Sample records for materials science chemistry

  1. Materials Science and Materials Chemistry for Large Scale Electrochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

  2. Introduction to Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 L ast edited: 2014-06-02 08:56:54...

  3. June 26 Training: Using Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0...

  4. Chemistry and materials science research report

    SciTech Connect (OSTI)

    Not Available

    1990-05-31T23:59:59.000Z

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  5. Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General Chemistry,

    E-Print Network [OSTI]

    Pfeifer, Holger

    Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General & Inorganic Materials Chemistry (4 CP) Energy Science and Technology I (5 CP) Surfaces/Interfaces/ Heterogen. Catalysis/ Electrocatalysis (5 CP) Materials Science II (5 CP) Energy Science and Technology II ( 5 CP

  6. Chemistry and Materials Science at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES Thematerials | CenterChemistry

  7. Introduction to Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibraryDocumentationTechnical'Make'Intro Chem

  8. Chemistry and Materials Science Directorate 2005 Annual Report

    SciTech Connect (OSTI)

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-08-08T23:59:59.000Z

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent discovery of a new source of coherent light adds a new tool to an array of methods we use to more fully understand the properties of materials. Insights into the early stages of polymer crystallization may lead to new materials for our national-security mission and private industry. (3) Science Supporting National Objectives at the Intersection of Chemistry, Materials Science, and Biology--We are improving drug binding for cancer treatment through the use of new tools that are helping us characterize protein-antibody interactions. By probing proteins and nucleic acids, we may gain an understanding of Alzheimer's, Mad Cow, and other neurodegenerative diseases. (4) Applied Nuclear Science for Human Health and National Security--Our work with cyanobacteria is leading to a fuller understanding of how these microorganisms affect the global carbon cycle. We are also developing new ways to reduce nuclear threats with better radiation detectors. Dynamic Teams: The dynamic teams section illustrates the directorate's organizational structure that supports a team environment across disciplinary and institutional boundaries. Our three divisions maintain a close relationship with Laboratory programs, working with directorate and program leaders to ensure an effective response to programmatic needs. CMS's divisions are responsible for line management and leadership, and together, provide us with the flexibility and agility to respond to change and meet program milestones. The three divisions are: Materials Science and Technology Division; Chemistry and Chemical Engineering Division; and Chemical Biology and Nuclear Science Division. By maintaining an organizational structure that offers an environment of collaborative problem-solving opportunities, we are able to nurture the discoveries and breakthroughs required for future successes. The dynamic teams section also presents the work of CMS's postdoctoral fellows, who bring to the Laboratory many of the most recent advances taking place in academic departments and provide a research stimulus to established research teams. Postdo

  9. Facts and figures for the chemistry and materials science directorate (March 1997)

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-03-01T23:59:59.000Z

    This document contains a wide range of budgetary, personnel, and other administrative information about LLNL and the Chemistry and Materials Science Directorate.

  10. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-12-01T23:59:59.000Z

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  11. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect (OSTI)

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

    1989-12-31T23:59:59.000Z

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  12. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15T23:59:59.000Z

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  13. Chemistry and Materials Science progress report, FY 1994. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  14. Chemistry and materials science progress report, FY 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  15. Chemistry and Materials Science, 1990--1991. [Second annual report

    SciTech Connect (OSTI)

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A. [eds.

    1991-12-31T23:59:59.000Z

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  16. Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Science, Nanotechnology Shanghai, China We have several job openings for experienced polymer chemists / nanotechnology. We will consider hiring chemists who are skillful in macromolecular synthesis ("click chemistry

  17. Chemistry and Materials Science. Progress report, first half, FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

  18. Materials Chemistry | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety

  19. Biology Chemistry & Material Science Laboratory 1 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterialProductionBiological

  20. Biology Chemistry & Material Science Laboratory 2 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterialProductionBiologicalLaboratories

  1. INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE

    E-Print Network [OSTI]

    Simaan, Nabil

    .m.satterwhite@vanderbilt.edu Interdisciplinary Graduate Program in Materials Science Vanderbilt University School of Engineering PMB 350106INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE Materials advancements, faculty members from chemistry, physics, materials engineering, chemical engineering, electrical

  2. ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP

    E-Print Network [OSTI]

    Pfeifer, Holger

    ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

  3. Technetium Chemistry Science Challenges in Environmental Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technetium Chemistry Science Challenges in Environmental Science and Waste Processing Workshop Sponsored by Environmental Molecular Science Laboratory Richland, Washington July...

  4. ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP

    E-Print Network [OSTI]

    Pfeifer, Holger

    ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Science Chemistry Physics Engineering Nanomaterials Introductory Engineering 5 CP #12;

  5. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    SciTech Connect (OSTI)

    Lindle, Dennis W.

    2011-04-21T23:59:59.000Z

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  6. Chemistry Student Handbook College of Science

    E-Print Network [OSTI]

    Hickman, Mark

    Chemistry Student Handbook College of Science React. Science #12;Contents 2 Welcome to the Department of Chemistry 2 Course Advice 3 What is Chemistry? 4 Career Profiles in Chemistry 5 An Undergraduate Degree in Chemistry 6 Chemistry Streams 13 Chemistry Honours Programme 14 Research

  7. Why chemistry? Chemistry is fundamental: it is the enabling science

    E-Print Network [OSTI]

    Sussex, University of

    Chemistry Why chemistry? Chemistry is fundamental: it is the enabling science that underlies many technology. A chemistry degree allows you to understand and to contribute to our future. Chemistry is challenging: understanding the very fabric of matter is both stimulating and rewarding. Studying chemistry

  8. Screen Electrode Materials & Cell Chemistries and Streamlining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Cell Chemistries and Streamlining Optimization of Electrode Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode 2010 DOE Vehicle Technologies...

  9. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  10. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science Materials

  11. Chemistry of Organic Electronic Materials 6483-Fall

    E-Print Network [OSTI]

    Sherrill, David

    Chemistry of Organic Electronic Materials 6483- Fall Tuesdays organic materials. The discussion will include aspects of synthesis General introduction to the electronic structure of organic materials with connection

  12. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials Science

  13. Department of Materials Science &

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  14. Chemistry | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization ofChemistry and TransportChemistry of

  15. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  16. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  17. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  18. alloying materials science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graduate students -- whose backgrounds include metallurgy, polymer science, chemistry, physics, ceramics Acton, Scott 19 Materials Science and Engineering B59 (1999) 253257...

  19. Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of theChemistry OxideChemistry Soft

  20. Computational Science and Engineering Certification for Chemistry

    E-Print Network [OSTI]

    Gilbert, Matthew

    Computational Science and Engineering Certification for Chemistry The Computational Science that are distinct from already- required coursework. To receive a certificate in "Computational Science a solid base in problem solving using computation as a major tool for modeling complicated problems

  1. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    SciTech Connect (OSTI)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25T23:59:59.000Z

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  2. Postdoctoral Researcher, Materials Chemistry (2 year contract)

    E-Print Network [OSTI]

    Humphrys, Mark

    Postdoctoral Researcher, Materials Chemistry (2 year contract) Adaptive Sensors Group Dublin City Foundation Ireland through the CLARITY CSET (www.clarity- centre.org), supplemented by significant project partners. The group's research strategy in materials chemistry research is to closely align activity

  3. MATERIALS SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Knobloch,Jürgen

    MATERIALS SCIENCE AND ENGINEERING BACHELOR OF SCIENCE MASTER OF SCIENCE Get your own impression. Materials Science and Engineering in Ilmenau stands for: + a broad and practical university education Catňlica del Peru (PUCP) in Lima/Peru and to receive a double degree in Materials Science and Engineering

  4. UNDERGRADUATE Materials Science & Engineering

    E-Print Network [OSTI]

    Tipple, Brett

    UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  5. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  6. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation and the person responsible for the integration of science and resources in the Materials Science & Technology University in Mexico City and a Ph.D. in Materials Engineering from Rensselaer Polytechnic Institute, Troy NY

  7. Materials Science & Engineering

    E-Print Network [OSTI]

    Reisslein, Martin

    Materials Science & Engineering The development of new high-performance materials for energy Research in Niskayuna, NY. He received his BS and PhD in Materials Science and Engineering at MIT. For 22 and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  8. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

  9. MAY 14, 2008 Chemistry and environmental science professor receives Carroll

    E-Print Network [OSTI]

    Reid, Scott A.

    MAY 14, 2008 Chemistry and environmental science professor receives Carroll College faculty award WAUKESHA, WIS.-- An associate professor of chemistry and environmental science has received an annual

  10. MATERIALS SCIENCE ENGINEERING

    E-Print Network [OSTI]

    California at Irvine, University of

    MATERIALS SCIENCE AND ENGINEERING GRADUATE MANUAL COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT BERKELEY October 23, 2013 #12;Materials Science and Engineering University of California at Berkeley Page 2 Subject Matter · Outcome of the Preliminary Exam #12;Materials Science and Engineering University

  11. adsorption material science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering inter-twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within the College of Engineering...

  12. Chemistry -Bachelor of Science (SCH1UG) Total Credits Required: 128 Chemistry/Polymers -ACS Certified

    E-Print Network [OSTI]

    Chemistry - Bachelor of Science (SCH1UG) Total Credits Required: 128 Chemistry/Polymers - ACS credits Course Credits Course Credits CH1150 University Chemistry I AND 3 CH4610 Intro to Polymer Science 3 CH1151 University Chemistry Lab 1 AND 1 CH4620 Polymer Chemistry 3 CH1153 University Chemistry

  13. Master of Science in Chemistry/Master of Science in Environmental Science (Public and Environmental Affairs)

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Master of Science in Chemistry/Master of Science in Environmental Science (Public and Environmental and Environmental Affairs for study toward a M.S. degree in Chemistry and a M.S. in Environmental Science and environmental science, distributed among the following six areas of chemistry and environmental science: (1

  14. Enriched Stable Isotope Materials and Chemistry | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Chemistry SHARE Enriched Stable Isotope Materials and Chemistry Reductiondistillation of calcium-48 metal valued at over 900,000. An inventory of 2,300 batches of...

  15. Chemistry -Bachelor of Science (SCHUG) Total Credits Required: 128 Chemistry -ACS Certified

    E-Print Network [OSTI]

    Chemistry - Bachelor of Science (SCHUG) Total Credits Required: 128 Chemistry - ACS Certified Major of the following courses Course Credits Course Credits CH1150 University Chemistry I AND 3 CH4110 Pharmaceutical Chemistry: Drug Action 3 CH1151 University Chemistry Lab 1 AND 1 CH4120 Pharmaceutical Chemistry: Drug

  16. Roadmap: Chemistry Chemistry -Bachelor of Science [AS-BS-CHEM-CHEM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Chemistry - Bachelor of Science [AS-BS-CHEM-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD for certification by the American Chemical Society CHEM 10060 General Chemistry I (4) and CHEM 10062 General

  17. Roadmap: Chemistry Chemistry -Bachelor of Science [AS-BS-CHEM-CHEM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Chemistry ­ Chemistry - Bachelor of Science [AS-BS-CHEM-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 2 | Last Updated: 17-May-12/LNHD for certification by the American Chemical Society CHEM 10060 General Chemistry I (4) and CHEM 10062 General

  18. Materials sciences programs, Fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  19. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science The Quest for Efficiency in Thermoelectric Nanowires On February 26, 2015, in Materials Science, News, News & Events, Research & Capabilities Sandia researchers...

  20. CHEMISTRY 1 Faculty of Natural Sciences, Department of

    E-Print Network [OSTI]

    CHEMISTRY 1 Faculty of Natural Sciences, Department of --Chemistry This publication refers.imperial.ac.uk/pgprospectus. Chemistry Interests in chemistry at Imperial College cover physical, organic, inorganic, analytical, polymer and biological chemistry and chemical crystallography, as well as intersectional and medical topics

  1. agricultural chemistry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Chemistry Honors in Chemistry Research Instructions (Seniors only) Materials Science Websites Summary: Department of Chemistry Honors in Chemistry Research Instructions...

  2. Shock-induced chemistry in organic materials

    SciTech Connect (OSTI)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20T23:59:59.000Z

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  3. Chemistry Controls Material's Nanostructure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of theChemistry Oxide Interfaces

  4. Chemistry -Bachelor of Science (SCH5UG) Total Credits Required: 128 Chemistry/Environmental -ACS Certified

    E-Print Network [OSTI]

    Chemistry - Bachelor of Science (SCH5UG) Total Credits Required: 128 Chemistry/Environmental - ACS credits Course Credits Course Credits CH1150 University Chemistry I AND 3 BL1040 Principles of Biology 4 CH1151 University Chemistry Lab 1 AND 1 BL3310 Environmental Microbiology 3 CH1153 University

  5. Chemistry and Processing of Nanostructured Materials

    SciTech Connect (OSTI)

    Fox, G A; Baumann, T F; Hope-Weeks, L J; Vance, A L

    2002-01-18T23:59:59.000Z

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation of these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.

  6. Chemistry for Measurement and Detection Science publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of theChemistry Oxide InterfacesChemistry

  7. Action Plan Materials Science

    E-Print Network [OSTI]

    Fitze, Patrick

    sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

  8. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One of the greatNuclear Science/Nuclear

  9. Materials sciences programs, fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  10. ASTRONOMY BIOLOGY CHEMISTRY COMPUTER-SCIENCE GEOGRAPHY MATHEMATICS PHYSICS STATISTICS

    E-Print Network [OSTI]

    Bernstein, Phil

    BIOMEDICAL-ENGINEERING ELECTRONIC- ENGINEERING ASTRONOMY BIOLOGY CHEMISTRY COMPUTER-SCIENCE GEOGRAPHY MATHEMATICS PHYSICS STATISTICS HEALTHCARE BIOMEDICAL-ENGINEERING ELECTRONIC-ENGINEERING ASTRONOMY BIOLOGY C H HEALTHCARE BIOMEDICAL-ENGINEERING ELECTRONIC-ENGINEERING ASTRONOMY BIOLOGY CHEMISTRY COMPUTER

  11. NERSC training events: Data Transfer and Archiving; Chemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications NERSC training events: Data Transfer and Archiving; Chemistry and Material Sciences...

  12. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass, Computational Modeling & Simulation, CRF, Energy, Energy Storage, Materials Science, News, News & Events, Nuclear Energy, Partnership, Renewable Energy, Research &...

  13. Materials Sciences and Engineering Program | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

  14. Panel 3 - material science

    SciTech Connect (OSTI)

    Sarrao, John L [Los Alamos National Laboratory; Yip, Sidney [MIT

    2010-01-01T23:59:59.000Z

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  15. Materials Science Application Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPA

  16. School of Chemistry FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

    E-Print Network [OSTI]

    Rzepa, Henry S.

    School of Chemistry FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES CHEMISTRYPOSTGRADUATE MASTERS DEGREES #12;WWW.CHEM.LEEDS.AC.UK 02 School of Chemistry // MASTERS PROGRAMMES contents 03 Welcome 04 Study and Accommodation 19 Visit Us #12;SCHOOLOFCHEMISTRY 03 Welcome to the School of Chemistry The School warmly welcomes

  17. Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials

    E-Print Network [OSTI]

    Destaillats, Hugo

    2010-01-01T23:59:59.000Z

    VOCs emitted by reactions of HVAC filters with ozone usingChemistry and Emissions on HVAC Filter Materials HugoChemistry and Emissions on HVAC Filter Materials Authors:

  18. Materials Science and Technology Teachers Handbook

    SciTech Connect (OSTI)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04T23:59:59.000Z

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  19. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials Science, News, News &...

  20. Sandia National Laboratories: materials science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selected for Outstanding Engineer Award On December 10, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar...

  1. Chemistry -Bachelor of Science (SCH3UG) Total Credits Required: 128 Chemistry/Secondary Education -ACS Certified

    E-Print Network [OSTI]

    Chemistry - Bachelor of Science (SCH3UG) Total Credits Required: 128 Chemistry/Secondary Education - 40 credits Course Credits Course Credits CH1150 University Chemistry I AND 3 CH3020 Laboratory Teaching Internship 2 CH1151 University Chemistry Lab 1 AND 1 CH4810 Design/Oper of High School Chemistry

  2. Behavioral Sciences | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Computational Engineering Computer Science Data Earth Sciences Energy Science Future Technology Knowledge Discovery Materials Mathematics National Security Systems...

  3. NREL: Energy Sciences - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletterAcademy AlumniNews BelowMaterials

  4. Chemistry and Materials Science Weapons-Supporting Research and Laboratory-Directed Research and Development. Second half progress report, FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Thrust areas of the weapons-supporting research are surface research, uranium research, physics and processing of metals, energetic materials. Group study areas included strength of Al and Al-Mg/alumina bonds, advanced synchrotron radiation study of materials, and theory, modeling, and computation. Individual projects were life prediction for composites and thermoelectric materials with exceptional figures of merit. The laboratory-directed R and D include director`s initiatives (aerogel-based electronic devices, molecular levels of energetic materials), individual projects, and transactinium institute studies. An author index is provided.

  5. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  6. A Materials World Materials science and Engineering at the ANU

    E-Print Network [OSTI]

    A Materials World Materials science and Engineering at the ANU For a challenging and rewarding a career in materials science and engineering. Materials science is emerging as one of the most important. Researchers at ANU's Department of Electronic Materials Engineering are leading nanotube science

  7. Materials and Metallurgy Materials Science and Metallurgical Engineering

    E-Print Network [OSTI]

    Provancher, William

    Materials and Metallurgy Materials Science and Metallurgical Engineering Objective Students "Rocks and Materials Science" Presentation. Review uses of rocks. Explain that engineers extract Engineers to efficiently and safely extract ore, Metallurgical Engineers to refine the copper, and Materials

  8. Materials & Engineering Sciences Center

    E-Print Network [OSTI]

    Atoms to Continuum Sandia: 40 years of Hydrogen Science and EngineeringSandia: 40 years of Hydrogen Microsensors CombustionEngineering Science Hydrogen: the renewable energy carrier for the 21st Century for complex hydrides (engineering properties, safety, contaminations....) Other Hydrogen Storage Concepts

  9. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  10. Chemistry for Measurement and Detection Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forensics, and consequence management," Journal of Radioanalytical and Nuclear Chemistry, 1-18 (2012). Magen E. Coleman, Evelyn M. Bond, W. Allen Moody, and Lav Tandon,...

  11. Materials Science and Technology Mechanical and Materials Engineering

    E-Print Network [OSTI]

    Birmingham, University of

    Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

  12. Chemistry & Physics at Interfaces | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for growing functional materials, such as manganese oxides for electronic and solid-oxide fuel cell applications. Phase coexistence enables switching in strained BiFeO3 July 17,...

  13. Sandia National Laboratories: materials science and engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  14. MaterialsChemistryA Materials for energy and sustainability

    E-Print Network [OSTI]

    Lin, Zhiqun

    and natural gas. To date, over 80% of energy consumption is generated from fossil fuels, which causes Ming He received his PhD degree in Polymer Chemistry and Physics from the Fudan Univer- sity of China Engineering at Xia- men University, China. He is currently a visiting PhD student in Prof. Zhiqun Lin's group

  15. MATERIALS SCIENCE HEALTHCARE POLICY

    E-Print Network [OSTI]

    Falge, Eva

    for Polymer Research are paving the way to optimizing organic substances for use in solar cells, light-emitting diodes and memory chips, and are using molecular materials to develop electronic components

  16. Materials Science and Engineering Graduate Program Requirements

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science and Engineering Graduate Program Requirements The Department of Materials Science received their B.S. degree from Materials Science and Engineering at the University of Utah and received by the Supervisory Committee All petitions must be presented to the Materials Science and Engineering faculty

  17. The Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Texas at Arlington, University of

    The Department of Materials Science and Engineering 325 Woolf Hall · Box 19031 · 817-272-2398 www.uta.edu/mse Overview The interdisciplinary field of materials science and engineering has become critical to many and scientists with education and training in materials science and engineering. The Materials Science

  18. Introduction Materials science and engineering is on

    E-Print Network [OSTI]

    Prentiss, Mara

    Introduction Materials science and engineering is on a plateau. As a field, it has been one is biomaterials. A Short History of Materials Science and Engineering Materials science and engineering (MS&E) has and engineering. What is the Next BigThing for Materials Science? A50-year history of productive reinven- tion

  19. Materials Science Program Graduate Studies Handbook

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    Materials Science Program Graduate Studies Handbook 2012-2014 Lynda McGarry, Materials Science@chem.rochester.edu #12;University of Rochester Graduate Handbook Materials Science Program updated December 2012 Page 2 and Exit Exams 15 Plan A Thesis Exams 15 Plan B Exams 16 List of Materials Science faculty 17 Ph.D. Student

  20. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyForThe StandardInspiringJennaInstitute

  1. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf NSEC »INNOVATIONFaces

  2. Chemistry for Measurement and Detection Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization ofChemistry and Transport Chemistry

  3. Science in China Series B: Chemistry 2009 SCIENCE IN CHINA PRESS

    E-Print Network [OSTI]

    Wang, Jianbo

    Science in China Series B: Chemistry © 2009 SCIENCE IN CHINA PRESS Springer Sci China Ser B Sciences, Beijing 100871, China In this paper, we report the synthesis of furan derivatives from allenic-009-0224-7 Corresponding author (email: wangjb@pku.edu.cn) Supported by the National Natural Science Foundation of China

  4. Rank in materials science Rank in chemistry

    E-Print Network [OSTI]

    Adler, Joan

    ,503 60.12 31 Paul W.M. Blom University of Groningen 37 2,176 58.81 32 Jenny Nelson Imperial College London 31 1,821 58.74 33 David J. Mooney Harvard University 43 2,512 58.42 34 Tsu-Wei Chou University

  5. Chemistry and Material Sciences Codes at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of

  6. Materials Science and Engineering Graduate Program Requirements

    E-Print Network [OSTI]

    Tipple, Brett

    Materials Science and Engineering Graduate Program Requirements GRADUATE PROGRAMS The Department of Materials Science and Engineering at the University of Utah offers three graduate degrees: Master of Science petitions must be presented to the Materials Science and Engineering faculty for review and voting during

  7. Page 1 of 2 MATERIALS ENGINEERING SCIENCE

    E-Print Network [OSTI]

    Mukhopadhyay, Sharmila M.

    Page 1 of 2 ME 370/570 MATERIALS ENGINEERING SCIENCE Fall 2011 TEXT: W. D. Callister, Materials: This is the first course where most of you will be introduced to Materials Science & Engineering. All engineers need) is normally the first part of a 2-course sequence: ME 370: Materials Engineering Science - Introduction ME 371

  8. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    SciTech Connect (OSTI)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01T23:59:59.000Z

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  9. Materials Science and Engineering Program Objectives

    E-Print Network [OSTI]

    Lin, Zhiqun

    Materials Science and Engineering Program Objectives Within the scope of the MSE mission, the objectives of the Materials Engineering Program are to produce graduates who: A. practice materials engineering in a broad range of industries including materials production, semiconductors, medical

  10. Materials Science | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials ScienceMaterials

  11. What is Materials Science and Engineering?

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    What is Materials Science and Engineering? Materials Science and Engineering (MS&E) is an interdisciplinary field devoted to providing the world with better materials and materials processing technology. Much of MS&E is devoted to understanding how the structure of a material affects its macroscopic

  12. Materials Science & Engineering | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPA Advanced

  13. Materials science matchmaker | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials science matchmaker ORNL-UTK joint faculty helps students navigate national lab network As a joint faculty appointee, David Mandrus conducts materials synthesis research...

  14. Materials Science Materials science has had a profound influence on the development of our technologically

    E-Print Network [OSTI]

    New Hampshire, University of

    Materials Science Materials science has had a profound influence on the development of our of materials. In addition, the materials engineer seeks to discover methods of fabricating materials specifically on materials science. In this group, research is being conducted on fracture and fatigue

  15. BACHELOR OF MATERIALS SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Thomas, David D.

    1 BACHELOR OF MATERIALS SCIENCE AND ENGINEERING PROGRAM DEPARTMENT OF CHEMICAL ENGINEERING-5762) #12;2 TABLE OF CONTENTS I. MATERIALS SCIENCE AND ENGINEERING (MSE) 3 II. PROGRAM EDUCATIONAL MAP FOR MSE MAJORS 13 #12;3 I. MATERIALS SCIENCE AND ENGINEERING (MSE) Advances in technology

  16. The Future of Materials Science and Engineering

    E-Print Network [OSTI]

    Li, Mo

    The Future of Materials Science and Engineering: An Industry Perspective May 14-15, 2013 #12;Proceedings of the Symposium on "The Future of Materials Science and Engineering: An Industry Perspective requirements and applications. Materials science and engineering (MSE) programs at universities across

  17. Chemistry & Physics at Interfaces | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of theChemistry Oxide Interfaces Chemical

  18. Biological and Chemical Sciences Department of Biological and Chemical Sciences

    E-Print Network [OSTI]

    Heller, Barbara

    Chromatography Regulatory Science Synthesis and Characterization of Inorganic Materials Synthesis Analytical Method Development Analytical Spectroscopy Characterization of Inorganic and Organic Materials, molecular biophysics and biochem- istry; analytical chemistry, inorganic chemistry, materi- als chemistry

  19. Materials Science Applications at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPAScience

  20. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect (OSTI)

    Samara, G.A.

    1997-05-01T23:59:59.000Z

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  1. Minor in Materials Science (EMTS) Department of Chemical Engineering & Materials Science

    E-Print Network [OSTI]

    Woodall, Jerry M.

    (concurrent enrollment recommended) EMS 180 Materials in Engineering Design 4 S C- or better in ENG 452/10/2013 Minor in Materials Science (EMTS) Department of Chemical Engineering & Materials Science majoring in engineering, physical sciences, biological sciences, and mathematics. Completion of the minor

  2. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect (OSTI)

    Samara, G.A.

    1996-02-01T23:59:59.000Z

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  3. Monitoring the chemistry and materials of the Magma binary-cycle generating plant

    SciTech Connect (OSTI)

    Shannon, D.W.; Elmore, R.P.; Pierce, D.D.

    1981-10-01T23:59:59.000Z

    This monitoring program includes studies of the following areas: chemistry of the geothermal brine, chemistry of the cooling water, corrosion of materials in both water systems, scale formation, suspended solids in th brine, and methods and instruments to monitor corrosion and chemistry. (MHR)

  4. Frontiers in Catalysis Science and Engineering Materials Science

    E-Print Network [OSTI]

    Frontiers in Catalysis Science and Engineering Materials Science Chemical Imaging Date: May 13 the quality of human life but also critical to our survival. To power the planet for a better future

  5. Materials Science and Engineering Onsite Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology...

  6. Sandia National Laboratories: Materials Science and Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CapabilitiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project...

  7. Roadmap: Physics Chemistry -Bachelor of Science [AS-BS-PHY-CHEM

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Physics ­ Chemistry - Bachelor of Science [AS-BS-PHY-CHEM] College of the Arts and Sciences Department of Physics Chemistry Minor [CHEM] College of the Arts and Sciences Department Introductory Physics Seminar 1 US 10097 Destination Kent State: First Year Experience 1 Not required

  8. EnvironMEntAl chEMiStry College of Natural Science and Mathematics

    E-Print Network [OSTI]

    Hartman, Chris

    EnvironMEntAl chEMiStry College of Natural Science and Mathematics Department of Chemistry education and research opportunities focused on the molecular scale as- pects of environmental science prepares students for careers in the environmental science and technology sector as specialists

  9. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science, News, News & Events, Office of Science, Research & Capabilities Research on topological insulators (TIs) has drawn intensive interests. The type-II InAsGaSb...

  10. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Washington DC, Sandian's Christopher San Marchi (manager of Sandia's Hydrogen and Metallurgy Science Dept.) and Brian Somerday (also in the Hydrogen and Metallurgy Science...

  11. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  12. Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of theChemistry

  13. EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to construct and operate an Actinide Chemistry and Repository Science Laboratory to support chemical research activities related to the...

  14. Vanderbilt Interdisciplinary Program in Materials Science

    E-Print Network [OSTI]

    Simaan, Nabil

    on solar energy conversion, energy storage, and energy efficiency. semiconductors Spectacular new the development of materials with novel optical properties and functionalities. energy Energy is the most pressing a variety of disciplines. In recognition of this at Vanderbilt University, faculty members from chemistry

  15. Current trends in chemistry of materials S NATARAJAN and J GOPALAKRISHNAN

    E-Print Network [OSTI]

    Joshi, Yogesh Moreshwar

    materials (synthesis and the role of chemistry) and understanding materials (the role of theory). Possible] inorganic-organic hybrid materials [8] and materials for other related properties. In this context, one, (figure 1) for being the Keywords. Solid materials; dense; porous; energy; synthesis; theory. 21 #12

  16. Sports and Materials Science Course outline

    E-Print Network [OSTI]

    Birmingham, University of

    . Developments like carbon fibre composite bodyshells and suspension systems, hardened titanium alloy gears. The materials themes aim to introduce and develop knowledge in polymers, advanced composites, high performanceSports and Materials Science CF62 Course outline School of Metallurgy and Materials Success

  17. Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering

    E-Print Network [OSTI]

    Gleixner, Stacy

    Minor Form Materials Science and Engineering Department Of Biomedical, Chemical And Materials_______________________________________ Requirements for the Minor in Materials Science and Engineering: · 12 units of approved academic work CME Department requirements for a Minor in Materials Science and Engineering. Signed

  18. Corrosion and Materials Chemistry Reliable performance of materials in a given environment is very important for any

    E-Print Network [OSTI]

    Li, Mo

    Corrosion and Materials Chemistry Reliable performance of materials in a given environment is very process, and especially in the chemical process industries, corrosion or environmental degradation to improve products can often lead to higher corrosion susceptibilities of the plant materials. Moreover

  19. applied materials science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applied in chemical or materials sciences, physics, biology, psychology, applied maths, engineering - anything science brings clear benefits to: researchers (developing...

  20. Materials Sciences Division Integrated Safety Management Plan

    E-Print Network [OSTI]

    Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by: signed Feb. 9, 2012 Rick Kelly, Facility/EH&S Manager Submitted by: signed Feb. 9, 2012 Miquel Salmeron.1 RESPONSIBILITY AND AUTHORITY THROUGH LINE MANAGEMENT............................................................5

  1. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaff Webmaster Photobiology

  2. The Computational Materials and Chemical Sciences Network (CMCSN...

    Office of Science (SC) Website

    The Computational Materials and Chemical Sciences Network (CMCSN) Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers...

  3. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

  4. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recent successes with metal-organic framework (MOF) materials by combining them with dye-sensitized solar cells (DSSCs). ... Fuel-Cell-Powered Mobile Lights Tested, Proven,...

  5. Metal Hydrides - Science Needs

    Broader source: Energy.gov (indexed) [DOE]

    with traditions in metal hydride research Metal and Ceramic Sciences Condensed Matter Physics Materials Chemistry Chemical and Biological Sciences Located on campus of Tier...

  6. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

  7. Lithium Insertion Chemistry of Some Iron Vanadates

    E-Print Network [OSTI]

    Patoux, Sebastien; Richardson, Thomas J.

    2008-01-01T23:59:59.000Z

    in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sébastien

  8. Materials Research Science and Engineering Center (MRSEC) 2013/2014 Rolling Call for Proposals for Support of

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    , Optical and Magnetic Properties MSE 470 Capstone Project I MSE 471 Capstone Project II Materials Emphasis Fundamentals of Analytical Science Chem 345 Intermediate Organic Chemistry Geol 203 Earth Materials Phys 205 and Electronic Circuits EMA 303 Mechanics of Materials Phys 321 Electric Circuits and Electronics Stat 424

  9. Creating a Discovery Platform for Confined-Space Chemistry and Materials: Metal-Organic Frameworks.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Greathouse, Jeffery A. [Sandia National Laboratories, Albuquerque, NM; Simmons, Blake

    2008-09-01T23:59:59.000Z

    Metal organic frameworks (MOF) are a recently discovered class of nanoporous, defect-free crystalline materials that enable rational design and exploration of porous materials at the molecular level. MOFs have tunable monolithic pore sizes and cavity environments due to their crystalline nature, yielding properties exceeding those of most other porous materials. These include: the lowest known density (91% free space); highest surface area; tunable photoluminescence; selective molecular adsorption; and methane sorption rivaling gas cylinders. These properties are achieved by coupling inorganic metal complexes such as ZnO4 with tunable organic ligands that serve as struts, allowing facile manipulation of pore size and surface area through reactant selection. MOFs thus provide a discovery platform for generating both new understanding of chemistry in confined spaces and novel sensors and devices based on their unique properties. At the outset of this project in FY06, virtually nothing was known about how to couple MOFs to substrates and the science of MOF properties and how to tune them was in its infancy. An integrated approach was needed to establish the required knowledge base for nanoscale design and develop methodologies integrate MOFs with other materials. This report summarizes the key accomplishments of this project, which include creation of a new class of radiation detection materials based on MOFs, luminescent MOFs for chemical detection, use of MOFs as templates to create nanoparticles of hydrogen storage materials, MOF coatings for stress-based chemical detection using microcantilevers, and %22flexible%22 force fields that account for structural changes in MOFs that occur upon molecular adsorption/desorption. Eight journal articles, twenty presentations at scientific conferences, and two patent applications resulted from the work. The project created a basis for continuing development of MOFs for many Sandia applications and succeeded in securing %242.75 M in funding from outside agencies to continue the research. 3

  10. Science Gateway: The Materials Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office ofScience Education

  11. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3BenefitsSearch This page has moved to:

  12. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3BenefitsSearch This page has moved to:

  13. Field of Expertise Materials Science

    E-Print Network [OSTI]

    in materials research co-operates intensively with many globally active companies, such as Infineon, Austria and hybrid solar cells Ceramic semiconductors, sensors and piezoelectric components Lithium-ion batteries New welding methods RESEARCH OPPORTUNITIES FOR COMPANIES AND SCIENTIFIC PARTNERS © TU Graz© TU Graz

  14. SUPPORT FOR CHEMISTRY SYMPOSIA AT THE 2011 AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE MEETING FEBRUARY 17-21, 2011

    SciTech Connect (OSTI)

    Prof. Charles Casey, University of Wisconsin-Madison

    2011-08-20T23:59:59.000Z

    This proposal supported Chemistry Symposia at the 2011 American Association for the Advancement of Science (AAAS) Meeting in Washington, DC February 17-21, 2011. The Chemistry Section of AAAS presented an unusually strong set of symposia for the 2011 AAAS meeting to help celebrate the 2011 International Year of Chemistry. The AAAS meeting provided an unusual opportunity to convey the excitement and importance of chemistry to a very broad audience and allowed access to a large contingent of the scientific press. Excellent suggestions for symposia were received from AAAS Chemistry Fellows and from the chairs of the American Chemical Society Technical Divisions. The AAAS Chemistry executive committee selected topics that would have wide appeal to scientists, the public, and the press for formal proposals of symposia. The symposia proposals were peer reviewed by AAAS. The Chemistry Section made a strong case to the program selection committee for approval of the chemistry symposia and 6 were approved for the 2011 annual meeting. The titles of the approved symposia were: (1) Powering the Planet: Generation of Clean Fuels from Sunlight and Water, (2) Biological Role and Consequences of Intrinsic Protein Disorder, (3) Chemically Speaking: How Organisms Talk to Each Other, (4) Molecular Self-Assembly and Artificial Molecular Machines, (5) Frontiers in Organic Materials for Information Processing, Energy and Sensors, and (6) Celebrating Marie Curie's 100th Anniversary of Her Nobel Prize in Chemistry. The Chemistry Section of AAAS is provided with funds to support only 1-2 symposia a year. Because of the much greater number of symposia approved in conjunction with observance of the 2011 International Year of Chemistry, additional support was sought from DOE to help support the 30 invited speakers and 8 symposia moderators/organizers. Support for the symposia provided the opportunity to highlight the excitement of current chemical research, to educate the public about the achievements of chemistry and its contributions to the well-being of humankind. The 2011 AAAS Annual Meeting provided an important opportunity to play a prominent role in the global celebration of the 2011 International Year of Chemistry.

  15. Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials

    E-Print Network [OSTI]

    slurry particulates. ­ Dual use in environmental photocatalysis. · New metal oxide materials developed

  16. Chemistry -Bachelor of Science (SCH2UG) Total Credits Required: 128 Chemistry/Biochemistry -ACS Certified

    E-Print Network [OSTI]

    of the following courses 3 CH1122 University Chemistry - Studio Lab II 5 BL3300 Introduction to Genomics 3 CH1130

  17. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  18. Graduate School of Advanced Science and Engineering Department of Applied Chemistry

    E-Print Network [OSTI]

    Kaji, Hajime

    processes. Mesoscale synthesis of materials and their functions. Silicate chemistry as a branch of inorganic-organic hybrids and functional inorganic materials including ceramic materials. Development of chemical processes and their applications to materials design. Synthesis, structure, and control of functions of nanomaterials by soft

  19. Registration Form American Society of Materials UTA Summer Camp 2014 Materials Science and Engineering,

    E-Print Network [OSTI]

    Texas at Arlington, University of

    of Materials Science and Engineering 501 W. 1st Street, Room 231 ­ Engineering Laboratory Building PO Box 19031 Arlington, TX 76019 #12;ASM International Materials Science Camp at Materials Science and Engineering of Materials Science and Engineering. The camp will provide an opportunity for the students to learn more about

  20. Bachelor of Science, Materials Science and Engineering, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2012-2013 Name ID# Date General Degree to Electric Circuits ENGR 245, 245L Intro to Materials Science & Engineering & Lab 3 3 3 4 MATH 175 Calculus Mechanical Behavior of Materials MSE 380 Materials Science and Engineering Lab MSE 404 Materials Analysis

  1. Applied Physics A Materials Science & Processing

    E-Print Network [OSTI]

    Harilal, S. S.

    1 23 Applied Physics A Materials Science & Processing ISSN 0947-8396 Volume 117 Number 1 Appl. Phys. A (2014) 117:319-326 DOI 10.1007/s00339-014-8268-8 Background gas collisional effects on expanding fs at link.springer.com". #12;Background gas collisional effects on expanding fs and ns laser ablation plumes

  2. Materials Sciences programs, Fiscal year 1993

    SciTech Connect (OSTI)

    NONE

    1994-02-01T23:59:59.000Z

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  3. Faculty Search Materials Science and Engineering

    E-Print Network [OSTI]

    Virginia Tech

    of polymeric membrane materials, polymeric based composites and nanocomposites, or advanced polymer at the senior level may be considered. The successful candidate will be expected to conduct scholarly research levels. Candidates with research interests in all areas of polymer engineering/polymer science

  4. Potential Materials Science Benefits from a Burning Plasma

    E-Print Network [OSTI]

    Potential Materials Science Benefits from a Burning Plasma Science Experiment S.J. Zinkle Oak Ridge;Introduction · The main materials science advances from a BPSX would occur during the R&D phase prior to construction ­e.g., CIT/BPX, ITER · Materials science opportunities during operation of a BPSX would likely

  5. Progress Materials Science Phase-field method and Materials Genome Initiative (MGI)

    E-Print Network [OSTI]

    Chen, Long-Qing

    evolution within a material are considered as the ``holy grail'' of materials science and engineering. Many of materials science and engineering. A microstructure may contain a wide variety of structural features such as an applied SPECIAL ISSUE: Materials Genome L.-Q. Chen (&) Department of Materials Science and Engineering

  6. Chemical and Materials Science (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Home Advanced Photon Source About Us Useful Links Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for...

  7. Faculty of Mechanical Science and Engineering At the Institute of Materials Science, Chair of Materials Science and Nanotechnology

    E-Print Network [OSTI]

    Schubart, Christoph

    of Materials Science and Nanotechnology (Prof. G. Cuniberti), is open to work in the field of biomaterials and / or biologically inspired nanotechnology the position of a Senior Lecturer and Research Group leader (max. E 14 TV (Wissenschaftszeitvertragsgesetz ­ WissZeitVG). The scientific activities of the Chair of Materials Science and Nanotechnology

  8. Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date General Degree Science & Engineering & Lab 3-4 3 3 4 MATH 175 Calculus II MATH 275 Multivariable and Vector Calculus MATH Electrical Properties of Materials 3 MSE 312 Mechanical Behavior of Materials 3 MSE 380 Materials Science

  9. Bachelor of Science, Materials Science and Engineering, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2013-2014 Name ID# Date General Degree of Materials MSE 312 Mechanical Behavior of Materials MSE 380 Materials Science and Engineering Lab MSE 404 Science & Engineering & Lab MATH 175 Calculus II MATH 275 Multivariable and Vector Calculus MATH 333

  10. Materials sciences programs: Fiscal year 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  11. Materials sciences programs fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  12. J. Nanoparticle Res. Computational Materials Chemistry at the Nanoscale

    E-Print Network [OSTI]

    Çagin, Tahir

    modeling is being used to determine the struc­ ture, physical, and chemical properties of materials these scales can lead to new phenomena providing opportunities for new levels of sensing, manipulation, and control. However, being much smaller than the wavelength of visible light but much larger than simple

  13. Theory VI. Computational Materials Sciences Network (CMSN)

    SciTech Connect (OSTI)

    Zhang, Z Y

    2008-06-25T23:59:59.000Z

    The Computational Materials Sciences Network (CMSN) is a virtual center consisting of scientists interested in working together, across organizational and disciplinary boundaries, to formulate and pursue projects that reflect challenging and relevant computational research in the materials sciences. The projects appropriate for this center involve those problems best pursued through broad cooperative efforts, rather than those key problems best tackled by single investigator groups. CMSN operates similarly to the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, coordinated by George Samara at Sandia. As in the Synthesis and Processing Center, the intent of the modest funding for CMSN is to foster partnering and collective activities. All CMSN proposals undergo external peer review and are judged foremost on the quality and timeliness of the science and also on criteria relevant to the objective of the center, especially concerning a strategy for partnering. More details about CMSN can be found on the CMSN webpages at: http://cmpweb.ameslab.gov/ccms/CMSN-homepage.html.

  14. UNIVERSITY OF UTAH MATERIALS SCIENCE AND ENGINEERING DEPARTMENT

    E-Print Network [OSTI]

    of this form and return to the Materials Science and Engineering Department along with a DARS report, three

  15. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science

  16. Green Chemistry and Workers

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    J. Warner. 1998. Green Chemistry: Theory and Practice. NewNew Science, Green Chemistry and Environmental Health.abstract.html 5. American Chemistry Council. 2003. Guide to

  17. adaptive chemistry dac: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Needs for Faster Mainstream Acceptance of 3D Lim, Sung Kyu 5 Ethical Conduct in Science and Engineering Adapted from Chemistry-Biology Interface Program Ethics Materials...

  18. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications q

    E-Print Network [OSTI]

    Harilal, S. S.

    - ments of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bondingExperimental studies of lithium-based surface chemistry for fusion plasma-facing materials.65.y a b s t r a c t Lithium has enhanced the operational performance of fusion devices such as: TFTR

  19. Peter W. Voorhees Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Shkel, Andrei M.

    Peter W. Voorhees Department of Materials Science and Engineering Northwestern University Evanston, IL 60208 (847) 491-7815 Experience Frank C. Engelhart Professor of Materials Science and Engineering, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 9/2000 - present

  20. Multiple Faculty Positions, All Ranks Materials Science and Engineering

    E-Print Network [OSTI]

    Multiple Faculty Positions, All Ranks Materials Science and Engineering Texas A&M University The interdisciplinary Department of Materials Science and Engineering at Texas A&M University invites applications. Applicants must have an earned doctorate in materials science and engineering or an appropriate, closely

  1. Materials Science and Engineering Graduate Program Bylaws Washington State University

    E-Print Network [OSTI]

    Collins, Gary S.

    1 Materials Science and Engineering Graduate Program Bylaws Washington State University of Materials Science and Engineering. In particular: a. To enable students to develop as successful in the field of Materials Science and Engineering. II. Graduate Faculty A. The Gradate Faculty include: 1. All

  2. Master of Materials Science & Engineering/ Master of Business Administration

    E-Print Network [OSTI]

    Firestone, Jeremy

    Master of Materials Science & Engineering/ Master of Business Administration (MMSE/MBA) Rationale this requirement in the MBA program. The creation of a dual Master of Materials Science & Engineering/MBA (MMSE of Materials Science & Engineering/ Master of Business Administration Dual Degree Admission: Students desiring

  3. Madhura Som Materials Science & Engineering, Stony Brook University

    E-Print Network [OSTI]

    Madhura Som Materials Science & Engineering, Stony Brook University Application for ASAP Board Member position I am a PhD student in the Materials Science and Engineering department at Stony Brook course ESG 111- C programming for Engineers at the Materials Science and Engineering department, at Stony

  4. From Microstructures to Properties: Statistical Aspects of Computational Materials Science

    E-Print Network [OSTI]

    Ji, Chuanshu

    and critical properties Computation of macroscopic properties always takes a center stage in materials scienceFrom Microstructures to Properties: Statistical Aspects of Computational Materials Science Chuanshu Ji 1 Abstract We discuss some statistical aspects in materials science that involve microstructures

  5. Chemistry and Applications of Metal-Organic Materials

    E-Print Network [OSTI]

    Zhao, Dan

    2012-02-14T23:59:59.000Z

    ) and applicable pressure (less than 100 atm). Note that these are the goals for the system including container and any necessary accessories, the hydrogen storage capacity of the material itself should be even higher. A safe and effective hydrogen storage.... In solid-state storage systems, a hydrogen atom/molecule either forms a strong chemical bond to a solid support (chemisorption) or interacts weakly with a sorbent (physisorption). In chemisorption, dihydrogen molecules split into hydrogen atoms upon...

  6. Molecular forensic science of nuclear materials

    SciTech Connect (OSTI)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  7. DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Dept. of Materials and Engineering and Materials

    E-Print Network [OSTI]

    Zuo, Jian-Min "Jim"

    DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory J. M/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory #12;DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Outline of This Lecture I. Electron

  8. Reversible Hydrogen Storage Materials – Structure, Chemistry, and Electronic Structure

    SciTech Connect (OSTI)

    Robertson, Ian M. [University of Wisconsin-Madison; Johnson, Duane D. [Ames Lab., Iowa

    2014-06-21T23:59:59.000Z

    To understand the processes involved in the uptake and release of hydrogen from candidate light-weight metal hydride storage systems, a combination of materials characterization techniques and first principle calculation methods have been employed. In addition to conventional microstructural characterization in the transmission electron microscope, which provides projected information about the through thickness microstructure, electron tomography methods were employed to determine the three-dimensional spatial distribution of catalyst species for select systems both before and after dehydrogenation. Catalyst species identification as well as compositional analysis of the storage material before and after hydrogen charging and discharging was performed using a combination of energy dispersive spectroscopy, EDS, and electron energy loss spectroscopy, EELS. The characterization effort was coupled with first-principles, electronic-structure and thermodynamic techniques to predict and assess meta-stable and stable phases, reaction pathways, and thermodynamic and kinetic barriers. Systems studied included:NaAlH4, CaH2/CaB6 and Ca(BH4)2, MgH2/MgB2, Ni-Catalyzed Magnesium Hydride, TiH2-Catalyzed Magnesium Hydride, LiBH4, Aluminum-based systems and Aluminum

  9. ALLISON A. CAMPBELL 1991 Ph.D. Physical Chemistry, State University of New York at

    E-Print Network [OSTI]

    of Washington 1999 ­ 2000 Technical Group Leader, Materials Synthesis and Modification, PNNL 1999 ­ 1999 Staff Scientist, Materials Sciences Department, PNNL 1999 ­ 1999 Visiting Assistant Professor of Chemistry, PNNL 1992 ­ 1995 Research Scientist, Material Sciences Department, PNNL 1994 ­ 1994 Invited Researcher

  10. Delivering High-Performance Computational Chemistry to Science

    E-Print Network [OSTI]

    to address a wide range of large, challenging scientific questions. As one of the U.S. Department of Energy scientific computational chemistry problems efficiently and in their use of available parallel computing the Global Array Toolkit, which provides an efficient and portable shared- memory programming interface

  11. Boston University College of Engineering Division of Materials Science & Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Theory of Elasticity MS 784 Topics in Materials Science ENGINEERING MANAGEMENT (4 cr) CourseBoston University College of Engineering Division of Materials Science & Engineering MEng Program and Statistical Materials AND MS 577 Electronic Optical and Magnetic Properties of Materials OR CAS PY 543

  12. Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES Thematerials | CenterChemistry

  13. School of Materials Science and Engineering Program Guide

    E-Print Network [OSTI]

    New South Wales, University of

    of the materials engineer range from materials production, including their extraction from ores and their refining in minerals, materials science has been designated as a priority area for research and development. Examples

  14. Annual report, Materials Science Branch, FY 1992

    SciTech Connect (OSTI)

    Padilla, S. [ed.

    1993-10-01T23:59:59.000Z

    This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  15. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and NuclearReportMaterials Science Bioscience

  16. Challenges in joining emerging materials Department of Materials Science and Engineering, Massachusetts

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Challenges in joining emerging materials T.W.EAGAR Department of Materials Science and Engineering, Massachusetts Institute of Technology ABSTRACT The revolution which has occurred in materials science and engineering over the past two decades has not been matched by improvements in joining science and technology

  17. Chemical Sciences Division | Advanced Materials |ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce costs, and minimize the environmental impact in the production of rare-earth metals and alloys. The division's Nuclear Analytical Chemistry and Isotopics...

  18. DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Dept. of Materials and Engineering and Materials

    E-Print Network [OSTI]

    Zuo, Jian-Min "Jim"

    DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory J. M://cbed.mse.uiuc.edu Theory and Practice of Electron Diffraction #12;DOE BES/DMS Materials Science and Engineering BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Why

  19. MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 7/14/2011 RENSSELAER POLYTECHNIC INSTITUTE

    E-Print Network [OSTI]

    Salama, Khaled

    i MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 7/14/2011 RENSSELAER POLYTECHNIC INSTITUTE School of Engineering Materials Science & Engineering #12;ii MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 7/14/2011 Table of Contents Materials Science & Engineering 1

  20. MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 RENSSELAER POLYTECHNIC INSTITUTE

    E-Print Network [OSTI]

    Salama, Khaled

    i MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 RENSSELAER POLYTECHNIC INSTITUTE School of Engineering Materials Science & Engineering #12;ii MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 Table of Contents Materials Science & Engineering 1

  1. Chemistry Division: Annual progress report for period ending March 31, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-08-01T23:59:59.000Z

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  2. CHEMISTRY COURSE OFFERINGS, FALL, 2013 (Updated 8/1/13)

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    in Chemistry 61. Techniques in synthesis, spectroscopy, and reactivity studies. Applications of inorganic compounds in synthesis, catalysis, materials sciences, and biology. One laboratory, one lecture, one and chemistry of materials. Three lectures, one laboratory, one recitation. Only one of Chemistry 1, 11, or 16

  3. Department of Chemical Engineering & Materials Science College of Engineering

    E-Print Network [OSTI]

    to expand the student's knowledge of engineering principles and applications. Each student also conductsDepartment of Chemical Engineering & Materials Science College of Engineering Michigan State of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree

  4. *Corresponding author. Present address. Chemistry and Materials Science Director-

    E-Print Network [OSTI]

    Wadley, Haydn

    Bridgman growth furnace have been observed and measured using in situ eddy current sensor techniques. A two-coil eddy current sensor measured coil impedance changes for multifrequency which were then interpreted (2000) 219}230 In situ studies of Cd \\V Zn V Te nucleation and crystal growth B.W. Choi*, H.N.G. Wadley

  5. Training April 5 - Material Science and Chemistry Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1TrackingTrails »April 5

  6. Chemistry and Material Sciences Applications Training at NERSC April 5,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of SelectiveBrownFirstU.S.2011 User

  7. Chemistry and Material Sciences Applications Training at NERSC June 26,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of SelectiveBrownFirstU.S.2011

  8. June 26 Training: Using Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015 BonnevilleJulyJune1June4 Created2,June

  9. Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF

    E-Print Network [OSTI]

    Weston, Ken

    Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF DMR-Award 0654118 Ion Cyclotron Resonance User Program Solid deposits and emulsions from crude oil can that contain carbons, hydrogens, and two oxygen atoms. #12;A major problem in oil production, both

  10. Chemistry -Bachelor of Science (SCH4UG) Total Credits Required: 128 Chemistry/Chemical Physics -ACS Certified

    E-Print Network [OSTI]

    Chemistry I 3 PH4210 Electricity and Magnetism I 3 CH3511 Physical Chemistry Lab I 2 PH4510 Intro to Solid Analysis 5 General Education Requirements - 28 credits CH4310 Inorganic Chemistry I 3 UN1001 Perspectives

  11. The Natural Materials Browser: Using a Tablet Interface for Exploring Volumetric Materials Science Datasets

    E-Print Network [OSTI]

    Hollerer, Tobias

    The Natural Materials Browser: Using a Tablet Interface for Exploring Volumetric Materials Science angus.forbes@sista.arizona.edu Tony Fast Department of Materials Science Georgia Institute of Technology Barbara holl@cs.ucsb.edu ABSTRACT We present a novel tablet application, the Natural Materials Browser

  12. Fall `10 Seminar Series Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Gilchrist, James F.

    Fall `10 Seminar Series Department of Materials Science and Engineering Center for Advanced of Materials Science & Eng., University of Utah "Strain Engineering and Nanomechanical Architecture for Self Materials and Nanotechnology Seminar ­ 4:10 p.m. ­ WH 203 Refreshments served at 3:45 p.m. in Student Lounge

  13. November 2009 Peter Fratzl 1 MPG 2010+: BIOLOGICAL MATERIALS SCIENCES

    E-Print Network [OSTI]

    recognized that material properties can be critical for the biological function of molecules, tissuesNovember 2009 Peter Fratzl 1 MPG 2010+: BIOLOGICAL MATERIALS SCIENCES At a glance: A new field at the interface between biology and the materials sciences helps elucidating structure-function relations

  14. Mork Family Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Southern California, University of

    , materials science, and petroleum engineering. The reputation of the MFD for excellence in chemical Engineering MS in Materials Science MS in Petroleum Engineering PhD in Chemical Engineering PhD in Materials buildings: HEDCO Petroleum and Chemical Engineering Building Neely Petroleum and Chemical Engineering

  15. Boston University College of Engineering Division of Materials Science & Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Boston University College of Engineering Division of Materials Science & Engineering MEng Program and Statistical Materials AND MS 577 Electronic Optical and Magnetic Properties of Materials OR CAS PY 543 structured Engineering Management Course (4 cr); 3 other courses (12 credits) can be engineering, science

  16. Chemistry of Materials 1989, 1,83-101 How C-C Bonds Are Formed and How They Influence

    E-Print Network [OSTI]

    Li, Jing

    Chemistry of Materials 1989, 1,83-101 How C-C Bonds Are Formed and How They Influence Structural Choices in Some Binary and Ternary Metal Carbides 83 Jing Li and Roald Hoffmann* Department of Chemistry properties. In the UC2structure, both uranium-carbon bonding and carbon-carbon bonding are enhanced upon

  17. Director, School of Materials Science and Engineering College of Engineering & Science, Clemson University, Clemson SC

    E-Print Network [OSTI]

    Bolding, M. Chad

    Director, School of Materials Science and Engineering College of Engineering & Science, Clemson of the School of Materials Science and Engineering. Clemson University is the land grant institution of South, and service. He or she will be a proactive partner with materials industry leaders as the School vigorously

  18. Research and Devlopment Associate Center for Nanophase Materials Sciences Division

    E-Print Network [OSTI]

    Pennycook, Steve

    -generation energy storage platform; iii) size-defined clusters as novel catalysts. #12;Graduate advisor: Manos for Journal for Physical Chemistry, Journal of the American Chemical Society, Surface Science, Applied: i) selective conversion of biomass-derived compounds; ii) rechargeable metal-air batteries as next

  19. University of Cambridge Department of Materials Science & Metallurgy

    E-Print Network [OSTI]

    Cambridge, University of

    University of Cambridge Department of Materials Science & Metallurgy Modelling of Microstructural and Metallurgy, University of Cambridge, between May 2007 and August 2007. Except where acknowledgements

  20. Materials Science Division M.R. Norman

    E-Print Network [OSTI]

    Kemner, Ken

    V. Vinokur Energy Conversion and Storage N. Markovic S. Chang2 J Surface Chemistry M. Savina/ M. Pellin J.D. Emery2 J. Hupp4 J.A. Klug

  1. Minor in Engineering Materials [Administered jointly by the Faculty of Engineering (Department of Materials Science & Engineering) and the Faculty of Science

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    (Department of Materials Science & Engineering) and the Faculty of Science] Engineering materials have...1... Minor in Engineering Materials [Administered jointly by the Faculty of Engineering in cuttingedge technologies, whether related to life sciences such as in biomaterials, or engineering

  2. The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications and

    E-Print Network [OSTI]

    Stuart, Steven J.

    The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications the School of Materials Science and Engineering with additional affiliations within the University where

  3. Chemistry (ACS) College of Science CHEM-BSCHM

    E-Print Network [OSTI]

    Kihara, Daisuke

    Electricity and Magnetism (satisfies Science Selective for core) Other Departmental /Program Course Education 16 16 Credits Fall 3rd Year Prerequisite Credits Spring 3rd Year Prerequisite 4 CHM 32100 CHM 37300 3 or 4 CS 17700 or CS 15800 3 General Education ** 1 CHM 51300 13 or 14 13 Credits Fall 4th Year

  4. Chemistry (ACS) College of Science CHEM-BSCHM

    E-Print Network [OSTI]

    Kihara, Daisuke

    for core) (4)PHYS 27200 Electricity and Magnetism (satisfies Science Selective for core) Other Departmental Education** 1 CHM 29400 17 16 Credits Fall 3rd Year Prerequisite Credits Spring 3rd Year Prerequisite 4 CHM 37401 CHM 37301 1 CHM 37301 3 General Education ** 3 or 4 CS 17700 or CS 15800** 1 CHM 51300 14 or 15 13

  5. Vidvuds Ozolins: Department of Materials Science and Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vidvuds Ozolins: Department of Materials Science and Engineering UCLA & Director of DOE EFRC Molecularly Engineered Energy Materials Nov 13, 2013 | 4:00 PM - 5:00 PM Vidvuds...

  6. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

  7. Evolution of Chemistry and Its Effects on the Corrosion of Engineered Barrier Materials

    SciTech Connect (OSTI)

    Dunn, Darrell [Mechanical and Materials Engineering, Southwest Research Institute, San Antonio, TX, 78238 (United States); Pan, Yi-Ming; He, Xihua; Yang, Lietai; Pabalan, Roberto [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, 78238 (United States)

    2007-07-01T23:59:59.000Z

    The evolution of environmental conditions within the emplacement drifts of a potential high-level waste repository at Yucca Mountain, Nevada, may be influenced by several factors, including the temperature and relative humidity within the emplacement drifts and the composition of seepage water. The performance of the waste package and the drip shield may be affected by the evolution of the environmental conditions within the emplacement drifts. In this study, tests evaluated the evolution of environmental conditions on the waste package surfaces and in the surrounding host rock. The tests were designed to (i) simulate the conditions expected within the emplacement drifts; (ii) measure the changes in near-field chemistry; and (iii) determine environmental influence on the performance of the engineered barrier materials. Results of tests conducted in this study indicate the composition of salt deposits was consistent with the initial dilute water chemistry. Salts and possibly concentrated calcium chloride brines may be more aggressive than either neutral or alkaline brines. (authors)

  8. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  9. Master of Science project in computational material physics

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in computational material physics (posted 2013-05-13) Plasmarons exists ! (figure to the right) also for this system. Project To predicting the so far not measured in computational material science. You have taken the courses in Quantum physics, Solid state physics

  10. Center For Nanophase Materials Sciences Division Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Pennycook, Steve

    -8616 lix2@ornl.gov Education Shanghai Jiaotong University, China Materials Science & Engr. B.S., 2005 Shanghai Jiaotong University, China Materials Science M.S., 2008 University of Georgia Engineering Ph Ridge, U.S. 2009 Outstanding Thesis for Master Degree, Shanghai, China 2007 Yan Dongshen (Academician

  11. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  12. Yury Gogotsi Trustee Chair Professor of Materials Science and Engineering

    E-Print Network [OSTI]

    Yury Gogotsi Trustee Chair Professor of Materials Science and Engineering Founder and Director the Ukrainian Academy of Science in 1995. He performed his post- doctoral research in Germany supported for Promotion of Science (JSPS) Fellowships. Professional Affiliations (elected): Fellow of the American

  13. Liaison activities with the Institute of Physcial Chemistry of the Russian Academy of Sciences: Midyear report

    SciTech Connect (OSTI)

    Delegard, C.H.

    1996-05-29T23:59:59.000Z

    The task `IPC/RAS Liaison and Tank Waste Testing` is a program being conducted in fiscal year (FY) 1996 with the support of the U.S. Department of Energy (DOE) Office of Science and Technology, EM-53 Efficient Separations and Processing (ESP) Crosscutting Program, under the technical task plan (TTP) RLA6C342. The principal investigator is Cal Delegard of the Westinghouse Hanford Company. The task involves a technical liaison with the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) and their DOE-supported investigations into the fundamental and applied chemistry of the transuranium elements (primarily neptunium, plutonium, and americium) and technetium in @ine media. The task has three purposes: 1. Providing technical information and technical direction to the IPC/RAS. 2. Disseminating IPC/RAS data and information to the DOE technical community. 3. Verifying IPC/RAS results through laboratory testing and comparison with published data.

  14. DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory A Tutorial on Electron Microscopy

    E-Print Network [OSTI]

    Zuo, Jian-Min "Jim"

    DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory #12;DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory and spectroscopy #12;DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory I

  15. Graphene: from materials science to particle physics

    E-Print Network [OSTI]

    Joaquín E. Drut; Timo A. Lähde; Eero Tölö

    2010-11-02T23:59:59.000Z

    Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

  16. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect (OSTI)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01T23:59:59.000Z

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  17. DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory

    SciTech Connect (OSTI)

    Lewis, Jennifer A.

    2009-03-24T23:59:59.000Z

    The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

  18. Materials Science Division M.R. Norman

    E-Print Network [OSTI]

    Kemner, Ken

    V. Vinokur Energy Conversion and Storage N. Markovic S. Chang2 J. Connell2 N. Danilovic2 Y. Kang2 P.A. Zygmunt3 Surface Chemistry M. Savina/ M. Pellin J.D. Emery2 N. Groll2 J. Hupp4 J.A. Klug2 A.B. Martinson

  19. Eugene R. Zubarev Department of Chemistry

    E-Print Network [OSTI]

    Zubarev, Eugene

    , amphiphilic structures. Experimental: organic synthesis, polymerization, synthesis of inorganic nanocrystals-2005 Assistant Professor of Materials Science and Engineering, Iowa State University 2000-2002 Research Associate and supramolecular chemistry, molecular self-assembly, organic-inorganic hybrid structures, nanoparticle catalysts

  20. Materials Science Volume 7, Number 4

    E-Print Network [OSTI]

    Poeppelmeier, Kenneth R.

    Systems Using Gold and Silver Nanoparticles Materials for Clean H2 Production from Bioethanol Reforming

  1. The mineralogy and chemistry of fine-grained sediments, Morphou Bay, CyprusHydrology and Earth System Sciences, 6(5), 819831 (2002) EGS The mineralogy and chemistry of fine-grained sediments,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2002-01-01T23:59:59.000Z

    819 The mineralogy and chemistry of fine-grained sediments, Morphou Bay, CyprusHydrology and Earth System Sciences, 6(5), 819­831 (2002) © EGS The mineralogy and chemistry of fine-grained sediments10 8BB, UK Email: cn@ceh.ac.uk Abstract The mineralogy and chemistry of the less than 20µm fraction

  2. The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems

    SciTech Connect (OSTI)

    Yousuf, M.; Mollah, A.; Vempati, R.K.; Lin, T.C.; Cocke, D.L. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

    1995-11-01T23:59:59.000Z

    The chemistry of cement, its hydration and mechanisms of solidification/stabilization (s/s) of toxic metals by cement-based systems and pozzolanic materials are significantly controlled by surface, near-surface and interfacial phenomena. The adsorption conditions and the selectivity strong affinity of hazardous metals towards clay minerals, certain hydrated metal oxides and oxyhydroxides, and cementitous substances also play an important role in the s/s process for the immobilization of contaminants. Recent works from the authors` laboratory involving metal ions and superplasticizers have elucidated the mechanisms of reactions leading to the retardation of cement hydration and subsequent setting and their interactions with silicate-based systems. This article delineates the current status of interfacial chemistry at the solid-liquid boundary and places it in perspective with present and future s/s processes based on Portland cement and pozzolanic materials. The importance of surface charge, the role of interfacial phenomena on adsorption, and the importance of calcium and other types of anions and cations in s/s are also discussed. A surface charge control reaction model that accounts for the importance of calcium and other cations and anions is outlined and used to discuss the chemical nature and microstructure of the interfacial transition zone.

  3. Materials Science and Engineering BS/MS Program The Department of Materials Science and Engineering offers a combined BS/MS degree

    E-Print Network [OSTI]

    Tipple, Brett

    Materials Science and Engineering BS/MS Program The Department of Materials Science and Engineering currently enrolled in Major Status in the Materials Science and Engineering program can be admitted of Materials Science and Engineering at the University of Utah. A minimum 3.5 GPA is required for admission

  4. College of Engineering MSE Materials Science and Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    201, MA 213 or concurrent. MSE 395 INDEPENDENT WORK IN MATERIALS ENGINEERING. (1College of Engineering MSE Materials Science and Engineering KEY: # = new course * = course changed = course dropped University of Kentucky 2013-2014 Undergraduate Bulletin 1 MSE 101 MATERIALS ENGINEERING

  5. Fusion Materials Science Overview of Challenges and Recent Progress

    E-Print Network [OSTI]

    Fusion Materials Science Overview of Challenges and Recent Progress Steven J. Zinkle Oak Ridge: Development of new materials for structural applications is historically a long process ­ Ni3Al intermetallic alloys commercialization ­ Superalloy turbine blade development ­ Cladding and duct materials for fast

  6. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01T23:59:59.000Z

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  7. Joining of Advanced Materials: An The revolution which has occurred in materials science

    E-Print Network [OSTI]

    Eagar, Thomas W.

    science and engineering has not been matched by improve- ments in joining science and technology. 1t.materials require ever higher performance, the number of acceptable joining technologies becomes more re- stricted of the material are useless. Unless the shape and properties can be obtained economically, the product has limited

  8. FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry

    E-Print Network [OSTI]

    Doyle, Robert

    FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry Syracuse University The Department of Chemistry at Syracuse University invites applications for a tenure track faculty position at the Assistant Professor level in inorganic chemistry with specialization in materials chemistry (broadly defined

  9. Green Chemistry and Workers

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    19. P. Anastas, J. Warner. 1998. Green Chemistry: Theory andto Advance New Science, Green Chemistry and EnvironmentalChronicle Extra: Guide to Green Jobs. Field with a Future.

  10. Center for Nanophase Materials Sciences | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in nanostructured materials. Fieldstechniques include scanning probe microscopy, neutron scattering, optical spectroscopy and soft-matter electron and helium ion...

  11. Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering Dean, College of Engineering Professor, Materials Science & Engineering Microstructural evolution environments and radiation. Todd R. Allen Associate Professor, Engineering Physics and Materials Science

  12. Boston University College of Engineering Division of Materials Science and Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Boston University College of Engineering Division of Materials Science and Engineering Annual | Division of Materials Science and Engineering | Highlights | 1 Message from the Division Head Boston University has many interdisciplinary research activities in materials science and engineering, spanning

  13. 3.012 Fundamentals of Materials Science, Fall 2003

    E-Print Network [OSTI]

    Marzari, Nicola

    This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and ...

  14. Experimental Possibilities in Material Science enabled by FEL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Possibilities in Material Science enabled by FEL Sources Wednesday, July 1, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Joerg Hallmann, XFEL Program...

  15. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  16. Transformational Materials Science Initiative Review June 29...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mode Easiness of assembly in discharged state Less corrosive nature of cathode materials <3> ZEBRA battery cost projection * * R.C. Galloway, C.-H. Dustmann, "ZEBRA Battery...

  17. Chemical and Engineering Materials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating...

  18. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA Instructor: Dr. A. Christou Textbook: Callister, William D. Jr., Fundamentals of Materials Science materials. Materials selection in engineering applications. Course Description: The course introduces

  19. Master of Science project in computational material physics

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in computational material physics (2013-12-05) Two-band Hubbard model of these materials. The temperature, pressure and doping driven transitions between a vast number of phases, e Gutzwiller method with the GPAW-DFT code in order to take into account the local correlations. Project

  20. Master of Science project in computational material physics

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in computational material physics (2013-04-26) Engineering of ultra of remarkable properties of these materials. The temperature, pressure and doping driven transitions between correlations. Project Investigating the influence of biaxial strain on electronic properties such as self

  1. Why chemistry? Chemistry is fundamental: it is the enabling

    E-Print Network [OSTI]

    Sussex, University of

    Chemistry Why chemistry? Chemistry is fundamental: it is the enabling science that underlies many technology. A chemistry degree gives you the understanding to contribute to our future in very topical areas) in Chemistry BSc (Hons) in Chemistry MChem (Hons) in Chemistry (with an industrial placement year) MChem (Hons

  2. "The Future of Materials Science and Engineering

    E-Print Network [OSTI]

    Li, Mo

    with increased wear characteristics · Additive Manufacturing Processing speed, material strength, verification&D is limited and traditionally provided by device manufacturers · Technology adapted from other industries tools Opportunities #12;· Manufacturing Time and Process Step Reduction Patient digitizer to definitive

  3. Center for Nanophase Materials Sciences (CNMS) - Core Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARoleWell-Defined

  4. Advances in Materials Science for Environmental and Energy Technologies II

    SciTech Connect (OSTI)

    Matyas, Dr Josef [Pacific Northwest National Laboratory (PNNL); Ohji, Tatsuki [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Tec; Liu, Xingbo [West Virginia University, Morgantown; Paranthaman, Mariappan Parans [ORNL; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Fox, Kevin [Savannah River National Laboratory (SRNL); Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Wong-ng, Winnie [National Institute of Standards and Technology (NIST), Gaithersburg, MD

    2013-01-01T23:59:59.000Z

    The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

  5. Chemistry Division Department of Biological

    E-Print Network [OSTI]

    Heller, Barbara

    1 Chemistry Division Department of Biological and Chemical Sciences, Illinois Institute-13 Chemistry Division invites nominations for Kilpatrick Fellowship for the academic year 2012's Chemistry Department from 1947­1960. Mary Kilpatrick was a chemistry faculty member from 1947

  6. asce materials engineering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering inter-twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within the College of Engineering...

  7. atomically engineered materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering inter-twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within the College of Engineering...

  8. Liaison activities with the institute of physical chemistry, Russian academy of sciences: FY 1996

    SciTech Connect (OSTI)

    Delegard, C.H.

    1996-09-23T23:59:59.000Z

    The task ``IPC/RAS Liaison and Tank Waste Testing`` is a program being conducted in fiscal year (FY) 1996 with the support of the U.S. Department of Energy (DOE) Office of Science and Technology, EM-53 Efficient Separations and Processing (ESP) Crosscutting Program, under the technical task plan RLA6C342. The principal investigator is Cal Delegard of the Westinghouse Hanford Company. The task involves a technical liaison with the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) and their DOE-supported investigations into the fundamental and applied chemistry of the transuranium elements (primarily neptunium, plutonium, and americium) and technetium in alkaline media. The task has three purposes: 1. Providing technical information and technical direction to the IPC/RAS. 2. Disseminating IPC/RAS data and information to the DOE technical community. 3. Verifying IPC/RAS results through laboratory testing and comparison with published data. This report fulfills the milestone ``Provide End-of-Year Report to Focus Area,`` due September 30, 1996.

  9. NREL: Photovoltaics Research - Materials Science Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6 July 16, 2006Science Staff The

  10. Chemistry Division annual progress report for period ending April 30, 1993

    SciTech Connect (OSTI)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01T23:59:59.000Z

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  11. New Materials and Separations Science for Sustainable

    E-Print Network [OSTI]

    Keller, Arturo A.

    like? · Still using technologies developed 30-40 years ago · New materials and new insights have ­ U.S. uses 500 km3/year, brackish water reservoir in U.S. is 1,500,000 km3 · Sea water desalination geothermal plant · Thermal desalination and brine re-charge at the Salton Sea geothermal site · Combined

  12. Andrew A. Shapiro, Ph.D. Ph.D. Materials Science and Engineering

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Andrew A. Shapiro, Ph.D. EDUCATION Ph.D. Materials Science and Engineering University of California-SiO2." M.S. Materials Science and Engineering University of California, Los Angeles, 1989 Thesis Materials Science and Engineering 2000- 2005 Lecturer - Materials Science and Engineering 1998- 2000 Co

  13. MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Prodić, Aleksandar

    MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering Chairs of the Department of Materials Science and Engineering (MSE) for a second five-year term beginning July 1, 2014. Jun of Materials Science and Engineering Professor Uwe Erb, Department of Materials Science and Engineering

  14. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here WesternWelcomeUpcoming Events

  15. Materials and Molecular Research Division annual report 1983

    SciTech Connect (OSTI)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01T23:59:59.000Z

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  16. EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

    E-Print Network [OSTI]

    Schwartz, Eric M.

    EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering Environmental Engineering 213 Black Hall Industrial and Systems Engineering 275 Florida Gym Materials Science Engineering 316 Chemical Civil & Coastal Engineering 273 Weil Hall Computer & Information Science

  17. Graduate Student and Postdoctoral Researcher openings in Computational Mechanics of Materials and Integrated Computational Materials Science & Engineering

    E-Print Network [OSTI]

    Ghosh, Somnath

    and Integrated Computational Materials Science & Engineering at Johns Hopkins University, Baltimore, USA.S. or M.S. in Mechanical Engineering, Civil Engineering, Materials Science & Engineering, Physics or any Computational Materials Science and Engineering (ICMSE) theme. The overarching goal is to overcome limitations

  18. Sandia National Laboratories: Careers: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportationVice-PresidentEvents Sorry, there areMaterials

  19. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters: WeaponCybernetics: UniqueMaterials

  20. Sandia Energy - Materials Sciences and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry Simmons IsMaterials

  1. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015 FAQJanuary

  2. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015 FAQJanuaryChemical

  3. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015

  4. Chemical Sciences Division | Advanced Materials |ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015AnalysisChemicalChemical

  5. Chemical and Engineering Materials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the RotatingChemical

  6. Chemical and Materials Sciences Building | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the RotatingChemicalChemical and

  7. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA

  8. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI):

  9. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI):CNMS News Enhanced

  10. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS Events User

  11. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS Events

  12. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS

  13. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS Summer

  14. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS SummerMessage

  15. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS SummerMessage

  16. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS SummerMessage

  17. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS

  18. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMSCall for

  19. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMSCall

  20. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMSCallSummer

  1. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMSCallSummer

  2. Center for Nanophase Materials Sciences | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaff Highlight Nina BalkeSummerWhat's New

  3. Materials Sciences and Engineering Program | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials

  4. Materials Science: the science of everything | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials

  5. International Symposium on Voronoi Diagrams in Science and Engineering

    E-Print Network [OSTI]

    ; Computer modeling and simulation; Spatial and temporal statistics; Image processing, bioinformatics, geography, chemistry, material science, renewable energy, location science) and the Rutgers University Computer Science Department, with funding provided by the US

  6. A Survey of Energies in Materials Science Frans Spaepen

    E-Print Network [OSTI]

    Spaepen, Frans A.

    a new or old problem by comparing its underlying energies. These conversations produced small diagramsA Survey of Energies in Materials Science Frans Spaepen Division of Engineering and Appliedth birthday. Abstract A table is presented that compares energies that govern a variety of phenomena

  7. CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY

    E-Print Network [OSTI]

    6/29/11 CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY Argonne Division, preferably by e-mail (norman@anl.gov), otherwise by regular mail (MSD-223, Argonne National Lab, Argonne, IL 60439). Please use the subject line "CMT Search" in any e-mail correspondence. Argonne

  8. Jianhua Zhou1 School of Materials Science and Engineering,

    E-Print Network [OSTI]

    Zhang, Yuwen

    thermal conductivity of random packed beds is of great interest to a wide-range of engineersJianhua Zhou1 Aibing Yu School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia Yuwen Zhang2 Department of Mechanical and Aerospace Engineering

  9. Materials Science and Engineering A 497 (2008) 212215 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Rollins, Andrew M.

    2008-01-01T23:59:59.000Z

    a Department of Design and Production Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt b Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA a r t i Elsevier B.V. All rights reserved. 1. Introduction Nano-crystalline metallic materials and metal­matrix com

  10. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  11. Department of Materials Science and Engineering Four Year Plan (201213 Catalog, ready for calculus)

    E-Print Network [OSTI]

    Barrash, Warren

    Department of Materials Science and Engineering Four Year Plan (201213 Catalog, ready Mechanical Behavior of Materials 3 ENGR 210 Statics 3 MSE 380 Materials Science and Engineering Lab 2 MATH by the student's advisor. #12;Department of Materials Science and Engineering Four Year Plan (201213

  12. Conversion of CO2 to Polycarbonates and Other Materials: Insights through Computational Chemistry

    E-Print Network [OSTI]

    Yeung, Andrew D

    2014-09-25T23:59:59.000Z

    The use of carbon dioxide as a chemical feedstock for the copolymerization with epoxides to give polycarbonates, and for coupling with hydrocarbons to give carboxylic acids, was probed using computational chemistry. Metal-free systems were modeled...

  13. SCIENCE & ENGINEERING84 Understanding Paper Codes 85

    E-Print Network [OSTI]

    Waikato, University of

    SCIENCE & ENGINEERING84 PAPERS Understanding Paper Codes 85 100 Level Science Papers 86 Biological Sciences 87 Chemistry 94 Earth Sciences 99 Electronics 106 Engineering 111 Environmental Sciences 115 Material and Processing 116 Physics 124 Psychology 127 Work Placements 133 ­ Science 133 ­ Engineering 134

  14. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01T23:59:59.000Z

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  15. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26T23:59:59.000Z

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  16. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    SciTech Connect (OSTI)

    Anne Seifert; Louis Nadelson

    2011-06-01T23:59:59.000Z

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

  17. Steven C. Zimmerman Roger Adams Professor of Chemistry

    E-Print Network [OSTI]

    Bashir, Rashid

    and Disciplinary Service Coorganizer, Symposium on Supramolecular Chemistry at the Interface of Materials, Biology, Supramolecular Chemistry Panel of the NSF Macromolecular, Supramolecular and Nanochemistry (MSN) program, Arlington, VA on March 12-13, 2012. National Science Foundation, Macromolecular and Supramolecular Panel 2

  18. The High Energy Materials Science Beamline (HEMS) at PETRA III

    SciTech Connect (OSTI)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, Rene; Kiehn, Ruediger; Mueller, Martin; Schreyer, Andreas [GKSS Research Center Geesthacht GmbH, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

    2010-06-23T23:59:59.000Z

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  19. Co-op and Internship Program Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Janssen, Michel

    Co-op and Internship Program Department of Chemical Engineering and Materials Science June 2013 Engineering and Materials Science (CEMS) supports both Industrial Internships and Co-op Industrial Assignments for qualified upper division students in the Chemical Engineering (ChEn) and Materials Science and Engineering

  20. Double Degree programme in Bachelor of Engineering in Materials Science & Engineering

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    Double Degree programme in Bachelor of Engineering in Materials Science & Engineering (Honours Rationale The Materials Science and Engineering (MSE) programme is built on the solid foundation.Eng. in Materials Science and Engineering and B.Sc. (Hons.) in Physics, a student must have: · Completed a minimum

  1. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA problem in Materials Science and Engineering and then design and evaluate a strategy to address and evaluation. Prerequisites: Senior standing in Materials Science and Engineering Course goals: The main

  2. Mechanical Engineering and Materials Science The George R. Brown School of Engineering

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    212 Mechanical Engineering and Materials Science The George R. Brown School of Engineering Chair. Computer graphics re- #12;Mechanical Engineering and Materials Science 213 search involves the cooperation Requirements for B.A., B.S.M.E. in Mechanical Engineering or B.A., B.S.M.S. in Materials Science

  3. JOYCE Y. WONG Departments of Biomedical Engineering and Materials Science & Engineering

    E-Print Network [OSTI]

    JOYCE Y. WONG Professor Departments of Biomedical Engineering and Materials Science & Engineering and Engineering, 1994 Massachusetts Institute of Technology, Cambridge, MA S.B., Materials Science and Engineering, Departments of Biomedical Engineering & Materials Science & Engineering (2013-) Co-Director, Affinity Research

  4. TENURE-TRACK FACULTY POSITION Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Stuart, Steven J.

    TENURE-TRACK FACULTY POSITION Department of Materials Science and Engineering Clemson University, Clemson, S. C. 29634 The Department of Materials Science and Engineering at Clemson University is seeking of materials science and engineering though preference will be given to optical glasses, metallurgy

  5. A Report on the Workshop on Gender Equity in Materials Science and Engineering

    E-Print Network [OSTI]

    Gilbert, Matthew

    A Report on the Workshop on Gender Equity in Materials Science and Engineering May 18 - 20, 2008 College Park, Maryland GENDER EQUITY IN MATERIALS SCIENCE AND ENGINEERING Sponsored by: #12;This report on the results of the Workshop on Gender Equity in Materials Science and Engineering was sponsored

  6. Mechanical Engineering and Materials Science The George R. Brown School of Engineering

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    190 Mechanical Engineering and Materials Science The George R. Brown School of Engineering Chair Engineering and Materials Science 191 Work on expert systems and robotics is done in cooperation. Degree Requirements for B.A., B.S.M.E. in Mechanical Engineering or B.A., B.S.M.S. in Materials Science

  7. Department of Materials Science and Engineering Four Year Plan (2011-12 Catalog)

    E-Print Network [OSTI]

    Barrash, Warren

    Department of Materials Science and Engineering Four Year Plan (2011-12 Catalog) FALL SEMESTER Dimensions of Technology 3 MSE 380 Materials Science and Engineering Lab 2 MATH 360 or 361 Statistics 3's advisor. #12;Materials Science and Engineering Curriculum MATH 175 Calculus II MATH 275 Multivariable

  8. Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia

    E-Print Network [OSTI]

    Cambridge, University of

    Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics in metallurgy. To form a complete design­technology, it is consequently necessary to re- sort to careful

  9. Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process Modelling, H. K. D. H. Bhadeshia

    E-Print Network [OSTI]

    Cambridge, University of

    Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process.­E. Svensson. The metallurgy of the welded joint can be categorised into two major regions, the fusion zone

  10. Goal: Understand some of the basic principles of the chemistry of earth science and envi- Knowledge necessary for solving current and emerging problems

    E-Print Network [OSTI]

    Schofield, Jeremy

    Overview Goal: Understand some of the basic principles of the chemistry of earth science and envi; Turbulent due to heat of earth's surface: lots of mixing ! giant chemical reactor #15; Clouds and rain

  11. Journal of Materials Education 21(1&2): 145-148 THE MATERIALS-MECHANICS LINKAGE IN THE ENGINEERING

    E-Print Network [OSTI]

    Roylance, David

    curriculum of the Department of Materials Science and Engineering, that emphasizes the materials aspects to be "mechanics is phys- ics, materials science is chemistry." Unfortunately, many engineering curricula treatJournal of Materials Education 21(1&2): 145-148 THE MATERIALS-MECHANICS LINKAGE IN THE ENGINEERING

  12. Materials Science and Engineering A 516 (2009) 248252 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Gubicza, Jenő

    2009-01-01T23:59:59.000Z

    for the processing of age-hardenable alloys by ECAP at room temperature Nguyen Q. Chinha,b, , Jen o Gubiczaa , Tomasz of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA: Aging Al­Zn­Mg alloys Equal-channel angular pressing (ECAP) Precipitation Supersaturated alloys a b

  13. National Chemistry Week Theme: "Candy: The Sweet Side of Chemistry"

    E-Print Network [OSTI]

    Stephens, Jacqueline

    National Chemistry Week Theme: "Candy: The Sweet Side of Chemistry" Super Science Saturday Saturday-on chemistry and science demonstrations! All students & families are welcome! Fun & educational for all ages! Sponsored by: American Chemical Society LSU Department of Chemistry LSU Athletic Department Free admission

  14. CHEMISTRY COURSE OFFERINGS CHEM 0001-01 & 0001-02 -CHEMICAL FUNDAMENTALS W/LAB

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    in Chemistry 61. Techniques in synthesis, spectroscopy, and reactivity studies. Applications of inorganic compounds in synthesis, catalysis, materials sciences, and biology. One laboratory, one lecture, one of materials. Three lectures, one laboratory, one recitation. Only one of Chemistry 1, 11, or 16 may be counted

  15. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA of Noncrystalline Materials, Tensile Fracture at Low Temperatures, Engineering Aspects of Fracture, High Temperature and microstructure affect mechanical properties of various engineering materials including metals, ceramics, polymers

  16. Marquette University Department of Chemistry

    E-Print Network [OSTI]

    Reid, Scott A.

    Analysis Inorganic Chemistry Lecture Inorganic Synthesis Lab #12;Our Curriculum Physical Chemistry Lecture.... Directly influence the lives of others? Develop new materials with enhanced flame- retardant properties

  17. Division of Materials Sciences and Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact:DisclaimersMaterials Sciences and

  18. Sandia National Laboratories: Research: Materials Science: About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters: WeaponCybernetics: UniqueMaterials Science

  19. Sandia National Laboratories: Research: Materials Science: Video Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters: WeaponCybernetics:Materials Science

  20. Materials Science & Technology, MST: Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPA AdvancedMST

  1. MSE Concurrent Enrollment Approval Form Materials Science & Engineering IOWA STATE UNIVERSITY Request/Approval to apply/enroll as a concurrent student in Materials Science & Engineering

    E-Print Network [OSTI]

    Vaswani, Namrata

    01/10 MSE Concurrent Enrollment Approval Form Materials Science & Engineering · IOWA STATE UNIVERSITY Request/Approval to apply/enroll as a concurrent student in Materials Science & Engineering Name ISU ID# (Please Print) I am requesting approval to concurrently pursue my BS/graduate degrees and I

  2. Nanoscale Synthesis and Functional Assembly Center for Nanophase Materials

    E-Print Network [OSTI]

    Pennycook, Steve

    Ridge National Laboratory (865) 574-7690 xiaok@ornl.gov Publications Education East China Institute of Technology, China Chemistry B.A., 1998 Institute of Metal Research, Chinese Acad. of Sci., China Material Science & Engr. M. S., 2001 Institute of Chemistry, Chinese Acad. of Sci., China Physical Chemistry Ph. D

  3. EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

    E-Print Network [OSTI]

    Schwartz, Eric M.

    EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering Science and Engineering 126 MAE B(Materials Engineering) Next to Reitz Union Mechanical & Aerospace Engineering 316 CHE Civil & Coastal Engineering 273 Weil Hall Computer & Information Science & Engineering E

  4. College of Applied Science and Engineering The George S. Ansell Department of Metallurgical and Materials Engineering

    E-Print Network [OSTI]

    .D. or an equivalent degree in Metallurgical Engineering, Materials Science and Engineering, or related field, and have;College of Applied Science and Engineering The George S. Ansell Department of Metallurgical and MaterialsCollege of Applied Science and Engineering The George S. Ansell Department of Metallurgical

  5. Department of Chemistry "Supramolecular Chemistry in Polymeric

    E-Print Network [OSTI]

    Mark, James E.

    Department of Chemistry "Supramolecular Chemistry in Polymeric Systems: From Nanoassemblies to Dynamic Materials" Presented by: Professor Stuart J. Rowan Case Western Reserve University Departmental Colloquium Friday, May 15, 2009 3:00 p.m. 502 Rieveschl #12;Supramolecular Chemistry in Polymeric Systems

  6. Chemistry 411/611 Inorganic Chemistry (2010)

    E-Print Network [OSTI]

    Mather, Patrick T.

    2010-01-01T23:59:59.000Z

    -ligand reactivity, and the chemical synthesis of coordination compounds and other "solid" state materials 1 Chemistry 411/611 Inorganic Chemistry (2010) Instructor: Assistant Professor Mathew M. Maye: M-W 4:00-5:00, and by appointment Credits: 3 Text: (Required) Shriver & Atkins, "Inorganic Chemistry

  7. 147Chemistry Chemistry (Chem)

    E-Print Network [OSTI]

    Dresden, Gregory

    147Chemistry Chemistry (Chem) Bayly Foundation PROFESSORS FRANCE, PLEVA ASSOCIATE PROFESSORS ALty A student may complete only one of the majors listed in the Department of Chemistry. The major in chemistry leading to a Bachelor of Arts degree requires completion of 44 credits as follows: 1. Chemistry 111, 112

  8. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA in materials engineering and applied physics. The topics include dielectric/ferroelectric materials, magnetic by the Course: ABET A: Ability to apply mathematics, science and engineering principles ABET B: Ability

  9. Department of Materials Science and Engineering Four Year Plan (201314 Catalog, ready for calculus)

    E-Print Network [OSTI]

    Barrash, Warren

    Department of Materials Science and Engineering Four Year Plan (201314 Catalog, ready 360 Engineering Statistics 3 MSE 380 Materials Science and Engineering Lab 2 Technical or engineering) MSE 482 Senior Project II 3 MSE 404L Materials Analysis Lab 1 Technical or engineering elective 3

  10. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA of Polymer Science", 1997 other supplemental materials: Handouts posted on the course web site (blackboard) Catalog/Course Description: Study of polymeric engineering materials and the relationship to structural

  11. Invention and Outreach: The Center for the Science and Engineering of Materials

    E-Print Network [OSTI]

    Haile, Sossina M.

    Invention and Outreach: The Center for the Science and Engineering of Materials THE CENTER FOR THE SCIENCE AND ENGINEERING OF MATERIALS (CSEM), under the direction of Professor of Chemical Engineering research and educational aspects of polymeric, structural, photonic, and ferroelectric materials

  12. Draft Workshop Report: 30 June 2004 Workshop on Advanced Computational Materials Science

    E-Print Network [OSTI]

    Gropp, Bill

    Summary The Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range power plants represent an even greater challenge to structural materials development and application

  13. Insights into the crystal chemistry of Earth materials rendered by electron density distributions: Pauling's rules revisited

    SciTech Connect (OSTI)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2014-05-20T23:59:59.000Z

    Pauling's first two rules are examined in terms of the accumulation of the electron density between bonded pairs of atoms for a relatively large number of oxide and silicate crystals and siloxane molecules. The distribution of the electron density shows that the radius of the oxygen atom is not fixed, but that it actually decreases systematically from ~1.40 Ĺ to ~ 0.65 Ĺ as the polarizing power and the electronegativity of the bonded metal atoms increase and the distribution of the O atom is progressively polarized and contracted along the bond vectors by the impact of the bonded interactions. The contractions result in an aspherical oxygen atom that displays as many different bonded “radii” as it has bonded interactions. The bonded radii for the metal atoms match the Shannon and Prewitt ionic radii for the more electropositive atoms like potassium and sodium, but they are systematically larger for the more electronegative atoms like aluminum, silicon and phosphorous. Pauling's first rule is based on the assumption that the radius of the oxide anion is fixed and that the radii of the cations are such that radius sum of the spherical oxide anion and a cation necessarily equals the separation between the cation-anion bonded pair with the coordination number of the cation being determined by the ratio of the radii of the cation and anion. In the case of the bonded radii, the sum of the bonded radii for the metal atoms and the oxide anion necessarily equals the bond lengths by virtue of the way that the bonded radii were determined in the partitioning of the electron density along the bond path into metal and O atom parts. But, the radius ratio for the O and M atoms is an unsatisfactory rule for determining the coordination number of the metal atom inasmuch as a bonded O atom is not, in general, spherical, and its size varies substantially along its bonded directions. But by counting the number of bond paths that radiate from a bonded atom, the coordination number of the atom is determined uniquely independent of the asphericity and sizes of the atom. A power law connection established between the bond lengths and bond strengths for crystals and molecules is mirrored by a comparable power law connection between bond length and the accumulation of the electron density between bonded pairs of atoms, a connection that is consistent with Pauling's electroneutrality postulate that the charges of the atoms in an oxide are negligibly small. The connection indicates that a one-to-one correspondence exists between the accumulation between a pair of bonded atoms and the Pauling bond strength for M-O bonded interaction for all atoms of the periodic table. The connection provides a common basis for understanding the success of the manifold applications that have been made with the bond valence theory model together with the modeling of crystal structures, chemical zoning, leaching and cation transport in batteries and the like. We believe that the wide spread applications of the model in mineralogy and material science owes much of its success to the direct connection between bond strength and the quantum mechanical observable, the electron density distribution. Comparable power law expressions established for the bonded interactions for both crystals and molecules support Pauling's assertion that his second rule has significance for molecules as well as for crystals. A simple expression is found that provides a one to one connection between the accumulation of the electron density between bonded M and O atoms and the Pauling bond strength for all M atoms of the periodic table with ~ 95 % of the variation of the bond strength being explained in terms of a linear dependence on the accumulated electron density. Compelling evidence is presented that supports the argument that the Si-O bonded interactions for tiny siloxane molecules and silicate crystals are chemically equivalent.

  14. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  15. UNIVERSITY OF MARYLAND MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER SUMMER 2011

    E-Print Network [OSTI]

    Rubloff, Gary W.

    UNIVERSITY OF MARYLAND MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER SUMMER 2011 RESEARCH Citizen US Permanent Resident By NSF Guidelines, this program is available to US Citizens and permanent for science/math/engineering: ___________________________ Overall grade point average for all courses

  16. Adam D. McFarland Chemistry Department

    E-Print Network [OSTI]

    Janssen, Michel

    Involving Sulfur Compounds@ 2001 M.S., Chemistry, Northwestern University, Evanston, IL 2004 Ph Northwestern University, Department of Materials Science. Present Design and Construction of a low temperature optical ultra-high vacuum scanning tunneling microscope. 1999-2004 Teaching Assistant Northwestern

  17. Materials Chemistry and Physics 95 (2006) 307312 Chemical etching characteristics for cellulose nitrate

    E-Print Network [OSTI]

    Yu, K.N.

    2006-01-01T23:59:59.000Z

    available as LR 115 films were irradiated systematically with alpha particles in the energy range from 1 of Sciences, University of Kragujevac, Serbia and Monte Negro. parisons between the values calculated from and energies of the ions have been scarce. In most cases, comparisons have been limited to normal inci- dence

  18. Energy Materials and Processes, An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect (OSTI)

    Burk, Linda H.

    2014-12-16T23:59:59.000Z

    The report summarizes discussions at the Energy Materials and Process EMSL Science Theme Advisory Panel Workshop held July 7-8, 2014.

  19. MSE Concurrent Enrollment Materials Science & Engineering IOWA STATE UNIVERSITY Assistantship Increase Form

    E-Print Network [OSTI]

    Vaswani, Namrata

    01/10 MSE Concurrent Enrollment Materials Science & Engineering · IOWA STATE UNIVERSITY professor as noted below. Signature Date Concurrent BS/Graduate Approvals Academic Advisor This student has

  20. Royal Society of Chemistry ISSN 1758-6224 (Print) 2040-1469 (Online) Environmental Chemistry Group www.rsc.org/ecg

    E-Print Network [OSTI]

    Benning, Liane G.

    July 2010 Royal Society of Chemistry ISSN 1758-6224 (Print) 2040-1469 (Online) Environmental the pathways for the formation of a highly reactive and potentially useful environmental material, green rust of Chemistry initiatives in promoting the role of the chemical sciences in solar fuel and in energy storage

  1. Journal of Hazardous Materials 178 (2010) 2934 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Factors affecting the electroJournal of Hazardous Materials 178 (2010) 29­34 Contents lists available at ScienceDirect Journal

  2. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. ThygesenProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite

  3. Journal of Hazardous Materials 192 (2011) 16161622 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Sparks, Donald L.

    2011-01-01T23:59:59.000Z

    Journal of Hazardous Materials 192 (2011) 1616­1622 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Effects of dissolved

  4. Materials and Molecular Research Division annual report 1980

    SciTech Connect (OSTI)

    Not Available

    1981-06-01T23:59:59.000Z

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  5. Curvature in Conjugate Gradient Eigenvalue Computation with Applications to Materials and Chemistry Calculations

    E-Print Network [OSTI]

    Edelman, Alan

    is the ab initio calculation of electronic structure within the local density approximation. Such approaches understanding of the thermodynamic properties of bulk materials 5], the structure and dynamics of surfaces 11 Calculations Alan Edelman Tomas A. Ariasy Steven T. Smithz Abstract We illustrate the importance of using

  6. ANALYTICAL SCIENCES 2001, VOL. 17 SUPPLEMENT i1031 2001 The Japan Society for Analytical Chemistry

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    Sensors for Copper, Lead and Selenium Samuel P. KOUNAVES 1 , Oksana Yu. NADZHAFOVA 2 , Vladislav TARASOV 1 and Sandie H. TAN 1 1 Department of Chemistry, Tufts University, Medford, MA 02155, USA (E-mail: samuel were analytical grade. Stock metal solutions were prepared from 99.999% Cu (NO3)2 (Johnson Matthey

  7. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  8. Early career scientists in chemical or materials sciences, physics, biology, psychology, applied maths, engineering: this is for you!

    E-Print Network [OSTI]

    in chemical or materials sciences, physics, biology, psychology, applied maths, engineering ­ anything science in chemical or materials sciences, physics, biology, psychology, applied maths, engineering: this is for youEarly career scientists in chemical or materials sciences, physics, biology, psychology, applied

  9. Computational Materials Sciences FOA | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S.Computational Materials

  10. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01T23:59:59.000Z

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  11. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA: ABET A: Ability to apply mathematics, science and engineering principles; ABET B: Ability to design for engineering. #12;Topics Covered: Advanced materials processing topics chosen by instructor for a given course

  12. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA Covered by the Course: ABET A: Ability to apply mathematics, science and engineering principles; ABET B 462: Smart Materials (Elective) ­ 3 credits Class Schedule: Tuesday and Thursday 3:30 ­ 4

  13. CHEMISTRY DEPARTMENT HANDBOOKFOR STUDENTS

    E-Print Network [OSTI]

    Hardy, Christopher R.

    CHEMISTRY DEPARTMENT HANDBOOKFOR STUDENTS Millersville University Millersville, Pennsylvania in the ChemistryDepartment. It brings together material not collected in other places and is not meant Resources 2 Programs in Chemistry and The General Education Curriculum Record Form 3 The Major Requirements

  14. Chemistry touches your life every day, from the air you breathe to the food you eat. The science of chemistry examines the atomic and

    E-Print Network [OSTI]

    Miles, Will

    with a mass spectrometer detector, and two other gas chromatographs with FID detectors Ultraviolet medicine and biochemistry to plastics. The study of chemistry offers excellent undergraduate preparation, and from business to law. An undergraduate degree in chemistry also affords direct entrance into government

  15. Ris National Laboratory Materials Research Department

    E-Print Network [OSTI]

    catalysis H. Lynggaard, A. Andreasen , C. Stegelmann and P. Stoltze Department of Chemistry and Applied in heterogeneous catalysis H. Lynggaard, A. Andreasen, C. Stegelmann and P. Stoltze Department of Chemistry and Applied Engineering Science Aalborg University, Niels Bohrs Vej 8 DK-6700 Esbjerg, Denmark Materials

  16. Chemistry Department Colloquium: Spring, 2012

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Chemistry Department Colloquium: Spring, 2012 Friday, March 16; 3:30 Seminar Hall (room 1315 Chemistry) Lost in Translation: How Regulators Use Science and How Scientists Can Help Bridge Gaps Stephanie to combine her Chemistry background with a legal education to improve the use of science in environmental

  17. Materials Availability Expands the Opportunity for Large-Scale

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment C Y R U S W of Chemistry, University of California, Berkeley, California 94720, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Materials Science and Engineering

  18. Method and apparatus for analyzing the internal chemistry and compositional variations of materials and devices

    DOE Patents [OSTI]

    Kazmerski, L.L.

    1985-04-30T23:59:59.000Z

    A method and apparatus is disclosed for obtaining and mapping chemical compositional data for solid devices. It includes a SIMS mass analyzer or similar system capable of being rastered over a surface of the solid to sample the material at a pattern of selected points, as the surface is being eroded away by sputtering or a similar process. The data for each point sampled in a volume of the solid is digitally processed and indexed by element or molecule type, exact spacial location within the volume, and the concentration levels of the detected element or molecule types. This data can then be recalled and displayed for any desired planar view in the volume.

  19. MAJOR TO CAREER GUIDE B.A. Chemistry

    E-Print Network [OSTI]

    Walker, Lawrence R.

    MAJOR TO CAREER GUIDE B.A. Chemistry College of Sciences www.unlv.edu/chemistry Mission of the College of Sciences The College of Sciences offers programs in life sciences, chemistry, geoscience: 702-895-2077 Campus Location: MPE-A 130 www.unlv.edu/sciences/advising About the Chemistry Career

  20. MAJOR TO CAREER GUIDE B.S. Chemistry

    E-Print Network [OSTI]

    Walker, Lawrence R.

    MAJOR TO CAREER GUIDE B.S. Chemistry College of Sciences www.unlv.edu/chemistry Mission of the College of Sciences The College of Sciences offers programs in life sciences, chemistry, geoscience: 702-895-2077 Campus Location: MPE-A 130 www.unlv.edu/sciences/advising Chemistry Career Options

  1. Document: L1334 | Category: Physical Science, Materials License Status: Available for licensing || Texas Industry Cluster: Biotechnology and Life Sciences

    E-Print Network [OSTI]

    Lightsey, Glenn

    for licensing || Texas Industry Cluster: Biotechnology and Life Sciences Nanocomposite membranes for energy. These markets include hydrogen production, medical devices, advanced materials, and drug delivery. Development Engineering, The University of Texas at Austin OTC Contact Brian Cummings, Associate Director, Life Sciences

  2. ROBERT M. BRIBER Dept. of Materials Science and Engineering

    E-Print Network [OSTI]

    Rubloff, Gary W.

    -07-052198-0 2. B.J. Bauer, R.M. Briber, B. Dickens, "Studies of Grafted Interpenetrating Polymer Networks", Interpenetrating Polymer Networks, Advances in Chemistry Series 239, D. Klempner, L.H. Sperling, L.A. Utracki Density on Phase Separation in Interpenetrating Polymer Networks", Advances in Interpenetrating Polymer

  3. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  4. Preparations and characterizations of novel graphite-like materials and some high oxidation state fluorine chemistry

    SciTech Connect (OSTI)

    Shen, Ciping

    1992-11-01T23:59:59.000Z

    Novel graphite-like materials, BC{sub x} (6>x{ge}3), have been prepared using BCl{sub 3} and C{sub 6}H{sub 6} at 800--1000C, and C{sub x}N (14>x{ge}5) have been synthesized using C{sub 5}H{sub 5}N and Cl{sub 2} at 680C--986C. Bulk and thin film characterization were used to study the structure and bonding in these solids. C{sub 8}K(NH{sub 3}){sub 1.1} was prepared by reacting C{sub 8}K with gaseous NH{sub 3}. The carbon sub-lattice is hexagonal: a = 2.47 {Angstrom}, c = 6.47 {Angstrom}. The smaller a parameter and lower conductivity are attributed to smaller electron transfer from K to the conduction band solvation of K by NH{sub 3}. A simplified liquid phase method for synthesizing Li-graphite intercalation compounds has been developed; synthesis of a lamellar mixed conductor, C{sub x}{sup +}Li{sub 2}N{sup {minus}}, has been attempted. Stability and conductivity of (BN){sub 3}SO{sub 3}F have been studied; it was shown to be metallic with a specific conductivity of 1.5 S{center_dot}cm{sup {minus}1}. Its low conductivity is attributed to the low mobility of holes in BN sheets.

  5. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA 472: Technology and Design of Engineering Materials (Elective) ­ 3 credits Class Schedule: Tuesday and their engineering applications. Criteria for the choice of materials for electronic, mechanical and chemical

  6. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen crack opening. 1. INTRODUCTION Composite materials (mainly in unidirectional lay-up) are used in windProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite

  7. NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films

    E-Print Network [OSTI]

    NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films is critical was proposed more than 25 years ago in the form of FeS2 pyrite--fool's gold. Unfortunately, the material has that can be used to identify new Fe-containing materials that can circumvent the limitations of FeS2 pyrite

  8. Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Institute for Critical Technology and Applied Science Seminar Series Silicone Materials; these goals are critical for the broad adoption of PV globally. Silicone polymers possess key material for Sustainable Energy: Emphasis on Photovoltaic Materials for Module Assembly and Installation with Ann Norris

  9. Review on the EFDA programme on tungsten materials technology and science M. Rieth a,

    E-Print Network [OSTI]

    Nordlund, Kai

    Review on the EFDA programme on tungsten materials technology and science M. Rieth a, , J design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due structural as well as armor materials in combination with the necessary production and fab- rication

  10. Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials

    SciTech Connect (OSTI)

    Destaillats, Hugo; Fisk, William J.

    2010-02-01T23:59:59.000Z

    Chemical reactions involving ozone of outdoor origin and indoor materials are known to be significant sources of formaldehyde and other irritant gas-phase oxidation products in the indoor environment. HVAC filters are exposed to particularly high ozone concentrations--close to outdoor levels. In this study, we investigated chemical processes taking place on the surface of filters that included fiberglass, polyester, cotton/polyester blend and synthetic (e.g., polyolefin) filter media. Ozone reactions were studied on unused filter media, and on filters that were deployed for 3 months in two different locations: at the Lawrence Berkeley National Laboratory and at the Port of Oakland. Specimens from each filter were exposed to ozone under controlled conditions in a laboratory flow tube at a constant flow of dry or humidified air (50percent relative humidity). Ozone was generated with a UV source upstream of the flow tube, and monitored using a photometric detector. Ozone breakthrough curves were recorded for each sample exposed to ~;;150 ppbv O3 for periods of ~;;1000 min, from which we estimated their uptake rate. Most experiments were performed at 1.3 L/min (corresponding to a face velocity of 0.013 m/s), except for a few tests performed at a higher airflow rate, to obtain a face velocity of 0.093 m/s, slightly closer to HVAC operation conditions. Formaldehyde and acetaldehyde, two oxidation byproducts, were collected downstream of the filter and quantified. Emissions of these volatile aldehydes were consistently higher under humidified air than under dry conditions, at which levels were near the limit of detection. Our results confirm that there are significant reactions of ozone as air containing ozone flows through HVAC filters, particularly when the filters are loaded with particles and the air is humidified. The amount of ozone reacted was not clearly related to the types of filter media, e.g., fiberglass versus synthetic. Specific fiberglass filters that were coated with an impaction oil showed significantly higher formaldehyde emissions than most other samples. Those emissions were magnified in the presence of particles (i.e., in used filters), and were observed even in the absence of ozone, which suggests that hydrolysis of filter binder or tackifier additives may be the reason for those high emissions. Mass balance calculations indicate that the emission rates of formaldehyde and acetaldehyde from the filters are generally not large enough to substantially increase indoor formaldehyde or acetaldehyde concentrations.

  11. ACS DIVISION OF POLYMERIC MATERIALS: SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Gilchrist, James F.

    , interpenetrating polymer networks, IPNs. Other topics included the mechanical and morphological aspects of polymers textbook, "Introduction to Physical Polymer Science," with Wiley, 2004. While in retirement, he remains for Polymer Science and Engineering, and served as Education Chairman. His efforts at ACS have included

  12. AC 2010-1276: STUDENT UNDERSTANDING OF THE MECHANICAL PROPERTIES OF METALS IN AN INTRODUCTORY MATERIALS SCIENCE

    E-Print Network [OSTI]

    Heckler, Andrew F.

    difficulties in learning materials science. © American Society for Engineering Education, 2010 #12;Student in a university-level introductory materials science course for engineers. Through interviews of over 80 students MATERIALS SCIENCE ENGINEERING COURSE Rebecca Rosenblatt, Ohio State University Rebecca Rosenblatt

  13. MATERIALS SCIENCE AND ENGINEERING 099. Undergraduate Research and/or Independent Study. (C) Open to all students.

    E-Print Network [OSTI]

    Fang-Yen, Christopher

    MATERIALS SCIENCE AND ENGINEERING (EG) {MSE} 099. Undergraduate Research and/or Independent Study and the nanotechnology revolution confronts materials science with limitations and opportunities; examples in which an introduction to the fundamental concepts of Materials Science through an examination of the structure, property

  14. Nanostructure, Chemistry and Crystallography of Iron Nitride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

  15. Materials Chemistry and Physics 119 (2010) 237242 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Guo, John Zhanhu

    Laboratory (ICL), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA. Tel.: +1 409 880 7654. E-mail address: zhanhu.guo@lamar.edu (Z. Guo). tial well when at least one

  16. SUM 2013 Chemistry & Materials Science Workshop Sept. 17-18, 2013, USTC

    E-Print Network [OSTI]

    Zhou, Yi-Feng

    :00 am ­ 10:20 am: Break 10:20 am - 10:40 am: Molecular Approach to Solar Fuel Production and CO2: Combining Different Types of Solar Cells to Create Low-Cost Tandems with High Efficiency, Prof. Michael Mc

  17. Materials Chemistry and Physics 121 (2010) 208214 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    North Texas, University of

    2010-01-01T23:59:59.000Z

    , Petroleum Application, Ahmed Al Zomr St., Nasr City, Cairo 11727, Egypt b University of North Texas, USA a r (GT-SH) Corrosion inhibitor API XL65 carbon steel Electrochemical impedance spectroscopy (EIS) Energy of inhibitor concentration. The protective film formed on carbon steel surface was analyzed using an energy

  18. Materials Chemistry and Physics 124 (2010) 319322 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    . Introduction Photocatalysis offers a convenient technology to assist and accelerate chemical reactions under UV

  19. Clare Boothe Luce Assistant Professor Position in Hard Materials The Departments of Mechanical Engineering (me.udel.edu) and Materials Science and Engineering

    E-Print Network [OSTI]

    Gao, Guang R.

    Engineering (me.udel.edu) and Materials Science and Engineering (mseg.udel.edu) at the University of Delaware appointment will be in Mechanical Engineering or Materials Science and Engineering with additional parallel faculty searches in Soft Materials (www.udel.edu/udjobs #101714) and Nanoscale engineering (www

  20. Electron diffraction from cylindrical nanotubes Department of Materials Science and Engineering, Massachusetts Institute of Technology,

    E-Print Network [OSTI]

    Qin, Lu-Chang

    Electron diffraction from cylindrical nanotubes L. C. Qin Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 14 January 1994; accepted 26 April 1994) Electron diffraction intensities from cylindrical objects can be conveniently

  1. C12 PART IIA and Part IIB C12 MATERIALS SCIENCE AND METALLURGY

    E-Print Network [OSTI]

    Colton, Jonathan S.

    C12 PART IIA and Part IIB C12 MATERIALS SCIENCE AND METALLURGY Course C12: Plasticity Horwood, 1985 Kc38 G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, 1988 Ka62 W.F. Hosford and R

  2. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  3. Nanomaterials Theory Institute Center for Nanophase Materials Sciences

    E-Print Network [OSTI]

    Pennycook, Steve

    Ridge National Laboratory (865) 576-6885 myoon@ornl.gov Publications Education: Michigan State Postdoctoral Advisor: Z.Y. Zhang, University of Science and Technology of China, Hefei, China Thesis Advisor

  4. Pharmaceutical Chemistry -Bachelor of Science (SCHPUG) Total Credits Required: 128 Major Requirements Major Requirements (cont.) -3 credits

    E-Print Network [OSTI]

    Introduction to Genomics 3 CH1160 University Chemistry II AND 3 BL4020 Biochemistry II 3 CH1161 University

  5. Ultrafast Material Science Probed Using Coherent X-ray Pulses from High-Harmonic

    E-Print Network [OSTI]

    Aeschlimann, Martin

    Chapter 7 Ultrafast Material Science Probed Using Coherent X-ray Pulses from High science have made it possible to generate x-ray pulses at the femto- and attosecond frontiers using either-ray pulses paves the way for a completely new generation of experiments that can capture the coupled dynamics

  6. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01T23:59:59.000Z

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  7. USSR report: Materials science and metallurgy, [November 7, 1986

    SciTech Connect (OSTI)

    NONE

    1986-11-07T23:59:59.000Z

    Partial contents include: Analysis and Testing, Coatings, Corrosion, Ferrous Metals, Nonferrous Metals and Alloys ;Brazes and Solders, Nonmetallic Materials, Preparation, Treatments, Welding, Brazing and Soldering.

  8. Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code: CH2107

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    : CH2107 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module. ----- [Part 2: Physical Chemistry Laboratory]; Building on material from a number of modules in the 1st and 2Approved Module Information for CH2107, 2014/5 Module Title/Name: Physical Chemistry II Module Code

  9. astrophysics science division: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Fefferman, Dean Chemistry Websites Summary: & Astrophysics, Chemistry, Computer Science, Geophysical Sciences, Mathematics, Physics, and Statistics. It also Astronomyand...

  10. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema (OSTI)

    John Sarrao

    2010-01-08T23:59:59.000Z

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  11. Novel approaches to multiscale modelling in materials science

    E-Print Network [OSTI]

    Elliott, James

    of nanocrystalline metals and alloys, crack propagation in brittle solids, polymer chain relaxation in nanocomposites, Materials modelling, Molecular dynamics, Monte Carlo, Finite element analysis, Hierarchical/hybrid models in polymer nanocomposites and the control of nucleation in biomimetic materials is also given. Many

  12. advanced physical chemistry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material listed extended material on chemical kinetcs. (The topics covered are in the Syllabus below.) This means that Raina, Ramesh 2 CHEMISTRY 521 GRADUATE PHYSICAL CHEMISTRY...

  13. NERSC, LBNL Researchers Highlight Materials Science at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayedNERSC's Science Gateways

  14. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT,J.

    2004-11-01T23:59:59.000Z

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  15. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen requirements of resin infusion and prepregs for Wind Turbine blades manufacture. The new HiPertex technologyProceedings of the 27th Risř International Symposium on Materials Science: Polymer Composite

  16. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Proceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite strength of unidirectional (UD) carbon fibre reinforced composites (CFRP) in the fibre direction composites are getting much attention these years, due to increasing use of these materials in large

  17. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. ThygesenProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite reduction in composites were determined analytically. The interrelations between the remaining lifetime

  18. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen joints are found today in the electronic, automobile, aerospace, wind turbine and shipingbuildingProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite

  19. Southwest Jiaotong University, Chengdu, China, 19992006 M.S. Materials Science and Engineering, 2006

    E-Print Network [OSTI]

    Pennycook, Steve

    Jiaotong University, Chengdu, China, 1999­2006 M.S. Materials Science and Engineering, 2006 B.S. Materials (865)241-0731 wangk@ornl.gov Publications #12;U.S. Patent Zhou, W. L.; Chen, J. J.; Wang, K. "Aligned

  20. Materials Science at Oxford is an interdisciplinary subject that makes use of knowledge from Physics,

    E-Print Network [OSTI]

    Oxford, University of

    for telecommunications, semiconductors and other materials for photovoltaic energy generation, and silicon microchips for the information revolution. Materials Science is critical to the practical realisation of our desire to generate power by nuclear fusion. It is at the core of nanotechnology, the production of machines and devices

  1. Earth Science The Wiess School of Natural Sciences

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    143 Earth Science The Wiess School of Natural Sciences CHAIR Alan Levander PROFESSORS John B Physics I and II with lab ESCI 321 Earth System Evolution and Cycles ESCI 322 Earth Chemistry and Materials ESCI 323 Earth Structure and Deformation with lab ESCI 324 Earth's Interior ESCI Degrees Offered

  2. Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR KeyNUG NUCLEARNX »NameSauer

  3. DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science...

    Broader source: Energy.gov (indexed) [DOE]

    semi-annual workshops hosted by NCMC. Two half-day sessions were focused on discovery of hydrogen storage materials, one half-day session on fuel cell membranes, and one half-day...

  4. School of Materials Science and Engineering Program Guide

    E-Print Network [OSTI]

    New South Wales, University of

    from materials production, including their extraction from ores and their refining, to the design every part of a country's manufacturing industry. Because Australia is a country rich in minerals

  5. Materials Science and Engineering A 552 (2012) 481485 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Hong, Soon Hyung

    2012-01-01T23:59:59.000Z

    conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites by spark plasma sintering at temperatures in a range of 1200­1700 C under a pressure of 50 MPaDirect Materials Science and Engineering A journal homepage: www.elsevier.com/locate/msea The effect of sintering

  6. 148 Chemistry/Chinese Chemistry 347 (3)--Advanced Organic Chemistry

    E-Print Network [OSTI]

    Dresden, Gregory

    148 Chemistry/Chinese Chemistry 347 (3)--Advanced Organic Chemistry Prerequisite: Chemistry 242,syntheticmethodology,mod- ernsyntheticreactions,protectinggroups,naturalprod- uctssynthesis,andcombinatorialchemistry.France. Spring Chemistry 350 (3)--Advanced Inorganic Chemistry Prerequisites: Chemistry 250, 252, and 262. Anintro

  7. Big Data of Materials Science - Critical Role of the Descriptor

    E-Print Network [OSTI]

    Ghiringhelli, Luca M; Levchenko, Sergey V; Draxl, Claudia; Scheffler, Matthias

    2014-01-01T23:59:59.000Z

    Statistical learning of materials properties or functions so far starts with a largely silent, non-challenged step: the introduction of a descriptor. However, when the scientific connection between the descriptor and the actuating mechanisms is unclear, causality of the learned descriptor-property relation is uncertain. Thus, trustful prediction of new promising materials, identification of anomalies, and scientific advancement are doubtful. We analyze this issue and define requirements for a suited descriptor. For a classical example, the energy difference of zincblende/wurtzite and rocksalt semiconductors, we demonstrate how a meaningful descriptor can be found systematically.

  8. Biomolecular Materials | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find MoreTechnicalBiomimetic Dye Molecules|

  9. Subscriber access provided by UNIV ILLINOIS URBANA Chemistry of Materials is published by the American Chemical Society. 1155

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    ) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. (2) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354. (3) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013. (4) Chan, W. C. W.; Nie, S. Science 1998, 281, 2016. (5) Klimov, V

  10. Postdoctoral Research Associate Center for Nanophase Materials Sciences

    E-Print Network [OSTI]

    Pennycook, Steve

    yxe@ornl.gov Education 2007.9-2010.12 Ph.D in physics, Jilin University, Changchun, China, joint, China 1999.9-2003.9 BSc in physics, Jilin University, Changchun, China Professional Experience 2013 2004.9-2010.12 Research Assistant, State Key Lab of Superhard Materials, Jilin University, China Honors

  11. In Chemistry of Nanostructured Materials; Yang, P., Ed.; World Scientific Publishing: Hong Kong, 2003. MOLECULAR CLUSTER MAGNETS

    E-Print Network [OSTI]

    -density information storage, quantum computing, and magnetic refrigeration are briefly discussed. 1 Introduction Over magnets include high-density information storage, quantum computing, and magnetic refrigeration. Moreover, 2003. 291 MOLECULAR CLUSTER MAGNETS JEFFREY R. LONG Department of Chemistry, University of California

  12. Center for Nanophase Materials Sciences (CNMS) - Past Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos Laboratory NastasiPAST EVENTS Nanoscale Science

  13. Postdoctoral Research Fellow Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysicsPitsHousingPostdocs SHARE

  14. Experimental Possibilities in Material Science enabled by FEL Sources |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids |5ExpandedNovember DIXIStanford

  15. Atmospheric Chemistry

    E-Print Network [OSTI]

    Finlayson-Pitts, B. J

    2010-01-01T23:59:59.000Z

    in our understanding of important chemistry and highlightedin our knowledge. In summary, the chemistry occurring in theBJ, Pitts JN, Jr (2000) Chemistry of the Upper and Lower

  16. CLUSTER CHEMISTRY

    E-Print Network [OSTI]

    Muetterties, Earl L.

    2013-01-01T23:59:59.000Z

    Advanced Inorganic Chemistry, 11 Wiley Huetterties and C. M.Submitted to the Journal of Organometallic ChemistryCLUSTER CHEMISTRY Earl L. Muetterties TWO-WEEK LOAN COPY May

  17. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and

  18. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and--

  19. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and----

  20. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and------

  1. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and--------

  2. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,

  3. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,-- Energy,

  4. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,-- Energy,--

  5. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,--

  6. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,---- Energy,

  7. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,----

  8. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,------

  9. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,--------

  10. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,----------

  11. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,------------

  12. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy,-- Energy, science,

  13. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy,-- Energy, science,--

  14. Center for Nanophase Materials Sciences (CNMS) - 2010 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for Nanophase

  15. Center for Nanophase Materials Sciences (CNMS) - 2011 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for Nanophase1

  16. Center for Nanophase Materials Sciences (CNMS) - 2012 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for

  17. Center for Nanophase Materials Sciences (CNMS) - 2014 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for4 CNMS USER

  18. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for4 CNMS

  19. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for4

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting CenterARCHIVED

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting CenterARCHIVED

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting CenterARCHIVED

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User MeetingSupramolecular

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS UserTunable Metallic Conductance

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS UserTunable Metallic

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS UserTunable

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS UserTunableElectromechanical

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstanding Metal-Directed Growth

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstanding Metal-Directed

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstanding

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn Situ Phase

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn Situ PhaseJournal

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn Situ

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn SituDirect

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn SituDirectDynamic

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormation of

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormation ofStanding

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormation ofStanding

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormation

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormationLarge

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated environments for

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated environments forAn

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated environments

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated environmentsCNMS

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricatedTransient-Mediated

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for Ab Initio

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for Ab Initio

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for Ab

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for AbNanoscale

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method forTopographic

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method Controlling the