Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Chemistry and Material Sciences Codes at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 & ast edited: 2012-02-24 15:12:59...

2

Introduction to Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 L ast edited: 2013-05-28 15:53:12...

3

Chemistry and Material Sciences Applications Training at NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 or 510-486-8611 Home For Users Training & Tutorials Training Events Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June...

4

June 26 Training: Using Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0...

5

Chemistry and Materials Science Strategic Plan  

SciTech Connect

Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted the assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme conditions--Fundamental investigations of the properties and performance of states of matter under extreme dynamic, environmental, and nanoscale conditions, with an emphasis on materials of interest to Laboratory programs and mission needs. (2) Chemistry under extreme conditions and chemical engineering to support national security programs--Insights into the chemical reactions of energetic materials in the nuclear stockpile through models of molecular response to extreme conditions of temperature and pressure, advancing a new technique for processing energetic materials by using sol-gel chemistry, providing materials for NIF optics, and furthering developments to enhance other high-power lasers. (3) Science supporting national objectives at the intersection of chemistry, materials science, and biology--Multidisciplinary research for developing new technologies to combat chemical and biological terrorism, to monitor changes in the nation's nuclear stockpile, and to enable the development and application of new physical-science-based methodologies and tools for fundamental biology studies and human health applications. (4) Applied nuclear science for human health and national security: Nuclear science research that is used to develop new methods and technologies for detecting and attributing nuclear materials, assisting Laboratory programs that require nuclear and radiochemical expertise in carrying out their missions, discovering new elements in the periodic table, and finding ways of detecting and understanding cellular response to radiation.

Rhodie, K B; Mailhiot, C; Eaglesham, D; Hartmann-Siantar, C L; Turpin, L S; Allen, P G

2004-04-21T23:59:59.000Z

6

June 26 Training: Using Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

June June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0 Comments) NERSC will present a three-hour training class focussed on Chemistry and Material Sciences applications on Tuesday, June 26, from 9:00 to 12:00 Pacific Time. The first hour of the training is targeted at beginners. We will show you how to get started running material science and chemistry application codes at NERSC. We will demonstrate how to use the preinstalled VASP and Gaussian applications at NERSC efficiently. In the second hour, we will discuss more advanced use cases, such as managing workflows, compiling optimized versions of custom material science and chemistry applications.

7

Biology Chemistry & Material Science Laboratory 2 | Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 2 Inventory The BioChemMat Lab 2 (BCM 2) at SSRL is dedicated to researcher experiments, including...

8

Biology Chemistry & Material Science Laboratory 1 | Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 1 Inventory The BioChemMat Lab 1 at SSRL is dedicated to researcher experiments, including x-ray...

9

Training April 5 - Material Science and Chemistry Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

April 5 April 5 Training April 5 - Material Science and Chemistry Applications March 9, 2011 by Francesca Verdier Training on "Using Chemistry and Material Sciences Applications" will be held April 5, presented simultaneously on the web and at NERSC. See Chemistry and Material Sciences Applications. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 August 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011

10

Chemistry and Materials Science Directorate 2005 Annual Report  

Science Conference Proceedings (OSTI)

In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent discovery of a new source of coherent light adds a new tool to an array of methods we use to more fully understand the properties of materials. Insights into the early stages of polymer crystallization may lead to new materials for our national-security mission and private industry. (3) Science Supporting National Objectives at the Intersection of Chemistry, Materials Science, and Biology--We are improving drug binding for cancer treatment through the use of new tools that are helping us characterize protein-antibody interactions. By probing proteins and nucleic acids, we may gain an understanding of Alzheimer's, Mad Cow, and other neurodegenerative diseases. (4) Applied Nuclear Science for Human Health and National Security--Our work with cyanobacteria is leading to a fuller understanding of how these microorganisms affect the global carbon cycle. We are also developing new ways to reduce nuclear threats with better radiation detectors. Dynamic Teams: The dynamic teams section illustrates the directorate's organizational structure that supports a team environment across disciplinary and institutional boundaries. Our three divisions maintain a close relationship with Laboratory programs, working with directorate and program leaders to ensure an effective response to programmatic needs. CMS's divisions are responsible for line management and leadership, and together, provide us with the flexibility and agility to respond to change and meet program milestones. The three divisions are: Materials Science and Technology Division; Chemistry and Chemical Engineering Division; and Chemical Biology and Nuclear Science Division. By maintaining an organizational structure that offers an environment of collaborative problem-solving opportunities, we are able to nurture the discoveries and breakthroughs required for future successes. The dynamic teams section also presents the work of CMS's postdoctoral fellows, who bring to the Laboratory many of the most recent advances taking place in academic departments and provide a research stimulus to established research teams. Postdo

Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

2006-08-08T23:59:59.000Z

11

Chemistry and Materials Science Department annual report, 1988--1989  

Science Conference Proceedings (OSTI)

This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

1989-12-31T23:59:59.000Z

12

Chemistry and Materials Science progress report, FY 1994. Revision 2  

Science Conference Proceedings (OSTI)

Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

NONE

1996-01-01T23:59:59.000Z

13

Chemistry and materials science progress report, FY 1994  

SciTech Connect

Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

NONE

1995-07-01T23:59:59.000Z

14

Chemistry and Materials Science, 1990--1991. [Second annual report  

Science Conference Proceedings (OSTI)

This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

Sugihara, T.T.; Bruner, J.M.; McElroy, L.A. [eds.

1991-12-31T23:59:59.000Z

15

Chemistry and Material Sciences Applications Training at NERSC April 5,  

NLE Websites -- All DOE Office Websites (Extended Search)

User Feedback JGI Intro to NERSC Data Transfer and Archiving Using the Cray XE6 Joint NERSC/OLCF/NICS Cray XT5 Workshop NERSC User Group Training Remote Setup Online Tutorials Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminiars Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Training & Tutorials » Training Events » Chemistry

16

SLAC National Accelerator Laboratory - Materials, Chemistry and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials, Chemistry and Energy Sciences Two people holding a solar cell outdoors Materials, chemistry and energy sciences are central to many of today's most critical technical...

17

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

18

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

19

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

20

Computational Chemistry | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

SHARE Computational Chemistry Computational Chemistry at ORNL uses principles of computer science and mathematics and the results of theoretical physics and chemistry to...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

22

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: Key metrologies/systems: In situ spectroscopic ellipsometry, linear and non-linear spectroscopies ...

2012-10-02T23:59:59.000Z

23

Chemistry | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

user facilities in the world, such as the Spallation Neutron Source, High Flux Isotope Reactor, and the Center for Nanophase Materials Sciences. At ORNL, we make effective use of...

24

Materials Science Evaluation Portal  

Science Conference Proceedings (OSTI)

NIST Home > Materials Science Evaluation Portal. Materials Science Evaluation Portal. Subject Areas. Modeling; Nondestructive; ...

2013-08-08T23:59:59.000Z

25

Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials  

SciTech Connect

Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate real waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

Lindle, Dennis W.

2011-04-21T23:59:59.000Z

26

Symposium on high temperature and materials chemistry  

SciTech Connect

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

1989-10-01T23:59:59.000Z

27

Molecular environmental science using synchrotron radiation: Chemistry and physics of waste form materials  

E-Print Network (OSTI)

user facility operated by PNNL under support from the OfficeScience Program; DOE at PNNL, which is operated by Battellefor tetravalent actinides) from PNNL. Similar to the boron

Lindle, Dennis W.; Shuh, David K.

2005-01-01T23:59:59.000Z

28

SUM 2013 Chemistry & Materials Science Workshop Sept. 17-18, 2013, USTC  

E-Print Network (OSTI)

Nanofiber Electrode Materials: Asymmetric Supercapacitor with High Energy and Power Density, Lifeng Chen

Zhou, Yi-Feng

29

Strategic thinking in chemistry and materials  

SciTech Connect

Science and technology challenges facing the Chemistry and Materials program relate to the fundamental problem of addressing the critical needs to improve our understanding of how nuclear weapons function and age, while experiencing increased pressures to compensate for a decreasing technology base. Chemistry and materials expertise is an enabling capability embedded within every aspect of nuclear weapons design, testing, production, surveillance and dismantlement. Requirements to capture an enduring chemistry and materials technology base from throughout the integrated contractor complex have promoted a highly visible obligation on the weapons research and development program. The only successful response to this challenge must come from direct improvements in effectiveness and efficiency accomplished through improved understanding. Strategic thinking has generated the following three overarching focus areas for the chemistry and materials competency: As-built Materials Characterization and Performance; Materials Aging; and, Materials Synthesis and Processing.

1995-11-01T23:59:59.000Z

30

Materials Science Division - Argonne National Laboratories, Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

31

Materials Sciences Division 1990 annual report  

Science Conference Proceedings (OSTI)

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

32

Materials Sciences Division 1990 annual report  

Science Conference Proceedings (OSTI)

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

33

Molecular environmental science using synchrotron radiation:Chemistry and physics of waste form materials  

SciTech Connect

Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements.

Lindle, Dennis W.; Shuh, David K.

2005-02-28T23:59:59.000Z

34

Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995  

Science Conference Proceedings (OSTI)

This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

NONE

1996-04-01T23:59:59.000Z

35

Chemistry for Measurement and Detection Science  

NLE Websites -- All DOE Office Websites (Extended Search)

and Detection Science Chemistry for Measurement and Detection Science Research into alternative forms of energy, especially energy security, is one of the major national...

36

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

37

NEWTON's Material Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

38

Chemical Science Technologies - Argonne TDC: Chemistry  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

39

Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development  

SciTech Connect

This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

Not Available

1992-07-01T23:59:59.000Z

40

Educational Material Science Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report  

SciTech Connect

This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (s) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOEs research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

2012-07-25T23:59:59.000Z

42

EA-1404: Actinide Chemistry and Repository Science Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico SUMMARY This EA...

43

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

44

Materials Science & Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

45

NERSC training events: Data Transfer and Archiving; Chemistry and Material  

NLE Websites -- All DOE Office Websites (Extended Search)

training events: Data Transfer and Archiving; Chemistry and Material training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications NERSC training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications February 21, 2011 by Richard Gerber NERSC will present two training events in March: Data Transfer and Archiving March 8, 2011 10:00-12:30 Pacific Time Using Chemistry and Material Sciences Applications at NERSC March 22, 2011 10:00-12:00 Pacific Time Each event will be held concurrently at NERSC's Oakland Scientific Facility and over the web. To register or get more information, please visit our Training Events page. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013

46

NEWTON's Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Archive: Materials Science Archive: Loading Most Recent Materials Science Questions: Hydrogen Compounds and Heat Conduction Weaving Carbon Nanotubes Metal as Electrical Conductor, Not Thermal Steel Changes with Age PETE, Ultraviolet Light, Benefits Strength of Yarn by Spinning Each Substance Unique Density Alloy versus Constituent Density Knowing When Material is Melted Crystalline Metal Versus Metallic Glass and Conduction Super Glue, Surgery, and Skin Silica Gel Teflon Non-Stick Property Salt Crystal Formation Lubricating Rubber Bands and Elasticity Materials for Venus Probe Crystalline Solids and Lowest Energy Sodium Polycarbonate and Salt Water Early Adhesives Surface Energy and Temperature Separating Polypropylene, Polyester, and Nylon Factors Effecting Polymer Flexibility

47

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced...

48

APPLIED MATHEMATICS ATMOSPHERIC SCIENCE BIOMEDICAL ENGINEERING BIOPHYSICS BIOSTATISTICS CHEMISTRY FORENSIC SCIENCE GEOGRAPHY GEOLOGY HYDROLOGIC SCIENCES MATHEMATICS PHYSICS SOILS AND BIOGEOCHEMISTRY  

E-Print Network (OSTI)

; environmental science and policy; land, air and water resources; applied science; computer science; biomedical, fertilizers, plastics, and materials for energy conversion and information technology. The chemistry graduate and Southeastern Asia; and the American West and Southwest, especially California. Master's students develop

Hammock, Bruce D.

49

Sandia National Labs: Materials Science & Engineering, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

MATERIALS SCIENCE & ENGINEERING HOME OrganizationMission Capabilities Awards & Accomplishments Patents MATERIALS SCIENCE AND ENGINEERING CENTER Techniques 1 2 3 4 5 6 7 These are...

50

The Materials Project: Combining Quantum Chemistry Calculations...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Materials Project: Combining Quantum Chemistry Calculations with Supercomputing Centers for New Materials Discovery Speaker(s): Anubhav Jain Date: December 18, 2012 - 12:00pm...

51

NREL: Energy Sciences - Theoretical Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Science Solid-State Theory Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Theoretical Materials Science Learn about our research staff including staff profiles, publications, and contact information. Using modern computational techniques, the Theoretical Materials Science Group, within NREL's Chemical and Materials Science Center, applies quantum mechanics to complex materials, yielding quantitative predictions to guide and interact with experimental explorations. Current research focuses on the following efforts: Design new photovoltaic materials that can improve solar cell efficiency and reduce its cost. Explain the underlying physics of new

52

Understanding Materials Science History, Science, Applications - TMS  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... CITATION: Hummel, R.E. Understanding Materials Science History, Science, Applications, 2nd Edition, New York: Springer, 2004.

53

Materials science and engineering  

Science Conference Proceedings (OSTI)

During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

Lesuer, D.R.

1997-02-01T23:59:59.000Z

54

Materials sciences programs, Fiscal year 1997  

Science Conference Proceedings (OSTI)

The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

NONE

1998-10-01T23:59:59.000Z

55

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxide Interfaces Chemical Imaging Grain Boundaries Related Research Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical transformations and physical phenomena at gas, liquid and solid interfaces lie at the heart of today's energy technologies. They underpin ORNL's research strategies to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy. Understanding, predicting and controlling the structure, transport and reactivity at interfaces will lead to advances in

56

Materials Science Programs and Projects  

Science Conference Proceedings (OSTI)

... Materials Science Programs & Projects. ... In this project we measure the fundamental electrical properties of materials from bulk to nanoscale from ...

2010-09-22T23:59:59.000Z

57

Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980  

Science Conference Proceedings (OSTI)

Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research.

Truhan, J.J.; Hopper, R.W.; Gordon, K.M. (eds.)

1980-10-28T23:59:59.000Z

58

Surface Protection for Enhanced Materials Performance: Science ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Surface Protection for Enhanced Materials Performance: Science,...

59

Materials Science Applications at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Materials Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel...

60

Complementary Chemistry and Matched Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Complementary Chemistry and Matched Materials Complementary Chemistry and Matched Materials Complementary Chemistry and Matched Materials November 15, 2013 - 1:45pm Addthis DNA linkers allow different kinds of nanoparticles to self-assemble and form relatively large-scale nanocomposite arrays. This approach allows for mixing and matching components for the design of multifunctional materials. | Image courtesy of Brookhaven National Laboratory. DNA linkers allow different kinds of nanoparticles to self-assemble and form relatively large-scale nanocomposite arrays. This approach allows for mixing and matching components for the design of multifunctional materials. | Image courtesy of Brookhaven National Laboratory. Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts?

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Materials Science and Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Science and Engineering Materials Science and Engineering 1 Fe---Cr A lloys f or A dvanced N uclear E nergy A pplica9ons Ron S caMaterials Science and Engineering 2 Thermodynamic S tabiliza9on o f G rain S ize The concept is that non---equilibrium solutes introduced by mechanical alloying can segregate to grain b oundaries, p roducing

62

NREL: Energy Sciences - Computational Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Computational Materials Science Illustration of molecular structure. Overall shape is a somewhat canted diamond, with a grid of small green balls connected in either a...

63

Materials sciences programs, fiscal year 1994  

Science Conference Proceedings (OSTI)

The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

NONE

1995-04-01T23:59:59.000Z

64

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

65

Nuclear Materials Science:Materials Science Technology:MST-16...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Materials Science (MST-16) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation...

66

Materials Science Advanced Materials News  

Science Conference Proceedings (OSTI)

... Contributes to Discovery of Novel Quantum Spin-Liquid Release Date ... Novel Filter Material Could Cut Natural Gas Refining Costs Release Date: 03 ...

2010-12-16T23:59:59.000Z

67

Materials Science Advanced Materials Portal  

Science Conference Proceedings (OSTI)

... to Discovery of Novel Quantum Spin-Liquid. illustration of metal organic framework Novel Filter Material Could Cut Natural Gas Refining Costs. ...

2013-06-27T23:59:59.000Z

68

Center for Theoretical and Computational Materials Science ...  

Science Conference Proceedings (OSTI)

NIST/MML Center for Theoretical and Computational Materials Science. Mission. ... Center for Theoretical and Computational Materials Science ...

2013-09-04T23:59:59.000Z

69

Chemistry Standard Reference Materials Portal  

Science Conference Proceedings (OSTI)

... Bombings. photo of Gulf of Mexico crude oil SRM NIST Releases Gulf of Mexico Crude Oil Reference Material. canine officer ...

2013-09-19T23:59:59.000Z

70

Sandia National Laboratories: Careers: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials science worker Sandia materials scientists are creating scientifically tailored materials for U.S. energy applications and critical defense needs....

71

Materials Science Programs and Projects  

Science Conference Proceedings (OSTI)

NIST Home > Materials Science Programs and Projects. ... the structure of crack tips, the rates ... as health care, communications, energy and electronics ...

2010-09-22T23:59:59.000Z

72

Physical Chemistry of Materials Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis by Design Zeolites Materials for Catalysis Photocatalytic CO2 Facilities Battery Membrane Separations Research Program Documents ORNLTM-2011151 Related Links...

73

Materials Science and Technology Teachers Handbook  

SciTech Connect

The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

2008-09-04T23:59:59.000Z

74

Complementary Chemistry and Matched Materials  

Office of Science (SC) Website

some of the errors of a typical scientific trial - especially those involved with the search for new materials. Even more importantly, as Dr. Gang said, "It offers routes for the...

75

Behavioral Sciences | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Computational Engineering Computer Science Data Earth Sciences Energy Science Future Technology Knowledge Discovery Materials Mathematics National Security Systems...

76

Materials Measurement Science Division Staff Directory  

Science Conference Proceedings (OSTI)

... Patricia Ridgley Division Office Manager 301-975-3914. ... Material Measurement Laboratory Materials Measurement Science Division. ...

2013-03-19T23:59:59.000Z

77

SC e-journals, Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface Engineering - OAJ Archives of Materials Science and Engineering - OAJ Carbohydrate Polymers Carbon Catalysis Science & Technology Cellulose Cement and Concrete Research Ceramic Engineering and Science Proceedings Ceramics International Chalcogenide Letters - OAJ Chemical and Petroleum Engineering

78

Chemistry and Physics of Materials Committee - Committee Home ...  

Science Conference Proceedings (OSTI)

The Chemistry and Physics of Materials Committee is part of the Electronic, Magnetic, and Photonic Materials Division; Structural Materials Division. Our Mission:...

79

Mesoscale Computational Materials Science - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Symposium, Mesoscale Computational Materials Science of Energy Materials. Sponsorship ... materials for advanced batteries and fuel cells

80

Materials Science/Crystallography  

Science Conference Proceedings (OSTI)

... Understanding the ormation of Methane Hydrate F ... J.247 agnetic Excitation Spectrum in Spin ... eutron Vibrational Spectroscopy of Organic Materials ...

2003-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advances in materials science, Metals and Ceramics Division. Triannual progress report, February-May 1980  

SciTech Connect

Research is reported in the magnetic fusion energy and laser fusion energy programs, aluminium-air battery and vehicle research, geothermal research, nuclear waste management, basic energy science, and chemistry and materials science. (FS)

Truhan, J.J.; Gordon, K.M. (eds.)

1980-08-01T23:59:59.000Z

82

Biological Materials Science Symposium  

Science Conference Proceedings (OSTI)

The structure and properties of biological materials exhibit a breadth and complexity .... Protective Role of Arapaima Scales: Structure and Mechanical Behavior.

83

3D Materials Science 2014: Home Page  

Science Conference Proceedings (OSTI)

2nd International Congress on 3D Materials Science 2014. June 29 July 2, 2014 Annecy, France. The International Congress on 3D Materials Science seeks...

84

NERSC training events: Data Transfer and Archiving; Chemistry...  

NLE Websites -- All DOE Office Websites (Extended Search)

training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications NERSC training events: Data Transfer and Archiving; Chemistry and Material Sciences...

85

Biology | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioinformatics Nuclear Medicine Climate and Environment Systems Biology Computational Biology Chemistry Engineering Computer Science Earth and Atmospheric Sciences Materials...

86

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

87

TMS Web Event: Radiation Materials Science  

Science Conference Proceedings (OSTI)

The annual conferences include the TMS Annual Meeting, the Electronic Materials Conference and the Materials Science & Technology Conference...

88

The computational materials science of concrete:  

Science Conference Proceedings (OSTI)

... Computational Materials Engineering (ICME), advanced by the ... models need to advance to the ... reposito- ry, the computational materials science of ...

2013-07-29T23:59:59.000Z

89

Computational Materials Science and Engineering Committee  

Science Conference Proceedings (OSTI)

The Computational Materials Science and Engineering Committee is part of the Materials Processing & Manufacturing Division;. Our Mission: Foster research...

90

Science in China Series B: Chemistry 2009 SCIENCE IN CHINA PRESS  

E-Print Network (OSTI)

Science in China Series B: Chemistry © 2009 SCIENCE IN CHINA PRESS Springer Sci China Ser B Sciences, Beijing 100871, China In this paper, we report the synthesis of furan derivatives from allenic-009-0224-7 Corresponding author (email: wangjb@pku.edu.cn) Supported by the National Natural Science Foundation of China

Wang, Jianbo

91

Shock-induced chemistry in organic materials  

Science Conference Proceedings (OSTI)

The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

2011-01-20T23:59:59.000Z

92

ME306 Materials Science Course Syllabus  

E-Print Network (OSTI)

SUPPLEMENTARY REFERENCES ON RESERVE 1. James F. Shackelford, "Introduction to Materials Science for Engineering

Cleveland, Robin

93

Materials and Science in Sports: Exhibition - TMS  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

94

Materials and Science in Sports: Destination Information  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

95

Materials Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economy Funding Opportunities State & Local Government Science & Innovation Science & Technology Science Education Innovation Energy Sources Energy Usage Energy Efficiency...

96

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Publications J. R. I. Lee, H. D. Whitley, R. W. Meulenberg, A. Wolcott, J. Z. Zhang, D. Prendergast, D. D. Lovingood, G. F. Strouse, T. Ogitsu, E. Schwegler, L. J. Terminello and T. van Buuren. Ligand-Mediated Modification of the Electronic Structure of CdSe Quantum Dots. Nano Letters 12, 2763 (2012). abstract » B. Zamft, L. Bintu, T. Ishibashi and C. Bustamante. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proceedings of the National Academy of Sciences 109, 8948 (2012). abstract » W. Morris, B. Volosskiy, S. Demir, F. Gandara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart and O. M. Yaghi. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorganic chemistry 51, 6443 (2012). abstract »

97

NWChem Delivering High-Performance Computational Chemistry to Science  

NLE Websites -- All DOE Office Websites (Extended Search)

NWChem NWChem Delivering High-Performance Computational Chemistry to Science SCientifiC innovation tHrougH integration www.nwchem-sw.org www.emsl.pnl.gov NWChem  High-Performance Computational Chemistry EMSL  Environmental Molecular Sciences Laboratory 2 3 NWChem software » Biomolecules, nanostructures, and solid state » From quantum to classical, and all combinations » Gaussian functions or plane-waves » Scaling from one to thousands of processors » Properties and relativity » Open source NWChem Introduction NWChem is cutting-edge software that offers an extensive array of highly scalable, parallel computational chemistry methods needed to address a wide range of large, challenging scientific questions. As one of the U.S. Department of Energy's premier computational chemistry tools, NWChem is

98

Environmental Assessment for Actinide Chemistry and Repository Science  

NLE Websites -- All DOE Office Websites (Extended Search)

questions on the Environmental Assessment for Actinide Chemistry and Repository Science Laboratory, email Harold.Johnson@wipp.ws or call (505) 234-7349. questions on the Environmental Assessment for Actinide Chemistry and Repository Science Laboratory, email Harold.Johnson@wipp.ws or call (505) 234-7349. Environmental Assessment for Actinide Chemistry and Repository Science Laboratory Final - January, 2006 This document has been provided to you in PDF format. Please install Adobe Acrobat Reader before accessing these documents. Some of the Chapters containing complex graphics have been split into multiple parts to allow for more detail in the graphics and ease in downloading. Cover Sheet, Table of Contents, List of Tables, List of Figures, and Acronyms and Abbreviations Chapter 1 - Introduction and Statement of Purpose and Need Chapter 2 - Proposed Action and Alternatives Chapter 3 - Existing Environment

99

Defect Chemistry and Kinetics of Electrons in Ion Conducting Materials  

Science Conference Proceedings (OSTI)

Presentation Title, Defect Chemistry and Kinetics of Electrons in Ion Conducting Materials Recent Results and Applications. Author(s), Hans D. Wiemhfer.

100

Chemistry for Measurement and Detection Science publications  

NLE Websites -- All DOE Office Websites (Extended Search)

T. Fox, Dae Won Cho, and Kenneth E. Hammel, "Exploring new strategies for cellulosic biofuels production," Energy and Environmental Science 4(10), 3820-3833 (2011). Marcel...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

3D Materials Science 2014: Home Page  

Science Conference Proceedings (OSTI)

The International Congress on 3D Materials Science seeks to provide the ... assess the state-of-the-art within the various elements of 3D materials science, but to...

102

Material Science Advances Using Test Reactor Facilities  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Material Science Advances Using Test Reactor Facilities.

103

Materials Science and Technology in Hydroelectricity  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Presentation...

104

Toward a New U.S. Chemicals Policy: Rebuilding the Foundation to Advance New Science, Green Chemistry, and Environmental Health  

E-Print Network (OSTI)

broad industrial investment in green chemistry has lagged,gap by fueling new investment in green chemistry science,to motivating broad investment in green chemistry. As with

2009-01-01T23:59:59.000Z

105

Computational Materials Science: from Basic Principles to Material ...  

Science Conference Proceedings (OSTI)

Feb 8, 2007... Thermodynamics Software/Codes, Visualization Software/Codes ... Topic Title: Computational Materials Science: from Basic Principles to...

106

Charge Carrier Chemistry in Nanoscopic Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Defect chemistry is explored in space charge zones with emphasis on mesoscopic situations. After a general overview two representative

107

FWP executive summaries: Basic energy sciences materials sciences programs  

Science Conference Proceedings (OSTI)

This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

Samara, G.A.

1996-02-01T23:59:59.000Z

108

Advances in materials science, Metals and Ceramics Division. Quarterly progress report, July-September 1979  

DOE Green Energy (OSTI)

Research is reported on materials for magnetic fusion energy, laser fusion energy, Al-air batteries, geothermal energy, oil shale, nuclear waste management, thermochemical cycles for hydrogen production, chemistry, and basic energy science. (FS)

Truhan, J.J.; Weld, F.N.

1979-10-25T23:59:59.000Z

109

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Space Radioisotope Power Systems Energy.Gov Office of Nuclear Energy - Space Power Systems NASA Cassini- Huygens Mission to Saturn NASA Curosity - Mars Science...

110

More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology Chemistry Engineering Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics ORNL wins six R&D 100s R&D Magazine recognizes...

111

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Materials Propulsion Materials Energy Storage Fossil Energy Nuclear - Radioisotope Power Systems Nuclear Energy Nuclear Fuels Nuclear Light Water...

112

ANALYTICAL CHEMISTRY AND MEASUREMENT SCIENCE (What Has DOE Done For Analytical Chemistry?) CONF-8904181--1  

NLE Websites -- All DOE Office Websites (Extended Search)

, . - - ANALYTICAL CHEMISTRY AND MEASUREMENT SCIENCE (What Has DOE Done For Analytical Chemistry?) CONF-8904181--1 DE89 009559 W. D. Shults Analytical Chemistry Division Oak Ridge National Laboratory* Oak Ridge, Tennessee 37831-6129 ABSTRACT Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or wcce brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

113

NREL: Energy Sciences - Chemical and Materials Science Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Materials Science Staff Chemical and Materials Science Staff The Chemical and Materials Science staff members at the National Renewable Energy Laboratory work within one of five groups: the Chemical and Nanoscale Science Group, the Theoretical Materials Science Group, the Materials Science Group, the Process Technology and Advanced Concepts Group, and the Fuel Cells Group. Access the staff members' background, areas of expertise, and contact information below. Jao van de Lagemaat Director Marisa Howe Project Specialist Chemical & Nanoscale Science Group Nicole Campos Administrative Professional Paul Ackerman Natalia Azarova Brian Bailey Matthew C. Beard Matt Bergren Raghu N. Bhattacharya Julio Villanueva Cab Rebecca Callahan Russ Cormier Ryan Crisp Alex Dixon Andrew J. Ferguson Arthur J. Frank

114

Chemical Sciences Division | Advanced Materials |ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

115

FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)  

SciTech Connect

The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

Samara, G.A.

1997-05-01T23:59:59.000Z

116

Teacher Resource Center: Fermilab Science Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Science Materials Fermilab Science Materials TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources Select from several categories of items available from the Fermilab Education Office. Teachers created these classroom materials as part of Fermilab educational programs. The following materials may be ordered either through the Education Office or through the Fermilab Friends for Science Education Online Store. ** Use the online order form (pdf).** You can fill it out online, save it, print it and send it by US mail.

117

Amorphous Materials: Common Issues within Science and Technology  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Amorphous Materials: Common Issues within Science and Technology.

118

Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials  

E-Print Network (OSTI)

VOCs emitted by reactions of HVAC filters with ozone usingChemistry and Emissions on HVAC Filter Materials HugoChemistry and Emissions on HVAC Filter Materials Authors:

Destaillats, Hugo

2010-01-01T23:59:59.000Z

119

Textbook: Introduction to Materials Science for Engineers  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... CITATION: Shackelford, J. F. Introduction to Materials Science for Engineers. 5th Edition, New York: Prentice Hall, Inc., 2000.

120

Introduction to Computational Materials Science and Engineering ...  

Science Conference Proceedings (OSTI)

Introduction to Computational Materials Science and Engineering Tools. Short Course. July 11-12, 2013 Salt Lake Marriott Downtown at City Creek Salt Lake

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Materials Science and Engineering Division Homepage  

Science Conference Proceedings (OSTI)

... those engaged in the materials science and engineering enterprise to ... that solve problems in areas such as energy, electronics, transportation and ...

2013-03-07T23:59:59.000Z

122

3D Materials Science 2012: Technical Program  

Science Conference Proceedings (OSTI)

3D Materials Science 2012: Technical Program July 8-12, 2012 Seven Springs Mountain Resort Seven Springs, Pennsylvania. View Session Sheets.

123

Electronic Materials Science Challenges in Renewable Energy  

Science Conference Proceedings (OSTI)

Presentation Title, Electronic Materials Science Challenges in Renewable Energy. Author(s), Richard R. King. On-Site Speaker (Planned), Richard R. King.

124

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

MTG MTG For the Public News & Highlights Publications Seminars Workshops Our People Group Leader, Staff Members Find People Fact Sheet Energy Frontier Research Center Center for Defect Physics (EFRC) Related Groups Computational Materials Science Group (CSMD) Nanomaterials Theory Institute (CNMS) Single Crystal Diffraction Group (NScD) University of Tennesee (MSE) ORNL Materials in Extreme Environments Other Useful Links American Physical Society DOE Office of Science Institute of Physics Office of Basic Energy Sciences National Energy Research Scientific Computing Center The Minerals, Metals & Materials Society U.S. Department of Energy Advanced Materials Group In The News PSD Directorate › MST Division › Materials Theory Group The Materials Theory Group (MTG) of the Materials Science and Technology

125

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

accident tolerant fuels, and providing the materials underpinning for fusion energy. The nuclear materials program leverages off both fundamental and applied capabilities within...

126

The Entire Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archives, Since January 2005 Table of Contents: Materials Scientist Two Phase Materials Nano-technology Projections Scents in Scented Candles Rubber Band Materials Metallic...

127

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Chemistry Print Chemical science at the ALS encompasses a broad range of approaches and specializations, including surfaces/interfaces, catalysis, chemical dynamics (gas-phase chemistry), crystallography, and physical chemistry. By one estimate, nearly 80% of all chemical reactions in nature and in human technology take place at boundaries between phases, i.e., at surfaces or interfaces. Atomic- and molecular-scale studies are needed to develop a thorough understanding of the relationships between surface properties and parameters relevant to potential applications and devices. Catalysts play a central role in processes relevant to energy, the environment, and biology. Researchers are working to develop cheaper and smarter catalysts that are fine tuned to accelerate reactions that, for example, drive fuel-refinement, sweep toxins from emissions, or convert starch to sugar.

128

EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to construct and operate an Actinide Chemistry and Repository Science Laboratory to support chemical research activities related to the...

129

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

cultivate a collaborative and interdisciplinary approach to materials research and help train the next generation of materials scientists. Quick Facts Established in 1962 Number of...

130

Advanced Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

these new materials to industry. For example, an understanding of how defects form at the atomic level allows creation of improved materials that approach their theoretical...

131

National Science Bowl Competition Buzzer Materials List | U...  

Office of Science (SC) Website

Middle School Rules, Forms, and Resources Make Your Own National Science Bowl Competition Buzzer National Science Bowl Competition Buzzer Materials List National Science...

132

ND in Materials Science and Technology II  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: ND in ... to the unique infrastructure and specialized staff of the Nuclear Laboratory. Shielded cells enable neutron diffraction studies on highly radioactive samples.

133

Condensed Matter Physics & Materials Science Department, Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov Education: Iowa State...

134

Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics and  

NLE Websites -- All DOE Office Websites (Extended Search)

feature banner feature banner banner Condensed Matter and Magnet Science The Condensed Matter and Magnet Science Group (MPA-CMMS) is comprised of research scientists, technicians, postdocs, and students specializing in experimental physics research, with a strong emphasis on fundamental condensed matter physics with complimentary thrusts in correlated electron materials, high magnetic-field science and technology, thermal physics, and actinide chemistry. MPA-CMMS hosts the Pulsed Field Facility of the National High Magnetic Field Laboratory (NHMFL-PFF) located at TA-35 while new material synthesis, low temperature expertise, and various low-energy spectroscopies are located at TA-3. Our actinide chemistry activities occur at RC-1 (TA-48). The NHMFL-PFF is a national user facility for high magnetic field science sponsored primarily by the National Science Foundation's Division of Materials Research, with branches at Florida State University, the University of Florida, and Los Alamos National Laboratory. (Check out NHMFL Web site for more details.)

135

Photon Sciences Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Y Y Rhein Craig 20622 PSBC Active Y Y Page 3 of 80 List of Photon Sciences Mat'l Handling Equip 5242013 4:09:58 PM 725 UV East GE-56 PS-C01 Yale A-422-3749 2 ton...

136

Chemistry and materials in geothermal systems  

DOE Green Energy (OSTI)

The development of a geothermal fluid, from its origin as meteoric water precipitating on the earth's surface, as it flows through the soils and rocks of geological formations, to the point where it returns to the surface as a hot spring, geyser, well, etc. is traced. Water of magmatic origin is also included. The tendency of these hydrothermal fluids to form scales by precipitation of a portion of their dissolved solids is noted. A discussion is presented of types of information required for materials selection for energy systems utilizing geothermal fluids, including pH, temperature, the speciation of the particular geothermal fluid (particularly chloride, sulfide and carbon dioxide content) and various types of corrosive attack on common materials. Specific examplers of materials response to geothermal fluid are given.

Miller, R.L.

1979-05-01T23:59:59.000Z

137

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

138

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

139

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

140

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

enhance the sensitivity of NMRMRI experiments in bulk materials, in nuclear-based spintronics, and quantum computation in diamond. Summary Dynamic nuclear polarization, which...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Technology Transfer in Materials Science  

Science Conference Proceedings (OSTI)

Novel Bioceramic Scaffolds for Regenerative Medicine ... The Energy Challenge and the Role of Advanced Materials Fernando Rizzo CGEE/PUC-Rio.

142

New Opportunities for Materials Science  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... O. Advanced Neutron and Synchrotron Studies of Materials: New ... Status of China Spallation Neutron Source and Perspectives of Neutron...

143

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Electron Microscopy Center for X-ray Optics Joint Center for Artificial Photosynthesis, North Research Highlights Research & Facilities Core Programs Materials...

144

Materials science aspects of coal  

Science Conference Proceedings (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

145

The Computational Materials and Chemical Sciences Network (CMCSN...  

Office of Science (SC) Website

The Computational Materials and Chemical Sciences Network (CMCSN) Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers...

146

Radiation Materials Science Package (2007), by Gary S. Was - TMS  

Science Conference Proceedings (OSTI)

Jul 11, 2008 ... Fundamentals of Radiation Materials Science is a high-level materials science book/CD package intended for graduate students and...

147

Materials Highlights | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials SHARE Materials Highlights 1-7 of 7 Results Neutron scattering characterizes dynamics in polymer family December 01, 2012 - Understanding the interplay between structure and dynamics is the key to obtaining tailor-made materials. In the last few years, a large effort has been devoted to characterizing and relating the structure and dynamic properties in families of polymers with alkyl side groups. Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells December 01, 2012 - Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in

148

Nuclear Sciences | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Advanced Materials Nuclear Forensics Climate & Environment Biology and Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry Nuclear Sciences More Science Home | Science & Discovery | More Science | Chemistry | Nuclear Sciences SHARE Nuclear Sciences In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies and systems to improve human health; explore safer, more environmentally friendly power; and better understand the structure of matter. Thanks to its nuclear heritage, ORNL is a world leader in the production of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC)

149

Jefferson Lab Science Series - Chemistry - It's More Than Puffs...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Dinosaur Extinctions and Giant Asteroids) Dinosaur Extinctions and Giant Asteroids Chemistry - It's More Than Puffs and Bangs Dr. Joe Schwarcz - McGill Office for Chemistry and...

150

NETL: Onsite Research: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Metallography Metallography NETL has a state-of-the art metallographic facility staffed with world renowned experts with experience on a wide range of alloys and materials with the tools to get the job done. Our metallography staff works with their customers to reveal the microstructure contained within the specimens using sophisticated polishing, staining, and microscopic techniques to develop new techniques and improve upon old ones. An understanding of the microstructure is a useful tool in a wide range of situations from developing processing techniques on new material to evaluating the performance of new and existing materials after exposure to aggressive conditions. The information our staff obtains is an invaluable part of a research program. For example:

151

Materials and Chemical Sciences Division annual report, 1987  

DOE Green Energy (OSTI)

Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

Not Available

1988-07-01T23:59:59.000Z

152

Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Sauer named AD for Chemistry, Life, and Earth Sciences Sauer named AD for Chemistry, Life, and Earth Sciences Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences Sauer has a distinguished track record as a research scientist with more than 60 publications and technical reports in archival journals. August 9, 2011 Nan Sauer Nan Sauer Contact Communicatons Office (505) 667-7000 LOS ALAMOS, New Mexico, August 9, 2011- Nancy ("Nan") Sauer is the new associate director for Chemistry, Life, and Earth Sciences (ADCLES) at Los Alamos National Laboratory (LANL). In her 25-year career at LANL, Sauer has held several positions of increasing responsibility. After working as a director's postdoctoral fellow, she advanced to a principal investigator and team leader in the Chemistry Division to leader of several projects. Most recently she has

153

Intercollege Graduate Degree Program in Materials Science and Engineering  

E-Print Network (OSTI)

University 101 Steidle Building Joan Redwing, Chair & Professor of Materials Science and Engineering redwing

Kaye, Jason P.

154

Integration of Green Engineering Concepts into Materials Science ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Green Engineering and Environmental Stewardship. Presentation Title...

155

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

Science Conference Proceedings (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

156

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

CST CST For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Capabilities Current Research Materials Our People Group Leader, Staff Members Find People Fact Sheet Group Poster Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Corrosion Science and Technology Group Corrosion Kinetics in simulated high-temperature/high-pressure environments

157

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jan 7, 2013... engineering, computer science, mathematics, chemistry, biology, materials science, neutron research, and/or physics are eligible to nominate...

158

SC e-journals, Chemistry  

Office of Scientific and Technical Information (OSTI)

Chemistry Chemistry Accounts of Chemical Research Accreditation and Quality Assurance ACS Chemical Biology ACS Nano Acta Biotheoretica Acta Materialia Acta Neuropathologica Adsorption Advanced Engineering Materials Advances in Physical Chemistry - OAJ AlChE Journal Amino Acids Analyst Analytica Chimica Acta Analytical and Bioanalytical Chemistry Analytical Biochemistry Analytical Chemistry Analytical Sciences - OAJ Angewandte Chemie - International Edition Annual Review of Analytical Chemistry Annual Review of Biochemistry Annual Review of Biophysics Annual Review of Materials Research Annual Review of Physical Chemistry Antimicrobial Agents and Chemotherapy Applied Geochemistry Applied Radiation and Isotopes Applied Surface Science Applied Thermal Engineering Aquatic Geochemistry

159

Materials Sciences programs, Fiscal year 1993  

Science Conference Proceedings (OSTI)

This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

NONE

1994-02-01T23:59:59.000Z

160

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Selected Publications Our People Contacts by Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment ShaRE User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Correlated Electron Materials Group In The News PSD Directorate › MST Division › Correlated Electron Materials Group CdSiP2Tin Flux The ultimate aim of our research is to attain a better understanding of complex materials, particularly those that are important to clean energy technologies. For example, we are currently investigating the relationship between magnetism and superconductivity, new mechanisms for enhancing

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Physical and Life Sciences Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

PLS Contact Us S&T Site Index Go Overview Physics Chemistry Materials Earth Sciences Life Sciences Overview Atmospheric, Earth, and Energy Division Biosciences and Biotechnology...

162

Materials and Science in Sports--Calendar of Events  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

163

Materials and Science in Sports--Registration Information  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

164

Materials and Science in Sports--Speakers and Presenters  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

165

Materials and Science in Sports--Hertz Rental Car  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

166

Conference on Advances in Materials Science | National Nuclear...  

National Nuclear Security Administration (NNSA)

in Materials Science Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

167

NETL Earns Carnegie Science Awards for Advanced Materials, Corporate...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 NETL Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation Washington, D.C. - For its leadership and innovation in science and technology, the Office...

168

Dynamic Glazing from a Material Science Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Glazing from a Material Science Perspective Dynamic Glazing from a Material Science Perspective Speaker(s): Sunnie Lim Date: February 16, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Advanced window technology has been identified as a component which can greatly reduce the energy consumption of the building envelope. The next generation of advanced windows will involve a "smart-coating" technology where the optical and solar properties can be dynamically controlled. The performance of such coating is ultimately linked to its materials properties such as chemical composition and microstructure. These properties are directly influenced by the deposition process conditions. A promising dynamic windows technology is based upon the electrochromism process. An electrochromic window system consists of a sandwich of

169

Materials sciences programs: Fiscal year 1995  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

NONE

1996-05-01T23:59:59.000Z

170

Materials sciences programs fiscal year 1996  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

NONE

1997-06-01T23:59:59.000Z

171

Chemistry and Applications of Metal-Organic Materials  

E-Print Network (OSTI)

Developing the synthetic control required for the intentional 3-D arrangement of atoms remains a holy grail in crystal engineering and materials chemistry. The explosive development of metal-organic materials in recent decades has shed light on the above problem. Their properties can be tuned by varying the organic and/or inorganic building units. In addition, their crystallinity makes it possible to determine their structures via the X-ray diffraction method. This dissertation will focus on the chemistry and applications of two kinds of metal-organic materials, namely, metal-organic frameworks (MOFs) and metal-organic polyhedra (MOP). MOFs are coordination polymers. Their permanent porosity makes them a good gas sponge. In the first section, an isoreticular series of MOFs with dendritic hexacarboxylate ligands has been synthesized and characterized structurally. One of the MOFs in this series, PCN-68, has a Langmuir surface area as high as 6033 m2 g-1. The MOFs also possess excellent gas (H2, CH4, and CO2) adsorption capacity. In the second section, a NbO-type MOF, PCN-46, was constructed based on a polyyne-coupled di-isophthalate linker formed in situ. Its lasting porosity was confirmed by N2 adsorption isotherm, and its H2, CH4 and CO2 adsorption capacity was examined at 77 K and 298 K over a wide pressure range (0-110 bar). Unlike MOFs, MOP are discrete porous coordination nanocages. In the third section, a MOP covered with bulky triisopropylsilyl group was synthesized, which exhibits a thermosensitive gate opening property. This material demonstrates a molecular sieving effect at a certain temperature range, which could be used for gas separation purpose. In the last section, a MOP covered with alkyne group was synthesized through kinetic control. The postsynthetic modification via click reaction with azide-terminated polyethylene glycol turned them into metallomicelles, which showed controlled release of an anticancer drug 5-fluorouracil. In summary, two kinds of metal-organic materials have been discussed in this dissertation, with the applications in gas storage, gas separation, and drug delivery. These findings greatly enrich the chemistry and applications of metal-organic materials.

Zhao, Dan

2010-12-01T23:59:59.000Z

172

Polymer/Elastomer and Composite Material Science  

NLE Websites -- All DOE Office Websites (Extended Search)

/ Elastomer and / Elastomer and Composite Material Science KEVIN L. SIMMONS Pacific Northwest National Laboratory, Richland, WA DOE Headquarters, Forrestal Bldg. October 17-18, 2012 January 17, 2013 Kevin.simmons@pnnl.gov 1 Outline Hydrogen production, transmission, distribution, delivery system Common themes in the hydrogen system Automotive vs infrastructure Hydrogen use conditions Polymer/elastomer and composites compatibility? Common materials in BOP components, hoses, and liners Common materials in composite tank and piping Material issues Polymers/Elastomers Composites Questions 2 Main Points to Remember 1) Polymers are extensively used in hydrogen and fuel cell applications 2) Hydrogen impact on polymers is not well understood 3) Next steps 3 4 Hydrogen Production Systems

173

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Availability Technology Negotiable Licensing Insensitive Extrudable Explosive Express Licensing Metal aminoboranes Express Licensing Nanocrystalsol-gel...

174

SUPPORT FOR CHEMISTRY SYMPOSIA AT THE 2011 AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE MEETING FEBRUARY 17-21, 2011  

Science Conference Proceedings (OSTI)

This proposal supported Chemistry Symposia at the 2011 American Association for the Advancement of Science (AAAS) Meeting in Washington, DC February 17-21, 2011. The Chemistry Section of AAAS presented an unusually strong set of symposia for the 2011 AAAS meeting to help celebrate the 2011 International Year of Chemistry. The AAAS meeting provided an unusual opportunity to convey the excitement and importance of chemistry to a very broad audience and allowed access to a large contingent of the scientific press. Excellent suggestions for symposia were received from AAAS Chemistry Fellows and from the chairs of the American Chemical Society Technical Divisions. The AAAS Chemistry executive committee selected topics that would have wide appeal to scientists, the public, and the press for formal proposals of symposia. The symposia proposals were peer reviewed by AAAS. The Chemistry Section made a strong case to the program selection committee for approval of the chemistry symposia and 6 were approved for the 2011 annual meeting. The titles of the approved symposia were: (1) Powering the Planet: Generation of Clean Fuels from Sunlight and Water, (2) Biological Role and Consequences of Intrinsic Protein Disorder, (3) Chemically Speaking: How Organisms Talk to Each Other, (4) Molecular Self-Assembly and Artificial Molecular Machines, (5) Frontiers in Organic Materials for Information Processing, Energy and Sensors, and (6) Celebrating Marie Curie's 100th Anniversary of Her Nobel Prize in Chemistry. The Chemistry Section of AAAS is provided with funds to support only 1-2 symposia a year. Because of the much greater number of symposia approved in conjunction with observance of the 2011 International Year of Chemistry, additional support was sought from DOE to help support the 30 invited speakers and 8 symposia moderators/organizers. Support for the symposia provided the opportunity to highlight the excitement of current chemical research, to educate the public about the achievements of chemistry and its contributions to the well-being of humankind. The 2011 AAAS Annual Meeting provided an important opportunity to play a prominent role in the global celebration of the 2011 International Year of Chemistry.

Prof. Charles Casey, University of Wisconsin-Madison

2011-08-20T23:59:59.000Z

175

SRF Materials: Fundamental studies of interfacial oxidation chemistry of niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL/FNAL/UC Collaboration meeting 27 Nov 2007 ANL/FNAL/UC Collaboration meeting 27 Nov 2007 SRF Materials: Fundamental studies of interfacial oxidation chemistry of niobium Lance Cooley - FNAL Mike Pellin, Jim Norem - ANL Steve Sibener - UC John Zasadzinski, Thomas Prolier - IIT f ANL/FNAL/UC Collaboration meeting 27 Nov 2007 May 2007 SRF Materials Workshop @ FNAL energized 2 collaborations being reported here * Atomic layer deposition of conformal coatings onto cavities (Pellin, Zasadzinski, Prolier, Norem, Antoine/Wu/Cooley) - Directly probe surface superconductivity (SC) via 1.5 K STM + XPS surface composition - Nb oxidation layer proximity effects! - ALD Al 2 O 3 coated cavity first, for oxidation control; multilayer- coated cavity later - A new philosophy: build up, not etch down - First annealing results reveal oxidation vs

176

Laboratory E133 - Material Science and Hydrogen Research ...  

Science Conference Proceedings (OSTI)

... E137 | E138. Laboratory E133 - Material Science and Hydrogen Research Laboratory. Laboratory Contacts. Name: Kimberly ...

2013-09-05T23:59:59.000Z

177

Opportunities and Challenges to Careers in Materials Science and ...  

Science Conference Proceedings (OSTI)

... employer (job location (domestic or foreign, staff versus management, etc.) ... Materials Science and Engineering in the Canadian Oil Sands - Challenges &...

178

Materials Science in Reduced Gravity - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... About this Symposium. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium, Materials Science in Reduced Gravity. Sponsorship...

179

XG Sciences, ORNL partner on titanium-graphene composite materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

XG Sciences, ORNL partner on titaniumgraphene composite materials January 01, 2013 Titaniumgraphene composite specimens prepared for flash thermal diffusivity measurement....

180

Discussions@TMS -- Webinar Discussion: Materials Science and ...  

Science Conference Proceedings (OSTI)

BACKGROUNDER for Discussing the Webinar: Materials Science and Policy for Environmentally Benign Electronics This posting provides background...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Materials Science & Technology, MST: Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations Laboratory Mechanical testing and modeling in MST Sigma Complex Los Alamos National Laboratory's Materials Science and Technology Division provides...

182

Molecular forensic science of nuclear materials  

SciTech Connect

We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

Wilkerson, Marianne Perry [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

183

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

SPNM SPNM For the Public Awards Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Capabilities Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive | Honors and Awards Archive Lynn Boatner, Joanne Ramey, Hu Longmire, research featured in the 2013 Allied High Tech Products, Inc. Calendar in the form of a color micrograph for the month of March, 2013.

184

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

ABD ABD For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Research Projects Our People Group Leader, Staff Members, Facilities Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Alloy Behavior and Design Group The principal technical contact for discussing potential projects in the Alloy Behavior and Design Group is Dr. Easo P. George, Group Leader.

185

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

TFN TFN For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Core Compentencies Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Thin Films and Nanostructures Group Complex oxide thin films and heterostructures are important for not only fundamental physics, but also a wide range of exciting opportunities in

186

Argonne Chemical Sciences & Engineering - Facilities - Analytical Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytical Chemistry Laboratory Analytical Chemistry Laboratory sullivan ACL manager Vivian Sullivan places a plate for alpha spectrometry into the Alpha Analyst instrument. naik Seema Naik prepares an inorganic sample for analysis on the ICP-Optical Emission Spectrometer. lopykinski Susan Lopykinski prepares a sample for mercury analysis on the cold vapor Atomic Absorption instrument. ICP-Mass Spectrometer Analytical Chemist Yifen Tsai prepares a sample for analysis on the high-resolution ICP-Mass Spectrometer. The Analytical Chemistry Laboratory (ACL) provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory and specialized analysis for government, academic, and industrial organizations, including other national laboratories and QA/QC programs and audits.

187

High-Throughput identification of chemistry in life science texts  

Science Conference Proceedings (OSTI)

OSCAR3 is an open extensible system for the automated annotation of chemistry in scientific articles, which can process thousands of articles per hour. This XML annotation supports applications such as interactive browsing and chemically-aware searching, ...

Peter Corbett; Peter Murray-Rust

2006-09-01T23:59:59.000Z

188

Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials  

DOE Green Energy (OSTI)

Solar photoelectrochemical water-splitting has long been viewed as one of the holy grails of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

2004-10-25T23:59:59.000Z

189

Monitoring the chemistry and materials of the Magma binary-cycle generating plant  

DOE Green Energy (OSTI)

This monitoring program includes studies of the following areas: chemistry of the geothermal brine, chemistry of the cooling water, corrosion of materials in both water systems, scale formation, suspended solids in th brine, and methods and instruments to monitor corrosion and chemistry. (MHR)

Shannon, D.W.; Elmore, R.P.; Pierce, D.D.

1981-10-01T23:59:59.000Z

190

LANL: Facility Focus, MST-6 Materials Surface Science Investigations Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

07-018 Spring 2007 07-018 Spring 2007 T he MST-6 Materials Surface Science Investigations Laboratory is home to a one-of-a-kind integrated instrument for surface science and materials research, allowing scientists at Los Alamos National Laboratory the unique opportunity to perform coordinated research using ultra-high vacuum surface measurements, in situ reactions, and materials synthesis tools. Housed in the Materials Science Laboratory, the surface science instrument features an ultra-clean integrated system for surface analysis and in situ surface modification, thin film deposition, and surface gas reactions. This integrated system is used for analytical surface science; materials electronic

191

Computational and Theoretical Chemistry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Computational and Theoretical Chemistry Computational and Theoretical Chemistry Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Computational and Theoretical Chemistry Print Text Size: A A A RSS Feeds FeedbackShare Page Research in Computational and Theoretical Chemistry emphasizes integration and development of new and existing theoretical and computational approaches for the accurate and efficient description of processes relevant to the BES mission. Supported efforts are tightly integrated with the research and goals of the Condensed-Phase and Interfacial Molecular Sciences and Gas Phase Chemical Physics programs-which together comprise

192

NETL Earns Carnegie Science Awards for Advanced Materials, Corporate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earns Carnegie Science Awards for Advanced Materials, Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation NETL Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation March 5, 2013 - 9:16am Addthis WASHINGTON, D.C. - For its leadership and innovation in science and technology, the National Energy Technology Laboratory has earned two Carnegie Science Awards from the Carnegie Science Center. NETL representatives will pick up the Advanced Materials Award and the Corporate Innovation Award at the 17th annual award ceremony to be held May 3, 2013, at Carnegie Music Hall in Pittsburgh. The Carnegie Science Center established the Carnegie Science Awards program in 1997 "to recognize and promote innovation in science and technology across western Pennsylvania." The awards not only identify the innovators

193

Molten Salts: Bath Chemistry and Process Design in Aluminum ...  

Science Conference Proceedings (OSTI)

ABOUT THE PRESENTERS. Donald R. Sadoway is a professor of materials chemistry in the Department of Materials Science and Engineering at the...

194

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Express Licensing Energy Efficient Synthesis Of Boranes Express Licensing Fabrication Of Multilayered Thin Films Via Spin-Assembly Express Licensing...

195

Lithium Insertion Chemistry of Some Iron Vanadates  

E-Print Network (OSTI)

in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sbastien

Patoux, Sebastien; Richardson, Thomas J.

2008-01-01T23:59:59.000Z

196

Gender Equity in Materials Science and Engineering  

SciTech Connect

At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to eliminate hostile attitudes and environments that can make academic and national laboratory careers unattractive to women. Fifth, with respect to raising awareness among faculty, staff and students, a new type of training session should be developed that would be more effective in conveying the facts and consequences of gender bias than the conventional presentations typically available, which seem not to be highly effective in changing attitudes or behaviors. Sixth, it is proposed that the UMC establish a certification of 'family-friendly' or 'gender equivalent' institutions that would encourage organizations to meet standards for minimizing gender bias and promoting supportive work environments. Seventh, novel approaches to adjusting job responsibilities of faculty, staff, and students to permit them to deal with family/life issues are needed that do not carry stigmas. Finally, faculty and national laboratory staff need to promote the benefits of their careers to women so that a more positive image of the job of materials scientist or materials engineer is presented.

Angus Rockett

2008-12-01T23:59:59.000Z

197

Gender Equity in Materials Science and Engineering  

SciTech Connect

At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to eliminate hostile attitudes and environments that can make academic and national laboratory careers unattractive to women. Fifth, with respect to raising awareness among faculty, staff and students, a new type of training session should be developed that would be more effective in conveying the facts and consequences of gender bias than the conventional presentations typically available, which seem not to be highly effective in changing attitudes or behaviors. Sixth, it is proposed that the UMC establish a certification of 'family-friendly' or 'gender equivalent' institutions that would encourage organizations to meet standards for minimizing gender bias and promoting supportive work environments. Seventh, novel approaches to adjusting job responsibilities of faculty, staff, and students to permit them to deal with family/life issues are needed that do not carry stigmas. Finally, faculty and national laboratory staff need to promote the benefits of their careers to women so that a more positive image of the job of materials scientist or materials engineer is presented.

Angus Rockett

2008-12-01T23:59:59.000Z

198

CNMS | Center for Nanophase Materials Sciences | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to...

199

SRF Materials: Fundamental studies of interfacial oxidation chemistry of niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

FNAL/UC Collaboration meeting 27 Nov 2007 FNAL/UC Collaboration meeting 27 Nov 2007 SRF Materials: Niobium Oxidation, Control A New Explanation for Baking! Pellin 1 , Zasadzinski 2 , Prolier 1,2 , Moore 3 , Norem 3 , Cooley 4 1. Materials Science Division, ANL 2. Department of Biological, Chemical and Physical Sciences, IIT 3. High Energy Physics, ANL 4. Technical Division, FNAL ANL-LDRD ANL/FNAL/UC Collaboration meeting 27 Nov 2007 XPS a Surface Probe of Nb Oxidation Nb 2 O 5 Nb NbO x Dielectric Nb 2 O 5 Nb 2 O 5-δ , NbO 2-δ are magnetic NbO x (0.2 < x < 2),metallic NbO x precipitates (0.02 < x < 0.2) Scattering off magnetic interfaces or precipitates gives rise to Shiba states inside the gap. These cause dissipation (lowering Q). Nb samples supplied by FNAL! ANL/FNAL/UC Collaboration meeting 27 Nov 2007 Point Contact Tunneling -

200

Materials Science Division Project Safety Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Miller, Electron Microscopes Miller, Electron Microscopes Project No. 20006.3 Materials Science Division Project Safety Review Safety Analysis Form (03/08) Date of Submission March 12, 2010 FWP No.: 58405 Project Title User Experimental Work with Electron Microscopes in the Electron Microscopy Center This Safety Analysis Form (SAF) supersedes previous versions of 20006 and its modifications. Is this a (check one) new submission renewal supplemental modification X Principal Investigator(s) Dean Miller Other Participants (excluding administrative support personnel) EMC staff and EMC users (Attach participant signature sheet) Project dates: Start: March 2010 End: Open-ended This form is to be completed for all new investigations or experimental projects that are conducted in MSD laboratories, and for all ongoing such projects that undergo significant change from their original

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

TMS 2010 Tutorial on "Nanoscale Computational Materials Science"  

Science Conference Proceedings (OSTI)

TMS 2010: Tutorial on Nanoscale Computational Materials Science February 14-18, 2010 Washington State Convention Center Seattle, WA. This tutorial...

202

3D Materials Science 2012: Housing and Travel  

Science Conference Proceedings (OSTI)

International Conference on 3D Materials Science 2012. July 8-12, 2012 Seven Springs Mountain Resort Seven Springs, Pennsylvania. Download Exhibits...

203

3D Materials Science 2014: Housing and Travel - TMS  

Science Conference Proceedings (OSTI)

2nd International Congress on 3D Materials Science 2014. June 29 July 2, 2014 Annecy, France. CONGRESS LOCATION. Near Geneva, L'Imprial Palace...

204

Discussions@TMS - Employment in the Material Science Industry  

Science Conference Proceedings (OSTI)

Apr 21, 2009 ... I am a recruiter in the Material Science industry specifically Metals Processing and while customers are still adding resources I wanted to get a...

205

Materials and Science in Sports--Special Airfare - TMS  

Science Conference Proceedings (OSTI)

April 22-25, 2001 MATERIALS AND SCIENCE IN SPORTS Coronado, ... travel consultant must call US Airways' Meeting and Convention Reservation Office at...

206

Conference on Advances In Materials Science - 2009, Prague, Czech...  

National Nuclear Security Administration (NNSA)

In Materials Science - 2009, Prague, Czech Republic | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

207

COURSE NOTES: ViMS: Visualizations in Materials Science ... - TMS  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... This web resource offers a detailed description of an interactive and graphics- based sophomore level introductory materials science course...

208

JOM Examines Diversity in Materials Science and Engineering  

Science Conference Proceedings (OSTI)

Jun 25, 2013 ... The main article of the package offers interviews with authors of recent studies on diversity trends in materials science and engineering (MSE),...

209

Iver Anderson, Division of Materials Sciences and Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Iver Anderson, Division of Materials Sciences and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver...

210

FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).  

Science Conference Proceedings (OSTI)

This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

Samara, George A.; Simmons, Jerry A.

2006-07-01T23:59:59.000Z

211

Heavy Element Chemistry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Heavy Element Chemistry Heavy Element Chemistry Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Heavy Element Chemistry Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research in the chemistry of the heavy elements, focused on the actinides, but also includes the transactinide elements and some fission products. The unique molecular bonding of these elements is explored using experiment and theory to elucidate electronic and molecular structure as well as reaction thermodynamics. Emphasis is placed on resolving the f-electron challenge; the chemical and physical

212

Conference on Advances in Materials Science - Presentations ...  

National Nuclear Security Administration (NNSA)

- Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

213

Nuclear Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Science Accelerator Science Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Home » Science at NERSC » Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of matter. This includes discovering the origins of nuclei and identifying the forces that transform matter. Specific topics include: Nuclear astrophysics and the synthesis of nuclei in stars and elsewhere in the cosmos; Nuclear forces and quantum chromodynamics (QCD), the quantum field

214

Materials and Molecular Research Division annual report, 1978  

DOE Green Energy (OSTI)

Research is presented concerning materials science including metallurgy and ceramics; solid state physics; and materials chemistry; chemical sciences covering radiation science, chemical physics, and chemical energy; nuclear science; coal research; solar energy; magnetic fusion, conservation; and environmental research. (FS)

Not Available

1978-01-01T23:59:59.000Z

215

Frontiers in Catalysis Science and Engineering Materials Science  

E-Print Network (OSTI)

, it is imperative to develop new processes for effective use of energy and to develop sustainable and clean energy Professor, Department of Chemistry & Biochemistry Abstract Energy is not only the driver for improving energy carriers and for converting them into directly usable energy. Design and synthesis of controlled

216

Materials and Chemical Sciences Division annual report 1989  

DOE Green Energy (OSTI)

This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

Not Available

1990-07-01T23:59:59.000Z

217

Graphene: from materials science to particle physics  

E-Print Network (OSTI)

Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

Joaqun E. Drut; Timo A. Lhde; Eero Tl

2010-11-02T23:59:59.000Z

218

Enriched Stable Isotope Materials and Chemistry | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

and Chemistry Reductiondistillation of calcium-48 metal valued at over 900,000. An inventory of 2,300 batches of enriched stable isotopes of 53 different Elements with a list...

219

Conference on Advances in Materials Science - Presentations | National  

NLE Websites -- All DOE Office Websites (Extended Search)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

220

Conference on Advances in Materials Science - Presentations | National  

National Nuclear Security Administration (NNSA)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics...

222

Materials Science and Engineering Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory...

223

Center for Theoretical and Computational Materials Science  

Science Conference Proceedings (OSTI)

... an advanced code repository/wiki for collaboration and modern computational lab-notebook blogging tools (supported by the National Science ...

2012-10-02T23:59:59.000Z

224

Center for Nanophase Materials Sciences (CNMS) - Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

POLICIES User Access Policy - Version 1.1 General Policies and Procedures for User Access to the DOE Nanoscale Science Research Centers Peer Review and Advisory Bodies Evaluation...

225

PNNL: Chemical & Materials Sciences - Fundamental & Computational...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Journal Cover Gallery CMSD Job Openings Links Seminar Series Frontiers in Geochemistry Frontiers in Catalysis Science and Engineering Frontiers in Chemical Physics &...

226

Computational Materials Science and Engineering Education: A ...  

Science Conference Proceedings (OSTI)

January 2009; Informatics and Integrated Computational Materials Engineering: Part II; March 2008; Materials Informatics Part I: A Diversity of Issues...

227

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

People People Facilities Publications Presentations Organizational Chart Other Information Basic Energy Sciences Directorate BNL Site Index Can't View PDFs? :: Next CMPMS Seminar There are no seminars scheduled at this time. Advanced Energy Materials Group We study both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies Group Leader: Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov AEM group news: Current research topics include: Superconducting Materials Nano-scale Materials (S. Wong) Applied Superconductivity Thermoelectric Materials

228

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Chemistry Top Journals Journal of the American Chemical Society Angewandte Chemie & Angewandte Chemie, international edition in English Chemical Communications Chemical...

229

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Source Breakthrough Research on Platinum-Nickel Alloys Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Catalysts Chemistry of Cobalt-Platinum...

230

Materials Chemistry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

many energy-related technological areas such as batteries and fuel cells, catalysis, energy conversion and storage, friction and lubrication, high efficiency electronic...

231

Materials Sciences and Engineering Program | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and materials under extreme conditions; energy storage and energy conversion; and nano- and meso-scale materials and properties. Underpinning these four themes are four core...

232

DOE fundamentals handbook: Material science. Volume 1  

SciTech Connect

The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

233

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

FRM FRM For the Public Awards and Honors Highlights Publications U.S. Program Planning Visiting ORNL For Researchers Profiles Program Manager Program Management ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles Accessing LAMDA Facility Our People Program Manager, Program Management, Facilities Find People ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles

234

Metallurgy:Metallurgical Science:Materials Science & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

(F&M) foundry image Foundry powdermetallurgy Powder Materials Processing (P&M) welding Welding & Joining (W&J) Jason Cooley Peering into previously inacessible realms by...

235

Green Chemistry and Workers  

E-Print Network (OSTI)

J. Warner. 1998. Green Chemistry: Theory and Practice. NewNew Science, Green Chemistry and Environmental Health.abstract.html 5. American Chemistry Council. 2003. Guide to

2009-01-01T23:59:59.000Z

236

Algorithm Development in Computational Materials Science and ...  

Science Conference Proceedings (OSTI)

Integrating Advanced Materials Simulation Techniques into an Automated Data Analysis Workflow at the Spallation Neutron Source Intersecting Slip for...

237

Autonomous Research Systems for Materials Science  

Science Conference Proceedings (OSTI)

Dictionary-based Diffraction Microscopy for Materials Effective Extraction of Both Impurity Diffusion Coefficients and Interdiffusion Coefficients for Diffusivity...

238

3D Materials Science 2014: Meeting Registration  

Science Conference Proceedings (OSTI)

Administrative & Policy Manual. Scroll up. Scroll down. Technical Divisions Home TMS Committees Home Electronic, Magnetic & Photonic Materials...

239

2004 research briefs :Materials and Process Sciences Center.  

Science Conference Proceedings (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

240

DOE fundamentals handbook: Material science. Volume 2  

Science Conference Proceedings (OSTI)

This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum).

Not Available

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Oak Ridge Integrated Center for Radiation Materials Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

ORIC Home ORIC Home About ORIC Contacts Specialists Capabilities Irradiation Campaigns Nuclear Fuels Radiation Effects and Defect Modeling Structural Materials Dual Purpose Radiological Characterization Equipment Working with Us Related Links HFIR MSTD NSTD NNFD Comments Welcome to Oak Ridge Integrated Center for Radiation Materials Science & Technology The Oak Ridge National Laboratory ranks among the founding laboratories for the scientific field of radiation materials science. Since the creation of the laboratory, we have maintained strong ties to both the technology and scientific underpinning of nuclear materials research as evidenced by the experience and capabilities across our research divisions. The capabilities at ORNL enjoys include the highest neutron flux nuclear

242

EMSL: Science: Energy Materials and Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

243

Biomolecular Materials | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Biomolecular Materials Biomolecular Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Biomolecular Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research in the discovery, design and synthesis of biomimetic and bioinspired functional materials and complex structures, and materials aspects of energy conversion processes based on principles and concepts of biology. The major program emphasis is the creation of robust, scalable, energy-relevant materials and systems with

244

Computational Materials Science and Engineering in University ...  

Science Conference Proceedings (OSTI)

Cyber-Enabled Ab Initio Simulations in Nanohub.org: Simulation Tools and Learning Modules Cyber-Enabled Materials Simulations Via Nanohub.org.

245

Materials Science of Nuclear Waste Management II  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Challenges include the multi-phase nature of the materials, galvanic .... to quantify phase volume percentage and pore size distribution data to...

246

Materials Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Study on the Dynamics of Poly(alkylene oxide)s" Contact: Christine Gerstl Theory meets experiment: structure-property relationships in an electrode material for...

247

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical...

248

Conference on Advances in Materials Science - Presentations ...  

National Nuclear Security Administration (NNSA)

Presentations-Session 1 Modeling of Plutonium Ageing The Spectroscopic Signature of Aging in -Pu Modeling the Aging and Reliability of Solder Joints Polymer Material Thermal...

249

Condensed Matter Physics & Materials Science Department  

NLE Websites -- All DOE Office Websites (Extended Search)

is focused on the Magneto Optical Imaging of magnetic field distribution in superconductors and magnetic materials. How to Contact Us Our Research Characterization...

250

Electronic Materials Science Challenges in Renewable Energy  

Science Conference Proceedings (OSTI)

This work was supported in part by the U.S. Dept. of Energy through the NREL High- ... ...but electronic materials impact many more aspects of renewable energy...

251

Materials Science of Nuclear Waste Management  

Science Conference Proceedings (OSTI)

The intent is to provide a forum for researchers from national laboratories, universities, and nuclear industry to discuss current understanding of materials...

252

Future Directions in 3D Materials Science  

Science Conference Proceedings (OSTI)

Jul 12, 2012 ... The success of computational materials design in the 1990s established a basis for the DARPA-AIM initiative of the 2000s which broadened...

253

Center for Nanophase Materials Sciences (CNMS)  

NLE Websites -- All DOE Office Websites

Science User Facilities Science User Facilities Search Go Home About Advisory Committee CNMS Fact Sheet CNMS Organizational Chart Research Themes Publications Journal Cover Gallery Research Highlights Related ORNL User Facilities User Program Becoming A User Acknowledgement Guidelines CNMS Capabilities Active Projects User Group Data Management Policy Working at CNMS Jobs ES&H Obtaining Entry Hours of Operation Local Information News & Events News Events CNMS User Newsletters People Contact Us Visit us on Wikipedia. Visit us on FaceBook. Visit us on YouTube. Upcoming Events and Latest News Call For Proposals - Next cycle is Spring 2014 Neutrons and Nano Workshops and User Meetings - TALKS Postdoctoral Opportunities CNMS Discovery Seminars Opening the Eye-Popping Possibilities of the Smallest Scales

254

A survey of codes and algorithms used in NERSC material science allocations  

E-Print Network (OSTI)

used in Material Science on NERSC machines. N_user is theand algorithms used in NERSC material science allocationsLin-Wang Wang NERSC System Architecture Team Lawrence

Wang, Lin-Wang

2006-01-01T23:59:59.000Z

255

2012 CHEMISTRY & PHYSICS OF GRAPHITIC CARBON MATERIALS GORDON RESEARCH CONFERENCE, JUNE 17-22, 2012  

Science Conference Proceedings (OSTI)

This conference will highlight the urgency for research on graphitic carbon materials and gather scientists in physics, chemistry, and engineering to tackle the challenges in this field. The conference will focus on scalable synthesis, characterization, novel physical and electronic properties, structure-properties relationship studies, and new applications of the carbon materials. Contributors

Fertig, Herbert

2012-06-22T23:59:59.000Z

256

Other Sponsors of the Forum Materials Science  

E-Print Network (OSTI)

nanoparticles with potential drug delivery applications. They also have formed metal balls within ceramic shells information: www.uiuc.edu/ Ads by Goooooogle Polymer Materials Find Premium Plastics For All Your Industry

Suslick, Kenneth S.

257

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Low-Temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-Intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H....

258

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

Connect with PJG Connect with PJG For the Public Awards & Honors R&D100 Awards R&D100 Award Posters For Researchers Profiles For Industry Research Thrust Areas Advanced Alloys Advanced Steels Amorphous Bulk Metallic Glasses Nano Crystalline Composites Ni-Based Alloys Ti Alloys Advanced Processing Additive Manufacturing Electronic Packaging Gelcasting Infrared/Photonic Processing Laser Interference Patterning Magnetic Field Processing Powder Metallurgy Pulse Thermal-Processing (PTP) Ceramics Ceramics Conventional Metals Processing Casting Extrusion Forging Lightweight Metals Aluminum Magnesium Titanium Modeling Materials Behavior Under Severe Environments Microstructure Modeling During Phase Transformations Process Modeling and Simulation: Energy Transport Sensors and Data Acquisition Techniques

259

MATERIALS SCIENCE AND TECHNOLOGY DIVISION March 1, 2011  

E-Print Network (OSTI)

(20) B.L. MURPHY MATERIALS THEORY G.M. STOCKS* A.R. STRANGE* F.W. AVERILL (12) M. BAJDICH (3) K. YAMAMOTO NUCLEAR MATERIALS SCIENCE AND TECHNOLOGY R.K. NANSTAD B.J. WADDELL* J.H. BAEK (5) J.T. BUSBY (31 19 NUCLEAR AND RADIOLOGICAL PROTECTION DIVISION 20 TECHNICIAN INTERN PROGRAM 21 CENTER FOR NANOPHASE

260

Inorganic Materials Chemistry Desk Reference, Second Edition - TMS  

Science Conference Proceedings (OSTI)

Oct 23, 2006 ... The book begins with an introduction to various inorganic materials processes, followed by a glossary of terms commonly found in inorganic...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

STG STG For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Sponsored Research Programs Our People Contacts by Group Leader, Staff Members Find People Related Cooperative Research and Development Agreement Work for Others Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Scattering and Thermophysics Group The Scattering and Thermophysics Group aims to be a national leader in materials characterization using diffraction and thermophysical property measurement methods. The diffraction portion of the Group utilizes laboratory x-ray, synchrotron x-ray, and neutron diffraction facilties to solve problems from phase stability to residual stress and texture. The thermography and thermophysical properties of the Group has exceptional

262

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

PCM PCM For the Public Visiting ORNL For Researchers Profiles Group Leader Program Manager Staff Members Facilities Final Report on Economic Analysis of Deploying Used Batteries in Power Systems Document For Industry Research Catalysis by Design Zeolites Materials for Catalysis Photocatalytic C02 Our People Group Leader, Program Manager, Staff Members, Facilities Find People Programs Thin-Film Rechargeable Lithium, Lithium-Ion, and Li-Free Batteries Program Membrane Separations Research Program Related Programs ORNL Technologies Recent News & Features News Releases Archive | Features Archive Recent Honors & Awards Award Archives Honors & Awards Achives | ORNL Spotlight Archives] Nancy Dudney, was recently elected as a Electrochemical Society Fellow in recognition of her scientific achievements and service to the

263

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

264

DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory  

SciTech Connect

The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

Lewis, Jennifer A.

2009-03-24T23:59:59.000Z

265

Chemical and Materials Science (XSD) | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Materials Science (X-ray Science Division) Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for four experiment stations at sector 12 including: three undulator stations (12-ID-B, -C, and -D), and a spectroscopy and scattering bending magnet beamline (12-BM), and USAXS at 15-ID. As part of the APS Strategic Plan, canted undulators have been installed on 12-ID and 12-ID-B has become a full-time dedicated SAXS beamline and 12-ID-C and 12-ID-D are shared between TRSAXS, ASAXS, and surface scattering. Time-resolved and anomalous SAXS experiments on photosystems, biopolymers, polymers, ceramics, and catalytic systems are some of the focus areas for 12-ID-B and -C. At 12-ID-D surface scattering are used to study MOCVD growth, ferroelectrics, liquid solid interfaces and

266

Advances in Materials Science for Environmental and Energy Technologies II  

SciTech Connect

The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

Matyas, Dr Josef [Pacific Northwest National Laboratory (PNNL); Ohji, Tatsuki [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Tec; Liu, Xingbo [West Virginia University, Morgantown; Paranthaman, Mariappan Parans [ORNL; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Fox, Kevin [Savannah River National Laboratory (SRNL); Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Wong-ng, Winnie [National Institute of Standards and Technology (NIST), Gaithersburg, MD

2013-01-01T23:59:59.000Z

267

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Summer Newsletter 2010 What's New @ CNMS Small Angle X-ray Scattering (SAXS) Small Angle X-ray Scattering (SAXS) is an analytical method to determine the structure of particle systems in terms of averaged particle sizes or shapes. The materials can be solid or liquid and they can contain solid, liquid or gaseous domains of the same or another material. The method is accurate, non-destructive and often requires only a minimum of sample preparation. The concentration ranges between 0.1 wt.% and 99.9 wt.%. The particle or structure sizes that can be resolved range from 1 to 50 nm in a typical set-up but can be extended to larger angles than between the typical 0.1° and 10° of SAXS, through simultaneous collection of Wide-Angle X-Ray Scattering (WAXS) data. The CNMS has recently added an

268

DOE fundamentals handbook: Material science. Volume 1  

SciTech Connect

This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility).

Not Available

1993-01-01T23:59:59.000Z

269

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science, Superconductivity & Energy News Materials Science, Superconductivity & Energy News This page displays news items tagged as "materials science," "superconductivity," and "energy." For a complete index of all topics, click here. Jon Rameau receives The Julian Baumert Thesis Award for his work carried out at NSLS. Htay Hlaing receives the 2010 Di Tian Award from the Department of Physics at Stony Brook University. Adrian Gozar receives one of sixty nine DOE Early Career Scientists awards selected from a pool of 1750 applicants. Enlisting Cells' Protein Recycling Machinery to Regulate Plant Products December 20, 2013 Scientists have developed a new set of molecular tools for controlling the production of plant compounds important for flavors, human health, and biofuels.

270

Center for Nanophase Materials Sciences (CNMS) - Macromolecular  

NLE Websites -- All DOE Office Websites (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) Polymer Synthesis The Macromolecular Nanomaterials laboratories include a wide range of polymer synthesis capabilities, with extensive fume hoods (including walk-in hoods for large scale apparatus) and glove boxes for handling sensitive materials. Polymerization Techniques Ionic Polymerizations: World-class expertise in the preparation of well-defined, narrow molecular distribution polymers and copolymers including complex polymer architectures (i.e. block, star, comb, graft and hyperbranched polymers) by anionic and cationic polymerizations. Controlled Radical Polymerization: Extensive expertise in free radical and controlled radical (ATRP, NMP, RAFT) polymerizations. Ring Opening Polymerization: Expertise in the controlled

271

Nanoscience Images from the Center for Nanophase Materials Sciences (CNMS)  

DOE Data Explorer (OSTI)

DOE's Nanoscale Science Research Centers to support the synthesis, processing, fabrication, and analysis of materials at the nanoscale are also National User Facilities. The Center for Nanophase Materials Science is currently one of five ceterns for interdisciplinary research at the nanoscale. These centers are laboratories for nanofabrication, may have one-of-a-kind signature instruments, including nanopatterning tools and research-grade probe microscopes. The images produced by nanoscience research and the technologies involved are beautiful and unique. This website makes available a very small collection but very high quality, public domain images

272

Liaison activities with the Institute of Physical Chemistry/Russian Academy of Science Fiscal Year 1995  

Science Conference Proceedings (OSTI)

Investigations into the chemistry of alkaline Hanford Site tank waste (TTP RL4-3-20-04) were conducted in Fiscal Year 1995 at Westinghouse Hanford Company under the support of the Efficient Separations and Processing Crosscutting Program (EM-53). The investigation had two main subtasks: liaison with the Institute of Physical Chemistry of the Russian Academy of Science and further laboratory testing of the chemistry of thermal reconstitution of Hanford Site tank waste. Progress, which was achieved in the liaison subtask during Fiscal Year 1995, is summarized as follows: (1) A technical dialogue has been established with Institute scientists. (2) Editing was done on a technical literature review on the chemistry of transuranic elements and technetium in alkaline media written by researchers at the Institute. The report was issued in May 1995 as a Westinghouse Hanford Company document. (3) Four tasks from the Institute were selected for support by the U.S. Department of Energy. Work on three tasks commenced on 1 March 1995; the fourth task commenced on 1 April 1995. (4) Technical information describing the composition of Hanford Site tank waste was supplied to the Institute. (5) A program review of the four tasks was conducted at the Institute during a visit 25 August to 1 September, 1995. A lecture on the origin, composition, and proposed treatment of Hanford Site tank wastes was presented during this visit. Eight additional tasks were proposed by Institute scientists for support in Fiscal Year 1996. (6) A paper was presented at the Fifth International Conference on Radioactive Waste Management and Environmental Remediation (ICEM`95) in Berlin, Germany on 3 to 9 September, 1995 on the solubility of actinides in alkaline media.

Delegard, C.H.

1995-09-01T23:59:59.000Z

273

A. A. Abrikosov Materials Science Division Argonne National Moratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments in the Theory of HTSC Developments in the Theory of HTSC A. A. Abrikosov Materials Science Division Argonne National Moratory Argonne, IL 60439 Distribution: 1-2. M. J. Masek 3. B. D. Dunlap 4. G. W. Crabtree 5 . A. A. Abrikosov 6 - Editorial Office 7. Authors September, 1994 This work is supported by the Division of Materials Sciences, Office of Basic Energy Sciences of DOE, under contract No. W-31- 109-ENG-38, DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or as sun^^ any legal liabili- ty or responsibility for the accuracy, completenes, or usefulness of any information, appa-

274

The Computational Materials and Chemical Sciences Network (CMCSN) | U.S.  

Office of Science (SC) Website

The Computational Materials and Chemical Sciences Network (CMCSN) The Computational Materials and Chemical Sciences Network (CMCSN) Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas The Computational Materials and Chemical Sciences Network (CMCSN) Print Text Size: A A A RSS Feeds FeedbackShare Page The U.S. Department of Energy, Office of Basic Energy Sciences, provides support for Computational Materials and Chemical Sciences Network (CMCSN) projects through the Theoretical Condensed Matter Physics & Theoretical

275

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) 3-Department of Chemistry, University of Kentucky, Lexington, KY 40506 (USA) 4-Department of Chemistry, University of...

276

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

277

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

278

Green Chemistry and Workers  

E-Print Network (OSTI)

19. P. Anastas, J. Warner. 1998. Green Chemistry: Theory andto Advance New Science, Green Chemistry and EnvironmentalChronicle Extra: Guide to Green Jobs. Field with a Future.

2009-01-01T23:59:59.000Z

279

Actinide Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Actinide Chemistry Actinide Chemistry Actinide Chemistry Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise David Gallimore Actinide Analytical Chemistry Email Rebecca Chamberlin Actinide Analytical Chemistry Email Josh Smith Chemistry Communications Email Along with the lanthanides, they are often called "the f-elements" because they have valence electrons in the f shell. Actinide chemistry serves a critical role in addressing global threats Project Description At Los Alamos, scientists are using actinide analytical chemistry to identify and quantify the chemical and isotopic composition of materials. Since the Manhattan Project, such work has supported the Laboratory's

280

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length Gang Cheng,1 Yuri B. Melnichenko,1 George D. Wignall,1 Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: The cooperative interactions among functional segments of biopolymers have led to attempts to create novel synthetic polymers, which are environmentally responsive to various stimuli, such as temperature or pH, in a controlled manner. Understanding the nanoscale conformational changes and phase behavior upon exposure of these polymers to external stimuli is

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Material Science for Quantum Computing with Atom Chips  

E-Print Network (OSTI)

In its most general form, the atom chip is a device in which neutral or charged particles are positioned in an isolating environment such as vacuum (or even a carbon solid state lattice) near the chip surface. The chip may then be used to interact in a highly controlled manner with the quantum state. I outline the importance of material science to quantum computing (QC) with atom chips, where the latter may be utilized for many, if not all, suggested implementations of QC. Material science is important both for enhancing the control coupling to the quantum system for preparation and manipulation as well as measurement, and for suppressing the uncontrolled coupling giving rise to low fidelity through static and dynamic effects such as potential corrugations and noise. As a case study, atom chips for neutral ground state atoms are analyzed and it is shown that nanofabricated wires will allow for more than $10^4$ gate operations when considering spin-flips and decoherence. The effects of fabrication imperfections and the Casimir-Polder force are also analyzed. In addition, alternative approaches to current-carrying wires are briefly described. Finally, an outlook of what materials and geometries may be required is presented, as well as an outline of directions for further study.

Ron Folman

2011-08-18T23:59:59.000Z

282

Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators  

Science Conference Proceedings (OSTI)

Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

Anne Seifert; Louis Nadelson

2011-06-01T23:59:59.000Z

283

Soft Matter Group, Condensed Matter Physics & Materials Science Department,  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Information (pdf) Research Information (pdf) Publications Seminars Journal Club Staff Information Other Information Basic Energy Sciences Directorate Related Sites BNL Site Index Can't View PDFs? Soft Matter Group Confinement and Template Directed Assembly in Chemical and Biomolecular Materials We use synchrotron x-ray scattering, scanning probe and optical microscopy techniques to study fundamental properties of complex fluids, simple liquids, macromolecular assemblies, polymers, and biomolecular materials under confinement and on templates. The challenges are: To understand liquids under nano-confinement. How templates and confinement can be used to direct the assembly. To understand the fundamental interactions which give rise to similar self-assembly behavior for a wide variety of systems.

284

National Science Bowl® Competition Buzzer Materials List | U.S. DOE Office  

Office of Science (SC) Website

Materials List Materials List National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Academic Question Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List

285

National Science Bowl® Competition Buzzer Materials List | U.S. DOE Office  

Office of Science (SC) Website

Materials List Materials List National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List Print

286

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... NATO Science Series II:Mathematics, Physics and Chemistry, Vol.

287

Condensed Matter Physics and Materials Science Department (PM)  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Matter Physics and Materials Science Department (PM) Condensed Matter Physics and Materials Science Department (PM) Last modified 12/7/2012 LastName First MI Bldg Room Ext1 Ext2 Fax E-mail ABEYKOON MILINDA 510B 1-21 2915 3827 2739 aabeykoon@bnl.gov AKHANJEE SHIMUL 510A 2-6 5089 3995 2918 sakhanjee@bnl.gov ARONSON MEIGAN 703 2A 4915 7090 4071 maronson@bnl.gov BERLIJN TOM COS 3995 3995 tberlijn@bnl.gov BILLINGE SIMON 510B 1-29 5661 3827 2739 sb2896@columbia.edu BLUME MARTIN 510A 1-6 3735 3995 2739 blume@bnl.gov BOLLINGER ANTHONY 480 139 2601 7090 4071 abolling@bnl.gov BOZIN EMIL 510B 1-26 4963 3827 2739 bozin@bnl.gov BOZOVIC IVAN 480 126 4973 7090 4071 bozovic@bnl.gov CHECCO ANTONIO 510B 1-20 3319 3827 2739 checco@bnl.gov CHOU CHUNG-PIN 510A 2-12 3784 3995 2918 cpchou@bnl.gov DAI YAOMIN 510B 1-18 3788 3827 2739 ymdai@bnl.gov DAVIS SEAMUS 480 3827 4071 jcdavis@ccmr.cornell.edu and/or sdavis@bnl.gov DEAN

288

NREL: Energy Sciences - Chemical and Nanoscale Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Science Nanoscale Science Learn about our research staff including staff profiles, publications, and contact information. The primary goal of the Chemical and Nanoscale Science Group, within NREL's Chemical and Materials Science Center, is to understand photoconversion processes in nanoscale, excitonic photoconversion systems, such as semiconductor quantum dots, molecular dyes, conjugated molecules and polymers, nanostructured oxides, and carbon nanotubes. Closely associated with this goal are efforts to gain an understanding of how to use chemistry and physical tools to control and maximize the photoconversion process. The innovative chemistry and physics that evolve from these fundamental studies are used on a number of applied projects, maximizing the benefits from these discoveries.

289

Chemistry Division annual progress report for period ending April 30, 1993  

SciTech Connect

The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

1993-08-01T23:59:59.000Z

290

Materials and Molecular Research Division annual report 1983  

Science Conference Proceedings (OSTI)

Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

Searcy, A.W.; Muller, R.H.; Peterson, C.V.

1984-07-01T23:59:59.000Z

291

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Nanowires K. Xiao, M. Yoon, A. J. Rondinone, E. A. Payzant, and D. B. Geohegan Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement Combined experimental and theoretical studies revealed the nucleation and growth mechanisms of M-TCNQF4 crystalline organic nanowires grown on different metals by vapor-solid chemical reaction (VSCR). Real-time x-ray diffraction was used to measure the growth kinetics of the nanowires, and a modified Avrami model of the data showed that growth proceeds via a 1D ion diffusion-controlled reaction at their tips. First principles atomistic calculations were used to understand how charge transfer interactions govern the reactivity of different metals in the growth process through the

292

Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

CNMS USER RESEARCH CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature. E.g., homeostasis - regulation of a cell's internal environment to maintain stability and function at the mesoscale (i.e., cell) in the face of an unpredictable environment - is maintained even though there is considerable noise at the nanoscale (protein, RNA, molecular motor). A recent ACS Nano

293

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Transient-Mediated fate determination in a transcriptional circuit of HIV Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a novel technique of discovering the details of these interactions through the measurement of the structure of stochastic fluctuations that occur in neighboring nanoscale system components that can be directly imaged. In this work [Nature Genetics, 40(4), 466-470 (2008)], in collaboration with a

294

Material Sciences Material Sciences  

E-Print Network (OSTI)

is adversely affected by the emer- gence of drug-resistant HIV-1 variants. Thus, it is important to understand the atomic-level origin of the drug resistance and to use that knowledge in the design of improved NNRTIs

295

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

296

Chemistry | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Earth Sciences Energy Science Future Technology Knowledge Discovery Materials Mathematics National Security Systems Modeling Engineering Analysis Behavioral Sciences...

297

Materials Science Dominates R&D 100 Awards  

Science Conference Proceedings (OSTI)

Aug 16, 2010... Technologies, Electric Devices, Energy Technologies, Imaging Technologies, Lasers and Photonics, Process Sciences, Safety and...

298

Z .Materials Science and Engineering C 7 2000 149160 www.elsevier.comrlocatermsec  

E-Print Network (OSTI)

, Mind, and Beha?ior, Department of Biological Sciences, Bowling Green State Uni?ersity, Bowling GreenZ .Materials Science and Engineering C 7 2000 149­160 www.elsevier.comrlocatermsec An electrical fluctuations to which a single cell will respond. q 2000 Elsevier Science S.A. All rights reserved. Keywords

Moore, Paul A.

299

Advances in materials science, Metals and Ceramics Division. Triannual progress report, October 1979-January 1980  

DOE Green Energy (OSTI)

Progress is summarized concerning magnetic fusion energy materials, laser fusion energy, aluminium-air battery and vehicle, geothermal research, oil-shale research, nuclear waste management, office of basic energy sciences research, and materials research notes. (FS)

Not Available

1980-03-31T23:59:59.000Z

300

Present status and future subjects of the analytical studies related with application of charged particles and RI to materials science and biotechnology  

E-Print Network (OSTI)

The position in the research field of radiation application of Theoretical Analysis Group for Radiation Application' which will be set up within fiscal 2003, and the relation between the research that this analytical group will advance in future and the analytical research made so far at Takasaki Radiation Chemistry Establishment (JAERI, Takasaki) are summarized. Since the JAERI Takasaki was founded as the center of the research and development on radiation chemistry, a lot of outcomes have been obtained in the research and development of radiation application using large-sized sup 6 sup 0 Co gamma ray irradiation facilities and high power electron accelerators, etc. After the ion irradiation research facility (TIARA) started operation, many outstanding outcomes have been obtained in the research of up-to-date science and technologies in the fields of material science and bio-technology, etc., making use of ions in addition to gamma rays and electron beams. Although these results of the research are mainly pr...

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Condensed Matter and Materials Physics | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Condensed Matter and Materials Physics Condensed Matter and Materials Physics Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Condensed Matter and Materials Physics Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported to understand, design, and control materials properties and function. These goals are accomplished through studies of the relationship of materials structures to their electrical, optical, magnetic, surface reactivity, and mechanical properties and of the way in

302

Conference on Advances In Materials Science - 2009, Prague, Czech...  

National Nuclear Security Administration (NNSA)

Czech Republic Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

303

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

D. Ryckman, Marco Liscidini, J. E. Sipe, and S. M. Weiss Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee...

304

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

D. Ryckman, Marco Liscidini, J. E. Sipe, and S. M. Weiss Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee...

305

Center for Nanophase Materials Sciences (CNMS) - CNMS Discovery...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Neutron Science, Institute for Complex Systems, Germany - March 22,2013 CNMS and SNS Research Forum Annabella Selloni, Princeton University - March 5, 2013 Alexandre...

306

3-D Materials Science using Polychromatic Synchrotron X-Ray ...  

Science Conference Proceedings (OSTI)

... beamline with submicron spatial resolution at the Advanced Photon Source. ... Sciences and Engineering Division; UNI-XOR support at APS by DOE-BES.

307

Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991  

Science Conference Proceedings (OSTI)

This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

Parkin, D.M.; Boring, A.M. [comps.

1991-10-01T23:59:59.000Z

308

CRC materials science and engineering handbook. Third edition  

SciTech Connect

This definitive reference is organized in an easy-to-follow format based on materials properties. It features new and existing data verified through major professional societies in the materials fields, such as ASM International and the American Ceramic Society. The third edition has been significantly expanded, most notably by the addition of new tabular material for a wide range of nonferrous alloys and various materials. The contents include: Structure of materials; Composition of materials; Phase diagram sources; Thermodynamic and kinetic data; Thermal properties of materials; Mechanical properties of materials; Electrical properties of materials; Optical properties of materials; Chemical properties of materials.

Shackelford, J.F.; Alexander, W. (eds.)

1999-01-01T23:59:59.000Z

309

Opportunities for Multimodal CARS Microscopy in Materials Science  

Science Conference Proceedings (OSTI)

Symposium, Optical and X-ray Imaging Techniques for Material Characterization. Presentation Title, Opportunities for Multimodal CARS Microscopy in Materials...

310

Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference  

Science Conference Proceedings (OSTI)

Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

Not Available

1990-03-01T23:59:59.000Z

311

Physical Behavior of Materials | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Behavior of Materials Physical Behavior of Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Physical Behavior of Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports basic research on the behavior of materials in response to external stimuli, such as temperature, electromagnetic fields, chemical environments, and the proximity effects of surfaces and interfaces. Emphasis is on the relationships between performance (such as

312

Discovery of New Materials to Capture Methane | U.S. DOE Office of Science  

Office of Science (SC) Website

Discovery of New Materials to Capture Methane Discovery of New Materials to Capture Methane Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » April 2013 Discovery of New Materials to Capture Methane Predicted materials could economically produce high-purity methane from natural gas systems and separate methane from coal mine ventilation systems. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Berend Smit, UC-Berkeley

313

Christen leads ORNL's Center for Nanophase Materials Sciences | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 SHARE Media Contact: Bill Cabage Oak Ridge National Laboratory Communications (865) 574-4399 Christen leads ORNL's Center for Nanophase Materials Sciences Hans Christen Hans Christen (hi-res image) OAK RIDGE, Jan. 9, 2014 -- Hans M. Christen of the Department of Energy's Oak Ridge National Laboratory has been named director of ORNL's Center for Nanophase Materials Sciences, one of the five DOE Nanoscale Science Research Centers. Christen joined ORNL in 2000 and led the Thin Films and Nanostructures group from 2006 to 2013. In 2013, he became associate director within the Materials Science and Technology Division and has managed the DOE Materials Sciences & Engineering Program since 2011. His research has focused on the effects of epitaxial strain, spatial

314

COMPUTATIONAL SCIENCE CENTER  

SciTech Connect

The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

DAVENPORT,J.

2004-11-01T23:59:59.000Z

315

Sandia National Labs: Materials Science and Engineering Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

and predictability. Materials Aging and Reliability: We develop the understanding of chemical and physical mechanisms that cause materials properties to change. The primary...

316

Materials Science & Technology 2005 (MS&T'05)  

Science Conference Proceedings (OSTI)

Sep 25, 2005... Materials and Life Management Issues; Materials for the Hydrogen Economy; Modeling and Simulation of Titanium Technology: Theory and...

317

Iver Anderson, Division of Materials Sciences and Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS, Research Trends on Rare Earth Materials in Japan...

318

Sandia National Labs: Materials Science and Engineering Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

and materials interfaces used in the nonnuclear portion of weapons, Sandia has used a risk-management approach to identify those materials and interfaces that must be...

319

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

narrow gap materials including some superconductors, heavy-Fermion compounds, and many thermoelectric materials. Our results demonstrate the importance of including these...

320

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Division, Office of Basic Energy Sciences, U.S. Department of Energy (NB, SJ, APB) and ORNL LDRD program (SVK, LQC). SC and LQC at Penn State acknowledge the financial support...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Division, Office of Basic Energy Sciences, U.S. Department of Energy (NB, SJ, APB) and ORNL LDRD program (SVK, LQC). SC and LQC at Penn State acknowledge the financial support...

322

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to the significance of this discovery at the intersection of the emerging field of photonics and molecular sciences, it is featured on the cover of the March 25, 2010, issue of...

323

PCCM's partnership with Liberty Science Center (LSC) has grown to improve awareness of materials science engineering among new audiences. In collaboration  

E-Print Network (OSTI)

and Liberty Science Center Expand Partnership (DMR0819860) D. Steinberg, C. Arnold, M. McAlpine, R. RegisterPCCM's partnership with Liberty Science Center (LSC) has grown to improve awareness of materials science engineering among new audiences. In collaboration with Liberty Science Center, PCCM members

Petta, Jason

324

Analytical Chemistry Databases and Links  

Science Conference Proceedings (OSTI)

Analytical chemistry websites, humor, Material Safety Data Sheets,Patent Information, and references. Analytical Chemistry Databases and Links Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDiffer

325

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

Todd R. Allen

2011-12-01T23:59:59.000Z

326

Materials Research Support at the Office of Basic Energy Sciences  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Federal Funding Workshop. Presentation Title, Materials Research Support at...

327

Sustainability on the basis of Metallurgy and Materials Science  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Sustainable Materials Processing and Production. Presentation Title...

328

Bayesian Networks in Materials Science: New Tools to Predict the ...  

Science Conference Proceedings (OSTI)

Integrating Advanced Materials Simulation Techniques into an Automated Data Analysis Workflow at the Spallation Neutron Source Intersecting Slip for...

329

Sandia National Labs: Materials Science and Engineering Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Processing Corrosion Materials Reliability Analysis Polymer Performance and Aging Polymer Synthesis, Processing and Characterization Process Diagnostics and Control...

330

Materials and Science in Sports (CD-ROM) - TMS  

Science Conference Proceedings (OSTI)

Apr 1, 2001... baseball, soccer, sailing, hockey, and athletics. Coverage may also include design, materials, mechanics, dynamics, and biomechanics.

331

Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

332

ALLISON A. CAMPBELL 1991 Ph.D. Physical Chemistry, State University of New York at  

E-Print Network (OSTI)

of Washington 1999 ­ 2000 Technical Group Leader, Materials Synthesis and Modification, PNNL 1999 ­ 1999 Staff Scientist, Materials Sciences Department, PNNL 1999 ­ 1999 Visiting Assistant Professor of Chemistry, PNNL 1992 ­ 1995 Research Scientist, Material Sciences Department, PNNL 1994 ­ 1994 Invited Researcher

333

Powder diffraction in materials science using the KENS cold-neutron source  

SciTech Connect

Since superconductivity fever spread around the world, neutron powder diffraction has become very popular and been widely used by crystallographers, physicists, chemists, mineralogists, and materials scientists. The purpose of present paper is to show, firstly, important characteristics of time-of-flight TOF powder diffraction using cold-neutron source in the study of materials science, and, secondly, recent studies on the structure and function of batteries at the Neutron Science Laboratory (KENS) in the High Energy Accelerator Research Organization (KEK).

Kamiyama, T.; Oikawa, K. [Univ. of Tsukuba (Japan). Inst. of Materials Science; Akiba, E. [National Inst. of Materials and Chemical Research, Tsukuba (Japan)] [and others

1997-12-01T23:59:59.000Z

334

Cermic Chemistry.qrk  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Manufacturing Technologies The Manufacturing Science and Technology Center develops both aque- ous and non-aqueous chemical synthesis routes to generate highly controlled...

335

BNL Chemistry Department  

NLE Websites -- All DOE Office Websites (Extended Search)

American Academy of Arts and Sciences In Memoriam: Carol Creutz Women @ Energy: Joanna Fowler Electrocatalysis Pays Tribute to BNL Scientist Radoslav Adzic All Chemistry...

336

Research Areas, Condensed Matter Physics & Materials Science Department,  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Studies of Nanoscale Structure and Structural Defects in Advanced Materials: The goal of this program is to study property sensitive structural defects in technologically-important materials such as superconductors, magnets, and other functional materials at nanoscale. Advanced quantitative electron microscopy techniques, such as coherent diffraction, atomic imaging, spectroscopy, and phase retrieval methods including electron holography are developed and employed to study material behaviors. Computer simulations and theoretical modeling are carried out to aid the interpretation of experimental data. Electron Spectroscopy Group's primary focus is on the electronic structure and dynamics of condensed matter systems. The group carries out studies on a range materials including strongly correlated systems and thin metallic films. A special emphasis is placed on studies of high-Tc superconductors and related materials.

337

Center for Nanophase Materials Sciences (CNMS) - >ES&H  

NLE Websites -- All DOE Office Websites (Extended Search)

default.aspx CNMS adheres to the DOE Policy on Nanoscale Materials, DOE Order 456.1 THE SAFE HANDLING OF UNBOUND ENGINEERED NANOPARTICLES, and ORNL requirements....

338

Career Opportunities and Experiences in Materials Science and ...  

Science Conference Proceedings (OSTI)

... outside your comfort zone as a materials scientist and engineer and provide ... of mediocrity, the current economic climate and the competitive nature of hiring.

339

Materials Science by High-energy Powder Diffraction: Opportunities ...  

Science Conference Proceedings (OSTI)

Symposium, O. Advanced Neutron and Synchrotron Studies of Materials .... Status of China Spallation Neutron Source and Perspectives of Neutron Research in...

340

NIST Awards Grants for New Science Facilities - Materials ...  

Science Conference Proceedings (OSTI)

Sep 30, 2010... based on fuel cells, biofuels, and electric vehicles) and build system sustainability (Net Zero energy buildings, sustainable building materials,...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chemical and Engineering Materials Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering...

342

XG Sciences, ORNL partner on titanium-graphene composite materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

composites. "Graphene is an exciting new material with huge po-tential due to its fast electron mobility, high mechanical strength, and excellent thermal conductivity," said...

343

X-ray Science Division: Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

344

University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992  

SciTech Connect

This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

Not Available

1992-07-01T23:59:59.000Z

345

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H. Overbury,a,c Viviane...

346

The Use of X-Ray Microbeams in Materials Science  

SciTech Connect

Most materials are heterogeneous on mesoscopic length scales (tenths-to-tens of microns), and materials properties depend critically on mesoscopic structures such as grain sizes, texture, and impurities. The recent availability of intense, focused x-ray microbeams at synchrotron facilities has enabled new techniques for mesoscale materials characterization. We describe instrumentation and experiments on the MHATT-CAT and UNICAT undulator beamlines at the Advanced Photon Source which use micron and submicron-size x-ray beams to investigate the grain orientation, local strain and defect content in a variety of materials of technological interest. Results from a combinatorial study on epitaxial growth of oxide films on textured metal substrates will be described to illustrate x-ray microbeam capabilities.

Budai, J.D.; Chung, J.-S.; Ice, G.E.; Larson, B.C.; Lowe, W.P.; Norton, D.P.; Tamura, N.; Tischler, J.Z.; Williams, E.L.; Yoon, M.; Zschack, P.

1998-10-13T23:59:59.000Z

347

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abécassis, Benjamin (Benjamin Abécassis) - Laboratoire de Physique des Solides, Université de Paris-Sud 11 Ackland, Graeme (Graeme Ackland) - Centre for Materials Science and Engineering & School of Physics, University of Edinburgh Adams, James B (James B Adams) - Department of Chemical and Materials Engineering, Arizona State University Adams, Philip W. (Philip W. Adams) - Department of Physics and Astronomy, Louisiana State University Adeyeye, Adekunle (Adekunle Adeyeye) - Department of Electrical and Computer Engineering, National University of Singapore Agrawal, Dinesh (Dinesh Agrawal) - Microwave Processing and

348

Materials and Molecular Research Division annual report 1980  

DOE Green Energy (OSTI)

Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

Not Available

1981-06-01T23:59:59.000Z

349

The Materials Science and Engineering of the Star Wars Universe  

Science Conference Proceedings (OSTI)

Materials Analysis: A Key to Unlocking the Mystery of the Columbia Tragedy ... Negatively charged antiprotons will be generated in a high-energy cyclotron, selectively .... Let me vox the marketing department and get their take. ... to display up-to-the-minute news and information, surgical droids who deliver babies, and...

350

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

R S R S T U V W X Y Z Qasem, Apan (Apan Qasem) - Department of Computer Science, Texas State University - San Marcos Qi, Xiaojun (Xiaojun Qi) - Department of Computer Science, Utah State University Qi, Yuan "Alan" (Yuan "Alan" Qi) - Departments of Computer Sciences & Statistics, Purdue University Qian, Xiaoping (Xiaoping Qian) - Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology Qiao, Chunming (Chunming Qiao) - Department of Computer Science and Engineering, State University of New York at Buffalo Qiao, Daji (Daji Qiao) - Department of Electrical and Computer Engineering, Iowa State University Qiao, Sanzheng (Sanzheng Qiao) - Department of Computing and Software, McMaster University Qin, Feng (Feng Qin) - Department of Computer Science and

351

Photon Sciences | About the Photon Sciences Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Photon Sciences Directorate About the Photon Sciences Directorate The Photon Sciences Directorate operates the National Synchrotron Light Source (NSLS) and is constructing the National Synchrotron Light Source II (NSLS-II), both funded by the Department of Energy Office of Science. These facilities support a large community of scientists using photons (light) to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. NSLS National Synchrotron Light Source NSLS-II National Synchrotron Light Source II This is a very exciting period for photon sciences at Brookhaven Lab and a time of unprecedented growth for the directorate. The NSLS-II Project is progressing rapidly and smoothly through design and construction, driven by

352

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Thad M. Adams Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline Materials for Hydrogen Service Hydrogen Technology at the Savannah Hydrogen Technology at the Savannah River Site River Site * Tritium Production/Storage/Handling and Hydrogen Storage/Handling since 1955 - Designed, built and currently operate world's largest metal hydride based processing facility (RTF) - DOE lead site for tritium extraction/handling/separation/storage operations * Applied R&D provided by Savannah River National Laboratory - Largest hydrogen R&D staff in country * Recent Focus on Related National Energy Needs - Current major effort on hydrogen energy technology

353

Neutron Sciences - Electrode Material for Solid-oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory meets experiment: structure-property relationships in an electrode Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells Research Contact: Ana B. Munoz-Garcia December 2012, Written by Agatha Bardoel Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in liquid electrolyte cells. Using the Powder Diffractometer at the Spallation Neutron Source, researchers experimentally characterized the promising new SOFC electrode material strontium iron molybdenum oxide─Sr2Fe1.5Mo0.5O6-δ (SFMO). Combining the experimental results with insights from theory showed that the crystal structure is distorted from the ideal cubic simple perovskite

354

MATERIALS SCIENCE AND TECHNOLOGY DIVISION September 1, 2009  

E-Print Network (OSTI)

NUCLEAR POWER NUCLEAR ENERGY W.R. CORWIN B.J. WADDELL* A.A. BLANKENSHIP* (1) G.L. BELL* ADVANCED REACTORS THEORY G.M. STOCKS A.R. STRANGE F.W. AVERILL (12) M. BAJDICH (3) K.H. BEVAN (3) X. CHEN (3) V.R. COOPER M.T. LIU (12) P.J. MAZIASZ J. R. MORRIS (27) T.G. NIEH (5) G.M. PHARR (24) Y. YAMAMOTO NUCLEAR MATERIALS

355

Collimation and material science studies (ColMat) at GSI.  

E-Print Network (OSTI)

Within the frame of the EuCARD program, the GSI Helmholtzzentrum fr Schwerionenforschung in Darmstadt is performing accelerator R&D in workpackage 8: ColMat. The coordinated effort is focussed on materials aspects important for building the FAIR accelerator facility at GSI and the LHC upgrade at CERN. Accelerator components and especially protection devices have to be operated in high dose environments. The radiation hazard occurs either by the primary proton and ion beams or the secondary radiation after initial beam loss. Detailed numerical simulations have been carried out to study the damage caused to solid targets by the full impact of the LHC beam as well as the SPS beam. Tungsten, copper and graphite as possible collimator materials have been studied. Experimental an theoretical studies on radiation damage on materials used for the LHC upgrade and the FAIR accelerators are performed at the present GSI experimental facilities. Technical decisions based on these results will have an impact on the F...

Stadlmann, J; Kollmus, H; Krause, M; Mustafin, E; Petzenhauser, I; Spiller, P; Strasik, I; Tahir, N; Tomut, M; Trautmann, C

2010-01-01T23:59:59.000Z

356

Pu-bearing materials - from fundamental science to storage standards.  

Science Conference Proceedings (OSTI)

The behavior of plutonium (Pu) oxides in the presence of water/moisture in a confined space and the associated issues of hydrogen and oxygen generation due to radiolysis have important implications for the storage and transportation of Pu-bearing materials. This paper reviews the results of recent studies of gas generation in the Pu-O-H system, including the determination of release rates via engineering-scale measurement. The observations of the significant differences in gas generation behavior between 'pure' Pu-bearing materials and those that contain salt impurities are addressed. In conjunction with the discussion of these empirical observations, the work also addresses recent scientific advances in the investigations of the Pu-O-H system using state-of-the-art ab initio electronic structure calculations, as well as advanced synchrotron techniques to determine the electronic structure of the various Pu-containing phases. The role of oxidizing species such as the hydroxyl radical from the radiolysis of water is examined. Discussed also is the challenge in the predictive ab-initio calculations of the electronic structure of the Pu-H-O system, due to the nature of the 5f valence electrons in Pu. Coupled with the continuing material surveillance program, it is anticipated that this work may help determine the electronic structure of the various Pu-containing phases and the role of impurity salts on gas generation and the long-term stability of oxygen/hydrogen-containing plutonium oxides beyond PuO{sub 2}.

Tam, S. W.; Liu, Y.; Decision and Information Sciences; Michigan Technical Univ.

2008-01-01T23:59:59.000Z

357

DOE-HDBK-1017/1-93; DOE Fundamentals Handbook Material Science Volume 1 of 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-93 1-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK MATERIAL SCIENCE Volume 1 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE93012224 DOE-HDBK-1017/1-93 MATERIAL SCIENCE ABSTRACT The Material Science Handbook was developed to assist nuclear facility operating

358

DOE-HDBK-1017/2-93; DOE Fundamentals Handbook Material Science Volume 2 of 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-93 2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK MATERIAL SCIENCE Volume 2 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. Available to the public from the National Technical Information Services, U.S. Department of Commerce, 5285 Port Royal., Springfield, VA 22161. Order No. DE93012225 DOE-HDBK-1017/2-93 MATERIAL SCIENCE ABSTRACT The Material Science

359

Materials Discovery Design and Synthesis | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Design and Synthesis Discovery Design and Synthesis Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Materials Discovery Design and Synthesis Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported in the discovery and design of novel materials and the development of innovative materials synthesis and processing methods. This research is guided by applications of concepts learned from the interface between physics and biology and from nano-scale understanding of

360

Pu-Bearing Materials - From Fundamental Science to Storage Standards  

Science Conference Proceedings (OSTI)

The behavior of plutonium (Pu) oxides in the presence of water/moisture in a confined space and the associated issues of hydrogen and oxygen generation due to radiolysis have important implications for the storage and transportation of Pu-bearing materials. This paper reviews the results of recent studies of gas generation in the Pu-O-H system, including the determination of release rates via engineering-scale measurement. The observations of the significant differences in gas generation behavior between 'pure' Pu-bearing materials and those that contain salt impurities are addressed. In conjunction with the discussion of these empirical observations, this work also addresses recent scientific advances in the investigations of the Pu-O-H system using state-of-the-art ab initio electronic structure calculations, as well as advanced synchrotron techniques to determine the electronic structure of the various Pu-containing phases. The role of oxidizing species such as the hydroxyl radical from the radiolysis of water is examined. Discussed also is the challenge in the predictive ab-initio calculations of the electronic structure of the Pu-H-O system, due to the nature of the 5f valence electrons in Pu. Coupled with the continuing material surveillance program, it is anticipated that this work may help determine the electronic structure of the various Pu-containing phases and the role of impurity salts on gas generation and the long-term stability of oxygen/hydrogen-containing plutonium oxides beyond PuO{sub 2}. (authors)

Shiu-Wing Tam; Yung Liu [Decision and Information Sciences Div., Argonne National Laboratory, 9700 S. Cass Avenue, Bldg. 900, MS-12, Argonne, IL, 60439 (United States)

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sandia National Labs: Materials Science and Engineering Center: Research &  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments Accomplishments Patents PATENTS Method for Making Surfactant-Templated Thin Films, Jeff Brinker, Hongyou Fan, Patent #RE41612, issued 8/13/10 Dendritic Metal Nanostructures, John Shelnutt, Yujiang Song, Patent #7,785,391, issued 8/13/10 Metal Nanoparticles as a Conductive Catalyst, Eric Coker, Patent #7,767,610, issued 8/13/10 Water-Soluable Titanium Alkoxide Material, Timothy Boyle, Patent # 7,741,486 B1, issued 6/22/10 Microfabricated Triggered Vacuum Switch, Alex W. Roesler, Joshua M. Schare,Kyle Bunch, Patent #7,714,240, issued 5/11/10 Method of Photocatalytic Nanotagging, John Shelnutt, Craig Medforth, Yujiang Song, Patent #7,704,489, issued 4/27/10 Correlation Spectrometer, Michael Sinclair, Kent Pfeifer, Jeb Flemming, Gary D Jones, Chris Tigges, Patent #7,697,134, issued 4/13/10

362

Center for Nanophase Materials Sciences (CNMS) - Functional Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) Synthesis of SWNT's, NT Arrays, NW's, NP's or thin films by CVD, Laser Vaporization, and PLD with in situ diagnostics ns-Laser Vaporization Synthesis of SWNTs, NWs, NPs SWNTs and nanowires are produced by pulsed Nd:YAG laser-irradiation (30 Hz, Q-switched or free-running) of composite pellets in a 2" tube furnace with variable pressure control. Excimer laser ablation of materials into variable pressure background gases is used for nanoparticle generation in proximity of ns-laser diagnostics. High-power ms-laser vaporization bulk production of nanomaterials SWNTs (primarily), SWNH (single-wall carbon nanohorns), nanoparticles and nanowires are produced by robotically-scanned 600W Nd:YAG laser-irradiation

363

Center for Nanophase Materials Sciences (CNMS) - Active CNMS User Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

ACTIVE USER PROJECTS ACTIVE USER PROJECTS Proposal Cycle 2013B: expire July 31, 2014 Proposal Cycle 2013A: expire January 31, 2014 Proposal Cycle 2012B (extended): expire July 31, 2014 Proposal Cycle 2012A: (extended): expire January 31, 2014 Proposal Cycle 2013B: expire January 31, 2014 X-ray diffraction and scattering techniques for the study of interfacial phenomena in energy storage materials Gabriel Veith, ORNL [CNMS2013-201] Atomic scale study of the reduction of metal oxides Guangwen Zhou, State University of New York at Binghamton [CNMS2013-210] Local Switching Studies in PbZr0.2Ti0.8O3 (001), (101), and (111) Films Lane Martin, University of Illinois, Urbana-Champaign [CNMS2013-211] Direct Observation of Domain Structure and Switching Process in Strained

364

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

Presetations Presetations Homepage | Contacts "How can we make an isotropic high-temperature superconductor?," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, November 27 2007). PDF "Enhancement of Jc in thick MOD and BaF2 coatings through the structure improvement " DOE "Superconductivity for Power Systems" Annual Peer Review, (Arlington, VA, August 7-9 2007). PDF "Texture Development in 2-3 μm Thick YBCO Films Synthesized by BaF2 and MOD Processes on Metal RABiTS(tm) " Materials Research Society Spring Meeting, (San Francisco, CA, April 20 2007). PDF "Films and Crystals: Search for the Perfect Structure. ," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, March 12 2007). PDF

365

Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurements of  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

366

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

367

The Science of Electrode Materials for Lithium Batteries  

Science Conference Proceedings (OSTI)

Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

Fultz, Brent

2007-03-15T23:59:59.000Z

368

ComputationalComputational ScienceScience  

E-Print Network (OSTI)

ComputationalComputational ScienceScience KenKen HawickHawick k.a.k.a.hawickhawick@massey.ac.nz@massey.ac.nz Massey UniversityMassey University #12;Computational Science / eScienceComputational Science / eScience Computational Science concerns the application of computer science to physics, mathematics, chemistry, biology

Hawick, Ken

369

Materials Sciences and Engineering (MSE) Division Homepage | U.S. DOE  

Office of Science (SC) Website

MSE Home MSE Home Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Materials Sciences and Engineering (MSE) Division supports fundamental experimental and theoretical research to provide the knowledge base for the discovery and design of new materials with novel structures, functions, and properties. This knowledge serves as a basis for the development of new materials for the generation, storage, and use of energy and for mitigation of the environmental impacts of energy use. (details) The MSE research portfolio consists of the research focus areas in the

370

Materials Science and Engineering A 387389 (2004) 277281 Mobility laws in dislocation dynamics simulations  

E-Print Network (OSTI)

Materials Science and Engineering A 387­389 (2004) 277­281 Mobility laws in dislocation dynamics of dislocation lines, to establish a statistically representative model of crystal plasticity. A new massively thousands of processors. We discuss an important ingredient of this code -- the mobility laws dictating

Cai, Wei

371

5 (2001) 281282Current Opinion in Solid State and Materials Science Editorial Overview  

E-Print Network (OSTI)

. To achieve high toughness and strength, generation industry in continuous fiber-reinforced ceramic new5 (2001) 281­282Current Opinion in Solid State and Materials Science Editorial Overview Ceramics resistance. Wiederhorn and Ferber provide an update ceramics and ceramic composites for use in gas tubine

Zok, Frank

372

Tangible ideas for children: materials sciences as the future of educational technology  

Science Conference Proceedings (OSTI)

Traditionally, the notion of "educational technology" has been equated with "educational computing". While computer technology is, and will continue to be, a central focus of educational technology, its importance is likely to be rivaled in the coming ... Keywords: educational technology, materials science

Michael Eisenberg

2004-06-01T23:59:59.000Z

373

Proposal: A Search for Sterile Neutrino at J-PARC Materials and Life Science Experimental Facility  

E-Print Network (OSTI)

We propose a definite search for sterile neutrinos at the J-PARC Materials and Life Science Experimental Facility (MLF). With the 3 GeV Rapid Cycling Synchrotron (RCS) and spallation neutron target, an intense neutrino beam from muon decay at rest (DAR) is available. Neutrinos come from \\mu+ decay, and the oscillation to be searched for is (anti \

M. Harada; S. Hasegawa; Y. Kasugai; S. Meigo; K. Sakai; S. Sakamoto; K. Suzuya; E. Iwai; T. Maruyama; K. Nishikawa; R. Ohta; M. Niiyama; S. Ajimura; T. Hiraiwa; T. Nakano; M. Nomachi; T. Shima; T. J. C. Bezerra; E. Chauveau; T. Enomoto; H. Furuta; H. Sakai; F. Suekane; M. Yeh; G. T. Garvey; W. C. Louis; G. B. Mills; R. Van de Water

2013-10-05T23:59:59.000Z

374

SCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials Research  

E-Print Network (OSTI)

.The experiments employed instruments at HFIR and the National Institute of Standards and Technology (NISTFeAsO, are antiferromagnetic materials when chilled to a low temperature. Using both a powder diffractometer at NIST and HFIR and Christianson studied the samples syn- thesized at ORNL using the Triple-Axis Spectrometer at HFIR and the Wide

375

Science  

NLE Websites -- All DOE Office Websites (Extended Search)

149802 149802 , 1291 (2007); 318 Science et al. L. Ozyuzer, Superconductors Emission of Coherent THz Radiation from www.sciencemag.org (this information is current as of November 29, 2007 ): The following resources related to this article are available online at http://www.sciencemag.org/cgi/content/full/318/5854/1291 version of this article at: including high-resolution figures, can be found in the online Updated information and services, http://www.sciencemag.org/cgi/content/full/318/5854/1291/DC1 can be found at: Supporting Online Material found at: can be related to this article A list of selected additional articles on the Science Web sites http://www.sciencemag.org/cgi/content/full/318/5854/1291#related-content http://www.sciencemag.org/cgi/content/full/318/5854/1291#otherarticles

376

The Effects of Surface Chemistry on the Properties of Proteins Confined in Nano-porous Materials  

Science Conference Proceedings (OSTI)

The entrapment of proteins using the sol-gel route provides a means to retain its native properties and artificially reproduce the molecular crowding and confinement experienced by proteins in the cell allowing investigation of the physico-chemical and structural properties of biomolecules at the biotic/abiotic interface. The biomolecules are spatially separated and 'caged' in the gel structure but solutes can freely permeate the matrix. Thus, properties such as the folding of ensembles of individual molecules can be examined in the absence of aggregation effects that can occur in solution studies. Green fluorescent protein from Aequorea coerulescens was used as a model protein to examine the unfolding/re-folding properties of protein in silica gels. The recombinant protein was isolated and purified from Escherichia coli extracts by cell lysis, three-phase partitioning, dialysis, and anion exchange chromatography. The purity of the protein was greater than 90% as judged by SDS PAGE gel analysis. Sol-gels were synthesized using tetramethylorthosilicate (TMOS) in combination with, methyltrimethoxyorthosilane (MTMOS), ethyltrimethoxyorthosilane (ETMOS), 3-aminopropyltriethoxysilane (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS). The acid induced denaturation and renaturation of GFP was analyzed by UV-visible, fluorescence, and circular dichroism (CD) spectroscopies. No renaturation was observed in gels that were made with TMOS only, and in the presence of APTES, MTMOS, and ETMOS. However, in gels that were made with GPTMS, the CD and UV-visible spectra indicated that the protein had refolded. The fluorescence emission spectrum indicated that approximately 20% of fluorescence had returned. This study highlights the importance of the surface chemistry of the silica gels for the refolding properties of the entrapped GFP. Future studies will investigate the effect of surface chemistry on the thermal and solvent stability of the entrapped protein.

Garrett, Latasha M [ORNL; O'Neill, Hugh Michael [ORNL

2007-01-01T23:59:59.000Z

377

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

378

X-ray science taps bug biology to design better materials and reduce  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Caddiesflies spin an adhesive silk underwater to build nets to capture food and build protective shelter. Pictured is that silk magnified. Courtesy: Bennett Addison. Click to enlarge. Caddiesflies spin an adhesive silk underwater to build nets to capture food and build protective shelter. Pictured is that silk magnified. Courtesy: Bennett Addison. Click to enlarge. "(Caddisfly silk) is really not much stronger than super glue, but try to put super glue in your bathtub without it ever getting a chance to dry," says Jeff Yarger, professor of chemistry, biochemistry and physics at Arizona State University. Courtesy: Bennett Addison. Click to enlarge.

379

Machine-learning algorithm aims to accelerate materials discovery | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Machine-learning algorithm aims to accelerate materials discovery July 16, 2013 Tweet EmailPrint A research team led by Argonne Leadership Computing Facility computational chemist Anatole von Lilienfeld is developing an algorithm that combines quantum chemistry with machine learning (artificial intelligence) to enable atomistic simulations that predict the properties of new materials with unprecedented speed. From innovations in medicine to novel materials for next-generation batteries, this approach could greatly accelerate the pace of materials discovery, with high-performance

380

Nanomaterials Chemistry Group - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD CSD Organization Contact List Search Other Links CSD CSD Organization Contact List Search Other Links Selected Research and Development Projects The Nanomaterials Chemistry Group at Chemical Sciences Division, the Oak Ridge National Laboratory conducts fundamental research related to synthesis and characterization of nanoscopic materials as well as ionic liquids for fundamental investigation of separation and catalysis processes. This group also conducts the applied research related to the applications of nanomaterials in advanced scintillators for radiation sensing, catalysts for fuel cells, radioactive tracers for medical imaging, novel electrodes for energy storage, and sensing devices for biological agents. Extensive synthesis capabilities exist within the group for preparation of mesoporous materials (oxides and carbons), low-dimensional materials (e.g., quantum dots and nanowires), sol-gel materials, inorganic and hybrid monoliths (e.g., membranes), and nanocatalysts. Solvothermal, ionothermal, templating synthesis, chemical vapor deposition (CVD), and atomic layer deposition (ALD) methods are extensively utilized in the group for tailored synthesis of nanostructured materials. An array of techniques for characterizing physical and chemical properties related to separation and catalysis are in place or are currently being developed. This research program also takes advantage of the unique resources at ORNL such as small-angle x-ray scattering, small-angle neutron scattering at the High Flux Isotope Reactor and Spallation Neutron Source (SNS), structural analysis by a variety of electron microscopes (SEM, TEM, STEM, HRTEM) and powdered X-ray diffraction (XRD) techniques. A wide variety of other facilities for routine and novel techniques are also utilized including the Center for Nanophase Materials Science. Computational chemistry tools are employed to understand experimental results related to separation and other interfacial chemical processes and design better nanomaterials and ionic liquids. Commonly used methods include first principles density functional theory (DFT) and mixed quantum mechanical/molecular mechanical (QM/MM) techniques.

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

particles H. Boukari, D. Green, and M.T. Harris Searching for charge scattering from stripes in La2-xSrxCuO4 and related compounds R. Christianson, R. Leheny, R. Birgeneau, L....

382

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Padture, Nitin P. (Nitin P. Padture) - Department of Materials Science and Engineering, Ohio State University Paiella, Roberto (Roberto Paiella) - Department of Electrical and Computer Engineering, Boston University Paik Suh, Myunghyun (Myunghyun Paik Suh) - Department of Chemistry, Seoul National University Painter, Oskar (Oskar Painter) - Department of Applied Physics and Materials Science, California Institute of Technology Palevski, Alexander (Alexander Palevski) - School of Physics and Astronomy, Tel Aviv University Pan, Xiaoqing (Xiaoqing Pan) - Department of Materials Science and Engineering, University of Michigan Panagiotopoulos, Athanassios Z.(Athanassios Z.Panagiotopoulos).- Department of Chemical Engineering, Princeton University

383

COMPUTATIONAL SCIENCE CENTER  

SciTech Connect

The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

DAVENPORT, J.

2005-11-01T23:59:59.000Z

384

Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source  

Science Conference Proceedings (OSTI)

Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities.

Warwick, T.; Padmore, H. [Lawrence Berkeley National Lab., CA (United States); Ade, H. [North Carolina State Univ., Raleigh, NC (United States); Hitchcock, A.P. [McMaster Univ., Hamilton, Ontario (Canada); Rightor, E.G. [Dow Texas Polymer Center, Freeport, TX (United States); Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States)

1996-08-01T23:59:59.000Z

385

Method and apparatus for analyzing the internal chemistry and compositional variations of materials and devices  

DOE Patents (OSTI)

A method and apparatus is disclosed for obtaining and mapping chemical compositional data for solid devices. It includes a SIMS mass analyzer or similar system capable of being rastered over a surface of the solid to sample the material at a pattern of selected points, as the surface is being eroded away by sputtering or a similar process. The data for each point sampled in a volume of the solid is digitally processed and indexed by element or molecule type, exact spacial location within the volume, and the concentration levels of the detected element or molecule types. This data can then be recalled and displayed for any desired planar view in the volume.

Kazmerski, L.L.

1985-04-30T23:59:59.000Z

386

Argonne Chemical Sciences & Engineering - People - Electrochemical Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Development Technology Development Khalil Amine, Argonne Distinguished Fellow, Senior Materials Scientist, Group Leader phone: 630/252-3838, fax: 630/972-4451, e-mail: amine@anl.gov Ph.D. (Material Science, with high honor): University of Bordeaux 1, France Fluorine chemistry, carbon chemistry, intercalation chemistry, fuel cell polymer chemistry, and advanced electrochemical devices and battery materials Ali Abouimrane, Materials Scientist phone: 630/252-3729, e-mail: abouimrane@anl.gov Ph.D., Physical Chemistry, Hassan II University, Morocco Works on the synthesis, characterization and optimization of electrode and electrolyte materials for high energy/power lithium and sodium batteries to be utilized in PHEV, EV and smart grid applications Ilias Belharouak, Chemist/Materials Scientist

387

NERSC-ScienceHighlightsJuly2013.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2013 July 2013 NERSC Science Highlights --- 1 --- NERSC User Science Highlights Materials Model is able to predict which of a million or so potential materials might be best for carbon capture (B. Smit, LBNL) Materials NERSC collaboration yields software that is a key enabler in the high- throughput computational materials science initiative (S. Ong, MIT) Climate NERSC simulations contribute to a study finding that emission regulations reduced soot and climate change impact in California W. Collins (LBNL) Climate Independent confirmation of global land warming without the use of land thermometers (G. Compo, U. Colorado) Nuclear Physics NERSC resources aid worldwide collaboration that discovers neutrinos of unprecedented energy (L. Gerhardt, LBNL) Chemistry

388

Application of chemical structure and bonding of actinide oxide materials for forensic science  

SciTech Connect

We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

Wilkerson, Marianne Perry [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

389

Secretary of Energy Chu Congratulates 2011 Chemistry Nobel Laureate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Congratulates 2011 Chemistry Nobel Laureate Chu Congratulates 2011 Chemistry Nobel Laureate Secretary of Energy Chu Congratulates 2011 Chemistry Nobel Laureate October 5, 2011 - 6:56pm Addthis WASHINGTON, DC -- Secretary of Energy Steven Chu today congratulated Daniel Shechtman for winning the 2011 Nobel Prize in Chemistry "for the discovery of quasicrystals." "Dr. Schechtman's discovery in 1982 not only led to a new field of quasicrystals, but also forever changed ideas about matter," said Secretary Chu, who is a 1997 Nobel Laureate in Physics. "His important work underscores the impact of basic science research and I congratulate him for this well-deserved recognition." Shechtman is an associate scientist at the Department of Energy's Ames Laboratory, an Iowa State University professor of materials science and

390

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sabo, John (John Sabo) - School of Life Sciences, Arizona State University Sachdev, Subir -Department of Physics, Harvard Universit(achdev, Subir -Department of Physics, Harvard Universi)ty Sadoway, Donald Robert (Donald Robert Sadoway) - Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT) Saikin, Semion (Semion Saikin) - Department of Chemistry and Chemical Biology, Harvard University Salapaka, Murti V. (Murti V. Salapaka) - Department of Electrical and Computer Engineering, Iowa State University Sanchez, Erik (Erik Sanchez) - Department of Physics, Portland State University Sandoghdar, Vahid (Vahid Sandoghdar) - Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich (ETHZ)

391

1995 Federal Research and Development Program in Materials Science and Technology  

Science Conference Proceedings (OSTI)

The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

None

1995-12-01T23:59:59.000Z

392

SUPPORTING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS THROUGH SCIENCE, ENGINEERING AND SURVEILLANCE  

Science Conference Proceedings (OSTI)

Reductions in the size of the U. S. nuclear weapons arsenal resulted in the need to store large quantities of plutonium-bearing metals and oxides for prolonged periods of time. To assure that the excess plutonium from the U. S. Department of Energy (DOE) sites was stored in a safe and environmentally friendly manner the plutonium-bearing materials are stabilized and packaged according to well developed criteria published as a DOE Standard. The packaged materials are stored in secure facilities and regular surveillance activities are conducted to assure continuing package integrity. The stabilization, packaging, storage and surveillance requirements were developed through extensive science and engineering activities including those related to: plutonium-environment interactions and container pressurization, corrosion and stress corrosion cracking, plutonium-container material interactions, loss of sealing capability and changes in heat transfer characteristics. This paper summarizes some of those activities and outlines ongoing science and engineering programs that assure continued safe and secure storage of the plutonium-bearing metals and oxides.

Dunn, K.; Chandler, G.; Gardner, C.; Louthan, M.; Mcclard, J.

2009-11-10T23:59:59.000Z

393

Argonne TDC: Physical Sciences  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

394

Los Alamos Lab: Materials Physics & Applications Division  

NLE Websites -- All DOE Office Websites (Extended Search)

ADEPS Materials Physics and Applications, MPA ADEPS Materials Physics and Applications, MPA About Us Organization Jobs Materials Physics & Applications Home Center for Integrated Nanotechnologies Superconductivity Technology Center Condensed Matter and Magnet Science Sensors & Electrochemical Devices Materials Chemistry CONTACTS Division Leader Antoinette Taylor Deputy Division Leader David Watkins Point of Contact Susan Duran 505-665-1131 Materials Physics and Applications Division serves as the Laboratory's focal point for fundamental materials physics and materials chemistry, provides world-class user facilities, unique experimental capabilities, and the scientific talent and infrastructure to facilitate understanding and control of materials properties, and develops and apply materials-based solutions

395

Earth & Aquatic Sciences | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Earth and Aquatic Sciences Earth and Aquatic Sciences SHARE Earth and Aquatic Sciences Create and apply new knowledge across multiple scales to aid decision makers on the stewardship of air, water and land resources. Many factors affect the fate, transport and transformation of metal and radionuclide contaminants found on DOE lands. A fundamental understanding of environmental inorganic and biological interactions is needed for deriving practical solutions to management of DOE lands. ORNL applies molecular to field-scale chemistry, hydrology and microbiology expertise, together with neutron scattering, nano-materials sciences facilities, computing resources and comprehensive models in environmental remediation sciences research. Multiple research projects are carried out with aims of

396

Materials Science in Radiation and Dynamics Extremes:MST-8:LANL:Los Alamos  

NLE Websites -- All DOE Office Websites (Extended Search)

in Radiation and Dynamics Extremes (MST-8) in Radiation and Dynamics Extremes (MST-8) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS Group Leader, Anna Zurek Deputy Group Leader Ellen Cerreta Point of Contact Group Office 505-665-4735 He bubbles foming at a Cu twist grain boundary He bubbles forming at a Cu twist grain boundary Evaluating and predicting structure/property relationships Predict structure/property relationships of structural (metals, alloys, actinides, binders, energetic, and specialty) materials from atomistic to continuum length scales; Use computational materials modeling to inform and complement the measurements listed above;

397

Sandia National Labs: PCNSC: Departments: Semiconductor Material...  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor Material & Device Sciences > Advanced Materials Sciences > Lasers, Optics & Remote Sensing Energy Sciences Small Science Cluster Business Office News Partnering...

398

UCL Science Library Map Engineering  

E-Print Network (OSTI)

UCL Science Library Map Floor 4 Engineering Engineering Periodicals Guter Collection Sta Training Room Floor 3 Chemistry Computer Science Geology Geosciences Periodicals History of Science Maths Maths Periodicals Physical Sciences Periodicals Physics Computer Cluster Group Study Area Information Library

Crawford, Ian

399

Chemistry Central Journal Commentary At the crossroads of biomacromolecular research: highlighting the interdisciplinary nature of the field  

E-Print Network (OSTI)

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Due to their complexity and wide-ranging utility, biomacromolecular research is an especially interdisciplinary branch of chemistry. It is my goal that the Biomacromolecules subject area of Chemistry Central Journal will parallel this richness and diversity. In this inaugural commentary, I attempt to set the stage for achieving this by highlighting several areas where biomacromolecular research overlaps more traditional chemistry sub-disciplines. Specifically, it is discussed how Materials Science and Biotechnology, Analytical Chemistry, Cell Biology and Chemical Theory are each integral to modern biomacromolecular research. Investigators with reports in any of these areas, or any other dealing with biomacromolecules, are encouraged to submit their research papers to Chemistry Central Journal. Background Chemistry, often referred to as the central science, is critical to a fundamental understanding of the world around us. Chemical concepts have traditionally been central to the

Dennis R Livesay; Dennis R Livesay

2007-01-01T23:59:59.000Z

400

Thin Films Department of Materials Science and Engineering, Carnegie Mellon University  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Department of Materials Science and Engineering, Carnegie Mellon University Lu Yan, K.R. Balasubramaniam, Shanling Wang, Hui Du, and Paul Salvador Funded b y: U.S. D epartment o f E nergy, S olid S tate E nergy C onversion A lliance ( SECA) Introduction The oxygen reduction reaction (ORR) takes place in the solid oxide fuel cell (SOFC) cathode and the overall reaction is rather complex; it involves a variety of sub-reactions, such as surface adsorption, dissociation, election transfer, incorporation, and bulk diffusion. Although a considerable amount of effort has been expended in correlating processing / microstructural features to cathode performance, there is unfortunately relatively little known about the fundamental surface properties of oxide surfaces and their relation

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MSA | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

MSA MSA Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications Contact BES Home Centers MSA Print Text Size: A A A RSS Feeds FeedbackShare Page Materials Science of Actinides (MSA) Director(s): Peter Burns Lead Institution: University of Notre Dame Mission: To understand and control, at the nanoscale, materials that contain actinides (radioactive heavy elements such as uranium and plutonium) to lay the scientific foundation for advanced nuclear energy systems. Research Topics: nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly) Materials Studied: MATERIALS: actinide, ionic liquid, porous NANOSTRUCTURED MATERIALS: 3D, nanocomposites Experimental and Theoretical Methods:

402

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 11 The Chemistry and Nutrition of Nonnutritive Fats  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 11 The Chemistry and Nutrition of Nonnutritive Fats Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry

403

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 7 Lipids  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 7 Lipids Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutrition - Biochemistry Processing Press

404

Teacher Resource Center: Science Safety Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Safety Issues Science Safety Issues TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources Safety in the science labs is paramount. You can find good guidelines from the following two sources. The second publication is a sixty page safety guide for high school science and chemistry laboratories. It provides practical safety information in a checklist format useful to both groups to reduce chemical injuries in a laboratory environment. The guide presents

405

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

406

NWChem and Actinide Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

ACTINIDE CHEMISTRY MEETS COMPUTATION ACTINIDE CHEMISTRY MEETS COMPUTATION Capturing how contaminants migrate across groundwater-surface water inter- faces is a challenge that researchers at the Department of Energy's EMSL-the Environmental Molecular Sciences Laboratory-are rising to. This challenge, a top priority for waste cleanup efforts at the Hanford Site in Richland, Washington, and other parts of the DOE weapons complex, is being addressed using NWChem, a computational chemistry package developed at EMSL that is designed to run on high-performance parallel supercomputers, such as EMSL's Chinook. NWChem is enabling breakthrough discoveries in actinide behavior and chemistry, in part because it allows researchers to accurately model the dynamical formation, speciation, and redox chemistry of actinide complexes in realistic complex mo-

407

CLUSTER CHEMISTRY  

E-Print Network (OSTI)

Advanced Inorganic Chemistry, 11 Wiley Huetterties and C. M.Submitted to the Journal of Organometallic ChemistryCLUSTER CHEMISTRY Earl L. Muetterties TWO-WEEK LOAN COPY May

Muetterties, Earl L.

2013-01-01T23:59:59.000Z

408

CRC handbook of laser science and technology. Volume 4. Optical materials, Part 2 - Properties  

Science Conference Proceedings (OSTI)

This book examines the optical properties of laser materials. Topics considered include: fundamental properties; transmitting materials; crystals; glasses; plastics; filter materials; mirror and reflector materials; polarizer materials; special properties; linear electrooptic materials; magnetooptic materials; elastooptic materials; photorefractive materials; and liquid crystals.

Weber, M.J.

1986-01-01T23:59:59.000Z

409

Calix 2007:9th International Conference on Calixarene Chemistry  

SciTech Connect

The DOE funds helped support an International Conference, Calix 2007, whose focus was on Supramolecular Chemistry. The conference was held at the University of Maryland from August 6-9, 2007 (Figure 1). The conference website is at www.chem.umd.edu/Conferences/Calix2007. This biannual conference had previously been held in the Czech Republic (2005), Canada (2003), Netherlands (2001), Australia (1999), Italy (1997), USA (Fort Worth, 1995) Japan (1993) and Germany (1991). Calixarenes are cup-shaped compounds that are a major part of Supramolecular Chemistry, for which Cram, Lehn and Pederson were awarded a Nobel Prize 20 years ago. Calixarene chemistry has expanded greatly in the last 2 decades, as these compounds are used in synthetic and mechanistic chemistry, separations science, materials science, nanoscience and biological chemistry. The organizing committee was quite happy that Calix 2007 encompassed the broad scope and interdisciplinary nature of the field. Our goal was to bring together leading scientists interested in calixarenes, molecular recognition, nanoscience and supramolecular chemistry. We believe that new research directions and collaborations resulted from an exchange of ideas between conferees. This grant from the DOE was crucial toward achieving that goal, as the funds helped cover some of the registration and accommodations costs for the speakers.

Jeffery Davis

2011-09-09T23:59:59.000Z

410

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

V W X Y Z V W X Y Z Vaandrager, Frits (Frits Vaandrager) - Institute for Computing and Information Sciences, Radboud Universiteit Vadhan, Salil (Salil Vadhan) - Electrical Engineering and Computer Science, School of Engineering and Applied Sciences, Harvard University Vahdat, Amin (Amin Vahdat) - Department of Computer Science and Engineering, University of California at San Diego Vahid, Frank (Frank Vahid) - Department of Computer Science and Engineering, University of California at Riverside Vaidyanathan, Ramachandran "Vaidy" (Ramachandran "Vaidy" Vaidyanathan) - Department of Electrical and Computer Engineering, Louisiana State University Vajnovszki, Vincent (Vincent Vajnovszki) - Laboratoire Electronique, Informatique et Image, Université de Bourgogne

411

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Y Z Y Z Xi, Hongwei (Hongwei Xi) - Department of Computer Science, Boston University Xia, Ge "Frank" (Ge "Frank" Xia) - Department of Computer Science, Lafayette College Xia, Xiang-Gen (Xiang-Gen Xia) - Department of Electrical and Computer Engineering, University of Delaware Xiang, Yang (Yang Xiang) - Department of Computing and Information Science, University of Guelph Xiao, Bin (Bin Xiao) - Department of Computing, Hong Kong Polytechnic University Xiao, Jing (Jing Xiao) - Department of Computer Science, University of North Carolina at Charlotte Xiao, Li (Li Xiao) - Department of Computer Science and Engineering, Michigan State University Xie, Fei (Fei Xie) - Department of Computer Science, Portland State University Xie, Geoffrey (Geoffrey Xie) - Department of Computer Science, Naval

412

Chemistry Division annual progress report for period ending January 31, 1984  

Science Conference Proceedings (OSTI)

Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

Not Available

1984-05-01T23:59:59.000Z

413

Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986  

Science Conference Proceedings (OSTI)

Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals.

Not Available

1987-05-11T23:59:59.000Z

414

2-1 Chemistry & Physics of Complex Systems Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

CPCS Overview CPCS Overview Chemistry & Physics of Complex Systems Facility The Chemistry & Physics of Complex Systems (CPCS) Facility supports the U.S. Depart- ment of Energy (DOE) mission of fostering fundamental research in the natural sciences to provide the basis for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use and contaminant releases. This research provides a foundation for understanding interactions of atoms, molecules, and ions with materials and with photons and electrons. Particular emphasis is on interfacial processes. A distinguishing feature of research at national laboratories is their approach to problem- solving. Significant scientific issues are addressed using focused and multidisciplinary

415

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rabson, David A. (David A. Rabson) - Department of Physics, University of South Florida Radhakrishnan, Ravi (Ravi Radhakrishnan) - Department of Bioengineering, University of Pennsylvania Raghavan, Srinivasa (Srinivasa Raghavan) - Department of Chemical Engineering and Biomolecular Engineering, University of Maryland at College Park Ramesh, R. (R. Ramesh) - Department of Materials Science and Engineering, University of California at Berkeley Ramsak, Anton (Anton Ramsak) - Department of Theoretical Physics, Jozef Stefan Institute Rangan, Chitra (Chitra Rangan) - Department of Physics, University of Windsor

416

Nuclear Analytical Chemistry Portal  

Science Conference Proceedings (OSTI)

NIST Home > Nuclear Analytical Chemistry Portal. Nuclear Analytical Chemistry Portal. ... see all Nuclear Analytical Chemistry news ... ...

2010-08-02T23:59:59.000Z

417

SCience  

NLE Websites -- All DOE Office Websites (Extended Search)

all all SCience Chicago Office Environment, Safety and Health Functions, Responsibilities, and Authorities Manual December 2012 ~5 {?JI-- l L-H1- I Roxanne E. Purucker, Manager Date SC-CH FRAM Revision 7 Office of Science - Chicago Office SC-CH Revision History TITLE: SC-CH Functions, Responsibilities, and Authorities Manual POINT OF CONTACT: Karl Moro SCMS MANAGEMENT SYSTEM: Environment, Safety and Health (ES&H) TO BE UPDATED: December 31, 2013 Revision Date Reason/Driver Description 5 Oct 10 Annual review and revision of the SC-CH ES&H Functions, Responsibilities, and Authorities Manual Changes were primarily made to address administrative and organizational changes and general improvement of text and presentation. I 6 Nov 11 Annual review and revision of

418

This booklet provides 51 brief presentations of the research in the Area of Advance Materials Science in Gothenburg  

E-Print Network (OSTI)

define nuclear chemistry as the chemistry associated with the nuclear fuel cycle, nuclear reactor? ......................................... 09 Martin Andersson Nanomaterials for Biological Applications.............................................................................................................................................................................. 11 Alexandre Dmitriev Functional optoelectronic nanomaterials

Gorton, Dan

419

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Gabbard, Joseph L. (Joseph L. Gabbard) - Department of Computer Science, Virginia Tech Gabor, Adriana (Adriana Gabor) - Wiskunde en Informatica, Technische Universiteit Eindhoven Gaborit, Philippe (Philippe Gaborit) - Département Maths Informatique, Université de Limoges Gaborski, Roger S. (Roger S. Gaborski) - Department of Computer Science, Rochester Institute of Technology Gabow, Harold (Harold Gabow) - Department of Computer Science, University of Colorado at Boulder Gabriel, Edgar (Edgar Gabriel) - Department of Computer Science, University of Houston Gacek, Andrew (Andrew Gacek) - Department of Computer Science and Engineering, University of Minnesota Gacs, Peter (Peter Gacs) - Department of Computer Science, Boston

420

X-ray science taps bug biology to design better materials and...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Reports Summer Science Writing Internship Caddiesflies spin an adhesive silk underwater to build nets to capture food and build protective shelter. Pictured is that silk...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Materials Characterization | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Nuclear Forensics Scanning Probes Related Research Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science &...

422

Earth and Atmospheric Sciences | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling Geographic Information Science and Technology Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Earth and Atmospheric Sciences SHARE Earth and Atmospheric Sciences At ORNL, we combine our capabilities in atmospheric science, computational science, and biological and environmental systems science to focus in the cross-disciplinary field of climate change science. We use computer models to improve climate change predications and to measure the impact of global warming on the cycling of chemicals in earth systems. Our Climate Change Science Institute uses models to explore connections among atmosphere,

423

Science (BSc and MSci) College of Science & Engineering  

E-Print Network (OSTI)

Science (BSc and MSci) College of Science & Engineering: School of Chemistry School of Computing Science School of Geographical & Earth Sciences School of Mathematics & Statistics School of Physics & Astronomy School of Psychology College of Medicine, Veterinary & Life Sciences: School of Life Sciences

Guo, Zaoyang

424

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

J K L M N O P Q R S J K L M N O P Q R S T U V W X Y Z Iacono, John (John Iacono) - Department of Computer Science and Engineering, Polytechnic Institute of New York University Iamnitchi, Adriana (Adriana Iamnitchi) - Computer Science and Engineering, University of South Florida Iannone, Luigi (Luigi Iannone) - Institut Deutsche Telekom Laboratories, Technische Universität Berlin Ìayr, Richard (Richard Ìayr) - School of Informatics, University of Edinburgh Ibarra, Louis (Louis Ibarra) - School of Computer Science, Telecommunications and Information Systems, DePaul University Ichimura, Naoyuki (Naoyuki Ichimura) - Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Ide, Nancy (Nancy Ide) - Department of Computer Science, Vassar

425

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

N O P Q R S N O P Q R S T U V W X Y Z Ma, Bin (Bin Ma) - School of Computer Science, University of Waterloo Ma, Jinwen (Jinwen Ma) - School of Mathematical Sciences, Peking University Ma, Kwan-Liu (Kwan-Liu Ma) - Institute for Ultra-Scale Visualization & Department of Computer Science, University of California, Davis Ma, Qing (Qing Ma) - Department of Applied Mathematics and Informatics, Ryukoku University Ma, Xiaosong (Xiaosong Ma) - Center for High Performance Simulation & Department of Computer Science, North Carolina State University Ma, Yi (Yi Ma) - Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Maass, Wolfgang (Wolfgang Maass) - Institute for Theoretical Computer Science, Technische Universität Graz

426

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

P Q R S P Q R S T U V W X Y Z Ó Conaire, Ciarán (Ciarán Ó Conaire) - Centre for Digital Video Processing, University College Dublin O'Boyle, Michael (Michael O'Boyle) - School of Informatics, University of Edinburgh O'Brien, James F. (James F. O'Brien) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley O'Connell, Tom (Tom O'Connell) - Department of Mathematics and Computer Science, Skidmore College O'Connor, Rory (Rory O'Connor) - School of Computing, Dublin City University O'Donnell, John (John O'Donnell) - Department of Computing Science, University of Glasgow O'Donnell, Michael J. (Michael J. O'Donnell) - Department of Computer Science, University of Chicago O'Donnell, Ryan (Ryan O'Donnell) - School of Computer Science,

427

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

C D E F G H I J K L M N O P Q R S C D E F G H I J K L M N O P Q R S T U V W X Y Z Babai, László (László Babai) - Departments of Computer Science & Mathematics, University of Chicago Babaoglu, Ozalp (Ozalp Babaoglu) - Dipartimento di Informatica: Scienza e Ingegneria, Università di Bologna Bacardit, Jaume (Jaume Bacardit) - School of Computer Science, University of Nottingham Bacchus, Fahiem (Fahiem Bacchus) - Department of Computer Science, University of Toronto Bach, Francis (Francis Bach) - Département d'Informatique, École Normale Supérieure Bachmat, Eitan (Eitan Bachmat) - Department of Computer Science, Ben-Gurion University Back, Godmar (Godmar Back) - Department of Computer Science, Virginia Tech Back, Jonathan (Jonathan Back) - UCL Interaction Centre, University

428

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

X Y Z X Y Z Wachsmut, Ipke (Ipke Wachsmut) - Technischen Fakultät, Universität Bielefeld Wactlar, Howard D. (Howard D. Wactlar) - School of Computer Science, Carnegie Mellon University Wadler, Philip (Philip Wadler) - School of Informatics, University of Edinburgh Waern, Annika (Annika Waern) - Human-Computer Interaction and Language Engineering Laboratory, Swedish Institute of Computer Science Wagner, Alan (Alan Wagner) - Department of Computer Science, University of British Columbia Wagner, David (David Wagner) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley Wagner, Flávio Rech (Flávio Rech Wagner) - Instituto de Informática, Universidade Federal do Rio Grande do Sul Wagner, Paul J. (Paul J. Wagner) - Department of Computer Science,

429

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Computer Technologies and Information Sciences Computer Technologies and Information Sciences Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aalst, W.M.P.van der (W.M.P.van der Aalst) - Wiskunde en Informatica, Technische Universiteit Eindhoven Aamodt, Agnar (Agnar Aamodt) - Department of Computer and Information Science, Norwegian University of Science and Technology Aamodt, Tor (Tor Aamodt) - Department of Electrical and Computer Engineering, University of British Columbia Aardal, Karen (Karen Aardal) - Centrum voor Wiskunde en Informatica Aaronson, Scott (Scott Aaronson) - Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT) Aazhang, Behnaam (Behnaam Aazhang) - Department of Electrical and

430

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

K L M N O P Q R S K L M N O P Q R S T U V W X Y Z Jaakkola, Tommi S. (Tommi S. Jaakkola) - Computer Science and Artificial Intelligence Laboratory & Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT) Jackson, Daniel (Daniel Jackson) - Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT) Jackson, Jeffrey (Jeffrey Jackson) - Department of Mathematics and Computer Science, Duquesne University Jackson, Paul (Paul Jackson) - School of Informatics, University of Edinburgh Jacob, Bruce (Bruce Jacob) - Institute for Advanced Computer Studies & Department of Electrical and Computer Engineering, University of Maryland at College Park Jacob, Christian (Christian Jacob) - Department of Computer Science,

431

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

F G H I J K L M N O P Q R S F G H I J K L M N O P Q R S T U V W X Y Z Eager, Derek (Derek Eager) - Department of Computer Science, University of Saskatchewan Easterbrook, Steve (Steve Easterbrook) - Department of Computer Science, University of Toronto Eberle, William (William Eberle) - Department of Computer Science, Tennessee Technological University Eberlein, Armin (Armin Eberlein) - Department of Electrical and Computer Engineering, University of Calgary Ebert, David S. (David S. Ebert) - School of Electrical and Computer Engineering, Purdue University Ebert, Todd (Todd Ebert) - Department of Computer Engineering and Computer Science, California State University, Long Beach Ebnenasir, Ali (Ali Ebnenasir) - Department of Computer Science, Michigan Technological University

432

MILESTONES IN SOIL CHEMISTRY Donald L. Sparks  

E-Print Network (OSTI)

MILESTONES IN SOIL CHEMISTRY Donald L. Sparks An array of pioneering research, dealing with various aspects of soil chemistry, has appeared in Soil Science for the past 90 years. In this review, two papers others that he published in Soil Science established the importance of variable or pH- dependent surface

Sparks, Donald L.

433

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Z Z Yaakobi, Eitan (Eitan Yaakobi) - Department of Electrical Engineering, California Institute of Technology Yacci, Michael (Michael Yacci) - Department of Information Technology, Rochester Institute of Technology Yacef, Kalina (Kalina Yacef) - School of Information Technologies, University of Sydney Yacoob, Yaser (Yaser Yacoob) - Institute for Advanced Computer Studies, University of Maryland at College Park Yakovenko, Sergei (Sergei Yakovenko) - Department of Mathematics, Weizmann Institute of Science Yamamoto, Hitoshi (Hitoshi Yamamoto) - University of Electro-Communications Yamamoto, Mikio (Mikio Yamamoto) - Department of Computer Science, University of Tsukuba Yamashita, Yoichi (Yoichi Yamashita) - Department of Computer Science, Ritsumeikan University

434

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sabelfeld, Andrei (Andrei Sabelfeld) - Department of Computer Science and Engineering, Chalmers University of Technology Saber, Eli (Eli Saber) - Department of Electrical Engineering, Rochester Institute of Technology Saberi, Amin (Amin Saberi) - Institute for Computational and Mathematical Engineering, Stanford University Sabharwal, Ashutosh (Ashutosh Sabharwal) - Department of Electrical and Computer Engineering, Rice University Sabry, Amr (Amr Sabry) - Computer Science Department, Indiana University Sabuncu, Mert Rory (Mert Rory Sabuncu) - NMR Athinoula A. Martinos Center, Massachusetts General Hospital, Harvard University Sadayappan, P. "Saday" (P. "Saday" Sadayappan) - Department of Computer Science and Engineering, Ohio State University

435

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabaey, Jan M. (Jan M. Rabaey) - Department of Electrical Engineering and Computer Sciences, University of California at Berkeley Rabbah, Rodric (Rodric Rabbah) - Dynamic Optimization Group, IBM T.J. Watson Research Center Rabbat, Michael (Michael Rabbat) - Department of Electrical and Computer Engineering, McGill University Rabhi, Fethi A. (Fethi A. Rabhi) - School of Information Systems, Technology and Management, University of New South Wales Rabie, Tamer (Tamer Rabie) - College of Information Technology, United Arab Emirates University Rabinovich, Alexander (Alexander Rabinovich) - School of Computer Science, Tel Aviv University Rabinovich, Michael "Misha" (Michael "Misha" Rabinovich) - Department of Electrical Engineering and Computer Sciences, Case Western

436

Chemistry and Physics of Complex Systems Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

CPCS Overview CPCS Overview Section 2-1-1 Chemistry and Physics of Complex Systems Facility The Chemistry and Physics of Complex Systems (CPCS) Facility supports the U.S. Depart- ment of Energy (DOE) mission of fostering fundamental research in the natural sciences to provide the basis for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use and contaminant releases. This research provides a foundation for understanding interactions of atoms, molecules, and ions with materials and with photons and electrons. Particular emphasis is on interfacial processes. A distinguishing feature of research at national laboratories is their approach to problem- solving. Significant scientific issues are addressed using focused and multidisciplinary

437

Medicinal chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal chemistry Name: Jason A Stamm Age: NA Location: NA Country: NA Date: NA Question: I am a senior chemistry major interested in going to grad school, specifically for...

438

A Paradigm for the Integration of Biology in Materials Science and ...  

Science Conference Proceedings (OSTI)

Aug 5, 2010 ... Recent advances in biological and biomedical materials are explored as a ... and , closer to home, the intersection of materials and biology.

439

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Pace, Gordon J. (Gordon J. Pace) - Department of Computer Science, University of Malta Pach, János (János Pach) - Department of Mathematics, Courant Institute of Mathematical Sciences, New York University Padawitz, Peter (Peter Padawitz) - Fachbereich Informatik, Universität Dortmund Padgham, Lin (Lin Padgham) - School of Computer Science and Information Technology, RMIT University Padmanabhan, Venkata N. (Venkata N. Padmanabhan) - Microsoft Research Padó, Sebastian (Sebastian Padó) - Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart Padua, David (David Padua) - Siebel Center for Computer Science, University of Illinois at Urbana-Champaign Paech, Barbara (Barbara Paech) - Interdisziplinäres Zentrum für

440

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

V W X Y Z V W X Y Z Uçar, Bora (Bora Uçar) - Laboratoire de l'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon Uchiyama, Hiroyuki (Hiroyuki Uchiyama) - Department of Information and Computer Science, Kagoshima University Ucoluk, Gokturk (Gokturk Ucoluk) - Department of Computer Engineering, Middle East Technical University Ueda, Kazunori (Kazunori Ueda) - Department of Computer Science and Engineering, Waseda University Uhl, Andreas (Andreas Uhl) - Department of Computer Sciences, Universität Salzburg Uhlig, Steve (Steve Uhlig) - Institut Deutsche Telekom Laboratories, Technische Universität Berlin Uht, Augustus K. (Augustus K. Uht) - Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island Ulidowski, Irek (Irek Ulidowski) - Department of Computer Science,

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

G H I J K L M N O P Q R S G H I J K L M N O P Q R S T U V W X Y Z Faber, Ted (Ted Faber) - Information Sciences Institute, University of Southern California Fábián, Csaba I. (Csaba I. Fábián) - Institute of Mathematics, Eötvös Loránd University Fabrikant, Alex (Alex Fabrikant) - Department of Computer Science, Princeton University Fabrikant, Sara Irina (Sara Irina Fabrikant) - Department of Geography, Universität Zürich Faella, Marco (Marco Faella) - Computer Science Division, Dipartimento di Scienze Fisiche, Università degli Studi di Napoli "Federico II" Fagg, Andrew H. (Andrew H. Fagg) - School of Computer Science, University of Oklahoma Fagin, Ron (Ron Fagin) - IBM Almaden Research Center Fahlman, Scott E. (Scott E. Fahlman) - Language Technologies

442

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Z Z Zabih, Ramin (Ramin Zabih) - Department of Computer Science, Cornell University Zabulis, Xenophon (Xenophon Zabulis) - Institute of Computer Science, Foundation of Research and Technology, Hellas Zacchiroli, Stefano (Stefano Zacchiroli) - Laboratoire Preuves, Programmes et Systèmes, Université Paris 7 - Denis Diderot Zachmann, Gabriel (Gabriel Zachmann) - Institut für Informatik, Technische Universität Clausthal Zadok, Erez (Erez Zadok) - Department of Computer Science, SUNY at Stony Brook Zaffalon, Marco (Marco Zaffalon) - Istituto Dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA) Zahorian, Stephen A. (Stephen A. Zahorian) - Department of Electrical and Computer Engineering, State University of New York at Binghamton Zahorjan, John (John Zahorjan) - Department of Computer Science and

443

Mathematical methods in material science and large scale optimization workshops: Final report, June 1, 1995-November 30, 1996  

SciTech Connect

The summer program in Large Scale Optimization concentrated largely on process engineering, aerospace engineering, inverse problems and optimal design, and molecular structure and protein folding. The program brought together application people, optimizers, and mathematicians with interest in learning about these topics. Three proceedings volumes are being prepared. The year in Materials Sciences deals with disordered media and percolation, phase transformations, composite materials, microstructure; topological and geometric methods as well as statistical mechanics approach to polymers (included were Monte Carlo simulation for polymers); miscellaneous other topics such as nonlinear optical material, particulate flow, and thin film. All these activities saw strong interaction among material scientists, mathematicians, physicists, and engineers. About 8 proceedings volumes are being prepared.

Friedman, A. [Minnesota Univ., Minneapolis, MN (United States). Inst. for Mathematics and Its Applications

1996-12-01T23:59:59.000Z

444

DOE fundamentals handbook: Chemistry  

Science Conference Proceedings (OSTI)

The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems.

Not Available

1993-01-01T23:59:59.000Z

445

NREL: Energy Sciences - Daniel Ruddy  

NLE Websites -- All DOE Office Websites (Extended Search)

Ruddy Ruddy Scientist III Photo of Daniel Ruddy Phone: (303) 384-6322 Email: dan.ruddy@nrel.gov At NREL Since: 2010 Dan Ruddy received a Ph.D. degree in Inorganic Chemistry from the University of California, Berkeley in 2008. His research combined synthetic molecular and materials chemistry with detailed characterization to study novel heterogeneous catalysts. He then worked on a variety of catalyst development projects at the Dow Chemical Company in the Renewable Feedstocks & Process Catalysis Group before joining the Chemical and Nanoscale Science Group at NREL in 2010. Dr. Ruddy's research at NREL integrates the synthesis and characterization of functional molecules and materials for advanced energy technologies including solar fuels production, biomass conversion catalysis, and next-generation PV materials.

446

Proceedings of the 27th Ris International Symposium on Materials Science  

E-Print Network (OSTI)

and Plasma Research Department, ** Danish Polymer Centre, *** Materials Research Department, Frederiksborgvej

447

DOE-NSF-NIH Workshop on Opportunities in THz Science, February 12-14, 2004  

SciTech Connect

This is the report of the Workshop on Opportunities in THz Science, held on February 12-14, 2004 in Arlington, VA. This workshop brought together researchers who use or produce THz radiation for physics, chemistry, biology, medicine, and materials science to discuss new research opportunities and common resource needs. The charge from the sponsors of the workshop was to focus on basic science questions within these disciplines that have and can be answered using THz radiation.

Sherwin, M.A.; Bucksbaum, P.H.; Schmuttenmaer, C. A.; Allen, J.; Biedron, S.; Carr, L.; Chamberlain, M.; Crowe, T.; DeLucia, F.; Hu, Q.; Jones, B.; Noordham, B.; Norris, T.; Orenstein, J.; Unterrainer, K.; Van der Meer, L.; Wilke, I.; Williams, G.; Zhang, X.-C.; Cheville, A.; Markelz, A.; Parks, B.; Plancken, P.; Shan, J.; Austin, B.; Basov, D.; Citrin, D.; Grundfest, W.; Heinz, T.; Kono, J.; Mittleman, D.; Siegel, P.; Taylor, T.; Jones, B.; Markelz, A.; Martin, M.; Nelson, K.; Smith, T.; Williams, G.; Allen, M.; Averitt, R.; Brunel, L.; Heilweil, T.; Heyman, J.; Jepsen, P.; Kaind, R.; Leemans, W.; Mihaly, L.; Rangan, C.; Tom, H.; Wallace, V.; Zimdars, D.

2004-02-14T23:59:59.000Z

448

NERSC-ScienceHighlightsJan2013.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

January 2013 January 2013 NERSC Science Highlights --- 1 --- NERSC User Science Highlights Math AMR method allows pore- scale modeling of carbon sequestration effects at unprecedented scale (D. Trebotich, LBNL) Climate Study sheds light on question of how well climate change mitigation might defer sea level rise (A. Hu, NCAR) Chemistry New method affords molecular- level insight into process responsible for lithium battery failure (T. Miller, Caltech) Materials Computation helps elucidate mechanism of explosive decomposition (M. Kuklja, U. Maryland) Materials ab initio study of key ceramic structure is important first step in understanding advanced properties of important mineral (W-Y. Ching, UMKC) Fusion Explanation of the source of intrinsic rotation in fusion

449

NERSC-ScienceHighlightsMarch2013.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

March 2013 March 2013 NERSC Science Highlights --- 1 --- NERSC User Science Highlights Materials High-temp superconductivity findings net researchers the first NERSC Award for High Impact Scientific Achievement (T. Das, LANL) Fusion Simulations show for the first time intrinsic stochasticity in magnetically confined toroidal plasma edges (L. Sugiyama, MIT) Fusion Direct simulation of freely decaying turbulence in 2-D electrostatic gyrokinetics (W. Dorland, U. Maryland) Fusion NIMROD simulations explain DIII-D shot variability (V. Izzo, General Atomics) Materials Semiconductor exciton binding energy variation explained (Z. Wu, Colo. Sch. Mines) Chemistry Study points the way toward more efficient catalysts (S. Chen, PNNL) January 2 013 Origin of the Variation of Exciton Binding

450

emc2 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

emc2 emc2 Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications Contact BES Home Centers emc2 Print Text Size: A A A RSS Feeds FeedbackShare Page Energy Materials Center at Cornell (EMC2) Director(s): Hector D. Abruna Lead Institution: Cornell University Mission: To advance the science of energy conversion and storage by understanding and exploiting fundamental properties of active materials and their interfaces. Research Topics: catalysis (homogeneous), catalysis (heterogeneous), energy storage (including batteries and capacitors), hydrogen and fuel cells, defects, charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable

451

RPEMSC | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Centers » Centers » RPEMSC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications Contact BES Home Centers RPEMSC Print Text Size: A A A RSS Feeds FeedbackShare Page Re-Defining Photovoltaic Efficiency Through Molecule Scale Control Director(s): James Yardley Lead Institution: Columbia University Mission: To develop the enabling science needed to realize breakthroughs in the efficient conversion of sunlight into electricity in nanometer sized thin films. Research Topics: solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials) Materials Studied: MATERIALS: semiconductor, organic semiconductor, metal, polymer, optoelectronic and metamaterial, transparent conductor

452

Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis  

E-Print Network (OSTI)

showcase the power of chemistry in creating novel materials.J. R. Journal of Physical Chemistry 1996, 100, 7212-7219.781-783. Lobana, T. S. In The chemistry of organophosphorous

Liu, Haitao

2007-01-01T23:59:59.000Z

453

Materials Performance Staff  

Science Conference Proceedings (OSTI)

... Kinetics Staff; Materials Science and Engineering Division Staff Directory; MML Organization. Contact. Materials Performance ...

2013-08-20T23:59:59.000Z

454

Materials Under Extremes | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Defect Physics Lightweight Related Research Functional Materials for Energy Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems...

455

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

O P Q R S O P Q R S T U V W X Y Z Nachman, Iftach (Iftach Nachman) - Department of Molecular Genetics and Biochemistry, Tel Aviv University Nack, Frank (Frank Nack) - Research Institute Computer Science, Universiteit van Amsterdam Nadal, Jean-Pierre (Jean-Pierre Nadal) - Laboratoire de Physique Statistique, Département de Physique, École Normale Supérieure Nadathur, Gopalan (Gopalan Nadathur) - Department of Computer Science and Engineering, University of Minnesota Nadeau, David R. (David R. Nadeau) - San Diego Supercomputer Center, University of California at San Diego Nagpal, Radhika (Radhika Nagpal) - School of Engineering and Applied Sciences, Harvard University Nagurney, Anna (Anna Nagurney) - Isenberg School of Management, University of Massachusetts at Amherst

456

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Ha, Phuong H. (Phuong H. Ha) - Department of Computer Science, Universitetet i Tromsø Ha, Soonhoi (Soonhoi Ha) - School of Computer Science and Engineering, Seoul National University Haarslev, Volker (Volker Haarslev) - Department of Computer Science and Software Engineering, Concordia University Habash, Nizar (Nizar Habash) - Center for Computational Learning Systems, Columbia University Habel, Annegret (Annegret Habel) - Department für Informatik, Carl von Ossietzky Universität Oldenburg Habra, Naji (Naji Habra) - Faculté d'informatique, Facultés Universitaires Notre-Dame de la Paix Habrard, Amaury (Amaury Habrard) - Centre de Mathématiques et Informatique, Université de Provence Hachenberger, Peter (Peter Hachenberger) - Wiskunde en Informatica,

457

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

L M N O P Q R S L M N O P Q R S T U V W X Y Z Kaâniche, Mohamed (Mohamed Kaâniche) - Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS Kaasbøll, Jens (Jens Kaasbøll) - Institutt for Informatikk, Universitetet i Oslo Kabal, Peter (Peter Kabal) - Department of Electrical and Computer Engineering, McGill University Kaban, Ata (Ata Kaban) - School of Computer Science, University of Birmingham Kabanets, Valentine (Valentine Kabanets) - School of Computing Science, Simon Fraser University Kabanza, Froduald (Froduald Kabanza) - Département d'informatique, Université de Sherbrooke Kabara, Joseph (Joseph Kabara) - School of Information Sciences, University of Pittsburgh Kachroo, Pushkin (Pushkin Kachroo) - Department of Electrical and Computer Engineering, University of Nevada at Las Vegas

458

Polymers and Coatings:Materials Science & Technology, MST-7: Los Alamos  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymers and Coatings (MST-7) Polymers and Coatings (MST-7) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS Polymers and Coatings Group Leader, Ross E. Muenchausen Deputy Group Leader Dominic S. Peterson Point of Contact, Group Office 505-667-6887 foam voids Foam Void Image Using X-ray Micro Tomography About MST Polymers and Coatings (MST-7) Our mission is to provide World-class design, fabrication, assembly, characterization, and field support for the wide range of targets in support of national science programs that include energy, nuclear weapons, conventional defense, industrial collaborations, nonproliferation, and the environment; Outstanding polymer science and engineering solutions in support of

459

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

U V W X Y Z U V W X Y Z Ta-Shma, Amnon (Amnon Ta-Shma) - School of Computer Science, Tel Aviv University Tabatabaee, Vahid (Vahid Tabatabaee) - Department of Computer Science, University of Maryland at College Park Tacchella, Armando (Armando Tacchella) - Dipartimento di Informatica Sistemistica e Telematica, Università degli Studi di Genova Tachi, Susumu (Susumu Tachi) - Graduate School of Media Design, Keio University Tadepalli, Prasad (Prasad Tadepalli) - School of Electrical Engineering and Computer Science, Oregon State University Tadmor, Eitan (Eitan Tadmor) - Center for Scientific Computation and Mathematical Modeling & Department of Mathematics, University of Maryland at College Park Taft, Nina -Technicolor Palo Alt(aft, Nina -Technicolor Palo Al)to

460

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

M N O P Q R S M N O P Q R S T U V W X Y Z L'Ecuyer, Pierre (Pierre L'Ecuyer) - Département d'Informatique et recherche opérationnelle, Université de Montréal la Cour-Harbo, Anders (Anders la Cour-Harbo) - Department of Control Engineering, Aalborg University La Porta, Tom (Tom La Porta) - Networking and Security Research Center & Department of Computer Science and Engineering, Pennsylvania State University La, Richard J. (Richard J. La) - Institute for Systems Research & Department of Electrical and Computer Engineering, University of Maryland at College Park Laadan, Oren (Oren Laadan) - Department of Computer Science, Columbia University Labahn, George (George Labahn) - School of Computer Science, University of Waterloo LaBean, Thomas H. (Thomas H. LaBean) - Department of Computer

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Chemistry Update  

National Nuclear Security Administration (NNSA)

Laboratory, P.O. Box 808, Live Laboratory, P.O. Box 808, Live rmore , CA 94551 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Isochronal Annealing of Radiation Damage in - and -Pu Alloys Performance Measures x.x, x.x, and x.x U.S. Russia Conference on Advances in Materials Science 1 September 2009 Scott McCall M.J. Fluss, B.W. Chung, R.G. Haire 2 Physical and Life Sciences Directorate Lawrence Livermore National Laboratory 2 Oak Ridge National Laboratory LLNL-PRES-415419 CMELS-07-0XX.2 Pure Plutonium has in many phases Pu Np U Pa Th Ac Am Cm Low Melting Point Los Alamos Science 26 (2000) CMELS-07-0XX.3 There are multiple stabilizers for -Pu, most of which contract the lattice and work over only a limited concentration range

462

A Paradigm for the Integration of Biology in Materials Science and ...  

Science Conference Proceedings (OSTI)

Aug 5, 2010 ... Purdue Research Center Focuses on Computational Materi... New Study Examines Gender Barriers in STEM... UPCOMING TMS MEETINGS...

463

Fusion Nuclear Science Facility-AT: A Material and Component Testing Device  

Science Conference Proceedings (OSTI)

Fusion Technology Facilities / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

C. P. C. Wong; V. S. Chan; A. M. Garofalo; R. Stambaugh; M. E. Sawan; R. Kurtz; B. Merrill

464

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

Science Conference Proceedings (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

465

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

Science Conference Proceedings (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

466

MEIS: Molecular Environmental & Interface Science  

NLE Websites -- All DOE Office Websites (Extended Search)

People People BL 11-2 Reports &Publications Model Compound Library SixPACK Glitch Curves MES User Resources & Instrumentation Environmental Remediation Science at SSRL MEIS Home SSRL Stanford EMSI SLAC Beam line resources and instrumentation Fundamental and applied research Why synchrotrons for environmental science? Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in the biosphere with the goal of elucidating global elemental cycles and anthropogenic influences on the environment. Key areas of investigation include the: (a) Structural chemistry of water and dissolved solutes, (b) Structural chemistry and reactivity of complex natural environmental materials with respect to heavy

467

Investigation of metal fluoride thermal energy storage materials: availability, cost, and chemistry. Final report, July 15, 1976--December 15, 1976  

DOE Green Energy (OSTI)

Storage of thermal energy in the 400 to 1000/sup 0/C range is attracting increasing consideration for use in solar power, central power, vehicular, and commercial process systems. This study investigates the practicality of using metal fluorides as the heat storage medium. The projected availability of metal fluorides has been studied and is shown to be adequate for widespread thermal storage use. Costs are projected and discussed in relation to thermal energy storage applications. Phase diagrams, heats of fusion, heat capacities, vapor pressures, toxicity, stability, volume changes, thermal conductivities, fusion kinetics, corrosion, and container materials of construction for a wide range of fluorides have been examined. Analyses of these data in consideration of thermal energy storage requirements have resulted in selection of the most cost-effective fluoride mixture for each of 23 temperature increments between 400 and 1000/sup 0/C. Thermo-physical properties of these 23 materials are presented. Comparison of fluoride with non-fluoride materials shows that the fluorides are suitable candidates for high temperature applications on the bases of cost, heat capacity/unit volume, heat capacity/unit weight, corrosive properties, and availability.

Eichelberger, J.L.

1976-12-01T23:59:59.000Z

468

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Galbraith, Aysa Akad (Aysa Akad Galbraith) - Department of Chemical and Biomolecular Engineering, North Carolina State University Gall, Daniel (Daniel Gall) - Department of Materials Science and Engineering, Rensselaer Polytechnic Institute Gallas, Márcia Russman (Márcia Russman Gallas) - Instituto de Física, Universidade Federal do Rio Grande do Sul Gallivan, Martha A. (Martha A. Gallivan) - School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Gangloff, Richard P. (Richard P. Gangloff) - Department of Materials Science and Engineering, University of Virginia Gao, Hongjun (Hongjun Gao) - Institute of Physics, Chinese Academy of Sciences Gao, Song (Song Gao) - College of Chemistry, Peking University

469

Perspectives for Emerging Materials Professionals  

Science Conference Proceedings (OSTI)

Mar 31, 2013 ... Materials Science and Engineering in the Canadian Oil Sands - Challenges & Opportunities Materials Science and Engineering: The Gateway...

470

Chemistry Department Seminar Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive of Chemistry Department Seminars Archive of Chemistry Department Seminars See also: recent Department seminars Friday, July 27, 2012 "Precise Design of Donor-Acceptor Interface based on Microphase Segregated Nanostructure" Sadayuki Asaoka, Kyoto Institute of Technology Hosted by Dr. John Miller 11:00 AM, Room 300, Chemistry Bldg. 555 Thursday, April 26, 2012 ""NOx Catalysis from the Bottom Up"" Dr. William F. Schneider, Dept. of Chemical and Biomolecular Engineering, University of Notre Dame Hosted by Ping Liu 11:00 AM, Hamilton Seminar Room, Bldg. 555 Friday, April 13, 2012 "High-energy resolution x-ray emission spectroscopy for catalysis and materials chemistry" Olga Safonova, Swiss Light Source & Energy Dept. at Paul Scherrer Institute Hosted by Dario Stacchiola

471

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 22 Environmental Concerns  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 22 Environmental Concerns Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Down

472

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 10 Minor Constituents and Phytochemicals of Soybeans  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 10 Minor Constituents and Phytochemicals of Soybeans Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Health - Nutrition -

473

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 15 Practical Foodservice Frying: Troubleshooting  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 15 Practical Foodservice Frying: Troubleshooting Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Pr

474

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 14 Industrial Frying  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 14 Industrial Frying Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Download

475

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 13 Foodservice Frying  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 13 Foodservice Frying Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloa

476

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 13 Soybean Oil Modification  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 13 Soybean Oil Modification Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutrition - Biochemistry P

477

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 12 Soybean Oil Purification  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 12 Soybean Oil Purification Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutrition - Biochemistry P

478

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 8 Soybean Proteins  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 8 Soybean Proteins Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutrition - Biochemistry Processing

479

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 9 Soybean Carbohydrates  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 9 Soybean Carbohydrates Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutrition - Biochemistry Proce

480

Olive Oil: Chemistry and Technology, 2nd EditionChapter 4 Olive Oil Composition  

Science Conference Proceedings (OSTI)

Olive Oil: Chemistry and Technology, 2nd Edition Chapter 4 Olive Oil Composition Food Science Health Nutrition Biochemistry Processing Food Science & Technology Health - Nutrition - Biochemistry Processing Press Downlo

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Deep Frying: Chemistry, Nutrition and Practical ApplicationsChapter 17 Designing Field Frying Tests  

Science Conference Proceedings (OSTI)

Deep Frying: Chemistry, Nutrition and Practical Applications Chapter 17 Designing Field Frying Tests Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press ...

482

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 11 Oil Recovery from Soybeans  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 11 Oil Recovery from Soybeans Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutrition - Biochemistry

483

Metals and ceramics division materials science program annual progress report for period ending June 30, 1980  

Science Conference Proceedings (OSTI)

Research progress is summarized concerning the structure of metals; deformation and mechanical properties; physical properties and transport phenomena; radiation effects; and engineering materials.

McHargue, C.J.

1980-10-01T23:59:59.000Z

484

The Science of Sound: Examining the Role of Materials in Musical ...  

Science Conference Proceedings (OSTI)

Materials are a hot topic in brass musical instruments: not so much because of scientific advances and innovations, but for quite the opposite reason. The debate...

485

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

E F G H I J K L M N O P Q R S E F G H I J K L M N O P Q R S T U V W X Y Z D'Ambrosio, Donato (Donato D'Ambrosio) - Dipartimento di Matematica, Università della Calabria d'Avila Garcez, Artur (Artur d'Avila Garcez) - School of Informatics, City University London D'Azevedo, Ed (Ed D'Azevedo) - Computer Science and Mathematics Division, Oak Ridge National Laboratory d'Inverno, Mark (Mark d'Inverno) - Department of Computing, Goldsmiths College, University of London D'Souza, Raissa (Raissa D'Souza) - Departments of Computer Science and Engineering and Mechanical and Aeronautical Engineering , University of California, Davis da Silva, Alberto Rodrigues (Alberto Rodrigues da Silva) - Departamento de Engenharia Informática, Universidade Técnica de Lisboa da Silva, Paulo Pinheiro (Paulo Pinheiro da Silva) - Department of

486

mathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publisher  

E-Print Network (OSTI)

sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences

Calegari, Frank

487

Exoplanet Chemistry  

E-Print Network (OSTI)

The characteristic chemistry of terrestrial planets and, in particular, of giant planets rich and poor in He and H2 are described.

Lodders, Katharina

2009-01-01T23:59:59.000Z

488

Computational Chemistry  

Science Conference Proceedings (OSTI)

... and numerical tools to quantify uncertainties for computational quantum chemistry. ... Results appear in the issue of The Journal of Chemical Physics. ...

2010-10-05T23:59:59.000Z

489

Argonne TDC: Medical and Life Sciences Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

490

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

491

Surface science | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface science Surface science Subscribe to RSS - Surface science The study of the chemical and physical processes that occur in the interface between two phases of matter, such as solid to liquid or liquid to gas. Bruce E Koel Bruce Koel is professor of chemical and biological engineering at Princeton University. He is associated faculty in chemistry at the Princeton Institute for the Science and Technology of Materials (PRISM); associated faculty in the Princeton Department of Mechanical and Aerospace Engineering, and a collaborator on the National Spherical Torus Experiment at PPPL. Koel is a Fellow of the American Association for the Advancement of Science, the American Physical Society and the American Vacuum Society, and a member of the governing board of the Council for Chemical Research.

492

Earth Sciences report, 1989--1990  

Science Conference Proceedings (OSTI)

The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

Younker, L.W.; Peterson, S.J.; Price, M.E. (eds.)

1991-03-01T23:59:59.000Z

493

NREL: Energy Sciences - Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

thermodynamics of hydrogen, methane, and carbon dioxide Electron spin resonance and nuclear magnetic resonance X-ray diffraction Inductively coupled plasma analysis...

494

RMSSEC | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

RMSSEC RMSSEC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications Contact BES Home Centers RMSSEC Print Text Size: A A A RSS Feeds FeedbackShare Page Revolutionary Materials for Solid State Energy Conversion (RMSSEC) Director(s): Donald T. Morelli Lead Institution: Michigan State University Mission: To investigate the underlying physical and chemical principles of advanced materials for the conversion of heat into electricity. Research Topics: solar (thermal), phonons, thermal conductivity, thermoelectric, mechanical behavior, charge transport, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) Materials Studied: MATERIALS: semiconductor, metal

495

MEEM | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

MEEM MEEM Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications Contact BES Home Centers MEEM Print Text Size: A A A RSS Feeds FeedbackShare Page Molecularly Engineered Energy Materials (MEEM) Director(s): Vidvuds Ozolins Lead Institution: University of California, Los Angeles Mission: To acquire fundamental understanding and control of nanoscale materials for solar energy generation and electrical energy storage. Research Topics: solar (photovoltaic), energy storage (including batteries and capacitors), charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) Materials Studied: MATERIALS: semiconductor, organic semiconductor, metal, oxide, polymer,

496

Nuclear chemistry. Annual report, 1974  

SciTech Connect

The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

Conzett, H.E.; Edelstein, N.M.; Tsang, C.F. (eds.)

1975-07-01T23:59:59.000Z

497

Certified Reference Materials (CRMs) | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Certified Certified Reference Materials (CRMs) New Brunswick Laboratory (NBL) NBL Home About Programs Certified Reference Materials (CRMs) Prices and Certificates Ordering Information Training Categorical Exclusion Determinations News Contact Information New Brunswick Laboratory U.S. Department of Energy Building 350 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL) P: (630) 252-2767 (CRM sales) F: (630) 252-6256 E: usdoe.nbl@ch.doe.gov Certified Reference Materials (CRMs) Print Text Size: A A A RSS Feeds FeedbackShare Page The U.S. Department of Energy, New Brunswick Laboratory (NBL) provides Certified Reference Materials (CRMs) for use in nuclear and nuclear-related analytical measurement activities. NBL maintains a catalog which lists and describes the CRMs currently available to both governmental and private

498

Department of Materials Science and Engineering University of Wisconsin-Madison  

E-Print Network (OSTI)

Materials for nuclear energy system, fission reactors, nuclear fuels, energy policy, sustainability & Engineering Nanomaterials growth and characterization; piezoelectric nanogenerators and piezotronics; photovoltaic and photoelectrochemical devices; nanomaterials for energy storage; nanoelectronics; nano

Evans, Paul G.

499

JOURNAL OF MATERIALS SCIENCE LETTERS 17 (1998) 17231725 Computer simulation of powder compaction of spherical particles  

E-Print Network (OSTI)

in material industries. A good example is the compaction of ceramic or metallic powders to make green com- cles. However, as most metallic and ceramic powder systems used in industry are polydispersed and can

Ekere, Ndy

500

Materials and Science in Sports (CD-ROM) TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

Fabrication of the Modern Golf Club [pp. 71-82] C.Shira and F.H.(Sam)Froes. String Materials Relatively Bown and Arrow Dynamics [pp. 83-93] Ihor Zanevskyy ...