichi (Yoichi Yamashita) - Department of Computer Science, Ritsumeikan University

408

Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry  

SciTech Connect

By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mie's theory, and the effect of net surface charge on the phase-diameter relationship and the phase ratio is studied. It is found that the phase-diameter relationship and the relationship between the phase ratio and the refractive index of charged particles could be significantly different from those of uncharged particles, which would lead to errors in particle sizing and the measurement of refractive indices. A method of recognizing charged particles and determining the value of their surface conductivity, which is related to net surface charge, is proposed by utilizing the effect of net surface charge on the measurement of refractive indices using PDA.

Zhou Jun; Xie Li

2011-01-20T23:59:59.000Z

409

LOW VELOCITY SURFACE FRACTURE PATTERNS IN BRITTLE MATERIAL: A NEWLY EVIDENCED MECHANICAL INSTABILITY  

E-Print Network (OSTI)

is well known to occur in brittle fracture and significant advances have recently been obtained Systems & Fracure, F-91191 Gif sur Yvette, France 2 Graduate Aerospace Laboratories (GALCIT), California Science Forum 706-709 (2012) 920-924" DOI : 10.4028/www.scientific.net/MSF.706-709.920 #12;Experimental

Paris-Sud XI, Université de

410

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

G H I J K L M N O P Q R S G H I J K L M N O P Q R S T U V W X Y Z Faber, Ted (Ted Faber) - Information Sciences Institute, University of Southern California Fábián, Csaba I. (Csaba I. Fábián) - Institute of Mathematics, Eötvös Loránd University Fabrikant, Alex (Alex Fabrikant) - Department of Computer Science, Princeton University Fabrikant, Sara Irina (Sara Irina Fabrikant) - Department of Geography, Universität Zürich Faella, Marco (Marco Faella) - Computer Science Division, Dipartimento di Scienze Fisiche, Università degli Studi di Napoli "Federico II" Fagg, Andrew H. (Andrew H. Fagg) - School of Computer Science, University of Oklahoma Fagin, Ron (Ron Fagin) - IBM Almaden Research Center Fahlman, Scott E. (Scott E. Fahlman) - Language Technologies

411

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Z Z Zabih, Ramin (Ramin Zabih) - Department of Computer Science, Cornell University Zabulis, Xenophon (Xenophon Zabulis) - Institute of Computer Science, Foundation of Research and Technology, Hellas Zacchiroli, Stefano (Stefano Zacchiroli) - Laboratoire Preuves, Programmes et Systèmes, Université Paris 7 - Denis Diderot Zachmann, Gabriel (Gabriel Zachmann) - Institut für Informatik, Technische Universität Clausthal Zadok, Erez (Erez Zadok) - Department of Computer Science, SUNY at Stony Brook Zaffalon, Marco (Marco Zaffalon) - Istituto Dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA) Zahorian, Stephen A. (Stephen A. Zahorian) - Department of Electrical and Computer Engineering, State University of New York at Binghamton Zahorjan, John (John Zahorjan) - Department of Computer Science and

412

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Pace, Gordon J. (Gordon J. Pace) - Department of Computer Science, University of Malta Pach, János (János Pach) - Department of Mathematics, Courant Institute of Mathematical Sciences, New York University Padawitz, Peter (Peter Padawitz) - Fachbereich Informatik, Universität Dortmund Padgham, Lin (Lin Padgham) - School of Computer Science and Information Technology, RMIT University Padmanabhan, Venkata N. (Venkata N. Padmanabhan) - Microsoft Research Padó, Sebastian (Sebastian Padó) - Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart Padua, David (David Padua) - Siebel Center for Computer Science, University of Illinois at Urbana-Champaign Paech, Barbara (Barbara Paech) - Interdisziplinäres Zentrum für

413

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

V W X Y Z V W X Y Z Uçar, Bora (Bora Uçar) - Laboratoire de l'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon Uchiyama, Hiroyuki (Hiroyuki Uchiyama) - Department of Information and Computer Science, Kagoshima University Ucoluk, Gokturk (Gokturk Ucoluk) - Department of Computer Engineering, Middle East Technical University Ueda, Kazunori (Kazunori Ueda) - Department of Computer Science and Engineering, Waseda University Uhl, Andreas (Andreas Uhl) - Department of Computer Sciences, Universität Salzburg Uhlig, Steve (Steve Uhlig) - Institut Deutsche Telekom Laboratories, Technische Universität Berlin Uht, Augustus K. (Augustus K. Uht) - Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island Ulidowski, Irek (Irek Ulidowski) - Department of Computer Science,

414

Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials  

SciTech Connect

We previously reported a novel photoluminescence (PL) with a distribution of fast decay times in fused silica surface flaws that is correlated with damage propensity by high fluence lasers. The source of the PL was not attributable to any known silica point defect. Due to its broad spectral and temporal features, we here give this PL the name quasi-continuum PL (QC-PL) and describe the features of QC-PL in more detail. The primary features of QC-PL include broad excitation and emission spectra, a broad distribution of PL lifetimes from 20 ps to 5?ns, continuous shifts in PL lifetime distributions with respect to emission wavelength, and a propensity to photo-bleach and photo-brighten. We found similar PL characteristics in surface flaws of other optical materials, including CaF{sub 2}, DKDP, and quartz. Based on the commonality of the features in different optical materials and the proximity of QC-PL to surfaces, we suggest that these properties arise from interactions associated with high densities of defects, rather than a distribution over a large number of types of defects and is likely found in a wide variety of structures from nano-scale composites to bulk structures as well as in both broad and narrow band materials from dielectrics to semiconductors.

Laurence, Ted A., E-mail: laurence2@llnl.gov; Bude, Jeff D.; Shen, Nan; Steele, William A.; Ly, Sonny [Physical and Life Sciences and National Ignition Facility, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

2014-02-28T23:59:59.000Z

415

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

SciTech Connect

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

416

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

SciTech Connect

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

417

Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry  

Science Journals Connector (OSTI)

By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mies...

Zhou, Jun; Xie, Li

2011-01-01T23:59:59.000Z

418

Effects of Chemical Additives of CMP Slurry on Surface Mechanical Characteristics and Material Removal of Copper  

Science Journals Connector (OSTI)

Copper has taken the place of aluminum as the interconnect material in multilevel structures of integrated circuits (ICs) as a result of its higher resistance to electromigration and lower resistivity [13]. Diff...

Chenglong Liao; Dan Guo; Shizhu Wen; Jianbin Luo

2012-02-01T23:59:59.000Z

419

SURFACE RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRIC LAYERED CATHODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

CATHODE MATERIALS FOR LITHIUM-ION BATTERIES Feng Lin, 1*As shown in Figure 2, in lithium-metal half-cells, capacitypredominantly occurs along the lithium diffusion channels,

Lin, Feng

2014-01-01T23:59:59.000Z

420

Photomechanical Surface Patterning in Azo-Polymer Materials Kevin G. Yager* and Christopher J. Barrett*  

E-Print Network (OSTI)

of patterning in azo-polymer thin films, irradiated at various temperatures, are compared to recent neutron reflectometry measurements of photomechanical effects in the same material. The magnitude and sign

Barrett, Christopher

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method of bonding functional surface materials to substrates and applications in microtechnology and antifouling  

DOE Patents (OSTI)

A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer, preferably, (N,N'-diethylamine)dithiocarbamoylpropyl-(trimethoxy)silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N,N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

Feng, Xiangdong (West Richland, WA); Liu, Jun (West Richland, WA); Liang, Liang (Richland, WA)

1999-01-01T23:59:59.000Z

422

Method of bonding functional surface materials to substrates and applications in microtechnology and anti-fouling  

DOE Patents (OSTI)

A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer preferably, (N,N'-diethylamine) dithiocarbamoylpropyl-(trimethoxy) silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N, N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

Feng, Xiangdong (West Richland, WA); Liu, Jun (West Richland, WA); Liang, Liang (Richland, WA)

2001-01-01T23:59:59.000Z

423

Versatile piezoelectric pulsed molecular beam source for gaseous compounds and organic molecules with femtomole accuracy for UHV and surface science applications  

SciTech Connect

This note describes the construction of a piezoelectric pulsed molecular beam source based upon a design presented in an earlier work [D. Proch and T. Trickl, Rev. Sci. Instrum. 60, 713 (1988)]. The design features significant modifications that permit the determination of the number of molecules in a beam pulse with an accuracy of 1x10{sup 11} molecules per pulse. The 21 cm long plunger-nozzle setup allows the molecules to be brought to any point of the UHV chamber with very high intensity. Furthermore, besides typical gaseous compounds, also smaller organic molecules with a vapor pressure higher than 0.1 mbar at room temperature may serve as feed material. This makes the new design suitable for various applications in chemical and surface science studies.

Schiesser, Alexander; Schaefer, Rolf [Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technische Universitaet Darmstadt, Petersenstrasse 20, 64287 Darmstadt (Germany)

2009-08-15T23:59:59.000Z

424

Polymers and Coatings:Materials Science & Technology, MST-7: Los Alamos  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymers and Coatings (MST-7) Polymers and Coatings (MST-7) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS Polymers and Coatings Group Leader, Ross E. Muenchausen Deputy Group Leader Dominic S. Peterson Point of Contact, Group Office 505-667-6887 foam voids Foam Void Image Using X-ray Micro Tomography About MST Polymers and Coatings (MST-7) Our mission is to provide World-class design, fabrication, assembly, characterization, and field support for the wide range of targets in support of national science programs that include energy, nuclear weapons, conventional defense, industrial collaborations, nonproliferation, and the environment; Outstanding polymer science and engineering solutions in support of

425

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

U V W X Y Z U V W X Y Z Ta-Shma, Amnon (Amnon Ta-Shma) - School of Computer Science, Tel Aviv University Tabatabaee, Vahid (Vahid Tabatabaee) - Department of Computer Science, University of Maryland at College Park Tacchella, Armando (Armando Tacchella) - Dipartimento di Informatica Sistemistica e Telematica, Università degli Studi di Genova Tachi, Susumu (Susumu Tachi) - Graduate School of Media Design, Keio University Tadepalli, Prasad (Prasad Tadepalli) - School of Electrical Engineering and Computer Science, Oregon State University Tadmor, Eitan (Eitan Tadmor) - Center for Scientific Computation and Mathematical Modeling & Department of Mathematics, University of Maryland at College Park Taft, Nina -Technicolor Palo Alt(aft, Nina -Technicolor Palo Al)to

426

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

M N O P Q R S M N O P Q R S T U V W X Y Z L'Ecuyer, Pierre (Pierre L'Ecuyer) - Département d'Informatique et recherche opérationnelle, Université de Montréal la Cour-Harbo, Anders (Anders la Cour-Harbo) - Department of Control Engineering, Aalborg University La Porta, Tom (Tom La Porta) - Networking and Security Research Center & Department of Computer Science and Engineering, Pennsylvania State University La, Richard J. (Richard J. La) - Institute for Systems Research & Department of Electrical and Computer Engineering, University of Maryland at College Park Laadan, Oren (Oren Laadan) - Department of Computer Science, Columbia University Labahn, George (George Labahn) - School of Computer Science, University of Waterloo LaBean, Thomas H. (Thomas H. LaBean) - Department of Computer

427

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

O P Q R S O P Q R S T U V W X Y Z Nachman, Iftach (Iftach Nachman) - Department of Molecular Genetics and Biochemistry, Tel Aviv University Nack, Frank (Frank Nack) - Research Institute Computer Science, Universiteit van Amsterdam Nadal, Jean-Pierre (Jean-Pierre Nadal) - Laboratoire de Physique Statistique, Département de Physique, École Normale Supérieure Nadathur, Gopalan (Gopalan Nadathur) - Department of Computer Science and Engineering, University of Minnesota Nadeau, David R. (David R. Nadeau) - San Diego Supercomputer Center, University of California at San Diego Nagpal, Radhika (Radhika Nagpal) - School of Engineering and Applied Sciences, Harvard University Nagurney, Anna (Anna Nagurney) - Isenberg School of Management, University of Massachusetts at Amherst

428

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Ha, Phuong H. (Phuong H. Ha) - Department of Computer Science, Universitetet i Tromsø Ha, Soonhoi (Soonhoi Ha) - School of Computer Science and Engineering, Seoul National University Haarslev, Volker (Volker Haarslev) - Department of Computer Science and Software Engineering, Concordia University Habash, Nizar (Nizar Habash) - Center for Computational Learning Systems, Columbia University Habel, Annegret (Annegret Habel) - Department für Informatik, Carl von Ossietzky Universität Oldenburg Habra, Naji (Naji Habra) - Faculté d'informatique, Facultés Universitaires Notre-Dame de la Paix Habrard, Amaury (Amaury Habrard) - Centre de Mathématiques et Informatique, Université de Provence Hachenberger, Peter (Peter Hachenberger) - Wiskunde en Informatica,

429

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

L M N O P Q R S L M N O P Q R S T U V W X Y Z Kaâniche, Mohamed (Mohamed Kaâniche) - Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS Kaasbøll, Jens (Jens Kaasbøll) - Institutt for Informatikk, Universitetet i Oslo Kabal, Peter (Peter Kabal) - Department of Electrical and Computer Engineering, McGill University Kaban, Ata (Ata Kaban) - School of Computer Science, University of Birmingham Kabanets, Valentine (Valentine Kabanets) - School of Computing Science, Simon Fraser University Kabanza, Froduald (Froduald Kabanza) - Département d'informatique, Université de Sherbrooke Kabara, Joseph (Joseph Kabara) - School of Information Sciences, University of Pittsburgh Kachroo, Pushkin (Pushkin Kachroo) - Department of Electrical and Computer Engineering, University of Nevada at Las Vegas

430

Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable  

E-Print Network (OSTI)

The Photovoltaic (PV) industry has aggressive goals to decrease $/kWh and lower the overall cost of ownership for Sustainable Energy: Emphasis on Photovoltaic Materials for Module Assembly and Installation with Ann Norris properties that make them excellent candidates for photovoltaic module encapsulants and other materials

Crawford, T. Daniel

431

Network Requirements Workshop - Documents and Background Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Requirements Reviews Network Requirements Reviews Documents and Background Materials Science Engagement Move your data Programs & Workshops Science...

432

Journal of Hazardous Materials 264 (2014) 286292 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

,a, , Xiaoling Donga , Willie G. Harrisa , J.C. Bonzongoc , Fengxiang Hand a Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA b State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China c Department

Ma, Lena

433

Journal of Hazardous Materials 279 (2014) 485492 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

of the Environment, Nanjing University, Jiangsu 210046, China b Soil and Water Science Department, University As was monitored during remediation by Pteris vittata. · Pteris vittata removed 46­66% total As from soils over 7 in enhancing As uptake by P. vittata. To facilitate acquisition of P from PR, P. vittata produced larger root

Ma, Lena

434

Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems  

DOE Patents (OSTI)

The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.

Sugama, Toshifumi.

1990-05-22T23:59:59.000Z

435

Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems  

DOE Patents (OSTI)

The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

Sugama, Toshifumi (Mastic Beach, NY)

1990-01-01T23:59:59.000Z

436

The Role of Material Porosity on Ozone Uptake for Metakaolin-Concrete Surfaces  

E-Print Network (OSTI)

to a diminished environmental impact, clay may cause increased removal of ozone, an important indoor pollutant velocity, Heterogeneous Chemistry, Construction Materials 1 Introduction Metakaolin-cement systems hold ozone uptake. Cement is an essential component in the building industry used in formulating concrete

Siegel, Jeffrey

437

Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Research Groups in the Materials Science Division Condensed Matter Theory Carries out theoretical work on superconductivity, electronic structure and magnetism. Emerging Materials Emphasizes an integrated materials synthesis and science program that focuses on correlated electron transition metal oxides, chalcogenides with enhanced thermoelectric performance, and novel superconductors, including pnictides and cuprates. Energy Conversion and Storage The energy conversion and storage group focuses on charge-transfer processes, as well as the chemical environment in the vicinity of electrode surfaces. Magnetic Films Research to develop, characterize and investigate the properties of magnetic thin films and superlattices. Molecular Materials Synthesis and characterization of molecular materials that have novel

438

Surface Science Letters Nature of the excited states of the rutile TiO2(110) surface  

E-Print Network (OSTI)

The nature of the electronically excited states on titanium dioxide surface is important for under- standing to the band gap in titanium dioxide that slows down recombina- tion of the electron­hole pair produced upon with adsorbed water molecule. The calculated adsorption energies and geometries are compared with available

Truong, Thanh N.

439

Journal of Materials Science, 2009. 44(6): p. 1485-1493. Compressive and Ultrasonic Properties of Polyester/Fly Ash Composites  

E-Print Network (OSTI)

1485 Journal of Materials Science, 2009. 44(6): p. 1485-1493. Compressive and Ultrasonic Properties material. Cenospheres are a waste by-product of coal combustion and, as such, are available at very low with liquid polyester resin and subsequently curing the resin. This process resulted in a functionally graded

Gupta, Nikhil

440

Tougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science |  

E-Print Network (OSTI)

and satellites. To create the new fiber, researchers began with carbon nanotubes--cylindrical-shaped carbonTougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science | Nanotechnology | Engineering | Material

Espinosa, Horacio D.

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Department of Chemical Engineering and Materials Science Michigan State University  

E-Print Network (OSTI)

environmental impacts and the highest efficiency of any chemical-to-electrical energy conversion technology the various factors affecting oxygen surface exchange. Persons with disabilities have the right to request

442

Certified Reference Materials (CRMs) | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Certified Certified Reference Materials (CRMs) New Brunswick Laboratory (NBL) NBL Home About Programs Certified Reference Materials (CRMs) Prices and Certificates Ordering Information Training Categorical Exclusion Determinations News Contact Information New Brunswick Laboratory U.S. Department of Energy Building 350 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL) P: (630) 252-2767 (CRM sales) F: (630) 252-6256 E: usdoe.nbl@ch.doe.gov Certified Reference Materials (CRMs) Print Text Size: A A A RSS Feeds FeedbackShare Page The U.S. Department of Energy, New Brunswick Laboratory (NBL) provides Certified Reference Materials (CRMs) for use in nuclear and nuclear-related analytical measurement activities. NBL maintains a catalog which lists and describes the CRMs currently available to both governmental and private

443

Summer School on Computational Materials Science Across Scales College Station, Texas, USA  

E-Print Network (OSTI)

on Multifunctional Materials for Energy Conversion (IIMEC) and participating US institutions (Texas A&M University Name: Applicant's Email Address: Applicant's Affiliation: Applicant Status: MS ___ PhD ___ Post Doc

444

Colloid and Materials Science for the Conservation of Cultural Heritage: Cleaning, Consolidation, and Deacidification  

Science Journals Connector (OSTI)

A large fraction of conservation interventions consists of cleaning surfaces, consolidating surfaces and bulk layers, and deacidification. ... Its composition is rich in sand, which is used as a filler to improve the mechanical properties of the plaster. ... The aim of the present contribution is to provide an up-to-date overview on the synthesis and prepn. of colloidal systems tailored to the consolidation and protection of wall paintings, plasters and stones, highlighting the most recent improvements. ...

Piero Baglioni; David Chelazzi; Rodorico Giorgi; Giovanna Poggi

2013-02-25T23:59:59.000Z

445

Multi Material Paradigm  

Energy Savers (EERE)

Multi Material Paradigm Glenn S. Daehn Department of Materials Science and Engineering, The Ohio State University Advanced Composites (FRP) Steel Spaceframe Multi Material Concept...

446

Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments  

SciTech Connect

The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

Kumar Sridharan; Todd Allen; Mark Anderson; Guoping Cao; Gerald Kulcinski

2011-07-25T23:59:59.000Z

447

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z D'Ambrosio, Donato (Donato D'Ambrosio) - Dipartimento di Matematica, Università della Calabria d'Avila Garcez, Artur (Artur d'Avila Garcez) - School of Informatics, City University London D'Azevedo, Ed (Ed D'Azevedo) - Computer Science and Mathematics Division, Oak Ridge National Laboratory d'Inverno, Mark (Mark d'Inverno) - Department of Computing, Goldsmiths College, University of London D'Souza, Raissa (Raissa D'Souza) - Departments of Computer Science and Engineering and Mechanical and Aeronautical Engineering , University of California, Davis da Silva, Alberto Rodrigues (Alberto Rodrigues da Silva) - Departamento de Engenharia Informática, Universidade Técnica de Lisboa da Silva, Paulo Pinheiro (Paulo Pinheiro da Silva) - Department of

448

Fusion materials science and technology research opportunities now and during the ITER era  

SciTech Connect

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

2014-10-01T23:59:59.000Z

449

Fusion Materials Science and Technology Research Opportunities now and during the ITER Era  

SciTech Connect

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

2014-02-22T23:59:59.000Z

450

Science  

Science Journals Connector (OSTI)

As a self-confessed purveyor of ``frequently outrageous views,'' Steve Fuller can be relied on for a spirited and provocative text - and so this proves. Jerry Ravetz's gushing endorsement on the back cover claims that the public's understanding of science ``will never be the same again'' and that the book proves Steve Fuller to be ``actually science's best friend.'' But those of an orthodox scientific persuasion (though perhaps not his intended audience) are likely to be provoked into dyspeptic displeasure by the first few sideswipes at what they hold most dear. This short text comprises one volume of the series `` Concepts in Social Science,'' in publishing order sandwiched between Rights and Liberalism. Its expressed aim is that the reader come away thinking ``that the idea and institution of `science' go to the very heart of what the social sciences are about.'' In a style that is always inspired but for all save the cognoscenti can sometimes verge on the abstruse, Fuller argues that social and scientific realities are inextricably intertwined. Science's implausible knowledge claims of detachment and objectivity succeed only in perpetuating self-delusion, sowing the seeds for science's own demise. For those familiar with the sociology of scientific knowledge (SSK) debates, the overall message will not be entirely new - and indeed the book is in part a reworking of some of Fuller's previously-published journal articles - but the liveliness of this contentious prose and its immodest, sweeping polemical style present a critical case against science that is often uncomfortably near the bone. What is impressive is Fuller's intellectual boldness in weaving together a wealth of sociological, philosophical and historical arguments that aim to reveal for public scrutiny the true nature of science. The picture of science created is of its frailty and everydayness - qualities that Fuller claims have been disguised by an unattractive mix of intellectual cunning and social naivet from scientists. Fuller portrays a lay public that combines insight and innocence. Sometimes the public can see through science's ploys for extravagant research proposals, thereby ``displaying a fundamentally sound instinctive response to science.'' At other times, the public is foolish enough to regard scientific knowledge as distinct and authoritative - ``reliable'' lay beliefs about science he says are sadly rare. Thus, in Fuller's eyes, misunderstandings of science abound. Whereas some critics see the yearly panjandrum that constitutes Science Weeks as a clumsy and politically naive stab at ``public relations,'' Fuller sees darker forces of ignorance at work - ``evidence of the scientific community misunderstanding something significant about the social conditions that enable its existence.'' Tackling the public understanding of science (PUS) debate in such a spirit in Chapter 1 sets the tone for the protracted dissection of science that follows. But Fuller's aim is more to do with the revelation of sociological phenomena than with ridicule of science. For example, in Chapter 2 the idiosyncrasies of particular scientific disciplines are picked apart (in the best sociological tradition, physics comes in for a good deal of epistemological stick). Fuller succeeds in portraying the various branches of science as fundamentally different, with distinct working practices shaped by different histories and presumptions. Why, the author then muses, are interdisciplinary wars within science rare, in contrast to social science? With such questions to crack, science is rich pickings for sociological inquiry. In Chapter 3, Fuller's concern is the many-layered meanings of the terms science, scientific and scientists. Here the author takes us through the sociological and philosophical twists and turns of meaning with ideological ease, neatly contrasting today's science with that of the past. For example, long gone is science's unquestioned claim always to serve the best interest of the state; now science is self-serving. Much missed too is science's ability to stab

Jeff Thomas, Centre for Science Education, The Open

1998-01-01T23:59:59.000Z

451

Oak Ridge National Laboratory - Physical Sciences Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science and Technology The Materials Science and Technology Division conducts fundamental and applied materials research for basic energy sciences programs and a variety...

452

Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface  

Science Journals Connector (OSTI)

A self-similar theory and numerical hydrodynamic modeling is developed to investigate the effects of dynamic source and partial ionization on the acceleration of the unsteady expansion of laser-ablated material near a solid target surface. The dynamic source effect accelerates the expansion in the direction perpendicular to the target surface, while the dynamic partial ionization effect accelerates the expansion in all directions. The vaporized material during laser ablation provides a nonadiabatic dynamic source at the target surface into the unsteady expanding fluid. For studying the dynamic source effect, the self-similar theory begins with an assumed profile of plume velocity, u=v/vm=?+(1-?)?, where vm is the maximum expansion velocity, ? is a constant, and ?=x/vmt. The resultant profiles of plume density and plume temperature are derived. The relations obtained from the conservations of mass, momentum, and energy, respectively, all show that the maximum expansion velocity is inversely proportional to ?, where 1-? is the slope of plume velocity profile. The numerical hydrodynamic simulation is performed with the Rusanov method and the Newton Raphson method. The profiles and scalings obtained from numerical hydrodynamic modeling are in good agreement with the theory. The dynamic partial ionization requires ionization energy from the heat at the expansion front, and thus reduces the increase of front temperature. The reduction of thermal motion would increase the flow velocity to conserve the momentum. This dynamic partial ionization effect is studied with the numerical hydrodynamic simulation including the Saha equation. With these effects, ? is reduced from its value of conventional free expansion. This reduction on ? increases the flow velocity slope, decreases the flow velocity near the surface, and reduces the thermal motion of plume, such that the maximum expansion velocity is significantly increased over that found from conventional models. The result may provide an explanation for experimental observations of high-expansion front velocities even at low-laser fluence.

K. R. Chen; T. C. King; J. H. Hes; J. N. Leboeuf; D. B. Geohegan; R. F. Wood; A. A. Puretzky; J. M. Donato

1999-09-15T23:59:59.000Z

453

Point force and generalized point sources on the surface of semi-infinite transversely isotropic material.  

SciTech Connect

the full set of coupled fields due to the arbitrarily oriented point force and concentrated generalized point source, that represents either the diffusive chemical substance concentration or heat applied at the boundary of the half-space) are derived in elementary functions in a simple way, using methods of the potential theory. In the course of the analysis we derived the general solution of the field equations, represented in terms of four harmonic potential functions, which may also be relevant to other problems of chemical concentration or heat diffusion. These solutions constitute generalization of Boussinesq s and Cerruti s problems of elasticity for the chemically diffusive and/or thermoelastic materials.

Karapetian, E. [Suffolk University, Boston; Kalinin, Sergei V [ORNL

2011-01-01T23:59:59.000Z

454

Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference  

SciTech Connect

Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

Not Available

1990-03-01T23:59:59.000Z

455

Materials Science and Engineering A247 (1998) 229238 Microstructures and mechanical properties of commercial titanium  

E-Print Network (OSTI)

distribution function analysis indicated the presence of an orientation tube in the cast specimens near (1( 01 ingots, hot forging into billets, followed by several hot rolling, heat treatment, and surface grinding, processing losses exceed- ing 50% are not uncommon making commercial pro- duction of titanium foils very

Garmestani, Hamid

456

The Department of Chemical Engineering and Materials Science Michigan State University  

E-Print Network (OSTI)

OF GRAPHENE NANOPLATELETS TO PRODUCE HIGH SURFACE AREA ELECTRODES FOR ELECTROCHEMICAL ENERGY STORAGE APPLICATIONS Graphene nanoplatelets (GnP) are platelet shaped particles of graphite less than 5 nanometer in thickness and up to 50 microns in diameter consisting of a few layers of graphene produced

457

Estimation of Hourly Solar Loads on the Surfaces of Moving Refrigerated Tractor Trailers Outfitted with Phase Change Materials (PCMs) for Several Routes across the Continental U.S.  

E-Print Network (OSTI)

The primary objective of this thesis was to calculate solar loads, wind chill temperatures on the surfaces of moving refrigerated tractor trailers outfitted with phase change materials (PCMs) for several routes across the Continental United States...

Varadarajan, Krupasagar

2011-08-31T23:59:59.000Z

458

Annual Report 2010 Page 1 PHYSICS AND MATERIALS SCIENCE RESEARCH UNIT (PHYMS)  

E-Print Network (OSTI)

chalcopyrites and kesterites, aiming at low cost and high efficiency. Fundamental semiconductor physicsMS comprises: Physics of Advanced Materials LPM, Soft Condensed Matter Physics TSCM and Photovoltaics LPV. Its of nanomagnets. TSCM, the group for Theory of Soft Condensed Matter, was built up in 2010. The topic of research

van der Torre, Leon

459

Draft Workshop Report: 30 June 2004 Workshop on Advanced Computational Materials Science  

E-Print Network (OSTI)

power plants represent an even greater challenge to structural materials development and application and simulation could help bridge the gap between the data that is needed to support the implementation for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal

Gropp, Bill

460

The Department of Chemical Engineering and Materials Science Michigan State University  

E-Print Network (OSTI)

Synthesis and Processing of Materials for Direct Thermal-to-Electric Energy Conversion and Storage and an energy storage technology is needed in addition to the energy conversion technology. This increases for power generation and energy storage. First, this work formalizes the energy problem and introduces

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Materials Science and Engineering B 117 (2005) 187197 An atomic level analysis of conductivity and strength  

E-Print Network (OSTI)

in various elec- trochemical applications, electronic equipments, medical de- vices and in fuel cells. To quantify the electrolyte structure, comprehensive coordination and dimensional analyses are carried out]. The development of new materials via purely experimen- tal means is a time-consuming and costly proposition

Grujicic, Mica

462

Materials Science and Engineering B 120 (2005) 9194 Optical index profile at an antiparallel ferroelectric domain  

E-Print Network (OSTI)

-antisites, NbLi (which are excess Nb atoms at Li locations), and lithium vacancies denoted by VLi. The de- fect ferroelectric domain wall in lithium niobate Sungwon Kim, Venkatraman Gopalan Materials Research Institute-stoichiometric lithium niobate. This is imaged using near-field scanning optical microscopy. A detailed modeling

Gopalan, Venkatraman

463

Proceedings of the 27th Ris International Symposium on Materials Science  

E-Print Network (OSTI)

Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen. In a wind turbine blade certain areas can, with advantage, be constructed incorporating a sandwich structure, the sandwich structures provides a good strength and stiffness when exposed to compressive loads. Wind turbine

464

Proceedings of the 27th Ris International Symposium on Materials Science  

E-Print Network (OSTI)

Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen joints are found today in the electronic, automobile, aerospace, wind turbine and shipingbuilding performance and economic advantages. The use of adhesives leads to a more uniform stress distribution

465

Proceedings of the 27th Ris International Symposium on Materials Science  

E-Print Network (OSTI)

components like wind power turbines it is important to consider composite density. Plant fibre composites Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen their potential as reinforcement agents in wind power turbines. The investigation was focussed on the effect

466

JOURNAL OF MATERIALS SCIENCE 39 (2004) 1085 1086 UV transmitters of aluminum polyphosphates prepared by high  

E-Print Network (OSTI)

nanostructured ceramic or composite materials with the desired properties [6­10]. Aluminum polyphosphate nanostructured systems have been used extensively as pigment for painting [11, 12], as matrix for composite University of Goi´as (UFG), 74001-970 Goi^ania, GO, Brazil The possibility to obtain nanostructured ceramic

Gallas, Márcia Russman

467

Proceedings of the 27th Ris International Symposium on Materials Science  

E-Print Network (OSTI)

turbines under surveillance. Especially for offshore wind farms, where the accessibility is low and where Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen Risø National Laboratory, Roskilde, Denmark, 2006 COMMON ACCESS TO WIND TURBINE DATA FOR CONDITION

468

First International Symposium on Cold Cathodes Dielectric Science and Technology/Electronics/Luminescent and Display Materials  

E-Print Network (OSTI)

/Electronics/Luminescent and Display Materials 198th Meeting of the Electrochemical Society Date: October 22­27, 2000 Location: Phoenix Noise (flicker, shot), ffl Emitters (e.g., Spindt­type field emitters, Negative electron affinity abstract to the ECS headquarters and also to K. L. Jensen at the address below. #12; Electrochemical

Cahay, Marc

469

JOURNAL OF MATERIALS SCIENCE 35 (2000) 4635 4647 Crystal plasticity analysis of stressassisted  

E-Print Network (OSTI)

exerts a higher resistance toward the growth of a plate in the thickness than in the radial direction the evolution of martensite, materials texture and the resulting equivalent stress­equivalent strain curve in a polycrystalline Ti­10V­2Fe­3Al (wt.%) alloy. The equivalent stress­equivalent strain curves and the volume

Grujicic, Mica

470

More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology Chemistry Engineering Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics ORNL wins six R&D 100s R&D Magazine recognizes...

471

Heavy ion Rutherford Backscattering Spectrometry (HIRBS) for the near surface characterization of electronic materials  

SciTech Connect

The use of heavy ion projectiles for Rutherford Backscattering Spectrometry (RBS) provides several potential advantages over conventional RBS with /sup 4/He beams. Among these advantages are the improved mass resolution for heavy elements (>50 amu) and the increased accessible depth of analysis. A series of experiments using 20-MeV /sup 16/O beam backscattered from a variety of targets was performed in order to examine the potential advantages of heavy ion RBS in the near-surface characterization of semiconductors with masses >50 amu. Important questions such as mass resolution, depth resolution, isotopic effects, absolute sensitivity and minimum detectable limit of impurities were investigated. Ion implantations and multiple layered structures on GaAs substrates as well as metal germanide systems were studied. The development of the method in conjunction with the channeling technique is also discussed.

Yu, K.M.

1984-12-01T23:59:59.000Z

472

Contacts | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Points of Contact Science Points of Contact Name Research Area Doug Abernathy Wide Angular-Range Chopper Spectrometer (ARCS). Atomic-scale dynamics at thermal and epithermal energies Ke An Engineering Materials Diffractometer (VULCAN). Residual stress, deformation mechanism of materials, phase transitions/transformation, and in situ/operando neutron diffraction in material systems (e.g., working batteries). John Ankner Liquids Reflectometer (LR). Density profiles normal to the surface at liquid surfaces and liquid interfaces Bryan Chakoumakos Nuclear and magnetic crystal structure systematics and structure-property relationships among inorganic materials, powder and single-crystal neutron and x-ray diffraction methods Leighton Coates Macromolecular Neutron Diffractometer (MaNDi). Protein crystallography, biological structure and function

473

Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials  

SciTech Connect

Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000?°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500?°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300?°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

Ogale, Amod A

2012-04-27T23:59:59.000Z

474

A Materials Science Driven Pattern Generation Solution to Fracturing Computer Generated Glass for Films and Games  

E-Print Network (OSTI)

include some plastics like polymethylmethacrylate (PMMA), laminated, toughened glasses, safety glasses, other ceramics, most non-metals, and some metals when subjected to low temperatures. Brittleness, ductility, malleability, plasticity, stiffness...]. Their formula accurately models the brittle materials tested: flat PMMA and glass plates of various thickness. The continuous line in Figure 26 (B) is n=1.7(V^)1/2, where n is the number of radial cracks. 26 II.3. Visual Effects Approaches to Fracturing...

Monroe, David Charles

2014-08-11T23:59:59.000Z

475

Earth and Atmospheric Sciences | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling Geographic Information Science and Technology Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Earth and Atmospheric Sciences SHARE Earth and Atmospheric Sciences At ORNL, we combine our capabilities in atmospheric science, computational science, and biological and environmental systems science to focus in the cross-disciplinary field of climate change science. We use computer models to improve climate change predications and to measure the impact of global warming on the cycling of chemicals in earth systems. Our Climate Change Science Institute uses models to explore connections among atmosphere,

476

Center for Nanoscale Materials Director Petford-Long chats with 'Science in  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Petford-Long (background, arms folded) looks on as a group of eighth-grade girls makes a trial run of their toy car - a car for which they built and installed a pulley transmission - during Argonne's 2012 "Introduce a Girl to Engineering Day." To view a larger version of the image, click on it. Petford-Long (background, arms folded) looks on as a group of eighth-grade girls makes a trial run of their toy car - a car for which they built and installed a pulley transmission - during Argonne's 2012 "Introduce a Girl to Engineering Day." To view a larger version of the image, click on it.

477

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S T U V W X Y Z Cabalar, Pedro (Pedro Cabalar) - Departamento de Computación, Universidade da Coruña Caballero, Juan (Juan Caballero) - Madrid Institute for Advanced Studies in Software Development Technologies (IMDEA Software Institute) Cabellos-Aparicio, Albert (Albert Cabellos-Aparicio) - Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya Cachin, Christian (Christian Cachin) - IBM Zurich Research Laboratory Cadar, Cristian (Cristian Cadar) - Department of Computing, Imperial College, London Caduff, David (David Caduff) - Department of Geography, Universität Zürich Caesar, Matthew (Matthew Caesar) - Department of Computer Science, University of Illinois at Urbana-Champaign

478

X-ray science taps bug biology to design better materials and reduce  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Caddiesflies spin an adhesive silk underwater to build nets to capture food and build protective shelter. Pictured is that silk magnified. Courtesy: Bennett Addison. Click to enlarge. Caddiesflies spin an adhesive silk underwater to build nets to capture food and build protective shelter. Pictured is that silk magnified. Courtesy: Bennett Addison. Click to enlarge. "(Caddisfly silk) is really not much stronger than super glue, but try to put super glue in your bathtub without it ever getting a chance to dry," says Jeff Yarger, professor of chemistry, biochemistry and physics at Arizona State University. Courtesy: Bennett Addison. Click to enlarge.

479

Is the friction angle the maximum slope of a free surface of a non cohesive material?  

E-Print Network (OSTI)

Starting from a symmetric triangular pile with a horizontal basis and rotating the basis in the vertical plane, we have determined the evolution of the stress distribution as a function of the basis inclination using Finite Elements method with an elastic-perfectly plastic constitutive model, defined by its friction angle, without cohesion. It is found that when the yield function is the Drucker-Prager one, stress distribution satisfying equilibrium can be found even when one of the free-surface slopes is larger than the friction angle. This means that piles with a slope larger than the friction angle can be (at least) marginally stable and that slope rotation is not always a destabilising perturbation direction. On the contrary, it is found that the slope cannot overpass the friction angle when a Mohr-Coulomb yield function is used. Theoretical explanation of these facts is given which enlightens the role plaid by the intermediate principal stress in both cases of the Mohr-Coulomb criterion and of the Drucker-Prager one. It is then argued that the Mohr-Coulomb criterion assumes a spontaneous symmetry breaking, as soon as the two smallest principal stresses are different ; this is not physical most likely; so this criterion shall be replaced by a Drucker-Prager criterion in the vicinity of the equality, which leads to the previous anomalous behaviour ; so these numerical computations enlighten the avalanche process: they show that no dynamical angle larger than the static one is needed to understand avalanching. It is in agreement with previous experimental results. Furthermore, these results show that the maximum angle of repose can be modified using cyclic rotations; we propose a procedure that allows to achieve a maximum angle of repose to be equal to the friction angle .

A. Modaressi; P. Evesque

2005-07-13T23:59:59.000Z

480

NREL: Energy Sciences - Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

issues that impact photovoltaics, solid-state lighting, electrochromic ("smart") windows, hydrogen storage, fuel cells, and solid-state batteries. We focus on research and...

Note: This page contains sample records for the topic "materials surface science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Diphosphine Dioxide Cages and Hydrogen Peroxide Adducts of Phosphine Oxides: Syntheses and Applications in Surface Science  

E-Print Network (OSTI)

the P=O group for probing the surface acidity of oxides. (c) Most importantly, getting more insight regarding the nature of the P=O/surface interaction. Hereby, the mobility of the adsorbed species is of fundamental interest. In the classical 31P MAS...

Hilliard, Casie Renee

2013-12-09T23:59:59.000Z

482

Surface Science 150 (1985) 351-357 North-Holland, Amsterdam  

E-Print Network (OSTI)

with this reaction compare favorably with the corresponding values found for high-area, supported nickel catalysts and coworkers have 12-43 mod- eled nickel and ruthenium high-surface-area catalysts with Ni and Ru single chosen for study is carbon monoxide methanation CO+3H,+CH4+H,0. (1) Studies of this reaction over high-surface-area

Goodman, Wayne

483

Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-5507-2013 STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT Washington, D.C. 20585 Distribution Statement: A. Approved for public release; distribution is unlimited This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services,

484

Basic Research Needs for Materials Under Extreme Environments. Report of the Basic Energy Sciences Workshop on Materials Under Extreme Environments, June 11-13, 2007  

SciTech Connect

To evaluate the potential for developing revolutionary new materials that will meet demanding future energy requirements that expose materials to environmental extremes.

Wadsworth, J.; Crabtree, G. W.; Hemley, R. J.; Falcone, R.; Robertson, I.; Stringer, J.; Tortorelli, P.; Gray, G. T.; Nicol, M.; Lehr, J.; Tozer, S. W.; Diaz de la Rubia, T.; Fitzsimmons, T.; Vetrano, J. S.; Ashton, C. L.; Kitts, S.; Landson, C.; Campbell, B.; Gruzalski, G.; Stevens, D.

2008-02-01T23:59:59.000Z

485

SCIENCE  

Science Journals Connector (OSTI)

SCIENCE ... Neutral V-particles were first discovered in 1947 at the University of Manchester where researchers observed v-shaped tracks in a magnetic cloud chamber exposed to cosmic rays. ...

1953-08-17T23:59:59.000Z

486

SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan  

SciTech Connect

The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energys Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

2007-06-30T23:59:59.000Z

487

X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source  

Science Journals Connector (OSTI)

X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently x-raygratinginterferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here we present the first installation of a three gratingx-rayinterferometer at a low-coherence wigglersource at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY Hamburg Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects with high photon flux. Thus biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed gratinginterferometer currently works in the photon energy range from 22 to 30 keV and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.

Julia Herzen; Tilman Donath; Felix Beckmann; Malte Ogurreck; Christian David; Jrgen Mohr; Franz Pfeiffer; Andreas Schreyer

2011-01-01T23:59:59.000Z

488

Scientists Identify New Family of Iron-Based Absorber Materials for Solar Cells (Fact Sheet), NREL Highlights, Science  

SciTech Connect

Use of Earth-abundant materials in solar absorber films is critical for expanding the reach of photovoltaic (PV) technologies. The use of Earth-abundant and inexpensive Fe in PV was proposed more than 25 years ago in the form of FeS{sub 2} pyrite - fool's gold. Unfortunately, the material has been plagued by performance problems that to this day are both persistent and not well understood. Researchers from the National Renewable Energy Laboratory (NREL) and Oregon State University, working collaboratively in the Center for Inverse Design, an Energy Frontier Research Center, have uncovered several new insights into the problems of FeS{sub 2}. They have used these advances to propose and implement design rules that can be used to identify new Fe-containing materials that can circumvent the limitations of FeS{sub 2} pyrite. The team has identified that it is the unavoidable metallic secondary phases and surface defects coexisting near the FeS{sub 2} thin-film surfaces and grain boundaries that limit its open-circuit voltage, rather than the S vacancies in the bulk, which has long been commonly assumed. The materials Fe{sub 2}SiS{sub 4} and Fe{sub 2}GeS{sub 4} hold considerable promise as PV absorbers. The ternary Si compound is especially attractive, as it contains three of the more abundant low-cost elements available today. The band gap (E{sub g} = 1.5 eV) from both theory and experiment is higher than those of c-Si and FeS{sub 2}, offering better absorption of the solar spectrum and potentially higher solar cell efficiencies. More importantly, these materials do not have metallic secondary phase problems as seen in FeS{sub 2}. High calculated formation energies of donor-type defects are consistent with p-type carriers in thin films and are prospects for high open-circuit voltages in cells.

Not Available

2011-10-01T23:59:59.000Z

489

Surface Science Perspectives Dispersed Au atoms, supported on TiO2(110)  

E-Print Network (OSTI)

activation energy for the oxidation of carbon monoxide? Many factors could con- tribute. For example); Catalysis; Gold; Titanium oxide; Surface defects At the end of the 1980s Haruta and coworkers made

Diebold, Ulrike

490

Surface Science 437 (1999) 173190 www.elsevier.nl/locate/susc  

E-Print Network (OSTI)

surfaces. Titanium dioxide has important [1]. Since this time, its popularity has increased steadily, and to exploreperform experiments on a `well-characterized' system. For example, adsorption of water [2­5], its

Diebold, Ulrike

491

4th-International Symposium on Ultrafast Surface Science - Final Report  

SciTech Connect

The 4-th International Symposium on Ultrafast Surface Dynamics (UDS4) was held at the Telluride Summer Research Center on June 22-27, 2003. The International Organizing Committee consisting of Hrvoje Petek (USA), Xiaoyang Zhu (USA), Pedro Echenique (Spain) and Maki Kawai (Japan) brought together a total of 51 participants 16 of whom were from Europe, 10 from Japan, and 25 from the USA. The focus of the conference was on ultrafast electron or light induced processes at well-defined surfaces. Ultrafast surface dynamics concerns the transfer of charge and energy at solid surfaces on the femtosecond time scale. These processes govern rates of fundamental steps in surface reactions, interfacial electron transfer in molecular electronics, and relaxation in spin transport. Recent developments in femtosecond laser technology make it possible to measure by a variety of nonlinear optical techniques directly in the time domain the microscopic rates underlying these interfacial processes. Parallel progress in scanning probe microscopy makes it possible at a single molecular level to perform the vibrational and electronic spectroscopy measurements, to induce reactions with tunneling electrons, and to observe their outcome. There is no doubt that successful development in the field of ultrafast surface dynamics will contribute to many important disciplines.

Hrvoje Petek

2005-01-26T23:59:59.000Z

492

INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING Modelling Simul. Mater. Sci. Eng. 10 (2002) 119 PII: S0965-0393(02)55385-7  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING in the two- dimensional case, it has been realized that the fundamental physical nature of dislocation 1 of the DD methodology to the more physical, yet, considerably more complex conditions of three

Ghoniem, Nasr M.

493

Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

ScienceCinema (OSTI)

'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

2011-11-02T23:59:59.000Z

494

IOP PUBLISHING SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS Sci. Technol. Adv. Mater. 14 (2013) 014202 (7pp) doi:10.1088/1468-6996/14/1/014202  

E-Print Network (OSTI)

properties. The genesis of this structure, its commercialization, the new science associated-materials are the fashion of the day, but to take the concept to a point where it can be exploited commercially has until recently been impossible. The purpose of this review is to describe the process that led to the creation

Cambridge, University of

495

Evolution of the Surface Science of Catalysis from Single Crystals to Metal Nanoparticles under Pressure  

SciTech Connect

Vacuum studies of metal single crystal surfaces using electron and molecular beam scattering revealed that the surface atoms relocate when the surface is clean (reconstruction) and when it is covered by adsorbates (adsorbate induced restructuring). It was also discovered that atomic steps and other low coordination surface sites are active for breaking chemical bonds (H-H, O=O, C-H, C=O and C-C) with high reaction probability. Investigations at high reactant pressures using sum frequency generation (SFG)--vibrational spectroscopy and high pressure scanning tunneling microscopy (HPSTM) revealed bond breaking at low reaction probability sites on the adsorbate-covered metal surface, and the need for adsorbate mobility for continued turnover. Since most catalysts (heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional thin film form or deposited in mesoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site because of the hot electron flow induced by exothermic reactions like carbon monoxide oxidation.

Somorjai, Gabor A.; Park, Jeong Y.

2008-03-06T23:59:59.000Z

496

Nanotechnology at the interface of cell biology, materials science and medicine  

Science Journals Connector (OSTI)

The atomic force microscope (AFM) and related scanning probe microscopes have become resourceful tools to study cells, supramolecular assemblies and single biomolecules, because they allow investigations of such structures in native environments. Quantitative information has been gathered about the surface structure of membrane proteins to lateral and vertical resolutions of 0.5 nm and 0.1 nm, respectively, about the forces that keep proteinprotein and proteinnucleic acid assemblies together as well as single proteins in their native conformation, and about the nanomechanical properties of cells in health and disease. Such progress has been achieved mainly because of constant development of AFM instrumentation and sample preparation methods. This special issue of Nanotechnology presents papers from leading laboratories in the field of nanobiology, covering a wide range of topics in the form of original and novel scientific contributions. It addresses achievements in instrumentation, sample preparation, automation and in biological applications. These papers document the creativity and persistence of researchers pursuing the goal to unravel the structure and dynamics of cells, supramolecuar structures and single biomolecules at work. Improved cantilever sensors, novel optical probes, and quantitative data on supports for electrochemical experiments open new avenues for characterizing biological nanomachines down to the single molecule. Comparative measurements of healthy and metastatic cells promise new methods for early detection of tumors, and possible assessments of drug efficacy. High-speed AFMs document possibilities to monitor crystal growth and to observe large structures at video rate. A wealth of information on amyloid-type fibers as well as on membrane proteins has been gathered by single molecule force spectroscopya technology now being automated for large-scale data collection. With the progress of basic research and a strong industry supporting instrumentation development by improving robustness and reliability and making new instruments available to the community, nanobiology has the potential to develop into a field with great impact on our understanding of the complexity of life, and to provide a major contribution to human health. This special issue of Nanotechnology on nanobiology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey and the Nanotechnology team at IOP Publishing. We are thankful for their most constructive and effective help in pushing the project forward. We are also thankful to all the authors who have contributed with excellent original articles, as well as to the referees who have helped to make this special issue such an insightful document of a rapidly moving field.

Andreas Engel; Mervyn Miles

2008-01-01T23:59:59.000Z

497

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

498

Intrinsic Surface Stability in LiMn2-xNix04-s (x = 0.45, 0.5) High Voltage Spinel Materials for Lithium Ion Batteries  

SciTech Connect

This work reports the surface stability of the high vollage Li ion cathode LiMn2_,Ni,Ooh\\ (x = 0.5, 0.45) by comparing thin fi lm and powder composite electrodes after cycling using X-ray photoelectron spectroscopy. The thin film electrodes offer the abili ty to probe the surface of the material without the need of a conductive agent and polymer binder typically used in composite electrodes. The resulls suggest that neither oxidation of PP6 to POF3 nor the decomposition of ethylene carbonate or dimethylene carbonate occurs on the surface of the spinel material. These resulls confirm the enhanced cycling stability and rate capability associated with the high vollage spinel material and suggests that the SE!IIayer fonns due to the reaction of electrochemically inactive components in composite electrodes with the electrolyte.

Carroll, Kyler J [University of California, San Diego; Yang, Ming-Che [University of Florida, Gainesville; Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL; Meng, Ying Shirley [University of California, San Diego

2012-01-01T23:59:59.000Z

499

ELSEVIER Surface Science 303 (lYY4) 206-230 ;,,.;_:_.y y .../. .' ..`,. :> .,  

E-Print Network (OSTI)

by means of the Fischer- Tropsch technique, and the steam reforming of natural gas to form so-called syngas. Representative examples are the ammonia synthesis via Haber-Bosch, the synthesis of alco- hols and hydrocarbons of products, and (7) diffusion of products from the surface. One typically treats these elementary reactions

Miller, William H.

500

Surface Science 411 (1998) 137153 Intrinsic defects on a TiO  

E-Print Network (OSTI)

(UHV). After annealing to 1100 K in UHV, a (1?1) surface with a terrace width of ~100 A° is obtained defects) in the bridging oxygen rows are created by the high-temperature anneal in UHV. In STM images]. and annealed to ~1100 K in UHV. We first discussRecently, Scanning Tunneling Microscopy the overall morph

Diebold, Ulrike