Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science  

E-Print Network [OSTI]

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science ...........................................................................................................................................4 Chemistry & Biochemistry Undergraduate Office..............................................................................................6 Majors in Chemistry & Biochemistry

Levine, Alex J.

2

Chemistry and Materials Science at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights NERSC Citations HPC Requirements Reviews Home Science at NERSC Chemistry & Materials Science Chemistry & Materials Science Simulation plays an indispensable...

3

Chemistry and Material Sciences Codes at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 L ast edited: 2014-06-02 08:59:45...

4

Chemistry and Material Sciences Applications Training at NERSC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June 26, 2012 Jack Zhengji NERSC Training Event 09:00 - 12:00 PST June 26, 2012...

5

Chemistry and Material Sciences Applications Training at NERSC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 or 510-486-8611 Home For Users Training & Tutorials Training Events Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications...

6

Chemistry and materials science research report  

SciTech Connect (OSTI)

The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

Not Available

1990-05-31T23:59:59.000Z

7

June 26 Training: Using Chemistry and Material Sciences Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0 Comments) NERSC will present a three-hour training class focussed on Chemistry and Material Sciences applications on Tuesday, June 26, from 9:00 to 12:00 Pacific Time. The first hour of the training is targeted at beginners. We will show you how to get started running material science and chemistry application codes at NERSC. We will demonstrate how to use the preinstalled VASP and Gaussian applications at NERSC efficiently. In the second hour, we will discuss more advanced use cases, such as managing workflows, compiling optimized versions of custom material science and chemistry applications.

8

Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 17 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

Sheridan, Scott

9

Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 30 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

Sheridan, Scott

10

Chemistry | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry Nuclear Sciences Engineering Computer Science Earth and Atmospheric Sciences...

11

Training April 5 - Material Science and Chemistry Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 5 April 5 Training April 5 - Material Science and Chemistry Applications March 9, 2011 by Francesca Verdier Training on "Using Chemistry and Material Sciences Applications" will be held April 5, presented simultaneously on the web and at NERSC. See Chemistry and Material Sciences Applications. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 August 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011

12

Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97  

SciTech Connect (OSTI)

This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

Newkirk, L.

1997-12-01T23:59:59.000Z

13

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology  

E-Print Network [OSTI]

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials and spacious clean room laboratories for nanofabrication of devices. Interested candidates are urged to submit. of Micro/Nanometer Sci. & Technology 800 Dongchuan Road, Shanghai, China 200240 e-mail:

Alpay, S. Pamir

14

Chemistry and Material Sciences Applications Training at NERSC April 5,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Feedback JGI Intro to NERSC Data Transfer and Archiving Using the Cray XE6 Joint NERSC/OLCF/NICS Cray XT5 Workshop NERSC User Group Training Remote Setup Online Tutorials Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminiars Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Training & Tutorials » Training Events » Chemistry

15

Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details or contact  

E-Print Network [OSTI]

Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details. Chemistry, Materials Science and Engineering Emphasis Core courses, plus: MATH 2250 Differential Equations or contact Professor Richard Ernst (ernst@chem.utah.edu; 801-581-8639) Chemistry Core Courses (required

Simons, Jack

16

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical...

17

Chemistry and Materials Science. Progress report, first half, FY 1993  

SciTech Connect (OSTI)

Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

Not Available

1993-07-01T23:59:59.000Z

18

The National Science Foundations Investment in Sustainable Chemistry, Engineering, and Materials  

Science Journals Connector (OSTI)

The National Science Foundations Investment in Sustainable Chemistry, Engineering, and Materials ... However, NSF recognizes the importance of social, behavioral, and economic science to any comprehensive long-term risk mitigation strategy, as well as the need to transform education to train scientists in the systems-based approaches required to make interdisciplinary research successful. ... The supply of many key elements can become critical due to low Earth abundance or because the world has become dependent on a single supplier that is susceptible to supply disruption due to natural disasters, conflict, or political manipulation. ...

Ashley A. White; Matthew S. Platz; Deborah M. Aruguete; Sean L. Jones; Lynnette D. Madsen; Rosemarie D. Wesson

2013-05-29T23:59:59.000Z

19

Marcus Wallace, Bryan Wiggins, K.W. Hipps Department of Chemistry and Materials Science and Engineering Program  

E-Print Network [OSTI]

Marcus Wallace, Bryan Wiggins, K.W. Hipps Department of Chemistry and Materials Science purified by both solvent extraction and sublimation methods in order to yield a high purity product

Collins, Gary S.

20

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect (OSTI)

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

22

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network [OSTI]

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

23

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network [OSTI]

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

24

Computational Chemistry | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry Advanced Materials Nuclear Forensics Climate & Environment Biology and Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry...

25

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

26

Materials Science & Engineering  

E-Print Network [OSTI]

. Aucierllo has edited 19 books, published about 450 articles, holds 14 patents, and has organized, chaired and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry

27

Symposium on high temperature and materials chemistry  

SciTech Connect (OSTI)

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

Not Available

1989-10-01T23:59:59.000Z

28

Screen Electrode Materials & Cell Chemistries and Streamlining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode...

29

Chemistry on the inside: green chemistry in mesoporous materials  

Science Journals Connector (OSTI)

...millennium: young scientists give their visions of the future III. Chemistry and biological physics compiled by J. M. T. Thompson Chemistry on the inside: green chemistry in mesoporous materials Duncan J. Macquarrie Department of Chemistry...

2000-01-01T23:59:59.000Z

30

Molecular environmental science using synchrotron radiation: Chemistry and physics of waste form materials  

E-Print Network [OSTI]

for radiation resistance in these materials. The ratio ofradiation resistance [4] of these same pyrochlore materials

Lindle, Dennis W.; Shuh, David K.

2005-01-01T23:59:59.000Z

31

Chemistry Student Handbook College of Science  

E-Print Network [OSTI]

Chemistry Student Handbook College of Science React. Science #12;Contents 2 Welcome to the Department of Chemistry 2 Course Advice 3 What is Chemistry? 4 Career Profiles in Chemistry 5 An Undergraduate Degree in Chemistry 6 Chemistry Streams 13 Chemistry Honours Programme 14 Research

Hickman, Mark

32

Why chemistry? Chemistry is fundamental: it is the enabling science  

E-Print Network [OSTI]

Chemistry Why chemistry? Chemistry is fundamental: it is the enabling science that underlies many technology. A chemistry degree allows you to understand and to contribute to our future. Chemistry is challenging: understanding the very fabric of matter is both stimulating and rewarding. Studying chemistry

Sussex, University of

33

Chemistry for Measurement and Detection Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry for Measurement and Detection Science Chemistry for Measurement and Detection Science Research into alternative forms of energy, especially energy security, is one of the...

34

NREL: Energy Sciences - Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Materials Science Learn about our...

35

Chemistry, Life, and Earth Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences August 9, 2011 - 2 - LOS ALAMOS, New Mexico, August 9, 2011- Nancy ("Nan") Sauer is the new associate...

36

Materials Science Division - Argonne National Laboratories, Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

37

Growth at Chemistry of Materials  

Science Journals Connector (OSTI)

Publication Date (Web): October 14, 2014 ... Thomson-Reuters, the corporation that runs Web of Science, has published a series of reports under the heading of Science Watch; one area covered is materials science. ... (1) They also note that the world share of papers indexed by Web of Science in materials has grown from just under 3% to 5% from 1981 to 2011, and yet the total number of papers handled during this time has more than doubled to 1.1 million per annum. ...

Jillian M. Buriak

2014-10-14T23:59:59.000Z

38

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

39

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

40

College of Science Department of Chemistry  

E-Print Network [OSTI]

College of Science Department of Chemistry CHEMISTRY MINOR CHECKSHEET For students graduating in calendar year 2015 I. Required Courses (19 hours) CHEM 1035 1 -10362 General Chemistry (3) ____ (3) ____ CHEM 1045 3 -10464 General Chemistry Labs (1) ____ (1) ____ CHEM 2535-2536 Organic Chemistry (3

Crawford, T. Daniel

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

College of Science Department of Chemistry  

E-Print Network [OSTI]

College of Science Department of Chemistry CHEMISTRY MINOR CHECKSHEET For students graduating in calendar year 2013 I. Required Courses (19 hours) CHEM 1035 1 -10362 General Chemistry (3) ____ (3) ____ CHEM 1045 3 -10464 General Chemistry Labs (1) ____ (1) ____ CHEM 2535-2536 Organic Chemistry (3

Crawford, T. Daniel

42

College of Science Department of Chemistry  

E-Print Network [OSTI]

College of Science Department of Chemistry CHEMISTRY MINOR CHECKSHEET For students graduating in calendar year 2014 I. Required Courses (19 hours) CHEM 1035 1 -10362 General Chemistry (3) ____ (3) ____ CHEM 1045 3 -10464 General Chemistry Labs (1) ____ (1) ____ CHEM 2535-2536 Organic Chemistry (3

Crawford, T. Daniel

43

College of Science Department of Chemistry  

E-Print Network [OSTI]

College of Science Department of Chemistry CHEMISTRY MINOR CHECKSHEET For students graduating in calendar year 2012 I. Required Courses (19 hours) CHEM 1035 1 -10362 General Chemistry (3) ____ (3) ____ CHEM 1045 3 -10464 General Chemistry Labs (1) ____ (1) ____ CHEM 2535-2536 Organic Chemistry (3

Crawford, T. Daniel

44

NERSC training events: Data Transfer and Archiving; Chemistry and Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

training events: Data Transfer and Archiving; Chemistry and Material training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications NERSC training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications February 21, 2011 by Richard Gerber NERSC will present two training events in March: Data Transfer and Archiving March 8, 2011 10:00-12:30 Pacific Time Using Chemistry and Material Sciences Applications at NERSC March 22, 2011 10:00-12:00 Pacific Time Each event will be held concurrently at NERSC's Oakland Scientific Facility and over the web. To register or get more information, please visit our Training Events page. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013

45

NEWTON's Material Science References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

46

NEWTON's Material Science Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

47

Experimenting with the Sweet Side of Chemistry: Connecting Students and Science through Food Chemistry  

Science Journals Connector (OSTI)

Experimenting with the Sweet Side of Chemistry: Connecting Students and Science through Food Chemistry ... Food science is the greenest of all sciences. ...

Sally B. Mitchell

2014-10-14T23:59:59.000Z

48

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxide Interfaces Chemical Imaging Grain Boundaries Related Research Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical transformations and physical phenomena at gas, liquid and solid interfaces lie at the heart of today's energy technologies. They underpin ORNL's research strategies to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy. Understanding, predicting and controlling the structure, transport and reactivity at interfaces will lead to advances in

49

Educational Material Science Games  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

50

College of Arts and Sciences CHE Chemistry  

E-Print Network [OSTI]

College of Arts and Sciences CHE Chemistry KEY: # = new course * = course changed = course dropped will be discussed in terms of their properties and impact on our everyday real world experience. CHE 103 CHEMISTRY, or completion of MA 108R. CHE 104 INTRODUCTORY GENERAL CHEMISTRY. (3

MacAdam, Keith

51

Complementary Chemistry and Matched Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Complementary Chemistry and Matched Materials Complementary Chemistry and Matched Materials Complementary Chemistry and Matched Materials November 15, 2013 - 1:45pm Addthis DNA linkers allow different kinds of nanoparticles to self-assemble and form relatively large-scale nanocomposite arrays. This approach allows for mixing and matching components for the design of multifunctional materials. | Image courtesy of Brookhaven National Laboratory. DNA linkers allow different kinds of nanoparticles to self-assemble and form relatively large-scale nanocomposite arrays. This approach allows for mixing and matching components for the design of multifunctional materials. | Image courtesy of Brookhaven National Laboratory. Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts?

52

Enriched Stable Isotope Materials and Chemistry | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enriched Stable Isotope Materials and Chemistry SHARE Enriched Stable Isotope Materials and Chemistry Reductiondistillation of calcium-48 metal valued at over 900,000. An...

53

Chemistry -Bachelor of Science (SCH1UG) Total Credits Required: 128 Chemistry/Polymers -ACS Certified  

E-Print Network [OSTI]

Chemistry - Bachelor of Science (SCH1UG) Total Credits Required: 128 Chemistry/Polymers - ACS credits Course Credits Course Credits CH1150 University Chemistry I AND 3 CH4610 Intro to Polymer Science 3 CH1151 University Chemistry Lab 1 AND 1 CH4620 Polymer Chemistry 3 CH1153 University Chemistry

54

LANL: Materials Science Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

55

NEWTON's Material Science Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Archive: Materials Science Archive: Loading Most Recent Materials Science Questions: Hydrogen Compounds and Heat Conduction Weaving Carbon Nanotubes Metal as Electrical Conductor, Not Thermal Steel Changes with Age PETE, Ultraviolet Light, Benefits Strength of Yarn by Spinning Each Substance Unique Density Alloy versus Constituent Density Knowing When Material is Melted Crystalline Metal Versus Metallic Glass and Conduction Super Glue, Surgery, and Skin Silica Gel Teflon Non-Stick Property Salt Crystal Formation Lubricating Rubber Bands and Elasticity Materials for Venus Probe Crystalline Solids and Lowest Energy Sodium Polycarbonate and Salt Water Early Adhesives Surface Energy and Temperature Separating Polypropylene, Polyester, and Nylon Factors Effecting Polymer Flexibility

56

Chemistry -Bachelor of Science (SCHUG) Total Credits Required: 128 Chemistry -ACS Certified  

E-Print Network [OSTI]

Chemistry - Bachelor of Science (SCHUG) Total Credits Required: 128 Chemistry - ACS Certified Major of the following courses Course Credits Course Credits CH1150 University Chemistry I AND 3 CH4110 Pharmaceutical Chemistry: Drug Action 3 CH1151 University Chemistry Lab 1 AND 1 CH4120 Pharmaceutical Chemistry: Drug

57

Materials Science & Engineering | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

58

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2013, in Capabilities, Customers & Partners, Energy, Energy Efficiency, Materials Science, News, News & Events, Office of Science, Partnership, Research & Capabilities,...

59

Materials sciences programs, Fiscal year 1997  

SciTech Connect (OSTI)

The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

NONE

1998-10-01T23:59:59.000Z

60

Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980  

SciTech Connect (OSTI)

Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research.

Truhan, J.J.; Hopper, R.W.; Gordon, K.M. (eds.)

1980-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project On May 22,...

62

Roadmap: Chemistry Chemistry -Bachelor of Science [AS-BS-CHEM-CHEM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Chemistry - Bachelor of Science [AS-BS-CHEM-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 30-Apr-13/LNHD for certification by the American Chemical Society CHEM 10060 General Chemistry I (4) and CHEM 10062 General

Sheridan, Scott

63

Roadmap: Chemistry Chemistry -Bachelor of Science [AS-BS-CHEM-CHEM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Chemistry - Bachelor of Science [AS-BS-CHEM-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 2 | Last Updated: 17-May-12/LNHD for certification by the American Chemical Society CHEM 10060 General Chemistry I (4) and CHEM 10062 General

Sheridan, Scott

64

Chemistry -Bachelor of Science (SCH2UG) Total Credits Required: 128 Chemistry/Biochemistry -ACS Certified  

E-Print Network [OSTI]

Chemistry - Bachelor of Science (SCH2UG) Total Credits Required: 128 Chemistry/Biochemistry - ACS credits Course Credits Course Credits CH1150 University Chemistry I AND 3 BL1040 Principles of Biology 4 CH1151 University Chemistry Lab 1 AND 1 BL4820 Biochem Techniques I 2 CH1153 University Chemistry

65

The Center for Interface Science: Solar Electric Materials  

E-Print Network [OSTI]

The Center for Interface Science: Solar Electric Materials Chemistry and Biochemistry alumni, on page 6, is written by Dr. Neal Armstrong, Director of the UA Center for Interface Science: Solar | teaches chemistry as a part-time in- structor at Central New Mexico Community College. Anne Simon | Ph

Ziurys, Lucy M.

66

NREL: Energy Sciences - Theoretical Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Materials Science Solid-State Theory Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Theoretical Materials Science Learn about our research staff including staff profiles, publications, and contact information. Using modern computational techniques, the Theoretical Materials Science Group, within NREL's Chemical and Materials Science Center, applies quantum mechanics to complex materials, yielding quantitative predictions to guide and interact with experimental explorations. Current research focuses on the following efforts: Design new photovoltaic materials that can improve solar cell efficiency and reduce its cost. Explain the underlying physics of new

67

CHEMISTRY 1 Faculty of Natural Sciences, Department of  

E-Print Network [OSTI]

CHEMISTRY 1 Faculty of Natural Sciences, Department of --Chemistry This publication refers.imperial.ac.uk/pgprospectus. Chemistry Interests in chemistry at Imperial College cover physical, organic, inorganic, analytical, polymer and biological chemistry and chemical crystallography, as well as intersectional and medical topics

68

ASTRONOMY BIOLOGY CHEMISTRY COMPUTER-SCIENCE GEOGRAPHY MATHEMATICS PHYSICS STATISTICS  

E-Print Network [OSTI]

ASTRONOMY BIOLOGY CHEMISTRY COMPUTER-SCIENCE GEOGRAPHY MATHEMATICS PHYSICS STATISTICS HEALTHCARE BIOMEDICAL-ENGINEERING ELECTRONIC- ENGINEERING ASTRONOMY BIOLOGY CHEMISTRY COMPUTER-SCIENCE GEOGRAPHY MATHEMATICS PHYSICS STATISTICS HEALTHCARE BIOMEDICAL-ENGINEERING ELECTRONIC-ENGINEERING ASTRONOMY BIOLOGY C H

Bernstein, Phil

69

Shock-induced chemistry in organic materials  

SciTech Connect (OSTI)

The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

2011-01-20T23:59:59.000Z

70

Chemistry -Bachelor of Science (SCH5UG) Total Credits Required: 128 Chemistry/Environmental -ACS Certified  

E-Print Network [OSTI]

Chemistry - Bachelor of Science (SCH5UG) Total Credits Required: 128 Chemistry/Environmental - ACS credits Course Credits Course Credits CH1150 University Chemistry I AND 3 BL1040 Principles of Biology 4 CH1151 University Chemistry Lab 1 AND 1 BL3310 Environmental Microbiology 3 CH1153 University

71

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

72

Materials Science and Engineering  

Broader source: Energy.gov (indexed) [DOE]

Materials Science and Engineering Materials Science and Engineering 1 Fe---Cr A lloys f or A dvanced N uclear E nergy A pplica9ons Ron S caMaterials Science and Engineering 2 Thermodynamic S tabiliza9on o f G rain S ize The concept is that non---equilibrium solutes introduced by mechanical alloying can segregate to grain b oundaries, p roducing

73

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

74

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20, 2013, in CINT, Facilities, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research & Capabilities, Transmission Grid Integration The nation's...

75

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid Integration, Infrastructure Security, Materials Science, News, News & Events,...

76

Materials Sciences and Engineering Program | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

77

Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry Print Chemical science at the ALS encompasses a broad range of approaches and specializations, including surfacesinterfaces, catalysis, chemical dynamics (gas-phase...

78

Field of Expertise Materials Science  

E-Print Network [OSTI]

structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

79

Materials Science and Technology Teachers Handbook  

SciTech Connect (OSTI)

The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

2008-09-04T23:59:59.000Z

80

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the ASME 12th Fuel Cell Science, Engineering and Technology Conference in Boston, Massachusetts. One pathway for delivering H2 ... Combining 'Tinkertoy' Materials with...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SC e-journals, Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface Engineering - OAJ Archives of Materials Science and Engineering - OAJ Carbohydrate Polymers Carbon Catalysis Science & Technology Cellulose Cement and Concrete Research Ceramic Engineering and Science Proceedings Ceramics International Chalcogenide Letters - OAJ Chemical and Petroleum Engineering

82

Materials Science Graduate Student Handbook  

E-Print Network [OSTI]

Materials Science Program Graduate Student Handbook Fall 2010 #12;1 http://www.engr.wisc.ede/interd/msp/handbook year are eligible to run for office. This handbook was written by materials science graduate students Assistance (page 5): How does research funding work? Course Registration (page 7): What classes should I

Evans, Paul G.

83

Advances in materials science, Metals and Ceramics Division. Triannual progress report, February-May 1980  

SciTech Connect (OSTI)

Research is reported in the magnetic fusion energy and laser fusion energy programs, aluminium-air battery and vehicle research, geothermal research, nuclear waste management, basic energy science, and chemistry and materials science. (FS)

Truhan, J.J.; Gordon, K.M. (eds.)

1980-08-01T23:59:59.000Z

84

Chemistry -Bachelor of Science (SCH3UG) Total Credits Required: 128 Chemistry/Secondary Education -ACS Certified  

E-Print Network [OSTI]

Chemistry - Bachelor of Science (SCH3UG) Total Credits Required: 128 Chemistry/Secondary Education - 40 credits Course Credits Course Credits CH1150 University Chemistry I AND 3 CH3020 Laboratory Teaching Internship 2 CH1151 University Chemistry Lab 1 AND 1 CH4810 Design/Oper of High School Chemistry

85

Chemistry -Bachelor of Science (SCH4UG) Total Credits Required: 128 Chemistry/Chemical Physics -ACS Certified  

E-Print Network [OSTI]

Chemistry - Bachelor of Science (SCH4UG) Total Credits Required: 128 Chemistry/Chemical Physics - 49 credits Course Credits Course Credits CH1150 University Chemistry I AND 3 CH4560 Computational Chemistry 3 CH1151 University Chemistry Lab 1 AND 1 PH2300 Univ Physics III - Fluids & Thermo 2 CH1153

86

1 Chemistry Part of the Columbian College of Arts and Sciences, the  

E-Print Network [OSTI]

1 Chemistry CHEMISTRY Part of the Columbian College of Arts and Sciences, the Chemistry Department of biology and geology and the science of physics, chemistry, the central science, studies the composition intellectual environment of chemistry and interdisciplinary research and scholarship pervades the department

Vertes, Akos

87

Department of Advanced Materials Science  

E-Print Network [OSTI]

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

88

Graduate School of Advanced Science and Engineering Department of Applied Chemistry  

E-Print Network [OSTI]

Graduate School of Advanced Science and Engineering Department of Applied Chemistry Master of Advanced Science and Engineering Department of Applied Chemistry Master's Program Doctoral Program Inorganic Synthetic Chemistry Professor Doctor of Engineering (Waseda Univ.) SUGAHARA Yoshiyuki Polymer

Kaji, Hajime

89

Materials Science & Engineering  

E-Print Network [OSTI]

and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

90

Recent Advances in Computational Materials Science and Multiscale Materials Modeling  

E-Print Network [OSTI]

Recent Advances in Computational Materials Science and Multiscale Materials Modeling Guest Editors Advances in Computational Materials Science and Multiscale Materials Modeling. These symposia provide. Professor Karel Matous Aerospace and Mechanical Engineering Department University of Notre Dame Email

Matous, Karel

91

Center for Nanophase Materials Sciences (CNMS) - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

94720 6 Institute for Problems of Materials Science, National Academy of Science of Ukraine, Kiev, Ukraine 7 Institute of Semiconductor Physics, National Academy of Science of...

92

Bayer MaterialScience | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Bayer MaterialScience Place: Leverkusen, Germany Website: http:www.bayermaterialscienc References: Bayer Material Science1...

93

Sandia National Laboratories: materials science and engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

94

Materials Science & Engineering  

E-Print Network [OSTI]

technologies used to develop energy sources, protect the environment, preserve the national infrastructure, electronic materials, composites, biomaterials, nuclear materials and nanomaterials. The common thread and Engineering program. Effective 2014-2015 1 Updated May 2014 #12;Additionally, here are some helpful

Simons, Jack

95

Materials science Nanotubes get hard  

E-Print Network [OSTI]

Materials science Nanotubes get hard under pressure Proc. Natl Acad. Sci. USA doi:10.1073/pnas.0405877101 (2004) When Zhongwu Wang et al. squeezed carbon nanotubes in a diamond anvil cell, they made nanotubes into diamond itself: the carbon material formed under compression at room temperature seems

Downs, Robert T.

96

Calcifying tissue regeneration via biomimetic materials chemistry  

Science Journals Connector (OSTI)

...National Research Foundation of Korea (NRF) of the Ministry of Education, Science...proteins and genetic programming. Panels (a-d) represent the natural inorganic skeletons...Society; (c) adapted from Wiley-VCH; (d) adapted from Wikipedia, Patrick Siemer...

2014-01-01T23:59:59.000Z

97

Chemical and Materials Sciences Building | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

98

Biological Sciences, Biochemistry, Chemistry and Environmental Science and Policy-Biodiversity and Conservation  

E-Print Network [OSTI]

Biological Sciences, Biochemistry, Chemistry and Environmental Science and Policy-Biodiversity of C- ENSP-Biodiversity and Conservation majors · Completion of MATH 140, 130 or 220 with a minimum

Shapiro, Benjamin

99

Biological Sciences, Biochemistry, Chemistry and Environmental Science and Policy-Biodiversity and  

E-Print Network [OSTI]

Biological Sciences, Biochemistry, Chemistry and Environmental Science and Policy-Biodiversity/232 (or CHEM 146/177and CHEM 237) with a minimum grade of C- ENSP-Biodiversity and Conservation majors

Shapiro, Benjamin

100

Introduction Materials science and engineering is on  

E-Print Network [OSTI]

is biomaterials. A Short History of Materials Science and Engineering Materials science and engineering (MS&E) has and engineering. What is the Next BigThing for Materials Science? A50-year history of productive reinven- tionIntroduction Materials science and engineering is on a plateau. As a field, it has been one

Prentiss, Mara

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Materials Science Program Graduate Studies Handbook  

E-Print Network [OSTI]

Training For Chemical/Physical Labs 26 #12;University of Rochester Graduate Handbook Materials ScienceMaterials Science Program Graduate Studies Handbook 2012-2014 Lynda McGarry, Materials Science@chem.rochester.edu #12;University of Rochester Graduate Handbook Materials Science Program updated December 2012 Page 2

Mahon, Bradford Z.

102

Journal of Materials Education Vol. 33 (3-4): 141 -148 (2011) INTEGRATION OF MATERIALS SCIENCE IN THE EDUCATION OF  

E-Print Network [OSTI]

Chemistry, University Siegen, 57068 Siegen, Germany; and Department of Polymer Science and Engineering Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, 3940 North creativity and curiosity for scientific problems are challenged. This ambitious concept that can be conducted

North Texas, University of

103

NWChem Delivering High-Performance Computational Chemistry to Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NWChem NWChem Delivering High-Performance Computational Chemistry to Science SCientifiC innovation tHrougH integration www.nwchem-sw.org www.emsl.pnl.gov NWChem  High-Performance Computational Chemistry EMSL  Environmental Molecular Sciences Laboratory 2 3 NWChem software » Biomolecules, nanostructures, and solid state » From quantum to classical, and all combinations » Gaussian functions or plane-waves » Scaling from one to thousands of processors » Properties and relativity » Open source NWChem Introduction NWChem is cutting-edge software that offers an extensive array of highly scalable, parallel computational chemistry methods needed to address a wide range of large, challenging scientific questions. As one of the U.S. Department of Energy's premier computational chemistry tools, NWChem is

104

Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry Chemistry Chemistry Print Chemical science at the ALS encompasses a broad range of approaches and specializations, including surfaces/interfaces, catalysis, chemical dynamics (gas-phase chemistry), crystallography, and physical chemistry. By one estimate, nearly 80% of all chemical reactions in nature and in human technology take place at boundaries between phases, i.e., at surfaces or interfaces. Atomic- and molecular-scale studies are needed to develop a thorough understanding of the relationships between surface properties and parameters relevant to potential applications and devices. Catalysts play a central role in processes relevant to energy, the environment, and biology. Researchers are working to develop cheaper and smarter catalysts that are fine tuned to accelerate reactions that, for example, drive fuel-refinement, sweep toxins from emissions, or convert starch to sugar.

105

Environmental Assessment for Actinide Chemistry and Repository Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

questions on the Environmental Assessment for Actinide Chemistry and Repository Science Laboratory, email Harold.Johnson@wipp.ws or call (505) 234-7349. questions on the Environmental Assessment for Actinide Chemistry and Repository Science Laboratory, email Harold.Johnson@wipp.ws or call (505) 234-7349. Environmental Assessment for Actinide Chemistry and Repository Science Laboratory Final - January, 2006 This document has been provided to you in PDF format. Please install Adobe Acrobat Reader before accessing these documents. Some of the Chapters containing complex graphics have been split into multiple parts to allow for more detail in the graphics and ease in downloading. Cover Sheet, Table of Contents, List of Tables, List of Figures, and Acronyms and Abbreviations Chapter 1 - Introduction and Statement of Purpose and Need Chapter 2 - Proposed Action and Alternatives Chapter 3 - Existing Environment

106

Chemistry of Materials vol 23 iss24 (2011) 53795387  

E-Print Network [OSTI]

transition metal (Ni, Fe, Co) nanoparticle catalysts to decompose a gas mixture based on carbonaceous for catalysts; (2) carbon diffusion through surface or bulk; (3) metal or metal carbide for catalysts or metal carbide) hal-00793965,version1-10Mar2013 Author manuscript, published in "Chemistry of Materials

Paris-Sud XI, Université de

107

22 August 2013 Chemistry World Science unlimited  

E-Print Network [OSTI]

ours would immediately see how these limited choices affect creativity, beauty and innovation. And what remediation to assuring clean water resources, to powering the planet, every country in the world is facing serious challenges that require a strong and innovative scientific workforce. And chemistry

Richmond, Geraldine L.

108

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Publications J. R. I. Lee, H. D. Whitley, R. W. Meulenberg, A. Wolcott, J. Z. Zhang, D. Prendergast, D. D. Lovingood, G. F. Strouse, T. Ogitsu, E. Schwegler, L. J. Terminello and T. van Buuren. Ligand-Mediated Modification of the Electronic Structure of CdSe Quantum Dots. Nano Letters 12, 2763 (2012). abstract » B. Zamft, L. Bintu, T. Ishibashi and C. Bustamante. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proceedings of the National Academy of Sciences 109, 8948 (2012). abstract » W. Morris, B. Volosskiy, S. Demir, F. Gandara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart and O. M. Yaghi. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorganic chemistry 51, 6443 (2012). abstract »

109

Center for Nanophase Materials Sciences | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences The Center for Nanophase Materials Sciences (CNMS), one of five DOE-funded nanoscience research centers (NSRCs). CNMS has established itself as an internationally...

110

ANALYTICAL CHEMISTRY AND MEASUREMENT SCIENCE (What Has DOE Done For Analytical Chemistry?) CONF-8904181--1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, . - - ANALYTICAL CHEMISTRY AND MEASUREMENT SCIENCE (What Has DOE Done For Analytical Chemistry?) CONF-8904181--1 DE89 009559 W. D. Shults Analytical Chemistry Division Oak Ridge National Laboratory* Oak Ridge, Tennessee 37831-6129 ABSTRACT Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or wcce brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

111

Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF  

E-Print Network [OSTI]

Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF-355. Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF DMR

Weston, Ken

112

Review of Fundamentals of Environmental and Toxicological Chemistry: Sustainable Science, 4th Edition  

Science Journals Connector (OSTI)

Review of Fundamentals of Environmental and Toxicological Chemistry: Sustainable Science, 4th Edition ... Faculty at the College of

Shadi Abu-Baker; Shahrokh Ghaffari; Mohannad Al-Saghir; Raj Thamburaj; Tarig Higazi

2014-10-15T23:59:59.000Z

113

Sandia National Laboratories: Materials Science and Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

itiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Materials...

114

Graduate School of Advanced Science and Engineering Department of Chemistry and Biochemistry  

E-Print Network [OSTI]

Graduate School of Advanced Science and Engineering Department of Chemistry and Biochemistry; Graduate School of Advanced Science and Engineering Department of Chemistry and Biochemistry Master/092015/04 2 Department of Chemistry and Biochemistry #12; Graduate School of Advanced Science and Engineering

Kaji, Hajime

115

Center for Nanophase Materials Sciences - Newsletter January...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

116

MaterialsChemistryA Materials for energy and sustainability  

E-Print Network [OSTI]

Pages 5939�6248 #12;High efficiency perovskite solar cells: from complex nanostructure to planar, the power conversion efficiency (PCE) of perovskite-based dye-sensitized solar cells (DSSCs) has rapidly the prognosis for future progress in exploiting perovskite materials for high efficiency solar cells. 1

Lin, Zhiqun

117

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

SciTech Connect (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

118

Chemistry | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home | Science & Discovery | Supercomputing and Computation | Research Areas | Chemistry SHARE Chemistry Computational Chemistry at ORNL uses principles of computer science...

119

Materials Chemistry and Performance of Silicone-Based Replicating Compounds.  

SciTech Connect (OSTI)

Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

2014-11-01T23:59:59.000Z

120

Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials  

E-Print Network [OSTI]

VOCs emitted by reactions of HVAC filters with ozone usingand Emissions on HVAC Filter Materials Hugo Destaillats andChemistry and Emissions on HVAC Filter Materials Authors:

Destaillats, Hugo

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology Chemistry Engineering Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics ORNL wins six R&D 100s R&D Magazine recognizes...

122

The Department of Materials Science and Engineering  

E-Print Network [OSTI]

The Department of Materials Science and Engineering 325 Woolf Hall · Box 19031 · 817-272-2398 www.uta.edu/mse Overview The interdisciplinary field of materials science and engineering has become critical to many emerging areas of science and advanced technology. As a result, there is a growing demand for engineers

Texas at Arlington, University of

123

Nuclear Materials Science:Materials Science Technology:MST-16...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and actinide fundamental science. Alison Costello One for the team by Diana Del Mauro Alison Costello Surface Science and Corrosion team staff member Alison Costello and...

124

Click-Inspired Chemistry in Macromolecular Science: Matching Recent Progress and User Expectations  

Science Journals Connector (OSTI)

Click-Inspired Chemistry in Macromolecular Science: Matching Recent Progress and User Expectations ... (2) Moreover, click chemistry united scientists from different backgrounds as it served as a strong basis and catalyst for interdisciplinary research. ... Click chemistry, a powerful tool for pharmaceutical sciences ...

Pieter Espeel; Filip E. Du Prez

2014-11-26T23:59:59.000Z

125

FWP executive summaries: Basic energy sciences materials sciences programs  

SciTech Connect (OSTI)

This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

Samara, G.A.

1996-02-01T23:59:59.000Z

126

Teacher Resource Center: Fermilab Science Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab Science Materials Fermilab Science Materials TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources Select from several categories of items available from the Fermilab Education Office. Teachers created these classroom materials as part of Fermilab educational programs. The following materials may be ordered either through the Education Office or through the Fermilab Friends for Science Education Online Store. ** Use the online order form (pdf).** You can fill it out online, save it, print it and send it by US mail.

127

Chemical Sciences Division | Advanced Materials |ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

128

NREL: Energy Sciences - Chemical and Materials Science Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Materials Science Staff Chemical and Materials Science Staff The Chemical and Materials Science staff members at the National Renewable Energy Laboratory work within one of five groups: the Chemical and Nanoscale Science Group, the Theoretical Materials Science Group, the Materials Science Group, the Process Technology and Advanced Concepts Group, and the Fuel Cells Group. Access the staff members' background, areas of expertise, and contact information below. Jao van de Lagemaat Director Marisa Howe Project Specialist Chemical & Nanoscale Science Group Nicole Campos Administrative Professional Paul Ackerman Natalia Azarova Brian Bailey Matthew C. Beard Matt Bergren Raghu N. Bhattacharya Julio Villanueva Cab Rebecca Callahan Russ Cormier Ryan Crisp Alex Dixon Andrew J. Ferguson Arthur J. Frank

129

SRF Materials: Fundamental studies of interfacial oxidation chemistry of niobium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANL/FNAL/UC Collaboration meeting 27 Nov 2007 ANL/FNAL/UC Collaboration meeting 27 Nov 2007 SRF Materials: Fundamental studies of interfacial oxidation chemistry of niobium Lance Cooley - FNAL Mike Pellin, Jim Norem - ANL Steve Sibener - UC John Zasadzinski, Thomas Prolier - IIT f ANL/FNAL/UC Collaboration meeting 27 Nov 2007 May 2007 SRF Materials Workshop @ FNAL energized 2 collaborations being reported here * Atomic layer deposition of conformal coatings onto cavities (Pellin, Zasadzinski, Prolier, Norem, Antoine/Wu/Cooley) - Directly probe surface superconductivity (SC) via 1.5 K STM + XPS surface composition - Nb oxidation layer proximity effects! - ALD Al 2 O 3 coated cavity first, for oxidation control; multilayer- coated cavity later - A new philosophy: build up, not etch down - First annealing results reveal oxidation vs

130

SC e-journals, Chemistry  

Office of Scientific and Technical Information (OSTI)

Chemistry Chemistry Accounts of Chemical Research Accreditation and Quality Assurance ACS Chemical Biology ACS Nano Acta Biotheoretica Acta Materialia Acta Neuropathologica Adsorption Advanced Engineering Materials Advances in Physical Chemistry - OAJ AlChE Journal Amino Acids Analyst Analytica Chimica Acta Analytical and Bioanalytical Chemistry Analytical Biochemistry Analytical Chemistry Analytical Sciences - OAJ Angewandte Chemie - International Edition Annual Review of Analytical Chemistry Annual Review of Biochemistry Annual Review of Biophysics Annual Review of Materials Research Annual Review of Physical Chemistry Antimicrobial Agents and Chemotherapy Applied Geochemistry Applied Radiation and Isotopes Applied Surface Science Applied Thermal Engineering Aquatic Geochemistry

131

Harvard-MIT Division of Health Sciences and Technology Contract for Technical Qualifying Exam (TQE)  

E-Print Network [OSTI]

Electrical Engineering Computer Science Physics Chemistry Aeronautics & Astronautics Nuclear Science Engineering Materials Science& Engineering Electrical Engineering Computer Science PhysicsChemistryNuclear): ______________________________________ Concentration Area (circle one)*: Mechanical Engineering Chemical Engineering Materials Science & Engineering

Bhatia, Sangeeta

132

Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry Chemistry1354608000000ChemistrySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Chemistry Some of these...

133

Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials  

SciTech Connect (OSTI)

Solar photoelectrochemical water-splitting has long been viewed as one of the holy grails of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

2004-10-25T23:59:59.000Z

134

What is Materials Science and Engineering?  

E-Print Network [OSTI]

-Madison Chapter UW-Madison College of Engineering UW-Madison Engineering Career Services MS&E DepartmentalWhat is Materials Science and Engineering? Materials Science and Engineering (MS&E one of the smallest departments in the College of Engineering. Because of this, most classes contain

Wisconsin at Madison, University of

135

EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to construct and operate an Actinide Chemistry and Repository Science Laboratory to support chemical research activities related to the...

136

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTG MTG For the Public News & Highlights Publications Seminars Workshops Our People Group Leader, Staff Members Find People Fact Sheet Energy Frontier Research Center Center for Defect Physics (EFRC) Related Groups Computational Materials Science Group (CSMD) Nanomaterials Theory Institute (CNMS) Single Crystal Diffraction Group (NScD) University of Tennesee (MSE) ORNL Materials in Extreme Environments Other Useful Links American Physical Society DOE Office of Science Institute of Physics Office of Basic Energy Sciences National Energy Research Scientific Computing Center The Minerals, Metals & Materials Society U.S. Department of Energy Advanced Materials Group In The News PSD Directorate › MST Division › Materials Theory Group The Materials Theory Group (MTG) of the Materials Science and Technology

137

NREL: Energy Sciences - Chemical and Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy and conducts theoretical studies and fundamental experimental research on optoelectronic materials. The center is led by Acting Director Jao van de Lagemaat. The Center...

138

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

E-Print Network [OSTI]

controls 1 Introduction Indoor chemistry is now recognized as an important factor influencing occupant exposure to air pollutants,

Morrison, G.C.

2011-01-01T23:59:59.000Z

139

Chemical & Engineering Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

140

Chemical and Engineering Materials | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Chemical & Engineering Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

142

Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

feature banner feature banner banner Condensed Matter and Magnet Science The Condensed Matter and Magnet Science Group (MPA-CMMS) is comprised of research scientists, technicians, postdocs, and students specializing in experimental physics research, with a strong emphasis on fundamental condensed matter physics with complimentary thrusts in correlated electron materials, high magnetic-field science and technology, thermal physics, and actinide chemistry. MPA-CMMS hosts the Pulsed Field Facility of the National High Magnetic Field Laboratory (NHMFL-PFF) located at TA-35 while new material synthesis, low temperature expertise, and various low-energy spectroscopies are located at TA-3. Our actinide chemistry activities occur at RC-1 (TA-48). The NHMFL-PFF is a national user facility for high magnetic field science sponsored primarily by the National Science Foundation's Division of Materials Research, with branches at Florida State University, the University of Florida, and Los Alamos National Laboratory. (Check out NHMFL Web site for more details.)

143

Chemistry touches your life every day, from the air you breathe to the food you eat. The science of chemistry examines the atomic and  

E-Print Network [OSTI]

Chemistry Chemistry touches your life every day, from the air you breathe to the food you eat. The science of chemistry examines the atomic and molecular structure of matter and relates these structural medicine and biochemistry to plastics. The study of chemistry offers excellent undergraduate preparation

Miles, Will

144

EnvironMEntAl chEMiStry College of Natural Science and Mathematics  

E-Print Network [OSTI]

) aqueous/ environmental geochemistry, and (iii) environmental toxicology and contaminant fate. Students mayEnvironMEntAl chEMiStry College of Natural Science and Mathematics Department of Chemistry; PhD: 32 credits Environmental chemistry focuses on the chemical processes influencing the composition

Hartman, Chris

145

Materials Science and Engineering Program Objectives  

E-Print Network [OSTI]

necessary to understand the impact of engineering solutions in a global, economic, environmentalMaterials Science and Engineering Program Objectives Within the scope of the MSE mission, the objectives of the Materials Engineering Program are to produce graduates who: A. practice materials

Lin, Zhiqun

146

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network [OSTI]

..........................................................................................................................................2! 1.1 SAFETY CULTURE .......................................................4! 3. SAFETY RESPONSIBILITY, AUTHORITY, ACCOUNTABILITY AND A JUST CULTURE.........5! 3Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by

147

SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ATOMIC, MOLECULAR AND MATERIALS SCIENCE A semiempirical scaling law for target K x-ray production in heavy ion collisions... IV-1 R. L. Watson, Y. Peng, V. Horvat, and A....

148

SRF Materials: Fundamental studies of interfacial oxidation chemistry of niobium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FNAL/UC Collaboration meeting 27 Nov 2007 FNAL/UC Collaboration meeting 27 Nov 2007 SRF Materials: Niobium Oxidation, Control A New Explanation for Baking! Pellin 1 , Zasadzinski 2 , Prolier 1,2 , Moore 3 , Norem 3 , Cooley 4 1. Materials Science Division, ANL 2. Department of Biological, Chemical and Physical Sciences, IIT 3. High Energy Physics, ANL 4. Technical Division, FNAL ANL-LDRD ANL/FNAL/UC Collaboration meeting 27 Nov 2007 XPS a Surface Probe of Nb Oxidation Nb 2 O 5 Nb NbO x Dielectric Nb 2 O 5 Nb 2 O 5-δ , NbO 2-δ are magnetic NbO x (0.2 < x < 2),metallic NbO x precipitates (0.02 < x < 0.2) Scattering off magnetic interfaces or precipitates gives rise to Shiba states inside the gap. These cause dissipation (lowering Q). Nb samples supplied by FNAL! ANL/FNAL/UC Collaboration meeting 27 Nov 2007 Point Contact Tunneling -

149

Sandia National Laboratories: materials science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of microsystems-enabled PV (MEPV) technology and ... Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

150

Center for Nanophase Materials Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the functionality of nanoscale materials and interacting assemblies * Research on optoelectronic, ferroelectric, ionic and electronic transport, and catalytic phenomena at the...

151

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

152

Other: Advancing Materials Science using Neutrons at Oak Ridge...  

Office of Scientific and Technical Information (OSTI)

Advancing Materials Science using Neutrons at Oak Ridge National Laboratory Citation Details Title: Advancing Materials Science using Neutrons at Oak Ridge National Laboratory...

153

Materials science aspects of coal  

Science Journals Connector (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber fossilized organic matter used for centuries for ornamentation.

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

154

Materials Highlights | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials SHARE Materials Highlights 1-7 of 7 Results Neutron scattering characterizes dynamics in polymer family December 01, 2012 - Understanding the interplay between structure and dynamics is the key to obtaining tailor-made materials. In the last few years, a large effort has been devoted to characterizing and relating the structure and dynamic properties in families of polymers with alkyl side groups. Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells December 01, 2012 - Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in

155

Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sauer named AD for Chemistry, Life, and Earth Sciences Sauer named AD for Chemistry, Life, and Earth Sciences Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences Sauer has a distinguished track record as a research scientist with more than 60 publications and technical reports in archival journals. August 9, 2011 Nan Sauer Nan Sauer Contact Communicatons Office (505) 667-7000 LOS ALAMOS, New Mexico, August 9, 2011- Nancy ("Nan") Sauer is the new associate director for Chemistry, Life, and Earth Sciences (ADCLES) at Los Alamos National Laboratory (LANL). In her 25-year career at LANL, Sauer has held several positions of increasing responsibility. After working as a director's postdoctoral fellow, she advanced to a principal investigator and team leader in the Chemistry Division to leader of several projects. Most recently she has

156

NETL: Onsite Research: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metallography Metallography NETL has a state-of-the art metallographic facility staffed with world renowned experts with experience on a wide range of alloys and materials with the tools to get the job done. Our metallography staff works with their customers to reveal the microstructure contained within the specimens using sophisticated polishing, staining, and microscopic techniques to develop new techniques and improve upon old ones. An understanding of the microstructure is a useful tool in a wide range of situations from developing processing techniques on new material to evaluating the performance of new and existing materials after exposure to aggressive conditions. The information our staff obtains is an invaluable part of a research program. For example:

157

Department of Advanced Materials Science  

E-Print Network [OSTI]

device, Bioconjugate matsuura@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials Nuclear magnetic resonance, Quantum spin systems, Low temperature physics, Strongly correlated electron Effect takatama@spring8.or.jpe-mail 0791-58-2942T E L Synchrotron Radiation, X-ray Free Electron Laser

Katsumoto, Shingo

158

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

159

Department of Chemical Engineering & Materials Science College of Engineering  

E-Print Network [OSTI]

Department of Chemical Engineering & Materials Science College of Engineering Michigan State................................................................................. 19 7. Integrity and Safety in Research and Creative Activities of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree

160

Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abdou, Hanan E. - Department of Chemistry, Texas A&M University Agmon, Noam - Institute of Chemistry, Hebrew...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Sciences | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry Chemistry Advanced Materials Nuclear Forensics Climate & Environment Biology and Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry Nuclear Sciences More Science Home | Science & Discovery | More Science | Chemistry | Nuclear Sciences SHARE Nuclear Sciences In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies and systems to improve human health; explore safer, more environmentally friendly power; and better understand the structure of matter. Thanks to its nuclear heritage, ORNL is a world leader in the production of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC)

162

Interfacial Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interfacial Chemistry The organization's research focus, among other things, is to develop new analytical methods that advance the science of surface chemistry and contribute to...

163

Materials Sciences programs, Fiscal year 1993  

SciTech Connect (OSTI)

This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

NONE

1994-02-01T23:59:59.000Z

164

Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials  

E-Print Network [OSTI]

-state materials. May 2003 Merit Review and Peer Evaluation #12;Photovoltaic + Materials "Issues" ·Electrodes Implementation Outreach and Tech Transfer: Adrena Inc/SBA Materials IEA Annex 14 Research Publications - 10

165

Dynamic Glazing from a Material Science Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamic Glazing from a Material Science Perspective Dynamic Glazing from a Material Science Perspective Speaker(s): Sunnie Lim Date: February 16, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Advanced window technology has been identified as a component which can greatly reduce the energy consumption of the building envelope. The next generation of advanced windows will involve a "smart-coating" technology where the optical and solar properties can be dynamically controlled. The performance of such coating is ultimately linked to its materials properties such as chemical composition and microstructure. These properties are directly influenced by the deposition process conditions. A promising dynamic windows technology is based upon the electrochromism process. An electrochromic window system consists of a sandwich of

166

Research News | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

including subject areas such as chemistry, biology and life sciences, materials science, nuclear sciences and engineering, energy research, computer and information technologies,...

167

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3Lashkaryov Institute for Semiconductor Physics, National Academy of Science of Ukraine; 4Department of Materials Science and Engineering, Pennsylvania State University...

168

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ridge, TN, 37831 2 Institute of Semiconductor Physics, National Academy of Science of Ukraine,41, pr. Nauki, 03028 Kiev, Ukraine 3 Institute for Problems of Materials Science,...

169

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CST CST For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Capabilities Current Research Materials Our People Group Leader, Staff Members Find People Fact Sheet Group Poster Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Corrosion Science and Technology Group Corrosion Kinetics in simulated high-temperature/high-pressure environments

170

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Selected Publications Our People Contacts by Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment ShaRE User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Correlated Electron Materials Group In The News PSD Directorate › MST Division › Correlated Electron Materials Group CdSiP2Tin Flux The ultimate aim of our research is to attain a better understanding of complex materials, particularly those that are important to clean energy technologies. For example, we are currently investigating the relationship between magnetism and superconductivity, new mechanisms for enhancing

171

Firstprinciples quantum chemistry in the life sciences  

Science Journals Connector (OSTI)

...studied chemistry at the University of Utrecht, the Netherlands, with a nine-month...of Bochum, Germany. She returned to Utrecht in July 1989, where in the same year...theoretical chemistry from the University of Utrecht in 1994, after which she spent three...

2004-01-01T23:59:59.000Z

172

Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering  

E-Print Network [OSTI]

Minor Form Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering College of Engineering San José State University Name_______________________________________ Requirements for the Minor in Materials Science and Engineering: · 12 units of approved academic work

Gleixner, Stacy

173

Polymer/Elastomer and Composite Material Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

/ Elastomer and / Elastomer and Composite Material Science KEVIN L. SIMMONS Pacific Northwest National Laboratory, Richland, WA DOE Headquarters, Forrestal Bldg. October 17-18, 2012 January 17, 2013 Kevin.simmons@pnnl.gov 1 Outline Hydrogen production, transmission, distribution, delivery system Common themes in the hydrogen system Automotive vs infrastructure Hydrogen use conditions Polymer/elastomer and composites compatibility? Common materials in BOP components, hoses, and liners Common materials in composite tank and piping Material issues Polymers/Elastomers Composites Questions 2 Main Points to Remember 1) Polymers are extensively used in hydrogen and fuel cell applications 2) Hydrogen impact on polymers is not well understood 3) Next steps 3 4 Hydrogen Production Systems

174

Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials  

E-Print Network [OSTI]

are attempting to discover new and useful energy producing materials as well as better understand fundamental activity for methanol oxidation without the poisoning problems of pure Pt electrodes. 1 1 Proceedings simultaneously produced are prohibitive. At present, no photoelectrochemical material or material system exists

175

Materials sciences programs: Fiscal year 1995  

SciTech Connect (OSTI)

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

NONE

1996-05-01T23:59:59.000Z

176

Surface chemistry of mesoporous materials : effect of nanopore confinement.  

SciTech Connect (OSTI)

Acid-base titration and metal sorption experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. It has been demonstrated that surface chemistry and ion sorption within nanopores can be significantly modified by a nano-scale space confinement. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined solid-solution interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on that nanopore surfaces.

Wang, Yifeng (Sandia National Laboratories, Carlsbad, NM); Bryan, Charles R. (Sandia National Laboratories, Carlsbad, NM); Xu, Huifang (University of New Mexico, Albuquerque, NM); Gao, Huizhen (Sandia National Laboratories, Carlsbad, NM)

2003-03-01T23:59:59.000Z

177

Argonne Chemical Sciences & Engineering - Facilities - Analytical Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analytical Chemistry Laboratory Analytical Chemistry Laboratory sullivan ACL manager Vivian Sullivan places a plate for alpha spectrometry into the Alpha Analyst instrument. naik Seema Naik prepares an inorganic sample for analysis on the ICP-Optical Emission Spectrometer. lopykinski Susan Lopykinski prepares a sample for mercury analysis on the cold vapor Atomic Absorption instrument. ICP-Mass Spectrometer Analytical Chemist Yifen Tsai prepares a sample for analysis on the high-resolution ICP-Mass Spectrometer. The Analytical Chemistry Laboratory (ACL) provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory and specialized analysis for government, academic, and industrial organizations, including other national laboratories and QA/QC programs and audits.

178

XG Sciences, ORNL partner on titanium-graphene composite materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XG Sciences, ORNL partner on titaniumgraphene composite materials January 01, 2013 Titaniumgraphene composite specimens prepared for flash thermal diffusivity measurement....

179

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

180

Computational and Theoretical Chemistry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Computational and Theoretical Chemistry Computational and Theoretical Chemistry Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Computational and Theoretical Chemistry Print Text Size: A A A RSS Feeds FeedbackShare Page Research in Computational and Theoretical Chemistry emphasizes integration and development of new and existing theoretical and computational approaches for the accurate and efficient description of processes relevant to the BES mission. Supported efforts are tightly integrated with the research and goals of the Condensed-Phase and Interfacial Molecular Sciences and Gas Phase Chemical Physics programs-which together comprise

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Liaison activities with the Institute of Physical Chemistry, Russian Academy of Sciences: FY 1997  

SciTech Connect (OSTI)

The Institute of Physical Chemistry of the Russian Academy of Sciences is conducting a program of fundamental and applied research into the chemistry of the actinides and technetium in alkaline media such as are present in the Hanford Site underground waste storage tanks. This work is being coordinated and the results disseminated through a technical liaison maintained at the Pacific Northwest National Laboratory. The technical liaison is performing laboratory studies on plutonium chemistry in alkaline media. The activities at the Institute of Physical Chemistry and through the liaison are pursued to improve understanding of the chemical behavior of key long-lived radioactive elements under current operating and proposed tank waste processing conditions. Both activities are supported by the Efficient Separations and Processing Crosscutting Program under the Office of Science and Technology of the U.S. Department of Energy.

Delegard, C.H.; Elovich, R.J.

1997-09-01T23:59:59.000Z

182

Technical liaison with the Institute of Physical Chemistry (Russian Academy of Science)  

SciTech Connect (OSTI)

The Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) is engaged by the DOE to conduct studies of the fundamental and applied chemistry of the transuranium elements (TRU; primarily neptunium, plutonium, and americium; Np, Pu, Am) and technetium {Tc} in alkaline media. This work is being supported by the DOE because the radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRU and {Tc}, are alkaline, and the chemistries of TRU and {Tc} are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry and on coprecipitation. Work continuing in FY 1996 will focus more on the applied chemistry of the TRU and {Tc} in alkaline media and continue effort on the coprecipitation task.

Delegard, C.H.

1995-12-01T23:59:59.000Z

183

LANL: Facility Focus, MST-6 Materials Surface Science Investigations Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

07-018 Spring 2007 07-018 Spring 2007 T he MST-6 Materials Surface Science Investigations Laboratory is home to a one-of-a-kind integrated instrument for surface science and materials research, allowing scientists at Los Alamos National Laboratory the unique opportunity to perform coordinated research using ultra-high vacuum surface measurements, in situ reactions, and materials synthesis tools. Housed in the Materials Science Laboratory, the surface science instrument features an ultra-clean integrated system for surface analysis and in situ surface modification, thin film deposition, and surface gas reactions. This integrated system is used for analytical surface science; materials electronic

184

Hydrothermal Synthesis and Characterization of a MetalOrganic Framework by Thermogravimetric Analysis, Powder X-ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment  

Science Journals Connector (OSTI)

Upper-Division Undergraduate; Inorganic Chemistry; Laboratory Instruction; Gravimetric Analysis; Hydrogen Bonding; IR Spectroscopy; Materials Science; Thermal Analysis ...

Johanna L. Crane; Kelly E. Anderson; Samantha G. Conway

2014-10-10T23:59:59.000Z

185

Green Chemistry and Workers  

E-Print Network [OSTI]

J. Warner. 1998. Green Chemistry: Theory and Practice. NewNew Science, Green Chemistry and Environmental Health.abstract.html 5. American Chemistry Council. 2003. Guide to

2009-01-01T23:59:59.000Z

186

Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science newsroomassetsimagesscience-icon.png Science Cutting edge, multidisciplinary national-security science. Health Space Computing Energy Earth Materials Science...

187

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TFN TFN For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Core Compentencies Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Thin Films and Nanostructures Group Complex oxide thin films and heterostructures are important for not only fundamental physics, but also a wide range of exciting opportunities in

188

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPNM SPNM For the Public Awards Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Capabilities Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive | Honors and Awards Archive Lynn Boatner, Joanne Ramey, Hu Longmire, research featured in the 2013 Allied High Tech Products, Inc. Calendar in the form of a color micrograph for the month of March, 2013.

189

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ABD ABD For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Research Projects Our People Group Leader, Staff Members, Facilities Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Alloy Behavior and Design Group The principal technical contact for discussing potential projects in the Alloy Behavior and Design Group is Dr. Easo P. George, Group Leader.

190

8th International Conference on Miniaturized Systems for Chemistry and Life Sciences September 2630, 2004, Malm, Sweden  

E-Print Network [OSTI]

­30, 2004, Malmö, Sweden xi #12;8th International Conference on Miniaturized Systems for Chemistry and Life Sciences September 26­30, 2004, Malmö, Sweden xii #12;8th International Conference on Miniaturized Systems for Chemistry and Life Sciences September 26­30, 2004, Malmö, Sweden xiii #12;8th International Conference

Oh, Kwang W.

191

NETL Earns Carnegie Science Awards for Advanced Materials, Corporate  

Broader source: Energy.gov (indexed) [DOE]

Earns Carnegie Science Awards for Advanced Materials, Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation NETL Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation March 5, 2013 - 9:16am Addthis WASHINGTON, D.C. - For its leadership and innovation in science and technology, the National Energy Technology Laboratory has earned two Carnegie Science Awards from the Carnegie Science Center. NETL representatives will pick up the Advanced Materials Award and the Corporate Innovation Award at the 17th annual award ceremony to be held May 3, 2013, at Carnegie Music Hall in Pittsburgh. The Carnegie Science Center established the Carnegie Science Awards program in 1997 "to recognize and promote innovation in science and technology across western Pennsylvania." The awards not only identify the innovators

192

Reversible Hydrogen Storage Materials Structure, Chemistry, and Electronic Structure  

SciTech Connect (OSTI)

To understand the processes involved in the uptake and release of hydrogen from candidate light-weight metal hydride storage systems, a combination of materials characterization techniques and first principle calculation methods have been employed. In addition to conventional microstructural characterization in the transmission electron microscope, which provides projected information about the through thickness microstructure, electron tomography methods were employed to determine the three-dimensional spatial distribution of catalyst species for select systems both before and after dehydrogenation. Catalyst species identification as well as compositional analysis of the storage material before and after hydrogen charging and discharging was performed using a combination of energy dispersive spectroscopy, EDS, and electron energy loss spectroscopy, EELS. The characterization effort was coupled with first-principles, electronic-structure and thermodynamic techniques to predict and assess meta-stable and stable phases, reaction pathways, and thermodynamic and kinetic barriers. Systems studied included:NaAlH4, CaH2/CaB6 and Ca(BH4)2, MgH2/MgB2, Ni-Catalyzed Magnesium Hydride, TiH2-Catalyzed Magnesium Hydride, LiBH4, Aluminum-based systems and Aluminum

Robertson, Ian M. [University of Wisconsin-Madison; Johnson, Duane D. [Ames Lab., Iowa

2014-06-21T23:59:59.000Z

193

Heavy Element Chemistry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Heavy Element Chemistry Heavy Element Chemistry Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Heavy Element Chemistry Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research in the chemistry of the heavy elements, focused on the actinides, but also includes the transactinide elements and some fission products. The unique molecular bonding of these elements is explored using experiment and theory to elucidate electronic and molecular structure as well as reaction thermodynamics. Emphasis is placed on resolving the f-electron challenge; the chemical and physical

194

Detection Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry for Measurement and Detection Science Chemistry for Measurement and Detection Science Project Description Chemistry used in measurement and detection science plays a...

195

Materials Chemistry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

from significant use of BES-supported facilities with their advanced synchrotron x-ray, neutron scattering, electron microscopy and nanoscience tools. To obtain more information...

196

Materials Science Division Project Safety Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Miller, Electron Microscopes Miller, Electron Microscopes Project No. 20006.3 Materials Science Division Project Safety Review Safety Analysis Form (03/08) Date of Submission March 12, 2010 FWP No.: 58405 Project Title User Experimental Work with Electron Microscopes in the Electron Microscopy Center This Safety Analysis Form (SAF) supersedes previous versions of 20006 and its modifications. Is this a (check one) new submission renewal supplemental modification X Principal Investigator(s) Dean Miller Other Participants (excluding administrative support personnel) EMC staff and EMC users (Attach participant signature sheet) Project dates: Start: March 2010 End: Open-ended This form is to be completed for all new investigations or experimental projects that are conducted in MSD laboratories, and for all ongoing such projects that undergo significant change from their original

197

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most recent user project involved the synthesis of partially deuterated asymmetric polyethylene stars for Michaela Zamponi from Juelich Centre for Neutron Science. These materials...

198

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSK, BR) and the Scientific User Facilities Division (XGZ, EAK, APL) and the Division of Materials Sciences and Engineering (DMN), U.S. Department of Energy. Citation for...

199

Center for Nanophase Materials Sciences (CNMS) - About CNMS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) is one of five nanoscience research centers (NSRCs) funded by the U.S. Department of Energy (DOE) Scientific...

200

Iver Anderson, Division of Materials Sciences and Engineering...  

Broader source: Energy.gov (indexed) [DOE]

and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver Anderson, Division of Materials Sciences and...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Materials Science of Titanium Dioxide Memristors  

E-Print Network [OSTI]

unipolar resistance switching, Advanced Materials, vol. 20,A variety of resistance switching materials could be used3 for resistance-change memory, Advanced Materials, vol.

Pickett, Matthew

2010-01-01T23:59:59.000Z

202

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Leader John A. Rogers John A. Rogers, Swanlund Chair, Professor of Materials Science and Engineering, Professor of Chemistry, Director, F. Seitz Materials Research Laboratory...

203

Chemistry (ACS) College of Science CHEM-BSCHM  

E-Print Network [OSTI]

Electricity and Magnetism (satisfies Science Selective for core) Other Departmental /Program Course Education 16 16 Credits Fall 3rd Year Prerequisite Credits Spring 3rd Year Prerequisite 4 CHM 32100 CHM 37300 3 or 4 CS 17700 or CS 15800 3 General Education ** 1 CHM 51300 13 or 14 13 Credits Fall 4th Year

Kihara, Daisuke

204

Chemistry (ACS) College of Science CHEM-BSCHM  

E-Print Network [OSTI]

for core) (4)PHYS 27200 Electricity and Magnetism (satisfies Science Selective for core) Other Departmental Education** 1 CHM 29400 17 16 Credits Fall 3rd Year Prerequisite Credits Spring 3rd Year Prerequisite 4 CHM 37401 CHM 37301 1 CHM 37301 3 General Education ** 3 or 4 CS 17700 or CS 15800** 1 CHM 51300 14 or 15 13

Kihara, Daisuke

205

Chemistry: A "Little Science" Would Like a Little More Money  

Science Journals Connector (OSTI)

...and J. Major, "Some vegetation of the California coastal redwood region in relation to gradients of moisture, nutrients, light...science-study genre, sets a mark for careful data collection and humble advocacy. Inevitably the chemists ar-rive at the conclusion...

D. S. Greenberg

1965-12-03T23:59:59.000Z

206

Materials and Chemical Sciences Division annual report 1989  

SciTech Connect (OSTI)

This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

Not Available

1990-07-01T23:59:59.000Z

207

Conference on Advances in Materials Science - Presentations | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

208

Conference on Advances in Materials Science - Presentations | National  

National Nuclear Security Administration (NNSA)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

209

Graphene: from materials science to particle physics  

E-Print Network [OSTI]

Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

Joaqun E. Drut; Timo A. Lhde; Eero Tl

2010-11-02T23:59:59.000Z

210

FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).  

SciTech Connect (OSTI)

This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

Samara, George A.; Simmons, Jerry A.

2006-07-01T23:59:59.000Z

211

Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)  

Broader source: Energy.gov [DOE]

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

212

Condensed Matter Physics & Materials Science Department, Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

People People Facilities Publications Presentations Organizational Chart Other Information Basic Energy Sciences Directorate BNL Site Index Can't View PDFs? :: Next CMPMS Seminar There are no seminars scheduled at this time. Advanced Energy Materials Group We study both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies Group Leader: Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov AEM group news: Current research topics include: Superconducting Materials Nano-scale Materials (S. Wong) Applied Superconductivity Thermoelectric Materials

213

MATERIALS SCIENCE HIGHLIGHTS 2006 ESRF27  

E-Print Network [OSTI]

(Q), calculated on a fully tetrahedral atomic structure obtained by first-principle molecular dynamics [2-forming disordered systems as a- silica, a-germania, a-Si, a-Ge, and water, must be extended to include a-CO2 Structural dynamics in the solution phase, the environment most relevant to biology and industrial chemistry

Ihee, Hyotcherl

214

Actinide Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Actinide Chemistry Actinide Chemistry Actinide Chemistry Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise David Gallimore Actinide Analytical Chemistry Email Rebecca Chamberlin Actinide Analytical Chemistry Email Josh Smith Chemistry Communications Email Along with the lanthanides, they are often called "the f-elements" because they have valence electrons in the f shell. Actinide chemistry serves a critical role in addressing global threats Project Description At Los Alamos, scientists are using actinide analytical chemistry to identify and quantify the chemical and isotopic composition of materials. Since the Manhattan Project, such work has supported the Laboratory's

215

Frontiers in Catalysis Science and Engineering Materials Science  

E-Print Network [OSTI]

, it is imperative to develop new processes for effective use of energy and to develop sustainable and clean energy in synthesizing novel metal oxide nanostructures for energy harvest and storage will also be discussed. More info Professor, Department of Chemistry & Biochemistry Abstract Energy is not only the driver for improving

216

Supporting Information: Holey Silicon as efficient thermoelectric material  

E-Print Network [OSTI]

Supporting Information: Holey Silicon as efficient thermoelectric material Jinyao Tang1, 3, 3 1 Department of Chemistry, 2 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA. 3 Materials Sciences Division, Lawrence Berkeley National

Yang, Peidong

217

Center for Nanophase Materials Sciences - Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

phenomena in strongly correlated electronic materials, including Mott insulators and high-temperature superconductors. The fundamental understanding of these materials can...

218

SCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials Research  

E-Print Network [OSTI]

and colleagues.They initially reported that an iron-based material can conduct electricity without resistance close to conducting electric- ity with zero resistance at room temperature. Such materials wouldSCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials

219

Evolution of Chemistry and Its Effects on the Corrosion of Engineered Barrier Materials  

SciTech Connect (OSTI)

The evolution of environmental conditions within the emplacement drifts of a potential high-level waste repository at Yucca Mountain, Nevada, may be influenced by several factors, including the temperature and relative humidity within the emplacement drifts and the composition of seepage water. The performance of the waste package and the drip shield may be affected by the evolution of the environmental conditions within the emplacement drifts. In this study, tests evaluated the evolution of environmental conditions on the waste package surfaces and in the surrounding host rock. The tests were designed to (i) simulate the conditions expected within the emplacement drifts; (ii) measure the changes in near-field chemistry; and (iii) determine environmental influence on the performance of the engineered barrier materials. Results of tests conducted in this study indicate the composition of salt deposits was consistent with the initial dilute water chemistry. Salts and possibly concentrated calcium chloride brines may be more aggressive than either neutral or alkaline brines. (authors)

Dunn, Darrell [Mechanical and Materials Engineering, Southwest Research Institute, San Antonio, TX, 78238 (United States); Pan, Yi-Ming; He, Xihua; Yang, Lietai; Pabalan, Roberto [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, 78238 (United States)

2007-07-01T23:59:59.000Z

220

Center for Nanophase Materials Sciences (CNMS) - Policies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policies and Procedures for User Access to the DOE Nanoscale Science Research Centers Peer Review and Advisory Bodies Evaluation Criteria and Process Modes of User Access...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Center for Nanophase Materials Sciences (CNMS) - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Minnesota - September 12, 2014 Norman J. Wagner, University of Delaware - April 4, 2014 Dieter Richter, Jlich Centre for Neutron Science, Institute for Complex Systems,...

222

DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory  

SciTech Connect (OSTI)

The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

Lewis, Jennifer A.

2009-03-24T23:59:59.000Z

223

21. Materials and methods are available as supporting material on Science Online.  

E-Print Network [OSTI]

21. Materials and methods are available as supporting material on Science Online. 22. N. Shakhova. Mar. Syst. 66, 227 (2007). 24. All the seawater-dissolved CH4 concentration data are publicly Online Material www.sciencemag.org/cgi/content/full/327/5970/1246/DC1 Materials and Methods SOM Text Figs

Newman, Eric A.

224

2004 research briefs :Materials and Process Sciences Center.  

SciTech Connect (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

225

Surface Electro Radiation and Photo Chemistry PARIS-SUD GENOVA PORTO POZNAN  

E-Print Network [OSTI]

economic sustainability and environmental safety, conservation and protection such as: development "no-energy of environmental studies, green chemistry, renewable energies, material sciences, nanosciences, nano medicine-Chemistry with elements of Management, Innovation and Valorisation, Communication and Patent law. www

226

Static High Magnetic Fields and Materials Science  

Science Journals Connector (OSTI)

Like temperature or pressure, the magnetic field is one of the important thermodynamic parameters that are used to change the inner energies of materials. Materials are essentially composed of atomic nuclei an...

M. Motokawa; K. Watanabe; F. Herlach

2002-01-01T23:59:59.000Z

227

Materials Science and Engineering at TCCC  

E-Print Network [OSTI]

BILLION A DAY... RESPONSIBLY Technical Community ­ R&D #12;5 · Cold Drink Equipment · Energy efficiency High barrier plastic materials Don't underestimate the mundane. #12;88 Where are materials going

Li, Mo

228

DOE fundamentals handbook: Material science. Volume 1  

SciTech Connect (OSTI)

The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

229

Biomolecular Materials | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Biomolecular Materials Biomolecular Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Biomolecular Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research in the discovery, design and synthesis of biomimetic and bioinspired functional materials and complex structures, and materials aspects of energy conversion processes based on principles and concepts of biology. The major program emphasis is the creation of robust, scalable, energy-relevant materials and systems with

230

The Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical  

E-Print Network [OSTI]

and exacting process and the pharmaceutical industry strives to increase efficiency and productivityThe Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical Materials Science #12;The Pfizer Institute for Pharmaceutical Materials Science Modelling and Experimental

Lasenby, Joan

231

3.012 Fundamentals of Materials Science, Fall 2003  

E-Print Network [OSTI]

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and ...

Marzari, Nicola

232

Applications of Secondary Ion Mass Spectrometry (SIMS) in Materials Science  

Science Journals Connector (OSTI)

Secondary Ion Mass Spectrometry (SIMS) is a mature surface analysis technique with ... Materials Science. In this review article the SIMS process is described, the fundamental SIMS equations are derived and the m...

D. S. McPhail

2006-02-01T23:59:59.000Z

233

DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science...  

Broader source: Energy.gov (indexed) [DOE]

NIST Joint Workshop on Combinatorial Materials Science for Applications in Energy The Hydrogen Storage Subprogram of the U.S. Department of Energy co-hosted with the NIST...

234

Oak Ridge Integrated Center for Radiation Materials Science & Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORIC Home ORIC Home About ORIC Contacts Specialists Capabilities Irradiation Campaigns Nuclear Fuels Radiation Effects and Defect Modeling Structural Materials Dual Purpose Radiological Characterization Equipment Working with Us Related Links HFIR MSTD NSTD NNFD Comments Welcome to Oak Ridge Integrated Center for Radiation Materials Science & Technology The Oak Ridge National Laboratory ranks among the founding laboratories for the scientific field of radiation materials science. Since the creation of the laboratory, we have maintained strong ties to both the technology and scientific underpinning of nuclear materials research as evidenced by the experience and capabilities across our research divisions. The capabilities at ORNL enjoys include the highest neutron flux nuclear

235

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

236

Curriculum vitae Andr Schleife Department of Materials Science and Engineering  

E-Print Network [OSTI]

Andr� Schleife 07/2012: Physical and Life Sciences Directorate Poster Award 10/2010: "Young ScientistCurriculum vitae Andr� Schleife Department of Materials Science and Engineering University://schleife.matse.illinois.edu Education 10/2006 � 06/2010: Ph.D. student in the group of Prof. Dr. Friedhelm Bechstedt, Friedrich

Schleife, André

237

EMSL: Science: Energy Materials and Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

238

Materials science: Radicals promote magnetic gel assembly  

Science Journals Connector (OSTI)

... are assembled from smaller components, may thus be better suited for replicating biological complexity. 3D printing, in which the direct deposition of material creates precise 3D structures, embodies this strategy ... material creates precise 3D structures, embodies this strategy. Recent advances in technology have allowed 3D printing of tissues through the deposition of cellular aggregates or cell-laden materials. However, these ...

Christopher B. Rodell; Jason A. Burdick

2014-10-29T23:59:59.000Z

239

Center for Nanophase Materials Sciences - Newsletter January...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the cleanroom, advanced optical profilometry. There were 166 proposals reviewed for the 2011A...

240

Chemical and Engineering Materials | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Center for Nanophase Materials Sciences (CNMS) - Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that have hindered the scalable growth and pattering of such materials for optoelectronic and energy related applications. "Digital Transfer Growth of Patterned 2D Metal...

242

Materials Science and Engineering Onsite Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems. R&D 070, November 2011 Research facilities include the Severe Environment Corrosion Erosion Research Facility (SECERF) for assessing materials performance in a variety...

243

Sandia National Laboratories: Research: Materials Science: About...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our products will perform in demanding missions over time. We must understand the fundamentals of the materials involved - over time and in demanding environments....

244

Nuclear Science at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Science Accelerator Science Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Home » Science at NERSC » Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of matter. This includes discovering the origins of nuclei and identifying the forces that transform matter. Specific topics include: Nuclear astrophysics and the synthesis of nuclei in stars and elsewhere in the cosmos; Nuclear forces and quantum chromodynamics (QCD), the quantum field

245

E-Print Network 3.0 - alloying materials science Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials science Search Powered by Explorit Topic List Advanced Search Sample search results for: alloying materials science Page: << < 1 2 3 4 5 > >> 1 JOURNAL DE PHYSIQUE IV...

246

E-Print Network 3.0 - adsorption material science Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

material science Search Powered by Explorit Topic List Advanced Search Sample search results for: adsorption material science Page: << < 1 2 3 4 5 > >> 1 Modeling Thermodynamics...

247

E-Print Network 3.0 - applied materials science Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials science Search Powered by Explorit Topic List Advanced Search Sample search results for: applied materials science Page: << < 1 2 3 4 5 > >> 1 Apply today for the...

248

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FRM FRM For the Public Awards and Honors Highlights Publications U.S. Program Planning Visiting ORNL For Researchers Profiles Program Manager Program Management ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles Accessing LAMDA Facility Our People Program Manager, Program Management, Facilities Find People ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles

249

Shock-induced Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shock-induced Chemistry 1663 Los Alamos science and technology magazine Latest Issue:August 2014 All Issues submit Shock-induced Chemistry New paradigms in chemical reactivity...

250

Green Chemistry and Workers  

E-Print Network [OSTI]

19. P. Anastas, J. Warner. 1998. Green Chemistry: Theory andto Advance New Science, Green Chemistry and EnvironmentalChronicle Extra: Guide to Green Jobs. Field with a Future.

2009-01-01T23:59:59.000Z

251

FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry  

E-Print Network [OSTI]

FACULTY POSITION IN INORGANIC CHEMISTRY Department of Chemistry Syracuse University The Department of Chemistry at Syracuse University invites applications for a tenure track faculty position at the Assistant Professor level in inorganic chemistry with specialization in materials chemistry (broadly defined

Doyle, Robert

252

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network [OSTI]

573 Solar Energy Systems MS 779/ME 779 Solid State Ionics and Electrochemistry D. Nanomaterials MS 530 Introduction to Solid State Physics Course/Semester/Grade ______________________________ * Both courses listed Characterization of Materials MS 784 Topics in Materials Science ME 502 Intellectual Assets: Creation, Protection

Lin, Xi

253

Center for Nanophase Materials Sciences - Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Highlights Low-Temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-Intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H....

254

Polymer/Elastomer and Composite Material Science  

Broader source: Energy.gov [DOE]

Presentation by Kevin Simmons, Pacific Northwest National Laboratory, at the U.S. Department of Energy's Polymer and Composite Materials Meeting, held October 17-18, 2012, in Washington, D.C.

255

BACHELOR OF MATERIALS SCIENCE AND ENGINEERING  

E-Print Network [OSTI]

; strong, light-weight alloys and improved battery materials increase the energy efficiency of cars; polymeric contact lenses are available as an alternative to traditional eyewear; ceramic space shuttle tiles

Thomas, David D.

256

The New Materials Science Beamline HARWI-II at DESY  

SciTech Connect (OSTI)

In autumn 2005, the GKSS-Research Center Geesthacht in cooperation with Deutsches Elektronen-Synchrotron DESY, Hamburg, started operation of the new synchrotron radiation beamline HARWI-II. The beamline is specialized for performing materials science experiments using hard X-rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate, the texture of cold extruded Al90-Cu10 composites, and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI-II, the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Beckmann, Felix; Dose, Thomas; Lippmann, Thomas; Lottermoser, Lars; Martins, Rene-V.; Schreyer, Andreas [GKSS-Research Center Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

257

The New Materials Science Beamline HARWI?II at DESY  

Science Journals Connector (OSTI)

In autumn 2005 the GKSS?Research Center Geesthacht in cooperation with Deutsches Elektronen?Synchrotron DESY Hamburg started operation of the new synchrotron radiation beamline HARWI?II. The beamline is specialized for performing materials science experiments using hard X?rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate the texture of cold extruded Al90?Cu10 composites and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI?II the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Felix Beckmann; Thomas Dose; Thomas Lippmann; Lars Lottermoser; Rene?V. Martins; Andreas Schreyer

2007-01-01T23:59:59.000Z

258

Center for Nanophase Materials Sciences (CNMS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

Science User Facilities Science User Facilities Search Go Home About Advisory Committee CNMS Fact Sheet CNMS Organizational Chart Research Themes Publications Journal Cover Gallery Research Highlights Related ORNL User Facilities User Program Becoming A User Acknowledgement Guidelines CNMS Capabilities Active Projects User Group Data Management Policy Working at CNMS Jobs ES&H Obtaining Entry Hours of Operation Local Information News & Events News Events CNMS User Newsletters People Contact Us Visit us on Wikipedia. Visit us on FaceBook. Visit us on YouTube. Upcoming Events and Latest News Call For Proposals - Next cycle is Spring 2014 Neutrons and Nano Workshops and User Meetings - TALKS Postdoctoral Opportunities CNMS Discovery Seminars Opening the Eye-Popping Possibilities of the Smallest Scales

259

Fusion power: a challenge for materials science  

Science Journals Connector (OSTI)

...schematic representation of a fusion power plant is shown in figure-1...the harshest environments in fusion power plants are those that...broadly classified into three types. The conditions experienced...materials The first wall of a fusion power plant must contain the...

2010-01-01T23:59:59.000Z

260

"The Future of Materials Science and Engineering  

E-Print Network [OSTI]

with increased wear characteristics · Additive Manufacturing Processing speed, material strength, verification&D is limited and traditionally provided by device manufacturers · Technology adapted from other industries tools Opportunities #12;· Manufacturing Time and Process Step Reduction Patient digitizer to definitive

Li, Mo

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nanomaterials for Energy and Electronics Materials Science  

E-Print Network [OSTI]

crystalline silicon solar cells suffer from both high materials costs and energy-intensive production-sensitized solar cells (DSCs) based on oxide semiconductors and organic dyes have recently emerged as a promising Synthesis of ZnO Aggregates and Their Application in Dye-sensitized Solar Cells Nanomaterials for Energy

Cao, Guozhong

262

Diamond: glittering prize for materials science  

Science Journals Connector (OSTI)

...light, airy materials. The most airy aerogel prepared to date consists of 99.8...and windows. Halfan inch ofa silica aerogel can do what it takes 31/2 inches ofa...fast-moving particles. The prepara-tion of an aerogel begins with the preparation of a gelatinous...

RL Guyer; DE Koshland Jr

1990-12-21T23:59:59.000Z

263

Faculty Search Materials Science and Engineering  

E-Print Network [OSTI]

/ sensors, nuclear security, and/or nuclear medical applications are especially encouraged to apply. The MSE candidate will be expected to conduct scholarly research in an area of nuclear materials as evidenced department participates in the Nuclear Engineering Program at Virginia Tech (http://www.nuclear

Buehrer, R. Michael

264

Liaison activities with the Institute of Physical Chemistry/Russian Academy of Science Fiscal Year 1995  

SciTech Connect (OSTI)

Investigations into the chemistry of alkaline Hanford Site tank waste (TTP RL4-3-20-04) were conducted in Fiscal Year 1995 at Westinghouse Hanford Company under the support of the Efficient Separations and Processing Crosscutting Program (EM-53). The investigation had two main subtasks: liaison with the Institute of Physical Chemistry of the Russian Academy of Science and further laboratory testing of the chemistry of thermal reconstitution of Hanford Site tank waste. Progress, which was achieved in the liaison subtask during Fiscal Year 1995, is summarized as follows: (1) A technical dialogue has been established with Institute scientists. (2) Editing was done on a technical literature review on the chemistry of transuranic elements and technetium in alkaline media written by researchers at the Institute. The report was issued in May 1995 as a Westinghouse Hanford Company document. (3) Four tasks from the Institute were selected for support by the U.S. Department of Energy. Work on three tasks commenced on 1 March 1995; the fourth task commenced on 1 April 1995. (4) Technical information describing the composition of Hanford Site tank waste was supplied to the Institute. (5) A program review of the four tasks was conducted at the Institute during a visit 25 August to 1 September, 1995. A lecture on the origin, composition, and proposed treatment of Hanford Site tank wastes was presented during this visit. Eight additional tasks were proposed by Institute scientists for support in Fiscal Year 1996. (6) A paper was presented at the Fifth International Conference on Radioactive Waste Management and Environmental Remediation (ICEM`95) in Berlin, Germany on 3 to 9 September, 1995 on the solubility of actinides in alkaline media.

Delegard, C.H.

1995-09-01T23:59:59.000Z

265

Center for Nanophase Materials Sciences - Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summer Newsletter 2010 What's New @ CNMS Small Angle X-ray Scattering (SAXS) Small Angle X-ray Scattering (SAXS) is an analytical method to determine the structure of particle systems in terms of averaged particle sizes or shapes. The materials can be solid or liquid and they can contain solid, liquid or gaseous domains of the same or another material. The method is accurate, non-destructive and often requires only a minimum of sample preparation. The concentration ranges between 0.1 wt.% and 99.9 wt.%. The particle or structure sizes that can be resolved range from 1 to 50 nm in a typical set-up but can be extended to larger angles than between the typical 0.1° and 10° of SAXS, through simultaneous collection of Wide-Angle X-Ray Scattering (WAXS) data. The CNMS has recently added an

266

Chemical and Materials Science (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Materials Science (X-ray Science Division) Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for four experiment stations at sector 12 including: three undulator stations (12-ID-B, -C, and -D), and a spectroscopy and scattering bending magnet beamline (12-BM), and USAXS at 15-ID. As part of the APS Strategic Plan, canted undulators have been installed on 12-ID and 12-ID-B has become a full-time dedicated SAXS beamline and 12-ID-C and 12-ID-D are shared between TRSAXS, ASAXS, and surface scattering. Time-resolved and anomalous SAXS experiments on photosystems, biopolymers, polymers, ceramics, and catalytic systems are some of the focus areas for 12-ID-B and -C. At 12-ID-D surface scattering are used to study MOCVD growth, ferroelectrics, liquid solid interfaces and

267

Condensed Matter Physics & Materials Science Department, Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science, Superconductivity & Energy News Materials Science, Superconductivity & Energy News This page displays news items tagged as "materials science," "superconductivity," and "energy." For a complete index of all topics, click here. Jon Rameau receives The Julian Baumert Thesis Award for his work carried out at NSLS. Htay Hlaing receives the 2010 Di Tian Award from the Department of Physics at Stony Brook University. Adrian Gozar receives one of sixty nine DOE Early Career Scientists awards selected from a pool of 1750 applicants. Enlisting Cells' Protein Recycling Machinery to Regulate Plant Products December 20, 2013 Scientists have developed a new set of molecular tools for controlling the production of plant compounds important for flavors, human health, and biofuels.

268

Why chemistry? Chemistry is fundamental: it is the enabling  

E-Print Network [OSTI]

Chemistry Why chemistry? Chemistry is fundamental: it is the enabling science that underlies many technology. A chemistry degree gives you the understanding to contribute to our future in very topical areas) in Chemistry BSc (Hons) in Chemistry MChem (Hons) in Chemistry (with an industrial placement year) MChem (Hons

Sussex, University of

269

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

270

Center for Nanophase Materials Sciences (CNMS) - Macromolecular  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) Polymer Synthesis The Macromolecular Nanomaterials laboratories include a wide range of polymer synthesis capabilities, with extensive fume hoods (including walk-in hoods for large scale apparatus) and glove boxes for handling sensitive materials. Polymerization Techniques Ionic Polymerizations: World-class expertise in the preparation of well-defined, narrow molecular distribution polymers and copolymers including complex polymer architectures (i.e. block, star, comb, graft and hyperbranched polymers) by anionic and cationic polymerizations. Controlled Radical Polymerization: Extensive expertise in free radical and controlled radical (ATRP, NMP, RAFT) polymerizations. Ring Opening Polymerization: Expertise in the controlled

271

NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE 2012 SEMINAR SERIES PRESENTS  

E-Print Network [OSTI]

NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE 2012 SEMINAR SERIES PRESENTS Prof. Swadeshmukul Santra Nanoscience Technology Center Department of Chemistry and Burnett School of Biomedical Sciences

Farritor, Shane

272

Mines Welcomes Middle School Students | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Science and Technology. The students spent the day at Mines to learn about Earth, energy, the environment, critical materials and mining. The students enjoyed a chemistry show...

273

Chemistry Division Department of Biological  

E-Print Network [OSTI]

1 Chemistry Division Department of Biological and Chemical Sciences, Illinois Institute-13 Chemistry Division invites nominations for Kilpatrick Fellowship for the academic year 2012's Chemistry Department from 1947­1960. Mary Kilpatrick was a chemistry faculty member from 1947

Heller, Barbara

274

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Connect with PJG Connect with PJG For the Public Awards & Honors R&D100 Awards R&D100 Award Posters For Researchers Profiles For Industry Research Thrust Areas Advanced Alloys Advanced Steels Amorphous Bulk Metallic Glasses Nano Crystalline Composites Ni-Based Alloys Ti Alloys Advanced Processing Additive Manufacturing Electronic Packaging Gelcasting Infrared/Photonic Processing Laser Interference Patterning Magnetic Field Processing Powder Metallurgy Pulse Thermal-Processing (PTP) Ceramics Ceramics Conventional Metals Processing Casting Extrusion Forging Lightweight Metals Aluminum Magnesium Titanium Modeling Materials Behavior Under Severe Environments Microstructure Modeling During Phase Transformations Process Modeling and Simulation: Energy Transport Sensors and Data Acquisition Techniques

275

Chemistry Division annual progress report for period ending April 30, 1993  

SciTech Connect (OSTI)

The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

1993-08-01T23:59:59.000Z

276

Bayer Material Science (TRL 1 2 3 System) - River Devices to...  

Broader source: Energy.gov (indexed) [DOE]

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM) Bayer Material Science (TRL 1 2 3 System) - River Devices to...

277

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STG STG For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Sponsored Research Programs Our People Contacts by Group Leader, Staff Members Find People Related Cooperative Research and Development Agreement Work for Others Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Scattering and Thermophysics Group The Scattering and Thermophysics Group aims to be a national leader in materials characterization using diffraction and thermophysical property measurement methods. The diffraction portion of the Group utilizes laboratory x-ray, synchrotron x-ray, and neutron diffraction facilties to solve problems from phase stability to residual stress and texture. The thermography and thermophysical properties of the Group has exceptional

278

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PCM PCM For the Public Visiting ORNL For Researchers Profiles Group Leader Program Manager Staff Members Facilities Final Report on Economic Analysis of Deploying Used Batteries in Power Systems Document For Industry Research Catalysis by Design Zeolites Materials for Catalysis Photocatalytic C02 Our People Group Leader, Program Manager, Staff Members, Facilities Find People Programs Thin-Film Rechargeable Lithium, Lithium-Ion, and Li-Free Batteries Program Membrane Separations Research Program Related Programs ORNL Technologies Recent News & Features News Releases Archive | Features Archive Recent Honors & Awards Award Archives Honors & Awards Achives | ORNL Spotlight Archives] Nancy Dudney, was recently elected as a Electrochemical Society Fellow in recognition of her scientific achievements and service to the

279

The Computational Materials and Chemical Sciences Network (CMCSN) | U.S.  

Office of Science (SC) Website

The Computational Materials and Chemical Sciences Network (CMCSN) The Computational Materials and Chemical Sciences Network (CMCSN) Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas The Computational Materials and Chemical Sciences Network (CMCSN) Print Text Size: A A A RSS Feeds FeedbackShare Page The U.S. Department of Energy, Office of Basic Energy Sciences, provides support for Computational Materials and Chemical Sciences Network (CMCSN) projects through the Theoretical Condensed Matter Physics & Theoretical

280

The Departments of Chemical Engineering, Materials Science and Engineering and  

E-Print Network [OSTI]

setting will be facilitated by McMaster's Engineering Co-op and Career Services (ECCS). Applicants shouldThe Departments of Chemical Engineering, Materials Science and Engineering and Mechanical Engineering offer a program of study to students seeking the degree of Master of Engineering in Manufacturing

Thompson, Michael

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mork Family Department of Chemical Engineering & Materials Science  

E-Print Network [OSTI]

by incorporating mod- ern concepts such as nanotechnology and biotechnology into a traditional approach that has, nanotechnology, petroleum engi- neering, polymer/materials science, or envi- ronmental engineering), while of Dentistry) » Edward D. Crandall, M.D. (Hastings Professor of Medicine, Norris Chair of Medicine

Zhou, Chongwu

282

Wood September 28, 2002 DEPARTMENT OF MATERIALS SCIENCE  

E-Print Network [OSTI]

Wood September 28, 2002 1 DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CARNEGIE MELLON: Microstructure-Sensitive Mechanical Properties #12;Wood September 28, 2002 2 Introduction Reading will also have an opportunity to perform similar experiments on various types of wood. These will illustrate

Rollett, Anthony D.

283

A. A. Abrikosov Materials Science Division Argonne National Moratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developments in the Theory of HTSC Developments in the Theory of HTSC A. A. Abrikosov Materials Science Division Argonne National Moratory Argonne, IL 60439 Distribution: 1-2. M. J. Masek 3. B. D. Dunlap 4. G. W. Crabtree 5 . A. A. Abrikosov 6 - Editorial Office 7. Authors September, 1994 This work is supported by the Division of Materials Sciences, Office of Basic Energy Sciences of DOE, under contract No. W-31- 109-ENG-38, DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or as sun^^ any legal liabili- ty or responsibility for the accuracy, completenes, or usefulness of any information, appa-

284

Chemistry 346, Section M001 Fall 2012 class meets MWF 11:40-12:35 in 105 Life Sciences  

E-Print Network [OSTI]

Chemistry 346, Section M001 Fall 2012 class meets MWF 11:40-12:35 in 105 Life Sciences instructor in the text for you to look at, but you have to do problems yourself, too. That is why there are ten problem

Raina, Ramesh

285

Chemistry 346, Section M001 Fall 2013 class meets MWF 11:40-12:35 in 105 Life Sciences  

E-Print Network [OSTI]

Chemistry 346, Section M001 Fall 2013 class meets MWF 11:40-12:35 in 105 Life Sciences instructor there are ten problem sets assigned, on the dates shown in the schedule below. And that is why a problem set

Raina, Ramesh

286

Materials Science and Engineering B 157 (2009) 101104 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

) method [6], calcination process [7], chemical vapor deposition [8], thermal evaporation [1], hydrothermalDirect Materials Science and Engineering B journal homepage: www.elsevier.com/locate/mseb A rapid hydrothermal Court, S111, Lake Mary, FL 32746, USA d Advanced Materials Processing and Analysis Center

Chow, Lee

287

The mineralogy and chemistry of fine-grained sediments, Morphou Bay, CyprusHydrology and Earth System Sciences, 6(5), 819831 (2002) EGS The mineralogy and chemistry of fine-grained sediments,  

E-Print Network [OSTI]

819 The mineralogy and chemistry of fine-grained sediments, Morphou Bay, CyprusHydrology and Earth System Sciences, 6(5), 819­831 (2002) © EGS The mineralogy and chemistry of fine-grained sediments of marine sediments at Morphou Bay, north-west Cyprus, are presented to characterise fine-grained sediment

Paris-Sud XI, Université de

288

Crystal Chemistry of Early Actinides (Thorium, Uranium, and Neptunium) and Uranium Mesoporous Materials.  

E-Print Network [OSTI]

??Despite their considerable global importance, the structural chemistry of actinides remains understudied. Thorium and uranium fuel cycles are used in commercial nuclear reactors in India (more)

Sigmon, Ginger E.

2010-01-01T23:59:59.000Z

289

SCIENCE & ENGINEERING84 Understanding Paper Codes 85  

E-Print Network [OSTI]

SCIENCE & ENGINEERING84 PAPERS Understanding Paper Codes 85 100 Level Science Papers 86 Biological Sciences 87 Chemistry 94 Earth Sciences 99 Electronics 106 Engineering 111 Environmental Sciences 115 Material and Processing 116 Physics 124 Psychology 127 Work Placements 133 ­ Science 133 ­ Engineering 134

Waikato, University of

290

JOYCE Y. WONG Departments of Biomedical Engineering and Materials Science & Engineering  

E-Print Network [OSTI]

JOYCE Y. WONG Professor Departments of Biomedical Engineering and Materials Science & Engineering, Departments of Biomedical Engineering & Materials Science & Engineering (2013-) Co-Director, Affinity Research - ) Associate Chair, Graduate Studies, Department of Biomedical Engineering (2006-2010) Associate Director

291

Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering  

E-Print Network [OSTI]

& Engineering Materials for nuclear energy system, fission reactors, nuclear fuels, energy policy, sustainability of nuclear energy. Mark A Eriksson Professor, Physics and Materials Science & Engineering

Wisconsin at Madison, University of

292

Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators  

SciTech Connect (OSTI)

Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

Anne Seifert; Louis Nadelson

2011-06-01T23:59:59.000Z

293

The Computational Materials and Chemical Sciences Network (CMCSN...  

Office of Science (SC) Website

through the Theoretical Condensed Matter Physics & Theoretical and Computation Chemistry Core Research Activities. The CMCSN program supports fundamental research activities...

294

University of Virginia, Dept. of Materials Science and Engineering Topic 8a -FIB  

E-Print Network [OSTI]

;University of Virginia, Dept. of Materials Science and Engineering Dynamic Secondary Ion Mass Spectrometry;University of Virginia, Dept. of Materials Science and Engineering q The focused ion beam (FIB) employsUniversity of Virginia, Dept. of Materials Science and Engineering Topic 8a - FIB q Introduction

Moeck, Peter

295

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

296

EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering  

E-Print Network [OSTI]

115 CSE Electrical and Computer Engineering 225 Nuclear Science-8pd / 407 Nuclear Science 9-10pd Engineering 221 MAE-A Nuclear Engineering Sciences 214 Nuclear Science (Next to Journalism Bldg) StudentEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

Schwartz, Eric M.

297

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length Gang Cheng,1 Yuri B. Melnichenko,1 George D. Wignall,1 Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: The cooperative interactions among functional segments of biopolymers have led to attempts to create novel synthetic polymers, which are environmentally responsive to various stimuli, such as temperature or pH, in a controlled manner. Understanding the nanoscale conformational changes and phase behavior upon exposure of these polymers to external stimuli is

298

Soft Matter Group, Condensed Matter Physics & Materials Science Department,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Information (pdf) Research Information (pdf) Publications Seminars Journal Club Staff Information Other Information Basic Energy Sciences Directorate Related Sites BNL Site Index Can't View PDFs? Soft Matter Group Confinement and Template Directed Assembly in Chemical and Biomolecular Materials We use synchrotron x-ray scattering, scanning probe and optical microscopy techniques to study fundamental properties of complex fluids, simple liquids, macromolecular assemblies, polymers, and biomolecular materials under confinement and on templates. The challenges are: To understand liquids under nano-confinement. How templates and confinement can be used to direct the assembly. To understand the fundamental interactions which give rise to similar self-assembly behavior for a wide variety of systems.

299

The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications and  

E-Print Network [OSTI]

The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications Centers of Economic Excellence Act,both of which stipulated that the chaired professor encourage knowledge

Stuart, Steven J.

300

High-performance computing in the chemistry and physics of materials  

Science Journals Connector (OSTI)

...Special feature 1005 117 45 High-performance computing in the chemistry and physics...London WC1H OAJ, UK High performance computing (HPC) is now a key enabling...exploited the UKs national high-performance computing facilities-over two...

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

STEM Resources for K-12 Educators | U.S. DOE Office of Science...  

Office of Science (SC) Website

External link STEM Discipline: Chemistry, Material Sciences Grade Level: 3-5, 6-8 A Green Solution for the Electronic Age External link This resource provides information...

302

Condensed Matter Physics and Materials Science Department (PM)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Condensed Matter Physics and Materials Science Department (PM) Condensed Matter Physics and Materials Science Department (PM) Last modified 12/7/2012 LastName First MI Bldg Room Ext1 Ext2 Fax E-mail ABEYKOON MILINDA 510B 1-21 2915 3827 2739 aabeykoon@bnl.gov AKHANJEE SHIMUL 510A 2-6 5089 3995 2918 sakhanjee@bnl.gov ARONSON MEIGAN 703 2A 4915 7090 4071 maronson@bnl.gov BERLIJN TOM COS 3995 3995 tberlijn@bnl.gov BILLINGE SIMON 510B 1-29 5661 3827 2739 sb2896@columbia.edu BLUME MARTIN 510A 1-6 3735 3995 2739 blume@bnl.gov BOLLINGER ANTHONY 480 139 2601 7090 4071 abolling@bnl.gov BOZIN EMIL 510B 1-26 4963 3827 2739 bozin@bnl.gov BOZOVIC IVAN 480 126 4973 7090 4071 bozovic@bnl.gov CHECCO ANTONIO 510B 1-20 3319 3827 2739 checco@bnl.gov CHOU CHUNG-PIN 510A 2-12 3784 3995 2918 cpchou@bnl.gov DAI YAOMIN 510B 1-18 3788 3827 2739 ymdai@bnl.gov DAVIS SEAMUS 480 3827 4071 jcdavis@ccmr.cornell.edu and/or sdavis@bnl.gov DEAN

303

National Science Bowl® Competition Buzzer Materials List | U.S. DOE Office  

Office of Science (SC) Website

Materials List Materials List National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Academic Question Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List

304

National Science Bowl® Competition Buzzer Materials List | U.S. DOE Office  

Office of Science (SC) Website

Materials List Materials List National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List Print

305

National Chemistry Week Theme: "Candy: The Sweet Side of Chemistry"  

E-Print Network [OSTI]

National Chemistry Week Theme: "Candy: The Sweet Side of Chemistry" Super Science Saturday Saturday-on chemistry and science demonstrations! All students & families are welcome! Fun & educational for all ages! Sponsored by: American Chemical Society LSU Department of Chemistry LSU Athletic Department Free admission

Stephens, Jacqueline

306

MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering  

E-Print Network [OSTI]

MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering Chairs Science and Engineering I am very pleased to announce the re-appointment of Professor Jun Nogami as Chair of the Department of Materials Science and Engineering (MSE) for a second five-year term beginning July 1, 2014. Jun

Prodiæ, Aleksandar

307

EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering  

E-Print Network [OSTI]

& Engineering E115 CSE Electrical and Computer Engineering 1084 Weimer Hall 8pd / 407 Nuclear Science 9-10 pd-A Nuclear Engineering Science 214 Nuclear Science (Next to Journalism Bldg) Student Success 210 Weil HallEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

Schwartz, Eric M.

308

Chemistry @ Imperial College 2007 Introduction  

E-Print Network [OSTI]

Chemistry @ Imperial College 2007 #12;2 Introduction Imperial College is a world leading University. As the central science Chemistry has been a major contributor to this success. The Chemistry Department is at the forefront of modern Chemistry research, both in our core discipline and at the interfaces of Chemistry

309

Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering  

E-Print Network [OSTI]

conditions-- stress, strain rate, gaseous and chemical environments and radiation. Todd R. Allen Professor; nanoelectronics. Paul G. Evans Professor, Materials Science & Eng X-ray diffraction, microscopy, and optics; x. James A. Clum Visiting Professor, Materials Science & Engineering Materials and manufacturing processes

Wisconsin at Madison, University of

310

Multi-Component Copper Catalyzed Methods to Access Highly-Substituted Amine-Bearing Carbon Centers from Simple Starting Materials  

E-Print Network [OSTI]

Modern physical organic chemistry; University Science Books:Modern physical organic chemistry; University Science Books:

Pierce, Conor John

2013-01-01T23:59:59.000Z

311

Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CNMS USER RESEARCH CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature. E.g., homeostasis - regulation of a cell's internal environment to maintain stability and function at the mesoscale (i.e., cell) in the face of an unpredictable environment - is maintained even though there is considerable noise at the nanoscale (protein, RNA, molecular motor). A recent ACS Nano

312

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transient-Mediated fate determination in a transcriptional circuit of HIV Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a novel technique of discovering the details of these interactions through the measurement of the structure of stochastic fluctuations that occur in neighboring nanoscale system components that can be directly imaged. In this work [Nature Genetics, 40(4), 466-470 (2008)], in collaboration with a

313

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Nanowires K. Xiao, M. Yoon, A. J. Rondinone, E. A. Payzant, and D. B. Geohegan Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement Combined experimental and theoretical studies revealed the nucleation and growth mechanisms of M-TCNQF4 crystalline organic nanowires grown on different metals by vapor-solid chemical reaction (VSCR). Real-time x-ray diffraction was used to measure the growth kinetics of the nanowires, and a modified Avrami model of the data showed that growth proceeds via a 1D ion diffusion-controlled reaction at their tips. First principles atomistic calculations were used to understand how charge transfer interactions govern the reactivity of different metals in the growth process through the

314

The Open Inorganic Chemistry Journal, 2008, 2, 11-17 11 1874-0987/08 2008 Bentham Science Publishers Ltd.  

E-Print Network [OSTI]

in memory applications [8] and metal gate electrodes [6,9] because of its low resistivity and high thermal Rohm and Haas Electronic Materials, 60 Willow Street, North Andover, MA 01845, USA 2 Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1033, Oslo N-0315, Norway 3 IBM

315

Implementing and Evaluating Mentored Chemistry?Biology Technology Lab Modules To Promote Early Interest in Science  

Science Journals Connector (OSTI)

Chemistry has become increasingly multidisciplinary. Starting in middle school and high school, however, the different disciplines are taught as distinct subjects and little effort is made to emphasize overlapping concepts. Development of innovative ...

Yan Mei Chan; Wendy Hom; Jin Kim Montclare

2011-04-15T23:59:59.000Z

316

Towards new green high energy materials. Computational chemistry on nitro-substituted urea  

Science Journals Connector (OSTI)

As part of a series of studies on new potential green high energy materials, we have calculated the structures and properties ... have specific enthalpies of decomposition commensurate with current high energy materials

Rachelle R. Wagner; David W. Ball

2011-11-01T23:59:59.000Z

317

Optical Science and Engineering Program Center for High Technology Materials  

E-Print Network [OSTI]

& Administration GA Graduate Assistantship HSC Health Sciences Center HVAC Heating, ventilation, and cooling IARPA for Standards and Technology NRL Naval Research Laboratory NSF National Science Foundation NSMS Nanoscience

New Mexico, University of

318

NREL: Energy Sciences - Chemical and Nanoscale Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoscale Science Nanoscale Science Learn about our research staff including staff profiles, publications, and contact information. The primary goal of the Chemical and Nanoscale Science Group, within NREL's Chemical and Materials Science Center, is to understand photoconversion processes in nanoscale, excitonic photoconversion systems, such as semiconductor quantum dots, molecular dyes, conjugated molecules and polymers, nanostructured oxides, and carbon nanotubes. Closely associated with this goal are efforts to gain an understanding of how to use chemistry and physical tools to control and maximize the photoconversion process. The innovative chemistry and physics that evolve from these fundamental studies are used on a number of applied projects, maximizing the benefits from these discoveries.

319

147Chemistry Chemistry (Chem)  

E-Print Network [OSTI]

147Chemistry Chemistry (Chem) Bayly Foundation PROFESSORS FRANCE, PLEVA ASSOCIATE PROFESSORS ALty A student may complete only one of the majors listed in the Department of Chemistry. The major in chemistry leading to a Bachelor of Arts degree requires completion of 44 credits as follows: 1. Chemistry 111, 112

Dresden, Gregory

320

Condensed Matter and Materials Physics | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Condensed Matter and Materials Physics Condensed Matter and Materials Physics Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Condensed Matter and Materials Physics Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported to understand, design, and control materials properties and function. These goals are accomplished through studies of the relationship of materials structures to their electrical, optical, magnetic, surface reactivity, and mechanical properties and of the way in

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Department of Chemical Engineering and Materials Science Michigan State University  

E-Print Network [OSTI]

AND NANOSTRUCTURE INFLUENCES ON MECHANICAL PROPERTIES OF THERMOELECTRIC MATERIALS Thermoelectric (TE) materials in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forcesThe Department of Chemical Engineering and Materials Science Michigan State University Ph

322

p s sapplications and materials science www.pss-a.com  

E-Print Network [OSTI]

- dicted theoretically [11] and observed experimentally us- ing angle-resolved electron energy lossp s sapplications and materials science a status solidi www.pss-a.com physica REPRINT phys. stat s sapplications and materials science a status solidi www.pss-a.com physica Band structure effects on the Be(0001

Pohl, Karsten

323

Journal of Hazardous Materials 194 (2011) 1523 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chromate reduction in FeJournal of Hazardous Materials 194 (2011) 15­23 Contents lists available at ScienceDirect Journal Engineering, University of Leeds, Leeds LS2 9JT, UK d Diamond Light Source, Harwell Science and Innovation

Burke, Ian

324

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010  

E-Print Network [OSTI]

1 Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society-ray solution scattering data were collected at the ID14B BioCARS beamline at the Advanced Photon Source while

Ihee, Hyotcherl

325

Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference  

SciTech Connect (OSTI)

Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

Not Available

1990-03-01T23:59:59.000Z

326

Physical Behavior of Materials | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physical Behavior of Materials Physical Behavior of Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Physical Behavior of Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports basic research on the behavior of materials in response to external stimuli, such as temperature, electromagnetic fields, chemical environments, and the proximity effects of surfaces and interfaces. Emphasis is on the relationships between performance (such as

327

From material flow analysis to material flow management Part I: social sciences modeling approaches coupled to MFA  

Science Journals Connector (OSTI)

This paper presents social sciences modeling approaches (SSMA) that have been coupled to material flow analyses in order to support management of material flows. The presented literature review revealed that the large share of these approaches stem from economics, as these models have similar data and modeling structure than the material flow models. The discussed modeling approaches support a better system understanding and allow for estimating the potential effects of economic policies on material flows. However, it has been shown that these approaches lack important aspects of human decision-making and, thus, the designed economic measures might not always lead to the expected improvements of the material system.

Claudia R. Binder

2007-01-01T23:59:59.000Z

328

MAJOR TO CAREER GUIDE B.A. Chemistry  

E-Print Network [OSTI]

MAJOR TO CAREER GUIDE B.A. Chemistry College of Sciences www.unlv.edu/chemistry Mission of the College of Sciences The College of Sciences offers programs in life sciences, chemistry, geoscience: 702-895-2077 Campus Location: MPE-A 130 www.unlv.edu/sciences/advising About the Chemistry Career

Walker, Lawrence R.

329

MAJOR TO CAREER GUIDE B.S. Chemistry  

E-Print Network [OSTI]

MAJOR TO CAREER GUIDE B.S. Chemistry College of Sciences www.unlv.edu/chemistry Mission of the College of Sciences The College of Sciences offers programs in life sciences, chemistry, geoscience: 702-895-2077 Campus Location: MPE-A 130 www.unlv.edu/sciences/advising Chemistry Career Options

Walker, Lawrence R.

330

Center for Nanophase Materials Sciences (CNMS) - CNMS Discovery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dieter Richter, Jlich Centre for Neutron Science, Institute for Complex Systems, Germany - March 22,2013 CNMS and SNS Research Forum Annabella Selloni, Princeton University -...

331

Discovery of New Materials to Capture Methane | U.S. DOE Office of Science  

Office of Science (SC) Website

Discovery of New Materials to Capture Methane Discovery of New Materials to Capture Methane Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » April 2013 Discovery of New Materials to Capture Methane Predicted materials could economically produce high-purity methane from natural gas systems and separate methane from coal mine ventilation systems. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Berend Smit, UC-Berkeley

332

Christen leads ORNL's Center for Nanophase Materials Sciences | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 SHARE Media Contact: Bill Cabage Oak Ridge National Laboratory Communications (865) 574-4399 Christen leads ORNL's Center for Nanophase Materials Sciences Hans Christen Hans Christen (hi-res image) OAK RIDGE, Jan. 9, 2014 -- Hans M. Christen of the Department of Energy's Oak Ridge National Laboratory has been named director of ORNL's Center for Nanophase Materials Sciences, one of the five DOE Nanoscale Science Research Centers. Christen joined ORNL in 2000 and led the Thin Films and Nanostructures group from 2006 to 2013. In 2013, he became associate director within the Materials Science and Technology Division and has managed the DOE Materials Sciences & Engineering Program since 2011. His research has focused on the effects of epitaxial strain, spatial

333

Chemistry Department Colloquium: Spring, 2012  

E-Print Network [OSTI]

Chemistry Department Colloquium: Spring, 2012 Friday, March 16; 3:30 Seminar Hall (room 1315 Chemistry) Lost in Translation: How Regulators Use Science and How Scientists Can Help Bridge Gaps Stephanie to combine her Chemistry background with a legal education to improve the use of science in environmental

Sheridan, Jennifer

334

Nanomaterials Chemistry Group - CSD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSD CSD Organization Contact List Search Other Links CSD CSD Organization Contact List Search Other Links Selected Research and Development Projects The Nanomaterials Chemistry Group at Chemical Sciences Division, the Oak Ridge National Laboratory conducts fundamental research related to synthesis and characterization of nanoscopic materials as well as ionic liquids for fundamental investigation of separation and catalysis processes. This group also conducts the applied research related to the applications of nanomaterials in advanced scintillators for radiation sensing, catalysts for fuel cells, radioactive tracers for medical imaging, novel electrodes for energy storage, and sensing devices for biological agents. Extensive synthesis capabilities exist within the group for preparation of mesoporous materials (oxides and carbons), low-dimensional materials (e.g., quantum dots and nanowires), sol-gel materials, inorganic and hybrid monoliths (e.g., membranes), and nanocatalysts. Solvothermal, ionothermal, templating synthesis, chemical vapor deposition (CVD), and atomic layer deposition (ALD) methods are extensively utilized in the group for tailored synthesis of nanostructured materials. An array of techniques for characterizing physical and chemical properties related to separation and catalysis are in place or are currently being developed. This research program also takes advantage of the unique resources at ORNL such as small-angle x-ray scattering, small-angle neutron scattering at the High Flux Isotope Reactor and Spallation Neutron Source (SNS), structural analysis by a variety of electron microscopes (SEM, TEM, STEM, HRTEM) and powdered X-ray diffraction (XRD) techniques. A wide variety of other facilities for routine and novel techniques are also utilized including the Center for Nanophase Materials Science. Computational chemistry tools are employed to understand experimental results related to separation and other interfacial chemical processes and design better nanomaterials and ionic liquids. Commonly used methods include first principles density functional theory (DFT) and mixed quantum mechanical/molecular mechanical (QM/MM) techniques.

335

Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment Hydrology and Earth System Sciences, 5(3), 379390 (2001) EGS  

E-Print Network [OSTI]

is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years the 1970s. This area was included in the RECOVER:2010 project (Ferrier et al., 2001) to assess the effect 379 Hydrology and Earth System Sciences, 5(3), 379­390 (2001) © EGS Trends in the chemistry

Boyer, Edmond

336

Automated information retrieval in science and technology  

Science Journals Connector (OSTI)

...span many subject areas, including life sciences, chemistry, agriculture...directed towardover-coming the remaining barriers to ef-fective use oflarge...Alloys; High Temperature Ceramics; Gas Turbine Materials and Processes; Dia-mond...

TE Doszkocs; BA Rapp; HM Schoolman

1980-04-04T23:59:59.000Z

337

Materials Science and Engineering A 430 (2006) 189202 Grid indentation analysis of composite microstructure  

E-Print Network [OSTI]

Materials Science and Engineering A 430 (2006) 189­202 Grid indentation analysis of composite 17 May 2006 Abstract Several composites comprise material phases that cannot be recapitulated ex situ characteristics of naturally occurring material composites. Here, we propose a straightforward application

Van Vliet, Krystyn J.

338

Method and apparatus for analyzing the internal chemistry and compositional variations of materials and devices  

DOE Patents [OSTI]

A method and apparatus is disclosed for obtaining and mapping chemical compositional data for solid devices. It includes a SIMS mass analyzer or similar system capable of being rastered over a surface of the solid to sample the material at a pattern of selected points, as the surface is being eroded away by sputtering or a similar process. The data for each point sampled in a volume of the solid is digitally processed and indexed by element or molecule type, exact spacial location within the volume, and the concentration levels of the detected element or molecule types. This data can then be recalled and displayed for any desired planar view in the volume.

Kazmerski, L.L.

1985-04-30T23:59:59.000Z

339

Method and apparatus for analyzing the internal chemistry and compositional variations of materials and devices  

DOE Patents [OSTI]

A method and apparatus is disclosed for obtaining and mapping chemical compositional data for solid devices. It includes a SIMS mass analyzer or similar system capable of being rastered over a surface of the solid to sample the material at a pattern of selected points, as the surface is being eroded away by sputtering or a similar process. The data for each point sampled in a volume of the solid is digitally processed and indexed by element or molecule type, exact spacial location within the volume, and the concentration levels of the detected element or molecule types. This data can then be recalled and displayed for any desired planar view in the volume.

Kazmerski, Lawrence L. (Lakewood, CO)

1989-01-01T23:59:59.000Z

340

CHEMISTRY DEPARTMENT HANDBOOKFOR STUDENTS  

E-Print Network [OSTI]

CHEMISTRY DEPARTMENT HANDBOOKFOR STUDENTS Millersville University Millersville, Pennsylvania in the ChemistryDepartment. It brings together material not collected in other places and is not meant Resources 2 Programs in Chemistry and The General Education Curriculum Record Form 3 The Major Requirements

Hardy, Christopher R.

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microfluidics for High School Chemistry Students  

Science Journals Connector (OSTI)

Microfluidics for High School Chemistry Students ... We present a laboratory experiment that introduces high school chemistry students to microfluidics while teaching fundamental properties of acidbase chemistry. ... Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics ...

Melissa Hemling; John A. Crooks; Piercen M. Oliver; Katie Brenner; Jennifer Gilbertson; George C. Lisensky; Douglas B. Weibel

2013-12-09T23:59:59.000Z

342

Applications of focused ion beam SIMS in materials science  

Science Journals Connector (OSTI)

Focused ion beam instruments (FIB) can be used both for materials processing and materials analysis, since the ion beam used in the FIB milling process generates several potentially useful analytical signals such...

David S. McPhail; Richard J. Chater; Libing Li

2008-06-01T23:59:59.000Z

343

SCIENCE  

Science Journals Connector (OSTI)

SCIENCE ... Sedoheptulose phosphate may be an important intermediate in carbohydrate metabolism in animals as well as in plants, the NIH scientists observe. ... NOL Makes Magnetic Material ...

1952-06-23T23:59:59.000Z

344

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

charge injection in organic semiconducting materials for improving the optoelectronic properties of organic semiconductor devices. Publication " Spin injection from...

345

Ultrafast Chemistry of Nanoenergetic Materials Studied by Time-Resolved Infrared Spectroscopy:? Aluminum Nanoparticles in Teflon  

Science Journals Connector (OSTI)

Nanoenergetic materials belong to a class termed composite explosives or propellants, meaning they consist of separate fuel and oxidizer components, in contrast to, for example, TNT, where every molecule possesses both fuel and oxidizing moieties. ... The near-IR pulses deposit energy into the skin layer of the metallic particles,23 but 100 ps is longer than the time needed for thermal conduction into the interior of the nanoparticle, so the particles should be viewed as being uniformly heated throughout. ... 24 The amplifier stretches the input pulse to ?120 ps and sends the chirped pulse into a regenerative amplifier and a two-pass power amplifier operating at a repetition rate of 1 kHz prior to pulse compression to 150 fs. ...

Mikhail A. Zamkov; Rusty W. Conner; Dana D. Dlott

2007-06-21T23:59:59.000Z

346

in-situ chemistry mapping of hydrogen storage materials by neutron diffraction  

SciTech Connect (OSTI)

Neutron diffraction was used to nondestructively study the microstructures for two hydrogen storage media systems. In the first case, sodium alanate based hydrogen storage is a vehicle-scale candidate system developed by Sandia/GM. Neutron scattering was used to determine the distribution of phases in the storage media at different hydrogen loading levels, to help understand the absorption/desorption of hydrogen in large-scale systems. This study also included a 3D neutron tomographic study of the microstructure. In the second case, tin-doped lanthanum nickel alloys have been studied at JPL for space-based applications, for which the gradual degradation of the material due to segregation and disproportionation of phases is a known problem. A regenerative process developed to restore the storage properties of these alloys was studied, using in-situ neutron diffraction to relate the microstructure to the thermodynamic simulations.

Payzant, E Andrew [ORNL] [ORNL; Bowman Jr, Robert C [ORNL] [ORNL; Johnson, Terry A [Sandia National Laboratories (SNL)] [Sandia National Laboratories (SNL); Jorgensen, Scott W [GM R& D and Planning, Warren, Michigan] [GM R& D and Planning, Warren, Michigan

2013-01-01T23:59:59.000Z

347

Fusion Materials Science Overview of Challenges and Recent Progress  

E-Print Network [OSTI]

resistance generally have very good high temperature capability (high thermal creep resistance) due to high, high fusion neutron flux) arguably makes fusion materials development the greatest challenge ever approach used to develop candidate materials for fusion reactors ­ Materials with high neutron radiation

348

Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material  

SciTech Connect (OSTI)

The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ?, Bs, Ms, and surface magnetic dead layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ? and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2?nm thick), while after RIE dead layer consisted of two sub-layers that were about 6?nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE damaged layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

2014-05-07T23:59:59.000Z

349

JOURNAL OF MATERIALS SCIENCE 36 (2001) 1087 1091 Materials for high-temperature oxygen reduction  

E-Print Network [OSTI]

in solid oxide fuel cells A. J. MCEVOY Laboratory for Photonics and Interfaces, Department of Chemistry temperature fuel cell is advantageously an all- solid device, part of their system being an iron oxide cathode. In that selection they confronted the require- ments which necessarily define a suitable solid oxide fuel cell

Gleixner, Stacy

350

Materials Science & Technology, MST: Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS MST Division Leader David F. Teter Bio MST Deputy Division...

351

Preparations and characterizations of novel graphite-like materials and some high oxidation state fluorine chemistry  

SciTech Connect (OSTI)

Novel graphite-like materials, BC{sub x} (6>x{ge}3), have been prepared using BCl{sub 3} and C{sub 6}H{sub 6} at 800--1000C, and C{sub x}N (14>x{ge}5) have been synthesized using C{sub 5}H{sub 5}N and Cl{sub 2} at 680C--986C. Bulk and thin film characterization were used to study the structure and bonding in these solids. C{sub 8}K(NH{sub 3}){sub 1.1} was prepared by reacting C{sub 8}K with gaseous NH{sub 3}. The carbon sub-lattice is hexagonal: a = 2.47 {Angstrom}, c = 6.47 {Angstrom}. The smaller a parameter and lower conductivity are attributed to smaller electron transfer from K to the conduction band solvation of K by NH{sub 3}. A simplified liquid phase method for synthesizing Li-graphite intercalation compounds has been developed; synthesis of a lamellar mixed conductor, C{sub x}{sup +}Li{sub 2}N{sup {minus}}, has been attempted. Stability and conductivity of (BN){sub 3}SO{sub 3}F have been studied; it was shown to be metallic with a specific conductivity of 1.5 S{center_dot}cm{sup {minus}1}. Its low conductivity is attributed to the low mobility of holes in BN sheets.

Shen, Ciping

1992-11-01T23:59:59.000Z

352

JOURNAL OF MATERIALS SCIENCE 36 (2001) 77 86 Synthesis of yttria-doped strontium-zirconium  

E-Print Network [OSTI]

JOURNAL OF MATERIALS SCIENCE 36 (2001) 77­ 86 Synthesis of yttria-doped strontium-zirconium oxide densification, than co-precipitated powders. C 2001 Kluwer Academic Publishers 1. Introduction Strontium

Iglesia, Enrique

353

Materials Science and Engineering A297 (2001) 235243 Plasma-sprayed ceramic coatings: anisotropic elastic and  

E-Print Network [OSTI]

anisotropic elastic stiffnesses and thermal conductivities of the plasma sprayed ceramic coatingMaterials Science and Engineering A297 (2001) 235­243 Plasma-sprayed ceramic coatings: anisotropic are derived. © 2001 Elsevier Science S.A. All rights reserved. Keywords: Thermal spray; Elastic properties

Sevostianov, Igor

354

JOURNAL OF MATERIALS SCIENCE 29 (1994) 4135-4151 Bismuth oxide-based solid electrolytes for  

E-Print Network [OSTI]

of investigations has been reported pertaining to the science and technology of solid oxide fuel cells (SOFCs) based as the electrolyte and are accordingly known as the molten carbonate fuel cells (MCFCs) and the solid oxide fuelJOURNAL OF MATERIALS SCIENCE 29 (1994) 4135-4151 Review Bismuth oxide-based solid electrolytes

Azad, Abdul-Majeed

355

New applications of particle accelerators in medicine, materials science, and industry  

SciTech Connect (OSTI)

Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

Knapp, E.A.

1981-01-01T23:59:59.000Z

356

Research Areas, Condensed Matter Physics & Materials Science Department,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Areas Areas Studies of Nanoscale Structure and Structural Defects in Advanced Materials: The goal of this program is to study property sensitive structural defects in technologically-important materials such as superconductors, magnets, and other functional materials at nanoscale. Advanced quantitative electron microscopy techniques, such as coherent diffraction, atomic imaging, spectroscopy, and phase retrieval methods including electron holography are developed and employed to study material behaviors. Computer simulations and theoretical modeling are carried out to aid the interpretation of experimental data. Electron Spectroscopy Group's primary focus is on the electronic structure and dynamics of condensed matter systems. The group carries out studies on a range materials including strongly correlated systems and thin metallic films. A special emphasis is placed on studies of high-Tc superconductors and related materials.

357

Materials Chemistry and Physics 121 (2010) 208214 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

and evaluation of a new water soluble corrosion inhibitor from recycled poly(ethylene terphethalate) M industry [1]. Corrosion problem is one of the major concerns in the oil and gas industry. Therefore.A. Migahed). known acid inhibitors are organic compounds containing nitrogen, sulfur and/or oxygen atoms [4

North Texas, University of

358

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the cleanroom, advanced optical profilometry. (See the "What's New" section of this newsletter to...

359

Center for Nanophase Materials Sciences (CNMS) - Related ORNL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

offer a variety of capabilities for materials characterization and computational nanoscience that may enhance the research projects of CNMS users. The CNMS has established...

360

Center for Nanophase Materials Sciences (CNMS) - Call For Proposals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials Deuterated vinyl and diene monomers and polymers Soft matter TEM OPTOELECTRONIC NANOSTRUCTURES Laser and CVD synthesis of carbon nanomaterials, oxide film...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL: Solar Research - Materials and Chemical Science and Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy and conducts theoretical studies and fundamental experimental research on optoelectronic materials. The center conducts research within three areas: Chemical and molecular...

362

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

types of systems could be of central importance to develop future electronic and optoelectronic devices with high-quality active materials. Significance One of the great...

363

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

despite the proposed use of organic thin-film materials in energy-related optoelectronic devices such as solid state lighting and photovoltaic cells. Although...

364

Center for Nanophase Materials Sciences (CNMS) - Chemical Functionalit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials (metals, oxides) Atomic layer deposition (ALD) and surface sol-gel processing (SSG) for conformal functionalization of support surfaces (located outside of...

365

Science as Art: Materials Characterization Art | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bamboo plant to grow. A porous "composite" structure as seen in the image would help in engineering structural materials capable of carrying fluids or gases internally." However,...

366

Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials  

SciTech Connect (OSTI)

Chemical reactions involving ozone of outdoor origin and indoor materials are known to be significant sources of formaldehyde and other irritant gas-phase oxidation products in the indoor environment. HVAC filters are exposed to particularly high ozone concentrations--close to outdoor levels. In this study, we investigated chemical processes taking place on the surface of filters that included fiberglass, polyester, cotton/polyester blend and synthetic (e.g., polyolefin) filter media. Ozone reactions were studied on unused filter media, and on filters that were deployed for 3 months in two different locations: at the Lawrence Berkeley National Laboratory and at the Port of Oakland. Specimens from each filter were exposed to ozone under controlled conditions in a laboratory flow tube at a constant flow of dry or humidified air (50percent relative humidity). Ozone was generated with a UV source upstream of the flow tube, and monitored using a photometric detector. Ozone breakthrough curves were recorded for each sample exposed to ~;;150 ppbv O3 for periods of ~;;1000 min, from which we estimated their uptake rate. Most experiments were performed at 1.3 L/min (corresponding to a face velocity of 0.013 m/s), except for a few tests performed at a higher airflow rate, to obtain a face velocity of 0.093 m/s, slightly closer to HVAC operation conditions. Formaldehyde and acetaldehyde, two oxidation byproducts, were collected downstream of the filter and quantified. Emissions of these volatile aldehydes were consistently higher under humidified air than under dry conditions, at which levels were near the limit of detection. Our results confirm that there are significant reactions of ozone as air containing ozone flows through HVAC filters, particularly when the filters are loaded with particles and the air is humidified. The amount of ozone reacted was not clearly related to the types of filter media, e.g., fiberglass versus synthetic. Specific fiberglass filters that were coated with an impaction oil showed significantly higher formaldehyde emissions than most other samples. Those emissions were magnified in the presence of particles (i.e., in used filters), and were observed even in the absence of ozone, which suggests that hydrolysis of filter binder or tackifier additives may be the reason for those high emissions. Mass balance calculations indicate that the emission rates of formaldehyde and acetaldehyde from the filters are generally not large enough to substantially increase indoor formaldehyde or acetaldehyde concentrations.

Destaillats, Hugo; Fisk, William J.

2010-02-01T23:59:59.000Z

367

Achieving Transformational Materials Performance in a New Era of Science  

ScienceCinema (OSTI)

The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

John Sarrao

2010-01-08T23:59:59.000Z

368

Materials science issues and structural studies of topical  

E-Print Network [OSTI]

Foundation grants (DMR-9733895 and DMR-9601796 to Nigel Browning) and Engineering and Physical Science and dislocation-pair hypothesis 3.3. Semi-quantitative plastic deformation model 3.4. As grown six-inch diameter: different stacking sequences of same structural, e.g. SiC has 46 modifications, ZnS has 11 modifications

Moeck, Peter

369

Machine-learning algorithm aims to accelerate materials discovery | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Machine-learning algorithm aims to accelerate materials discovery July 16, 2013 Tweet EmailPrint A research team led by Argonne Leadership Computing Facility computational chemist Anatole von Lilienfeld is developing an algorithm that combines quantum chemistry with machine learning (artificial intelligence) to enable atomistic simulations that predict the properties of new materials with unprecedented speed. From innovations in medicine to novel materials for next-generation batteries, this approach could greatly accelerate the pace of materials discovery, with high-performance

370

Science stakes  

Science Journals Connector (OSTI)

... central part of British science. Michael Faraday dazzled crowds there in the nineteenth century with pyrotechnic displays of chemistry. ...

2013-01-22T23:59:59.000Z

371

Materials Science and Engineering A 432 (2006) 100107 Effect of annealing and initial temperature on mechanical  

E-Print Network [OSTI]

for Advanced Materials, Department of Mechanical and Aerospace Engineering, University of California, San DiegoMaterials Science and Engineering A 432 (2006) 100­107 Effect of annealing and initial temperature stress at some temperature above Ms. Recently, it has been suggested that this superelastic property may

Nemat-Nasser, Sia

372

JOURNAL OF MATERIALS SCIENCE 39 (2004) 4103 4106 Effect of fiber content on the thermoelectric  

E-Print Network [OSTI]

JOURNAL OF MATERIALS SCIENCE 39 (2004) 4103­ 4106 Effect of fiber content on the thermoelectric behavior of cement S. WEN, D. D. L. CHUNG Composite Materials Research Laboratory, University at Buffalo of discontinuous stainless steel fibers (diameter 60 µm) as an admixture in cement paste on the thermoelectric

Chung, Deborah D.L.

373

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films  

E-Print Network [OSTI]

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films is critical of these materials could open new opportunities for introducing thin-film solar technologies that combine both low near the FeS2 thin-film surfaces and grain boundaries that limit its open-circuit voltage, rather than

374

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H. Overbury,a,c Viviane...

375

Materials Science Under Extreme Conditions of Pressure and Strain Rate  

E-Print Network [OSTI]

at Lawrence Livermore National Laboratory. I. INTRODUCTION HIGH-STRAIN-RATE materials dynamics and solid-state experiments to much higher pressures, P 103 GPa (10 Mbar), on the National Ignition Facility (NIF) laser

Zhigilei, Leonid V.

376

Research and Devlopment Associate Center for Nanophase Materials Sciences Division  

E-Print Network [OSTI]

: i) selective conversion of biomass-derived compounds; ii) rechargeable metal-air batteries as next. · Heterogeneous catalysis and electrocatalysis on metals, metal compounds, and nano- materials. · Current focuses

Pennycook, Steve

377

Stanislav Golubov, and Roger Stoller - Materials Science and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The team also investigated the response of textured materials, including rolled Zircaloy-2 and a random texture, both illustrated in Fig. 9. The results, plotted in Fig.10 and...

378

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

Q R S Q R S T U V W X Y Z Padture, Nitin P. (Nitin P. Padture) - Department of Materials Science and Engineering, Ohio State University Paiella, Roberto (Roberto Paiella) - Department of Electrical and Computer Engineering, Boston University Paik Suh, Myunghyun (Myunghyun Paik Suh) - Department of Chemistry, Seoul National University Painter, Oskar (Oskar Painter) - Department of Applied Physics and Materials Science, California Institute of Technology Palevski, Alexander (Alexander Palevski) - School of Physics and Astronomy, Tel Aviv University Pan, Xiaoqing (Xiaoqing Pan) - Department of Materials Science and Engineering, University of Michigan Panagiotopoulos, Athanassios Z.(Athanassios Z.Panagiotopoulos).- Department of Chemical Engineering, Princeton University

379

Los Alamos Lab: Materials Physics & Applications Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ADEPS Materials Physics and Applications, MPA ADEPS Materials Physics and Applications, MPA About Us Organization Jobs Materials Physics & Applications Home Center for Integrated Nanotechnologies Superconductivity Technology Center Condensed Matter and Magnet Science Sensors & Electrochemical Devices Materials Chemistry CONTACTS Division Leader Antoinette Taylor Deputy Division Leader David Watkins Point of Contact Susan Duran 505-665-1131 Materials Physics and Applications Division serves as the Laboratory's focal point for fundamental materials physics and materials chemistry, provides world-class user facilities, unique experimental capabilities, and the scientific talent and infrastructure to facilitate understanding and control of materials properties, and develops and apply materials-based solutions

380

Actinide Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Actinide Chemistry Actinide chemistry serves a critical role in addressing global threats Project Description At Los Alamos, scientists are using actinide analytical chemistry to...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nanostructure, Chemistry and Crystallography of Iron Nitride...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

382

Earth Science The Wiess School of Natural Sciences  

E-Print Network [OSTI]

143 Earth Science The Wiess School of Natural Sciences CHAIR Alan Levander PROFESSORS John B Physics I and II with lab ESCI 321 Earth System Evolution and Cycles ESCI 322 Earth Chemistry and Materials ESCI 323 Earth Structure and Deformation with lab ESCI 324 Earth's Interior ESCI Degrees Offered

Richards-Kortum, Rebecca

383

Cobalt and Nickel-Based Organometallic Chemistry of the [N]Phenylenes  

E-Print Network [OSTI]

Physical Organic Chemistry; University Science Books: Paloman who wrote the book on organic chemistry, was quite an

Padilla, Robin

2010-01-01T23:59:59.000Z

384

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abécassis, Benjamin (Benjamin Abécassis) - Laboratoire de Physique des Solides, Université de Paris-Sud 11 Ackland, Graeme (Graeme Ackland) - Centre for Materials Science and Engineering & School of Physics, University of Edinburgh Adams, James B (James B Adams) - Department of Chemical and Materials Engineering, Arizona State University Adams, Philip W. (Philip W. Adams) - Department of Physics and Astronomy, Louisiana State University Adeyeye, Adekunle (Adekunle Adeyeye) - Department of Electrical and Computer Engineering, National University of Singapore Agrawal, Dinesh (Dinesh Agrawal) - Microwave Processing and

385

E-Print Network 3.0 - activation chemistry Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: activation chemistry Page: << < 1 2 3 4 5 > >> 1 Chemistry -Bachelor of Science (SCHUG)...

386

X-ray Science Division: Groups  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

387

Postdoctoral Research Associate Center for Nanophase Materials Sciences  

E-Print Network [OSTI]

that can lead us to design superior devices for various applications. 2. Design of high capacity energy of energy storage systems. #12;3. Catalysis properties of low-dimensional materials: Most of the catalysts are noble metals. Wide efforts are being made to replace or reduce the usage of noble metals. Low

Pennycook, Steve

388

Materials Discovery Design and Synthesis | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discovery Design and Synthesis Discovery Design and Synthesis Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Materials Discovery Design and Synthesis Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported in the discovery and design of novel materials and the development of innovative materials synthesis and processing methods. This research is guided by applications of concepts learned from the interface between physics and biology and from nano-scale understanding of

389

Secretary of Energy Chu Congratulates 2011 Chemistry Nobel Laureate |  

Broader source: Energy.gov (indexed) [DOE]

Chu Congratulates 2011 Chemistry Nobel Laureate Chu Congratulates 2011 Chemistry Nobel Laureate Secretary of Energy Chu Congratulates 2011 Chemistry Nobel Laureate October 5, 2011 - 6:56pm Addthis WASHINGTON, DC -- Secretary of Energy Steven Chu today congratulated Daniel Shechtman for winning the 2011 Nobel Prize in Chemistry "for the discovery of quasicrystals." "Dr. Schechtman's discovery in 1982 not only led to a new field of quasicrystals, but also forever changed ideas about matter," said Secretary Chu, who is a 1997 Nobel Laureate in Physics. "His important work underscores the impact of basic science research and I congratulate him for this well-deserved recognition." Shechtman is an associate scientist at the Department of Energy's Ames Laboratory, an Iowa State University professor of materials science and

390

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thad M. Adams Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline Materials for Hydrogen Service Hydrogen Technology at the Savannah Hydrogen Technology at the Savannah River Site River Site * Tritium Production/Storage/Handling and Hydrogen Storage/Handling since 1955 - Designed, built and currently operate world's largest metal hydride based processing facility (RTF) - DOE lead site for tritium extraction/handling/separation/storage operations * Applied R&D provided by Savannah River National Laboratory - Largest hydrogen R&D staff in country * Recent Focus on Related National Energy Needs - Current major effort on hydrogen energy technology

391

Neutron Sciences - Electrode Material for Solid-oxide Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Theory meets experiment: structure-property relationships in an electrode Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells Research Contact: Ana B. Munoz-Garcia December 2012, Written by Agatha Bardoel Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in liquid electrolyte cells. Using the Powder Diffractometer at the Spallation Neutron Source, researchers experimentally characterized the promising new SOFC electrode material strontium iron molybdenum oxide─Sr2Fe1.5Mo0.5O6-δ (SFMO). Combining the experimental results with insights from theory showed that the crystal structure is distorted from the ideal cubic simple perovskite

392

DOE-HDBK-1017/1-93; DOE Fundamentals Handbook Material Science Volume 1 of 2  

Broader source: Energy.gov (indexed) [DOE]

1-93 1-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK MATERIAL SCIENCE Volume 1 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE93012224 DOE-HDBK-1017/1-93 MATERIAL SCIENCE ABSTRACT The Material Science Handbook was developed to assist nuclear facility operating

393

DOE-HDBK-1017/2-93; DOE Fundamentals Handbook Material Science Volume 2 of 2  

Broader source: Energy.gov (indexed) [DOE]

2-93 2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK MATERIAL SCIENCE Volume 2 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. Available to the public from the National Technical Information Services, U.S. Department of Commerce, 5285 Port Royal., Springfield, VA 22161. Order No. DE93012225 DOE-HDBK-1017/2-93 MATERIAL SCIENCE ABSTRACT The Material Science

394

The Project for the High Energy Materials Science Beamline at Petra III  

SciTech Connect (OSTI)

The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography.

Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A. [GKSS-Research Centre Geesthacht GmbH, Max-Planck-Strasse, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

395

Chemical Structure and Properties: A Modified Atoms-First, One-Semester Introductory Chemistry Course  

Science Journals Connector (OSTI)

Rather than looking solely at topics that might be useful in the health sciences, topics are chosen to appeal to majors in a variety of fields, including chemistry, biology, geology, materials science, and environmental studies. ... (26) This area has been identified as crucial for practicing scientists. ...

Chris P. Schaller; Kate J. Graham; Brian J. Johnson; Henry V. Jakubowski; Anna G. McKenna; Edward J. McIntee; T. Nicholas Jones; M. A. Fazal; Alicia A. Peterson

2014-11-17T23:59:59.000Z

396

User:Smallman12q/articles/Chemistry 1 User:Smallman12q/articles/Chemistry  

E-Print Network [OSTI]

User:Smallman12q/articles/Chemistry 1 User:Smallman12q/articles/Chemistry Chemistry is the science during chemical reactions. Chemistry is the study of interactions of chemical substances with one another and energy. Chemistry (from Egyptian kme (chem), meaning "earth" [1] ) is the science concerned

Ferreira, Márcia M. C.

397

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

R S R S T U V W X Y Z Qasem, Apan (Apan Qasem) - Department of Computer Science, Texas State University - San Marcos Qi, Xiaojun (Xiaojun Qi) - Department of Computer Science, Utah State University Qi, Yuan "Alan" (Yuan "Alan" Qi) - Departments of Computer Sciences & Statistics, Purdue University Qian, Xiaoping (Xiaoping Qian) - Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology Qiao, Chunming (Chunming Qiao) - Department of Computer Science and Engineering, State University of New York at Buffalo Qiao, Daji (Daji Qiao) - Department of Electrical and Computer Engineering, Iowa State University Qiao, Sanzheng (Sanzheng Qiao) - Department of Computing and Software, McMaster University Qin, Feng (Feng Qin) - Department of Computer Science and

398

Chemistry in Bioinformatics  

E-Print Network [OSTI]

F R O N T M A T T E R Chemistry in Bioinformatics Peter Murray?Rust,1 John B. O. Mitchell,1 and Henry S. Rzepa2 1 Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge. CB2... 1EW, UK. 2 Department of Chemistry, Imperial College London, SW7 2AY, UK. Abstract Chemical information is now seen as critical for most areas of life sciences. But unlike Bioinformatics, where data is Openly available and freely re...

Murray-Rust, Peter; Mitchell, John B O; Rzepa, Henry S

2005-05-19T23:59:59.000Z

399

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Sabo, John (John Sabo) - School of Life Sciences, Arizona State University Sachdev, Subir -Department of Physics, Harvard Universit(achdev, Subir -Department of Physics, Harvard Universi)ty Sadoway, Donald Robert (Donald Robert Sadoway) - Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT) Saikin, Semion (Semion Saikin) - Department of Chemistry and Chemical Biology, Harvard University Salapaka, Murti V. (Murti V. Salapaka) - Department of Electrical and Computer Engineering, Iowa State University Sanchez, Erik (Erik Sanchez) - Department of Physics, Portland State University Sandoghdar, Vahid (Vahid Sandoghdar) - Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich (ETHZ)

400

What can I do with a degree in Chemistry?  

E-Print Network [OSTI]

What can I do with a degree in Chemistry? Science Planning your career Choosing a career involves.canterbury.ac.nz/liaison/best_prep.shtml What is Chemistry? Chemistry is the central science. It deals with the composition, structure level is essential to all areas of science. Chemistry interlinks and contributes to medicine, geology

Hickman, Mark

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

402

Condensed Matter Physics & Materials Science Department, Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presetations Presetations Homepage | Contacts "How can we make an isotropic high-temperature superconductor?," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, November 27 2007). PDF "Enhancement of Jc in thick MOD and BaF2 coatings through the structure improvement " DOE "Superconductivity for Power Systems" Annual Peer Review, (Arlington, VA, August 7-9 2007). PDF "Texture Development in 2-3 μm Thick YBCO Films Synthesized by BaF2 and MOD Processes on Metal RABiTS(tm) " Materials Research Society Spring Meeting, (San Francisco, CA, April 20 2007). PDF "Films and Crystals: Search for the Perfect Structure. ," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, March 12 2007). PDF

403

Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurements of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

404

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

405

Sandia National Labs: Materials Science and Engineering Center: Research &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accomplishments Accomplishments Patents PATENTS Method for Making Surfactant-Templated Thin Films, Jeff Brinker, Hongyou Fan, Patent #RE41612, issued 8/13/10 Dendritic Metal Nanostructures, John Shelnutt, Yujiang Song, Patent #7,785,391, issued 8/13/10 Metal Nanoparticles as a Conductive Catalyst, Eric Coker, Patent #7,767,610, issued 8/13/10 Water-Soluable Titanium Alkoxide Material, Timothy Boyle, Patent # 7,741,486 B1, issued 6/22/10 Microfabricated Triggered Vacuum Switch, Alex W. Roesler, Joshua M. Schare,Kyle Bunch, Patent #7,714,240, issued 5/11/10 Method of Photocatalytic Nanotagging, John Shelnutt, Craig Medforth, Yujiang Song, Patent #7,704,489, issued 4/27/10 Correlation Spectrometer, Michael Sinclair, Kent Pfeifer, Jeb Flemming, Gary D Jones, Chris Tigges, Patent #7,697,134, issued 4/13/10

406

Center for Nanophase Materials Sciences (CNMS) - Functional Hybrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) Synthesis of SWNT's, NT Arrays, NW's, NP's or thin films by CVD, Laser Vaporization, and PLD with in situ diagnostics ns-Laser Vaporization Synthesis of SWNTs, NWs, NPs SWNTs and nanowires are produced by pulsed Nd:YAG laser-irradiation (30 Hz, Q-switched or free-running) of composite pellets in a 2" tube furnace with variable pressure control. Excimer laser ablation of materials into variable pressure background gases is used for nanoparticle generation in proximity of ns-laser diagnostics. High-power ms-laser vaporization bulk production of nanomaterials SWNTs (primarily), SWNH (single-wall carbon nanohorns), nanoparticles and nanowires are produced by robotically-scanned 600W Nd:YAG laser-irradiation

407

Center for Nanophase Materials Sciences (CNMS) - Active CNMS User Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACTIVE USER PROJECTS ACTIVE USER PROJECTS Proposal Cycle 2013B: expire July 31, 2014 Proposal Cycle 2013A: expire January 31, 2014 Proposal Cycle 2012B (extended): expire July 31, 2014 Proposal Cycle 2012A: (extended): expire January 31, 2014 Proposal Cycle 2013B: expire January 31, 2014 X-ray diffraction and scattering techniques for the study of interfacial phenomena in energy storage materials Gabriel Veith, ORNL [CNMS2013-201] Atomic scale study of the reduction of metal oxides Guangwen Zhou, State University of New York at Binghamton [CNMS2013-210] Local Switching Studies in PbZr0.2Ti0.8O3 (001), (101), and (111) Films Lane Martin, University of Illinois, Urbana-Champaign [CNMS2013-211] Direct Observation of Domain Structure and Switching Process in Strained

408

Materials Sciences and Engineering (MSE) Division Homepage | U.S. DOE  

Office of Science (SC) Website

MSE Home MSE Home Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Materials Sciences and Engineering (MSE) Division supports fundamental experimental and theoretical research to provide the knowledge base for the discovery and design of new materials with novel structures, functions, and properties. This knowledge serves as a basis for the development of new materials for the generation, storage, and use of energy and for mitigation of the environmental impacts of energy use. (details) The MSE research portfolio consists of the research focus areas in the

409

148 Chemistry/Chinese Chemistry 347 (3)--Advanced Organic Chemistry  

E-Print Network [OSTI]

148 Chemistry/Chinese Chemistry 347 (3)--Advanced Organic Chemistry Prerequisite: Chemistry 242,syntheticmethodology,mod- ernsyntheticreactions,protectinggroups,naturalprod- uctssynthesis,andcombinatorialchemistry.France. Spring Chemistry 350 (3)--Advanced Inorganic Chemistry Prerequisites: Chemistry 250, 252, and 262. Anintro

Dresden, Gregory

410

Chemistry of Materials 1989, 1,83-101 How C-C Bonds Are Formed and How They Influence  

E-Print Network [OSTI]

, with late transition-metal elements. Early transition-metal carbides of the same composition do not exist Choices in Some Binary and Ternary Metal Carbides 83 Jing Li and Roald Hoffmann* Department of Chemistry The dimeric Czunit has been found in many binary and ternary metal carbide systems. The C-C bond length

Li, Jing

411

OPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERING University of New Mexico  

E-Print Network [OSTI]

SCIENCE & ENGINEERING University of New Mexico Abstract: Polymer solar cell (PSC) devices offer an intriguing alternative to traditional silicon based solar cell technologies, due to versatility in material electronic devices. Dr. Yang Qin UNM Department of Chemistry and Chemical Biology Improving Polymer Solar

New Mexico, University of

412

Materials Science and Engineering A 496 (2008) 501-506 Joining Ceramics to Metals  

E-Print Network [OSTI]

ductility enhances the resistance of the joint to thermal cycling; AlN-Inconel 600 bonds exhibited good thermal shock resistance. Alumina- stainless steel bonds withstood more that 60 thermal cycles between 200Materials Science and Engineering A 496 (2008) 501-506 1 Joining Ceramics to Metals using Metallic

Cambridge, University of

413

Materials Science Forum, Vols. 426432, 2003, pp. 3542. Advances in the Kinetic Theory of Carbide Precipitation  

E-Print Network [OSTI]

Materials Science Forum, Vols. 426­432, 2003, pp. 35­42. Advances in the Kinetic Theory of Carbide Pembroke Street, Cambridge CB2 3QZ, U.K., www.msm.cam.ac.uk/phase­trans Keywords : Carbides, kinetics and reversion of carbides can determine the quality of steels. This paper is a review of efforts towards better

Cambridge, University of

414

Materials Science and Engineering A 445446 (2007) 186192 Plastic instabilities and dislocation densities during plastic  

E-Print Network [OSTI]

Materials Science and Engineering A 445­446 (2007) 186­192 Plastic instabilities and dislocation densities during plastic deformation in Al­Mg alloys Gyozo Horv´ath, Nguyen Q. Chinh, Jeno Gubicza, J 2006 Abstract Plastic deformation of Al­Mg alloys were investigated by analyzing the stress

Gubicza, Jenõ

415

Materials Science Forum, Vols. 539543 (2007) 611. Online available at: http://www.scientific.net  

E-Print Network [OSTI]

://www.scientific.net Copyright 2006 Trans Tech Publications, Switzerland Strong Ferritic­Steel Welds H. K. D. H. Bhadeshia University of Cambridge Materials Science and Metallurgy Pembroke Street, Cambridge CB2 3QZ, U.K. www of the synergy between manganese and nickel is discussed in the light of recent high­resolution experiments

Cambridge, University of

416

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822  

E-Print Network [OSTI]

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822 Research and education in nuclear engineering, waste management and decommissioning holds the key to sustainable energy production on an ambitious programme of commissioning nuclear energy, creating opportunities for graduates from plant design

Miall, Chris

417

JOURNAL OF MATERIALS SCIENCE 36 (2001) 4681 4686 Deformation and energy absorption of wood  

E-Print Network [OSTI]

JOURNAL OF MATERIALS SCIENCE 36 (2001) 4681­ 4686 Deformation and energy absorption of wood cell and Physics & Christian Doppler Laboratory for Fundamentals of Wood Machining, University of Agricultural of Meteorology and Physics & Christian Doppler Laboratory for Fundamentals of Wood Machining, University

Lichtenegger, Helga C.

418

Computing Handbook Set -Computer Science (Volume I) Chapter: DNA Computing  

E-Print Network [OSTI]

Computing Handbook Set - Computer Science (Volume I) Chapter: DNA Computing Sudhanshu Garg, Reem. DNA computing is a class of molecular computing that does computation by the use of reactions chemistry, biochemistry, physics, material science, and computer science. This chapter surveys the field

Reif, John H.

419

The New Structural Materials Science Beamlines BL8A and 8B at Photon Factory  

SciTech Connect (OSTI)

BL8A and 8B are new beamlines for structural materials science at Photon Factory. The primary characteristics of both beamlines are similar. The incident beam is monochromatized by the Si(111) double-flat crystal monochromator and focused at the sample position by a Rh-coated bent cylindrical quartz mirror. The Weissenberg-camera-type imaging-plate (IP) diffractometers were installed. The X-ray diffraction experiments for structural studies of strongly correlated materials, such as transition metals, molecular conductors, endohedral fullerenes, nano-materials, etc, are conducted at these stations.

Nakao, A.; Sugiyama, H.; Koyama, A.; Watanabe, K. [Insttitute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

420

Organofluorine chemistry  

Science Journals Connector (OSTI)

...young scientists give their visions of the future III. Chemistry and biological physics compiled by J. M. T. Thompson Organofluorine chemistry Graham Sandford Department of Chemistry, University of Durham, , South Road, Durham DH1 3LE...

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CLUSTER CHEMISTRY  

E-Print Network [OSTI]

Advanced Inorganic Chemistry, 11 Wiley Huetterties and C. M.Submitted to the Journal of Organometallic ChemistryCLUSTER CHEMISTRY Earl L. Muetterties TWO-WEEK LOAN COPY May

Muetterties, Earl L.

2013-01-01T23:59:59.000Z

422

Momentum-resolved Electron Energy-Loss Spectroscopy Master Thesis, Electron Microscopy Group of Materials Science, Prof. Ute Kaiser  

E-Print Network [OSTI]

of Materials Science, Prof. Ute Kaiser Background Electron energy-loss spectroscopy (EELS) is a well like plasmons at a few 10eV, to core-shell excitations at high energy losses. In addition to the energy Microscopy group of Material Sciences in Ulm has gained experience in the acquisition and analysis of energy

Pfeifer, Holger

423

Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University  

E-Print Network [OSTI]

Contact: Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (i Cell-Material Sciences, iCeMS for short, I welcome you to the Seventh iCeMS International Symposium to develop them through evolution. They are also very important to design and create various novel "smart

Takada, Shoji

424

X-ray science taps bug biology to design better materials and reduce  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship Caddiesflies spin an adhesive silk underwater to build nets to capture food and build protective shelter. Pictured is that silk magnified. Courtesy: Bennett Addison. Click to enlarge. Caddiesflies spin an adhesive silk underwater to build nets to capture food and build protective shelter. Pictured is that silk magnified. Courtesy: Bennett Addison. Click to enlarge. "(Caddisfly silk) is really not much stronger than super glue, but try to put super glue in your bathtub without it ever getting a chance to dry," says Jeff Yarger, professor of chemistry, biochemistry and physics at Arizona State University. Courtesy: Bennett Addison. Click to enlarge.

425

Forensic Science Education Programs in the Midwest | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Education Programs in the Midwest Carroll University Bachelor of Science Degree (B.S.), Chemistry Major with a Forensic Science emphasis Chemistry Program | Forensic...

426

Forensic Science Education Programs in the Midwest | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forensic Science Education Programs in the Midwest Carroll University Bachelor of Science Degree (B.S.), Chemistry Major with a Forensic Science emphasis Chemistry Program |...

427

Argonne Chemical Sciences & Engineering - People - Electrochemical Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Development Technology Development Khalil Amine, Argonne Distinguished Fellow, Senior Materials Scientist, Group Leader phone: 630/252-3838, fax: 630/972-4451, e-mail: amine@anl.gov Ph.D. (Material Science, with high honor): University of Bordeaux 1, France Fluorine chemistry, carbon chemistry, intercalation chemistry, fuel cell polymer chemistry, and advanced electrochemical devices and battery materials Ali Abouimrane, Materials Scientist phone: 630/252-3729, e-mail: abouimrane@anl.gov Ph.D., Physical Chemistry, Hassan II University, Morocco Works on the synthesis, characterization and optimization of electrode and electrolyte materials for high energy/power lithium and sodium batteries to be utilized in PHEV, EV and smart grid applications Ilias Belharouak, Chemist/Materials Scientist

428

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from...

429

Atmospheric Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

competencies Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced...

430

Physical chemistry - Thermodynamics  

Science Journals Connector (OSTI)

Physical chemistry - Thermodynamics ... A style of question that allows the instructor of thermodynamics to cover a wide range of material at varying levels of achievement in a reasonable period of time. ... Thermodynamics ...

Jack Richlin

1982-01-01T23:59:59.000Z

431

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect (OSTI)

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

432

Year 1 Progress Report Computational Materials and Chemical Sciences Network Administration  

SciTech Connect (OSTI)

This document reports progress on the project Computational Materials and Chemical Sciences Network Administration, which is supported by DOE BES Grant DE-FG02-02ER45990 MOD 08. As stated in the original proposal, the primary goal of this project is to carry out the scientific administrative responsibilities for the Computational Materials and Chemical Sciences Network (CMCSN) of the U.S. Department of Energy, Office of Basic Energy Sciences. These responsibilities include organizing meetings, publishing and maintaining CMCSNs website, publishing a periodic newsletter, writing original material for both the website and the newsletter, maintaining CMCSN documentation, editing scientific documents, as needed, serving as liaison for the entire Network, facilitating information exchange across the network, communicating CMCSNs success stories to the larger community and numerous other tasks outside the purview of the scientists in the CMCSN. Given the dramatic increase in computational power, advances in computational materials science can have an enormous impact in science and technology. For many of the questions that can be addressed by computation there is a choice of theoretical techniques available, yet often there is no accepted understanding of the relative strengths and effectiveness of the competing approaches. The CMCSN fosters progress in this understanding by providing modest additional funding to research groups which engage in collaborative activities to develop, compare, and test novel computational techniques. Thus, the CMCSN provides the glue money which enables different groups to work together, building on their existing programs and expertise while avoiding unnecessary duplication of effort. This includes travel funding, partial postdoc salaries, and funding for periodic scientific meetings. The activities supported by this grant are briefly summarized below.

Rehr, John J.

2012-08-02T23:59:59.000Z

433

Materials Science and Engineering A 527 (2010) 62706282 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

that the change in preferred pore orientations with pressure is responsible for the higher thermal resistance) is the most widely used ceramic for TBC applications [2]. Thermal transport in this material occurs. At lower temperatures, conductive transport dom- inates, and the thermal resistance can be improved

Wadley, Haydn

434

Chemistry Division annual progress report for period ending January 31, 1984  

SciTech Connect (OSTI)

Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

Not Available

1984-05-01T23:59:59.000Z

435

NWChem and Actinide Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACTINIDE CHEMISTRY MEETS COMPUTATION ACTINIDE CHEMISTRY MEETS COMPUTATION Capturing how contaminants migrate across groundwater-surface water inter- faces is a challenge that researchers at the Department of Energy's EMSL-the Environmental Molecular Sciences Laboratory-are rising to. This challenge, a top priority for waste cleanup efforts at the Hanford Site in Richland, Washington, and other parts of the DOE weapons complex, is being addressed using NWChem, a computational chemistry package developed at EMSL that is designed to run on high-performance parallel supercomputers, such as EMSL's Chinook. NWChem is enabling breakthrough discoveries in actinide behavior and chemistry, in part because it allows researchers to accurately model the dynamical formation, speciation, and redox chemistry of actinide complexes in realistic complex mo-

436

Photon Sciences | About the Photon Sciences Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Photon Sciences Directorate About the Photon Sciences Directorate The Photon Sciences Directorate operates the National Synchrotron Light Source (NSLS) and is constructing the National Synchrotron Light Source II (NSLS-II), both funded by the Department of Energy Office of Science. These facilities support a large community of scientists using photons (light) to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. NSLS National Synchrotron Light Source NSLS-II National Synchrotron Light Source II This is a very exciting period for photon sciences at Brookhaven Lab and a time of unprecedented growth for the directorate. The NSLS-II Project is progressing rapidly and smoothly through design and construction, driven by

437

CHEMISTRY AND TECHNOLOGY 2011 Academic regulations for the Bachelor's degree in Chemistry and Technology  

E-Print Network [OSTI]

CHEMISTRY AND TECHNOLOGY 2011 Academic regulations for the Bachelor's degree in Chemistry Bachelor's degree programme provides graduates with the title Bachelor of Science (BSc) in Chemistry and Technology. Academic line and main subject areas of the degree The Bachelor's degree in Chemistry

438

"New horizons in cryobiology could be explored by nanotechnology, which has revolutionized multiple fields in science. Some of the advances in materials science and  

E-Print Network [OSTI]

Editorial "New horizons in cryobiology could be explored by nanotechnology, which has revolutionized multiple fields in science. Some of the advances in materials science and nanotechnology ... can-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Medicine, Brigham & Women's Hospital, Harvard Medical

Demirci, Utkan

439

Materials Science and Engineering A231 (1997) 170182 Fatigue crack growth resistance in SiC particulate and whisker  

E-Print Network [OSTI]

Materials Science and Engineering A231 (1997) 170­182 Fatigue crack growth resistance in Si resulted in higher crack growth resistance at low growth rates in the particulate reinforced materials in these materials have indicated that many factors may be important in deter- mining the fatigue resistance of SiC/

Ritchie, Robert

440

PHILOSOPHY OF CHEMISTRY Bernadette Bensaude-Vincent  

E-Print Network [OSTI]

PHILOSOPHY OF CHEMISTRY Bernadette Bensaude-Vincent in A. Brenner, J. Gayon eds, French Studies in the Philosophy of Science, Boston Studies in the Philosophy of Science, Springer, 2009, 165-185. The notion of "philosophy of chemistry" challenges the singular in the phrase "philosophy of science", which is the standard

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Page 1 | B.A. in Chemistry | Academic Plan of Study Updated April 2014 B.A. in Chemistry  

E-Print Network [OSTI]

Page 1 | B.A. in Chemistry | Academic Plan of Study Updated April 2014 B.A. in Chemistry Academic Plan of Study College of Liberal Arts & Sciences Department of Chemistry chemistry.uncc.edu PROGRAM to declare the major. · Advising (For the Major): completed by your chemistry faculty advisor (please refer

Raja, Anita

442

Page 1 | B.S. in Chemistry | Academic Plan of Study Updated April 2014 B.S. in Chemistry  

E-Print Network [OSTI]

Page 1 | B.S. in Chemistry | Academic Plan of Study Updated April 2014 B.S. in Chemistry Academic Plan of Study College of Liberal Arts & Sciences Department of Chemistry chemistry.uncc.edu PROGRAM to declare the major. · Advising (For the Major): completed by your chemistry faculty advisor (please refer

Raja, Anita

443

Materials Chemistry and Physics 86 (2004) 358369 Effect of shear, compaction and nesting on permeability of the orthogonal  

E-Print Network [OSTI]

- injection technologies has made major advances and ex- panded from its aerospace roots to military and diverse civil applications. At the same time, processing science has become an integral part place. A detailed review of the major liquid molding processes can be found in the recent work of Lee [1

Grujicic, Mica

444

Calix 2007:9th International Conference on Calixarene Chemistry  

SciTech Connect (OSTI)

The DOE funds helped support an International Conference, Calix 2007, whose focus was on Supramolecular Chemistry. The conference was held at the University of Maryland from August 6-9, 2007 (Figure 1). The conference website is at www.chem.umd.edu/Conferences/Calix2007. This biannual conference had previously been held in the Czech Republic (2005), Canada (2003), Netherlands (2001), Australia (1999), Italy (1997), USA (Fort Worth, 1995) Japan (1993) and Germany (1991). Calixarenes are cup-shaped compounds that are a major part of Supramolecular Chemistry, for which Cram, Lehn and Pederson were awarded a Nobel Prize 20 years ago. Calixarene chemistry has expanded greatly in the last 2 decades, as these compounds are used in synthetic and mechanistic chemistry, separations science, materials science, nanoscience and biological chemistry. The organizing committee was quite happy that Calix 2007 encompassed the broad scope and interdisciplinary nature of the field. Our goal was to bring together leading scientists interested in calixarenes, molecular recognition, nanoscience and supramolecular chemistry. We believe that new research directions and collaborations resulted from an exchange of ideas between conferees. This grant from the DOE was crucial toward achieving that goal, as the funds helped cover some of the registration and accommodations costs for the speakers.

Jeffery Davis

2011-09-09T23:59:59.000Z

445

NERSC-ScienceHighlightsJuly2013.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 2013 July 2013 NERSC Science Highlights --- 1 --- NERSC User Science Highlights Materials Model is able to predict which of a million or so potential materials might be best for carbon capture (B. Smit, LBNL) Materials NERSC collaboration yields software that is a key enabler in the high- throughput computational materials science initiative (S. Ong, MIT) Climate NERSC simulations contribute to a study finding that emission regulations reduced soot and climate change impact in California W. Collins (LBNL) Climate Independent confirmation of global land warming without the use of land thermometers (G. Compo, U. Colorado) Nuclear Physics NERSC resources aid worldwide collaboration that discovers neutrinos of unprecedented energy (L. Gerhardt, LBNL) Chemistry

446

Berry phase effects on electronic properties Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,  

E-Print Network [OSTI]

Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Ming-Che Chang Department of PhysicsBerry phase effects on electronic properties Di Xiao Materials Science and Technology Division, Oak

Wu, Zhigang

447

DEPARTMENT OF CHEMICAL ENGINEERING & MATERIALS SCIENCE Ph.D EXIT SEMINARS 2012-2013 (through Winter Quarter 2013)  

E-Print Network [OSTI]

DEPARTMENT OF CHEMICAL ENGINEERING & MATERIALS SCIENCE Ph.D EXIT SEMINARS 2012-2013 (through Winter Electrical Characteristics of Grain Boundaries in Oxygen Ion and Proton-Conducting Solid Oxide Electrolytes

Woodall, Jerry M.

448

2-1 Chemistry & Physics of Complex Systems Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CPCS Overview CPCS Overview Chemistry & Physics of Complex Systems Facility The Chemistry & Physics of Complex Systems (CPCS) Facility supports the U.S. Depart- ment of Energy (DOE) mission of fostering fundamental research in the natural sciences to provide the basis for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use and contaminant releases. This research provides a foundation for understanding interactions of atoms, molecules, and ions with materials and with photons and electrons. Particular emphasis is on interfacial processes. A distinguishing feature of research at national laboratories is their approach to problem- solving. Significant scientific issues are addressed using focused and multidisciplinary

449

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

S S T U V W X Y Z Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rabani, Eran (Eran Rabani) - School of Chemistry, Tel Aviv University Rabson, David A. (David A. Rabson) - Department of Physics, University of South Florida Radhakrishnan, Ravi (Ravi Radhakrishnan) - Department of Bioengineering, University of Pennsylvania Raghavan, Srinivasa (Srinivasa Raghavan) - Department of Chemical Engineering and Biomolecular Engineering, University of Maryland at College Park Ramesh, R. (R. Ramesh) - Department of Materials Science and Engineering, University of California at Berkeley Ramsak, Anton (Anton Ramsak) - Department of Theoretical Physics, Jozef Stefan Institute Rangan, Chitra (Chitra Rangan) - Department of Physics, University of Windsor

450

Last updated 6/13/2011 Chemistry Major III: FORENSIC CHEMISTRY  

E-Print Network [OSTI]

Last updated 6/13/2011 Chemistry Major III: FORENSIC CHEMISTRY Suggested Program of Study FIRST and 3 of the arts. ***Three additional Forensic Sciences courses must be taken: FORS 6238-6239 plus FORS

Vertes, Akos

451

ComputationalComputational ScienceScience  

E-Print Network [OSTI]

ComputationalComputational ScienceScience KenKen HawickHawick k.a.k.a.hawickhawick@massey.ac.nz@massey.ac.nz Massey UniversityMassey University #12;Computational Science / eScienceComputational Science / eScience Computational Science concerns the application of computer science to physics, mathematics, chemistry, biology

Hawick, Ken

452

11/04/2005 09:05 PMChemical & Engineering News: SCIENCE/TECHNOLOGY -BOXED IN: CHEMISTRY IN CONFINED SPACES Page 1 of 17http://pubs.acs.org/isubscribe/journals/cen/78/i34/html/7834scit1.html  

E-Print Network [OSTI]

11/04/2005 09:05 PMChemical & Engineering News: SCIENCE/TECHNOLOGY - BOXED IN: CHEMISTRY the consequences of confinement of reative species A. Maureen Rouhi C&EN Washington Most organic chemical reactions/Technology Education ACS News Calendars Books Software/Online Briefs ACS Comments Career & Employment Special Reports

Jayaraman, Sivaguru

453

Chemistry itself is concerned with the understanding and control of all aspects of  

E-Print Network [OSTI]

Chemistry itself is concerned with the understanding and control of all aspects of molecules and Biological Chemistry', `Chemistry with Materials Chemistry', and `Chemistry with Environmental & Sustainable Chemistry' degrees are based on a solid core knowledge of Chemistry. In addition, the flexibility to study

Schnaufer, Achim

454

Materials Science in Radiation and Dynamics Extremes:MST-8:LANL:Los Alamos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Radiation and Dynamics Extremes (MST-8) in Radiation and Dynamics Extremes (MST-8) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS Group Leader, Anna Zurek Deputy Group Leader Ellen Cerreta Point of Contact Group Office 505-665-4735 He bubbles foming at a Cu twist grain boundary He bubbles forming at a Cu twist grain boundary Evaluating and predicting structure/property relationships Predict structure/property relationships of structural (metals, alloys, actinides, binders, energetic, and specialty) materials from atomistic to continuum length scales; Use computational materials modeling to inform and complement the measurements listed above;

455

The School of Chemistry Handbook for Postgraduate  

E-Print Network [OSTI]

The School of Chemistry Handbook for Postgraduate Research Students 2013/14 School of Chemistry FACULTY OF MATHS AND PHYSICAL SCIENCES #12;2 Welcome The School of Chemistry welcomes new postgraduate students to Leeds and welcomes back returning students. This handbook is intended to give you information

Rzepa, Henry S.

456

CLUSTER CHEMISTRY  

SciTech Connect (OSTI)

Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

Muetterties, Earl L.

1980-05-01T23:59:59.000Z

457

Harvard-MIT Division of Health Sciences and Technology Contract for Technical Qualifying Exam (TQE)  

E-Print Network [OSTI]

Electrical Engineering Computer Science Physics Chemistry Aeronautics & Astronautics Nuclear Science & Engineering Electrical Engineering Computer Science Physics Chemistry Nuclear Science & Engineering Stultz, cmstultz@csail.mit.edu Chemistry: Collin Stultz, cmstultz@csail.mit.edu Nuclear Engineering

Bhatia, Sangeeta

458

Chemistry and Physics of Complex Systems Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CPCS Overview CPCS Overview Section 2-1-1 Chemistry and Physics of Complex Systems Facility The Chemistry and Physics of Complex Systems (CPCS) Facility supports the U.S. Depart- ment of Energy (DOE) mission of fostering fundamental research in the natural sciences to provide the basis for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use and contaminant releases. This research provides a foundation for understanding interactions of atoms, molecules, and ions with materials and with photons and electrons. Particular emphasis is on interfacial processes. A distinguishing feature of research at national laboratories is their approach to problem- solving. Significant scientific issues are addressed using focused and multidisciplinary

459

CHEMISTRY COURSE OFFERINGS, SPRING, 2014 (Updated 12/05/2013)  

E-Print Network [OSTI]

CHEMISTRY COURSE OFFERINGS, SPRING, 2014 (Updated 12/05/2013) CHEM 0001-01 - CHEMICAL FUNDAMENTALS and chemistry of materials. Three lectures, one laboratory, one recitation. Only one of Chemistry 1, 11, or 16, and coordination chemistry, and chemistry of selected elements. Three lectures, one laboratory, one recitation

Kounaves, Samuel P.

460

CHEMISTRY COURSE OFFERINGS, SPRING, 2015 (updated Oct.28, 2014 )  

E-Print Network [OSTI]

CHEMISTRY COURSE OFFERINGS, SPRING, 2015 (updated Oct.28, 2014 ) CHEM 0001 - CHEMICAL FUNDAMENTALS and chemistry of materials. Three lectures, one laboratory, one recitation. Only one of Chemistry 1, 11, or 16, and coordination chemistry, and chemistry of selected elements. Three lectures, one laboratory, one recitation

Kounaves, Samuel P.

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CHEMISTRY COURSE OFFERINGS, FALL, 2013 (Updated 8/1/13)  

E-Print Network [OSTI]

CHEMISTRY COURSE OFFERINGS, FALL, 2013 (Updated 8/1/13) CHEM 0001-01 & 0001-02 - CHEMICAL and chemistry of materials. Three lectures, one laboratory, one recitation. Only one of Chemistry 1, 11, or 16, and coordination chemistry, and chemistry of selected elements. Three lectures, one laboratory, one recitation

Kounaves, Samuel P.

462

W.E. Henry Symposium compendium: The importance of magnetism in physics and material science  

SciTech Connect (OSTI)

This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

Carwell, H.

1997-09-19T23:59:59.000Z

463

MSA | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

MSA MSA Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications Contact BES Home Centers MSA Print Text Size: A A A RSS Feeds FeedbackShare Page Materials Science of Actinides (MSA) Director(s): Peter Burns Lead Institution: University of Notre Dame Mission: To understand and control, at the nanoscale, materials that contain actinides (radioactive heavy elements such as uranium and plutonium) to lay the scientific foundation for advanced nuclear energy systems. Research Topics: nuclear (including radiation effects), materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly) Materials Studied: MATERIALS: actinide, ionic liquid, porous NANOSTRUCTURED MATERIALS: 3D, nanocomposites Experimental and Theoretical Methods:

464

Chemistry Department Seminar Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Archive of Chemistry Department Seminars Archive of Chemistry Department Seminars See also: recent Department seminars Friday, July 27, 2012 "Precise Design of Donor-Acceptor Interface based on Microphase Segregated Nanostructure" Sadayuki Asaoka, Kyoto Institute of Technology Hosted by Dr. John Miller 11:00 AM, Room 300, Chemistry Bldg. 555 Thursday, April 26, 2012 ""NOx Catalysis from the Bottom Up"" Dr. William F. Schneider, Dept. of Chemical and Biomolecular Engineering, University of Notre Dame Hosted by Ping Liu 11:00 AM, Hamilton Seminar Room, Bldg. 555 Friday, April 13, 2012 "High-energy resolution x-ray emission spectroscopy for catalysis and materials chemistry" Olga Safonova, Swiss Light Source & Energy Dept. at Paul Scherrer Institute Hosted by Dario Stacchiola

465

Organophosphorus chemistry  

E-Print Network [OSTI]

2087 Organophosphorus chemistry Paul R. Hanson Editorial Open Access Address: Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA Email: Paul R. Hanson - phanson@ku.edu. Keywords: organophosphorus... Beilstein J. Org. Chem. 2014, 10, 20872088. doi:10.3762/bjoc.10.217 Received: 28 July 2014 Accepted: 06 August 2014 Published: 04 September 2014 This article is part of the Thematic Series "Organophosphorus chemistry" Guest Editor: P. R. Hanson 2014...

Hanson, Paul R.

2014-09-04T23:59:59.000Z

466

Earth & Aquatic Sciences | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Earth and Aquatic Sciences Earth and Aquatic Sciences SHARE Earth and Aquatic Sciences Create and apply new knowledge across multiple scales to aid decision makers on the stewardship of air, water and land resources. Many factors affect the fate, transport and transformation of metal and radionuclide contaminants found on DOE lands. A fundamental understanding of environmental inorganic and biological interactions is needed for deriving practical solutions to management of DOE lands. ORNL applies molecular to field-scale chemistry, hydrology and microbiology expertise, together with neutron scattering, nano-materials sciences facilities, computing resources and comprehensive models in environmental remediation sciences research. Multiple research projects are carried out with aims of

467

Chemistry Update  

National Nuclear Security Administration (NNSA)

Laboratory, P.O. Box 808, Live Laboratory, P.O. Box 808, Live rmore , CA 94551 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Isochronal Annealing of Radiation Damage in - and -Pu Alloys Performance Measures x.x, x.x, and x.x U.S. Russia Conference on Advances in Materials Science 1 September 2009 Scott McCall M.J. Fluss, B.W. Chung, R.G. Haire 2 Physical and Life Sciences Directorate Lawrence Livermore National Laboratory 2 Oak Ridge National Laboratory LLNL-PRES-415419 CMELS-07-0XX.2 Pure Plutonium has in many phases Pu Np U Pa Th Ac Am Cm Low Melting Point Los Alamos Science 26 (2000) CMELS-07-0XX.3 There are multiple stabilizers for -Pu, most of which contract the lattice and work over only a limited concentration range

468

NERSC Science Gateways  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QCD, Materials Science, Science Gateways About Science Gateways A science gateway is a web based interface to access HPC computers and storage systems. Gateways allow science...

469

Roadmap: Chemistry Bachelor of Arts [AS-BA-CHEM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Bachelor of Arts [AS-BA-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 24-May-12/LNHD This roadmap One: [15 Credit Hours] CHEM 10060 General Chemistry I or CHEM 10960 Honors General Chemistry 4

Sheridan, Scott

470

Roadmap: Chemistry Bachelor of Arts [AS-BA-CHEM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Bachelor of Arts [AS-BA-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 1-May-13/LNHD This roadmap One: [15 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM 10062 General Chemistry I

Sheridan, Scott

471

Thin Films Department of Materials Science and Engineering, Carnegie Mellon University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Films Department of Materials Science and Engineering, Carnegie Mellon University Lu Yan, K.R. Balasubramaniam, Shanling Wang, Hui Du, and Paul Salvador Funded b y: U.S. D epartment o f E nergy, S olid S tate E nergy C onversion A lliance ( SECA) Introduction The oxygen reduction reaction (ORR) takes place in the solid oxide fuel cell (SOFC) cathode and the overall reaction is rather complex; it involves a variety of sub-reactions, such as surface adsorption, dissociation, election transfer, incorporation, and bulk diffusion. Although a considerable amount of effort has been expended in correlating processing / microstructural features to cathode performance, there is unfortunately relatively little known about the fundamental surface properties of oxide surfaces and their relation

472

HARWI-II, The New High-Energy Beamline for Materials Science at HASYLAB/DESY  

SciTech Connect (OSTI)

The GKSS Forschungszentrum Geesthacht, Germany, will setup a new high-energy beamline specialized for texture, strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen-Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI-II. The high pressure cell will be run by the GFZ Potsdam, Germany, the high-energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm x 0.5 mm) and a large monochromatic X-ray beam (50 mm x 10 mm) with an energy range of 20 to 250 keV.

Beckmann, Felix; Lippmann, Thomas; Metge, Joachim; Dose, Thomas; Donath, Tilman; Schreyer, Andreas [GKSS Forschungszentrum, Max-Planck-Strasse, 21502 Geesthacht (Germany); Tischer, Markus [HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Liss, Klaus Dieter [Technische Universitaet, Hamburg-Harburg, 21071 Hamburg (Germany)

2004-05-12T23:59:59.000Z

473

Science-Driven Candidate Search for New Scintillator Materials FY 2013 Annual Report  

SciTech Connect (OSTI)

This annual report presents work carried out during Fiscal Year (FY) 2013 at Pacific Northwest National Laboratory (PNNL) under the project entitled Science-Driven Candidate Search for New Scintillator Materials (Project number: PL13-SciDriScintMat-PD05) and led by Dr. Fei Gao. This project is divided into three tasks, namely (1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; (2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and (3) Kinetics and efficiency of scintillation: nonlinearity, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the findings and insights obtained in each of these three tasks are provided in this report. Additionally, papers published this fiscal year or currently in review are included in Appendix together with presentations given this fiscal year.

Gao, Fei; Kerisit, Sebastien N.; Xie, YuLong; Wu, Dangxin; Prange, Micah P.; Van Ginhoven, Renee M.; Campbell, Luke W.; Wang, Zhiguo

2013-10-01T23:59:59.000Z

474

HARWI?II, The New High?Energy Beamline for Materials Science at HASYLAB/DESY  

Science Journals Connector (OSTI)

The GKSS Forschungszentrum Geesthacht Germany will setup a new high?energy beamline specialized for texture strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen?Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI?II. The high pressure cell will be run by the GFZ Potsdam Germany the high?energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm 0.5 mm) and a large monochromatic X?ray beam (50 mm 10 mm) with an energy range of 20 to 250 keV.

Felix Beckmann; Thomas Lippmann; Joachim Metge; Thomas Dose; Tilman Donath; Markus Tischer; Klaus Dieter Liss

2004-01-01T23:59:59.000Z

475

Handbooks of Practical Science Science Handbooks for Laboratory and Class Room: Elementary Physics, Practical and Theoretical First Year's Course Quantitative Practical Chemistry  

Science Journals Connector (OSTI)

... In the first of Mr. Wyatt's handbooks, the usual elementary exercises in mensuration, hydrostatics and heat are given; while the ... latter volume for the work to give satisfactory results, but taken as a whole the handbook will be found very serviceable in teaching the rudiments of science.

1898-03-10T23:59:59.000Z

476

Radiotracer Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiotracer Chemistry Radiotracer Chemistry Radiotracer chemistry is focused on the short lived positron emitters. New radiotracer chemistry and molecular targeting strategies are being developed to increase the complexity and diversity of molecular probes (small molecules and plant hormones) for imaging applications. We emphasize C-11 chemistry because the substitution of stable carbon with carbon-11 provides the opportunity to measure and quantify the distribution and kinetics of physiologically relevant substrates and signaling molecules without altering the biological properties of the parent molecule. Recent accomplishments include the development of miniaturized automated systems for the production of C-11 precursor molecules, the synthesis of C-11 labeled azaleic acid and the radiolabeling of auxin for studies of their movement and metabolism in the whole plant in vivo.

477

Requirements for a Minor in Materials Science and Engineering 1. A minor in Materials Science and Engineering can be earned through completion of 20 credits  

E-Print Network [OSTI]

of Fuel Cells and Batteries ENG MS/ME 530 Introduction to Micro and Nanomechanics of Solids ENG MS/ME 555 MEMS Fabrication and Materials ENG MS/ME 534 Materials Technology for Microelectronics CAS PY 451 program. 4. Students must have a declared major on record in order to apply for the Minor in Materials

478

ORGANIC CHEMISTRY UCLA Organic Chemistry Faculty  

E-Print Network [OSTI]

ORGANIC CHEMISTRY UCLA Organic Chemistry Faculty perform research in molecular machines, exotic CHEMISTRY FACULTY RESEARCH INTERESTS Anne M. Andrews, Professor-in-Residence: Understanding how areas of interest include cross- coupling reactions, green chemistry, heterocycle synthesis, and natural

Levine, Alex J.

479

GENERAL CHEMISTRY TEXTBOOK LIST ISBN Number  

E-Print Network [OSTI]

FALL 2013 GENERAL CHEMISTRY TEXTBOOK LIST Course Number ISBN Number Title of Text and/or Material Edition Author Publishers 11100 978-1-2591-9687-4 Introduction to Chemistry, 3rd ed. (packaged w 978-1-2591-6192-6 Chemistry, The Molecular Nature of Matter and Change, 6e (packaged w

Jiang, Wen

480

Nanostructured photocatalysts for green chemistry and sustainable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured photocatalysts for green chemistry and sustainable catalysis Nanoscale materials with precise structure and composition offer unique opportunities in the development...

Note: This page contains sample records for the topic "materials science chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Journal of Photochemistry and Photobiology A: Chemistry 215 (2010) 123139 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

.elsevier.com/locate/jphotochem Invited Feature Article Charge transport in nanostructured materials for solar energy conversion studied is particularly important for the development of photovoltaic cells for solar energy conversion into electricity: in particular, the conductivity is strongly influ- enced by charge carrier interaction with surfaces

Ku?el, Petr

482

Applied Surface Science 266 (2013) 516 Interphase chemistry of Si electrodes used as anodes in Li-ion batteries  

E-Print Network [OSTI]

in Li-ion batteries Catarina Pereira-Nabaisa,b , Jolanta S´wiatowskaa, , Alexandre Chagnesb, , Franc made to increase the energy density of lithium-ion batteries (LiB), namely for electric vehicle applications. One way to improve the energy density of a battery is to use high specific capacity materials, e

Boyer, Edmond

483

Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

149802 149802 , 1291 (2007); 318 Science et al. L. Ozyuzer, Superconductors Emission of Coherent THz Radiation from www.sciencemag.org (this information is current as of November 29, 2007 ): The following resources related to this article are available online at http://www.sciencemag.org/cgi/content/full/318/5854/1291 version of this article at: including high-resolution figures, can be found in the online Updated information and services, http://www.sciencemag.org/cgi/content/full/318/5854/1291/DC1 can be found at: Supporting Online Material found at: can be related to this article A list of selected additional articles on the Science Web sites http://www.sciencemag.org/cgi/content/full/318/5854/1291#related-content http://www.sciencemag.org/cgi/content/full/318/5854/1291#otherarticles

484

Materials Research Lab -Cooperative International Science and Engineering Internships http://www.mrl.ucsb.edu/mrl/outreach/educational/CISEI/interns_08winter/interns_08winter.html[5/10/12 10:34:13 AM  

E-Print Network [OSTI]

Strontium Titanate Ivana Sabaj Chemistry / Chemical Engineering, University of Chile, Santiago Daniel homepage Site Map // Webmail // Site Privacy Notification Guidelines // National Science Foundation // UCSB: MRL Optical Transmission Study of Reduced Strontium Titanate The interpretation of the transport

Bigelow, Stephen

485

Materials and Design 24 (2003) 6978 0261-3069/03/$ -see front matter 2002 Elsevier Science Ltd. All rights reserved.  

E-Print Network [OSTI]

operate near their limits of thermal cracking and melting erosion resistances during long-burst firing. Due to their high melting temperature (controls melting- erosion resistance), high hotMaterials and Design 24 (2003) 69­78 0261-3069/03/$ - see front matter 2002 Elsevier Science Ltd

Grujicic, Mica

486

Materials Science and Engineering A245 (1998) 293299 The wettability of silicon carbide by AuSi alloys  

E-Print Network [OSTI]

Materials Science and Engineering A245 (1998) 293­299 The wettability of silicon carbide by Au. Keywords: Wettability; Contact angle; Liquid metals; Silicon carbide 1. Introduction The interface properties of silicon carbide­liquid metals (wetting, adhesion, contact interaction) are im- portant

Grigoriev, Alexei

487

Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials Science Subcommittee  

E-Print Network [OSTI]

1 Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials, Columbia University 2 Plasma Science and Fusion Center, MIT December 19, 2011 Summary The proposal for tritium-suppressed D-D fusion and the understanding of the turbulent pinch in magnetically confined plasma

488

JOURNAL OF MATERIALS SCIENCE LETTERS 21, 2002, 251 255 Organic-inorganic sol-gel coating for corrosion protection  

E-Print Network [OSTI]

for corrosion protection of stainless steel T. P. CHOU Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA E-mail: gzcao@u.washington.edu One of the most effective corrosion example. This is the main reason for the durability and corrosion resistance be- havior of this particular

Cao, Guozhong

489

Materials Science and Engineering A 418 (2006) 341356 Microstructural effects of AZ31 magnesium alloy on its  

E-Print Network [OSTI]

Materials Science and Engineering A 418 (2006) 341­356 Microstructural effects of AZ31 magnesium Magnesium alloys exhibit the attractive combination of low densities (1.74 g/cm3 versus 2.7 g/cm3 for Al

Tong, Wei

490

Karen I. Winey is Professor of Materials Science and Engineering at the University of Pennsylvania with a secondary appointment in  

E-Print Network [OSTI]

Karen I. Winey is Professor of Materials Science and Engineering at the University of Pennsylvania with a secondary appointment in Chemical and Biomolecular Engineering. She is also Penn's Director include both polymer nanocomposites and ion-containing polymers. In nanocomposites, she designs

491

Radioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and  

E-Print Network [OSTI]

contamination during transportation. Dispersible radioactive material must be placed in rigid, leak- tight inner be sufficient such that EMSL staff will not encounter radioactive contamination when they open the shippingRadioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located

492

Materials Science and Engineering A 445446 (2007) 669675 Degradation of elastomeric gasket materials in PEM fuel cells  

E-Print Network [OSTI]

to the overall durability of the fuel cell stacks. The degradation of four commercially available gasket as well. © 2006 Elsevier B.V. All rights reserved. Keywords: Gasket material; Fuel cell; Degradation; ATR materials in PEM fuel cells Jinzhu Tana,b,1, Y.J. Chaob,, J.W. Van Zeec, W.K. Leec a College of Mechanical

Van Zee, John W.

493

Browse by Discipline -- E-print Network Subject Pathways: Chemistry --  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Galbraith, Aysa Akad (Aysa Akad Galbraith) - Department of Chemical and Biomolecular Engineering, North Carolina State University Gall, Daniel (Daniel Gall) - Department of Materials Science and Engineering, Rensselaer Polytechnic Institute Gallas, Márcia Russman (Márcia Russman Gallas) - Instituto de Física, Universidade Federal do Rio Grande do Sul Gallivan, Martha A. (Martha A. Gallivan) - School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Gangloff, Richard P. (Richard P. Gangloff) - Department of Materials Science and Engineering, University of Virginia Gao, Hongjun (Hongjun Gao) - Institute of Physics, Chinese Academy of Sciences Gao, Song (Song Gao) - College of Chemistry, Peking University

494

Chemistry Division annual progress report for period ending July 31, 1981  

SciTech Connect (OSTI)

Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

Not Available

1982-01-01T23:59:59.000Z

495

Guide to Chemistry Dept  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guide to the Chemistry Building Guide to the Chemistry Building The main Chemistry building (Building 555) has been designed to make adequate facilities available for research and to provide an informal atmosphere for free exchange among Department members. There are public areas, shared laboratories, shared office space, and privately assigned places. A newcomer to the building should become familiar with locations of the key areas. Stairs and Elevators - Building 555 The central main staircase and a passenger elevator are for personnel traffic only. Each wing has a staircase. There is a rear staircase for traffic directly to service areas. The building has a freight elevator at the rear core. Flammable material, chemicals, solvents, gas cylinders, etc. can be transported in the freight elevator but not in the passenger elevator. Do not ride with gas cylinders or dewars charged with cryogens as the presence of these in a confined space introduces a suffocation hazard.

496

Science and technology news Nanotechnology  

E-Print Network [OSTI]

Science and technology news Home Nanotechnology Physics Space & Earth Electronics Technology Chemistry Biology Medicine & Health Other Sciences Plants & Animals Evolution Ecology Cell & Microbiology

Nieh, James

497

Science and technology news Nanotechnology  

E-Print Network [OSTI]

Science and technology news Home Nanotechnology Physics Space & Earth Electronics Technology Chemistry Biology Medicine & Health Other Sciences Bio & Medicine Nanophysics Nanomaterials Find

Rogers, John A.

498

Science and technology news Nanotechnology  

E-Print Network [OSTI]

Science and technology news Home Nanotechnology Physics Space & Earth Electronics Technology Chemistry Biology Medicine & Health Other Sciences Bio & Medicine Nanophysics Nanomaterials Nanoscale

Espinosa, Horacio D.

499

Control of magnetic vortex chirality in square ring micromagnets Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 and Materials Science  

E-Print Network [OSTI]

Control of magnetic vortex chirality in square ring micromagnets A. Libála Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 M. Grimsditch Materials Science Division, Argonne National Laboratory

Metlushko, Vitali

500

Materials Availability Expands the Opportunity for Large-Scale  

E-Print Network [OSTI]

/year, it remains less than 3% of all new generation capacity (6). How realistic is a future where solar PV amounts * , , , # Energy and Resources Group, University of California, Berkeley, California 94720-3050, Department of Chemistry, University of California, Berkeley, California 94720, Materials Science Division, Lawrence

Kammen, Daniel M.