National Library of Energy BETA

Sample records for materials research society

  1. Jia named Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jia named Materials Research Society Fellow March 6, 2014 Quanxi Jia of the Center for Integrated Nanotechnologies (MPA-CINT) is a 2014 Fellow of the Materials Research Society (MRS). The MRS Fellow program recognizes outstanding members whose sustained and distinguished contributions to the advancement of materials research are internationally recognized. The number of new fellows selected annually is capped at 0.2 percent of the current total MRS membership. Achievements The MRS recognized Jia

  2. Jia named Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jia named Materials Research Society Fellow Jia named Materials Research Society Fellow The MRS Fellow program recognizes outstanding members whose sustained and distinguished contributions to the advancement of materials research are internationally recognized. March 6, 2014 Quanxi Jia Quanxi Jia The MRS recognized Jia for "pioneering contributions to the development of high-temperature superconducting-coated conductors and for advancing the processing and application of multifunctional

  3. Hoagland selected as a new Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contributions in both experimental and computational materials research. July 9, 2013 Richard G. Hoagland Richard G. Hoagland The Materials Research Society (MRS) is an...

  4. 2016 Spring Materials Research Society (Phoenix, AZ) - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Spring Materials Research Society (Phoenix, AZ) 2016 Spring Materials Research Society (Phoenix, AZ) Mon, Mar 28, 2016 6:00pm 18:00 Fri, Apr 1, 2016 7:00pm 19:00 Phoenix Convention Center 100 North 3rd Street Phoenix, Arizona 85004 United States Joel Ager, "Experimental Demonstrations of Solar-Driven Photoelectrochemical Water Splitting and Carbon Dioxide Reduction" John Gregoire, "High Throughput Materials Integration: Identifying Optimal Interfaces for Solar Fuels

  5. Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hoagland selected as a new Materials Research Society Fellow July 9, 2013 Richard G. Hoagland of the Laboratory's Materials Science in Radiation and Dynamic Extremes group has been...

  6. Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hoagland selected as a new Materials Research Society Fellow July 9, 2013 Richard G. Hoagland of the Laboratory's Materials Science in Radiation and Dynamic Extremes group has been honored with the rank of Fellow by the Materials Research Society (MRS). Hoagland is cited for "outstanding contributions in fracture mechanics and atomistic modeling of dislocation mechanisms of deformation and fracture of metals, ceramics and nanolayered composites." Achievements Hoagland received a

  7. New materials for batteries and fuel cells. Materials Research Society symposium proceedings, Volume 575

    SciTech Connect (OSTI)

    Doughty, D.H.; Nazar, L.F.; Arakawa, Masayasu; Brack, H.P.; Naoi, Katsuhiko

    2000-07-01

    This proceedings volume is organized into seven sections that reflect the materials systems and issues of electrochemical materials R and D in batteries, fuel cells, and capacitors. The first three parts are largely devoted to lithium ion rechargeable battery materials since that electrochemical system has received much of the attention from the scientific community. Part 1 discusses cathodes for lithium ion rechargeable batteries as well as various other battery systems. Part 2 deals with electrolytes and cell stability, and Part 3 discusses anode developments, focusing on carbon and metal oxides. Part 4 focuses on another rechargeable system that has received substantial interest, nickel/metal hydride battery materials. The next two parts discuss fuel cells--Part 5 deals with Proton Exchange Membrane (PEM) fuel cells, and Part 6 discusses oxide materials for solid oxide fuel cells. The former has the benefit of operating around room temperature, whereas the latter has the benefit of operating with a more diverse (non-hydrogen) fuel source. Part 7 presents developments in electrochemical capacitors, termed Supercapacitors. These devices are receiving renewed interest and have shown substantial improvements in the past few years. In all, the results presented at this symposium gave a deeper understanding of the relationship between synthesis, properties, and performance of power source materials. Papers are processed separately for inclusion on the data base.

  8. Zelenay wins Electrochemical Society's Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins Electrochemical Society's Research Award December 11, 2012 Piotr Zelenay of LANL's Sensors and Electrochemical Devices group has won the 2012 Research Award presented by the Energy Technology Division of The Electrochemical Society. The award recognizes Zelenay's "outstanding and original contributions to the science and technology of energy-related research areas that include scientific and technological aspects of fossil fuels and alternative energy sources, energy management and

  9. Materials and society -- Impacts and responsibilities

    SciTech Connect (OSTI)

    Westwood, A.R.C.

    1995-11-01

    The needs of today`s advanced societies have moved well beyond the requirements for food and shelter, etc., and now are focused on such concerns as international peace and domestic security, affordable health care, the swift and secure transmission of information, the conservation of resources, and a clean environment. Progress in materials science and engineering is impacting each of these concerns. This paper will present some examples of how this is occurring, and then comment on ethical dilemmas that can arise as a consequence of technological advances. The need for engineers to participate more fully in the development of public policies that help resolve such dilemmas, and so promote the benefits of advancing technology to society, will be discussed.

  10. Zelenay wins Electrochemical Society's Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The award includes a monetary prize and membership in the Electrochemical Society's Energy Technology Division. It will be presented at the society's spring meeting in...

  11. Radiation Research Society 2005 Annual Meeting, Denver, Colorado

    SciTech Connect (OSTI)

    Robert Ullrich, PhD

    2005-10-04

    Abstracts and proceedings of the 2005 Annual Meeting of the Radiation Research Society held in Denver, Colorado on October 16-19, 2005.

  12. International Research Network for Low Carbon Societies (LCS...

    Open Energy Info (EERE)

    and recommendations." References Retrieved from "http:en.openei.orgwindex.php?titleInternationalResearchNetworkforLowCarbonSocieties(LCS-RNet)&oldid764934" ...

  13. Los Alamos researcher named as American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researcher named American Chemical Society Fellow Los Alamos researcher named as American Chemical Society Fellow Kristin Omberg named for her contributions to national security as a "technical leader in detecting and mitigating biological threats" and to the ACS community. August 30, 2012 Kristin Omberg Kristin Omberg Contact Communications Office (505) 667-7000 LOS ALAMOS, NEW MEXICO, August 30, 2012-Los Alamos National Laboratory (LANL) scientist Kristin Omberg was named as an

  14. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays going in various directions atop a corrugated metal substrate Materials Physics Through materials growth and characterization, we seek to understand and control fundamental electronic and optical processes in semiconductors. An image of multiple, interconnecting red and blue particles Electronic Structure Theory We

  15. Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Four Research Thrusts organizational chart of four research thrusts (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses for leaders.) CMI has more than 30 projects focused in four areas. Project titles are available in a table, which can be sorted by project leader, location of project leader, project title or project number. CMI research is conducted at partner institutions, including national laboratories, universities and

  16. Research on Estrogen and Behavior Is a 'Hot Topic' at the 2011 Society for Neuroscience Meeting

    ScienceCinema (OSTI)

    Anat Biegon

    2013-07-19

    The Society for Neuroscience has selected recent research on estrogen and its effect on behavior conducted at BNL for its "hot topics" book distributed to reporters attending the society's 2011 meeting in Washington, D.C., November 12-16.

  17. Meet CMI Researcher Lynn Boatner | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lynn Boatner Image of Lynn Boatner, researcher with Critical Materials Institute CMI researcher Lynn A. Boatner, an ORNL Corporate Fellow and Battelle Distinguished Inventor, is currently the Director of the ORNL Center for Radiation Detection Materials and Systems, and he leads the Synthesis and Properties of Novel Materials Group in the ORNL Materials Science and Technology Division. He holds a Ph.D. degree in Physics from Vanderbilt University. Lynn is a Fellow of the following societies: The

  18. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials Engineering Research Facility's state-of-the-art labs and equipment, Argonne researchers can safely scale up materials from the research bench for commercial testing. Photo courtesy Argonne National Laboratory. Materials Engineering Research Facility exterior 1 of 11 Materials Engineering Research Facility exterior With the Materials

  19. NERSC, LBL Researchers Share Materials Science Advances at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, LBL Researchers Highlight Materials Science at APS NERSC, LBL Researchers Share Materials Science Advances at APS March 3, 2014 APSlogo NERSC and Lawrence Berkeley National Laboratory (LBL) are well represented this week at the American Physical Society (APS) March meeting. Some 10,000 physicists, scientists, and students are expected to attend this year's meeting, which takes place March 3-7 in Denver, CO. Physicists and students will report on groundbreaking research from industry,

  20. Fermilab | Illinois Accelerator Research Center | Accelerators and Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators and Society Physicists have been inventing new types of accelerators to propel charged particles to higher and higher energies for more than 80 years. Today, besides their role in scientific discovery, scientists estimate that more than 30,000 accelerators are at work worldwide in areas ranging from diagnosing and treating disease to powering industrial processes. The accelerators of tomorrow promise still greater opportunities. Next-generation particle beams represent cheaper,

  1. NREL: Photovoltaics Research - Materials Applications and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

  2. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  3. EMei Semiconductor Materials Plant Research Institute | Open...

    Open Energy Info (EERE)

    EMei Semiconductor Materials Plant Research Institute Jump to: navigation, search Name: EMei Semiconductor Materials Plant & Research Institute Place: Emei, Sichuan Province, China...

  4. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Materials Processing Sandia research staff understand, characterize, model, and ultimately control materials fabrication technologies that are critical to component development and production. Plasma Spray

  5. Princeton, Max Planck Society launch new research center for plasma physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Princeton, Max Planck Society launch new research center for plasma physics By John Greenwald March 30, 2012 Tweet Widget Google Plus One Share on Facebook (From left to right) Princeton University Professor of Astrophysical Sciences James Stone, Princeton University President Shirley M. Tilghman, Princeton University Dean for Research A. J. Stewart Smith, Max Planck Society President Peter Gruss, and Consul General of the Federal Republic of Germany in New

  6. 2010 Membranes: Materials & Processes Gordon Research Conference

    SciTech Connect (OSTI)

    Jerry Lin

    2010-07-30

    The GRC series on Membranes: Materials and Processes have gained significant international recognition, attracting leading experts on membranes and other related areas from around the world. It is now known for being an interdisciplinary and synergistic meeting. The next summer's edition will keep with the past tradition and include new, exciting aspects of material science, chemistry, chemical engineering, computer simulation with participants from academia, industry and national laboratories. This edition will focus on cutting edge topics of membranes for addressing several grand challenges facing our society, in particular, energy, water, health and more generally sustainability. During the technical program, we want to discuss new membrane structure and characterization techniques, the role of advanced membranes and membrane-based processes in sustainability/environment (including carbon dioxide capture), membranes in water processes, and membranes for biological and life support applications. As usual, the informal nature of the meeting, excellent quality of the oral presentations and posters, and ample opportunity to meet many outstanding colleagues make this an excellent conference for established scientists as well as for students. A Gordon Research Seminar (GRS) on the weekend prior to the GRC meeting will provide young researchers an opportunity to present their work and network with outstanding experts. It will also be a right warm-up for the conference participants to join and enjoy the main conference.

  7. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Materials Science Creating materials for energy applications and defense needs Aries Applying innovative characterization and diagnostic techniques Hongyou Fan Development of new materials to support national

  8. Hoagland selected as a new Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hitting a Home Run for Clean Energy Hitting a Home Run for Clean Energy March 12, 2012 - 11:39am Addthis John Chu John Chu Communications Specialist with the Office of Energy Efficiency and Renewable Energy Spring. With gentle breezes, blooming flowers, and warm sunshine, the season marks the beginning of fun outdoor activities-picnics, camping, hikes, and the classic American pastime-baseball. In the past five years, major league baseball teams have increasingly made strides in greening up

  9. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  10. Hydrogen Materials Advanced Research Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  11. Hydrogen Materials Advanced Research Consortium

    Broader source: Energy.gov [DOE]

    An overview of the organization and scientific activities of the Hydrogen Materials—Advanced Research Consortium (HyMARC).

  12. Crosscutting Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crosscutting Research diagram for focus area four, crosscutting research (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.) The Ames Laboratory offers more information about the rapid assessment project in this news release and video

  13. Challenges and Opportunities in Thermoelectric Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities in Thermoelectric Materials Research for Automotive ... The Bottom-Up Approach forThermoelectric Nanocomposites, plus NSFDOE Thermoelectric ...

  14. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  15. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of Ritchie's latest materials research projects is contributing to the evolution of jet engine performance, and hence has industry players heavily interested and invested. ...

  16. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  17. Commissioning a materials research laboratory

    SciTech Connect (OSTI)

    SAVAGE,GERALD A.

    2000-03-28

    This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

  18. Borup wins Electrochemical Society Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Borup wins Electrochemical Society Award Borup wins Electrochemical Society Award Rod Borup has won the 2015 Research Award presented annually by the Energy Technology Division of the Electrochemical Society. January 26, 2015 Rod Borup Rod Borup Borup and his team are focused on improving the polymer electrolyte membrane (PEM) fuel cell, which converts hydrogen to electricity for power, but emits only water. Rod Borup of Materials Synthesis and Integrated Devices (MPA-11) has won the 2015

  19. Borup wins Electrochemical Society Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Borup wins Electrochemical Society Award January 26, 2015 Rod Borup of Materials Synthesis and Integrated Devices (MPA-11) has won the 2015 Research Award presented annually by the Energy Technology Division of the Electrochemical Society (ECS). The society recognized him for "his seminal contributions to the fundamental understanding of the durability of polymer electrolyte fuel cells." Borup's achievements Borup and his team are focused on improving the polymer electrolyte membrane

  20. Overview of Japanese activities on tritium research for fusion...

    Office of Environmental Management (EM)

    (NIRS) TritiumMaterial Interaction - Plasma Facing Materials - Structural Materials ... Society of Japan The Japan Society of Plasma Science and Nuclear Fusion Research ...

  1. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance Print ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of

  2. FA 4: Crosscutting Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4: Crosscutting Research Focus Area 4 - Lograsso, Schwegler CMI Org Chart with Hotlinks: Focus Area 4 File: Read more about CMI Org Chart with Hotlinks: Focus Area 4 CMI Org Chart with Hotlinks: Research Overview File: Read more about CMI Org Chart with Hotlinks: Research Overview CMI org chart for FA4 File: Read more about CMI org chart for FA4 CMI org chart for research with hotlinks (pdf) File: Read more about CMI org chart for research with hotlinks (pdf) Critical Materials Institute

  3. Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first Los Alamos researcher to be named a Fellow of the American Chemical Society (ACS).The ACS created the Fellows program to "recognize members of ACS for outstanding...

  4. Materials for Better Li-based Storage Systems for a "Green Energy Society"

    ScienceCinema (OSTI)

    Jean-Marie Tarascon

    2010-01-08

    Li-ion batteries are strongly considered for powering the upcoming generations of HEVs and PHEVs, but there are still the issues of safety and costs in terms of materials resources and abundances, synthesis, and recycling processes. Notions of materials having minimum footprint in nature, made via eco-efficient processes, must be integrated in our new research towards the next generation of sustainable and "greener" Li-ion batteries. In this July 13, 2009 talk sponsored by Berkeley Lab's Environental Energy Technologies Division, Jean-Marie Tarascon, a professor at the University of Picardie (Amiens), discuss Eco-efficient synthesis via hydrothermal/solvothermal processes using latent bases as well as structure directing templates or other bio-related approaches of LiFePO4 nanopowders.

  5. Zelenay named Electrochemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zelenay named Electrochemical Society Fellow Zelenay named Electrochemical Society Fellow Zelenay joined Los Alamos as a technical staff member in 1997, becoming project leader in 2001 and electrocatalysis team leader in 2008. June 25, 2014 Piotr Zelenay Piotr Zelenay Zelenay has published over 100 research articles in renowned scientific journals, including Nature, Science, Chemical Reviews, and Accounts of Chemical Research. Piotr Zelenay of Materials Synthesis and Integrated Devices (MPA-11)

  6. Advanced research workshop: nuclear materials safety

    SciTech Connect (OSTI)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  7. Sandia Energy - American Physical Society Names Four Sandians...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News & Events Research & Capabilities Systems Analysis Materials Science American Physical Society Names Four Sandians as Fellows Previous Next American Physical...

  8. Tritium Related Material Research -Irradiation Effect on Isotropic...

    Office of Environmental Management (EM)

    Related Material Research -Irradiation Effect on Isotropic Graphite Utilizing Heavy Ion-Irradiation- Tritium Related Material Research -Irradiation Effect on Isotropic Graphite...

  9. Sandia National Laboratories: Research: Materials Science: About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research About Materials Science Xunhu Dai Sandia excels in innovative fundamental materials science research - developing and integrating the theoretical insights, computational simulation tools and deliberate

  10. Sandia National Laboratories: Research: Materials Science: Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Image Gallery

  11. Sandia National Laboratories: Research: Materials Science: Video Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Video Gallery

  12. Argonne's Materials Engineering Research Facility - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research August 8, 2012, Videos Argonne's Materials Engineering Research Facility Argonne's Materials Engineering Research Facility (MERF) enables the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up

  13. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific ...

  14. International Center for Materials Research ICMR | Open Energy...

    Open Energy Info (EERE)

    Name: International Center for Materials Research (ICMR) Place: Kawasaki-shi, Kanagawa, Japan Zip: 210-0855 Product: International Center for Materials Reseach is a Japanese...

  15. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big, Deep, and Smart Data in Energy Materials Research: Atomic View on Materials Functionalities Event Sponsor: Computing, Environment, and Life Sciences Seminar Start Date: Sep 22...

  16. Critical Materials Research in DOE Video (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the "Critical Materials Research in DOE" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

  17. Research Update: The materials genome initiative: Data sharing...

    Office of Scientific and Technical Information (OSTI)

    materials genome initiative: Data sharing and the impact of collaborative ab initio databases Citation Details In-Document Search Title: Research Update: The materials genome ...

  18. 2010 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CV Subban, Q Zhou, A Hu, TE Moylan, FT Wagner and FJ DiSalvo Journal of the American Chemical Society, 132(49), pp 17531-17536, 2010 DOI: 10.1021ja1074163 Pt-Decorated PdCo@PdC...

  19. New Research Projects > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Coates Research Initiative - Abrua Research Initiative - Schlom New Research Projects Transport Dynamics and Carbonation Tolerance in Solution Processable Ionomers: Enabling a...

  20. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  1. Novel Materials for Energy Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Materials for Energy Research Novel Materials for Energy Research The Ames Laboratory is home to the Materials Preparation Center (MPC). The MPC is a DOE Basic Energy Sciences specialized research center. It is one of the premier materials laboratories in the world for the synthesis and processing of rare earth metals and compounds, metallics alloys, complex intermetallics and inorganic compounds in both single crystalline and polycrystalline form. Established in October 1981, the MPC

  2. Instructional Materials | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructional Materials Instructional Materials Solar Energy Learn about the quality of electromagnetic radiation produced by the sun and investigate on how this energy is captured and transferred into usable forms of energy. Explore this process in natural systems, like photosynthetic organisms, as well as manmade systems for producing electricity from sunlight. Download Solar Materials Here | Solar Energy Kit Overview Learning Modules: Kit #1: Spectroradiometry and Chlorophyll Spectroscopy Kit

  3. Nanoscale Material Properties | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Symposium and Exhibition Focuses on Materials, Surfaces and Interfaces IMG0475 Innovation 247: We're Always Open a57-v-zero-liquid-discharge Reverse Osmosis (RO)...

  4. Scenes from Argonne's Materials Engineering Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Scenes from Argonne's Materials Engineering Research Facility Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Lithium-ion batteries Programs Chemical sciences & engineering Electrochemical energy storage Materials science

  5. 2009 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sols Morgan Stefik, Surbhi Mahajan, Hiroaki Sai, Thomas H. Epps III, Frank S. Bates, Sol M. Gruner, Francis J. DiSalvo and Ulrich Wiesner Chemistry of Materials Vol.21, p....

  6. Chief Research Scientist | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    both scientific and general audiences. These include: Material Matters: The Rare Earth Crisis -- The SupplyDemand Situation for 2010-2015, Vol. 6, Article 2 U.S. Atomic Energy...

  7. Advanced Composite Materials | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The fan blade is a work of art, with each stripe of composite material laid by hand to ... GE Innovation and Manufacturing in Europe 3-1-9-v-industrial-inspec...

  8. Vehicle Technologies Office: Exploratory Battery Materials Research...

    Broader source: Energy.gov (indexed) [DOE]

    for future battery chemistries. They research a number of areas that contribute to this body of knowledge: Advanced cell chemistries that promise higher energy density than...

  9. Critical Materials Institute Gains Ten Industrial and Research Affiliates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Critical Materials Institute Gains Ten Industrial and Research Affiliates Critical Materials Institute Gains Ten Industrial and Research Affiliates April 12, 2016 - 10:32am Addthis News release from the Ames Laboratory, April 11, 2016. The Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, has gained ten new affiliates to its research program, seeking ways to eliminate and reduce reliance on rare-earth metals and other

  10. Materials and Molecular Research Division: Annual report, 1986

    SciTech Connect (OSTI)

    Phillips, N.E.; Muller, R.H.; Peterson, C.V.

    1987-07-01

    Research activities are reported under the following headings: materials sciences, chemical sciences, nuclear sciences, fossil energy, energy storage systems, and work for others. (DLC)

  11. Material gain: Research a step toward more efficient solar panels |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Material gain: Research a step toward more efficient solar panels 10.7.2014

  12. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details ... of ab initio PDOS simulations. * Direct comparison between anharmonicity-smoothed ...

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micronanofabricated environments for synthetic biology C. Patrick Collier and Michael L. Simpson Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences Oak...

  14. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  15. Agustin Mihi and Paul V. Braun Materials Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agustin Mihi and Paul V. Braun Materials Research Laboratory, University of Illinois at Urbana-Champaign Transfer of Preformed 3D Photonic Crystals onto Dye Sensitized Solar Cells...

  16. Acknowledgement > Authorship Tools > Research > The Energy Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    order for the research that we fund to be properly attributable to the Office of Basic Energy Sciences in general, and an EFRC specifically, that support needs to be explicitly ...

  17. Meet the CMI Researchers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet the CMI Researchers CMI researchers create new phosphors At left, Nerine Cherepy of Lawrence Livermore National Laboratory displays commercial phosphors (six samples from bottom left of semi-circle) and phosphors being developed by LLNL and collaborators as replacements (five on right). LLNL, Oak Ridge National Laboratory and GE are working to improve the efficiency of the new phosphors to replace commercial phosphors. Inset: The CMI phosphor team members include (from left) Paul Martinez,

  18. Webinars Highlight CMI Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinars Highlight CMI Research CMI research is the topic of most of the CMI webinars, created by the CMI education/outreach team at Colorado School of Mines. Future topics are listed, and people can register for these with no charge. Archive files for past webinars are available online. September 21: Parans Paranthaman, Oak Ridge National Laboratory, "Additive Manufacturing of NdFeB Magnets" Registration is open August 23: CMI Director Alex King, "CMI Director's

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Weitering, Nature Materials 7, 539 (2008). The research was sponsored by the National Human Genome Research Institute, National Institutes of Health Grant R01HG002647 (CZ), NSF...

  20. Meet CMI Researcher Patrice Turchi | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrice Turchi Image of Patrice Turchi, researcher at Critical Materials Institute For the Critical Materials Institute, Patrice Turchi is leading a project entitled "Materials Design Simulator - Efficient Prototyping of Rare Earth-Based Alloys from ab initio Electronic Structure and Thermodynamics." That is about the development of a Materials Design Simulator (MDS) for guiding the search for solute replacements to Rare Earth Elements that provide materials stability and performance.

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Recent Research Highlights nature materials cover advanced energy materials cover nature materials cover advanced materials cover nature materials cover Laser-Assisted Direct Ink Writing of Metallic Architectures (Jennifer Lewis group, Harvard) May 2016 Conformal Flexible Dielectric Metasurfaces (Andrei Faraon group, Caltech) April 2016 Active Thermal Extraction of Near-Field Thermal Radiation (Austin Minnich group, Caltech) March 2016 Active Mixing of Complex Fluids at the

  2. Meet CMI Researcher Ikenna Nlebedim | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meet CMI Researcher Ikenna Nlebedim Image: left, CMI researcher Ikenna Nlebedim, and right, Summer 2015 SULI student Gavin Hester CMI researcher Ikenna Nlebedim researches magnets. His research led to a new method for recycling rare earth magnetic material from manufacturing waste. This Ames Laboratory news release describes the process. Also, in this Ames Lab 101 video file, Nlebedim describes recycling rare earths from magnet scraps on the factory floor. Nlebedim led a student researcher for

  3. Research | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration | (NNSA) Research at NNSA sites spans the entire electromagnetic spectrum Tuesday, August 23, 2016 - 11:12am Learn about the electromagnetic spectrum through the science and technology used within the Nuclear Security Enterprise. Helicopter You might see an NNSA helicopter in your city supporting national security by conducting radiation assessments in preparation for large events like the national party conventions, the Boston Marathon, and the Super Bowl.

  4. Vehicle Technologies Office: Long-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Magnesium and Carbon Fiber) | Department of Energy Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by 50-75 percent. Magnesium Even though magnesium (Mg) can reduce component weight by more than 60 percent, its use is currently limited

  5. Meet CMI Researcher Ryan Ott | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ryan Ott CMI researcher Ryan Ott leads the CMI project on rapid assessment methodologies. This includes using 3d printing for discovering new materials, which he describes in this CMI Success Story and this video on The Ames Laboratory's YouTube channel. He's also The Ames Laboratory's lead researcher on a project to help improve the processing techniques to reclaim rare-earth materials. The project harnesses fundamental materials science to help address possible shortages in rare earths, which

  6. Vehicle Technologies Office: Short-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Advanced High-Strength Steel and Aluminum) | Department of Energy Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) In the short term, replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by 10-60 percent.

  7. 2013 Annual DOE-NE Materials Research Coordination Meeting

    Broader source: Energy.gov [DOE]

    The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy programs. The presentations from the webinar series are available here.

  8. Meet CMI Researcher Eric Peterson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peterson CMI focus area leader Eric Peterson CMI researcher Eric Peterson leads Focus Area 3, Improving Reuse and Recycling, for the Critical Materials Institute. At Idaho National Laboratory, Eric leads the Process Science and Technology Business Area and is also a Consulting Scientist at the Laboratory, where he has spent the past 23 years performing research on polymeric and related materials. His research has varied from the most fundamental understanding of molecular interactions to

  9. Polymer Composites Research in the LM Materials Program Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Polymer Composites Research in the LM Materials Program Overview Polymer Composites Research in the LM Materials Program Overview 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm_06_warren.pdf (2.67 MB) More Documents & Publications Composite Underbody Attachment Carbon Fiber Pilot Plant and Research Facilities Low Cost Carbon Fiber Overview

  10. Scattering Society of America

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Majewski named Fellow of the Neutron Scattering Society of America May 9, 2016 The Neutron Scattering Society of America (NSSA) has honored Jaroslaw (Jarek) Majewski of the Center for Integrated Nanotechnologies (MPA-CINT) with the title of Fellow. The Society recognized Majewski for "contributions to our understanding of weakly organized two-dimensional systems, including surfactant molecules found in biological systems. Majewski's achievements Majewski received a doctorate in Materials

  11. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  12. Meet CMI Researcher Bob Fox | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bob Fox Image of Bob Fox, researcher with Critical Materials Institute CMI researcher Robert V. Fox, Ph.D., a distinguished senior chemical research scientist, joined INL in 1989 and is active in performing and directing innovative scientific research in the areas of supercritical fluid chemistry, metal complexation reactions, nanomaterials, alternative fuels, laser surface cleaning, and laser spectroscopy. Dr. Fox has a broad level of experience in the areas of radionuclide interaction with

  13. Meet CMI Researcher Theresa Windus | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theresa Windus Image of Theresa Windus, researcher at Critical Materials Institute CMI researcher Theresa Windus joined Iowa State University as a full professor and an associate researcher with DOE's Ames Laboratory in August of 2006. She develops new methods and algorithms for high performance computational chemistry as well as applying those techniques to both basic and applied research. Her current interests are rare earth and heavy element chemistry, catalysis, aerosol formation, cellulose

  14. American Physical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aps fellows American Physical Society Fellows American Physical Society (APS) Fellowships recognize those who have made advances in knowledge through original research or have made significant and innovative contributions in the application of physics to science and technology. Each year, no more than one-half of one percent of APS's current membership is recognized by their peers for election to the status of Fellow. The hundred-year-old society numbers tens of thousands of physicists

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievement: The material of choice for spintronics device today is FeMgOFe tunnel ... by modi?cation of the interface is an important topic in spintronics research. ...

  16. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  17. Meet CMI Researcher Brian Sales | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brian Sales CMI focus area deputy leader Brian Sales CMI researcher Brian Sales is the Deputy Lead for Focus Area 2, Developing Substitutes. In this role, he assists Adam Schwartz in overseeing projects that reduce the usage of critical rare earth elements by developing substitute materials with equivalent or superior properties. Dr. Sales' research has focused on the discovery, synthesis, and development of new materials with potential to impact advanced energy technologies. He has made

  18. Meet CMI Researcher Rod Eggert | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rod Eggert Image of Rod Eggert, researcher at Critical Materials Institute CMI researcher Rod Eggert is a geochemist turned economist. More formally, he is professor and former director of the Division of Economics and Business at the Colorado School of Mines, where he has taught since 1986. As deputy director of the Critical Materials Institute, he works with the director and the rest of the leadership team to guide and manage CMI, oversee the supply-chain and economic analysis that provides

  19. Meet CMI Researcher Tom Lograsso | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Lograsso CMI focus area leader Tom Lograsso CMI Researcher Thomas Lograsso leads Focus Area 2, Developing Substitutes. He started this role in May 2014. Previously he led Focus Area 4, Crosscutting Research while serving as the interim director of The Ames Laboratory. Also at Ames Lab, Tom leads a BES Synthesis & Processing effort on Novel Materials Preparation and Processing Methodology, whose goal is to develop synthesis protocols for new materials including quasicrystals,

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Mark Brongersma Mark Brongersma Mark Brongersma, Professor of Materials Science and Engineering Stanford University Mark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. His current research is directed towards the development and physical

  1. Materials and Molecular Research Division annual report 1980

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  2. Researchers examine behavior of amorphous materials under high strain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behavior of amorphous materials under high strain Researchers examine behavior of amorphous materials under high strain The findings offer a new way to monitor the onset of plastic deformation and mechanical properties of materials. February 10, 2016 Shown is simulation of a reversible avalanche in an amorphous solid under a periodic shear. Darker regions indicate where particles have been displaced more. The motion is exactly repeated during the next drive cycle. Above a critical strain, the

  3. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion. The LMI-EFRC is made up of world leaders creating new optical materials and innovative photonic designs that engineer and control light-material interactions, with the goal of achieving ultrahigh efficiency solar cells. This webinar will feature presentations and an

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion. The LMI-EFRC is made up of world leaders creating new optical materials and innovative photonic designs that engineer and control light-material interactions, with the goal of

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Paul Braun RG-4 Leader Paul V. Braun Paul V. Braun, Ivan Racheff Professor of Materials Science and Engineering University of Illinois at Urbana-Champaign Professor Paul V. Braun is the Ivan Racheff Professor of Materials Science and Engineering, and an affiliate of the Frederick Seitz Materials Research Laboratory, the Beckman Institute forAdvanced Science and Technology, the Department of Chemistry, the Micro and Nanotechnology Laboratory and the Mechanical Science and

  7. Meet CMI Researcher Anja Mudring | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anja Mudring CMI researcher Anja Mudring CMI researcher Anja Mudring is a materials chemist who is harmessing the promising qualities of ionic liquids, salts in a liquid state, to optimize processes for critical materials. "Ionic liquids have a lot of useful qualities, but most useful for materials processing is that ionic liquids are made up of two parts: the cation and the anion. We can play around with the chemical identities of each of those components and that opens the doors to huge

  8. Meet CMI Researcher Corby Anderson | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corby Anderson Image of Corby Anderson, researcher at Critical Materials Institute CMI researcher Dr. Corby Anderson has more than 34 years of global experience in industrial operations, management, engineering, design, consulting, teaching, research and professional service. His career includes positions with Morton Thiokol, Key Tronic Corporation, Sunshine Mining and Refining Company, H. A Simons Ltd. and at Montana Tech. He holds a BSc in Chemical Engineering and an MSc and PhD in

  9. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    Molecular Biology -- Biostatistiikan seura ry Finnish Society of Biostatistics -- Brain Research Society of Finland (BRSF) TOP - A B C D E F G H I J K L M N O P Q R S T U V W ...

  10. 2015 ANNUAL DOE-NE MATERIALS RESEARCH MEETING

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2015 coordination meeting as a series of two web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Although each program has unique materials issues, there are opportunities to enhance coordination and collaboration. Other departmental programs such as the Offices of Science (Basic Energy Sciences and Fusion Energy), Energy Efficiency and Renewable Energy, Fossil Energy, and other agencies such as the National Aeronautics and Space Administration (NASA) also sponsor research in nuclear materials. Engagement with these organizations fosters new research partnerships, enhanced collaboration, and shared investment in research facilities. The presentations from this two part webinar series are available here. Data, images, and conclusions should be considered preliminary and should not be reproduced or reused without written permission of the authors.

  11. Metrology and Characterization Challenges for Emerging Research Materials and Devices

    SciTech Connect (OSTI)

    Garner, C. Michael; Herr, Dan; Obeng, Yaw

    2011-11-10

    The International Technology Roadmap for Semiconductors (ITRS) Emerging Research Materials (ERM) and Emerging Research Devices (ERD) Technology Workgroups have identified materials and devices that could enable continued increases in the density and performance of future integrated circuit (IC) technologies and the challenges that must be overcome; however, this will require significant advances in metrology and characterization to enable progress. New memory devices and beyond CMOS logic devices operate with new state variables (e.g., spin, redox state, etc.) and metrology and characterization techniques are needed to verify their switching mechanisms and scalability, and enable improvement of operation of these devices. Similarly, new materials and processes are needed to enable these new devices. Additionally, characterization is needed to verify that the materials and their interfaces have been fabricated with required quality and performance.

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Jennifer Dionne Jennifer A. Dionne Jennifer Dionne, Assistant Professor of Materials Science and Engineering Stanford University Jennifer Dionne is an assistant professor in the department of Materials Science and Engineering at Stanford University. In 2009, she received her Ph. D. in Applied Physics at the California Institute of Technology, working with Professor Harry Atwater. In 2010, Dionne served as a postdoctoral research fellow in Chemistry, working with Professor

  13. American Nuclear Society Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ans awards American Nuclear Society Awards Established in 1999 by the Fusion Energy Division of the American Nuclear Society (ANS) and named after LLNL's co-founder, the Edward Teller Medal recognizes pioneering research and leadership in the use of laser and ion-particle beams to produce unique high-temperature and high-density matter for scientific research and for controlled thermonuclear fusion. Name Year Name of Award and Citation Susana Reyes 2012 Mary Jane Oestmann Professional Women's

  14. 3-D Printer Speeds Metals Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-D Printer Speeds Metals Research The Critical Materials Institute has a new 3D printer for metals research. Ryan Ott, principal investigator at the Ames Laboratory and the CMI, is using 3D printing technology to discover new materials. He uses the printer to produce a large variety of alloys in less time than needed in traditional casting methods. "Metal 3D printers are slowly becoming more commonplace," Ott said. "They can be costly, and are often limited to small-scale

  15. Materials and Components Technology Division research summary, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  16. Meet CMI Researcher David Reed | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Reed CMI researcher David Reed is the principal investigator for the CMI project bioleaching for recovery of recycled rare earth elements. CMI Researcher David Reed is the PI for project 3.2.5 Bioleaching for Recovery of Recycled REE. The objective of this project is to develop and deploy a biological strategy for recovery of rare earth elements from recyclable materials. His collaborators include Vicki Thompson, Dayna Daubaras, and Debra Bruhn at Idaho National Laboratory and Yongqin Jiao

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Hotel & Travel Presentations Event Photos Accelerating the Development of Earth-Abundant Thin-Film Photovoltaics Millikan Board Room [map] California Institute of Technology Pasadena, CA The Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center (EFRC), the Resnick Sustainability Institute, and the Quantum Energy and Sustainable Solar Technologies (QESST) Energy Research Center (ERC) are offering a two-day workshop on Accelerating

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Refractive Index Design via Porous Etched Si as part of RG-3 research efforts (Chris Gladden, LBNL) The Scientific Vision of the "Light-Material Interactions in Energy Conversion Energy Frontier Research Center" (LMI-EFRC) is to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency. The

  19. Thomas selected as American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas selected as ACS Fellow Thomas selected as American Chemical Society Fellow Kimberly ... first Los Alamos researcher to be named a Fellow of the American Chemical Society (ACS). ...

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Contact Secretary of Energy Steven Chu visits Caltech labs For more information or questions about the Light-Material Interactions in Energy Conversion Energy Frontier Research Center, please email lmi-efrc@caltech.edu or call LMI Administrator Tiffany Kimoto at 626-395-1566.

  1. Meet CMI Researcher Paul Canfield | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paul Canfield Image of Paul Canfield, researcher at Critical Materials Institute CMI researcher Dr. Paul C Canfield graduated, Suma Cum Laude, with a BS in Physics from the University of Virginia in 1983. He then performed his Master and Ph.D. work at UCLA with Professor George Gruner and received his Ph.D. in Experimental Condensed Matter physics in 1990. From 1990 - 1993 Dr. Canfield was a post-doctoral researcher in Los Alamos National Laboratory working with Drs. Joe Thompson and Zachary

  2. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect (OSTI)

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

    2010-11-17

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - John A. Rogers RG2 Leader John A. Rogers John A. Rogers, Swanlund Chair, Professor of Materials Science and Engineering, Professor of Chemistry, Director, F. Seitz Materials Research Laboratory University of Illinois at Urbana-Champaign Professor John A. Rogers obtained BA and BS degrees in chemistry and in physics from the University of Texas, Austin, in 1989. From MIT, he received SM degrees in physics and in chemistry in 1992 and the PhD degree in physical chemistry in

  4. Industrial Materials and Inspection Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Materials and Inspection Technologies Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Industrial Materials and Inspection Technologies Waseem Faidi 2013.06.12 Hi, I am Waseem Faidi and I lead the Inspection and Metrology Lab at GE Global Research in developing novel inspection and process monitoring solutions

  5. American Physical Society awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards fellowships to Los Alamos scientists December 18, 2012 American Physical Society Awards Fellowships to Los Alamos Scientists LOS ALAMOS, NEW MEXICO, December 18, 2012-Ten scientists at Los Alamos National Laboratory are being inducted into the ranks of fellowship in the American Physical Society (APS) for 2012. The criterion for election as an APS Fellow is exceptional contributions to the physics enterprise; such as performing outstanding physics research, important applications of

  6. Sodium fast reactor fuels and materials : research needs.

    SciTech Connect (OSTI)

    Denman, Matthew R.; Porter, Douglas; Wright, Art; Lambert, John; Hayes, Steven; Natesan, Ken; Ott, Larry J.; Garner, Frank; Walters, Leon; Yacout, Abdellatif

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  7. NREL Research Identifies Increased Potential for Perovskites as a Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Solar Cells - News Releases | NREL Research Identifies Increased Potential for Perovskites as a Material for Solar Cells October 30, 2015 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) have demonstrated a way to significantly increase the efficiency of perovskite solar cells by reducing the amount of energy lost to heat. A paper on the discovery, "Observation of a hot-phonon bottleneck in lead-iodide perovskites," was published online this

  8. NREL: Photovoltaics Research - III-V Multijunction Materials and Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D III-V Multijunction Materials and Devices R&D NREL has a strong research capability in III-V multijunction photovoltaic (PV) cells. The inverted metamorphic multijunction (IMM) technology, which is fundamentally a new technology path with breakthrough performance and cost advantages, is a particular focus. We invented and first demonstrated the IMM solar cell and introduced it to the PV industry. Our scientists earlier invented and demonstrated the first-ever multijunction PV

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full Spectrum Solar Energy Conversion.

  10. Meet CMI Researcher Bruce Moyer | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bruce Moyer CMI focus area leader Bruce Moyer plays a saxaphone. CMI researcher Bruce Moyer is the lead of Focus Area 1, Diversifying Supply. In this role, he oversees projects that will expand the variety of source materials, increase processing efficiency, and find new uses for the abundant non-critical rare earths. To accomplish this task, Bruce draws upon his 34 years of experience in the field of separation science and technology, specializing in both fundamental and applied aspects of

  11. Meet CMI Researcher Ed Jones | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ed Jones CMI focus area deputy leader Ed Jones CMI researcher Ed Jones has been at Lawrence Livermore National Laboratory (LLNL) for 22 years, where his work has centered on the analysis, engineering, reliability and performance of energy, environmental, and national asset systems, including infrastructure and materials. He has developed extensive capabilities in the application of probabilistic methods and models to complex performance problems. Recent innovations have been applied to carbon

  12. Meet CMI Researcher Scott Herbst | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scott Herbst CMI researcher Scott Herbst is the deputy lead of Focus Area 1 Diversifying Supply. In this role, he assists Dr. Moyer with these important projects that will expand the variety of source materials, increase processing efficiency, and find new uses for the abundant non-critical rare earths. Dr. Herbst is a Chemical Engineer at the Idaho National Laboratory (INL) and has well over 20 years experience in nuclear fuel reprocessing, separation process chemistry and engineering, and

  13. Meet CMI Researcher Vitalij Pecharsky | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vitalij Pecharsky Vitalij Pecharsky teaches Chemical and Physical Metallurgy of Rare Earths at Iowa State University. Vitalij Pecharsky, Ames Lab senior metallurgist and ISU Distinguished Professor in materials science and engineering, teaches a course at Iowa State University on the chemical and physical metallurgy of rare earths. The course offered at Iowa State University is available as a distance education course for researchers and industry representatives. It is offered every other spring

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Schedule Abstract Submission Hotel & Travel Register Event Photos Redefining the Limits of Photovoltaic Efficiency Sunday, July 29, 2012 California Institute of Technology Hameetman Auditorium at the Cahill Center [map] 8:30 am - 5:30 pm Co-organized by the Resnick Sustainability Institute and the Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center this one-day workshop brings together leaders from industry, academia and

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [watch recorded event online] [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) LMI Director Harry Atwater and LMI Collaborator Albert Polman are awarded the Eni Award in Renewable and Nonconventional Energy Harry A. Atwater, Jr., Howard Hughes Professor and Professor of Applied Physics and Materials Science at Caltech as well as Director of the LMI-EFRC and of the Resnick Institute, and LMI international collaborator Albert Polman of the Dutch Research Institute AMOLF have been awarded the 2012 Eni Award in Renewable and Nonconventional Energy. The

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Jennifer Lewis RG4 Leader Jennifer Lewis Jennifer Lewis, Hansjörg Wyss Professor of Biologically Inspired Engineering Harvard University Jennifer A. Lewis joined the faculty of the School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering at Harvard University in 2013. Prior to her appointment at Harvard, she served as the Director of the Frederick Seitz Materials Research Laboratory and the Hans Thurnauer Professor of

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Scientific Grand Challenge LMI researchers brainstorm spectrum splitting, Annual Meeting November 2011 The LMI-EFRC is dedicated to expanding the scientific knowledge base for fundamentally photonic principles and mechanisms in solar energy conversion. An important set of requirements of photonic materials for solar energy conversion are related to the characteristics of the sun as a light source - it is a broadband and unpolarized light source, and the achievable

  19. Neuromorphic Computing – From Materials Research to Systems Architecture Roundtable

    SciTech Connect (OSTI)

    Schuller, Ivan K.; Stevens, Rick; Pino, Robinson; Pechan, Michael

    2015-10-29

    Computation in its many forms is the engine that fuels our modern civilization. Modern computation—based on the von Neumann architecture—has allowed, until now, the development of continuous improvements, as predicted by Moore’s law. However, computation using current architectures and materials will inevitably—within the next 10 years—reach a limit because of fundamental scientific reasons. DOE convened a roundtable of experts in neuromorphic computing systems, materials science, and computer science in Washington on October 29-30, 2015 to address the following basic questions: Can brain-like (“neuromorphic”) computing devices based on new material concepts and systems be developed to dramatically outperform conventional CMOS based technology? If so, what are the basic research challenges for materials sicence and computing? The overarching answer that emerged was: The development of novel functional materials and devices incorporated into unique architectures will allow a revolutionary technological leap toward the implementation of a fully “neuromorphic” computer. To address this challenge, the following issues were considered: The main differences between neuromorphic and conventional computing as related to: signaling models, timing/clock, non-volatile memory, architecture, fault tolerance, integrated memory and compute, noise tolerance, analog vs. digital, and in situ learning New neuromorphic architectures needed to: produce lower energy consumption, potential novel nanostructured materials, and enhanced computation Device and materials properties needed to implement functions such as: hysteresis, stability, and fault tolerance Comparisons of different implementations: spin torque, memristors, resistive switching, phase change, and optical schemes for enhanced breakthroughs in performance, cost, fault tolerance, and/or manufacturability.

  20. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  1. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  2. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  3. Postdoctoral Research Fellow Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & transport properties of the materials, which in turn can be used to engineer better solid electrolyte materials 2. Automation & Data Analytics * Designing a new material for...

  4. CMI Education and Outreach in 2013 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2013: Hardin Valley Academy in Knoxville, Tennessee, December: CMI Director Alex King talked to sophomores Materials Research Society, Dec. 2: Karl Gschneidner, chief...

  5. Synthesis and Engineering Materials Properties of Fluid Phase...

    Office of Scientific and Technical Information (OSTI)

    the engineering materials properties of AB in ... Journal Name: Energy and Fuels; Journal Volume: 29; Journal Issue: 10 Publisher: American Chemical Society (ACS) Research ...

  6. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen...

    Office of Scientific and Technical Information (OSTI)

    Materials engineering properties were optimized by ... Journal Name: Energy and Fuels; Journal Volume: 30; Journal Issue: 1 Publisher: American Chemical Society (ACS) Research ...

  7. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    SciTech Connect (OSTI)

    Kennedy, S. J.

    2008-03-17

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  8. FY 2014 Annual Progress Report - Propulsion Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... management of advanced power electronics materials and reducing dependence on rare earth elements in electric motors. Materials for alternate-fuels, including engine and ...

  9. Low Cost Carbon Fiber Research in the LM Materials Program Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in the LM Materials Program Overview Low Cost Carbon Fiber Research in the LM ... More Documents & Publications Lower Cost Carbon Fiber Precursors FY 2009 Progress Report ...

  10. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    for Artificial Intelligence -- Chinese Ceramic Society -- Chinese Chemical Society (CCS) -- Chinese Chemical Society (Taiwan) -- Chinese Environmental Mutagen Society (CEMS) -- ...

  11. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    ... of Engineering Societies (JFES) -- Japan Foundry Engineering Society -- Japan Health Physics Society (JHPS) -- Japan Heterocerists' Society -- Japan Institute of Energy -- ...

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Research Group 1 Research Group 2 Research Group 3 Research Group 4 Research Highlights Facilities Publications Lectures & Tutorials Authorship Tools Research Groups Research efforts in the LMI-EFRC are aligned with one or more of the following Research Groups (RGs): Complex Architecture and Self-Architected Absorbers Optics for Spontaneous Emission and Absorption Enhancement Full Spectrum Photon Conversion Transformation Optics for Photovoltaics

  13. Researchers Devise New Stress Test for Irradiated Materials

    Broader source: Energy.gov [DOE]

    How do you tell if materials are stressed-out? Conventional stress tests for irradiated materials require a significant amount of material, but a new nano-size technique can test the strength of materials using an infinitesimal amount. Learn more.

  14. Research > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research In This Section Analytical Resources Batteries & Fuel Cells Complex Oxides Theory & Computation Research Highlights Publications Authorship Tools Young Investigator Program New Research Projects Research Analytical Resources Batteries & Fuel Cells Complex Oxides Theory & Computation Research Highlights Publications Authorship Tools Young Investigator Program New Research Projects

  15. HyMARC: Hydrogen Materials-Advanced Research Consortium | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy HyMARC: Hydrogen Materials-Advanced Research Consortium HyMARC: Hydrogen Materials-Advanced Research Consortium The Hydrogen Materials-Advanced Research Consortium (HyMARC), composed of Sandia National Laboratories, Lawrence Livermore National Laboratory, and Lawrence Berkeley National Laboratory, has been formed with the objective of addressing the scientific gaps blocking the advancement of solid-state storage materials. Illustration of the research consortia model showing a

  16. Researchers measure how specific atoms move in dielectric materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    how atoms move in dielectric materials in order to store that charge," says Tedi-Marie Usher, a Ph.D. candidate in materials science and engineering at NC State and lead...

  17. Pushing Super Materials to the Limit | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way in which the material behaves under these processing conditions, as well as how the material might perform in an industrial application, such as a jet engine or a gas turbine. ...

  18. Materials and Molecular Research Division annual report 1983

    SciTech Connect (OSTI)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  19. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  20. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied

  1. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating

  2. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating

  3. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect (OSTI)

    Maloy, Stuart A.; Busby, Jeremy T.

    2012-06-12

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  4. FY 2008 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development

    Broader source: Energy.gov [DOE]

    Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

  5. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  6. NREL: Photovoltaics Research - New Materials, Devices, and Processes for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Concepts New Materials, Devices, and Processes for Advanced Concepts Computational Science and Theory We can use high-performance computing tools in modeling and simulation studies of semiconductor and other solar materials. We also determine the performance of solar devices. Theoretical studies can help us understand underlying physical principles or predict useful chemical compositions and crystalline structures. Scientific Computing Experimental Materials Science Solid-State

  7. NREL: Solar Research - Materials and Chemical Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Chemical Science and Technology The Materials and Chemical Science & Technology (MCST) directorate's capabilities span fundamental and applied R&D for renewable energy and energy efficiency. Key program areas include solar energy conversion for electricity and fuels, materials discovery and development for renewable energy technologies, hydrogen production and storage, and fuel cells. The MCST directorate-led by Associate Laboratory Director William Tumas-includes the

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 4-Department of Physics and Department of Electrical Engineering and Computer...

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 3-Physics Department,...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a diverse collection of leading journals, such as Nano Letters, Advanced Materials, and ACS Nano. They have also built capabilities for nanofiber synthesis and characterization at...

  11. Nuclear Materials Research and Technology/Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... sciences and nuclear facility engineering, is a necessary element of con- stancy for the future. ... for future programs in the fundamentals of plutonium materials science. ...

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AL 35487 (USA) 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) 3-Department of Chemistry, University of Kentucky,...

  13. NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers, postdocs, and students. CdTe Research CdTe-based thin-film solar cell modules currently represent one of the fastest-growing segments of commercial module production. ...

  14. Meet CMI Researcher Tim McIntyre | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tim McIntyre Meet CMI researcher Tim McIntyre of Oak Ridge National Laboratory. CMI Researcher Tim McIntyre leads the design and development of a low-cost, high-throughput magnet recycling system in focus area 3, improving reuse and recycling. Tim has 25 years experience in sensors and controls research covering areas such as fiber optics, optical spectrometers, ultra-precision actuators and measurement systems, wireless sensor networks and sensor design. He currently manages a research and

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Carrie Hofmann Assistant Director Carrie Hofmann Carrie Hofmann California Institute of Technology Carrie Hofmann is the Assistant Director of the LMI-EFRC at Caltech. She received her Ph.D. in Materials Science from Caltech with a thesis entitled "Optics at the Nanoscale: Light Emission in Plasmonic Nanocavities" in 2010. She also received her M.S. in Materials Science at Caltech in 2006 and her B.S. in Materials Science and Engineering at the University of

  16. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  17. Critical Materials Institute Gains Ten Industrial and Research...

    Energy Savers [EERE]

    ... Today he looks back at over 60 years of studying rare earth metals. At 85, Mr. Rare Earth is Retiring The plasma torch in the Retech plasma furnace is one tool used in Materials ...

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rouleau,3 Karren L. More,5 G. Tayhas R. Palmore,2 and Robert H. Hurt2 1-Dept Chemistry, Brown University 2-School of Engineering, Brown University 3-Center for Nanophase Materials...

  19. Management of Biological Materials in Wastewater from Research & Development Facilities

    SciTech Connect (OSTI)

    Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

    2011-04-01

    PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in multiferroic BiFeO3, only 2-3 nm wide and distinct from the surrounding insulating material.1 Conductivity was completely unexpected since domain walls present only a subtle...

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Andrei Faraon Principal Investigator Andrei Faraon Andrei Faraon, Assistant Professor of Applied Physics and Material Science California Institute of Technology Bio coming soon.

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Harry Atwater Associate Director Harry Atwater Harry Atwater, Howard Hughes Professor and Professor of Applied Physics and Materials Science; Director, Joint Center for Articificial Photosynthesis California Institute of Technology Professor Harry Atwater is the Howard Hughes Professor of Applied Physics and Materials Science at the California Institute of Technology. Professor Atwater currently serves as Director of the Joint Center for Artificial Photosynthesis. He

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Xiang Zhang Principal Investigator Xiang Zhang Xiang Zhang, Ernest S. Kuh Endowed Chaired Professor of Mechanical Engineering and LBNL Materials Sciences Division Director Lawrence Berkeley National Laboratory Professor Xiang Zhang is the inaugural Ernest S. Kuh Endowed Chaired Professor at UC Berkeley and Director of NSF Nano-scale Science and Engineering Center. He is the Director of the Materials Sciences Division at Lawrence Berkeley National Laboratory, and a member

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - People Executive Committee Ralph G. Nuzzo Director Ralph G. Nuzzo, G. L. Clark Professor of Chemistry; Director, LMI-EFRC; Visiting Associate in Applied Physics and Materials Science, California Institute of Technology University of Illinois at Urbana-Champaign and California Institute of Technology Harry Atwater Associate Director Harry Atwater, Howard Hughes Professor and Professor of Applied Physics and Materials Science; Director, Joint Center for Artificial

  5. American Society of Mechanical Engineers/Savannah River National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Agenda | Department of Energy Agenda American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Agenda Sponsored by SRNL, ASME, and DOE held at the Center for Hydrogen Research, Aiken,

  6. Meet CMI Researcher Eric Schwegler | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schwegler Eric Schwegler, FA4 Deputy CMI researcher Eric Schwegler is the leader for Focus Area 4, Crosscutting Research, and the Thrust Lead for Enabling Science. Previously he served as Deputy Lead for Focus Area 4. Eric received his Ph.D. in Physical Chemistry in 1998 from the University of Minnesota, following undergraduate degrees in computer science and chemistry from Southwestern University in Georgetown, Texas. His thesis research was focused on the development of linear scaling

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Postdoctoral Scholars Postdoctoral Scholars and Research Staff Amir Arbabi California Institute of Technology Dr. Amir Arbabi is a researcher in the Faraon group at Caltech. He is currently working on development of planar free space optical elements and systems. Carissa Eisler Carissa Eisler Lawrence Berkeley National Laboratory Dr. Carissa Nicole Eisler is a postdoc in the Alivisatos group at UC Berkeley. She is currently researching passivation schemes for carrier

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jose M. Romo-Herrera CNMS User, Institute for Scientific and Technological Research of San Luis Potosi (IPICYT), Bobby G. Sumpter (CNMS Staff), David A. Cullen (Arizona State...

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meet various research needs. The chemical or physical exfoliation of graphite is a straightforward method to produce graphene with minimal synthesis effort, since it takes...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxidative stress, indicating that the fullerenes can be absorbed into living tissue. This led CNMS researchers to investigate the potential impact of buckyballs if they...

  11. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  12. Meet CMI Researcher Patrick Zhang | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Zhang CMI Researcher Patrick Zhang is at the Florida Industrial and Phosphate Research Institute (FIPR). In March 2015, he offered the first CMI Webinar: Critical Elements in Phosphate Ore: Recovery of Rare Earths and Uranium from Florida Phosphate Ore Processing. A recording of the webinar is available

  13. Los Alamos researchers uncover new origins of radiation-tolerant materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers uncover new origins of radiation-tolerant materials Los Alamos researchers uncover new origins of radiation-tolerant materials A new report this week in the journal Nature Communications provides new insight into what, exactly, makes some complex materials radiation tolerant. October 29, 2015 Los Alamos National Laboratory scientists are exploring how certain materials fall apart under irradiation, while others retain their stable. Both nuclear fuels and nuclear waste storage could

  14. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Alumni Alumni Dr. Ze'ev Abrams PhD 2012, UC Berkeley Founder and CEO, Strider Solar Inc. Dr. Bok Yeop Ahn Research Scientist, Harvard University Ehsan Arbabi Caltech Dr. Kevin Arpin PhD 2013, UIUC Senior Development Engineer at Xerion Advanced Battery Dr. Ashwin Atre PhD 2015, Stanford Dr. Joseph Beardslee PhD 2014, Caltech Researcher at Kratos Michael Bell Harvard Dr. Audrey Bowen PhD 2011, UIUC Senior research engineer at Intel Dr. Noah Bronstein PhD 2016, UC Berkeley

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS RESEARCH Synthesis and Directed Growth of Single-Crystal TCNQ-Cu Organic Nanowires K. Xiao, J. Tao, and Z. Liu (CNMS Postdocs); I. N. Ivanov, A.A. Puretzky, Z. Pan, and D.B....

  17. Challenges and Opportunities in Thermoelectric Materials Research for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanoscale system components that can be directly imaged. In this work Nature Genetics, 40(4), 466-470 (2008), in collaboration with a researcher at the University of...

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a whole new family of previously unknown electronic properties. Credit Published in Nano Letters, DOI: 10.1021nl203349b. Research at Oak Ridge National Laboratory's Center for...

  20. FY 2009 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

  1. Meet CMI Researcher Parans Paranthaman | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parans Paranthaman Image of Parans Paranthaman, CMI researcher at Oak Ridge National Laboratory Parans Paranthaman at Oak Ridge National Laboratory is a CMI researcher focused on additive manufacturing of permanent magnets, lithium separation from geothermal brine and lithium and sodium ion battery development. In February 2016, the AAAS inducted Paranthaman as an AAAS Fellow for chemistry. AAAS Fellows are recognized for meritorious efforts to advance science or its applications. In 2015,

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Facilities Facilities, Capabilities, and Techniques of the LMI-EFRC These are available for use by all LMI researchers At Caltech Large-area vapor-liquid-solid microwire growth Cambridge Nanotech Atomic Layer Deposition Integrating sphere Ultrafast Pump-Probe System At LBL Nanocrystal synthesis Photoelectrochemical etching At UIUC Proximity field nano-patterning Direct ink writing Malvern Nano Zetasizer AJA e-beam evaporator DOE Center facilities National Energy Research

  3. Materials and Molecular Research Division. Annual report 1981

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

  4. Materials and Molecular Research Division annual report 1982

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    This report is divided into: materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced isotope separation technology (AISI), energy storage, magnetic fusion energy (MFE), nuclear waste management, and work for others (WFO). Separate abstracts have been prepared for all except AIST, MFE, and WFO. (DLC)

  5. Fission-reactor experiments for fusion-materials research

    SciTech Connect (OSTI)

    Grossbeck, M.L.; Bloom, E.E.; Woods, J.W.; Vitek, J.M.; Thomas, K.R.

    1982-01-01

    The US Fusion Materials Program makes extensive use of fission reactors to study the effects of simulated fusion environments on materials and to develop improved alloys for fusion reactor service. The fast reactor, EBR-II, and the mixed spectrum reactors, HFIR and ORR, are all used in the fusion program. The HFIR and ORR produce helium from transmutations of nickel in a two-step thermal neutron absorption reaction beginning with /sup 58/Ni, and the fast neutrons in these reactors produce atomic displacements. The simultaneous effects of these phenomena produce damage similar to the very high energy neutrons of a fusion reactor. This paper describes irradiation capsules for mechanical property specimens used in the HFIR and the ORR. A neutron spectral tailoring experiment to achieve the fusion reactor He:dpa ratio will be discussed.

  6. Materials Project - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Materials Physics and Applications Division Lead Antoinette Taylor Toni Taylor November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the Laboratory's current technical staff. The new

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Nate Lewis Pricipal Investigator Nate Lewis Nate Lewis, George L. Argyros Professor of Chemistry California Institute of Technology Dr. Nathan Lewis, the George L. Argyros Professor of Chemistry, has been on the faculty at the California Institute of Technology since 1988 and has served as Professor since 1991. He has also served as the Principal Investigator of the Beckman Institute Molecular Materials Resource Center at Caltech since 1992, and is the Scientific Director

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Paul Alivisatos Principal Investigator Paul Alivisatos Paul Alivisatos, Director of Lawrence Berkeley National Laboratory; Samsung Distinguished Professor of Nanoscience and Nanotechnology and Professor of Chemistry and Materials Science & Engineering Lawrence Berkeley National Laboratory Dr. Paul Alivisatos is Director of the Lawrence Berkeley National Laboratory (Berkeley Lab) and is the University of California (UC) Berkeley's Samsung Distinguished Professor of

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Events image Perovskite Solar Cells: Towards New Materials and New Applications Nripan Mathews, Nanyang Technological University, Singapore November 3, 2014, 11:15 am 101 Guggenheim Lab, Lees-Kubota Hall 2013 workshop Approaches to Ultrahight Efficiency Solar Energy Conversion We are excited to offer this FREE public webinar featuring presentations and an interactive panel discussion with LMI-EFRC photovoltaic experts! March 7, 2013, 8:30-10:30 am PST Hameetman Auditorium,

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Lectures & Tutorials Lectures from the LMI-EFRC "New Approaches to Full Spectrum Solar Energy Conversion" Webinar, September 3, 2015, Caltech Harry A. Atwater Quantum Dot Luminescent Concentrators Paul Alivisatos, Lawrence Berkeley National Laboratory John Rogers Control of Thermal Radiation Using Photonic Structures for Energy Applications Shanhui Fan, Stanford University Eli Yablonovitch Printing Functional Materials Jennifer Lewis, Harvard lmi logo Panel

  11. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers in California Discover Plutonium-231, The Long-Sought Isotope 4 Program Addresses Plutonium Pit Conversion in Russia 6 We Need Science for Our Future Well-being 8 NMT Group Installs New Analytical Instrument for Plutonium Analysis 10 Recent Publications 12 Newsmakers 4th quarter 1998 N u c l e a r M a t e r i a l s R e s e a r c h a n d T e c h n o l o g y Researchers in California Discover Plutonium-231, The Long-Sought Isotope XBD9811-03028.tif photo courtesy of University of

  12. Basic research needs and opportunities on interfaces in solar materials

    SciTech Connect (OSTI)

    Czanderna, A. W.; Gottschall, R. J.

    1981-04-01

    The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Light Matters Video The LMI-EFRC Video "Light Matters" was the winner of the "Life at the Frontiers of Energy Research" video contest for striking photography and visual impact.

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Partnerships Partners, collaborators and companies impacted by LMI-EFRC research and technology Alta Devices FOM Institute AMOLF DOW JCAP The Molecular Foundry MRL NERSC NCEM Northrop Grumman Resnick Institute If you are interested in partnering with the LMI-EFRC, email lmi-efrc@caltech.edu.

  15. Anaerobic biodegradation of BTEX in aquifer material. Environmental research brief

    SciTech Connect (OSTI)

    Borden, R.C.; Hunt, M.J.; Shafer, M.B.; Barlaz, M.A.

    1997-08-01

    Laboratory and field experiments were conducted in two petroleum-contaminated aquifers to examine the anaerobic biodegradation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) under ambient conditions. Aquifer material was collected from locations at the source, mid-plume and end-plume at both sites, incubated under ambient conditions, and monitored for disappearance of the test compounds. In the mid-plume location at the second site, in-situ column experiments were also conducted for comparison with the laboratory microscosm and field-scale results. In the end-plume microcosms, biodegradation was variable with extensive biodegradation in some microcosms and little or no biodegradation in others.

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) UIUC Workshop Acknowledgements To be included as an LMI-EFRC publication, paper acknowledgements must be carefully worded. Please use the following as a guideline in preparing the "Acknowledgements" section in your manuscripts that include the LMI-EFRC as a source of support. For work solely funded by the LMI-EFRC At minimum, please use this wording: "This work was supported by the DOE 'Light-Material Interactions in Energy Conversion' Energy Frontier

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Ralph G. Nuzzo Director Ralph G. Nuzzo Ralph G. Nuzzo, G. L. Clark Professor of Chemistry; Director, LMI-EFRC; Visiting Associate in Applied Physics and Materials Science, Caltech University of Illinois at Urbana-Champaign and California Institute of Technology Ralph G. Nuzzo is the Director of the LMI-EFRC, appointed in 2015. He is the G. L. Clark Professor of Chemistry at the University of Illinois at Urbana-Champaign, a faculty he joined in 1991 and where he also holds

  18. Materials Research for Smart Grid Applications Steven J Bossart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research for Smart Grid Applications Steven J Bossart Ryan Egidi U.S. Department of Energy National Energy Technology Laboratory Our nation is transitioning to a Smart Grid which can sense and more optimally control the transmission, distribution, and delivery of electric power. The control of the electric power system is becoming more challenging with the addition of distributed renewable power sources, energy storage systems, electric vehicle charging, building and home energy management

  19. Proprietary Research at the Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proprietary R esearch a t t he C enter f or N anoscale M aterials ( CNM) This handout provides details on the mechanism for carrying out proprietary user research at the CNM at Argonne National Laboratory (ANL). * Access to the CNM User Facility is granted via a peer-reviewed proposal system. * Users provide sufficient information to ensure that each planned experiment can be performed safely. Argonne personnel provide appropriate safety training and oversight. * Users are charged for

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Fall Kickoff at Caltech September 23-24, 2014 [meeting details] The LMI-EFRC team gathered at Caltech to kickoff the renewal with a meeting full of presentations from LMI PIs and students, an in-room poster session, and research group breakout sessions. We welcomed Gregory Wilson from NREL's National Center for Photovoltaics as our keynote speaker, and several members of our External Advisory Board, including Richard King from Spectrolab, David Carlson formerly of BP Solar,

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Malvern Nano Zetasizer The Malvern Nano Zetasizer measures particle and molecule size from below a nanometer to several microns using dynamic light scattering, zeta potential and electrophoretic mobility using electrophoretic light scattering, and molecular weight using static light scattering. This equipment is used to support several EFRC research projects that utilize colloidal and nanoparticle building blocks, including work based on colloidal crystal templating and

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Shanhui Fan RG3 Leader Shanhui Fan Shanhui Fan, Professor of Electrical Engineering Stanford University Shanhui Fan is a Professor of Electrical Engineering, and the Director of the Edward L. Ginzton Laboratory, at the Stanford University. He received his Ph. D in 1997 in theoretical condensed matter physics from MIT. His research interests are in nanophotonics. He has published over 350 refereed journal articles and has given over 270 invited talks, and was granted 53 US

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Get Involved The LMI-EFRC is a synergistic, engaged team of researchers devoted to light management for solar energy conversion. If you are interested in learning more about the LMI-EFRC and opportunities to get involved, please contact lmi-efrc@caltech.edu. Former governor Arnold Schwarzenegger and Austrian Chancellor Werner Faymann visit Caltech. Hollywood film director James Cameron visits Caltech

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Team Meetings Weekly Zoom Meeting LMI researchers from Caltech, Berkeley, Harvard, Stanford and UIUC meet every Wednesday 12-1PM (PT) via Zoom videoconference to highlight their recent work. 2016 Fall Meeting August 25-26, 2016 Caltech [meeting details] 2015 Fall Meeting September 3-4, 2015 Caltech [meeting details] 2015 Annual Spring Meeting April 6, 2015 San Francisco [meeting details] [register] [photos] 2014 LMI-EFRC Kickoff September 23-24, 2014 Caltech [meeting

  5. Colorado School of Mines Researchers Win Patent | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute News News releases CMI in the news News archive CMI social media Colorado School of Mines Researchers Win Patent The Coloroado School of Mines 2013 highlights include news that Prof. Corby Anderson along with co-inventors Dr. Paul Miranda of Thompson Creek minerals and Dr. Ed Rosenberg of University of Montana were granted a US patent for styrene based ion exchange resins with oxine functionalized groups. The original work was focused on separating iron and gallium, but the

  6. Analytical SuperSTEM for extraterrestrial materials research

    SciTech Connect (OSTI)

    Bradley, J P; Dai, Z R

    2009-09-08

    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried out with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) EFRC Science in Ten Hundred and One Words The Ten Hundred and One Word Challenge invited the 46 Energy Frontier Research Centers to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. You can vote for your favorite entry from July 3-16, and the

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Future Directions of the LMI-EFRC Proposal Contest Congratulations to winners Dennis Callahan (Caltech, Atwater Group), and Matt Lucas (LBL, Alivisatos Group) and Derek Le (UIUC, Nuzzo Group). At the Team Meeting on April 9, the winners of our "Future Directions of the LMI-EFRC" Proposal Contest were announced. LMI Group members were asked to prepare a 2-page proposal on a future research direction of the LMI-EFRC not currently being pursued. Team members were

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) AJA E-Beam Evaporator A new e-beam evaporator was acquired in FY11; this evaporator is extensively used for EFRC supported research projects. In particular, e-beam evaporation is used to grow the conductive layers found in many of the devices fabricated by the Illinois EFRC team. These conductive layers are a critical element of any PV device, as they enable collection of photogenerated charge carriers. This evaporator has both a low base pressure, which is important for

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Graduate Students Graduate Students Mikayla Anderson University of Illinois at Urbana-Champaign Mikayla Anderson is a graduate student in the Nuzzo group working on spectrum splitting in III-V photovoltaic devices, utilizing epitaxial lift-off to fabricate solar micro-cells. Daniel Bacon-Brown University of Illinois at Urbana-Champaign Daniel Bacon-Brown is a graduate student in the Braun research group at the University of Illinois, currently working on design and

  11. Battery Cathodes > Batteries & Fuel Cells > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Cathodes Figure 1. Acceleration of DMcT Oxidation and Reduction at PEDOT-Modified Electrode Research on new cathodes for lithium-ion batteries has long been directed towards crystalline metal oxide-based materials, with charge stored by lithium insertion into the material matrix. Research in the Energy Frontier Research Center is pursuing an alternate approach to battery cathodes based on the reaction of lithium with naturally abundant, light-weight, and amorphous organic

  12. Overview and Progress of the Advanced Battery Materials Research (BMR) Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ES 108 June 9, 2016 2 Outline  Advanced Battery Materials Research (BMR) - Role - Program update  Current research emphasis - Lithium metal anode and solid electrolytes - Sulfur

  13. Hydrogen Materials Advanced Research Consortium (HyMARC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen M aterials A dvanced Research C onsor6um Sponsor: D OE-EERE/Fuel C ell T echnologies O ffice Consor6um D irector: D r. M ark D . A llendorf Partner L aboratories: Sandia N a2onal L aboratories Mail S top 9 161, L ivermore, C A 9 4551---0969. P hone: ( 925) 2 94---2895. E mail:mdallen@sandia.gov Lawrence L ivermore N a2onal L aboratory POC: D r. B randon W ood P hone: ( 925) 4 22---8391. E mail: b randonwood@llnl.gov Lawrence B erkeley N a2onal L aboratory POC: D r. J eff U rban; p hone:

  14. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    SciTech Connect (OSTI)

    P. Calderoni; P. Sharpe; M. Shimada

    2009-09-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  15. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  16. Sorbents and Carbon-Based Materials for Hydrogen Storage Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy's research and development on sorbents and carbon-based materials for hydrogen storage targets breakthrough concepts for storing hydrogen in high-surface-area sorbents...

  17. Overview and Progress of the Advanced Battery Materials Research (BMR) Program

    Broader source: Energy.gov (indexed) [DOE]

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ES 108 Energy Efficiency & Renewable Energy Advanced Battery Materials Research (BMR) Program  Previously known as: - Batteries for Advanced Transportation Technologies (BATT) -

  18. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    SciTech Connect (OSTI)

    Burn, G.

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  19. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    SciTech Connect (OSTI)

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables.

  20. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    ... l'Atlantique (AGS) -- Atlantic Society of Fish and Wildlife Biologists (ASFWB) -- Audio ... Biophysics (ASB) -- Australian Society for Fish Biology (ASFB) -- Australian Society for ...

  1. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  2. Browse Societies by Language -- E-print Network Societies by...

    Office of Scientific and Technical Information (OSTI)

    ... en - Weefselkweek Netherlands Society for Plant Biotechnology and Tissue Culture (NVPW) -- Nederlandse Vereniging voor Radiologie Radiological Society of the ...

  3. American Physical Society Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aps awards American Physical Society Awards American Physical Society (APS) is one of the most important professional societies for gauging the quality of R&D done at the Laboratory. The APS sponsors a number of awards including the John Dawson Award of Excellence in Plasma Physics, James Clerk Maxwell Prize for Plasma Physics, as well as Dinstinguised Lectuerer and Doctoral Dissertation prizes. Name Year Name of Award and Citation Yu-hsin Chen 2012 Marshall N. Rosenbluth Outstanding

  4. Research Highlights > Research > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights In This Section The Structural Evolution and Diffusion During the Chemical Transformation from Cobalt to Cobalt Phosphide Nanoparticles Joint Density-Functional Theory of Electrochemistry Double-band Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel

  5. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect (OSTI)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  6. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  7. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  8. Brookhaven Essay Contest – Science and Society

    Broader source: Energy.gov [DOE]

    The Science and Society Essay Contest aims to challenge high school students to question and deliberate the purposes and social implications of scientific research. All high school students (9th...

  9. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    SciTech Connect (OSTI)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  10. Ion beam processing of advanced electronic materials

    SciTech Connect (OSTI)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)