National Library of Energy BETA

Sample records for materials semiconductor metal

  1. Superatoms and Metal-Semiconductor Motifs for Cluster Materials

    SciTech Connect (OSTI)

    Castleman, A. W.

    2013-10-11

    A molecular understanding of catalysis and catalytically active materials is of fundamental importance in designing new substances for applications in energy and fuels. We have performed reactivity studies and ultrafast ionization and coulomb explosion studies on a variety of catalytically-relevant materials, including transition metal oxides of Fe, Co, Ni, Cu, Ti, V, Nb, and Ta. We demonstrate that differences in charge state, geometry, and elemental composition of clusters of such materials determine chemical reactivity and ionization behavior, crucial steps in improving performance of catalysts.

  2. Semiconductor assisted metal deposition for nanolithography applications

    SciTech Connect (OSTI)

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  3. Semiconductor assisted metal deposition for nanolithography applications

    SciTech Connect (OSTI)

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  4. EMei Semiconductor Materials Plant Research Institute | Open...

    Open Energy Info (EERE)

    EMei Semiconductor Materials Plant Research Institute Jump to: navigation, search Name: EMei Semiconductor Materials Plant & Research Institute Place: Emei, Sichuan Province, China...

  5. Topsil Semiconductor Materials AS | Open Energy Information

    Open Energy Info (EERE)

    Topsil Semiconductor Materials AS Jump to: navigation, search Name: Topsil Semiconductor Materials AS Place: Frederikssund, Denmark Zip: 3600 Product: Danish specialist...

  6. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  7. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  8. Spectroscopy of semiconductor materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ag 3 VO 4 as a New p-Type Transparent Conducting Material Using systematic design principles, the Center for Inverse Design is exploring a new class of ternary p-type transparent conducting oxides (TCOs), including the prototypical Ag 3 VO 4 entry-point material. The simultaneous occurrence of transparency and p-type (hole-carrier) conductivity is an elusive materials property that could have high impact on technologies such as photovoltaics and transparent electronics. However, no satisfactory

  9. Method and structure for passivating semiconductor material

    DOE Patents [OSTI]

    Pankove, Jacques I.

    1981-01-01

    A structure for passivating semiconductor material comprises a substrate of crystalline semiconductor material, a relatively thin film of carbon disposed on a surface of the crystalline material, and a layer of hydrogenated amorphous silicon deposited on the carbon film.

  10. Metallic behavior in the graphene analogue Ni3(HITP)2 and a strategy to render the material a semiconductor.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Foster, Michael E.; Sohlberg, Karl; Spataru, Dan Catalin; Allendorf, Mark D.

    2016-06-19

    The metal organic framework material Ni3(2,3,6,7,10,11 - hexaiminotriphenylene)2, (Ni3(HITP)2) is composed of layers of extended conjugated planes analogous to graphene. We carried out Density functional theory (DFT) calculations to model the electronic structure of bulk and monolayer Ni3(HITP)2. The layered 3D material is metallic, similar to graphene. Our calculations predict that there is appreciable band dispersion not only in-plane, but perpendicular to the stacking planes as well, suggesting that, unlike graphene, the conductivity may be nearly isotropic. In contrast, a 2D monolayer of the material exhibits a band gap, consistent with previously published results. Insight obtained from studies of themore » evolution of the material from semiconducting to metallic as the material is transitioned from 2D to 3D suggests the possibility of modifying the material to render it semiconducting by changing the metal center and inserting spacer moieties between the layers. Furthermore, the DFT calculations predict that the modified material will be structurally stable and exhibit a band gap.« less

  11. Metal to semiconductor transition in metallic transition metal dichalcogenides

    SciTech Connect (OSTI)

    Li, Yan; Kang, Jun; Li, Jingbo; Tongay, Sefaattin; Wu, Junqiao; Yue, Qu

    2013-11-07

    We report on tuning the electronic and magnetic properties of metallic transition metal dichalcogenides (mTMDCs) by 2D to 1D size confinement. The stability of the mTMDC monolayers and nanoribbons is demonstrated by the larger binding energy compared to the experimentally available semiconducting TMDCs. The 2D MX{sub 2} (M?=?Nb, Ta; X?=?S, Se) monolayers are non-ferromagnetic metals and mechanically softer compared to their semiconducting TMDCs counterparts. Interestingly, mTMDCs undergo metal-to-semiconductor transition when the ribbon width approaches to ?13? and ?7? for zigzag and armchair edge terminations, respectively; then these ribbons convert back to metal when the ribbon widths further decrease. Zigzag terminated nanoribbons are ferromagnetic semiconductors, and their magnetic properties can also be tuned by hydrogen edge passivation, whereas the armchair nanoribbons are non-ferromagnetic semiconductors. Our results display that the mTMDCs offer a broad range of physical properties spanning from metallic to semiconducting and non-ferromagnetic to ferromagnetic that is ideal for applications where stable narrow bandgap semiconductors with different magnetic properties are desired.

  12. Semiconductor Equipment and Materials International SEMI | Open...

    Open Energy Info (EERE)

    search Name: Semiconductor Equipment and Materials International (SEMI) Place: San Jose, California Zip: 95134 2127 Product: Global trade association, publisher and conference...

  13. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    DOE Patents [OSTI]

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  14. Tianjin HuanOu Semiconductor Material Technology Co Ltd | Open...

    Open Energy Info (EERE)

    HuanOu Semiconductor Material Technology Co Ltd Jump to: navigation, search Name: Tianjin HuanOu Semiconductor Material Technology Co Ltd Place: Tianjin, Tianjin Municipality,...

  15. Zhongsheng Semiconductor Silicon Material Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongsheng Semiconductor Silicon Material Co Ltd Jump to: navigation, search Name: Zhongsheng Semiconductor Silicon Material Co Ltd Place: Linzhou, Henan Province, China Product:...

  16. GRINM Semiconductor Materials Co Ltd Gritek | Open Energy Information

    Open Energy Info (EERE)

    GRINM Semiconductor Materials Co Ltd Gritek Jump to: navigation, search Name: GRINM Semiconductor Materials Co Ltd (Gritek) Place: Beijing Municipality, China Zip: 100088 Product:...

  17. Jiangxi Jingde Semiconductor Materials Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Jingde Semiconductor Materials Co Ltd Jump to: navigation, search Name: Jiangxi Jingde Semiconductor Materials Co Ltd Place: Jingdezhen, Jiangxi Province, China Product: A Chinese...

  18. Fabrication and characterization of metal-semiconductor-metal nanorod using template synthesis

    SciTech Connect (OSTI)

    Kim, Kyohyeok; Kwon, Namyong; Hong, Junki; Chung, Ilsub

    2009-07-15

    The authors attempted to fabricate and characterize one dimensional metal-semiconductor-metal (MSM) nanorod using a template. Cadmium selenide (CdSe) and polypyrrole (Ppy) were chosen as n-type and p-type semiconductor materials, respectively, whereas Au was chosen as a metal electrode. The fabrication of the nanorod was achieved by ''template synthesis'' method using polycarbonate membrane. The structure of the fabricated nanorod was analyzed using scanning electron microscopy and energy dispersive spectroscopy. In addition, the electrical properties of MSM nanorods were characterized using scanning probe microscopy (Seiko Instruments, SPA 300 HV) by probing with a conductive cantilever. I-V characteristics as a function of the temperature give the activation energy, as well as the barrier height of a metal-semiconductor contact, which is useful to understand the conduction mechanism of MSM nanorods.

  19. Semiconductor and Materials Company Inc SAMCO | Open Energy Informatio...

    Open Energy Info (EERE)

    search Name: Semiconductor and Materials Company Inc (SAMCO) Place: Kyoto, Kyoto, Japan Zip: 612-8443 Sector: Solar Product: Japanese manufactruer of semiconductor and solar...

  20. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  1. Van der Waals metal-semiconductor junction: Weak Fermi level...

    Office of Scientific and Technical Information (OSTI)

    Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier Citation Details In-Document Search Title: Van der Waals ...

  2. Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor Photoelectrodes Enhanced by Inversion Channel Charge Collection and Hydrogen Spillover Citation Details In-Document...

  3. Lattice matched semiconductor growth on crystalline metallic substrates

    DOE Patents [OSTI]

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  4. Selective etchant for oxide sacrificial material in semiconductor device fabrication

    DOE Patents [OSTI]

    Clews, Peggy J.; Mani, Seethambal S.

    2005-05-17

    An etching composition and method is disclosed for removing an oxide sacrificial material during manufacture of semiconductor devices including micromechanical, microelectromechanical or microfluidic devices. The etching composition and method are based on the combination of hydrofluoric acid (HF) and sulfuric acid (H.sub.2 SO.sub.4). These acids can be used in the ratio of 1:3 to 3:1 HF:H.sub.2 SO.sub.4 to remove all or part of the oxide sacrificial material while providing a high etch selectivity for non-oxide materials including polysilicon, silicon nitride and metals comprising aluminum. Both the HF and H.sub.2 SO.sub.4 can be provided as "semiconductor grade" acids in concentrations of generally 40-50% by weight HF, and at least 90% by weight H.sub.2 SO.sub.4.

  5. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect (OSTI)

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  6. Growth of metal and semiconductor nanostructures using localized photocatalysts

    SciTech Connect (OSTI)

    Shelnutt, John A; Wang, Zhongchun; Medforth, Craig J

    2006-03-08

    Our overall goal has been to understand and develop a light-driven approach to the controlled growth of novel metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures when exposed to visible light, providing metal nucleation and growth centers. The photocatalyst molecules are pre-positioned at the nanoscale to control the location of the deposition of metal and therefore the morphology of the nanostructures that are grown. Self-assembly, chemical confinement, and molecular templating are some of the methods we are using for nanoscale positioning of the photocatalyst molecules. When exposed to light, each photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition near the photocatalyst and ultimately the synthesis of new metallic nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies at Sandia National Laboratories and the University of Georgia. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled nanosynthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. Our specific goals for the past three years have been to understand the role of photocatalysis in the synthesis of dendritic metal (Pt, Pd, Au) nanostructures grown from aqueous surfactant solutions under ambient conditions and the synthesis of photocatalytic porphyrin nanostructures (e.g., nanotubes) as templates for fabrication of photo-active metal

  7. Impact of Fixed Change on Metal-Insulator-Semiconductor Barrier...

    Office of Scientific and Technical Information (OSTI)

    Title: Impact of Fixed Change on Metal-Insulator-Semiconductor Barrier Height Reduction Authors: Hu, J. ; Nainani, A. ; Sun, Y. ; Saraswat, K.C. ; Wong, H.-S.P. Publication Date: ...

  8. Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovations | Argonne National Laboratory Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical Innovations Technology available for licensing: novel nanometer-sized metal oxide semiconductors that allow targeting, initiating and control of in vitro and in vivo chemical reactions in biological molecules, such as DNA, proteins, and antibodies. Allows for targeting, initiation and control of in vitro and in vivo chemical reactions in biological molecules Commercial applications

  9. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    SciTech Connect (OSTI)

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae; Jay Guo, L.

    2014-06-09

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2?cm??2?cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to 70, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, can have potential for diverse applications ranging from color display devices to the image sensors.

  10. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  11. Method for depositing high-quality microcrystalline semiconductor materials

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.; Yan, Baojie

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  12. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOE Patents [OSTI]

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  13. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  14. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  15. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOE Patents [OSTI]

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  16. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  17. Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D0{sub 3}-type Heusler alloys

    SciTech Connect (OSTI)

    Gao, G. Y. Yao, Kai-Lun

    2013-12-02

    High-spin-polarization materials are desired for the realization of high-performance spintronic devices. We combine recent experimental and theoretical findings to theoretically design several high-spin-polarization materials in binary D0{sub 3}-type Heusler alloys: gapless (zero-gap) half-metallic ferrimagnets of V{sub 3}Si and V{sub 3}Ge, half-metallic antiferromagnets of Mn{sub 3}Al and Mn{sub 3}Ga, half-metallic ferrimagnets of Mn{sub 3}Si and Mn{sub 3}Ge, and a spin gapless semiconductor of Cr{sub 3}Al. The high spin polarization, zero net magnetic moment, zero energy gap, and slight disorder compared to the ternary and quaternary Heusler alloys make these binary materials promising candidates for spintronic applications. All results are obtained by the electronic structure calculations from first-principles.

  18. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    SciTech Connect (OSTI)

    Gelinck, G. H.; Breemen, A. J. J. M. van; Cobb, B.

    2015-03-02

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  19. Method of depositing wide bandgap amorphous semiconductor materials

    DOE Patents [OSTI]

    Ellis, Jr., Frank B.; Delahoy, Alan E.

    1987-09-29

    A method of depositing wide bandgap p type amorphous semiconductor materials on a substrate without photosensitization by the decomposition of one or more higher order gaseous silanes in the presence of a p-type catalytic dopant at a temperature of about 200.degree. C. and a pressure in the range from about 1-50 Torr.

  20. Method for depositing layers of high quality semiconductor material

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  1. Metal recovery from porous materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Metal recovery from porous materials Title: Metal recovery from porous materials The present invention relates to recovery of metals. More specifically, the present invention ...

  2. Anisotropy-based crystalline oxide-on-semiconductor material

    DOE Patents [OSTI]

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  3. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    SciTech Connect (OSTI)

    Tolk, Norman H.; Feldman, L. C.; Luepke, G.

    2015-09-14

    impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated

  4. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  5. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    SciTech Connect (OSTI)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-09-07

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al{sub 2}O{sub 3} or HfO{sub 2} dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO{sub 2} based capacitors compared to Al{sub 2}O{sub 3} based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  6. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  7. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  8. Method of producing metallic materials

    DOE Patents [OSTI]

    Branagan, Daniel J.

    2004-02-10

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  9. Metallic Membrane Materials Development for Hydrogen Production...

    Office of Scientific and Technical Information (OSTI)

    Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas Citation Details In-Document Search Title: Metallic Membrane Materials Development for...

  10. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOE Patents [OSTI]

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  11. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOE Patents [OSTI]

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  12. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, Edward F.

    1992-01-01

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  13. Surface passivation process of compound semiconductor material using UV photosulfidation

    DOE Patents [OSTI]

    Ashby, Carol I. H.

    1995-01-01

    A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.

  14. Apparatus for measuring minority carrier lifetimes in semiconductor materials

    DOE Patents [OSTI]

    Ahrenkiel, Richard K.

    1999-01-01

    An apparatus for determining the minority carrier lifetime of a semiconductor sample includes a positioner for moving the sample relative to a coil. The coil is connected to a bridge circuit such that the impedance of one arm of the bridge circuit is varied as sample is positioned relative to the coil. The sample is positioned relative to the coil such that any change in the photoconductance of the sample created by illumination of the sample creates a linearly related change in the input impedance of the bridge circuit. In addition, the apparatus is calibrated to work at a fixed frequency so that the apparatus maintains a consistently high sensitivity and high linearly for samples of different sizes, shapes, and material properties. When a light source illuminates the sample, the impedance of the bridge circuit is altered as excess carriers are generated in the sample, thereby producing a measurable signal indicative of the minority carrier lifetimes or recombination rates of the sample.

  15. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect (OSTI)

    2009-12-11

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

  16. Methods of use of semiconductor nanocrystal probes for treating a material

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2007-04-27

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  17. 1/f noise in semiconductor and metal nanocrystal solids

    SciTech Connect (OSTI)

    Liu, Heng Lhuillier, Emmanuel Guyot-Sionnest, Philippe

    2014-04-21

    Electrical 1/f noise is measured in thin films of CdSe, CdSe/CdS, ZnO, HgTe quantum dots and Au nanocrystals. The 1/f noise, normalized per nanoparticle, shows no systematic dependence on the nanoparticle material and the coupling material. However, over 10 orders of magnitude, it correlates well with the nearest neighbor conductance suggesting some universal magnitude of the 1/f noise in these granular conductors. In the hopping regime, the main mechanism of 1/f noise is determined to be mobility fluctuated. In the metallic regime obtained with gold nanoparticle films, the noise drops to a similar level as bulk gold films and with a similar temperature dependence.

  18. Determination of uranium and thorium in semiconductor memory materials by high fluence neutron activation analysis

    SciTech Connect (OSTI)

    Dyer, F.F.; Emery, J.F.; Northcutt, K.J.; Scott, R.M.

    1981-01-01

    Uranium and thorium were measured by absolute neutron activation analysis in high-purity materials used to manufacture semiconductor memories. The main thrust of the study concerned aluminum and aluminum alloys used as sources for thin film preparation, evaporated metal films, and samples from the Czochralski silicon crystal process. Average levels of U and Th were found for the source alloys to be approx. 65 and approx. 45 ppB, respectively. Levels of U and Th in silicon samples fell in the range of a few parts per trillion. Evaporated metal films contained about 1 ppB U and Th, but there is some question about these results due to the possibility of contamination.

  19. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizingmore » the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.« less

  20. First principles study of Fe in diamond: A diamond-based half metallic dilute magnetic semiconductor

    SciTech Connect (OSTI)

    Benecha, E. M.; Lombardi, E. B.

    2013-12-14

    Half-metallic ferromagnetic ordering in semiconductors, essential in the emerging field of spintronics for injection and transport of highly spin polarised currents, has up to now been considered mainly in III–V and II–VI materials. However, low Curie temperatures have limited implementation in room temperature device applications. We report ab initio Density Functional Theory calculations on the properties of Fe in diamond, considering the effects of lattice site, charge state, and Fermi level position. We show that the lattice sites and induced magnetic moments of Fe in diamond depend strongly on the Fermi level position and type of diamond co-doping, with Fe being energetically most favorable at the substitutional site in p-type and intrinsic diamond, while it is most stable at a divacancy site in n-type diamond. Fe induces spin polarized bands in the band gap, with strong hybridization between Fe-3d and C-2s,2p bands. We further consider Fe-Fe spin interactions in diamond and show that substitutional Fe{sup +1} in p-type diamond exhibits a half-metallic character, with a magnetic moment of 1.0 μ{sub B} per Fe atom and a large ferromagnetic stabilization energy of 33 meV, an order of magnitude larger than in other semiconductors, with correspondingly high Curie temperatures. These results, combined with diamond's unique properties, demonstrate that Fe doped p-type diamond is likely to be a highly suitable candidate material for spintronics applications.

  1. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1992-10-13

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  2. Effect of realistic metal electronic structure on the lower limit of contact resistivity of epitaxial metal-semiconductor contacts

    SciTech Connect (OSTI)

    Hegde, Ganesh Chris Bowen, R.

    2014-08-04

    The effect of realistic metal electronic structure on the lower limit of resistivity in [100] oriented n-Si is investigated using full band Density Functional Theory and Semi-Empirical Tight Binding calculations. It is shown that the ideal metal assumption may fail in some situations and, consequently, underestimate the lower limit of contact resistivity in n-Si by at least an order of magnitude at high doping concentrations. The mismatch in transverse momentum space in the metal and the semiconductor, the so-called valley filtering effect, is shown to be sensitive to the details of the transverse boundary conditions for the unit cells used. The results emphasize the need for explicit inclusion of the metal atomic and electronic structure in the atomistic modeling of transport across metal-semiconductor contacts.

  3. Mesoporous metal oxide graphene nanocomposite materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  4. Apparatus for measuring minority carrier lifetimes in semiconductor materials

    DOE Patents [OSTI]

    Ahrenkiel, R.K.

    1999-07-27

    An apparatus for determining the minority carrier lifetime of a semiconductor sample includes a positioner for moving the sample relative to a coil. The coil is connected to a bridge circuit such that the impedance of one arm of the bridge circuit is varied as sample is positioned relative to the coil. The sample is positioned relative to the coil such that any change in the photoconductance of the sample created by illumination of the sample creates a linearly related change in the input impedance of the bridge circuit. In addition, the apparatus is calibrated to work at a fixed frequency so that the apparatus maintains a consistently high sensitivity and high linearly for samples of different sizes, shapes, and material properties. When a light source illuminates the sample, the impedance of the bridge circuit is altered as excess carriers are generated in the sample, thereby producing a measurable signal indicative of the minority carrier lifetimes or recombination rates of the sample. 17 figs.

  5. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  6. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  7. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  8. Mechanistic Studies of Charge Injection from Metallic Electrodes into Organic Semiconductors Mediated by Ionic Functionalities: Final Report

    SciTech Connect (OSTI)

    Nguyen, Thuc-Quyen; Bazan, Guillermo; Mikhailovsky, Alexander

    2014-04-15

    Metal-organic semiconductor interfaces are important because of their ubiquitous role in determining the performance of modern electronics such as organic light emitting diodes (OLEDs), fuel cells, batteries, field effect transistors (FETs), and organic solar cells. Interfaces between metal electrodes required for external wiring to the device and underlying organic structures directly affect the charge carrier injection/collection efficiency in organic-based electronic devices primarily due to the mismatch between energy levels in the metal and organic semiconductor. Environmentally stable and cost-effective electrode materials, such as aluminum and gold typically exhibit high potential barriers for charge carriers injection into organic devices leading to increased operational voltages in OLEDs and FETs and reduced charge extraction in photovoltaic devices. This leads to increased power consumption by the device, reduced overall efficiency, and decreased operational lifetime. These factors represent a significant obstacle for development of next generation of cheap and energy-efficient components based on organic semiconductors. It has been noticed that introduction of organic materials with conjugated backbone and ionic pendant groups known as conjugated poly- and oligoelectrolytes (CPEs and COEs), enables one to reduce the potential barriers at the metal-organic interface and achieve more efficient operation of a device, however exact mechanisms of the phenomenon have not been understood. The goal of this project was to delineate the function of organic semiconductors with ionic groups as electron injection layers. The research incorporated a multidisciplinary approach that encompassed the creation of new materials, novel processing techniques, examination of fundamental electronic properties and the incorporation of the resulting knowledgebase into development of novel organic electronic devices with increased efficiency, environmental stability, and reduced

  9. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect (OSTI)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  10. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, Rommel; Chen, Yih-Wen

    1987-01-01

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  11. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, R.; Chen, Y.W.

    1985-04-30

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  12. Compositions of doped, co-doped and tri-doped semiconductor materials

    DOE Patents [OSTI]

    Lynn, Kelvin; Ciampi, Guido

    2011-12-06

    Semiconductor materials suitable for being used in radiation detectors are disclosed. A particular example of the semiconductor materials includes tellurium, cadmium, and zinc. Tellurium is in molar excess of cadmium and zinc. The example also includes aluminum having a concentration of about 10 to about 20,000 atomic parts per billion and erbium having a concentration of at least 10,000 atomic parts per billion.

  13. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    SciTech Connect (OSTI)

    Palmstrom, Chris

    2009-07-01

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  14. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    ScienceCinema (OSTI)

    Palmstrom, Chris [University of California, Santa Barbara, California, United States

    2010-01-08

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  15. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, C.R.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  16. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  17. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Donev, E. U.; Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F.

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more » The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  18. Formability of metallic materials - 2000 A. D

    SciTech Connect (OSTI)

    Newby, J.R.; Niemeier, B.A.

    1982-01-01

    This volume contains 18 papers presented at the meeting of ASTM, of which one is abstracted separately. The subjects covered include formability of steel, aluminum, various metallic composites and sheet materials for automobile bodies. The symposium was also reviewing past experience in forming metallic materials and potential formability technologies.

  19. Metal oxide composite dosimeter method and material

    DOE Patents [OSTI]

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  20. Purification of metal-organic framework materials

    SciTech Connect (OSTI)

    Farha, Omar K.; Hupp, Joseph T.

    2015-06-30

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  1. Purification of metal-organic framework materials

    SciTech Connect (OSTI)

    Farha, Omar K.; Hupp, Joseph T.

    2012-12-04

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  2. Controlled metal-semiconductor sintering/alloying by one-directional reverse illumination

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1993-01-01

    Metal strips deposited on a top surface of a semiconductor substrate are sintered at one temperature simultaneously with alloying a metal layer on the bottom surface at a second, higher temperature. This simultaneous sintering of metal strips and alloying a metal layer on opposite surfaces of the substrate at different temperatures is accomplished by directing infrared radiation through the top surface to the interface of the bottom surface with the metal layer where the radiation is absorbed to create a primary hot zone with a temperature high enough to melt and alloy the metal layer with the bottom surface of the substrate. Secondary heat effects, including heat conducted through the substrate from the primary hot zone and heat created by infrared radiation reflected from the metal layer to the metal strips, as well as heat created from some primary absorption by the metal strips, combine to create secondary hot zones at the interfaces of the metal strips with the top surface of the substrate. These secondary hot zones are not as hot as the primary hot zone, but they are hot enough to sinter the metal strips to the substrate.

  3. Modular synthesis of a dual metal-dual semiconductor nano-heterostructure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amirav, Lilac; Oba, Fadekemi; Aloni, Shaul; Alivisatos, A. Paul

    2015-04-29

    Reported is the design and modular synthesis of a dual metal-dual semiconductor heterostructure with control over the dimensions and placement of its individual components. Analogous to molecular synthesis, colloidal synthesis is now evolving into a series of sequential synthetic procedures with separately optimized steps. Here we detail the challenges and parameters that must be considered when assembling such a multicomponent nanoparticle, and their solutions.

  4. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  5. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  6. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  7. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect (OSTI)

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  8. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics

    SciTech Connect (OSTI)

    Lin, Keng-Hua; Strachan, Alejandro

    2015-07-21

    Motivated by significant interest in metal-semiconductor and metal-insulator interfaces and superlattices for energy conversion applications, we developed a molecular dynamics-based model that captures the thermal transport role of conduction electrons in metals and heat transport across these types of interface. Key features of our model, denoted eleDID (electronic version of dynamics with implicit degrees of freedom), are the natural description of interfaces and free surfaces and the ability to control the spatial extent of electron-phonon (e-ph) coupling. Non-local e-ph coupling enables the energy of conduction electrons to be transferred directly to the semiconductor/insulator phonons (as opposed to having to first couple to the phonons in the metal). We characterize the effect of the spatial e-ph coupling range on interface resistance by simulating heat transport through a metal-semiconductor interface to mimic the conditions of ultrafast laser heating experiments. Direct energy transfer from the conduction electrons to the semiconductor phonons not only decreases interfacial resistance but also increases the ballistic transport behavior in the semiconductor layer. These results provide new insight for experiments designed to characterize e-ph coupling and thermal transport at the metal-semiconductor/insulator interfaces.

  9. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOE Patents [OSTI]

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  10. Atomic Layer Deposition of Metal Sulfide Materials | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition of Metal Sulfide Materials Title Atomic Layer Deposition of Metal Sulfide Materials Publication Type Journal Article Year of Publication 2015 Authors...

  11. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    SciTech Connect (OSTI)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.

  12. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    SciTech Connect (OSTI)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.

  13. System for characterizing semiconductor materials and photovoltaic device

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1996-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device.

  14. System for characterizing semiconductor materials and photovoltaic device

    DOE Patents [OSTI]

    Sopori, B.L.

    1996-12-03

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device. 22 figs.

  15. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J. Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-28

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ?1.55?nm, achieve the best carrier-selectivity producing a contact resistivity ?{sub c} of ?3 m? cm{sup 2} and a recombination current density J{sub 0c} of ?40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350?C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  16. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chou, Stanley Shihyao; Yi-Kai Huang; Kim, Jaemyung; Kaehr, Bryan James; Foley, Brian M.; Lu, Ping; Conner Dykstra; Hopkins, Patrick E.; Brinker, C. Jeffrey; Jiaxing Huang; et al

    2015-01-22

    Lithiation-exfoliation produces single to few-layered MoS2 and WS2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. We report the dispersion of chemically exfoliated MoS2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. Ultimately, this process connects the scalability of chemical exfoliation with the simplicity of solutionmore » processing, enabling a facile method for tuning the metal to semiconductor transitions of MoS2 and WS2 within a liquid medium.« less

  17. Strain-based control of crystal anisotropy for perovskite oxides on semiconductor-based material

    DOE Patents [OSTI]

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A crystalline structure and a semiconductor device includes a substrate of a semiconductor-based material and a thin film of an anisotropic crystalline material epitaxially arranged upon the surface of the substrate so that the thin film couples to the underlying substrate and so that the geometries of substantially all of the unit cells of the thin film are arranged in a predisposed orientation relative to the substrate surface. The predisposition of the geometries of the unit cells of the thin film is responsible for a predisposed orientation of a directional-dependent quality, such as the dipole moment, of the unit cells. The predisposed orientation of the unit cell geometries are influenced by either a stressed or strained condition of the lattice at the interface between the thin film material and the substrate surface.

  18. Processing of insulators and semiconductors

    SciTech Connect (OSTI)

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  19. Reclaiming metallic material from an article comprising a non-metallic friable substrate

    DOE Patents [OSTI]

    Bohland, John Raphael; Anisimov, Igor Ivanovich; Dapkus, Todd James; Sasala, Richard Anthony; Smigielski, Ken Alan; Kamm, Kristin Danielle

    2000-01-01

    A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.

  20. Alkali metal protective garment and composite material

    DOE Patents [OSTI]

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  1. Microporous Metal Organic Materials for Hydrogen Storage

    SciTech Connect (OSTI)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  2. Strong topological metal material with multiple Dirac cones

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ji, Huiwen; Valla, T.; Pletikosic, I.; Gibson, Q. D.; Sahasrabudhe, Girija; Cava, R. J.

    2016-01-25

    We report a new, cleavable, strong topological metal, Zr2Te2P, which has the same tetradymite-type crystal structure as the topological insulator Bi2Te2Se. Instead of being a semiconductor, however, Zr2Te2P is metallic with a pseudogap between 0.2 and 0.7 eV above the Fermi energy (EF). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone with a largely linear dispersion over a 2 eV energy range. A third surface TRS-protected Dirac cone is predicted, and observed using angle-resolved photoemission spectroscopy, making Zr2Te2Pmore » the first system, to our knowledge, to realize TRS-protected Dirac cones at M¯ points. The high anisotropy of this Dirac cone is similar to the one in the hypothetical Dirac semimetal BiO2. As a result, we propose that if EF can be tuned into the pseudogap where the Dirac dispersions exist, it may be possible to observe ultrahigh carrier mobility and large magnetoresistance in this material.« less

  3. Transient radiation hardened CMOS (complementary metal oxide semiconductor) operational amplifiers. Master's thesis

    SciTech Connect (OSTI)

    Trombley, G.J.

    1989-01-01

    General strategies are developed for designing radiation hardened bulk and silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) operational amplifiers. Comparisons are made between each technology concerning photocurrent mechanisms and the inherent advantages of SOI CMOS. Methods are presented for analysing circuit designs and minimizing the net photocurrent responses. Analysis is performed on standard operational amplifier circuits and subcircuits to demonstrate the usefulness of these methods. Radiation hardening topics discussed include superior radiation hardened topologies, photocurrent compensation and its limitations, and methods to ensure a preferred direction of photocurrent response. Several operational amplifier subcircuits are compared for their hardness characteristics. Folded cascode and three-stage operational amplifiers were fabricated on an SOI CMOS test chip supported by Texas Instruments, Incorporated. At the time of publication, the circuit operation was verified but radiation data were not yet available.

  4. Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system

    SciTech Connect (OSTI)

    Paspalakis, Emmanuel; Evangelou, Sofia; Kosionis, Spyridon G.; Terzis, Andreas F.

    2014-02-28

    We study the four-wave mixing effect in a coupled semiconductor quantum dot-spherical metal nanoparticle structure. Depending on the values of the pump field intensity and frequency, we find that there is a critical distance that changes the form of the spectrum. Above this distance, the four-wave mixing spectrum shows an ordinary three-peaked form and the effect of controlling its magnitude by changing the interparticle distance can be obtained. Below this critical distance, the four-wave mixing spectrum becomes single-peaked; and as the interparticle distance decreases, the spectrum is strongly suppressed. The behavior of the system is explained using the effective Rabi frequency that creates plasmonic metaresonances in the hybrid structure. In addition, the behavior of the effective Rabi frequency is explained via an analytical solution of the density matrix equations.

  5. Sharp semiconductor-to-metal transition of VO{sub 2} thin films on glass substrates

    SciTech Connect (OSTI)

    Jian, Jie; Chen, Aiping; Zhang, Wenrui; Wang, Haiyan

    2013-12-28

    Outstanding phase transition properties of vanadium dioxide (VO{sub 2}) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (∼4.3 °C) at a near bulk transition temperature of ∼68.4 °C with an electrical resistance change as high as 3.2 × 10{sup 3} times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO{sub 2} films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

  6. Electrical contacts for a thin-film semiconductor device

    DOE Patents [OSTI]

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1989-08-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  7. Electrostatic analysis of n-doped SrTiO{sub 3} metal-insulator-semiconductor systems

    SciTech Connect (OSTI)

    Kamerbeek, A. M. Banerjee, T.; Hueting, R. J. E.

    2015-12-14

    Electron doped SrTiO{sub 3}, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO{sub 3} systems show reasonably strong rectification even when SrTiO{sub 3} is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO{sub x} in between the metal and n-SrTiO{sub 3} interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO{sub 3}) system is consistent with this trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO{sub 3}. The non-linear permittivity of n-SrTiO{sub 3} leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.

  8. Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    SciTech Connect (OSTI)

    Bory, Benjamin F.; Meskers, Stefan C. J.; Rocha, Paulo R. F.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-11-28

    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10{sup 17 }m{sup −2}. We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching.

  9. Biomimicry in metal-organic materials

    SciTech Connect (OSTI)

    Zhang, MW; Gu, ZY; Bosch, M; Perry, Z; Zhou, HC

    2015-06-15

    Nature has evolved a great number of biological molecules which serve as excellent constructional or functional units for metal-organic materials (MOMs). Even though the study of biomimetic MOMs is still at its embryonic stage, considerable progress has been made in the past few years. In this critical review, we will highlight the recent advances in the design, development and application of biomimetic MOMs, and illustrate how the incorporation of biological components into MOMs could further enrich their structural and functional diversity. More importantly, this review will provide a systematic overview of different methods for rational design of MOMs with biomimetic features. Published by Elsevier B.V.

  10. Metal-organic framework materials with ultrahigh surface areas

    SciTech Connect (OSTI)

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  11. Method for inhibiting oxidation of metal sulfide-containing material

    DOE Patents [OSTI]

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  12. Wafer-fused semiconductor radiation detector

    DOE Patents [OSTI]

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  13. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOE Patents [OSTI]

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  14. Semiconductor Nanotechnology: Novel Materials and Devices for Electronics, Photonics, and Renewable Energy Applications

    SciTech Connect (OSTI)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag S; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-03-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of Nano and Giga Challenges in Electronics and Photonics NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10 14 August

  15. A 1 A laser driver in 0.35 {mu}m complementary metal oxide semiconductor technology for a pulsed time-of-flight laser rangefinder

    SciTech Connect (OSTI)

    Nissinen, Jan; Kostamovaara, Juha

    2009-10-15

    An integrated complementary metal oxide semiconductor (CMOS) current pulse generator is presented which achieves an ampere-scale peak current pulse with a rise time and pulse width of less than 1 and 2.5 ns (pulse width at half maximum), respectively. The generator is implemented in a 0.35 {mu}m CMOS process and consists of four parallel n-type metal oxide semiconductor transistors driven by a scaled buffer chain to achieve fast switching.

  16. New Electrode Materials for Magnesium Batteries and Metal Anodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search New Electrode Materials for Magnesium Batteries and Metal Anodes Beyond ... Technology Marketing Summary Magnesium ion batteries present a viable alternative to ...

  17. Apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOE Patents [OSTI]

    Ahrenkiel, Richard K.; Johnston, Steven W.

    2001-01-01

    An apparatus for determining the minority carrier lifetime of a semiconductor sample includes a positioner for moving the sample relative to a coil. The coil is connected to a bridge circuit such that the impedance of one arm of the bridge circuit is varied as sample is positioned relative to the coil. The sample is positioned relative to the coil such that any change in the photoconductance of the sample created by illumination of the sample creates a linearly related change in the input impedance of the bridge circuit. In addition, the apparatus is calibrated to work at a fixed frequency so that the apparatus maintains a consistently high sensitivity and high linearity for samples of different sizes, shapes, and material properties. When a light source illuminates the sample, the impedance of the bridge circuit is altered as excess carriers are generated in the sample, thereby producing a measurable signal indicative of the minority carrier lifetimes or recombination rates of the sample.

  18. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    SciTech Connect (OSTI)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-07-07

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  19. Californium--palladium metal neutron source material

    DOE Patents [OSTI]

    Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.

    1974-01-22

    Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)

  20. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements

    DOE Patents [OSTI]

    Guha, Subhendu; Ovshinsky, Stanford R.

    1990-02-02

    A method of fabricating doped microcrystalline semiconductor alloy material which includes a band gap widening element through a glow discharge deposition process by subjecting a precursor mixture which includes a diluent gas to an a.c. glow discharge in the absence of a magnetic field of sufficient strength to induce electron cyclotron resonance.

  1. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  2. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  3. Method for manufacturing electrical contacts for a thin-film semiconductor device

    DOE Patents [OSTI]

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1988-11-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  4. Electron-phonon coupling and thermal conductance at a metal-semiconductor interface: First-principles analysis

    SciTech Connect (OSTI)

    Sadasivam, Sridhar; Fisher, Timothy S.; Waghmare, Umesh V.

    2015-04-07

    The mechanism of heat transfer and the contribution of electron-phonon coupling to thermal conductance of a metal-semiconductor interface remains unclear in the present literature. We report ab initio simulations of a technologically important titanium silicide (metal)–silicon (semiconductor) interface to estimate the Schottky barrier height, and the strength of electron-phonon and phonon-phonon heat transfer across the interface. The electron and phonon dispersion relations of TiSi{sub 2} with C49 structure and the TiSi{sub 2}-Si interface are obtained using first-principles calculations within the density functional theory framework. These are used to estimate electron-phonon linewidths and the associated Eliashberg function that quantifies coupling. We show that the coupling strength of electrons with interfacial phonon modes is of the same order of magnitude as coupling of electrons to phonon modes in the bulk metal, and its contribution to electron-phonon interfacial conductance is comparable to the harmonic phonon-phonon conductance across the interface.

  5. Metal segregation in hierarchically structured cathode materials...

    Office of Scientific and Technical Information (OSTI)

    due to the tailored surface chemistry, compared to conventional NMC-442 materials. ... Nanomaterials; batteries; materials chemistry; surface chemistry Word Cloud More Like ...

  6. X-ray photoemission electron microscopy for the study of semiconductor materials

    SciTech Connect (OSTI)

    Anders, S.; Stammler, T.; Padmore, H.; Terminello, L.J.; Jankowski, A.F.; Stohr, J.; Diaz, J.; Cossy-Gantner, A.

    1998-03-01

    Photoemission Electron Microscopy (PEEM) using X-rays is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper the authors give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments.

  7. Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in 2D Transition-metal Dichalcogenides

    SciTech Connect (OSTI)

    Huang, Bing; Yoon, Mina; Sumpter, Bobby G; Wei, Su-Huai; Liu, Feng

    2015-09-18

    Developing practical approaches to effectively reduce the deep defect levels in semiconductors is critical for their use in electronic and optoelectronic devices, but this is still a very challenging task. In this Letter, we propose that specific alloying can provide an effective means to suppress the deep defect levels in semiconductors while maintaining their basic electronic properties. Specifically, we demonstrate that for such 2D transition-metal dichalcogenides as MoSe2 and WSe2, in which the most abundant defects that can induce deep levels are anion vacancies, the deep levels can be effectively suppressed in Mo1-xWxSe2 alloys at low W concentrations. This surprising phenomenon is associated with the fact that the global alloy concentration can substantially tune the band edge energies, whereas the preferred locations of Se vacancies around W atoms control the defect level locally. Our findings illustrate a new concept of alloy engineering and provide a promising approach to control the defect properties of semiconductors.

  8. Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in 2D Transition-metal Dichalcogenides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Bing; Yoon, Mina; Sumpter, Bobby G; Wei, Su-Huai; Liu, Feng

    2015-09-18

    Developing practical approaches to effectively reduce the deep defect levels in semiconductors is critical for their use in electronic and optoelectronic devices, but this is still a very challenging task. In this Letter, we propose that specific alloying can provide an effective means to suppress the deep defect levels in semiconductors while maintaining their basic electronic properties. Specifically, we demonstrate that for such 2D transition-metal dichalcogenides as MoSe2 and WSe2, in which the most abundant defects that can induce deep levels are anion vacancies, the deep levels can be effectively suppressed in Mo1-xWxSe2 alloys at low W concentrations. This surprisingmore » phenomenon is associated with the fact that the global alloy concentration can substantially tune the band edge energies, whereas the preferred locations of Se vacancies around W atoms control the defect level locally. Our findings illustrate a new concept of alloy engineering and provide a promising approach to control the defect properties of semiconductors.« less

  9. Metal Hydride Storage Materials | Department of Energy

    Office of Environmental Management (EM)

    ... typically of alkali or alkaline earth elements that are ionically bonded to a complex anion. ... Journal of Rare Earths (23), 2005; pp. 611-616. Switendick, A.C. In Hydrogen in Metals ...

  10. Plasmonic-exciton coupling in synthesized metal/semiconductor hybrid nanocomposites

    SciTech Connect (OSTI)

    Gadalla, A.; Hamad, D. A.; Mohamed, M. B.

    2015-12-31

    A new method has been developed to grow plasmonic semiconductor nanocomposites of Au/CdSe and Ag/CdSe. Their chemical composition and crystal structure are determined by X-ray diffraction. The collective optical properties of the prepared semiconductor nanohybrid have been measured using spectrophotometer techniques and compared to those of the individual components. The electron transfer processes from CdSe to the gold are faster than that of the silver. Au/CdSe has a strong plasmonic-excitonic coupling, but Ag/CdSe has a weak plasmonic-excitonic coupling.

  11. Solid materials for removing metals and fabrication method

    DOE Patents [OSTI]

    Coronado, Paul R.; Reynolds, John G.; Coleman, Sabre J.

    2004-10-19

    Solid materials have been developed to remove contaminating metals and organic compounds from aqueous media. The contaminants are removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the metals and the organics leaving a purified aqueous stream. The materials are sol-gel and or sol-gel and granulated activated carbon (GAC) mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards the contaminant(s). The contaminated solid materials can then be disposed of or the contaminant can be removed and the solids recycled.

  12. Time-resolved THz studies of carrier dynamics in semiconductors, superconductors, and strongly-correlated electron materials

    SciTech Connect (OSTI)

    Kaindl, Robert A.; Averitt, Richard D.

    2006-11-14

    Perhaps the most important aspect of contemporary condensed matter physics involves understanding strong Coulomb interactions between the large number of electrons in a solid. Electronic correlations lead to the emergence of new system properties, such as metal-insulator transitions, superconductivity, magneto-resistance, Bose-Einstein condensation, the formation of excitonic gases, or the integer and fractional Quantum Hall effects. The discovery of high-Tc superconductivity in particular was a watershed event, leading to dramatic experimental and theoretical advances in the field of correlated-electron systems. Such materials often exhibit competition between the charge, lattice, spin, and orbital degrees of freedom, whose cause-effect relationships are difficult to ascertain. Experimental insight into the properties of solids is traditionally obtained by time-averaged probes, which measure e.g., linear optical spectra, electrical conduction properties, or the occupied band structure in thermal equilibrium. Many novel physical properties arise from excitations out of the ground state into energetically higher states by thermal, optical, or electrical means. This leads to fundamental interactions between the system's constituents, such as electron-phonon and electron-electron interactions, which occur on ultrafast timescales. While these interactions underlie the physical properties of solids, they are often only indirectly inferred from time-averaged measurements. Time-resolved spectroscopy, consequently, is playing an ever increasing role to provide insight into light-matter interaction, microscopic processes, or cause-effect relationships that determine the physics of complex materials. In the past, experiments using visible and near-infrared femtosecond pulses have been extensively employed, e.g. to follow relaxation and dephasing processes in metals and semiconductors. However, many basic excitations in strongly-correlated electron systems and nanoscale

  13. Thermoelastic response of thin metal films and their adjacent materials

    SciTech Connect (OSTI)

    Kang, S.; Yoon, Y.; Kim, J.; Kim, W.

    2013-01-14

    A pulsed laser beam applied to a thin metal film is capable of launching an acoustic wave due to thermal expansion. Heat transfer from the thin metal film to adjacent materials can also induce thermal expansion; thus, the properties of these adjacent materials (as well as the thin metal film) should be considered for a complete description of the thermoelastic response. Here, we show that adjacent materials with a small specific heat and large thermal expansion coefficient can generate an enhanced acoustic wave and we demonstrate a three-fold increase in the peak pressure of the generated acoustic wave on substitution of parylene for polydimethylsiloxane.

  14. Metalsemiconductor transition in atomically thin Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub 8} nanosheets

    SciTech Connect (OSTI)

    Wang, Yang; Cheng, Rui; Dong, Jianjin; Liu, Yuan; Zhou, Hailong; Yu, Woo Jong; Terasaki, Ichiro; Huang, Yu; Duan, Xiangfeng

    2014-09-01

    Two-dimensional layered materials have attracted considerable attention since the discovery of graphene. Here we demonstrate that the layered Bi{sub 2}Sr{sub 2}Co{sub 2}O{sub 8} (BSCO) can be mechanically exfoliated into single- or few-layer nanosheets. The BSCO nanosheets with four or more layers display bulk metallic characteristics, while the nanosheets with three or fewer layers have a layer-number-dependent semiconducting characteristics. Charge transport in bilayer or trilayer BSCO nanosheets exhibits Mott 2D variable-range-hopping (VRH) conduction throughout 2 K300 K, while the charge transport in monolayers follows the Mott-VRH law above a crossover temperature of 75 K, and is governed by Efros and Shklovskii-VRH laws below 75 K. Disorder potentials and Coulomb charging both contribute to the transport gap of these nanodevices. Our study reveals a distinct layer number-dependent metal-to-semiconductor transition in a new class of 2D materials, and is of great significance for both fundamental investigations and practical devices.

  15. Cermet materials prepared by combustion synthesis and metal infiltration

    DOE Patents [OSTI]

    Holt, J.B.; Dunmead, S.D.; Halverson, D.C.; Landingham, R.L.

    1991-01-29

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced. 6 figures.

  16. Cermet materials prepared by combustion synthesis and metal infiltration

    DOE Patents [OSTI]

    Holt, Joseph B.; Dunmead, Stephen D.; Halverson, Danny C.; Landingham, Richard L.

    1991-01-01

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.

  17. Metallic photonic band-gap materials

    SciTech Connect (OSTI)

    Sigalas, M.M.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M.

    1995-10-15

    We calculate the transmission and absorption of electromagnetic waves propagating in two-dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there is substantial difference between the {ital s}- and {ital p}-polarized waves. The {ital p}-polarized waves exhibit behavior similar to the dielectric PBG`s. But, the {ital s}-polarized waves have a cutoff frequency below which there are no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but there are important differences related to the topology of the structure. For 3D structures with isolated metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG`s, while for 3D structures with the metal forming a continuous network (network topology), there is a cutoff frequency below which there are no propagating modes. The systems with the network topology may have some interesting applications for frequencies less than about 1 THz where the absorption can be neglected. We also study the role of the defects in the metallic structures.

  18. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  19. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  20. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  1. Metal-air cell with ion exchange material

    SciTech Connect (OSTI)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  2. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  3. Metallic Membrane Materials Development for Hydrogen Production from Coal

    Office of Scientific and Technical Information (OSTI)

    Derived Syngas (Conference) | SciTech Connect Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas Citation Details In-Document Search Title: Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the

  4. Innovative & Complex Metal-Rich Materials | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative & Complex Metal-Rich Materials Research Personnel Updates Publications The Golden Key Read More New Material with each Element Doing its own Thing Read More Taking Advantage of Gold's Electron Attraction Read More Previous Pause Next Synthesis This project strives (i) to uncover and ultimately design new families of intermetallic phases; (ii) to understand the factors that stabilize both new and known metal-rich phases by combining exploratory synthesis and temperature-dependent

  5. Performance enhancement of GaN metalsemiconductormetal ultraviolet photodetectors by insertion of ultrathin interfacial HfO{sub 2} layer

    SciTech Connect (OSTI)

    Kumar, Manoj E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, Burak; Okyay, Ali Kemal E-mail: aokyay@ee.bilkent.edu.tr

    2015-03-15

    The authors demonstrate improved device performance of GaN metalsemiconductormetal ultraviolet (UV) photodetectors (PDs) by ultrathin HfO{sub 2} (UT-HfO{sub 2}) layer on GaN. The UT-HfO{sub 2} interfacial layer is grown by atomic layer deposition. The dark current of the PDs with UT-HfO{sub 2} is significantly reduced by more than two orders of magnitude compared to those without HfO{sub 2} insertion. The photoresponsivity at 360?nm is as high as 1.42 A/W biased at 5 V. An excellent improvement in the performance of the devices is ascribed to allowed electron injection through UT-HfO{sub 2} on GaN interface under UV illumination, resulting in the photocurrent gain with fast response time.

  6. Study of metal dusting phenomenon and development of materials resistant to metal dusting.

    SciTech Connect (OSTI)

    Natesan, K.

    2002-03-13

    The deposition of carbon from carbonaceous gaseous environments is prevalent in many chemical and petrochemical processes such as reforming systems, syngas production systems, iron reduction plants, and others. One of the major consequences of carbon deposition is the degradation of structural materials by a phenomenon known as metal dusting. There are two major issues of importance in metal dusting. First is formation of carbon and subsequent deposition of carbon on metallic materials. Second is the initiation of metal dusting degradation of the alloy. Details are presented on a research program that is underway at Argonne National Laboratory to study the metal dusting phenomenon from a fundamental scientific base involving laboratory research in simulated process conditions and field testing of materials in actual process environments. The project has participation from the US chemical industry, alloy manufacturers, and the Materials Technology Institute, which serves the chemical process industry.

  7. 3-D Printer Speeds Metals Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-D Printer Speeds Metals Research The Critical Materials Institute has a new 3D printer for metals research. Ryan Ott, principal investigator at the Ames Laboratory and the CMI, is using 3D printing technology to discover new materials. He uses the printer to produce a large variety of alloys in less time than needed in traditional casting methods. "Metal 3D printers are slowly becoming more commonplace," Ott said. "They can be costly, and are often limited to small-scale

  8. Preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Capone, Donald W.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  9. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOE Patents [OSTI]

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  10. Experimental study on vertical scaling of InAs-on-insulator metal-oxide-semiconductor field-effect transistors

    SciTech Connect (OSTI)

    Kim, SangHyeon E-mail: sh-kim@kist.re.kr; Yokoyama, Masafumi; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko

    2014-06-30

    We have investigated effects of the vertical scaling on electrical properties in extremely thin-body InAs-on-insulator (-OI) metal-oxide-semiconductor field-effect transistors (MOSFETs). It is found that the body thickness (T{sub body}) scaling provides better short channel effect (SCE) control, whereas the T{sub body} scaling also causes the reduction of the mobility limited by channel thickness fluctuation (δT{sub body}) scattering (μ{sub fluctuation}). Also, in order to achieve better SCEs control, the thickness of InAs channel layer (T{sub channel}) scaling is more favorable than the thickness of MOS interface buffer layer (T{sub buffer}) scaling from a viewpoint of a balance between SCEs control and μ{sub fluctuation} reduction. These results indicate necessity of quantum well channel structure in InAs-OI MOSFETs and these should be considered in future transistor design.

  11. Photo-response of a P3HT:PCBM blend in metal-insulator-semiconductor capacitors

    SciTech Connect (OSTI)

    Devynck, M.; Rostirolla, B.; Watson, C. P.; Taylor, D. M.

    2014-11-03

    Metal-insulator-semiconductor capacitors are investigated, in which the insulator is cross-linked polyvinylphenol and the active layer a blend of poly(3-hexylthiophene), P3HT, and the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM). Admittance spectra and capacitance-voltage measurements obtained in the dark both display similar behaviour to those previously observed in P3HT-only devices. However, the photo-capacitance response is significantly enhanced in the P3HT:PCBM case, where exciton dissociation leads to electron transfer into the PCBM component. The results are consistent with a network of PCBM aggregates that is continuous through the film but with no lateral interconnection between the aggregates at or near the blend/insulator interface.

  12. Hydrogen incorporation induced metal-semiconductor transition in ZnO:H thin films sputtered at room temperature

    SciTech Connect (OSTI)

    Singh, Anil; Chaudhary, Sujeet; Pandya, D. K.

    2013-04-29

    The room temperature deposited ZnO:H thin films having high conductivity of 500 Ohm-Sign {sup -1} cm{sup -1} and carrier concentration reaching 1.23 Multiplication-Sign 10{sup 20} cm{sup -3} were reactively sputter deposited on glass substrates in the presence of O{sub 2} and 5% H{sub 2} in Ar. A metal-semiconductor transition at 165 K is induced by the increasing hydrogen incorporation in the films. Hydrogen forms shallow donor complex with activation energy of {approx}10-20 meV at oxygen vacancies (V{sub O}) leading to increase in carrier concentration. Hydrogen also passivates V{sub O} and V{sub Zn} causing {approx}4 times enhancement of mobility to 25.4 cm{sup 2}/V s. These films have potential for use in transparent flexible electronics.

  13. Roles of grain boundaries on the semiconductor to metal phase transition of VO{sub 2} thin films

    SciTech Connect (OSTI)

    Jian, Jie; Jacob, Clement; Chen, Aiping; Zhang, Wenrui; Wang, Han; Huang, Jijie; Wang, Haiyan

    2015-09-07

    Vanadium dioxide (VO{sub 2}) thin films with controlled grain sizes are deposited on amorphous glass substrates by pulsed laser deposition. The grain boundaries (GBs) are found as the dominating defects in the thin films. The semiconductor to metal transition (SMT) properties of VO{sub 2} thin films are characterized and correlated to the GB density. The VO{sub 2} films with lower GB density exhibit a sharper SMT with a larger transition amplitude. A high resolution TEM study at GB area reveals the disordered atomic structures along the boundaries and the distorted crystal lattices near the boundaries. The VO{sub 2} SMT amplitude and sharpness could be directly related to these defects at and near the boundaries.

  14. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOE Patents [OSTI]

    Lagally, Max G.; Evans, Paul G.; Ritz, Clark S.

    2011-02-15

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic longitudinal modulation, which may be a compositional modulation or a strain-induced modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  15. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOE Patents [OSTI]

    Lagally, Max G; Evans, Paul G; Ritz, Clark S

    2013-09-17

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  16. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOE Patents [OSTI]

    Lagally, Max G.; Evans, Paul G.; Ritz, Clark S.

    2015-11-17

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  17. Mass and charge overlaps in beamline implantation into compound semiconductor materials

    SciTech Connect (OSTI)

    Current, M. I.; Eddy, R.; Hudak, C.; Serfass, J.; Mount, G.

    2012-11-06

    Mass overlaps occurring as a result of extraction of ions from an arc discharge and gas collisions, producing molecular break up and charge exchange in the accelerator beamline, are examined for ion implantation into compound semiconductors. The effects of the choice of plasma gas elements for Be{sup +} implants are examined as an example.

  18. Compatibility of materials with liquid metal targets for SNS

    SciTech Connect (OSTI)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-06-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.

  19. Electrochemical removal of material from metallic work

    DOE Patents [OSTI]

    Csakvary, Tibor; Fromson, Robert E.

    1980-05-13

    Deburring, polishing, surface forming and the like are carried out by electrochemical machining with conformable electrode means including an electrically conducting and an insulating web. The surface of the work to be processed is covered by a deformable electrically insulating web or cloth which is perforated and conforms with the work. The web is covered by a deformable perforated electrically conducting screen electrode which also conforms with, and is insulated from, the work by the insulating web. An electrolyte is conducted through the electrode and insulating web and along the work through a perforated elastic member which engages the electrode under pressure pressing the electrode and web against the work. High current under low voltage is conducted betwen the electrode and work through the insulator, removing material from the work. Under the pressure of the elastic member, the electrode and insulator continue to conform with the work and the spacing between the electrode and work is maintained constant.

  20. Screenable contact structure and method for semiconductor devices

    DOE Patents [OSTI]

    Ross, Bernd

    1980-08-26

    An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.

  1. A new universal solution for the electrofinishing of metallic materials

    SciTech Connect (OSTI)

    Ellis, T.W.; Lograsso, T.A.; Hilsenbeck, S.; Sailsbury, H.E.

    1994-10-01

    A new reagent has been applied to the electrofinishing of metallic materials for metallographic preparation and surface cleaning. The development of this reagent was in response to the safety, health and disposal problems associated with the use of perchloric acid based solutions. This procedure has been applied to metallic materials that are very difficult to electrofinish, e.g., rare earths, Ti, Nd{sub 2}Fe{sub 14}B, Pb, and intermetallic alloys. Both the procedure and results of electrofinishing will be discussed.

  2. Metallic phase change material thermal storage for Dish Stirling (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Metallic phase change material thermal storage for Dish Stirling Citation Details In-Document Search Title: Metallic phase change material thermal storage for Dish Stirling Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do

  3. Metal-oxide-based energetic materials and synthesis thereof

    DOE Patents [OSTI]

    Tillotson, Thomas M. , Simpson; Randall L.; Hrubesh, Lawrence W.

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  4. Selective CO{sub 2} reduction conjugated with H{sub 2}O oxidation utilizing semiconductor/metal-complex hybrid photocatalysts

    SciTech Connect (OSTI)

    Morikawa, T. Sato, S. Arai, T. Uemura, K. Yamanaka, K. I. Suzuki, T. M. Kajino, T. Motohiro, T.

    2013-12-10

    We developed a new hybrid photocatalyst for CO{sub 2} reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ?G between the position of conduction band minimum (E{sub CBM}) of the semiconductor and the CO{sub 2} reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO{sub 2} to formate using water as an electron donor and a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO{sub 2} reduction with a TiO{sub 2} photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.

  5. Effect of proton irradiation energy on AlGaN/GaN metal-oxide semiconductor high electron mobility transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahn, S.; Dong, C.; Zhu, W.; Kim, B. -j.; Hwang, Ya-Hsi; Ren, F.; Pearton, S. J.; Yang, Gwangseok; Kim, J.; Patrick, Erin; et al

    2015-08-18

    The effects of proton irradiation energy on dc characteristics of AlGaN/GaN metal-oxide semiconductor high electron mobility transistors (MOSHEMTs) using Al2O3 as the gate dielectric were studied. Al2O3/AlGaN/GaN MOSHEMTs were irradiated with a fixed proton dose of 5 × 1015 cm-2 at different energies of 5, 10, or 15 MeV. More degradation of the device dc characteristics was observed for lower irradiation energy due to the larger amount of nonionizing energy loss in the active region of the MOSHEMTs under these conditions. The reductions in saturation current were 95.3%, 68.3%, and 59.8% and reductions in maximum transconductance were 88%, 54.4%, andmore » 40.7% after 5, 10, and 15 MeV proton irradiation, respectively. Both forward and reverse gate leakage current were reduced more than one order of magnitude after irradiation. The carrier removal rates for the irradiation energies employed in this study were in the range of 127–289 cm-1. These are similar to the values reported for conventional metal-gate high-electron mobility transistors under the same conditions and show that the gate dielectric does not affect the response to proton irradiation for these energies.« less

  6. Method and apparatus for electron-only radiation detectors from semiconductor materials

    DOE Patents [OSTI]

    Lund, James C. (429 Warwick Ave., San Leandro, CA 94577)

    2000-01-01

    A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.

  7. Noncontacting thermoelectric detection of material imperfections in metals

    SciTech Connect (OSTI)

    Peter B. Nagy; Adnan H. Nayfeh; Waseem I. Faidi; Hector Carreon; Balachander Lakshminaraya; Feng Yu; Bassam Abu-Nabah

    2005-06-17

    This project was aimed at developing a new noncontacting thermoelectric method for nondestructive detection of material imperfections in metals. The method is based on magnetic sensing of local thermoelectric currents around imperfections when a temperature gradient is established throughout a conducting specimen by external heating and cooling. The surrounding intact material serves as the reference electrode therefore the detection sensitivity could be very high if a sufficiently sensitive magnetometer is used in the measurements. This self-referencing, noncontacting, nondestructive inspection technique offers the following distinct advantages over conventional methods: high sensitivity to subtle variations in material properties, unique insensitivity to the size, shape, and other geometrical features of the specimen, noncontacting nature with a substantial stand-off distance, and the ability to probe relatively deep into the material. The potential applications of this method cover a very wide range from detection metallic inclusions and segregations, inhomogeneities, and tight cracks to characterization of hardening, embrittlement, fatigue, texture, and residual stresses.

  8. High capacity nickel battery material doped with alkali metal cations

    DOE Patents [OSTI]

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  9. Low dark current and high speed ZnO metalsemiconductormetal photodetector on SiO{sub 2}/Si substrate

    SciTech Connect (OSTI)

    al??kan, Deniz; Btn, Bayram; ak?r, M. Cihan; zcan, ?adan; zbay, Ekmel

    2014-10-20

    ZnO thin films are deposited by radio-frequency magnetron sputtering on thermally grown SiO{sub 2} on Si substrates. Pt/Au contacts are fabricated by standard photolithography and lift-off in order to form a metal-semiconductor-metal (MSM) photodetector. The dark current of the photodetector is measured as 1?pA at 100?V bias, corresponding to 100?pA/cm{sup 2} current density. Spectral photoresponse measurement showed the usual spectral behavior and 0.35?A/W responsivity at a 100?V bias. The rise and fall times for the photocurrent are measured as 22 ps and 8?ns, respectively, which are the lowest values to date. Scanning electron microscope image shows high aspect ratio and dense grains indicating high surface area. Low dark current density and high speed response are attributed to high number of recombination centers due to film morphology, deducing from photoluminescence measurements. These results show that as deposited ZnO thin film MSM photodetectors can be used for the applications needed for low light level detection and fast operation.

  10. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  11. Development of materials resistant to metal dusting degradation.

    SciTech Connect (OSTI)

    Natesan, K.; Zeng, Z.; Nuclear Engineering Division

    2007-12-07

    The deposition of carbon from carbonaceous gaseous environments is prevalent in many chemical and petrochemical processes such as, hydrogen-, ammonia-, and methanol-reforming systems, syngas production systems, and iron-ore reduction plants. One of the major consequences of carbon deposition is the degradation of structural materials by a phenomenon known as ''metal dusting''. There are two major issues of importance in metal dusting. First is formation of coke and subsequent deposition of coke on metallic structural components. Second is the initiation and subsequent propagation of metal dusting degradation of the structural alloy. In the past, we reported on the mechanism for metal dusting of Fe- and Ni-base alloys. In this report, we present metal dusting data on both Fe- and Ni-base alloys after exposure in high and atmospheric pressure environments that simulate the gas chemistry in operating hydrogen reformers. We have also measured the progression of pits by measuring the depth as a function of exposure time for a variety of Fe- and Ni-base structural alloys. We have clearly established the role of transport of iron in forming a non-protective spinel phase in the initiation process and presence of carbon transfer channels in the oxide scale for the continued propagation of pits, by nano-beam X-ray analysis using the advance photon source (APS), Raman scattering, and SEM/EDX analysis. In this report, we have developed correlations between weight loss and pit progression rates and evaluated the effects of carbon activity, system pressure, and alloy chemistry, on weight loss and pit propagation. To develop pit propagation data for the alloys without incurring substantial time for the initiation of pits, especially for the Ni-base alloys that exhibit incubation times of thousands of hours, a pre-pitting method has been developed. The pre-pitted alloys exhibited pit propagation rates similar to those of materials tested without pre-pitting. We have also developed

  12. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  13. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  14. Development of materials resistant to metal dusting degradation.

    SciTech Connect (OSTI)

    Natesan, K.; Zeng, Z.

    2006-04-24

    Metal dusting corrosion has been a serious problem in the petroleum and petrochemical industries, such as reforming and syngas production systems. This form of deterioration has led to worldwide material loss for 50 years. For the past three years, we have studied the mechanism of metal dusting for Fe- and Ni-base alloys. In this report, we present a correlation between the weight loss and depth of pits that form in Ni-base alloys. Nickel-base alloys were also tested at 1 and 14.8 atm (210 psi), in a high carbon activity environment. Higher system pressure was found to accelerate corrosion in most Ni-base alloys. To reduce testing time, a pre-pitting method was developed. Mechanical scratches on the alloy surface led to fast metal dusting corrosion. We have also developed preliminary data on the performance of weldments of several Ni-base alloys in a metal dusting environment. Finally, Alloy 800 tubes and plates used in a reformer plant were examined by scanning electron microscopy, energy dispersive X-ray, and Raman spectroscopy. The oxide scale on the surface of the Alloy 800 primarily consists of Fe{sub 1+x}Cr{sub 2-X}O{sub 4} spinel phase with high Fe content. Carbon can diffuse through this oxide scale. It was discovered that the growth of metal dusting pits could be stopped by means of a slightly oxidized alloy surface. This leads to a new way to solve metal dusting problem.

  15. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOE Patents [OSTI]

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  16. 2012 DEFECTS IN SEMICONDUCTORS GORDON RESEARCH CONFERENCE, AUGUST 12-17, 2012

    SciTech Connect (OSTI)

    GLASER, EVAN

    2012-08-17

    The meeting shall strive to develop and further the fundamental understanding of defects and their roles in the structural, electronic, optical, and magnetic properties of bulk, thin film, and nanoscale semiconductors and device structures. Point and extended defects will be addressed in a broad range of electronic materials of particular current interest, including wide bandgap semiconductors, metal-oxides, carbon-based semiconductors (e.g., diamond, graphene, etc.), organic semiconductors, photovoltaic/solar cell materials, and others of similar interest. This interest includes novel defect detection/imaging techniques and advanced defect computational methods.

  17. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    SciTech Connect (OSTI)

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A.; Tang, H.; Boser, B. E.; Tsai, J. M.; Daneman, M.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  18. In situ structural characterization of metal catalysts and materials using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XAFS spectroscopy in combination with complementary techniques. | Stanford Synchrotron Radiation Lightsource In situ structural characterization of metal catalysts and materials using XAFS spectroscopy in combination with complementary techniques. Wednesday, October 17, 2012 - 1:00pm SSRL Bldg. 137, Room 322 The availability of third generation light sources has greatly enhanced the opportunities for invesigating chemical change in real time.1 This presentation describes studies carried out

  19. Semiconductor devices incorporating multilayer interference regions

    DOE Patents [OSTI]

    Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

    1987-08-31

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

  20. Semiconductor devices incorporating multilayer interference regions

    DOE Patents [OSTI]

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  1. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    SciTech Connect (OSTI)

    Hahn, Herwig Kalisch, Holger; Vescan, Andrei; Pécz, Béla; Kovács, András; Heuken, Michael

    2015-06-07

    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10{sup 13 }cm{sup –2} allowing to considerably shift the threshold voltage to more positive values.

  2. Method of doping a semiconductor

    DOE Patents [OSTI]

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  3. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  4. Scrap metal management issues associated with naturally occurring radioactive material

    SciTech Connect (OSTI)

    Smith, K.P.; Blunt, D.L.

    1995-08-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

  5. Effect of oxygen vacancy on half metallicity in Ni-doped CeO{sub 2} diluted magnetic semiconductor

    SciTech Connect (OSTI)

    Saini, Hardev S. Saini, G. S. S.; Singh, Mukhtiyar; Kashyap, Manish K.

    2015-05-15

    The electronic and magnetic properties of Ni-doped CeO{sub 2} diluted amgentic semiconductor (DMS) including the effect of oxygen vacancy (V{sub o}) with doping concentration, x = 0.125 have been calculated using FPLAPW method based on Density Functional Theory (DFT) as implemented in WIEN2k. In the present supercell approach, the XC potential was constructed using GGA+U formalism in which Coulomb correction is applied to standard GGA functional within the parameterization of Perdew-Burke-Ernzerhof (PBE). We have found that the ground state properties of bulk CeO{sub 2} compound have been modified significantly due to the substitution of Ni-dopant at the cation (Ce) site with/without V{sub O} and realized that the ferromagnetism in CeO{sub 2} remarkably depends on the V{sub o} concentrations. The presence of V{sub o}, in Ni-doped CeO{sub 2}, can leads to strong ferromagnetic coupling between the nearest neighboring Ni-ions and induces a HMF in this compound. Such ferromagnetic exchange coupling is mainly attributed to spin splitting of Ni-d states, via electrons trapped in V{sub o}. The HMF characteristics of Ni-doped CeO{sub 2} including V{sub o} makes it an ideal material for spintronic devices.

  6. Controlled Metal Photodeposition - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Controlled Metal Photodeposition Ames Laboratory Contact AMES About This Technology Technology Marketing Summary A reliable syntheses of semiconductor-metal heterostructure has been developed to enable application of materials in catalytic, magnetic, and opto-electronic devices, and Iowa State University, The Ames Laboratory's

  7. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOE Patents [OSTI]

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  8. Novel, band-controlled metal oxide compositions for semiconductor-mediated photocatalytic splitting of water to produce H{sub 2}

    SciTech Connect (OSTI)

    Gupta, Narendra M.

    2013-02-05

    Semiconductor-mediated photo-catalytic dissociation of water offers a unique opportunity for the production of H{sub 2}, a sustainable source of energy. More efficient and chemically stable photo-catalysts, however, remain a vital requirement for commercial viability of this process. The recent research in my group has focused on the synthesis of several new metal oxide (MO) photo-catalysts, such as: LaInO{sub 3}, GaFeO{sub 3}, InVO{sub 4}, In{sub 2}TiO{sub 5} and nanotubular TiO{sub 2}. These samples of controlled grain morphology have been synthesized by using different synthesis protocols and with and without coating of a noble metal co-catalyst. The doping of an impurity, either at cationic or at anionic lattice site, has helped in the tailoring of band structure and making these oxides visible-light-sensitive. Our study has revealed that the surface characteristics, grain morphology, band structure, and doping-induced lattice imperfections control the photo-physical properties and overall photo-catalytic water splitting activity of these metal/MO composites [1-6]. We have demonstrated that, besides promoting certain charge-transfer steps, metal-semiconductor interfaces influence the adsorption of water molecules and their subsequent interaction with photo-generated electron-hole pair at the catalyst surface. The role played by the above-mentioned micro-structural properties in photo-catalytic water splitting process will be discussed.

  9. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOE Patents [OSTI]

    Capone, D.W.

    1990-11-27

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities. 3 figs.

  10. Magnetic preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  11. Magnetic preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  12. Preferential orientation of metal oxide superconducting materials by mechanical means

    DOE Patents [OSTI]

    Capone, Donald W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0<.times.<0.5) is capable of accommodating very large current densities. By aligning the two-dimensional Cu--O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the metal oxide material to accommodate high current densities. The orthorhombic crystalline particles have a tendency to lie down on one of the longer sides, i.e., on the a- or b-direction. Aligning the crystals in this orientation is accomplished by mechanical working of the material such as by extrusion, tape casting or slip casting, provided a single crystal powder is used as a starting material, to provide a highly oriented, e.g., approximately 90% of the crystal particles have a common orientation, superconducting matrix capable of supporting large current densities.

  13. CaTiO.sub.3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class

    DOE Patents [OSTI]

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A structure including a film of a desired perovskite oxide which overlies and is fully commensurate with the material surface of a semiconductor-based substrate and an associated process for constructing the structure involves the build up of an interfacial template film of perovskite between the material surface and the desired perovskite film. The lattice parameters of the material surface and the perovskite of the template film are taken into account so that during the growth of the perovskite template film upon the material surface, the orientation of the perovskite of the template is rotated 45.degree. with respect to the orientation of the underlying material surface and thereby effects a transition in the lattice structure from fcc (of the semiconductor-based material) to the simple cubic lattice structure of perovskite while the fully commensurate periodicity between the perovskite template film and the underlying material surface is maintained. The film-growth techniques of the invention can be used to fabricate solid state electrical components wherein a perovskite film is built up upon a semiconductor-based material and the perovskite film is adapted to exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic or large dielectric properties during use of the component.

  14. Control method and system for use when growing thin-films on semiconductor-based materials

    DOE Patents [OSTI]

    McKee, Rodney A.; Walker, Frederick J.

    2001-01-01

    A process and system for use during the growth of a thin film upon the surface of a substrate by exposing the substrate surface to vaporized material in a high vacuum (HV) facility involves the directing of an electron beam generally toward the surface of the substrate as the substrate is exposed to vaporized material so that electrons are diffracted from the substrate surface by the beam and the monitoring of the pattern of electrons diffracted from the substrate surface as vaporized material settles upon the substrate surface. When the monitored pattern achieves a condition indicative of the desired condition of the thin film being grown upon the substrate, the exposure of the substrate to the vaporized materials is shut off or otherwise adjusted. To facilitate the adjustment of the crystallographic orientation of the film relative to the electron beam, the system includes a mechanism for altering the orientation of the surface of the substrate relative to the electron beam.

  15. Magnetism, half-metallicity and electrical transport properties of V- and Cr-doped semiconductor SnTe: A theoretical study

    SciTech Connect (OSTI)

    Liu, Y.; Bose, S. K.; Kudrnovský, J.

    2013-12-07

    This work presents results for the electronic structure, magnetic properties, and electrical resistivity of the semiconductor SnTe doped with 3d transition metals V and Cr. From the standpoint of potential application in spintronics, we look for half-metallic states and analyze their properties in both rock salt and zinc blende structures using ab initio electronic structure methods. In both cases, it is the Sn-sublattice that is doped with the transition metals, as has been the case with experiments performed so far. We find four half-metallic compounds at their optimized cell volumes. Results of exchange interactions and the Curie temperature are presented and analyzed for all the relevant cases. Resistivity calculation based on Kubo-Greenwood formalism shows that the resistivities of these alloys due to transition metal doping of the Sn-sublattice may vary, in most cases, from typical liquid metal or metallic glass value to 2–3 times higher. 25% V-doping of the Sn-sublattice in the rock salt structure gives a very high resistivity, which can be traced to high values of the lattice parameter resulting in drastically reduced hopping or diffusivity of the states at the Fermi level.

  16. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOE Patents [OSTI]

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01material itself or as a support for said unary or binary metal oxides.

  17. Metallic phase change material thermal storage for Dish Stirling

    SciTech Connect (OSTI)

    Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; Coker, E. N.

    2015-06-05

    Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in the area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.

  18. Metallic phase change material thermal storage for Dish Stirling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; Coker, E. N.

    2015-06-05

    Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in themore » area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.« less

  19. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect (OSTI)

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  20. Method of passivating semiconductor surfaces

    DOE Patents [OSTI]

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  1. Method of passivating semiconductor surfaces

    DOE Patents [OSTI]

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  2. An in-depth noise model for giant magnetoresistance current sensors for circuit design and complementary metaloxidesemiconductor integration

    SciTech Connect (OSTI)

    Roldn, A. Roldn, J. B.; Reig, C.; Cardoso, S.; Cardoso, F.; Ferreira, R.; Freitas, P. P.

    2014-05-07

    Full instrumentation bridges based on spin valve of giant magnetoresistance and magnetic tunnel junction devices have been microfabricated and experimentally characterized from the DC and noise viewpoint. A more realistic model of these devices was obtained in this work, an electrical and thermal model previously developed have been improved in such a way that noise effects are also included. We have implemented the model in a circuit simulator and reproduced the experimental measurements accurately. This provides a more realistic and complete tool for circuit design where magnetoresistive elements are combined with well-known complementary metaloxidesemiconductor modules.

  3. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    DOE Patents [OSTI]

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  4. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect (OSTI)

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electronhole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electronhole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  5. Mechanism of the metallic metamaterials coupled to the gain material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Zhixiang; Droulias, Sotiris; Koschny, Thomas; Soukoulis, Costas M.

    2014-10-11

    We present evidence of strong coupling between the gain material and the metallic metamaterials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, the numerical pump-probe experiments are performed in several configurations (splitring resonators (SRRs), inverse SRRs and fishnets) of metamaterials, demonstrating reduction of the resonator damping in all cases and hence the possibility for loss compensation. We find that the differential transmittance ?T/T can be negative in different SRR configurations, such as SRRs on the top of the gain substrate, gain in the SRR gapmoreand gain covering the SRR structure, while in the fishnet metamaterial with gain ?T/T is positive.less

  6. Mechanism of the metallic metamaterials coupled to the gain material

    SciTech Connect (OSTI)

    Huang, Zhixiang; Droulias, Sotiris; Koschny, Thomas; Soukoulis, Costas M.

    2014-10-11

    We present evidence of strong coupling between the gain material and the metallic metamaterials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, the numerical pump-probe experiments are performed in several configurations (splitring resonators (SRRs), inverse SRRs and fishnets) of metamaterials, demonstrating reduction of the resonator damping in all cases and hence the possibility for loss compensation. We find that the differential transmittance ?T/T can be negative in different SRR configurations, such as SRRs on the top of the gain substrate, gain in the SRR gap and gain covering the SRR structure, while in the fishnet metamaterial with gain ?T/T is positive.

  7. Method of bonding metals to ceramics and other materials

    DOE Patents [OSTI]

    Gruen, D.M.; Krauss, A.R.; DeWald, A.P.; Chienping Ju; Rigsbee, J.M.

    1993-01-05

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  8. Method of bonding metals to ceramics and other materials

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; DeWald, A. Bruce; Ju, Chien-Ping; Rigsbee, James M.

    1993-01-01

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  9. High Metal Removal Rate Process for Machining Difficult Materials

    Broader source: Energy.gov (indexed) [DOE]

    manufacturing environments: Fuel injector nozzle drilling (automotive industry) Ceramic hole drilling (electronics industry) Precious metal drilling ...

  10. Metal-organic framework materials based on icosahedral boranes and carboranes

    DOE Patents [OSTI]

    Mirkin, Chad A.; Hupp, Joseph T.; Farha, Omar K.; Spokoyny, Alexander M.; Mulfort, Karen L.

    2010-11-02

    Disclosed herein are metal-organic frameworks of metals and boron rich ligands, such as carboranes and icosahedral boranes. Methods of synthesizing and using these materials in gas uptake are disclosed.

  11. Intrinsic Semiconductor | Open Energy Information

    Open Energy Info (EERE)

    Intrinsic Semiconductor is a privately held emerging growth company focusing on materials and device technologies based on silicon carbide (SiC) and gallium nitride (GaN)...

  12. Processing method for forming dislocation-free SOI and other materials for semiconductor use

    DOE Patents [OSTI]

    Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun

    1997-01-01

    A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.

  13. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    SciTech Connect (OSTI)

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Xu, Ke, E-mail: kxu2006@sinano.ac.cn; Wang, Jianfeng; Ren, Guoqiang [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123 (China)

    2014-01-07

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  14. Carrier Multiplication in Semiconductor Nanocrystals: Theoretical Screening of Candidate Materials Based on Band-Structure Effects

    SciTech Connect (OSTI)

    Luo, J. W.; Franceschetti, A.; Zunger, A.

    2008-01-01

    Direct carrier multiplication (DCM) occurs when a highly excited electron-hole pair decays by transferring its excess energy to the electrons rather than to the lattice, possibly exciting additional electron-hole pairs. Atomistic electronic structure calculations have shown that DCM can be induced by electron-hole Coulomb interactions, in an impact-ionization-like process whose rate is proportional to the density of biexciton states {rho}{sub XX}. Here we introduce a DCM 'figure of merit' R{sub 2}(E) which is proportional to the ratio between the biexciton density of states {rho}{sub XX} and the single-exciton density of states {rho}{sub x}, restricted to single-exciton and biexciton states that are coupled by Coulomb interactions. Using R{sub 2}(E), we consider GaAs, InAs, InP, GaSb, InSb, CdSe, Ge, Si, and PbSe nanocrystals of different sizes. Although DCM can be affected by both quantum-confinement effects (reflecting the underly electronic structure of the confined dot-interior states) and surface effects, here we are interested to isolate the former. To this end the nanocrystal energy levels are obtained from the corresponding bulk band structure via the truncated crystal approximation. We find that PbSe, Si, GaAs, CdSe, and InP nanocrystals have larger DCM figure of merit than the other nanocrystals. Our calculations suggest that high DCM efficiency requires high degeneracy of the corresponding bulk band-edge states. Interestingly, by considering band structure effects we find that as the dot size increases the DCM critical energy E{sub 0} (the energy at which R{sub 2}(E) becomes {ge}1) is reduced, suggesting improved DCM. However, whether the normalized E{sub 0}/{var_epsilon}{sub g} increases or decreases as the dot size increases depends on dot material.

  15. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect (OSTI)

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  16. Porous silicon based anode material formed using metal reduction

    DOE Patents [OSTI]

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  17. Low temperature production of large-grain polycrystalline semiconductors

    DOE Patents [OSTI]

    Naseem, Hameed A.; Albarghouti, Marwan

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  18. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    SciTech Connect (OSTI)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-10-06

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO{sub 2} interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  19. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOE Patents [OSTI]

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  20. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOE Patents [OSTI]

    Wang, Yifeng; Miller, Andy; Bryan, Charles R; Kruichar, Jessica Nicole

    2015-04-07

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  1. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    SciTech Connect (OSTI)

    Benavides, Pahola T.; Dai, Qiang; Sullivan, John L.; Kelly, Jarod C.; Dunn, Jennifer B.

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  2. Metals and ceramics division materials science program annual progress report for period ending June 30, 1980

    SciTech Connect (OSTI)

    McHargue, C.J.

    1980-10-01

    Research progress is summarized concerning the structure of metals; deformation and mechanical properties; physical properties and transport phenomena; radiation effects; and engineering materials.

  3. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals

    SciTech Connect (OSTI)

    Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

    2009-02-06

    The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project

  4. Alkali metal recovery from carbonaceous material conversion process

    DOE Patents [OSTI]

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  5. Cyclic catalytic upgrading of chemical species using metal oxide materials

    DOE Patents [OSTI]

    White, James H.; Schutte, Erick J.; Rolfe, Sara L.

    2010-11-02

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having one of the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, or Fe; B''=Cu; 0.01

  6. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  7. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  8. Effects of Dopant Metal Variation and Material Synthesis Method...

    Office of Scientific and Technical Information (OSTI)

    in Yttria Stabilized Zirconia for Solar Thermochemical Fuel Production Citation ... in Yttria Stabilized Zirconia for Solar Thermochemical Fuel Production Mixed metal ...

  9. Recommendation 221: Recommendation Regarding Recycling of Metals and Materials

    Broader source: Energy.gov [DOE]

    The Environmental Management Site-Specific Advisory Board believes DOE should make a final decision on standards for free-release metals and equipment.

  10. Synthesis and Heterostructures of Monolayer Semiconductors | MIT-Harvard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Excitonics Synthesis and Heterostructures of Monolayer Semiconductors August 6, 2015 at 2pm/36-428 Yi-Hsien Lee Department of Materials Science and Engineering, National Tsing Hua University, Taiwan Yi-Hsien Lee Abstract: Monolayers of van der Waals (vdw) materials, such as graphene and MoS2, have been highlighted regarding both scientific and industrial aspects for novel physical phenomenon inherited from the reduced dimensionality. Layered transition metal dichalcogenides (TMD)

  11. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    SciTech Connect (OSTI)

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  12. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  13. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  14. The influence of electron energy quantization in a space-charge region on the accumulation capacitance of InAs metal-oxide-semiconductor capacitors

    SciTech Connect (OSTI)

    Kovchavtsev, A. P. Tsarenko, A. V.; Guzev, A. A.; Polovinkin, V. G.; Nastovjak, A. E.; Valisheva, N. A.; Aksenov, M. S.

    2015-09-28

    The influence of electron energy quantization in a space-charge region on the accumulation capacitance of the InAs-based metal-oxide-semiconductor capacitors (MOSCAPs) has been investigated by modeling and comparison with the experimental data from Au/anodic layer(4-20 nm)/n-InAs(111)A MOSCAPs. The accumulation capacitance for MOSCAPs has been calculated by the solution of Poisson equation with different assumptions and the self-consistent solution of Schrödinger and Poisson equations with quantization taken into account. It was shown that the quantization during the MOSCAPs accumulation capacitance calculations should be taken into consideration for the correct interface states density determination by Terman method and the evaluation of gate dielectric thickness from capacitance-voltage measurements.

  15. Effect of the thermionic emission on the recombination and electron beam induced current contrast at the interface of a metallic precipitate embedded in a semiconductor matrix

    SciTech Connect (OSTI)

    Tarento, R.-J.; Debez, M.; Mekki, D. E.; Djemel, A.

    2013-12-15

    The barrier height and the recombination velocity at the interface between a metallic precipitate and a semiconductor matrix are investigated with a new self consistent procedure based both on the analysis of the recombination and emission balance rates for electrons and holes and on the determination of the size-dependent electronic structure of the embedded precipitate. In the present work, the precipitate is modeled within the spherical well potential framework. The main result is the dependence of the recombination features on the electronic structure of the metal precipitate unlike the models based only on the Shockley-Read-Hall theory. The behaviors of the surface charge density on the metallic precipitate and the barrier height versus the precipitate size are similar to our previous studies. Unlike previous works, the recombination velocity reaches a constant non-zero value for sizes smaller than a critical size which is dependent on the defect concentration at the interface. The new dependencies of the recombination parameters are illustrated by the calculation of the electron beam induced current (EBIC) contrast at the interface.

  16. Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Semiconductor Revolution HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRC...

  17. Dialing in the Properties of Dual Metallic-Insulating Materials | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Dialing in the Properties of Dual Metallic-Insulating Materials February 11, 2016 Tweet EmailPrint Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated

  18. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays going in various directions atop a corrugated metal substrate Materials Physics Through materials growth and characterization, we seek to understand and control fundamental electronic and optical processes in semiconductors. An image of multiple, interconnecting red and blue particles Electronic Structure Theory We

  19. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOE Patents [OSTI]

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  20. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOE Patents [OSTI]

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  1. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    DOE Patents [OSTI]

    Holcomb, Matthew J. (Manhattan Beach, CA)

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  2. Modeling the dark current histogram induced by gold contamination in complementary-metal-oxide-semiconductor image sensors

    SciTech Connect (OSTI)

    Domengie, F. Morin, P.; Bauza, D.

    2015-07-14

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metal atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.

  3. Metal halide solid-state surface treatment for nanocrystal materials

    DOE Patents [OSTI]

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  4. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOE Patents [OSTI]

    Wong, Ming-Show; Li, Dong; Chung, Yip-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  5. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOE Patents [OSTI]

    Wong, Ming-Show; Li, Dong; Chung, Yin-Wah; Sproul, William D.; Chu, Xi; Barnett, Scott A.

    1998-01-01

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN.sub.x where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN.sub.x. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45-55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating.

  6. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride carbide and carbonitride

    DOE Patents [OSTI]

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Xi Chu; Barnett, S.A.

    1998-03-10

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  7. Superhard composite materials including compounds of carbon and nitrogen deposited on metal and metal nitride, carbide and carbonitride

    DOE Patents [OSTI]

    Wong, M.S.; Li, D.; Chung, Y.W.; Sproul, W.D.; Chu, X.; Barnett, S.A.

    1998-07-07

    A composite material having high hardness comprises a carbon nitrogen compound, such as CN{sub x} where x is greater than 0.1 and up to 1.33, deposited on a metal or metal compound selected to promote deposition of substantially crystalline CN{sub x}. The carbon nitrogen compound is deposited on a crystal plane of the metal or metal compound sufficiently lattice-matched with a crystal plane of the carbon nitrogen compound that the carbon nitrogen compound is substantially crystalline. A plurality of layers of the compounds can be formed in alternating sequence to provide a multi-layered, superlattice coating having a coating hardness in the range of 45--55 GPa, which corresponds to the hardness of a BN coating and approaches that of a diamond coating. 10 figs.

  8. Metallic sulfide additives for positive electrode material within a secondary electrochemical cell

    DOE Patents [OSTI]

    Walsh, William J.; McPheeters, Charles C.; Yao, Neng-ping; Koura, Kobuyuki

    1976-01-01

    An improved active material for use within the positive electrode of a secondary electrochemical cell includes a mixture of iron disulfide and a sulfide of a polyvalent metal. Various metal sulfides, particularly sulfides of cobalt, nickel, copper, cerium and manganese, are added in minor weight proportion in respect to iron disulfide for improving the electrode performance and reducing current collector requirements.

  9. Effects of Dopant Metal Variation and Material Synthesis Method...

    Office of Scientific and Technical Information (OSTI)

    chemistry methods and extended periods of high temperature calcination yield better redox performance. Differences in redox performance between materials made via wet chemistry ...

  10. High Metal Removal Rate Process for Machining Difficult Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to machine materials. 150 m diameter holes cut in a 50 m thick silicon wafer via nano (left), pico (center), and femtosecond (right) pulse lasers. Photo credit Raydiance. ...