Sample records for materials science complex

  1. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  2. Complex Materials

    SciTech Connect (OSTI)

    Cooper, Valentino

    2014-04-17T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  3. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-time informationScienceStudents | Center

  4. UNDERGRADUATE Materials Science & Engineering

    E-Print Network [OSTI]

    Tipple, Brett

    UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  5. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  6. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE)...

  7. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86(NHMFL)X-RayMaterials

  8. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

  9. Complex Systems and Brain Sciences

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Center for Complex Systems and Brain Sciences Charles E. Schmidt College of Science www.ccs.fau.edu #12;Center for Complex Systems and Brain Sciences Our Mission The mission of the Center for Complex Systems and Brain Sciences is to understand the principles and mechanisms underlying complex behavior

  10. Materials & Engineering Sciences Center

    E-Print Network [OSTI]

    Atoms to Continuum Sandia: 40 years of Hydrogen Science and EngineeringSandia: 40 years of Hydrogen Microsensors CombustionEngineering Science Hydrogen: the renewable energy carrier for the 21st Century for complex hydrides (engineering properties, safety, contaminations....) Other Hydrogen Storage Concepts

  11. Materials Science & Engineering

    E-Print Network [OSTI]

    . Aucierllo has edited 19 books, published about 450 articles, holds 14 patents, and has organized, chaired and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry

  12. NREL: Energy Sciences - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials Science Learn about our

  13. Action Plan Materials Science

    E-Print Network [OSTI]

    Fitze, Patrick

    sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

  14. Complexity Science for Simpletons

    E-Print Network [OSTI]

    Craig Alan Feinstein

    2012-06-25T23:59:59.000Z

    In this article, we shall describe some of the most interesting topics in the subject of Complexity Science for a general audience. Anyone with a solid foundation in high school mathematics (with some calculus) and an elementary understanding of computer programming will be able to follow this article. First, we shall explain the significance of the P versus NP problem and solve it. Next, we shall describe two other famous mathematics problems, the Collatz 3n+1 Conjecture and the Riemann Hypothesis, and show how both Chaitin's incompleteness theorem and Wolfram's notion of "computational irreducibility" are important for understanding why no one has, as of yet, solved these two problems.

  15. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, Materials Science, News, News & Events, Research & Capabilities, Solid-State Lighting Semiconductor nanowire lasers have attracted intense interest as...

  16. Materials Sciences and Engineering Program | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

  17. Materials Science and Materials Chemistry for Large Scale Electrochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

  18. Materials and Fuels Complex Tour

    ScienceCinema (OSTI)

    Miley, Don

    2013-05-28T23:59:59.000Z

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  19. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  20. Department of Advanced Materials Science

    E-Print Network [OSTI]

    Katsumoto, Shingo

    @k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

  1. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  2. Materials Science and Technology Mechanical and Materials Engineering

    E-Print Network [OSTI]

    Birmingham, University of

    Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

  3. Materials science Nanotubes get hard

    E-Print Network [OSTI]

    Downs, Robert T.

    Materials science Nanotubes get hard under pressure Proc. Natl Acad. Sci. USA doi:10.1073/pnas.0405877101 (2004) When Zhongwu Wang et al. squeezed carbon nanotubes in a diamond anvil cell, they made nanotubes into diamond itself: the carbon material formed under compression at room temperature seems

  4. MATERIALS SCIENCE HEALTHCARE POLICY

    E-Print Network [OSTI]

    Falge, Eva

    for Polymer Research are paving the way to optimizing organic substances for use in solar cells, light-emitting diodes and memory chips, and are using molecular materials to develop electronic components

  5. LANL: Materials Science Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2RecoveryBioenergy »0 Los1Materials

  6. NNSA conference showcases complex science, engineering | National...

    National Nuclear Security Administration (NNSA)

    conference showcases complex science, engineering | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  7. Center for Nanophase Materials Sciences | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences The Center for Nanophase Materials Sciences (CNMS), one of five DOE-funded nanoscience research centers (NSRCs). CNMS has established itself as an internationally...

  8. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  9. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  10. Materials sciences programs, Fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  11. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect (OSTI)

    Samara, G.A.

    1996-02-01T23:59:59.000Z

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  12. Materials Science and Engineering Graduate Program Requirements

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science and Engineering Graduate Program Requirements The Department of Materials Science-Thesis option requires a Special Project, and the Ph.D. degree requires a Doctoral Dissertation. MASTER (6034), Advanced Materials Techniques: Experiment, Theory, and Characterization (6011), and Engineering

  13. Sandia National Laboratories: Materials Science and Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CapabilitiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project...

  14. Introduction to Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 L ast edited: 2014-06-02 08:56:54...

  15. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  16. What is Materials Science and Engineering?

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    -Madison Chapter UW-Madison College of Engineering UW-Madison Engineering Career Services MS&E DepartmentalWhat is Materials Science and Engineering? Materials Science and Engineering (MS&E one of the smallest departments in the College of Engineering. Because of this, most classes contain

  17. Materials sciences programs, fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  18. Materials Science Materials science has had a profound influence on the development of our technologically

    E-Print Network [OSTI]

    New Hampshire, University of

    , special topic courses in materials are also offered, as well as opportunities for senior projects. A minorMaterials Science Materials science has had a profound influence on the development of our technologically advanced society. The availability of suitable materials has been critical to the realization

  19. Sports and Materials Science Course outline

    E-Print Network [OSTI]

    Birmingham, University of

    . Developments like carbon fibre composite bodyshells and suspension systems, hardened titanium alloy gears. The materials themes aim to introduce and develop knowledge in polymers, advanced composites, high performanceSports and Materials Science CF62 Course outline School of Metallurgy and Materials Success

  20. Materials Science and Engineering Program Objectives

    E-Print Network [OSTI]

    Lin, Zhiqun

    necessary to understand the impact of engineering solutions in a global, economic, environmentalMaterials Science and Engineering Program Objectives Within the scope of the MSE mission, the objectives of the Materials Engineering Program are to produce graduates who: A. practice materials

  1. applied materials science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applied in chemical or materials sciences, physics, biology, psychology, applied maths, engineering - anything science brings clear benefits to: researchers (developing...

  2. Materials Sciences Division Integrated Safety Management Plan

    E-Print Network [OSTI]

    Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by: signed Feb. 9, 2012 Rick Kelly, Facility/EH&S Manager Submitted by: signed Feb. 9, 2012 Miquel Salmeron.1 RESPONSIBILITY AND AUTHORITY THROUGH LINE MANAGEMENT............................................................5

  3. June 26 Training: Using Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0...

  4. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

  5. Field of Expertise Materials Science

    E-Print Network [OSTI]

    structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

  6. Materials Science & Engineering | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Advanced Materials

  7. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced MaterialMaterialsAdvanced

  8. Materials Science and Technology Teachers Handbook

    SciTech Connect (OSTI)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04T23:59:59.000Z

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  9. Department of Advanced Materials Science

    E-Print Network [OSTI]

    Katsumoto, Shingo

    device, Bioconjugate matsuura@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials Nuclear magnetic resonance, Quantum spin systems, Low temperature physics, Strongly correlated electron Effect takatama@spring8.or.jpe-mail 0791-58-2942T E L Synchrotron Radiation, X-ray Free Electron Laser

  10. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a Job External ApplicantsSearch This page has

  11. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a Job External ApplicantsSearch This page has

  12. Department of Chemical Engineering & Materials Science College of Engineering

    E-Print Network [OSTI]

    Department of Chemical Engineering & Materials Science College of Engineering Michigan State................................................................................. 19 7. Integrity and Safety in Research and Creative Activities of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree

  13. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWind andSandia/New2014Materials

  14. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  15. Materials Sciences programs, Fiscal year 1993

    SciTech Connect (OSTI)

    NONE

    1994-02-01T23:59:59.000Z

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  16. Applied Physics A Materials Science & Processing

    E-Print Network [OSTI]

    Harilal, S. S.

    1 23 Applied Physics A Materials Science & Processing ISSN 0947-8396 Volume 117 Number 1 Appl. Phys. A (2014) 117:319-326 DOI 10.1007/s00339-014-8268-8 Background gas collisional effects on expanding fs at link.springer.com". #12;Background gas collisional effects on expanding fs and ns laser ablation plumes

  17. Potential Materials Science Benefits from a Burning Plasma

    E-Print Network [OSTI]

    Potential Materials Science Benefits from a Burning Plasma Science Experiment S.J. Zinkle Oak Ridge;Introduction · The main materials science advances from a BPSX would occur during the R&D phase prior to construction ­e.g., CIT/BPX, ITER · Materials science opportunities during operation of a BPSX would likely

  18. alloying materials science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graduate students -- whose backgrounds include metallurgy, polymer science, chemistry, physics, ceramics Acton, Scott 19 Materials Science and Engineering B59 (1999) 253257...

  19. Faculty of Mechanical Science and Engineering At the Institute of Materials Science, Chair of Materials Science and Nanotechnology

    E-Print Network [OSTI]

    Schubart, Christoph

    of Materials Science and Nanotechnology (Prof. G. Cuniberti), is open to work in the field of biomaterials and / or biologically inspired nanotechnology the position of a Senior Lecturer and Research Group leader (max. E 14 TV (Wissenschaftszeitvertragsgesetz ­ WissZeitVG). The scientific activities of the Chair of Materials Science and Nanotechnology

  20. Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering

    E-Print Network [OSTI]

    Gleixner, Stacy

    Minor Form Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering College of Engineering San José State University Name_______________________________________ Requirements for the Minor in Materials Science and Engineering: · 12 units of approved academic work

  1. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms People FacebookMaterials Science

  2. Materials sciences programs fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  3. Materials sciences programs: Fiscal year 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  4. Materials Science and Engineering Onsite Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials Science andMaterials

  5. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials Science and

  6. Materials Science and Materials Chemistry for Large Scale Electrochemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials Science

  7. UNIVERSITY OF UTAH MATERIALS SCIENCE AND ENGINEERING DEPARTMENT

    E-Print Network [OSTI]

    of this form and return to the Materials Science and Engineering Department along with a DARS report, three

  8. Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science

    E-Print Network [OSTI]

    Levine, Alex J.

    Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science ...........................................................................................................................................4 Chemistry & Biochemistry Undergraduate Office..............................................................................................6 Majors in Chemistry & Biochemistry

  9. Chemistry and materials science research report

    SciTech Connect (OSTI)

    Not Available

    1990-05-31T23:59:59.000Z

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  10. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01T23:59:59.000Z

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  11. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26T23:59:59.000Z

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  12. Annual report, Materials Science Branch, FY 1992

    SciTech Connect (OSTI)

    Padilla, S. [ed.

    1993-10-01T23:59:59.000Z

    This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  13. Gender Equity in Materials Science and Engineering

    SciTech Connect (OSTI)

    Angus Rockett

    2008-12-01T23:59:59.000Z

    At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to eliminate hostile attitudes and environments that can make academic and national laboratory careers unattractive to women. Fifth, with respect to raising awareness among faculty, staff and students, a new type of training session should be developed that would be more effective in conveying the facts and consequences of gender bias than the conventional presentations typically available, which seem not to be highly effective in changing attitudes or behaviors. Sixth, it is proposed that the UMC establish a certification of 'family-friendly' or 'gender equivalent' institutions that would encourage organizations to meet standards for minimizing gender bias and promoting supportive work environments. Seventh, novel approaches to adjusting job responsibilities of faculty, staff, and students to permit them to deal with family/life issues are needed that do not carry stigmas. Finally, faculty and national laboratory staff need to promote the benefits of their careers to women so that a more positive image of the job of materials scientist or materials engineer is presented.

  14. Mork Family Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Southern California, University of

    , materials science, and petroleum engineering. The reputation of the MFD for excellence in chemical Engineering MS in Materials Science MS in Petroleum Engineering PhD in Chemical Engineering PhD in Materials buildings: HEDCO Petroleum and Chemical Engineering Building Neely Petroleum and Chemical Engineering

  15. Informational Materials | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA JourneyISTIInformational Materials

  16. Chemistry and Materials Science progress report, FY 1994. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  17. Active Printed Materials for Complex Self-Evolving Deformations

    E-Print Network [OSTI]

    Zhao, Wei

    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated ...

  18. Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    404L Materials Analysis Lab 1 MSE 418 Phase Transformations and Kinetics 3 MSE 480 Senior Project I 3 FF MSE 482 Senior Project II 3 MSE 498 Materials Science Seminar 1 PHYS 212, 212L Physics IIBachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date General Degree

  19. University of Cambridge Department of Materials Science & Metallurgy

    E-Print Network [OSTI]

    Cambridge, University of

    University of Cambridge Department of Materials Science & Metallurgy Modelling of Microstructural and Metallurgy, University of Cambridge, between May 2007 and August 2007. Except where acknowledgements

  20. adsorption material science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering inter-twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within the College of Engineering...

  1. Math100: Introduction to the Profession Mathematics and Materials Science

    E-Print Network [OSTI]

    Fasshauer, Greg

    of Applied Mathematics Illinois Institute of Technology #12;Mathematics Materials Science -- Numbers a hexagonal crystal structure. oxygen hydrogen Libbrecht (2005) Gives ice crystals their natural 6-fold

  2. Chemistry and materials science progress report, FY 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  3. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

  4. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  5. Master of Science project in computational material physics

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in computational material physics (posted 2013-05-13) Plasmarons exists ! (figure to the right) also for this system. Project To predicting the so far not measured in computational material science. You have taken the courses in Quantum physics, Solid state physics

  6. Graphene: from materials science to particle physics

    E-Print Network [OSTI]

    Joaqun E. Drut; Timo A. Lhde; Eero Tl

    2010-11-02T23:59:59.000Z

    Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

  7. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  8. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect (OSTI)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01T23:59:59.000Z

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  9. THE PHYSICS OF ARC WELDING PROCESSES Department of Materials Science and Engineering,

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) THE PHYSICS OF ARC WELDING PROCESSES T.W.EAGAR Department of Materials Science and Engineering, Massachusetts Institute of Technology Abstract Welding is an extremely complex proce ss; however, due to its Wor ds: Arc Welding, Arc Physics, Shielding Gases, Gas Metal Arc Welding. 1. Introduction Langmuir

  10. Fusion Materials Science Overview of Challenges and Recent Progress

    E-Print Network [OSTI]

    Fusion Materials Science Overview of Challenges and Recent Progress Steven J. Zinkle Oak Ridge: Development of new materials for structural applications is historically a long process ­ Ni3Al intermetallic alloys commercialization ­ Superalloy turbine blade development ­ Cladding and duct materials for fast

  11. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01T23:59:59.000Z

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  12. Joining of Advanced Materials: An The revolution which has occurred in materials science

    E-Print Network [OSTI]

    Eagar, Thomas W.

    science and engineering has not been matched by improve- ments in joining science and technology. 1t.materials require ever higher performance, the number of acceptable joining technologies becomes more re- stricted of the material are useless. Unless the shape and properties can be obtained economically, the product has limited

  13. Materials Science and Engineering at TCCC

    E-Print Network [OSTI]

    Li, Mo

    BILLION A DAY... RESPONSIBLY Technical Community ­ R&D #12;5 · Cold Drink Equipment · Energy efficiency High barrier plastic materials Don't underestimate the mundane. #12;88 Where are materials going

  14. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2012-01-14T23:59:59.000Z

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials research. Because of the large amount of work accomplished, a diverse class of materials covered and the desire for an easier reporting process, this report will list six categories (A to F) of major accomplishments and findings under the following headings with references to the published papers under DOE support. These six categories obviously have heavy overlaps. A complete list of published papers follows the brief description on each category. Each paper also indicates to which of the six categories the main accomplishment it belongs to. A. Electronic structure of complex and novel crystals B. Impurities, surfaces, interfaces and microstructures in ceramics C. Structures and properties of complex bioceramics D. Soft condensed matters E. Spectroscopic characterizations, XANES and ELNES spectroscopy F. Large-scale simulations

  15. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  16. The Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical

    E-Print Network [OSTI]

    Lasenby, Joan

    and exacting process and the pharmaceutical industry strives to increase efficiency and productivityThe Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical Materials Science #12;The Pfizer Institute for Pharmaceutical Materials Science Modelling and Experimental

  17. MATERIALS SCIENCE PROGRAM FACULTY DIRECTORY FALL 2011 1 / 12/7/2011

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    MATERIALS SCIENCE PROGRAM FACULTY DIRECTORY FALL 2011 1 / 12/7/2011 MATERIALS SCIENCE PROGRAM, Mahesh CHEM 7365 Chemistry 262-0421 mahesh@chem.wisc.edu #12;MATERIALS SCIENCE PROGRAM FACULTY DIRECTORY

  18. 3.012 Fundamentals of Materials Science, Fall 2003

    E-Print Network [OSTI]

    Marzari, Nicola

    This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and ...

  19. Boston University College of Engineering Division of Materials Science & Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Structure & Dislocations in Matls MS/ME 535 Green Manufacturing MS/ME 545 Electrochemistry of Fuel Cells Microelectronic Device Manufacturing MS/ME 580 Theory of Elasticity MS 784 Topics in Materials Science ENGINEERING

  20. Boston University College of Engineering Division of Materials Science & Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Structure & Dislocations in Matls MS/ME 535 Green Manufacturing MS/ME 545 Electrochemistry of Fuel Cells Intro to Materials Science and Engineering MS/EC 579 Microelectronic Device Manufacturing MS/ME 580

  1. Chemical and Engineering Materials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating...

  2. Polymer / Elastomer and Composite Material Science

    E-Print Network [OSTI]

    @ ~80K Cryo-adsorbent 6-10 MPa @ 40-80K Storage materials ammonia boranes, sodium and lithium alanates? Infrastructure Static system High reliability Continuous operations Erosion from continuous flows? Limited valve-80K Storage materials ammonia boranes, sodium and lithium alanates, and alanes Exo and endothermic

  3. Materials Science and Engineering A 497 (2008) 212215 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Rollins, Andrew M.

    properties such as high-specific modulus, good high-cycle fatigue resistance, and improved thermal stability-scale grain size, the nano-crystalline metallic materials typically possess high-yield strengths, as predictedMaterials Science and Engineering A 497 (2008) 212­215 Contents lists available at Science

  4. Master of Science project in computational material physics

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in computational material physics (2013-12-05) Two-band Hubbard model of these materials. The temperature, pressure and doping driven transitions between a vast number of phases, e Gutzwiller method with the GPAW-DFT code in order to take into account the local correlations. Project

  5. Master of Science project in computational material physics

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in computational material physics (2013-04-26) Engineering of ultra of remarkable properties of these materials. The temperature, pressure and doping driven transitions between correlations. Project Investigating the influence of biaxial strain on electronic properties such as self

  6. "The Future of Materials Science and Engineering

    E-Print Network [OSTI]

    Li, Mo

    with increased wear characteristics Additive Manufacturing Processing speed, material strength, verification&D is limited and traditionally provided by device manufacturers Technology adapted from other industries tools Opportunities #12; Manufacturing Time and Process Step Reduction Patient digitizer to definitive

  7. Advances in Materials Science for Environmental and Energy Technologies II

    SciTech Connect (OSTI)

    Matyas, Dr Josef [Pacific Northwest National Laboratory (PNNL); Ohji, Tatsuki [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Tec; Liu, Xingbo [West Virginia University, Morgantown; Paranthaman, Mariappan Parans [ORNL; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Fox, Kevin [Savannah River National Laboratory (SRNL); Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Wong-ng, Winnie [National Institute of Standards and Technology (NIST), Gaithersburg, MD

    2013-01-01T23:59:59.000Z

    The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

  8. Materials science matchmaker | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials PorousMaterials

  9. Faculty Search Materials Science and Engineering

    E-Print Network [OSTI]

    Buehrer, R. Michael

    / sensors, nuclear security, and/or nuclear medical applications are especially encouraged to apply. The MSE candidate will be expected to conduct scholarly research in an area of nuclear materials as evidenced department participates in the Nuclear Engineering Program at Virginia Tech (http://www.nuclear

  10. NREL: Photovoltaics Research - Materials Science Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand EvaluationScience Staff The

  11. Materials Sciences and Engineering Program | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials

  12. Chemistry and Materials Science at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials | Center for GasChemical Speeding Up

  13. Materials Science and Engineering BS/MS Program The Department of Materials Science and Engineering offers a combined BS/MS degree

    E-Print Network [OSTI]

    Tipple, Brett

    Materials Science and Engineering BS/MS Program The Department of Materials Science and Engineering currently enrolled in Major Status in the Materials Science and Engineering program can be admitted to expand the research of the student's Senior Design Project to a M.S. thesis. The Senior Design

  14. Bayer Material Science (TRL 1 2 3 System) - River Devices to...

    Broader source: Energy.gov (indexed) [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM) Bayer Material Science (TRL 1 2 3 System) - River Devices to...

  15. The Departments of Chemical Engineering, Materials Science and Engineering and

    E-Print Network [OSTI]

    Thompson, Michael

    setting will be facilitated by McMaster's Engineering Co-op and Career Services (ECCS). Applicants shouldThe Departments of Chemical Engineering, Materials Science and Engineering and Mechanical Engineering offer a program of study to students seeking the degree of Master of Engineering in Manufacturing

  16. A Survey of Energies in Materials Science Frans Spaepen

    E-Print Network [OSTI]

    Spaepen, Frans A.

    a new or old problem by comparing its underlying energies. These conversations produced small diagramsA Survey of Energies in Materials Science Frans Spaepen Division of Engineering and Appliedth birthday. Abstract A table is presented that compares energies that govern a variety of phenomena

  17. CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY

    E-Print Network [OSTI]

    6/29/11 CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY Argonne Division, preferably by e-mail (norman@anl.gov), otherwise by regular mail (MSD-223, Argonne National Lab, Argonne, IL 60439). Please use the subject line "CMT Search" in any e-mail correspondence. Argonne

  18. Wood September 28, 2002 DEPARTMENT OF MATERIALS SCIENCE

    E-Print Network [OSTI]

    Rollett, Anthony D.

    Wood September 28, 2002 1 DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CARNEGIE MELLON: Microstructure-Sensitive Mechanical Properties #12;Wood September 28, 2002 2 Introduction Reading will also have an opportunity to perform similar experiments on various types of wood. These will illustrate

  19. Materials Science and Engineering B 157 (2009) 101104 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Chow, Lee

    ) method [6], calcination process [7], chemical vapor deposition [8], thermal evaporation [1], hydrothermalDirect Materials Science and Engineering B journal homepage: www.elsevier.com/locate/mseb A rapid hydrothermal Court, S111, Lake Mary, FL 32746, USA d Advanced Materials Processing and Analysis Center

  20. Chemistry and Materials Science Directorate 2005 Annual Report

    SciTech Connect (OSTI)

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-08-08T23:59:59.000Z

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent discovery of a new source of coherent light adds a new tool to an array of methods we use to more fully understand the properties of materials. Insights into the early stages of polymer crystallization may lead to new materials for our national-security mission and private industry. (3) Science Supporting National Objectives at the Intersection of Chemistry, Materials Science, and Biology--We are improving drug binding for cancer treatment through the use of new tools that are helping us characterize protein-antibody interactions. By probing proteins and nucleic acids, we may gain an understanding of Alzheimer's, Mad Cow, and other neurodegenerative diseases. (4) Applied Nuclear Science for Human Health and National Security--Our work with cyanobacteria is leading to a fuller understanding of how these microorganisms affect the global carbon cycle. We are also developing new ways to reduce nuclear threats with better radiation detectors. Dynamic Teams: The dynamic teams section illustrates the directorate's organizational structure that supports a team environment across disciplinary and institutional boundaries. Our three divisions maintain a close relationship with Laboratory programs, working with directorate and program leaders to ensure an effective response to programmatic needs. CMS's divisions are responsible for line management and leadership, and together, provide us with the flexibility and agility to respond to change and meet program milestones. The three divisions are: Materials Science and Technology Division; Chemistry and Chemical Engineering Division; and Chemical Biology and Nuclear Science Division. By maintaining an organizational structure that offers an environment of collaborative problem-solving opportunities, we are able to nurture the discoveries and breakthroughs required for future successes. The dynamic teams section also presents the work of CMS's postdoctoral fellows, who bring to the Laboratory many of the most recent advances taking place in academic departments and provide a research stimulus to established research teams. Postdo

  1. JOYCE Y. WONG Departments of Biomedical Engineering and Materials Science & Engineering

    E-Print Network [OSTI]

    JOYCE Y. WONG Professor Departments of Biomedical Engineering and Materials Science & Engineering, Departments of Biomedical Engineering & Materials Science & Engineering (2013-) Co-Director, Affinity Research - ) Associate Chair, Graduate Studies, Department of Biomedical Engineering (2006-2010) Associate Director

  2. Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General Chemistry,

    E-Print Network [OSTI]

    Pfeifer, Holger

    Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General Chemistry, Laboratory Practice (Precourse) Physical Chemistry (4 CP) Introductory Engineering (5 CP) Organic & Inorganic Materials Chemistry (4 CP) Energy Science and Technology I (5 CP) Surfaces/Interfaces/ Heterogen

  3. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    SciTech Connect (OSTI)

    Anne Seifert; Louis Nadelson

    2011-06-01T23:59:59.000Z

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

  4. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema (OSTI)

    John Sarrao

    2010-01-08T23:59:59.000Z

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  5. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

  6. Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells

    SciTech Connect (OSTI)

    Michael Rodriquez

    2009-03-01T23:59:59.000Z

    As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the Nuclear Renaissance. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight precision. The gamma scanning equipment in the ALHC has taken on a new role also as a micro-gamma scanning system and has been put into service; allowing the linear and radial counting of a spent fuel segment to determine reaction characteristics within a small section of nuclear fuel. The nitrogen, oxygen and carbon analysis allows the identification of these impurities in spent nuclear fuel and also most oxides, nitrides, carbides, C-14 and tritium.

  7. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen, Director

    2011-04-01T23:59:59.000Z

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  8. Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia

    E-Print Network [OSTI]

    Cambridge, University of

    Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics in metallurgy. To form a complete designtechnology, it is consequently necessary to re- sort to careful

  9. Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process Modelling, H. K. D. H. Bhadeshia

    E-Print Network [OSTI]

    Cambridge, University of

    Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process.E. Svensson. The metallurgy of the welded joint can be categorised into two major regions, the fusion zone

  10. EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

    E-Print Network [OSTI]

    Schwartz, Eric M.

    115 CSE Electrical and Computer Engineering 225 Nuclear Science-8pd / 407 Nuclear Science 9-10pd Engineering 221 MAE-A Nuclear Engineering Sciences 214 Nuclear Science (Next to Journalism Bldg) StudentEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

  11. Director, School of Materials Science and Engineering College of Engineering & Science, Clemson University, Clemson SC

    E-Print Network [OSTI]

    Bolding, M. Chad

    University, Clemson SC Clemson University invites applications and nominations for the position of Director of the School of Materials Science and Engineering. Clemson University is the land grant institution of South pursues its service mission, and in the continued pursuit of government and industry funding for research

  12. Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials and spacious clean room laboratories for nanofabrication of devices. Interested candidates are urged to submit. of Micro/Nanometer Sci. & Technology 800 Dongchuan Road, Shanghai, China 200240 e-mail:

  13. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15T23:59:59.000Z

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  14. Theoretical and experimental study of solid state complex borohydride hydrogen storage materials.

    E-Print Network [OSTI]

    Choudhury, Pabitra

    2009-01-01T23:59:59.000Z

    ??Materials that are light weight, low cost and have high hydrogen storage capacity are essential for on-board vehicular applications. Some reversible complex hydrides are alanates (more)

  15. Material Science for Quantum Computing with Atom Chips

    E-Print Network [OSTI]

    Ron Folman

    2011-09-12T23:59:59.000Z

    In its most general form, the atom chip is a device in which neutral or charged particles are positioned in an isolating environment such as vacuum (or even a carbon solid state lattice) near the chip surface. The chip may then be used to interact in a highly controlled manner with the quantum state. I outline the importance of material science to quantum computing (QC) with atom chips, where the latter may be utilized for many, if not all, suggested implementations of QC. Material science is important both for enhancing the control coupling to the quantum system for preparation and manipulation as well as measurement, and for suppressing the uncontrolled coupling giving rise to low fidelity through static and dynamic effects such as potential corrugations and noise. As a case study, atom chips for neutral ground state atoms are analyzed and it is shown that nanofabricated wires will allow for more than $10^4$ gate operations when considering spin-flips and decoherence. The effects of fabrication imperfections and the Casimir-Polder force are also analyzed. In addition, alternative approaches to current-carrying wires are briefly described. Finally, an outlook of what materials and geometries may be required is presented, as well as an outline of directions for further study.

  16. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect (OSTI)

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

    1989-12-31T23:59:59.000Z

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  17. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26T23:59:59.000Z

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  18. Fab trees for designing complex 3D printable materials

    E-Print Network [OSTI]

    Wang, Ye, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, the tight coupling between geometry and material ...

  19. Journal of Materials Education Vol. 33 (3-4): 141 -148 (2011) INTEGRATION OF MATERIALS SCIENCE IN THE EDUCATION OF

    E-Print Network [OSTI]

    North Texas, University of

    Chemistry, University Siegen, 57068 Siegen, Germany; and Department of Polymer Science and Engineering Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, 3940 North creativity and curiosity for scientific problems are challenged. This ambitious concept that can be conducted

  20. Sandia National Laboratories: Research: Materials Science: Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecoveryTop LDRD PublicationsMaterials Science

  1. Rethinking Economics Using Complexity Theory Dirk Helbing, ETH Zurich, Department of Humanities, Social and Political Sciences,

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Rethinking Economics Using Complexity Theory Dirk Helbing, ETH Zurich, Department of Humanities, Social and Political Sciences, Clausiusstrasse 50, 8092 Zurich, Switzerland Alan Kirman

  2. The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications and

    E-Print Network [OSTI]

    Stuart, Steven J.

    The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications Centers of Economic Excellence Act,both of which stipulated that the chaired professor encourage knowledge

  3. Complex-wide representation of material packaged in 3013 containers

    SciTech Connect (OSTI)

    Narlesky, Joshua E.; Peppers, Larry G.; Friday, Gary P.

    2009-06-01T23:59:59.000Z

    The DOE sites packaging plutonium oxide materials packaged according to Department of Energy 3013 Standard (DOE-STD-3013) are responsible for ensuring that the materials are represented by one or more samples in the Materials Identification and Surveillance (MIS) program. The sites categorized most of the materials into process groups, and the remaining materials were characterized, based on the prompt gamma analysis results. The sites issued documents to identify the relationships between the materials packaged in 3013 containers and representative materials in the MIS program. These Represented documents were then reviewed and concurred with by the MIS Working Group. However, these documents were developed uniquely at each site and were issued before completion of sample characterization, small-scale experiments, and prompt gamma analysis, which provided more detailed information about the chemical impurities and the behavior of the material in storage. Therefore, based on the most recent data, relationships between the materials packaged in 3013 containers and representative materials in the MIS program been revised. With the prompt gamma analysis completed for Hanford, Rocky Flats, and Savannah River Site 3013 containers, MIS items have been assigned to the 3013 containers for which representation is based on the prompt gamma analysis results. With the revised relationships and the prompt gamma analysis results, a Master Represented table has been compiled to document the linkages between each 3013 container packaged to date and its representative MIS items. This table provides an important link between the Integrated Surveillance Program database, which contains information about each 3013 container to the MIS items database, which contains the characterization, prompt gamma data, and storage behavior data from shelf-life experiments for the representative MIS items.

  4. EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

    E-Print Network [OSTI]

    Schwartz, Eric M.

    & Engineering E115 CSE Electrical and Computer Engineering 1084 Weimer Hall 8pd / 407 Nuclear Science 9-10 pd-A Nuclear Engineering Science 214 Nuclear Science (Next to Journalism Bldg) Student Success 210 Weil HallEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

  5. Product-level bill of material development process : managing complexity

    E-Print Network [OSTI]

    Lester, Ryan John

    2009-01-01T23:59:59.000Z

    Cisco's current process for developing and maintaining product-level bills of materials (BOMs) has resulted in inconsistencies in BOM structure leading to product launch delays, increased product support costs, and lower ...

  6. Invention and Outreach: The Center for the Science and Engineering of Materials

    E-Print Network [OSTI]

    Haile, Sossina M.

    Invention and Outreach: The Center for the Science and Engineering of Materials THE CENTER FOR THE SCIENCE AND ENGINEERING OF MATERIALS (CSEM), under the direction of Professor of Chemical Engineering research and educational aspects of polymeric, structural, photonic, and ferroelectric materials

  7. The High Energy Materials Science Beamline (HEMS) at PETRA III

    SciTech Connect (OSTI)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, Rene; Kiehn, Ruediger; Mueller, Martin; Schreyer, Andreas [GKSS Research Center Geesthacht GmbH, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

    2010-06-23T23:59:59.000Z

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  8. Facts and figures for the chemistry and materials science directorate (March 1997)

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-03-01T23:59:59.000Z

    This document contains a wide range of budgetary, personnel, and other administrative information about LLNL and the Chemistry and Materials Science Directorate.

  9. Energy Materials and Processes, An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect (OSTI)

    Burk, Linda H.

    2014-12-16T23:59:59.000Z

    The report summarizes discussions at the Energy Materials and Process EMSL Science Theme Advisory Panel Workshop held July 7-8, 2014.

  10. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-12-01T23:59:59.000Z

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  11. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. ThygesenProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite

  12. The Department of Chemical Engineering and Materials Science Michigan State University

    E-Print Network [OSTI]

    AND NANOSTRUCTURE INFLUENCES ON MECHANICAL PROPERTIES OF THERMOELECTRIC MATERIALS Thermoelectric (TE) materials in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forcesThe Department of Chemical Engineering and Materials Science Michigan State University Ph

  13. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOE Patents [OSTI]

    Zidan, Ragaiy (Aiken, SC); Ritter, James A. (Lexington, SC); Ebner, Armin D. (Lexington, SC); Wang, Jun (Columbia, SC); Holland, Charles E. (Cayce, SC)

    2008-06-10T23:59:59.000Z

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  14. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01T23:59:59.000Z

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  15. Co-op and Internship Program Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Janssen, Michel

    Co-op and Internship Program Department of Chemical Engineering and Materials Science June 2013 Engineering and Materials Science (CEMS) supports both Industrial Internships and Co-op Industrial Assignments. The Internship program also integrates technical employment and academic studies but it is shorter in length

  16. BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822

    E-Print Network [OSTI]

    Miall, Chris

    BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822 Research and education in nuclear engineering, waste management and decommissioning holds the key to sustainable energy production in Nuclear Science and Materials and MEng in Nuclear Engineering degrees bring together a range of modules

  17. Journal of Hazardous Materials 194 (2011) 1523 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Burke, Ian

    of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chromate reduction in FeJournal of Hazardous Materials 194 (2011) 15­23 Contents lists available at ScienceDirect Journal Engineering, University of Leeds, Leeds LS2 9JT, UK d Diamond Light Source, Harwell Science and Innovation

  18. Document: L1334 | Category: Physical Science, Materials License Status: Available for licensing || Texas Industry Cluster: Biotechnology and Life Sciences

    E-Print Network [OSTI]

    Lightsey, Glenn

    for licensing || Texas Industry Cluster: Biotechnology and Life Sciences Nanocomposite membranes for energy. These markets include hydrogen production, medical devices, advanced materials, and drug delivery. Development Engineering, The University of Texas at Austin OTC Contact Brian Cummings, Associate Director, Life Sciences

  19. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    SciTech Connect (OSTI)

    Lindle, Dennis W.

    2011-04-21T23:59:59.000Z

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate real waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  20. Unreduced Dynamic Complexity: Towards the Unified Science of Intelligent Communication Networks and Software

    E-Print Network [OSTI]

    Andrei P. Kirilyuk

    2006-03-16T23:59:59.000Z

    Operation of autonomic communication networks with complicated user-oriented functions should be described as unreduced many-body interaction process. The latter gives rise to complex-dynamic behaviour including fractally structured hierarchy of chaotically changing realisations. We recall the main results of the universal science of complexity (physics/9806002) based on the unreduced interaction problem solution and its application to various real systems, from nanobiosystems (physics/0412097, physics/0502133) and quantum devices (physics/0211071) to intelligent networks (physics/0412058) and emerging consciousness (physics/0409140). We concentrate then on applications to autonomic communication leading to fundamentally substantiated, exact science of intelligent communication and software. It aims at unification of the whole diversity of complex information system behaviour, similar to the conventional, "Newtonian" science order for sequential, regular models of system dynamics. Basic principles and first applications of the unified science of complex-dynamic communication networks and software are outlined to demonstrate its advantages and emerging practical perspectives.

  1. A case for Sandia investment in complex adaptive systems science and technology.

    SciTech Connect (OSTI)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01T23:59:59.000Z

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research and Development program; and in the long run, inculcate an awareness at the Department of Energy of the importance of supporting complex adaptive systems science through its Office of Science.

  2. INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING Modelling Simul. Mater. Sci. Eng. 10 (2002) 119 PII: S0965-0393(02)55385-7

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING in the two- dimensional case, it has been realized that the fundamental physical nature of dislocation 1 of the DD methodology to the more physical, yet, considerably more complex conditions of three

  3. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen crack opening. 1. INTRODUCTION Composite materials (mainly in unidirectional lay-up) are used in windProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite

  4. Materials Science and Engineering A 430 (2006) 189202 Grid indentation analysis of composite microstructure

    E-Print Network [OSTI]

    Van Vliet, Krystyn J.

    Materials Science and Engineering A 430 (2006) 189­202 Grid indentation analysis of composite 17 May 2006 Abstract Several composites comprise material phases that cannot be recapitulated ex situ characteristics of naturally occurring material composites. Here, we propose a straightforward application

  5. Department of Materials Science and Engineering Four Year Plan (2011-12 Catalog)

    E-Print Network [OSTI]

    Barrash, Warren

    3 MSE 482 Senior Project II 3 MSE 404L Materials Analysis Lab 1 Technical or engineering elective 3 of Materials MSE 480 Senior Project I MSE 482 Senior Project II 2 6 7 12 11 ENGR 120 IntroductionDepartment of Materials Science and Engineering Four Year Plan (2011-12 Catalog) FALL SEMESTER

  6. Review on the EFDA programme on tungsten materials technology and science M. Rieth a,

    E-Print Network [OSTI]

    Nordlund, Kai

    Review on the EFDA programme on tungsten materials technology and science M. Rieth a, , J design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due structural as well as armor materials in combination with the necessary production and fab- rication

  7. ACS DIVISION OF POLYMERIC MATERIALS: SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Gilchrist, James F.

    , interpenetrating polymer networks, IPNs. Other topics included the mechanical and morphological aspects of polymers textbook, "Introduction to Physical Polymer Science," with Wiley, 2004. While in retirement, he remains for Polymer Science and Engineering, and served as Education Chairman. His efforts at ACS have included

  8. DFT Investigation of Osmium Terpyridinyl Complexes as Potential Optical Limiting Materials

    E-Print Network [OSTI]

    Alok, Shashwat

    2015-01-01T23:59:59.000Z

    The development of optical power limiting materials is important to protect individuals or materials from intense laser irradiation. The photophysical behavior of Os(II) polypyridinyl complexes having aromatic hydrocarbon terpyridyl ligands has received considerable attention as systems exhibiting intramolecular energy transfer to yield a long excited states lifetime. Here we present a focused discussion to illustrate the photophysical behavior of transition metal complexes with modified terpyridyl ligands, utilizing density functional theory. Our DFT studies of the excited state behavior of Os(II) complexes containing pyrene-vinylene derived terpyridine (pyr-v-tpy) ligands can be applied to the development of optical limiting materials controlling the laser power at longer wavelength range.

  9. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 12 (2001) 143146 Residual strain and texture in strontium-doped

    E-Print Network [OSTI]

    Garmestani, Hamid

    of the residual strain/stress is needed because most deposited thin ®lms are under some kind of residual (internalJOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 12 (2001) 143±146 Residual strain@magnet.fsu.edu Thin ®lms of La0:67Sr0:33MnO3 (LSMO) have been deposited using liquid-delivery metal- organic chemical

  10. AC 2010-1276: STUDENT UNDERSTANDING OF THE MECHANICAL PROPERTIES OF METALS IN AN INTRODUCTORY MATERIALS SCIENCE

    E-Print Network [OSTI]

    Heckler, Andrew F.

    difficulties in learning materials science. © American Society for Engineering Education, 2010 #12;Student in a university-level introductory materials science course for engineers. Through interviews of over 80 students MATERIALS SCIENCE ENGINEERING COURSE Rebecca Rosenblatt, Ohio State University Rebecca Rosenblatt

  11. Institute for Integrated Cell-Material Sciences Kyoto University

    E-Print Network [OSTI]

    Takada, Shoji

    succeeded in generating induced pluripotent stem (iPS) cells from human broblasts in November 2007. In order of November 1, 2008). Prof. Norio Nakatsuji (former director of the Institute for Frontier Medical Sciences

  12. Universal Science of Complexity: Consistent Understanding of Ecological, Living and Intelligent System Dynamics

    E-Print Network [OSTI]

    Andrei P. Kirilyuk

    2014-05-26T23:59:59.000Z

    A major challenge of interdisciplinary description of complex system behaviour is whether real systems of higher complexity levels can be understood with at least the same degree of objective, "scientific" rigour and universality as "simple" systems of classical, Newtonian science paradigm. The problem is reduced to that of arbitrary, many-body interaction (unsolved in standard theory). Here we review its causally complete solution, the ensuing concept of complexity and applications. The discovered key properties of dynamic multivaluedness and entanglement give rise to a qualitatively new kind of mathematical structure providing the exact version of real system behaviour. The extended mathematics of complexity contains the truly universal definition of dynamic complexity, randomness (chaoticity), classification of all possible dynamic regimes, and the unifying principle of any system dynamics and evolution, the universal symmetry of complexity. Every real system has a non-zero (and actually high) value of unreduced dynamic complexity determining, in particular, "mysterious" behaviour of quantum systems and relativistic effects causally explained now as unified manifestations of complex interaction dynamics. The observed differences between various systems are due to different regimes and levels of their unreduced dynamic complexity. We outline applications of universal concept of dynamic complexity emphasising cases of "truly complex" systems from higher complexity levels (ecological and living systems, brain operation, intelligence and consciousness, autonomic information and communication systems) and show that the urgently needed progress in social and intellectual structure of civilisation inevitably involves qualitative transition to unreduced complexity understanding (we call it "revolution of complexity").

  13. JOURNAL OF MATERIALS SCIENCE 36 (2001) 77 86 Synthesis of yttria-doped strontium-zirconium

    E-Print Network [OSTI]

    Iglesia, Enrique

    JOURNAL OF MATERIALS SCIENCE 36 (2001) 77­ 86 Synthesis of yttria-doped strontium-zirconium oxide densification, than co-precipitated powders. C 2001 Kluwer Academic Publishers 1. Introduction Strontium

  14. C12 PART IIA and Part IIB C12 MATERIALS SCIENCE AND METALLURGY

    E-Print Network [OSTI]

    Colton, Jonathan S.

    C12 PART IIA and Part IIB C12 MATERIALS SCIENCE AND METALLURGY Course C12: Plasticity Horwood, 1985 Kc38 G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, 1988 Ka62 W.F. Hosford and R

  15. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  16. Materials Science and Engineering A297 (2001) 235243 Plasma-sprayed ceramic coatings: anisotropic elastic and

    E-Print Network [OSTI]

    Sevostianov, Igor

    anisotropic elastic stiffnesses and thermal conductivities of the plasma sprayed ceramic coatingMaterials Science and Engineering A297 (2001) 235­243 Plasma-sprayed ceramic coatings: anisotropic are derived. © 2001 Elsevier Science S.A. All rights reserved. Keywords: Thermal spray; Elastic properties

  17. Ultrafast Material Science Probed Using Coherent X-ray Pulses from High-Harmonic

    E-Print Network [OSTI]

    Aeschlimann, Martin

    Chapter 7 Ultrafast Material Science Probed Using Coherent X-ray Pulses from High science have made it possible to generate x-ray pulses at the femto- and attosecond frontiers using either-ray pulses paves the way for a completely new generation of experiments that can capture the coupled dynamics

  18. Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 17 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

  19. Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 30 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

  20. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01T23:59:59.000Z

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  1. Science as Art: Materials Characterization Art | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bamboo plant to grow. A porous "composite" structure as seen in the image would help in engineering structural materials capable of carrying fluids or gases internally." However,...

  2. Facilities Management & Construction Agriculture and Life Sciences Complex

    E-Print Network [OSTI]

    and landscape maintenance. Mechanical Rooms - Any area whose primary usage is for mechanical equipment, telecom ­ Formally known as Physical Plant. This group will be contacted for maintenance issues for both building maintenance issues or the person that will distribute building complex information (i.e. power outages, fire

  3. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Proceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite strength of unidirectional (UD) carbon fibre reinforced composites (CFRP) in the fibre direction composites are getting much attention these years, due to increasing use of these materials in large

  4. JOURNAL OF MATERIALS SCIENCE 39 (2004) 4103 4106 Effect of fiber content on the thermoelectric

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    JOURNAL OF MATERIALS SCIENCE 39 (2004) 4103­ 4106 Effect of fiber content on the thermoelectric behavior of cement S. WEN, D. D. L. CHUNG Composite Materials Research Laboratory, University at Buffalo of discontinuous stainless steel fibers (diameter 60 µm) as an admixture in cement paste on the thermoelectric

  5. NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films

    E-Print Network [OSTI]

    NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films is critical of these materials could open new opportunities for introducing thin-film solar technologies that combine both low near the FeS2 thin-film surfaces and grain boundaries that limit its open-circuit voltage, rather than

  6. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. ThygesenProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite reduction in composites were determined analytically. The interrelations between the remaining lifetime

  7. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen requirements of resin infusion and prepregs for Wind Turbine blades manufacture. The new HiPertex technologyProceedings of the 27th Ris International Symposium on Materials Science: Polymer Composite

  8. Journal of Hazardous Materials 262 (2013) 456463 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Perfluorooctanoic acid degradationJournal of Hazardous Materials 262 (2013) 456­463 Contents lists available at ScienceDirect Journal light, indicating that UV radiation is required for PFOA decomposition. Spectroscopic analysis indicates

  9. DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science...

    Broader source: Energy.gov (indexed) [DOE]

    semi-annual workshops hosted by NCMC. Two half-day sessions were focused on discovery of hydrogen storage materials, one half-day session on fuel cell membranes, and one half-day...

  10. Materials Science Under Extreme Conditions of Pressure and Strain Rate

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    at Lawrence Livermore National Laboratory. I. INTRODUCTION HIGH-STRAIN-RATE materials dynamics and solid-state experiments to much higher pressures, P 103 GPa (10 Mbar), on the National Ignition Facility (NIF) laser

  11. Research and Devlopment Associate Center for Nanophase Materials Sciences Division

    E-Print Network [OSTI]

    Pennycook, Steve

    : i) selective conversion of biomass-derived compounds; ii) rechargeable metal-air batteries as next. · Heterogeneous catalysis and electrocatalysis on metals, metal compounds, and nano- materials. · Current focuses

  12. Chemistry and Materials Science, 1990--1991. [Second annual report

    SciTech Connect (OSTI)

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A. [eds.

    1991-12-31T23:59:59.000Z

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  13. Mork Family Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Zhou, Chongwu

    , optical biologi cal sensors, reservoir simulations and CO² sequestration and flow in porous media. Now, the Mork Family Department is also leading an effort in the complex and very important field of carbon dioxide sequestration. A New Interdisciplinary Synergy A visualization at the Center for High Performance

  14. Chemistry and Materials Science. Progress report, first half, FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

  15. Postdoctoral Research Associate Center for Nanophase Materials Sciences

    E-Print Network [OSTI]

    Pennycook, Steve

    that can lead us to design superior devices for various applications. 2. Design of high capacity energy of energy storage systems. #12;3. Catalysis properties of low-dimensional materials: Most of the catalysts are noble metals. Wide efforts are being made to replace or reduce the usage of noble metals. Low

  16. Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems

    E-Print Network [OSTI]

    1 Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems Patrick James McCluskey, and Joost J. Vlassak Division of Engineering is presented for the combinatorial analysis of complex nano-scale material systems. The parallel nano

  17. Ethnic Diversity in Materials Science and Engineering. A report on the workshop on ethnic diversity in materials science and engineering.

    SciTech Connect (OSTI)

    Schwartz, Justin

    2014-06-30T23:59:59.000Z

    The immediate goal of the workshop was to elevate and identify issues and challenges that have impeded participation of diverse individuals in MSE. The longerterm goals are to continue forward by gathering and disseminating data, launching and tracking initiatives to mitigate the impediments, and increase the number of diverse individuals pursuing degrees and careers in MSE. The larger goal, however, is to create over time an ever-increasing number of role models in science fields who will, in turn, draw others in to contribute to the workforce of the future.

  18. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  19. XG Sciences, ORNL partner on titanium-graphene composite materials |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1ofRadiative Heating in GlobalFor

  20. Division of Materials Sciences and Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirectionsWorkplace » Diversity,Materials

  1. Materials Science & Technology, MST: Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Advanced MaterialsMST

  2. Sandia National Laboratories: Research: Materials Science: About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecoveryTop LDRD Publications ResearchMaterials

  3. Sandia National Laboratories: Research: Materials Science: Video Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecoveryTop LDRD PublicationsMaterials

  4. The environmental impact of a hazardous material spill is a complex function of the material's physical and chemical characteristics and the

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    of environmental damage that will result from a spill varies depending on the characteristics of the location where12 The environmental impact of a hazardous material spill is a complex function of the material's physical and chemical characteristics and the local environmental conditions in which it is spilled

  5. Ultrafast Materials and Chemical Sciences FOA | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andof Science (SC)(SC)

  6. LASER WELDING -Literature Review Materials Science and Metallurgy Department, University of Cambridge, England. July 2002.

    E-Print Network [OSTI]

    Cambridge, University of

    LASER WELDING - Literature Review C.A. Walsh Materials Science and Metallurgy Department industry to produce seam or stitch welds, as alternatives to conventional resistance spot welding, which are used extensively for attaching auto-body panels to sub- assemblies. The advantages of laser welding

  7. University of Virginia, Dept. of Materials Science and Engineering Topic 8a -FIB

    E-Print Network [OSTI]

    Moeck, Peter

    , high energy (30 keV) Ga+ ions are focused into spots as small as 10 nm to form pixel-by-pixel images. q;University of Virginia, Dept. of Materials Science and Engineering Dynamic Secondary Ion Mass Spectrometry (Dynamic SIMS) · In Secondary Ion Mass Spectrometry (SIMS), a solid specimen, placed in a vacuum

  8. Materials Science Forum, Vols. 426432, 2003, pp. 3542. Advances in the Kinetic Theory of Carbide Precipitation

    E-Print Network [OSTI]

    Cambridge, University of

    Materials Science Forum, Vols. 426­432, 2003, pp. 35­42. Advances in the Kinetic Theory of Carbide Pembroke Street, Cambridge CB2 3QZ, U.K., www.msm.cam.ac.uk/phase­trans Keywords : Carbides, kinetics and reversion of carbides can determine the quality of steels. This paper is a review of efforts towards better

  9. Materials Science and Engineering A 445446 (2007) 186192 Plastic instabilities and dislocation densities during plastic

    E-Print Network [OSTI]

    Gubicza, Jenõ

    Materials Science and Engineering A 445­446 (2007) 186­192 Plastic instabilities and dislocation densities during plastic deformation in Al­Mg alloys Gyozo Horv´ath, Nguyen Q. Chinh, Jeno Gubicza, J 2006 Abstract Plastic deformation of Al­Mg alloys were investigated by analyzing the stress

  10. Materials Science and Engineering A 496 (2008) 501-506 Joining Ceramics to Metals

    E-Print Network [OSTI]

    Cambridge, University of

    ductility enhances the resistance of the joint to thermal cycling; AlN-Inconel 600 bonds exhibited good thermal shock resistance. Alumina- stainless steel bonds withstood more that 60 thermal cycles between 200Materials Science and Engineering A 496 (2008) 501-506 1 Joining Ceramics to Metals using Metallic

  11. MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science and

    E-Print Network [OSTI]

    Mease, Kenneth D.

    MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science Samueli School of Engineering University of California Irvine 3D printing or Additive Manufacturing in different shapes. 3D printing is also considered distinct from traditional machining techniques, which

  12. Materials Science and Engineering BS Curriculum Flow Chart for students beginning in or after Fall 2011

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Functions of Several Variables Materials Science and Engineering BS Degree Requirements for students and Engineering BS Curriculum Flow Chart for students beginning in or after Fall 2011 05/02/12 3 St ti ti 3) Physics II 5 Physics I 5 Math 234 MultiVarCalc 3 (Math 222) 1-3 Intro Eng Engineering 3-4 Statistics 324

  13. JOURNAL OF MATERIALS SCIENCE 34 (1999) 637 644 Cell nucleation in solid-state polymeric foams

    E-Print Network [OSTI]

    Kumar, Vipin

    JOURNAL OF MATERIALS SCIENCE 34 (1999) 637­ 644 Cell nucleation in solid-state polymeric foams-mail: holl@u.washington.edu The mechanism for nucleation phenomenon in solid-state microcellular foams. The nucleation phenomenon is thermally activated at the effective glass transition temperature of the gas

  14. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect (OSTI)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01T23:59:59.000Z

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: Determination of the design basis flood (DBFL) Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  15. Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details. Chemistry, Materials Science and Engineering Emphasis Core courses, plus: MATH 2250 Differential Equations or contact Professor Richard Ernst (ernst@chem.utah.edu; 801-581-8639) Chemistry Core Courses (required

  16. Swiss Federal Laboratories for Materials Science and Technology Advances in Thin Film PV: CIGS & CdTe

    E-Print Network [OSTI]

    Canet, Lonie

    and Photovoltaics Thin film solar cells based on compound semiconductor absorbers: CIGS and CdTe High efficiency and Photovoltaics Swiss Federal Laboratories for Material Science and Technology Key issues in high efficiency CIGSTe Laboratory for Thin Films and Photovoltaics Empa- Swiss Federal Laboratories for Material Science

  17. Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University

    E-Print Network [OSTI]

    Takada, Shoji

    Contact: Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (i Cell-Material Sciences, iCeMS for short, I welcome you to the Seventh iCeMS International Symposium to develop them through evolution. They are also very important to design and create various novel "smart

  18. Year 1 Progress Report Computational Materials and Chemical Sciences Network Administration

    SciTech Connect (OSTI)

    Rehr, John J.

    2012-08-02T23:59:59.000Z

    This document reports progress on the project Computational Materials and Chemical Sciences Network Administration, which is supported by DOE BES Grant DE-FG02-02ER45990 MOD 08. As stated in the original proposal, the primary goal of this project is to carry out the scientific administrative responsibilities for the Computational Materials and Chemical Sciences Network (CMCSN) of the U.S. Department of Energy, Office of Basic Energy Sciences. These responsibilities include organizing meetings, publishing and maintaining CMCSNs website, publishing a periodic newsletter, writing original material for both the website and the newsletter, maintaining CMCSN documentation, editing scientific documents, as needed, serving as liaison for the entire Network, facilitating information exchange across the network, communicating CMCSNs success stories to the larger community and numerous other tasks outside the purview of the scientists in the CMCSN. Given the dramatic increase in computational power, advances in computational materials science can have an enormous impact in science and technology. For many of the questions that can be addressed by computation there is a choice of theoretical techniques available, yet often there is no accepted understanding of the relative strengths and effectiveness of the competing approaches. The CMCSN fosters progress in this understanding by providing modest additional funding to research groups which engage in collaborative activities to develop, compare, and test novel computational techniques. Thus, the CMCSN provides the glue money which enables different groups to work together, building on their existing programs and expertise while avoiding unnecessary duplication of effort. This includes travel funding, partial postdoc salaries, and funding for periodic scientific meetings. The activities supported by this grant are briefly summarized below.

  19. Materials Science and Engineering A 527 (2010) 62706282 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Wadley, Haydn

    that the change in preferred pore orientations with pressure is responsible for the higher thermal resistance) is the most widely used ceramic for TBC applications [2]. Thermal transport in this material occurs. At lower temperatures, conductive transport dom- inates, and the thermal resistance can be improved

  20. FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)

    SciTech Connect (OSTI)

    Samara, G.A.

    1994-01-01T23:59:59.000Z

    This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

  1. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90

  2. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30T23:59:59.000Z

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  3. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect (OSTI)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01T23:59:59.000Z

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  4. Master of Science project in advanced computational material physics Electrical conductivity of the correlated metal LaNiO3

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in advanced computational material physics Electrical conductivity of the correlated metal LaNiO3 Lanthanum nickelate, LaNiO3, belongs to the class of materials named strongly correlated metals. Several properties of these materials can not be understood based on standard

  5. Materials Research Science and Engineering Center (MRSEC) 2013/2014 Rolling Call for Proposals for Support of

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    , Optical and Magnetic Properties MSE 470 Capstone Project I MSE 471 Capstone Project II Materials Emphasis Fundamentals of Analytical Science Chem 345 Intermediate Organic Chemistry Geol 203 Earth Materials Phys 205 and Electronic Circuits EMA 303 Mechanics of Materials Phys 321 Electric Circuits and Electronics Stat 424

  6. Metallurgy:Metallurgical Science:Materials Science & Technology:MST: Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvanced Materials|

  7. Fab trees for designing complex 3D printable materials ; Material design by fab trees for 3D printing .

    E-Print Network [OSTI]

    Wang, Ye, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    ??With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, (more)

  8. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect (OSTI)

    None

    1995-12-01T23:59:59.000Z

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

  9. Berry phase effects on electronic properties Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,

    E-Print Network [OSTI]

    Wu, Zhigang

    Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Ming-Che Chang Department of PhysicsBerry phase effects on electronic properties Di Xiao Materials Science and Technology Division, Oak

  10. Marcus Wallace, Bryan Wiggins, K.W. Hipps Department of Chemistry and Materials Science and Engineering Program

    E-Print Network [OSTI]

    Collins, Gary S.

    Marcus Wallace, Bryan Wiggins, K.W. Hipps Department of Chemistry and Materials Science purified by both solvent extraction and sublimation methods in order to yield a high purity product

  11. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    SciTech Connect (OSTI)

    Gary Mecham

    2010-08-01T23:59:59.000Z

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Plan for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, Environmental Management Cleanup Projects. Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.

  12. Decomposition of molybdate-hexamethylenetetramine complex: One single source route for different catalytic materials

    SciTech Connect (OSTI)

    Chouzier, Sandra [Institut de recherches sur la catalyse et l'environnement de Lyon UMR5256, CNRS-Universite de Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France); Czeri, Tivadar; Roy-Auberger, Magalie; Pichon, Christophe [IFP Energies nouvelles, BP 3, 69390 Vernaison (France); Geantet, Christophe; Vrinat, Michel [Institut de recherches sur la catalyse et l'environnement de Lyon UMR5256, CNRS-Universite de Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France); Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l'environnement de Lyon UMR5256, CNRS-Universite de Lyon 1, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France)

    2011-10-15T23:59:59.000Z

    Decomposition of ammonium heptamolybdate-hexamethylentetramine (HMTA) complex (HMTA){sub 2}(NH{sub 4}){sub 4}Mo{sub 7}O{sub 24}.2H{sub 2}O was studied as a function of treatment conditions in the range 300-1173 K. The evolution of solid products during decomposition was studied by thermal analysis and in situ EXAFS. Depending on the nature of the gas used for treatment, single phases of highly dispersed nitrides Mo{sub 2}N, carbide Mo{sub 2}C, or oxide MoO{sub 2} can be obtained. The nature of the products obtained was explained by qualitative thermodynamical considerations. Morphology of the solids considerably depends on such preparation parameters as temperature and mass velocity of the gas flow. For the nitride-based materials, catalytic activity was evaluated in the model thiophene HDS reaction. It was demonstrated that NH{sub 3}-treated samples showed better catalytic activity than N{sub 2}-treated ones due to cleaner surface and better morphology. Transmission microscopy, XRD and XPS studies showed that MoS{sub 2} is formed on the surface during HDS reaction or sulfidation with H{sub 2}S. Optimized nitride-derived catalysts showed mass activity several times higher than unsupported MoS{sub 2} or MoS{sub 2}/Al{sub 2}O{sub 3} reference catalyst. - Graphical Abstract: Depending on the conditions, decomposition of molybdate-HTMA complex yields highly dispersed molybdenum nitride, carbide or oxide. Research Highlights: > Decomposition of molybdate-HTMA complex yields highly dispersed Mo{sub 2}N, Mo{sub 2}C or MoO{sub 2}. > In situ EXAFS shows formation of common amorphous product MoC{sub x}N{sub y}O{sub z} at 673 K. > Crystalline Mo{sub 2}N with surface area near 200 m{sup 2}/g was obtained at 823 K. > High mass activity in thiophene HDS was observed.

  13. SUPPORTING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS THROUGH SCIENCE, ENGINEERING AND SURVEILLANCE

    SciTech Connect (OSTI)

    Dunn, K.; Chandler, G.; Gardner, C.; Louthan, M.; Mcclard, J.

    2009-11-10T23:59:59.000Z

    Reductions in the size of the U. S. nuclear weapons arsenal resulted in the need to store large quantities of plutonium-bearing metals and oxides for prolonged periods of time. To assure that the excess plutonium from the U. S. Department of Energy (DOE) sites was stored in a safe and environmentally friendly manner the plutonium-bearing materials are stabilized and packaged according to well developed criteria published as a DOE Standard. The packaged materials are stored in secure facilities and regular surveillance activities are conducted to assure continuing package integrity. The stabilization, packaging, storage and surveillance requirements were developed through extensive science and engineering activities including those related to: plutonium-environment interactions and container pressurization, corrosion and stress corrosion cracking, plutonium-container material interactions, loss of sealing capability and changes in heat transfer characteristics. This paper summarizes some of those activities and outlines ongoing science and engineering programs that assure continued safe and secure storage of the plutonium-bearing metals and oxides.

  14. Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide

    E-Print Network [OSTI]

    Dillon, Robert

    2013-01-01T23:59:59.000Z

    RIVERSIDE Spectroscopy of Photovoltaic Materials: Charge-DISSERTATION Spectroscopy of Photovoltaic Materials: Charge-function of photovoltaic (PV) and photocatalytic (PC)

  15. In-Situ Neutron Diffraction Studies of Complex Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Yelon, William B.

    2013-05-13T23:59:59.000Z

    The thrust of this project was to investigate the structures of important materials with potential application to hydrogen storage, in an effort to meet the DOE goals for 2010 and 2015, namely 9% (wt) and 15% (wt) respectively. Unfortunately, no material has been found, despite the efforts of many laboratories, including our own, that achieves these goals in a reversible complex hydride such as ammonia borane (NH{sub 4}BH{sub 4}), and other ammonia based compounds, or with light hydrides such as LiBH{sub 4}, due either to their irreversibility or to the high decomposition temperatures and residual simple hydrides such as LiH from the decomposition of the last named compound. Nevertheless, several important technical goals have been accomplished that could be valuable to other DOE programs and would be available for collaborative research. These include the development of a high quality glove box with controlled (low) oxygen and water content, which we continue to employ for the synthesis of potential new materials (unfunded research) and the development of a high quality neutron diffraction furnace with controlled gas environment for studies of hydrogen uptake and loss as well as for studies with other gasses. This furnace was initially constructed with an alumina (Al{sub 2}O{sub 3}) center tube to contain the sample and the flowing gas. The heaters are located in the vacuum space outside the tube and it was found that, for the low temperatures required for the study of hydrogen storage materials, the heat transfer was too poor to allow good control. At temperatures in excess of about 400C (and up to more than 1200C) the heat transfer and control are excellent. For the lower temperatures, however, the center tube was replaced by stainless steel and temperature control to 1C became possible. The paired heaters, above and below the neutron beam window allowed control of the temperature gradient to a similar precision. The high temperature capability of the furnace should make it a very valuable resource for the study of oxides being considered for application to solid oxide fuel cells (SOFCs), in that materials can be studied at potential operating temperatures in both reducing and oxidizing environments to determine their stoichiometry, and lattice parameters. Our research, which was predicated, in part, on the use of hydrogenous samples (as opposed to deuteration), demonstrated that such studies are feasible and can yield high quality, refinable data. The precision of the refined hydrogen positions appears to be more than adequate for theory calculations (molecular modeling-thermodynamics) and the uncertainty is certainly less than that achieved by attempting to extrapolate the hydrogen positions from refined deuterium positions. In fact the 2008 annual report from the Institute Laue Langevin (ILL), the world's premier neutron scattering laboratory, highlights: Another trend is the increasing interest in hydrogen. This defies the widespread assumption that neutron diffraction experiments need to be done at deuterated samples. In situ experiments on phase transitions involving hydrogen and in particular on the real time behaviour of hydrogen-storage systems increase in number and scope. Our work in this area predates the ILL efforts be several years. Unfortunately, the productivity of our program was significantly curtailed by the unavailability of the MURR powder diffractometer for almost all of the second years of the project. The diffractometer was disassembled to allow partial extraction of the beam tube and replacement of the graphite element that is penetrated by the beam tube. Re-commissioning of the instrument was substantially delayed by errors of the MURR engineering staff, which failed to properly reinstall the sapphire filter that conditions the beam prior to the neutron monochromator, and reduces the radiological background to acceptable levels.

  16. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    SciTech Connect (OSTI)

    Altiero, Nicholas

    2014-10-28T23:59:59.000Z

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  17. Materials Science in Radiation and Dynamics Extremes:MST-8:LANL:Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials ScienceNational

  18. The Development and Use of Conceptual Models of Complex Earth Systems for Environmental Managment and Earth Science Education

    E-Print Network [OSTI]

    Miller, Heather

    2012-10-19T23:59:59.000Z

    THE DEVELOPMENT AND USE OF CONCEPTUAL MODELS OF COMPLEX EARTH SYSTEMS FOR ENVIRONMENTAL MANAGEMENT AND EARTH SCIENCE EDUCATION A Dissertation by HEATHER RENE MILLER Submitted to the Office of Graduate Studies of Texas A&M... AND EARTH SCIENCE EDUCATION A Dissertation by HEATHER RENE MILLER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair...

  19. E-Print Network 3.0 - active macrocyclic complexes Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science 6 Self-Assembly of Fluorescent Inclusion Complexes in Competitive Media Including the Interior of Living Cells Summary: -soluble macrocyclic host molecules,...

  20. W.E. Henry Symposium compendium: The importance of magnetism in physics and material science

    SciTech Connect (OSTI)

    Carwell, H.

    1997-09-19T23:59:59.000Z

    This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

  1. Nanoimprinting over topography and multilayer three-dimensional printing Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109

    E-Print Network [OSTI]

    George, Steven C.

    of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109 X. Cheng Solid of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109 A. F. Yee of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109 Received 28 May

  2. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 28, 689-704 (2012) The Complexity of GARCH Option Pricing Models

    E-Print Network [OSTI]

    Lyuu, Yuh-Dauh

    2012-01-01T23:59:59.000Z

    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 28, 689-704 (2012) 689 The Complexity of GARCH computational over- head. In fact, raising n makes the popular Ritchken-Trevor tree under non-linear GARCH that LGARCH, AGARCH, GJR-GARCH, TS-GARCH and TGARCH share the same properties as NGARCH. The theoretical

  3. Four-Campus Video-Colloquium Series, F-W-S 2005-06 Human Sciences and Complexity

    E-Print Network [OSTI]

    White, Douglas R.

    Four-Campus Video-Colloquium Series, F-W-S 2005-06 Human Sciences and Complexity September 30://eclectic.ss.uci.edu/center/VideoConferenceD_ReadAbstract.pdf November 4: Friday, 1:30-3:30. Darren of View in Early Systems" Video Locations UCLA: 285 Powell Library - vidcon@ucla.edu UCSD: 260 Galbraith

  4. The Department of Mechanical and Materials Engineering, Faculty of Engineering and Applied Science, Queen's University invites applications for a tenure-track faculty position at the rank of

    E-Print Network [OSTI]

    Ellis, Randy

    ://www.queensu.ca/provost/faculty/facultyrelations/qufa/collectiveagreement.html. Department of Mechanical and Materials Engineering Tenure-Track Faculty Position in Sustainable Energy #12;The Department of Mechanical and Materials Engineering, Faculty of Engineering and Applied Science be near completion) in mechanical engineering, materials science and engineering, or a related area

  5. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect (OSTI)

    Garaizar, X

    2010-01-06T23:59:59.000Z

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  6. Science-Driven Candidate Search for New Scintillator Materials FY 2013 Annual Report

    SciTech Connect (OSTI)

    Gao, Fei; Kerisit, Sebastien N.; Xie, YuLong; Wu, Dangxin; Prange, Micah P.; Van Ginhoven, Renee M.; Campbell, Luke W.; Wang, Zhiguo

    2013-10-01T23:59:59.000Z

    This annual report presents work carried out during Fiscal Year (FY) 2013 at Pacific Northwest National Laboratory (PNNL) under the project entitled Science-Driven Candidate Search for New Scintillator Materials (Project number: PL13-SciDriScintMat-PD05) and led by Dr. Fei Gao. This project is divided into three tasks, namely (1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; (2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and (3) Kinetics and efficiency of scintillation: nonlinearity, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the findings and insights obtained in each of these three tasks are provided in this report. Additionally, papers published this fiscal year or currently in review are included in Appendix together with presentations given this fiscal year.

  7. Requirements for a Minor in Materials Science and Engineering 1. A minor in Materials Science and Engineering can be earned through completion of 20 credits

    E-Print Network [OSTI]

    of Fuel Cells and Batteries ENG MS/ME 530 Introduction to Micro and Nanomechanics of Solids ENG MS/ME 555 MEMS Fabrication and Materials ENG MS/ME 534 Materials Technology for Microelectronics CAS PY 451 program. 4. Students must have a declared major on record in order to apply for the Minor in Materials

  8. Holzbau : timber construction and material information exchanges for the design of complex geometrical structures

    E-Print Network [OSTI]

    Aparicio, German Walter, Jr

    2010-01-01T23:59:59.000Z

    In a universe made of bits where everything is continuously computing and nature itself is processing information everyday, what is it that our materials compute? Specifically, what are the bits of information registered ...

  9. Generation of ultrahigh frequency acoustic waves for the characterization of complex materials

    E-Print Network [OSTI]

    Choi, Jaime Dawn, 1976-

    2005-01-01T23:59:59.000Z

    A discussion of the anomalous low-temperature thermal properties of amorphous materials is first given as a theoretical framework in which the rest of the thesis is treated. The theory models the form and function of ...

  10. Department of Materials Science and Engineering Fall 2012 The Development and Testing of Composite Materials for Pump Wear Rings

    E-Print Network [OSTI]

    Demirel, Melik C.

    of Composite Materials for Pump Wear Rings Overview Flowserve currently uses two hardened steel wear rings, one rotating with the impellor, the other sitting stationary along the casing of their centrifugal pumps materials in the pump is believed to cut down on pump operating, maintenance, and assembly costs. Objectives

  11. Radioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and

    E-Print Network [OSTI]

    contamination during transportation. Dispersible radioactive material must be placed in rigid, leak- tight inner be sufficient such that EMSL staff will not encounter radioactive contamination when they open the shippingRadioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located

  12. Department of Mechanical Engineering/Material Science and Engineering Spring 2013 Project Name Development of Test Rig to

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering/Material Science and Engineering Spring 2013 Project up. The hardest part of this project was learning SolidWorks, how to incorporate mechanical design into an actual project, general machining (boring, reaming, broaching), advanced machining (CNC), and data

  13. Materials Science and Engineering A245 (1998) 293299 The wettability of silicon carbide by AuSi alloys

    E-Print Network [OSTI]

    Grigoriev, Alexei

    Materials Science and Engineering A245 (1998) 293­299 The wettability of silicon carbide by Au. Keywords: Wettability; Contact angle; Liquid metals; Silicon carbide 1. Introduction The interface properties of silicon carbide­liquid metals (wetting, adhesion, contact interaction) are im- portant

  14. Journal of Materials Science and Engineering 5 (2011) 171-176 Effects of Polymer Infusion and Characteristic Length

    E-Print Network [OSTI]

    Peale, Robert E.

    Journal of Materials Science and Engineering 5 (2011) 171-176 Effects of Polymer Infusion temperature, and degree of polymer infusion (for hardening) was performed. Polymer infusion was found [1-3]. This paper considers the effect of hardening a gold-black film via polymer infusion

  15. Materials Science and Engineering A 447 (2007) 125133 Transient liquid phase bonding of Inconel 718 and Inconel 625

    E-Print Network [OSTI]

    Medraj, Mamoun

    2007-01-01T23:59:59.000Z

    Materials Science and Engineering A 447 (2007) 125133 Transient liquid phase bonding of Inconel the time required to complete isothermal solidification during the transient liquid phase bonding, with nickel based filler alloy, BNi-2. However, unlike conventional modeling, the diffusion of solute atoms

  16. Materials Science and Engineering A 418 (2006) 341356 Microstructural effects of AZ31 magnesium alloy on its

    E-Print Network [OSTI]

    Tong, Wei

    Materials Science and Engineering A 418 (2006) 341­356 Microstructural effects of AZ31 magnesium Magnesium alloys exhibit the attractive combination of low densities (1.74 g/cm3 versus 2.7 g/cm3 for Al

  17. Creep and plasticity of glacier ice: a material science perspective Paul DUVAL, Maurine MONTAGNAT, Fanny GRENNERAT, Jerome WEISS,

    E-Print Network [OSTI]

    Weiss, Jrme

    Creep and plasticity of glacier ice: a material science perspective Paul DUVAL, Maurine MONTAGNAT the plasticity of ice have been made during the past 60 years with the development of studies of the flow experimental investigations clearly show that the plastic deformation of the ice single crystal and polycrystal

  18. Materials Science and Engineering B72 (2000) 5658 High-temperature infrared reflectivity of yttria-stabilized hafnia

    E-Print Network [OSTI]

    Ku?el, Petr

    and to follow its development upon heating in order to check for presence of possible effects in far infraredMaterials Science and Engineering B72 (2000) 56­58 Letter High-temperature infrared reflectivity Prague 8, Czech Republic Received 11 November 1999 Abstract Infrared reflectivity spectra of cubic yttria

  19. JOURNAL OF MATERIALS SCIENCE LETTERS 21, 2002, 251 255 Organic-inorganic sol-gel coating for corrosion protection

    E-Print Network [OSTI]

    Cao, Guozhong

    for corrosion protection of stainless steel T. P. CHOU Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA E-mail: gzcao@u.washington.edu One of the most effective corrosion example. This is the main reason for the durability and corrosion resistance be- havior of this particular

  20. Materials and Design 24 (2003) 6978 0261-3069/03/$ -see front matter 2002 Elsevier Science Ltd. All rights reserved.

    E-Print Network [OSTI]

    Grujicic, Mica

    operate near their limits of thermal cracking and melting erosion resistances during long-burst firing. Due to their high melting temperature (controls melting- erosion resistance), high hotMaterials and Design 24 (2003) 69­78 0261-3069/03/$ - see front matter 2002 Elsevier Science Ltd

  1. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  2. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect (OSTI)

    Maloy, Stuart A. [Los Alamos National Laboratory; Busby, Jeremy T. [ORNL

    2012-06-12T23:59:59.000Z

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  3. 204 Mechanical Engineering and Materials Science 205 of Architecture. The campus-wide Rice Quantum Institute is also active in the research

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    ) MECH 340 Industrial Process Lab (1) MECH 343 Modeling of Dynamic Systems (4) MECH 371 Fluid Mechanics I204 Mechanical Engineering and Materials Science 205 of Architecture. The campus-wide Rice Quantum. Degree Requirements for B.A., B.S.M.E. in Mechanical Engineering or B.A., B.S.M.S. in Materials Science

  4. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-09-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  5. Science-Driven Candidate Search for New Scintillator Materials: FY 2014 Annual Report

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Wu, Dangxin; Prange, Micah P.

    2014-10-01T23:59:59.000Z

    This annual reports presents work carried out during Fiscal Year (FY) 2014 at Pacific Northwest National Laboratory (PNNL) under the project entitled Science-Driven Candidate Search for New Scintillator Materials (Project number: PL13-SciDriScintMat-PD05) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project is divided into three tasks: 1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; 2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and 3) Kinetics and efficiency of scintillation: nonproportionality, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the results obtained in each of the three tasks is provided in this Annual Report. Furthermore, peer-reviewed articles published this FY or currently under review and presentations given this FY are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  6. Journal of Hazardous Materials 264 (2014) 246253 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Ohta, Shigemi

    to Clostridium sp. and effects on uranium biosorption C. Zhanga,b, , S.V. Malhotrab,1 , A.J. Francisc,d a College of Environmental Science and Engineering, Nankai University, Tianjin, China 300071 b Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07104 USA c Environmental Sciences

  7. Complex Oxides > Research > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials

  8. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect (OSTI)

    A. BISHOP

    2000-09-01T23:59:59.000Z

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  9. SCIENCE CHINA Technological Sciences

    E-Print Network [OSTI]

    Wang, Zhong L.

    SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; 2 Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China; 3 School of Material Science and Engineering, Georgia Institute

  10. Combinatorial Analysis > Complex Oxides > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials | Center Upcoming Events EventsCenter

  11. Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    synthesis and characterization, electronic and semiconductor materials, solar energy and photovoltaics; materials for alternative energy and energy storage; nanoelectronics. Paul G. Evans Associate Professor

  12. Millenium Science Complex New clean room: 10,000 sq. ft. class 100/1000

    E-Print Network [OSTI]

    -ring outgassing · All high temperature O-rings made of fluorocarbon or perfluorocarbon materials have this issue

  13. Materials Science and Engineering -Master Thesis -July 2011 Analysis and optimization of thin walled

    E-Print Network [OSTI]

    Dalang, Robert C.

    . Materials and processes Work done Compounding realized either using pre-preg technology or Resin Infusion

  14. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    and Plasma Research Department, ** Danish Polymer Centre, *** Materials Research Department, Frederiksborgvej

  15. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology --

  16. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ---- Energy,

  17. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ---- Energy,--

  18. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ---- Energy,----

  19. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ---- Energy,------

  20. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ----

  1. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ------ Energy,

  2. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ------ Energy,--

  3. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ------ Energy,----

  4. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ------

  5. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology -------- Energy,

  6. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology -------- Energy,--

  7. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology --------

  8. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ---------- Energy,

  9. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ----------

  10. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ------------

  11. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology --------------

  12. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ----------------

  13. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology ------------------

  14. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology

  15. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology-- Energy,

  16. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology-- Energy,--

  17. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office...

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

  18. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

  19. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology-- Energy, science,

  20. Oral: Division of Polymeric Materials: Science & Engineering: Nano-and Micro-Scale Porous Polymer-Based Systems. Synthesis of [Bis(pyridine)salen]ZnII

    E-Print Network [OSTI]

    Oral: Division of Polymeric Materials: Science & Engineering: Nano- and Micro-Scale Porous Polymer envisioned for these polymeric materials, enantioselectivity is one of the most challenging to incorporate.4/separation are often anticipated.5,6 Ideally, porous polymeric materials with chiral functionalities along their pores

  1. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

  2. Neutron confinement cell for investigating complex fluids Tonya L. Kuhla)

    E-Print Network [OSTI]

    Kuhl, Tonya L.

    Neutron confinement cell for investigating complex fluids Tonya L. Kuhla) Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, California 95616 Gregory S. Smith Engineering, University of California, Santa Barbara, Santa Barbara, California 93106 Jaroslaw Majewski Manuel

  3. Materials Research Lab -Cooperative International Science and Engineering Internships http://web.mrl.ucsb.edu/mrl/outreach/educational/CISEI/interns06/interns06.html[11/8/12 2:12:16 PM

    E-Print Network [OSTI]

    Bigelow, Stephen

    site to send US undergraduate science and engineering majors to 10-week summer internships at ourMaterials Research Lab - Cooperative International Science and Engineering Internships http For Teachers Education Contacts News Cooperative International Science and Engineering Internships Cooperative

  4. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    SciTech Connect (OSTI)

    Gary Mecham; Don Konoyer

    2009-11-01T23:59:59.000Z

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

  5. Journal of Hazardous Materials 267 (2014) 6270 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Ma, Lena

    of Florida, Gainesville, FL 32611, USA b State Key Laboratory of Pollution Control and Resource Reuse, School,a, , Julia Gressa , Willie Harrisa , Yuncong Lic a Department of Soil and Water Science, University of the Environment, Nanjing University, Jiangsu 210046, China c Soil and Water Science Department, Tropical Research

  6. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  7. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  8. Computational Science Technical Note CSTN-051 Eigenvalue Spectra Measurements of Complex Networks

    E-Print Network [OSTI]

    Hawick, Ken

    at K = 2. Keywords: complex networks; Kauffman network; eigen- value densities; semi-circle rule. 1 networks; Kauman network; eigenvalue densities; semi-circle rule BiBTeX reference: @INPROCEEDINGS{CSTN-051 University}, keywords = {complex networks; Kauffman network; eigenvalue densities; semi-circle rule}, owner

  9. Simplicity versus complexity in modelling groundwater recharge in Chalk catchments Hydrology and Earth System Sciences, 6(5), 927937 (2002) EGS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    rainfall. Keywords: Chalk, modelling, groundwater recharge Introduction The Chalk is the main aquiferSimplicity versus complexity in modelling groundwater recharge in Chalk catchments 927 Hydrology and Earth System Sciences, 6(5), 927­937 (2002) © EGS Simplicity versus complexity in modelling groundwater

  10. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology -- Energy,Energy,--

  11. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy, science,Sciences and Ecology-- Energy,-- Energy,

  12. (Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

  13. [Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

  14. {33 faculty 30 post doctoral scholars 500 undergraduates 120 graduate students} The Department of Chemical Engineering and Materials Science is home to two,

    E-Print Network [OSTI]

    Woodall, Jerry M.

    Science 3001 Ghausi Hall, UC Davis One Shields Avenue Davis, CA 95616 apply online www to give every graduate student personal attention. Davis is a small, bike-friendly university city located Chemical Engineering M.S. Ph.D Materials Science M.S., M. Engr., Ph.D INTERESTS Energy Solar Cells, Fuel

  15. Materials science and engineering mse.mcmaster.ca graduate studies at the department of

    E-Print Network [OSTI]

    Thompson, Michael

    · The Steel Research Centre · The Centre for Automotive Materials and Corrosion. With its reputation Inc., NY Nigerian Oil Co. Nors

  16. Colomban_EMRSOARTF.doc Applied Physics A: Materials Science & Processing 79 (2004) 167-170

    E-Print Network [OSTI]

    /macro-spectroscopy allows for a non-destructive remote analysis: body and glaze, crystalline and amorphous phases can phases on cooling, raw materials are almost fully molten to produce a glass or a glaze, but small crystals (cooling in many glasses. Different materials

  17. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen Ris National Laboratory, Roskilde, Denmark, 2006 CONDITION MONITORING OF WIND TURBINE BLADES K. K during the lifetime of blades is more a result of the scatter in the materials properties than a lack

  18. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    FOR WIND TURBINE ROTOR BLADES Aage Lystrup Materials Research Department, Ris National Laboratory DK-4000 Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen), which are more relevant for 231 #12;Lystrup wind turbine blades. In all cases, the fibre content

  19. Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable

    E-Print Network [OSTI]

    Crawford, T. Daniel

    The Photovoltaic (PV) industry has aggressive goals to decrease $/kWh and lower the overall cost of ownership for Sustainable Energy: Emphasis on Photovoltaic Materials for Module Assembly and Installation with Ann Norris properties that make them excellent candidates for photovoltaic module encapsulants and other materials

  20. Network Requirements Workshop - Documents and Background Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Requirements Reviews Network Requirements Reviews Documents and Background Materials Science Engagement Move your data Programs & Workshops Science...

  1. Monitoring a Complex Physical System using a Hybrid Dynamic Bayes Net Computer Science Dept.

    E-Print Network [OSTI]

    McIlraith, Sheila

    ) shown in Fig. 1 is a complex physical system designed and con- structed at NASA's Kennedy Space Center, includingproducing oxygen from the atmosphere on Mars and converting carbon dioxide to oxygen within closed human to slow changes such as gas composition that take hours to evolve. From a tracking perspective, the system

  2. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  3. Journal of Hazardous Materials 264 (2014) 286292 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Ma, Lena

    ,a, , Xiaoling Donga , Willie G. Harrisa , J.C. Bonzongoc , Fengxiang Hand a Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA b State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China c Department

  4. Journal of Hazardous Materials 262 (2013) 883886 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Ma, Lena

    and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China k Soil and Water, Sweden c KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Science Department, University of Florida, Gainesville, FL, United States l School of Environmental

  5. Journal of Hazardous Materials 279 (2014) 485492 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Ma, Lena

    of the Environment, Nanjing University, Jiangsu 210046, China b Soil and Water Science Department, University As was monitored during remediation by Pteris vittata. · Pteris vittata removed 46­66% total As from soils over 7 in enhancing As uptake by P. vittata. To facilitate acquisition of P from PR, P. vittata produced larger root

  6. Tougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science |

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    and satellites. To create the new fiber, researchers began with carbon nanotubes--cylindrical-shaped carbonTougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science | Nanotechnology | Engineering | Material

  7. Journal of Materials Science, 2009. 44(6): p. 1485-1493. Compressive and Ultrasonic Properties of Polyester/Fly Ash Composites

    E-Print Network [OSTI]

    Gupta, Nikhil

    1485 Journal of Materials Science, 2009. 44(6): p. 1485-1493. Compressive and Ultrasonic Properties material. Cenospheres are a waste by-product of coal combustion and, as such, are available at very low with liquid polyester resin and subsequently curing the resin. This process resulted in a functionally graded

  8. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect (OSTI)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25T23:59:59.000Z

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (s) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOEs research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  9. Comparison of Different Upscaling Methods for Predicting Thermal Conductivity of Complex Heterogeneous Materials System: Application on Nuclear Waste Forms

    SciTech Connect (OSTI)

    Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2012-06-16T23:59:59.000Z

    To develop a strategy in thermal conductivity prediction of a complex heterogeneous materials system, loaded nuclear waste forms, the computational efficiency and accuracy of different upscaling methods have been evaluated. The effective thermal conductivity, obtained from microstructure information and local thermal conductivity of different components, is critical in predicting the life and performance of waste form during storage. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling method, were developed and implemented. Microstructure based finite element method (FEM) prediction results were used to as benchmark to determine the accuracy of the different upscaling methods. Micrographs from waste forms with varying waste loadings were used in the prediction of thermal conductivity in FEM and homogenization methods. Prediction results demonstrated that in term of efficiency, boundary models (e.g., Taylor model and Sachs model) are stronger than the self-consistent model, statistical upscaling method, and finite element method. However, when balancing computational efficiency and accuracy, statistical upscaling is a useful method in predicting effective thermal conductivity for nuclear waste forms.

  10. End State Condition Report for Materials and Fuels Complex Facilities MFC-799, 799A, and 770C

    SciTech Connect (OSTI)

    Gary Mecham

    2010-10-01T23:59:59.000Z

    The Materials and Fuels Complex (MFC) facilities MFC-799, Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area and the Carbonate Process Area); MFC-799A, Caustic Storage Area; and MFC-770C, Nuclear Calibration Laboratory, have been declared excess to future Department of Energy (DOE) Office of Nuclear Energy(NE) mission requirements. Transfer of these facilities from NE to the DOE Office of Environmental Management (EM), and an associated schedule for doing so, have been agreed upon by the two offices. This report documents the completion of pre-transfer stabilization actions, as identified in DOE Guide 430.1-5, Transition Implementation Guide, for buildings MFC-799/799A and 770C, and indicates that these facilities are ready for transfer from NE to EM. The facilities are in a known, safe condition and information is provided to support efficient decommissioning and demolition (D&D) planning while minimizing the possibility of encountering unforeseen circumstances during the D&D activities.

  11. The Department of Chemical Engineering and Materials Science Michigan State University

    E-Print Network [OSTI]

    Narayan ENGINEERING BIOBASED INTERPENETRATING POLYMER NETWORKS BASED ON PLANT (SOYBEAN) OIL AND POLYSILOXANES Interpenetrating Polymer Networks (IPNs) are materials containing two or more components that have been polymerized and crosslinked in the presence of each other to form entangled (interpenetrated

  12. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

  13. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect (OSTI)

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01T23:59:59.000Z

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  14. Fusion Materials Science and Technology Research Opportunities now and during the ITER Era

    SciTech Connect (OSTI)

    Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

    2014-02-22T23:59:59.000Z

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  15. Journal of Hazardous Materials 171 (2009) 10581065 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Short, Daniel

    . The toxic heavy metal Pb was found to continuously leach out of the components over the entire test periods a complex array of toxic substances such as heavy metals and brominated flame retardants (BFRs Personal computer Heavy metal Dynamic leaching Environment a b s t r a c t A dynamic leaching test (DLT

  16. Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

  17. SUM 2013 Chemistry & Materials Science Workshop Sept. 17-18, 2013, USTC

    E-Print Network [OSTI]

    Zhou, Yi-Feng

    -coated graphene oxide with assembly enhanced antibacterial activity, Huiqiao Wang, USTC 5. Three dimensional N:00 pm ­ 2:30 pm: Adhesion and Thermomechanical Reliability of Hybrid Films in Nanoscience and Bioscience Nanofiber Electrode Materials: Asymmetric Supercapacitor with High Energy and Power Density, Lifeng Chen

  18. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen. In a wind turbine blade certain areas can, with advantage, be constructed incorporating a sandwich structure, the sandwich structures provides a good strength and stiffness when exposed to compressive loads. Wind turbine

  19. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen joints are found today in the electronic, automobile, aerospace, wind turbine and shipingbuilding performance and economic advantages. The use of adhesives leads to a more uniform stress distribution

  20. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    components like wind power turbines it is important to consider composite density. Plant fibre composites Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen their potential as reinforcement agents in wind power turbines. The investigation was focussed on the effect

  1. Materials Science and Engineering B 117 (2005) 187197 An atomic level analysis of conductivity and strength

    E-Print Network [OSTI]

    Grujicic, Mica

    in various elec- trochemical applications, electronic equipments, medical de- vices and in fuel cells. To quantify the electrolyte structure, comprehensive coordination and dimensional analyses are carried out]. The development of new materials via purely experimen- tal means is a time-consuming and costly proposition

  2. Draft Workshop Report: 30 June 2004 Workshop on Advanced Computational Materials Science

    E-Print Network [OSTI]

    Gropp, Bill

    power plants represent an even greater challenge to structural materials development and application and simulation could help bridge the gap between the data that is needed to support the implementation for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal

  3. The Department of Chemical Engineering and Materials Science Michigan State University

    E-Print Network [OSTI]

    Synthesis and Processing of Materials for Direct Thermal-to-Electric Energy Conversion and Storage and an energy storage technology is needed in addition to the energy conversion technology. This increases for power generation and energy storage. First, this work formalizes the energy problem and introduces

  4. JOURNAL OF MATERIALS SCIENCE 39 (2004) 1085 1086 UV transmitters of aluminum polyphosphates prepared by high

    E-Print Network [OSTI]

    Gallas, Márcia Russman

    nanostructured ceramic or composite materials with the desired properties [6­10]. Aluminum polyphosphate nanostructured systems have been used extensively as pigment for painting [11, 12], as matrix for composite University of Goi´as (UFG), 74001-970 Goi^ania, GO, Brazil The possibility to obtain nanostructured ceramic

  5. www.sciencemag.org/cgi/content/full/science.1200840/DC1 Supporting Online Material for

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    format were set up in 96-well Greiner plates using a Cartesian Technologies robot (S7). Crystallisation; Materials and methods Construct design and cloning A series of type IIa RPTP constructs were cloned+R228N, the corresponding chicken RPTP residues) mutant construct was designed to prevent proteolytic

  6. First International Symposium on Cold Cathodes Dielectric Science and Technology/Electronics/Luminescent and Display Materials

    E-Print Network [OSTI]

    Cahay, Marc

    /Electronics/Luminescent and Display Materials 198th Meeting of the Electrochemical Society Date: October 22­27, 2000 Location: Phoenix Noise (flicker, shot), ffl Emitters (e.g., Spindt­type field emitters, Negative electron affinity abstract to the ECS headquarters and also to K. L. Jensen at the address below. #12; Electrochemical

  7. Department of Materials Science & Engineering Spring 2012 Assessing the Performance of Energy Efficient Housing

    E-Print Network [OSTI]

    Demirel, Melik C.

    of Energy Efficient Housing Overview Penn State's Department of Architecture partnered with the Union Country Housing Authority (UCHA) to create the Energy Efficient Housing Program (EEHP). A duplex was constructed and two homes were remodelled using energy efficient technologies and sustainable materials. UCHA

  8. JOURNAL OF MATERIALS SCIENCE 35 (2000) 4635 4647 Crystal plasticity analysis of stressassisted

    E-Print Network [OSTI]

    Grujicic, Mica

    exerts a higher resistance toward the growth of a plate in the thickness than in the radial direction the evolution of martensite, materials texture and the resulting equivalent stress­equivalent strain curve in a polycrystalline Ti­10V­2Fe­3Al (wt.%) alloy. The equivalent stress­equivalent strain curves and the volume

  9. MSE Symposium "The Future of Materials Science and Engineering: A Small Company Perspective"

    E-Print Network [OSTI]

    Li, Mo

    of the Bioeconomy · Transition from petroeconomy to bioeconomy · Biomaterials and advanced biofuels from renewable and processing Crop produces rubber, terpene resin, and high energy biomass Guayule rubber production has Bioeconomy Biobased and Renewable Materials #12;YULEX Naturally Innovative Thank You © 2013 YULEX CORP #12;

  10. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen. These structures find use in many applications such as aircraft, marine applications and wind turbine blades. When used for wind turbine blades the sandwich structures are mainly made from FRP laminate skins and foam

  11. Annual Report 2010 Page 1 PHYSICS AND MATERIALS SCIENCE RESEARCH UNIT (PHYMS)

    E-Print Network [OSTI]

    van der Torre, Leon

    chalcopyrites and kesterites, aiming at low cost and high efficiency. Fundamental semiconductor physicsMS comprises: Physics of Advanced Materials LPM, Soft Condensed Matter Physics TSCM and Photovoltaics LPV. Its of nanomagnets. TSCM, the group for Theory of Soft Condensed Matter, was built up in 2010. The topic of research

  12. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01T23:59:59.000Z

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  13. Materials Sciences and Engineering (MSE) Division Homepage | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman Resources HumanOffice of Science (SC) MSE Home

  14. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology for the research

  15. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology for the research community--

  16. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy PhysicsU.S. DOE OfficeScience

  17. Discovery of New Materials to Capture Methane | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy PhysicsU.S.Science

  18. Stanislav Golubov, and Roger Stoller - Materials Science and Technology Division, Oak Ridge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff Basic Energy SciencesAdvanceAccess

  19. Novel microfluidic approaches for complex polymeric Applications are invited for a PhD studentship in polymer science and microfluidics focusing

    E-Print Network [OSTI]

    Novel microfluidic approaches for complex polymeric systems Applications are invited for a PhD studentship in polymer science and microfluidics focusing on Kinetics of Structure Formation and Process and mixtures using online microfluidic approaches, coupled ex-situ equilibrium measurements. The motivation

  20. A Materials Science Driven Pattern Generation Solution to Fracturing Computer Generated Glass for Films and Games

    E-Print Network [OSTI]

    Monroe, David Charles

    2014-08-11T23:59:59.000Z

    include some plastics like polymethylmethacrylate (PMMA), laminated, toughened glasses, safety glasses, other ceramics, most non-metals, and some metals when subjected to low temperatures. Brittleness, ductility, malleability, plasticity, stiffness...]. Their formula accurately models the brittle materials tested: flat PMMA and glass plates of various thickness. The continuous line in Figure 26 (B) is n=1.7(V^)1/2, where n is the number of radial cracks. 26 II.3. Visual Effects Approaches to Fracturing...

  1. DOE-HDBK-1017/2-93; DOE Fundamentals Handbook Material Science Volume 2 of 2

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host016/1-93 JANUARY 1993

  2. Materials Research Lab -Cooperative International Science and Engineering Internships http://www.mrl.ucsb.edu/mrl/outreach/educational/CISEI/UCSBinterns09/ucsb_09.html[5/10/12 9:38:22 AM

    E-Print Network [OSTI]

    Bigelow, Stephen

    Faculty Sponsor Site Abroad Student Project Katelyn Cahill- Thompson Biomedical Engineering, UniversityMaterials Research Lab - Cooperative International Science and Engineering Internships http For Teachers Education Contacts News Cooperative International Science and Engineering Internships Cooperative

  3. Materials Research Lab -Cooperative International Science and Engineering Internships http://www.mrl.ucsb.edu/mrl/outreach/educational/CISEI/ucsb_06/ucsb_06.html[5/10/12 9:50:23 AM

    E-Print Network [OSTI]

    Bigelow, Stephen

    Faculty Sponsor Site Abroad Student Project Samuel Beach UCSB, Electrical and Computer Engineering AndrewMaterials Research Lab - Cooperative International Science and Engineering Internships http For Teachers Education Contacts News Cooperative International Science and Engineering Internships Cooperative

  4. Condensed Matter and Materials Physics | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensed Matter and Materials

  5. Basic Research Needs for Materials Under Extreme Environments. Report of the Basic Energy Sciences Workshop on Materials Under Extreme Environments, June 11-13, 2007

    SciTech Connect (OSTI)

    Wadsworth, J.; Crabtree, G. W.; Hemley, R. J.; Falcone, R.; Robertson, I.; Stringer, J.; Tortorelli, P.; Gray, G. T.; Nicol, M.; Lehr, J.; Tozer, S. W.; Diaz de la Rubia, T.; Fitzsimmons, T.; Vetrano, J. S.; Ashton, C. L.; Kitts, S.; Landson, C.; Campbell, B.; Gruzalski, G.; Stevens, D.

    2008-02-01T23:59:59.000Z

    To evaluate the potential for developing revolutionary new materials that will meet demanding future energy requirements that expose materials to environmental extremes.

  6. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    thermoelectric materials consisting of epitaxially-grownefficient thermoelectric materials," Nature, vol. 451, pp.superlattice thermoelectric materials and devices," Science,

  7. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02T23:59:59.000Z

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  8. Ferromagnetic Mn moments at SrRuO3/SrMnO3 interfaces Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

    E-Print Network [OSTI]

    Haskel, Daniel

    Ferromagnetic Mn moments at SrRuO3/SrMnO3 interfaces Y. Choia Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 Y. Z. Yoo, O. Chmaissem, A. Ullah, S. Kolesnik, and C. W University, DeKalb, Illinois 60115 D. Haskel Advanced Photon Source, Argonne National Laboratory, Argonne

  9. Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products

    E-Print Network [OSTI]

    Lightsey, Glenn

    for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products Lower-cost fuel cells ProblemInventors Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available effective strategies government can pursue for cutting air emissions, responding to climate change, reducing

  10. Indiana University Cognitive Science

    E-Print Network [OSTI]

    Indiana University

    Indiana University Cognitive Science Exploring the Science of Learning Representations Simulations in science. How can simulations best be designed to enhance science learning and transfer? Computer Modeling Transfer Complex Systems Perception Which representations might help your students learn about

  11. Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste

    SciTech Connect (OSTI)

    Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

    2002-06-01T23:59:59.000Z

    Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

  12. Deformation Mechanisms in Nanocrystalline Materials

    E-Print Network [OSTI]

    Mohamed, Farghalli A.; Yang, Heather

    2010-01-01T23:59:59.000Z

    2010 METALLURGICAL AND MATERIALS TRANSACTIONS A 47. F.A.12. METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 41A,of Slip: Progress in Materials Science, Pergamon Press,

  13. An in-situ accelerator-based diagnostic for plasma-material interactions science in magnetic fusion devices

    E-Print Network [OSTI]

    Hartwig, Zachary Seth

    2014-01-01T23:59:59.000Z

    Plasma-material interactions (PMI) in magnetic fusion devices such as fuel retention, material erosion and redeposition, and material mixing present significant scientific and engineering challenges, particularly for the ...

  14. Technology and science at a high-power spallation source: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics.

  15. Published in 'Silicon Carbide and Related Materials -1999', Year: 2000, pp: 273-276 Periodical: Materials Science Forum Vols. 338-342

    E-Print Network [OSTI]

    Steckl, Andrew J.

    Published in 'Silicon Carbide and Related Materials - 1999', Year: 2000, pp: 273-276 Periodical@scientific.net © 2000 by Trans Tech Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide and Related Materials - 1999', Year: 2000

  16. Materials Science and Engineering

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EM Project Definition Rating Indexof

  17. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and Novel ComputationalBecky OlignerJenna

  18. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReactionResearch Center4n =IMS

  19. Materials Research in the Information Age

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 | Tags: Materials...

  20. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Not Listed

    2011-09-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  1. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Outages NERSC Scheduled Systemresearch Science

  2. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzonExplore by Subjectsupernova*Science

  3. Near-real-time materials accountancy: Use of SITMUF and page's test to detect losses occurring in a complex pattern

    SciTech Connect (OSTI)

    Jones, B.J.

    1987-01-01T23:59:59.000Z

    It is probably accepted that near-real-time materials accountancy (NRTMA) can lead to a more timely detection of losses. However, there may be some concern that this timeliness can be gained only at the expense of a power reduction to ultimately detect a loss of a given size. It has been demonstrated the NRTMA, using the standardized independent transformed material unaccounted for (MUF) SITMUF values and Page's test, is superior to conventional accountancy in three ways. Further aspects of the performance of NRTMA using Page's test are investigated. Reference 1 did not consider the case of protracted losses occurring at a variable rate or in an intermittent fashion. Both of these aspects are considered. Another factor that might be expected to affect the behavior of Page's test, namely, the frequency with which balances are taken, is studied. These investigations were all carried out using data from a model with characteristics similar to those expected at the new British Nuclear Fuels Thermal Oxide Reprocessing Plant.

  4. Artificial Sand Pictures -A Complex Systems Simulation Brad Pearce and Ken Hawick

    E-Print Network [OSTI]

    Hawick, Ken

    Artificial Sand Pictures - A Complex Systems Simulation Brad Pearce and Ken Hawick Computer Science and layering in materials science. We con- struct a lattice-based simulation of a sand picture based around scheme is used to update pairs of neighboring cells using a Boltzmann like energy controlled probability

  5. Modeling and Simulation in Material Sciences and Engineering, 1:(3),pp. 225263. COMPUTATIONAL MODELLING OF SINGLE CRYSTALS

    E-Print Network [OSTI]

    Ortiz, Michael

    in propeller and turbine blades, or as basic building blocks of numerous material systems, such as polycrys

  6. Advances in Sustainable Petroleum Engineering Science, Volume 1, Issue 2, 2009, pp. 141 -162 AComprehensiveMaterialBalanceEquationwiththeInclusionof

    E-Print Network [OSTI]

    Hossain, M. Enamul

    techniques, it is time to include all salient features of the material balance equation (MBE). The inclusion predicting petroleum reservoir performance. However, it is well known that the material balance equation AComprehensiveMaterialBalanceEquationwiththeInclusionof MemoryDuringRock-FluidDeformation M.E. Hossain Dalhousie

  7. Science Research Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Founded in 1952, the library has extensive resources in nuclear physics, chemistry, heat transfer and fluid flow, materials science, energy, and computer science. The...

  8. Metal Hydrides - Science Needs

    Broader source: Energy.gov (indexed) [DOE]

    with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

  9. Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 829-832 Periodical: Materials Science Forum Vols. 264-268

    E-Print Network [OSTI]

    Steckl, Andrew J.

    Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 829@scientific.net © 1998 by Trans Tech Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide, III-Nitrides and Related

  10. Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 1149-1152 Periodical: Materials Science Forum Vols. 264-268

    E-Print Network [OSTI]

    Steckl, Andrew J.

    Published in 'Silicon Carbide, III-Nitrides and Related Materials', Year: 1998, pp: 1149@scientific.net © 1998 by Trans Tech Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide Publications Ltd., Switzerland, http://www.ttp.net #12;Published in 'Silicon Carbide, III-Nitrides and Related

  11. To appear in C. A. Hooker, Philosophy of Complex Systems. Handbook of the Philosophy of Science, Volume 10. Elsevier.

    E-Print Network [OSTI]

    Bechtel, William

    , Volume 10. Elsevier. Complex Biological Mechanisms: Cyclic, Oscillatory, and Autonomous William Bechtel as the primary explanatory vehicle; for them, a scientific observation is explained by formally deriving it from

  12. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David Frederick

    2012-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  13. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Sites Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Sites Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of special compliance conditions Discussion of the facilitys environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Qualitys groundwater quality standard levels.

  14. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Sites Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Sites Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of special compliance conditions Discussion of the facilitys environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  15. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David B. Frederick

    2011-02-01T23:59:59.000Z

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Sites Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of special compliance conditions Discussion of the facilitys environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  16. UNIQUENESS OF COMPLEX PERMITTIVITY RECONSTRUCTION FOR AN ARBITRARILY-SHAPED

    E-Print Network [OSTI]

    Yakovlev, Vadim

    , SE-651 88 Karlstad, Sweden. youri.shestopalov@kau.se V. V. Yakovlev Dept. of Mathematical Sciences problem of diffraction of a transverse electric wave and employs a generalization of the notion of partial of microwave power engineering. Knowledge of complex permittivity ( = - i ) of materials involved

  17. Exceptional tools for studying the structure and dynamics of materials at the molecular level

    E-Print Network [OSTI]

    Exceptional tools for studying the structure and dynamics of materials at the molecular level, complementary to x-rays, in under- standing the structure and dynamics of materials at the molecular level Soft matter Magnetism and superconductivity Life sciences Structural biology Complex fluids

  18. SURFACE SCIENCE, WETTING, CONDENSATION, ENGINEERED Correspondence and requests for materials: konradr@asu.edu and varanasi@mit.edu

    E-Print Network [OSTI]

    coefficients has potential for efficiency enhancements. Here we investigate condensation behavior of a variety of fluids with high or moderate surface tension27­31 or Marangoni dropwise condensation of binary mixtures1 SURFACE SCIENCE, WETTING, CONDENSATION, ENGINEERED SURFACES Correspondence and requests

  19. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03T23:59:59.000Z

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  20. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    SciTech Connect (OSTI)

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)

    2013-12-15T23:59:59.000Z

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (?1 m), high-current (?1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields in between plasma shots to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ?5 ?m into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  1. Layered Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

  2. NUCLEAR MATERIALS PROGRESS REPORTS FOR 1980

    E-Print Network [OSTI]

    Olander, D.R.

    2010-01-01T23:59:59.000Z

    Ceramics", Progress in Material Science 21, 307 (1976}. S. -heating techniques in material processing. Thermal analysisIrreversible Thermodynamics in Materials Problems", in Mass

  3. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

  4. Sandia National Laboratories: understanding of composite material...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of composite material behavior in realistic wind applications Composite-Materials Fatigue Database Updated On January 22, 2014, in Energy, Materials Science, News, News & Events,...

  5. International Forum on Advanced Material Science and Technology 26-28 June 2010, The Dalian University of Techonlogy, Dalian

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of aluminum has increased by over 80% in automotive applications [1]. However, aluminum alloy shows the poor: The poor formability of aluminum alloy at room temperature limits its use in some products with complex-strength to weight ratio, high strength and corrosion resistance, aluminum alloy is becoming one of the main

  6. A Fast, Versatile Nanoprobe for Complex Materials: The Sub-micron Resolution X-ray Spectroscopy Beamline at NSLS-II (491st Brookhaven Lecture)

    SciTech Connect (OSTI)

    Thieme, Juergen [BNL Photon Sciences Directorate

    2014-02-06T23:59:59.000Z

    Time is money and for scientists who need to collect data at research facilities like Brookhaven Labs National Synchrotron Light Source (NSLS), beamtime can be a precious commodity. While scanning a complex material with a specific technique and standard equipment today would take days to complete, researchers preparing to use brighter x-rays and the new sub-micron-resolution x-ray spectroscopy (SRX) beamline at the National Synchrotron Light Source II (NSLS-II) could scan the same sample in greater detail with just a few hours of beamtime. Talk about savings and new opportunities for researchers! Users will rely on these tools for locating trace elements in contaminated soils, developing processes for nanoparticles to deliver medical treatments, and much more. Dr. Thieme explains benefits for next-generation research with spectroscopy and more intense x-rays at NSLS-II. He discusses the instrumentation, features, and uses for the new SRX beamline, highlighting its speed, adjustability, and versatility for probing samples ranging in size from millimeters down to the nanoscale. He will talk about complementary beamlines being developed for additional capabilities at NSLS-II as well.

  7. Level 3 2013/14 Materials Engineering

    E-Print Network [OSTI]

    Harman, Neal.A.

    Worsley EGA301 Composite Materials 10 Credits Dr. JC Arnold EG-353 Research Project 30 Credits Dr. CPLevel 3 2013/14 Materials Engineering BEng Materials Science and Engineering[J500,J502,J505] BEng Materials Science and Engineering with a year abroad[J510] MEng Materials Science and Engineering[J504] MEng

  8. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  9. Materials Science and Engineering A252 (1998) 117132 Optimization of 316 stainless steel/alumina functionally graded

    E-Print Network [OSTI]

    Grujicic, Mica

    . Introduction Due to differences of thermal and mechanical prop- erties in ceramics and metals, residual stresses develop in regions near the ceramic/metal interfaces during fabrication and under thermal/alumina functionally graded material for reduction of damage induced by thermal residual stresses M. Grujicic *, H

  10. JOURNAL OF MATERIALS SCIENCE LETTERS 17 (1998) 20832086 Effect of oxygen plasma treatment on SiO2 aerogel lms

    E-Print Network [OSTI]

    Jo, Moon-Ho

    aerogel ®lms H.-H. PARK, M.-H. JO, H.-R. KIM, S.-H. HYUN Department of Ceramic Engineering, Yonsei with a lower dielectric constant material as an intermetal dielectric (IMD). SiO2 aerogel is a promising aerogel ®lm with 70% porosity exhibited the static dielectric constant of 2 at 1 MHz, and a leakage

  11. Dynamic fracture of granular material under quasi-static loading , The Institute of Earth Sciences, The Hebrew University of Jerusalem

    E-Print Network [OSTI]

    Fineberg, Jay

    Dynamic fracture of granular material under quasi-static loading Amir Sagy1 , The Institute;Abstract The dynamics of rapid fracture in heterogeneous grainy media are studied in a series of laboratory experiments in which artificial rock slab is fractured under conditions of uniaxial tension. By performing

  12. Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials Science Subcommittee

    E-Print Network [OSTI]

    1 Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials for tritium-suppressed D-D fusion and the understanding of the turbulent pinch in magnetically confined plasma pathway. Tritium- suppressed D-D fusion eliminates the need to breed fuel from lithium, reduces the damage

  13. JOURNAL OF MATERIALS SCIENCE 39 (2004) 1429 1432 Size-controlled polyelectrolyte nanocapsules via layer-by-layer

    E-Print Network [OSTI]

    Gao, Jinming

    materials has also been applied onto micro/nano-templates including colloidal particles [5, 6], biological]. This unique feature permits the efficient loading of molecules inside the hollow capsules [11, 14]. Up to now, hollow polyelectrolyte capsules have been reported at sizes greater than one micron [5, 10­13]. This size

  14. Materials Science and Engineering A369 (2004) 124137 Studies of the microstructure and properties of dense ceramic coatings

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    for wear resistance and zirconia-based materials for ther- mal barrier coatings [1­4]. The high temperature (enthalpy) availability within the thermal plasma enables melting, relatively high-velocity delivery applications. The advent of high velocity oxygen-fuel (HVOF) thermal spray has made a significant impact

  15. Airborne radioactive material collection, measurement, and data storage for the Nuclear Science Center at Texas A&M University

    E-Print Network [OSTI]

    Jones, Melody Louise

    1982-01-01T23:59:59.000Z

    REFERENCES AEC73 AEC Regulatory Guide 8. 2, 1973, "Guide for Administrative Practices in Radiation Monitoring". AEC74 AEC Regulatory Guide 1. 21, Rev. 1, 1974, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes, and Releases... System at the Nuclear Science Center (Texas AAM University) 38 VITA 66 LIST OF FIGURES FIGURE NUMBER Figure 1: FAM//I and FANF3 Sample Probe Orientation, PAGE Figure 2: FAM42, FAMR4, and FAMt6 Sample Probe Location . . 13 Figure 3; FAMF1 and FAM...

  16. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011

    SciTech Connect (OSTI)

    David Frederick

    2012-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  17. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010

    SciTech Connect (OSTI)

    David B. Frederick

    2011-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  19. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012

    SciTech Connect (OSTI)

    Mike lewis

    2013-02-01T23:59:59.000Z

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  20. A Complexity Science-Based Framework for Global Joint Operations Analysis to Support Force Projection: LDRD Final Report.

    SciTech Connect (OSTI)

    Lawton, Craig R.

    2015-01-01T23:59:59.000Z

    The military is undergoing a significant transformation as it modernizes for the information age and adapts to address an emerging asymmetric threat beyond traditional cold war era adversaries. Techniques such as traditional large-scale, joint services war gaming analysis are no longer adequate to support program evaluation activities and mission planning analysis at the enterprise level because the operating environment is evolving too quickly. New analytical capabilities are necessary to address modernization of the Department of Defense (DoD) enterprise. This presents significant opportunity to Sandia in supporting the nation at this transformational enterprise scale. Although Sandia has significant experience with engineering system of systems (SoS) and Complex Adaptive System of Systems (CASoS), significant fundamental research is required to develop modeling, simulation and analysis capabilities at the enterprise scale. This report documents an enterprise modeling framework which will enable senior level decision makers to better understand their enterprise and required future investments.

  1. COMPLEX MATERIALS SCATTERING ( ) Proposal Team: C. Burger1, K. Cavicchi2, E. DiMasi3, A. Fluerasu3, S. Fraden4, M. Fukuto3, O. Gang3,

    E-Print Network [OSTI]

    Ohta, Shigemi

    .g., organic solar cell, batteries, supercapacitors, fuel cells #12;-equilibrium science: · Path-dependent effects · Processing history · Stimuli/responsive · Applied fields · Engineering

  2. Crystal structure and chemistry of a complex indium phosphate framework material, (ethylenediammonium)In{sub 3}P{sub 3}O{sub 12}(OH){sub 2}

    SciTech Connect (OSTI)

    Broach, Robert W., E-mail: robert.broach@uop.com [UOP, a Honeywell Co., 50 E. Algonquin Rd., Des Plaines, IL 60017 (United States); Bedard, Robert L. [UOP, a Honeywell Co., 50 E. Algonquin Rd., Des Plaines, IL 60017 (United States)] [UOP, a Honeywell Co., 50 E. Algonquin Rd., Des Plaines, IL 60017 (United States); King, Lisa M., E-mail: lisa.king@uop.com [UOP, a Honeywell Co., 50 E. Algonquin Rd., Des Plaines, IL 60017 (United States); Pluth, Joseph J., E-mail: pluth@cars.uchicago.edu [The University of Chicago, Department of the Geophysical Sciences, Consortium for Advanced Radiation Sources, Chicago, IL 60637 (United States); The University of Chicago, The Materials Research Science and Engineering Center, Chicago, IL 60637 (United States); Smith, Joseph V. [The University of Chicago, Department of the Geophysical Sciences, Consortium for Advanced Radiation Sources, Chicago, IL 60637 (United States)] [The University of Chicago, Department of the Geophysical Sciences, Consortium for Advanced Radiation Sources, Chicago, IL 60637 (United States); Kirchner, Richard M., E-mail: richard.kirchner@manhattan.edu [Manhattan College, Chemistry Department, Bronx, NY 10471 (United States)

    2012-12-15T23:59:59.000Z

    The chemistry and structure of a novel indium phosphate material (RIPS-4), (H{sub 3}NCH{sub 2}CH{sub 2}NH{sub 3})In{sub 3}-P{sub 3}O{sub 12}(OH){sub 2}, are described. RIPS-4 was synthesized using ethylene diamine as a structure-directing organic agent. The X-ray crystal structure was determined from a 12 Multiplication-Sign 12 Multiplication-Sign 42 {mu}m{sup 3} crystal in space group C2/m with a=18.662(4) A, b=6.600(2) A, c=12.573(3) A and {beta}=120.92(1) Degree-Sign . The structure consists of a complex edge- and vertex-shared open framework of InO{sub 6} octahedra and PO{sub 4} tetrahedra enclosing cavities occupied by ethylenediamonium ions. One set of octahedra share opposing edges to form chains along the b-axis matching the structural unit in rutile (TiO{sub 2}). This rutile edge-shared chain has its projecting oxygen atoms shared with the vertexes of either a PO{sub 4} tetrahedron or a second type of InO{sub 6} octahedron. The O atoms are 2-connected, each to one In and one P, except for two protonated O atoms (hydroxyl groups) that connect to two and three In atoms, giving three- and four-coordinate O atoms, respectively. - Graphical abstract: The unique topology contains an unusual 4-connected oxygen atom (O{sub 1}) in a complex edge- and vertex-shared open framework of InO{sub 6} octahedra (blue) and PO{sub 4} tetrahedra (yellow) that encloses cavities occupied by ethylenediammonium ions. Highlights: Black-Right-Pointing-Pointer The structure has a unique open-framework topology. Black-Right-Pointing-Pointer The framework contains an unusual 4-connected oxygen atom. Black-Right-Pointing-Pointer Hydrogen bonds hold the ethylenediammonium ions in the cavities.

  3. Space Complexity Algorithms & Complexity

    E-Print Network [OSTI]

    Way, Andy

    Space Complexity Algorithms & Complexity Space Complexity Nicolas Stroppa Patrik Lambert - plambert@computing.dcu.ie CA313@Dublin City University. 2008-2009. December 4, 2008 #12;Space Complexity Hierarchy of problems #12;Space Complexity NP-intermediate Languages If P = NP, then are there languages which neither in P

  4. Scientists Identify New Family of Iron-Based Absorber Materials for Solar Cells (Fact Sheet), NREL Highlights, Science

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Use of Earth-abundant materials in solar absorber films is critical for expanding the reach of photovoltaic (PV) technologies. The use of Earth-abundant and inexpensive Fe in PV was proposed more than 25 years ago in the form of FeS{sub 2} pyrite - fool's gold. Unfortunately, the material has been plagued by performance problems that to this day are both persistent and not well understood. Researchers from the National Renewable Energy Laboratory (NREL) and Oregon State University, working collaboratively in the Center for Inverse Design, an Energy Frontier Research Center, have uncovered several new insights into the problems of FeS{sub 2}. They have used these advances to propose and implement design rules that can be used to identify new Fe-containing materials that can circumvent the limitations of FeS{sub 2} pyrite. The team has identified that it is the unavoidable metallic secondary phases and surface defects coexisting near the FeS{sub 2} thin-film surfaces and grain boundaries that limit its open-circuit voltage, rather than the S vacancies in the bulk, which has long been commonly assumed. The materials Fe{sub 2}SiS{sub 4} and Fe{sub 2}GeS{sub 4} hold considerable promise as PV absorbers. The ternary Si compound is especially attractive, as it contains three of the more abundant low-cost elements available today. The band gap (E{sub g} = 1.5 eV) from both theory and experiment is higher than those of c-Si and FeS{sub 2}, offering better absorption of the solar spectrum and potentially higher solar cell efficiencies. More importantly, these materials do not have metallic secondary phase problems as seen in FeS{sub 2}. High calculated formation energies of donor-type defects are consistent with p-type carriers in thin films and are prospects for high open-circuit voltages in cells.

  5. Materials and Molecular Research Division: Annual report, 1986

    SciTech Connect (OSTI)

    Phillips, N.E.; Muller, R.H.; Peterson, C.V.

    1987-07-01T23:59:59.000Z

    Research activities are reported under the following headings: materials sciences, chemical sciences, nuclear sciences, fossil energy, energy storage systems, and work for others. (DLC)

  6. Density Functional Theory Simulations Predict New Materials for Magnesium-Ion Batteries (Fact Sheet), NREL Highlights, Science

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Multivalence is identified in the light element, B, through structure morphology. Boron sheets exhibit highly versatile valence, and the layered boron materials may hold the promise of a high-energy-density magnesium-ion battery. Practically, boron is superior to previously known multivalence materials, especially transition metal compounds, which are heavy, expensive, and often not benign. Based on density functional theory simulations, researchers at the National Renewable Energy Laboratory (NREL) have predicted a series of stable magnesium borides, MgB{sub x}, with a broad range of stoichiometries, 2 < x < 16, by removing magnesium atoms from MgB{sub 2}. The layered boron structures are preserved through an in-plane topological transformation between the hexagonal lattice domains and the triangular domains. The process can be reversibly switched as the charge transfer changes with Mg insertion/extraction. The mechanism of such a charge-driven transformation originates from the versatile valence state of boron in its planar form. The discovery of these new physical phenomena suggests the design of a high-capacity magnesium-boron battery with theoretical energy density 876 mAh/g and 1550 Wh/L.

  7. Prediction of ferroelectricity in BaTiO3/SrTiO3 superlattices with domains Department of Materials Science and Engineering, The Pennsylvania State University, University Park,

    E-Print Network [OSTI]

    Eom, Chang Beom

    of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA and MPA-STC, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA S. Y. Hu MST-8, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA D. Tenne Department of Physics, Boise State

  8. DEVELOPMENT OF FUNCTIONAL NANOPARTICULATE MATERIALS: Examination of the Functional and Structural Properties of Nanoparticulate Metal Complexes Prepared by Precipitation with Compressed Antisolvent Technology

    E-Print Network [OSTI]

    Nguyen, Joseph G.

    2008-01-01T23:59:59.000Z

    . The research described in this dissertation involves the development of nanomaterials that interact with NO. Molecule-based nanoparticulate metal complexes were prepared using precipitation with compressed antisolvent technology. Microscopy and powder x...

  9. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff Photobiology

  10. Materials 1 Faculty of Engineering, Department of

    E-Print Network [OSTI]

    Materials 1 Faculty of Engineering, Department of --Materials This publication refers syllabuses Materials The Department occupies newly refurbished premises over four floors of the Royal School and research in materials science and engineering, in particular nanomaterials, structural ceramics, theory

  11. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  12. Sandia National Laboratories: Combining 'Tinkertoy' Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

  13. Chemistry & Physics at Interfaces | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical...

  14. 3.014 Materials Laboratory, Fall 2005

    E-Print Network [OSTI]

    Mayes, Anne M.

    This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering ...

  15. SOLID EARTH OPTION FOR EARTH SCIENCE (GYA/GYS) MAJORS The main goals of the Solid Earth option are to give you an understanding of how our lively

    E-Print Network [OSTI]

    Liu, Paul

    SOLID EARTH OPTION FOR EARTH SCIENCE (GYA/GYS) MAJORS The main goals of the Solid Earth option are to give you an understanding of how our lively planet works beneath its surface and of the scientific tools we use to unravel its complex history. Solid Earth science is the study of the materials

  16. agricultural knowledge science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Agricultural Economics Marine industry studies Corporate social Materials Science Plasma Physics Toxicology Aquatic ecosystems 12;Engineering Biological...

  17. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2011-11-02T23:59:59.000Z

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  18. Harvard-MIT Division of Health Sciences and Technology Contract for Technical Qualifying Exam (TQE)

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    Electrical Engineering Computer Science Physics Chemistry Aeronautics & Astronautics Nuclear Science Engineering Materials Science& Engineering Electrical Engineering Computer Science PhysicsChemistryNuclear): ______________________________________ Concentration Area (circle one)*: Mechanical Engineering Chemical Engineering Materials Science & Engineering

  19. Measurement of Thermal Diffusivity and Conductivity in Advanced Nanostructured Materials

    E-Print Network [OSTI]

    Teweldebrhan, Desalegne Bekuretsion

    2012-01-01T23:59:59.000Z

    in Magnetic Materials . . . . . . . . . . . . . . . viimportants of understanding materials properties typicallyY.S. Ju, Annual Review of Materials Science, 29, 261 (1999).

  20. Electrochemical Synthesis and Characterization of Nanostructured Chalcogenide Materials

    E-Print Network [OSTI]

    Chang, Chong Hyun

    2011-01-01T23:59:59.000Z

    Superlattice Thermoelectric Materials and Devices. ScienceCarbon Nanotube Composite Materials. Langmuir 2004, 20, (nanotubes composite materials in solution. Chem. Phys. Lett.

  1. Sandia National Laboratories: metal-organic framework materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    metal-organic framework materials Combining 'Tinkertoy' Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News,...

  2. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01T23:59:59.000Z

    bridge between the structural complexity of templated porous materials, and the electronic and optical complexity of semiconductor

  3. T. Jaglinski Materials Science Program,

    E-Print Network [OSTI]

    Lakes, Roderic

    block include exhaust ports, combustion chambers, and head joints. Loose joints in any of these areas Load Loss in Bolted Aluminum Joints Bolted joints are used widely in mechanical design and represent a weak link in a system where loss of joint clamping force can lead to degraded product performance

  4. Materials Science | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf More DocumentsAtA EnergyDr. ErnestThe

  5. Science Gateway: The Materials Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)

  6. Sandia National Laboratories: materials science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulative time underpowerscience Sandian

  7. Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium:andNational Laboratory HomeElectronic and

  8. Materials Science Applications at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Advanced

  9. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced

  10. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos AlamosExperimentthe&

  11. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos AlamosExperimentthe&Northrop-Grumman,

  12. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos

  13. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLosSandia Participated in AMII to Support

  14. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLosSandia Participated in AMII to SupportJoint Hire

  15. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLosSandia Participated in AMII to SupportJoint

  16. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  17. Sustainable Materials Course Outline

    E-Print Network [OSTI]

    New South Wales, University of

    , embodied energy; environmental footprint, waste recycling and pollution minimization, life cycle assessment Science and Engineering (Building E8) Phone: 9385 5025 j.q.zhang@unsw.edu.au Consultation hours: by appointment To be advised School of Materials Science and Engineering (Building E8) Consultation hours

  18. Materials Science and Engineering A, 2011, 528(1-2): p. 7596 7605 High strain rate compressive response ofsyntactic foams: trends in mechanical properties and failure mechanisms

    E-Print Network [OSTI]

    Gupta, Nikhil

    comprising hollow particles dispersed in a matrix material. Available studies on high strain rate compressive with respect to the material composition. Syntactic foams reinforced with micro- and nano-sized fibers are a class of porous materials in which thin-walled hollow particles are dispersed in a matrix material

  19. Supporting Information: Holey Silicon as efficient thermoelectric material

    E-Print Network [OSTI]

    Yang, Peidong

    Supporting Information: Holey Silicon as efficient thermoelectric material Jinyao Tang1, 3, 3 1 Department of Chemistry, 2 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA. 3 Materials Sciences Division, Lawrence Berkeley National

  20. Grain Boundary (GB) Studies in Nano- and Micro- Crystalline Materials

    E-Print Network [OSTI]

    Tanju, Mst Sohanazaman

    2011-01-01T23:59:59.000Z

    boundaries in silicon? Materials research society, Vol.122,bicrystal? Journal of Materials Science, 40(2005)3137- 5.in ZnO? Journal of Materials Science, 40(2005)3067-3074. 6.

  1. JOURNAL OF MATERIALS SCIENCE LETTERS 15 (1996) 1294-1296 New ternary fluoride with K2NiF4-type structure in CsF-CaF2 system

    E-Print Network [OSTI]

    Jo, Moon-Ho

    JOURNAL OF MATERIALS SCIENCE LETTERS 15 (1996) 1294-1296 New ternary fluoride with K2NiF4-type size and the strucmral relationship between perovskite ABF3 and A2BF4 with K2NiF4-type structure, it might be possible to predict the appearance of the above phases in the AF-BF2 system. The compound K2NiF

  2. Future Science Needs and Opportunities for Electron Scattering: Next-Generation Instrumentation and Beyond. Report of the Basic Energy Sciences Workshop on Electron Scattering for Materials Characterization, March 1-2, 2007

    SciTech Connect (OSTI)

    Miller, D. J.; Williams, D. B.; Anderson, I. M.; Schmid, A. K.; Zaluzec, N. J.

    2007-03-02T23:59:59.000Z

    To identify emerging basic science and engineering research needs and opportunities that will require major advances in electron-scattering theory, technology, and instrumentation.

  3. Joanna McFarlane, Refuyat Ashen, and K.C. Cushman Separations and Materials Research Group, Nuclear Science and Technology Division

    E-Print Network [OSTI]

    Pennycook, Steve

    , Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge, Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge. Fuel mixtures that were considered included: biodiesel and standard diesel fuel, methyl-butanoate and n

  4. The Institute for Integrated Cell-Material Sciences (iCeMS) was founded in 2007 as part of a government program called the World Premier International

    E-Print Network [OSTI]

    Takada, Shoji

    , Sports, Science and Technology (MEXT) of Japan. The fund provides a total of 6 million dollars per year science. iCeMS is one of nine WPI centers throughout Japan and boasts eighteen world-renowned principal investigators, who are leading experts in cell biology, chemistry, and physics. Notably, Kyoto University Center

  5. International Snow Science Workshop Grenoble Chamonix Mont-Blanc -2013 Why don't avalanche-dynamics models of higher complexity necessarily

    E-Print Network [OSTI]

    Lenstra, Arjen K.

    -dynamics models of higher complexity necessarily lead to better predictions? Christophe Ancey cole Polytechnique worldwide. Paradoxically, the substantial increase in model complexity can lead us to lose sight of the empirical nature of the assumptions used to build the models. Human expertise should still be of paramount

  6. Forensic Science and Information Technology at NIST

    E-Print Network [OSTI]

    Perkins, Richard A.

    Forensic Science and Information Technology at NIST Martin Herman Information Technology Laboratory, mathematics, and statistics. · Cloud Computing · Complex Systems · Forensic Science · Health Information in Forensic Science Advance measurements and standards infrastructure for forensics through information

  7. Bachelor's, master's and Ph.D. programs in Materials Science and Engineering Partner in the statewide Center for Advanced Energy Studies at the Idaho

    E-Print Network [OSTI]

    Barrash, Warren

    Electronic Memory Materials DNA Nanotechnology Semiconductor Processes and Materials Ferromagnetic Hybridization Chain Reaction Structured Chalcogenide Glass Films for Redox Conductive Bridge Nonvolatile Semiconductor Exhibiting Room-temperature Ferromagnetism and Method of Sensing a Gas by Detecting Change

  8. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01T23:59:59.000Z

    K. and Beguin, F. et. al Materials Science and Engineering BF. Advanced Functional Materials 17, 11, 1828-1836 (2007)and Silicone- Modified Materials ch7, 82-99 (2007) 3. Gdda,

  9. SCIENCE & ENGINEERING84 Understanding Paper Codes 85

    E-Print Network [OSTI]

    Waikato, University of

    SCIENCE & ENGINEERING84 PAPERS Understanding Paper Codes 85 100 Level Science Papers 86 Biological Sciences 87 Chemistry 94 Earth Sciences 99 Electronics 106 Engineering 111 Environmental Sciences 115 Material and Processing 116 Physics 124 Psychology 127 Work Placements 133 ­ Science 133 ­ Engineering 134

  10. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  11. Three-Dimensional Imaging of the Local Structure of Materials at Atomic Resolution by Electron Tomography

    E-Print Network [OSTI]

    Zhu, Chun

    2013-01-01T23:59:59.000Z

    in materials science and nanoscience through the use ofin materials science and nanoscience has revived due to thescience, biology and nanoscience, they have their own

  12. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

  13. Disposal: Science and Theory Disposal: Science and Theory

    E-Print Network [OSTI]

    Benson, Eric R.

    Disposal: Science and Theory #12;Disposal: Science and Theory Composting · Composting is defined drop #12;Disposal: Science and Theory Composting · Optimal composting ­ Carbon to nitrogen ratio (C;Disposal: Science and Theory Compost Composition · A variety of supplemental carbon materials have been

  14. Chemistry and Materials Science Weapons-Supporting Research and Laboratory-Directed Research and Development. Second half progress report, FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Thrust areas of the weapons-supporting research are surface research, uranium research, physics and processing of metals, energetic materials. Group study areas included strength of Al and Al-Mg/alumina bonds, advanced synchrotron radiation study of materials, and theory, modeling, and computation. Individual projects were life prediction for composites and thermoelectric materials with exceptional figures of merit. The laboratory-directed R and D include director`s initiatives (aerogel-based electronic devices, molecular levels of energetic materials), individual projects, and transactinium institute studies. An author index is provided.

  15. Quantum effects and anharmonicity in the H{sub 2}-Li{sup +}-benzene complex: A model for hydrogen storage materials

    SciTech Connect (OSTI)

    Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T., E-mail: m.jordan@chem.usyd.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia)] [School of Chemistry, The University of Sydney, NSW 2006 (Australia)

    2013-12-21T23:59:59.000Z

    Quantum and anharmonic effects are investigated in H{sub 2}-Li{sup +}-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H{sub 2} binding enthalpy estimates, ?H{sub bind} (0 K), being 16.5 kJmol{sup ?1} and 12.4 kJmol{sup ?1}, respectively: 0.1 and 0.6 kJmol{sup ?1} higher than harmonic values. Zero-point energy effects are 35%of the value of ?H{sub bind} (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ?H{sub bind} (0 K) by at least 6 kJmol{sup ?1}. Harmonic intermolecular binding enthalpies can be corrected by treating the H{sub 2} helicopter and ferris wheel rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H{sub 2} molecule is delocalized above the Li{sup +}-benzene system at 0 K.

  16. The Los Alamos Science Pillars The Science of Signatures

    SciTech Connect (OSTI)

    Smith, Joshua E. [Los Alamos National Laboratory; Peterson, Eugene J. [Los Alamos National Laboratory

    2012-09-13T23:59:59.000Z

    As a national security science laboratory, Los Alamos is often asked to detect and measure the characteristics of complex systems and to use the resulting information to quantify the system's behavior. The Science of Signatures (SoS) pillar is the broad suite of technical expertise and capability that we use to accomplish this task. With it, we discover new signatures, develop new methods for detecting or measuring signatures, and deploy new detection technologies. The breadth of work at Los Alamos National Laboratory (LANL) in SoS is impressive and spans from the initial understanding of nuclear weapon performance during the Manhattan Project, to unraveling the human genome, to deploying laser spectroscopy instrumentation on Mars. Clearly, SoS is a primary science area for the Laboratory and we foresee that as it matures, new regimes of signatures will be discovered and new ways of extracting information from existing data streams will be developed. These advances will in turn drive the development of sensing instrumentation and sensor deployment. The Science of Signatures is one of three science pillars championed by the Laboratory and vital to supporting our status as a leading national security science laboratory. As with the other two pillars, Materials for the Future and Information Science and Technology for Predictive Science (IS&T), SoS relies on the integration of technical disciplines and the multidisciplinary science and engineering that is our hallmark to tackle the most difficult national security challenges. Over nine months in 2011 and 2012, a team of science leaders from across the Laboratory has worked to develop a SoS strategy that positions us for the future. The crafting of this strategy has been championed by the Chemistry, Life, and Earth Sciences Directorate, but as you will see from this document, SoS is truly an Institution-wide effort and it has engagement from every organization at the Laboratory. This process tapped the insight and imagination of many LANL staff and managers and resulted in a strategy which focuses on our strengths while recognizing that the science of signatures is dynamic. This report highlights the interdependence between SoS, advances in materials science, and advances in information technology. The intent is that SoS shape and inform Los Alamos investments in nuclear forensics, nuclear diagnostics, climate, space, energy, and biosurveillence; the areas of leadership that you will read about in this strategy document. The Science of Signatures is still a relatively new strategic direction for the Laboratory. The primary purpose of this document is tell Laboratory staff how SoS is being managed and give them a chance to get involved. A second important purpose is to inform the Department of Energy and our customers of our capability growth in this important scientific area. Questions concerning the SoS strategy and input to it are welcomed and may be directed to any member of the SoS Leadership Council or to the Chemistry, Life, and Earth Science Directorate Office.

  17. E-Print Network 3.0 - advanced electronic materials Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Cambridge Collection: Materials Science 78 Kompetenzzentrum fr Automobil-und Industrieelektronik Summary: of materials for these advanced semiconductor...

  18. Combining Modeling Methodologies for Improved Understanding of Smart Material Characteristics

    E-Print Network [OSTI]

    Lindner, Douglas K.

    Combining Modeling Methodologies for Improved Understanding of Smart Material Characteristics Material Systems and Structures February 2, 1998 ABSTRACT Smart materials are complex materials performance capabilities but the synergistic response of the smart material and companion structure. Behavior

  19. Computer Science Tony R. Martinez, Chair

    E-Print Network [OSTI]

    Hart, Gus

    Computer Science Tony R. Martinez, Chair 3361 TMCB, (801) 422-3027 College of Physical programs in the Department of Computer Science are open enrollment. The Discipline Computer science touches in computer science learn to approach complex problems in business, science, and entertainment using

  20. Synchronization in complex networks

    SciTech Connect (OSTI)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12T23:59:59.000Z

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  1. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    SciTech Connect (OSTI)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-02-01T23:59:59.000Z

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

  2. Complex Dynamics

    E-Print Network [OSTI]

    Complex Dynamics Bernardo Da Costa, Koushik Ramachandran, Jingjing Qu, and I had a two semester learning seminar in complex analysis and potential...

  3. Department of Computer Science University of North Carolina at Chapel Hill March 2005 The visual complexity of ice is familiar to anyone who has

    E-Print Network [OSTI]

    Whitton, Mary C.

    The visual complexity of ice is familiar to anyone who has ever studied a snowflake or seen the crystal snowflake-like patterns. The Challenge The visual appeal of patterns in ice has not been lost on the visual of knowledge in both the crystal growth and computational physics communities that Pattern Formation in Ice

  4. Acknowledgment This material is based upon work supported by the National Science Foundation under Grant No. SES-0345945 Decision Center for a Desert City (DCDC).

    E-Print Network [OSTI]

    Hall, Sharon J.

    of the National Science Foundation (NSF). Water Vulnerability on the Urban Periphery: The Case of Metropolitan or chronic hazards. For this study, the vulnerability of community water systems to drought and water to create an integrated municipal water distribution and wastewater reclamation system. · The town

  5. Sp ring 2 0 1 3 Science Art co m p etitio n Sponsored by the Nebraska Center for Materials and Nanoscience

    E-Print Network [OSTI]

    Farritor, Shane

    and Nanoscience TITLE: The Art of NanoScience 2013 PURPOSE: To celebrate the aesthetic appeal and creativity of nanoscience CRITERIA: The artwork must be in the form of a static visual image that portrays or represents nanoscience research at the University of Nebraska. It may be based on calculations, on imaging data

  6. Polymer inking as a micro-and nanopatterning technique Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109

    E-Print Network [OSTI]

    George, Steven C.

    and Engineering, The University of Michigan, Ann Arbor, Michigan 48109 L. Tan Department of Electrical Engineering and Computer Science, Solid State Electronics Laboratory, The University of Michigan, Ann Arbor, Michigan 48109 State Electronics Laboratory, The University of Michigan, Ann Arbor, Michigan 48109 A. F. Yee Department

  7. NREL Advances Spillover Materials for Hydrogen Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    This fact sheet describes NREL's accomplishments in advancing spillover materials for hydrogen storage and improving the reproducible synthesis, long-term durability, and material costs of hydrogen storage materials. Work was performed by NREL's Chemical and Materials Science Center.

  8. Quantum Certificate Complexity Scott Aaronson #

    E-Print Network [OSTI]

    Aaronson, Scott

    , that Q 0 (f) # R 0 (f), and that Q E (f) # D (f). If f is partial (i.e. Dom (f) #= {0, 1} n ), then Q 2Quantum Certificate Complexity Scott Aaronson # Computer Science Division University of California . Then the deterministic query complexity D (f) is the minimum number of queries to the y i 's needed to evaluate f , if Y

  9. Materials degradation and fatigue under extreme conditions. Final report, 1 April 1994-31 August 1997

    SciTech Connect (OSTI)

    Jonas, J.

    1997-10-29T23:59:59.000Z

    This AFOSR URI addressed complex research problems of materials degradation and fatigue in aerospace structures in severe or extreme environments. A better understanding of materials degradation and flaw initiation dynamics was achieved through a multi-disciplinary research program encompassing chemistry, surface physics, materials science and mechanics, both experimental and theoretical. The Subprojects were as follows: (1) Surface Induced Degradation of Fluorocarbon Lubricants; (2) Molecular Tribology of Perfluoroether Lubricants; (3) Fluids, Including Lubricants Under Extreme Conditions of High Pressure/High Temperature and Confinement; (4) Surface Crack Propagation Under Combined Mechanical and High Pressure Fluid Loading; and (5) Lubricant Assisted Fatigue Crack Growth in Ceramics.

  10. R E S E A RC H A N D G R A D UAT E P RO G R A M S I N Materials Science & Engineering

    E-Print Network [OSTI]

    Goldberg, Bennett

    's Grand Challenges Exploration Grant Luca Dal Negro · Optical Society of America Prize Mark Grinstaff-Temperature Chemical And Electrochemical Processing Of Materials Laboratory High Temperature Oxidation Laboratory

  11. R E S E A RC H A N D G R A D UAT E P RO G R A M S I N Materials Science & Engineering

    E-Print Network [OSTI]

    · Sanofi-Institut Pasteur Award Linda Doerrer · Fulbright Scholar Mark Grinstaff · National Academy Manufacturing Lab High-Temperature Chemical and Electrochemical Processing of Materials Lab High Temperature

  12. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    Staff Seminars in Metallurgy and Materials Science,University, Department of Metallurgy, Cleveland, OH, JuneMaterials Research," Metallurgy Division, Department of

  13. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect (OSTI)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18T23:59:59.000Z

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energys National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  14. Piston actuated nastic materials

    E-Print Network [OSTI]

    Shah, Viral

    2009-05-15T23:59:59.000Z

    PISTON ACTUATED NASTIC MATERIALS A Thesis by VIRAL SHAH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2008... Major Subject: Mechanical Engineering PISTON ACTUATED NASTIC MATERIALS A Thesis by VIRAL SHAH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  15. Computer Science Computer Science?

    E-Print Network [OSTI]

    Eustice, Ryan

    Michigan Autonomous Aerial Vehicles, UM::Autonomy, U-M Programming, U-M Solar Car, Hybrid RacingComputer Science @ Michigan Life as a CS Student What is Computer Science? Computer science is shaping the future. A degree in computer science can help shape yours. Michigan CS students have

  16. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Annual Merit Review and Peer Evaluation Meeting Edgar Lara-Curzio HTML User Program Materials Science and Technology Division Oak Ridge National Laboratory Washington, DC June 9,...

  17. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Annual Merit Review and Peer Evaluation Meeting Edgar Lara-Curzio HTML User Program Materials Science and Technology Division Oak Ridge National Laboratory Washington, DC May 18,...

  18. 2011 Annual Progress Report for Lightweighting Materials

    Broader source: Energy.gov (indexed) [DOE]

    counties throughout Mississippi in an effort to inspire young students' interest in science and engineering. 2-70 Activity and Developments Task 1 - Multiscale Material...

  19. Complex curvilinear surfaces in composite materials

    E-Print Network [OSTI]

    Liao, Nancy Han, 1975-

    2001-01-01T23:59:59.000Z

    The thesis will propose a method of architectural design that applies the use of continuous and curvilinear surfaces. It will explore a method of engaging the continuous surface as an expression and response to t he dynamic ...

  20. Nanostructured Materials | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering OfSilica for Voltammetric Analysis of