Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geomaterials Research Project The Evolution of Generic Material Standards for  

E-Print Network (OSTI)

Geomaterials Research Project The Evolution of Generic Material Standards for Block Manhattan College School of Engineering Civil and Environmental Engineering Department Bronx, New York, U.S.A. May 2012 #12;ii Geomaterials Research Project The Evolution of Generic Material Standards for Block

Horvath, John S.

2

Felt PET: A material research project.  

E-Print Network (OSTI)

??Wool has long been used by nomadic Mongolian herds-people as a cladding for their traditional dwellings and as a material for crafting everyday objects. A… (more)

Hohmann, Susanna

2005-01-01T23:59:59.000Z

3

Bio-Based Phase Change Materials Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Based Phase Change Materials Research Based Phase Change Materials Research Project Bio-Based Phase Change Materials Research Project The Department of Energy is currently conducting research into the development of low cost, bio-based phase change materials for building envelopes. Because insulation keeps hot air out inside buildings during the summer and outside during the winter, developing low cost materials can both drive down the cost of insulation and reduce energy costs. Project Description This project seeks to develop a low cost manufacturing process for the production of phase change materials (PCMs), and to subsequently evaluate the PCM pellets produced to provide improved insulation in buildings. Project Partners Research is being undertaken between the Department of Energy, Oak Ridge

4

Research projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

5

Shape Stable and Highly Conductive Nano-Phase-Change Materials Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy is currently conducting research into shape-stable and highly conductive nano-phase change materials.

6

Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

-237 -237 Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects November 2001 Prepared by Sujit Das Oak Ridge National Laboratory Jean H. Peretz The University of Tennessee Bruce Tonn Oak Ridge National Laboratory DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

7

Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Physics to simulate a next generation light sources based on x-ray free electron lasers. My research includes: Designing parallel algorithms for numerical optimization....

8

Materials Project: A Materials Genome Approach  

DOE Data Explorer (OSTI)

Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

9

NREL: Wind Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

10

Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2  

SciTech Connect

This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal projects concentrate on specific classes of materials and nonproprietary components and are done jointly by DOE and the Automotive Composites Consortium of U.S. Council for Automotive Research (USCAR). The third project developed a rapid tooling process that reduces tooling time, originally some 48-52 weeks, to less than 12 weeks by means of rapid generation of die-casting die inserts and development of generic holding blocks, suitable for use with large casting applications. This project was conducted by the United States Automotive Materials Partnership, another USCAR consortium.

Das, S.

2003-01-23T23:59:59.000Z

11

Research Project Description  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Project Description No job description found Current Research Opportunities Regulatory Science Course Development Fellowship Health and Medical Emergency Management...

12

Materials Science Programs and Projects  

Science Conference Proceedings (OSTI)

... Materials Science Programs & Projects. ... In this project we measure the fundamental electrical properties of materials from bulk to nanoscale from ...

2010-09-22T23:59:59.000Z

13

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Materials > Chrome Oxide Refractory High Performance Materials > Chrome Oxide Refractory Advanced Research High Performance Materials Chrome Oxide Refractory One notable NETL success is the development of a chrome oxide refractory material capable of working in slagging gasifier conditions. In this project, researchers first determined that one of the major failure mechanisms for chrome oxide refractories exposed to the intense heat and corrosive environment was spalling, or the chipping or flaking of refractory material from an exposed face. They used this information to formulate a high-chrome oxide refractory composition that resists spalling, resulting in a refractory with a longer service life in the gasifier. Inside an ultrasupercritical (USC) pulverized coal power plant, materials are exposed to temperatures up to 760°C and pressures up to 5,000 psi. Operating a USC system can improve power plant efficiency up to 47% and reduce emissions. However, finding boiler and turbine materials that can hold up under extreme conditions requires new high-temperature metal alloys and ceramic coatings, as well as computational modeling research to optimize the processing of these materials. Advanced Research Materials Development program successes in this area include the following:

14

Experimental Plasma Research project summaries  

SciTech Connect

This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

1980-09-01T23:59:59.000Z

15

Experimental plasma research project summaries  

SciTech Connect

This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

1978-08-01T23:59:59.000Z

16

Materials research at CMAM  

SciTech Connect

The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autonoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

Zucchiatti, Alessandro [Centro de Micro Analisis de Materiales CMAM, Universidad Autonoma de Madrid, c/ Faraday 3, 28049 Madrid (Spain)

2013-07-18T23:59:59.000Z

17

Advanced Energy Projects: FY 1993, Research summaries  

SciTech Connect

AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

Not Available

1993-09-01T23:59:59.000Z

18

Materials Science Programs and Projects  

Science Conference Proceedings (OSTI)

NIST Home > Materials Science Programs and Projects. ... the structure of crack tips, the rates ... as health care, communications, energy and electronics ...

2010-09-22T23:59:59.000Z

19

NIST Research Projects  

Science Conference Proceedings (OSTI)

... NIST Human Identity Project Teams within the Applied Genetics Group ... NIST Projects ... NYC OCME & NY/NJ Labs (April 18, 2012) – Statistics ...

2012-06-04T23:59:59.000Z

20

NIST Research Projects  

Science Conference Proceedings (OSTI)

... Applied Genetics Page 8. NIST Human Identity Project Teams ... Current NIST Projects Short Overviews… ... NYC OCME & NY/NJ Labs (April 18, 2012) ...

2012-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Low Cost Solar Array Project cell and module formation research area. Process research of non-CZ silicon material. Final report, November 26, 1980-September 30, 1983  

DOE Green Energy (OSTI)

The primary objective of the work reported was to investigate high-risk, high-payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non-Czochralski sheet material. These tasks were addressed: technical feasibility study of forming front and back junctions using liquid dopant techniques, liquid diffusion mask feasibility study, application studies of antireflective material using a meniscus coater, ion implantation compatibility/feasibility study, and cost analysis. (LEW)

Campbell, R.B.

1983-01-01T23:59:59.000Z

22

Research departments Materials Research Department  

E-Print Network (OSTI)

research reactor and X- radiation from the synchrotron facilities in Hamburg and Grenoble. In this con- nection, work is carried out on develop- ing advanced methods, as well as theory and computer simulation numerical simulation. Nuclear Safety Research and Facilities Department The department carries out research

23

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

24

NETL: Onsite Research - University Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Onsite Research University Projects The National Energy Technology Laboratory (NETL) is helping to overcome a growing national problem of a diminishing number of new energy...

25

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Materials High Temperature Materials The environment inside a slagging gasifier is one of the worst imaginable from a materials standpoint. Another extreme...

26

Research Projects Addressing Technical Challenges to Environmentally...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Projects Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE Research Projects Addressing Technical Challenges to...

27

NETL: Onsite Research- Materials Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Performance Onsite Research Materials Performance Emerging energy-production technologies such as gasification, solid oxide fuel cells, and ultra supercritical, fluidized...

28

Advanced Materials Research Highlights | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials | Research Highlights Research Highlights 1-10 of 44 Results Prev 12345 Next Topotactic valence state control in epitaxial multivalent oxides July 17, 2013 -...

29

Advanced materials research areas | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Theory and Simulation Energy Frontier Research Centers Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and...

30

Advanced Research Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal...

31

Advanced energy projects; FY 1995 research summaries  

SciTech Connect

The AEP Division supports projects to explore novel energy-related concepts which are typically at an early stage of scientific development, and high-risk, exploratory concepts. Topical areas presently receiving support are: novel materials for energy technology, renewable and biodegradable materials, exploring uses of new scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, and innovative approaches to waste treatment and reduction. There were 46 research projects during FY 1995; ten were initiated during that fiscal year. The summaries are separated into grant and laboratory programs, and small business innovation research programs.

NONE

1995-09-01T23:59:59.000Z

32

Crosscutting Research Sensors and Controls Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

CROSSCUTTING CROSSCUTTING RESEARCH PROGRAM The National Energy Technology Laboratory (NETL) Crosscutting Research Program is an applied research effort with a multi-disciplinary approach aimed at addressing barriers to clean fossil energy-based power generation and fosters breakthrough concepts that offer the potential to result in a step change improvement over current technology. Crosscutting Research's mission space is bound by investments in innovative sensor and control technology, advanced materials, revolutionary modeling and simulation tools, and university training and research that promote the education of students at U.S. universities and colleges. Crosscutting Research Sensors and Controls Project Portfolio the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY

33

Building Technologies Office: Nanolubricants Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanolubricants Research Nanolubricants Research Project to someone by E-mail Share Building Technologies Office: Nanolubricants Research Project on Facebook Tweet about Building Technologies Office: Nanolubricants Research Project on Twitter Bookmark Building Technologies Office: Nanolubricants Research Project on Google Bookmark Building Technologies Office: Nanolubricants Research Project on Delicious Rank Building Technologies Office: Nanolubricants Research Project on Digg Find More places to share Building Technologies Office: Nanolubricants Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

34

Experimental Plasma Research. Project summaries  

SciTech Connect

This is the fifth in a series of Project Summary books going back to 1976. They are issued approximately every two years and provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy (OFE).

1984-12-01T23:59:59.000Z

35

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

36

The Materials Project: Combining Quantum Chemistry Calculations...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Materials Project: Combining Quantum Chemistry Calculations with Supercomputing Centers for New Materials Discovery Speaker(s): Anubhav Jain Date: December 18, 2012 - 12:00pm...

37

Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA  

Science Conference Proceedings (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through which these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, `Biomarkers and Risk Assessment in Bayou Trepagnier, LN`, is particularly relevant to the US Department of Energy`s Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex.

Ide, C.

1996-12-31T23:59:59.000Z

38

Advanced desiccant materials research  

DOE Green Energy (OSTI)

The long-range goal of this task is to understand the role of surface phenomena in desiccant cooling materials. The background information includes a brief introduction to desiccant cooling systems (DCS) and the role of the desiccant as a system component. The purpose, background, rationale, and long-term technical approach for studying advanced desiccant materials are then treated. Experimental methods for measuring water vapor sorption by desiccants are described, and the rationale is then given for choosing a quartz crystal microbalance (QCM) for measuring sorption isotherms, rates, and cyclic stability. Background information is given about the QCM, including the quartz crystal resonator itself, the support structure for the quartz crystal, and the advantages and limitations of a QCM. The apparatus assembled and placed into operation during CY 1985 is described. The functions of the principal components of the equipment, i.e., the QCM, vacuum system, pressure gauges, residual gas analyzer, constant temperature bath, and data acquisition system, are described as they relate to the water vapor sorption measurements now under way. The criteria for narrowing the potential candidates as advanced desiccant materials for the initial studies are given. Also given is a list of 20 principal candidate materials identified based on the criteria and data available in the literature.

Czanderna, A.W.; Thomas, T.M.

1986-05-01T23:59:59.000Z

39

Advanced energy projects FY 1994 research summaries  

Science Conference Proceedings (OSTI)

The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

Not Available

1994-09-01T23:59:59.000Z

40

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

International Research Reactor Decommissioning Project  

SciTech Connect

Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

Leopando, Leonardo [Philippine Nuclear Research Institute, Quezon City (Philippines); Warnecke, Ernst [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

42

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2010 June 2, 2010 CX-003144: Categorical Exclusion Determination ATK - A High Efficiency Inertial Carbon Dioxide Extraction System CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): New York Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003132: Categorical Exclusion Determination Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Georgia Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003131: Categorical Exclusion Determination Lawrence Berkeley National Laboratory & Wildcat Disc. Technology - High Throughput Tools to Screen New Metal Organic Framework Materials CX(s) Applied: B3.6 Date: 06/02/2010

43

Abstracts and research accomplishments of university coal research projects  

SciTech Connect

The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

Not Available

1991-06-01T23:59:59.000Z

44

NREL: Hydrogen and Fuel Cells Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects NREL's hydrogen and fuel cell research projects focus on developing, integrating, and demonstrating advanced hydrogen production, hydrogen storage, and fuel cell...

45

Fuel Cell Applied Research Project  

DOE Green Energy (OSTI)

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

46

Fuel Cell Applied Research Project  

SciTech Connect

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

47

The Critical Materials Research Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVEMBER 2012 NOVEMBER 2012 The Critical Materials Research Alliance About the Critical Materials Research Alliance The recent surge of interest in critical materials, including rare earth elements (REEs), stems from supply shortages and escalating prices of some REEs. In 2010, the United States' sole REE supplier was China-previously responsible for 97% of global REE production-but the Chinese government curtailed their export. Because REEs and other critical elements are used in renewable energy resources, energy storage, energy efficiency technologies, and national defense, a shortage in their supply impedes development of energy technologies and hinders U.S. defense industries. To address the challenges faced in revitalizing the rare earth industry, the National Energy Technology

48

Abstract and research accomplishments of University Coal Research Projects  

Science Conference Proceedings (OSTI)

The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their respective projects in time for distribution at a conference on June 13--14, 1995 at Tennessee State University in Nashville, Tennessee. This book is a compilation of the material received in response to that request. For convenience, the 70 grants reported in this book are stored into eight technical areas, Coal Science, Coal Surface Science, Reaction Chemistry, Advanced Process Concepts, Engineering Fundamentals and Thermodynamics, Environmental Science, high Temperature Phenomena, and Special topics. Indexes are provided for locating projects by subject, principal investigators, and contracting organizations. Each extended abstract describes project objectives, work accomplished, significance to the Fossil Energy Program, and plans for the next year.

NONE

1995-06-01T23:59:59.000Z

49

NREL: Water Power Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Search More Search Options Site Map Printable Version Projects NREL's water power R&D projects support industry efforts to develop and deploy cost-effective water power...

50

The Materials Project: Combining Density Functional Theory Calculation...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Materials Project The Materials Project: Combining Density Functional Theory Calculations with Supercomputing Centers for New Materials Discovery May 2, 2013 jain2 Anubhav Jain...

51

Nuclear Materials Management & Safeguards System CHANGE OF PROJECT...  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number:...

52

Materials Research in the Information Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 | Tags: Materials Science,...

53

EETD's Materials Project In Scientific American's 2013 World-changing  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Project In Scientific American's 2013 World-changing Materials Project In Scientific American's 2013 World-changing Ideas Issue The Materials P roject November 2013 In Scientific American magazine's December 2013 issue, "World-changing ideas," the cover story, "How supercomputers will yield a golden age of materials science," sets the scene for the issue's focus on practical innovations emerging from the laboratory. In the article, MIT's Gerbrand Ceder and Environmental Energy Technologies Division scientist Kristin Persson describe the Materials Project, a collaboration of researchers building a free, open-access database containing the fundamental thermodynamic and electronic properties of all known inorganic compounds. Using high-throughput materials design, they hope to revolutionize the

54

Commissioning a materials research laboratory  

DOE Green Energy (OSTI)

This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

SAVAGE,GERALD A.

2000-03-28T23:59:59.000Z

55

NETL: Onsite Research: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Metallography Metallography NETL has a state-of-the art metallographic facility staffed with world renowned experts with experience on a wide range of alloys and materials with the tools to get the job done. Our metallography staff works with their customers to reveal the microstructure contained within the specimens using sophisticated polishing, staining, and microscopic techniques to develop new techniques and improve upon old ones. An understanding of the microstructure is a useful tool in a wide range of situations from developing processing techniques on new material to evaluating the performance of new and existing materials after exposure to aggressive conditions. The information our staff obtains is an invaluable part of a research program. For example:

56

Materials Science Division Project Safety Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Miller, Electron Microscopes Miller, Electron Microscopes Project No. 20006.3 Materials Science Division Project Safety Review Safety Analysis Form (03/08) Date of Submission March 12, 2010 FWP No.: 58405 Project Title User Experimental Work with Electron Microscopes in the Electron Microscopy Center This Safety Analysis Form (SAF) supersedes previous versions of 20006 and its modifications. Is this a (check one) new submission renewal supplemental modification X Principal Investigator(s) Dean Miller Other Participants (excluding administrative support personnel) EMC staff and EMC users (Attach participant signature sheet) Project dates: Start: March 2010 End: Open-ended This form is to be completed for all new investigations or experimental projects that are conducted in MSD laboratories, and for all ongoing such projects that undergo significant change from their original

57

NETL: News Release - Projects Selected to Advance Innovative Materials for  

NLE Websites -- All DOE Office Websites (Extended Search)

14, 2010 14, 2010 Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Washington, D.C. - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent storage. An effective way to accelerate research is to use advances in materials simulations and high performance computing and communications to guide experiments. Concurrent with the continuing drive to reduce costs and design cycle time in the manufacture of power plant equipment is an increase in the need for more materials property data demonstrating sufficient performance.

58

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Advanced Research Projects Agency-Energy Categorical Exclusion Determinations: Advanced Research Projects Agency-Energy Categorical Exclusion Determinations issued by Advanced Research Projects Agency-Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD June 10, 2013 CX-010529: Categorical Exclusion Determination Electroalcoholgenesis CX(s) Applied: B3.6 Date: 06/10/2013 Location(s): South Carolina, Washington Offices(s): Advanced Research Projects Agency-Energy May 23, 2013 CX-010566: Categorical Exclusion Determination Massachusetts Institute of Technology- Scalable, Self-Powered Purification Technology for Brackish and Heavy Metal Contaminated Water CX(s) Applied: B3.6 Date: 05/23/2013 Location(s): Massachusetts Offices(s): Advanced Research Projects Agency-Energy May 22, 2013

59

Advanced Research Projects Agency - Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Advanced Research Projects Agency - Energy recovery act Advanced Research Projects Agency - Energy More Documents & Publications Advanced...

60

ADVANCED RESEARCH PROJECTS AGENCY - ENERGY ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WA (DOEEIS-0467) FOSSIL ENERGY 12. Hydrogen Energy California's Integrated Gasification Combined Cycle Project, CA (DOEEIS-0431) 13. FutureGen 2.0 (DOEEIS-0460) 14. Lake...

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Research Projects Addressing Technical Challenges to Environmentally...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to improve the safety and minimize the environmental impacts of oil and natural gas exploration and production. The projects will address research needs primarily in four...

62

Categorical Exclusion Determinations: Advanced Research Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Agency - Energy June 2, 2010 CX-003128: Categorical Exclusion Determination University of Kentucky Research Foundation -A SolventMembrane Hybrid Post-combustion...

63

Foundation and Moisture Control Research Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project The U.S. Department of Energy (DOE) is currently conducting research into building foundation and moisture control technologies. Moisture is a significant market...

64

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

DOE Green Energy (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

65

Pollution Impact on Cool Roof Efficacy Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Pollution Impact on Cool Roof Efficacy Emerging Technologies » Pollution Impact on Cool Roof Efficacy Research Project Pollution Impact on Cool Roof Efficacy Research Project The Department of Energy (DOE) is currently determining how pollution impacts the efficacy of cool roofs. The project specifically is focusing on the efficacy of white roofs in Northern India. The first phase of the project will take physical measurements to characterize the cooling and climate effects of white roofs. Results from this project will provide important guidance to policymakers and planners as they decide where cool roofs would have the greatest benefits. Project Description The project involves the development of advanced surfaces and next-generation materials to improve solar reflectance of roofs; the ability to reflect the visible, infrared and ultraviolet wavelengths of the

66

Integrated Predictive Demand Response Controller Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

67

Catalog of research projects at Lawrence Berkeley Laboratory, 1985  

Science Conference Proceedings (OSTI)

This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

Not Available

1985-01-01T23:59:59.000Z

68

UESC Project Overview: NASA Ames Research Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Ames Research Center NASA Ames Research Center Utility Energy Services Contract Project Overview Federal Utilities Partnership Working Group Philadelphia, PA October 2011 NASA Ames Research Center Utility Energy Services Contract 2 Today's Discussion * NASA Ames Research Center (ARC) Energy Challenges * UESC Project Goals * Energy and Water Conservation Projects * Project Benefits and Results * Q&A NASA Ames Research Center Utility Energy Services Contract 3 NASA's Energy Challenges * Compliance with federal mandates - EISA, EPAct, Executive Orders (prior to UESC ARC was behind all of its goals) * Very low electric cost (<$0.05/kWh) * Not eligible for electric incentives through local utility (ARC purchases power from WAPA) * Aging mechanical and electrical infrastructure requiring significant

69

Palmetto Wind Research Project | Open Energy Information  

Open Energy Info (EERE)

Wind Research Project Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Santee Cooper Developer South Carolina Energy Office / Santee Cooper / Coastal Carolina University Location Atlantic Ocean SC Coordinates 33.534°, -78.59° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.534,"lon":-78.59,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

The Programmer's Apprentice Project: A Research Overview  

E-Print Network (OSTI)

The goal of the Programmer's Apprentice project is to develop a theory of how expert programmers analyze, synthesize, modify, explain, specify, verify, and document programs. This research goal overlaps both artificial ...

Rich, Charles

1987-11-01T23:59:59.000Z

71

HVAC Water Heater Field Tests Research Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Water Heater Field Tests Research Project HVAC Water Heater Field Tests Research Project The U.S. Department of Energy is currently conducting research into heating,...

72

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ten Projects to Conduct Advanced Turbine Technology Ten Projects to Conduct Advanced Turbine Technology Research DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research August 14, 2013 - 1:44pm Addthis WASHINGTON, D.C. - Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative

73

Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Research Groups in the Materials Science Division Condensed Matter Theory Carries out theoretical work on superconductivity, electronic structure and magnetism. Emerging Materials Emphasizes an integrated materials synthesis and science program that focuses on correlated electron transition metal oxides, chalcogenides with enhanced thermoelectric performance, and novel superconductors, including pnictides and cuprates. Energy Conversion and Storage The energy conversion and storage group focuses on charge-transfer processes, as well as the chemical environment in the vicinity of electrode surfaces. Magnetic Films Research to develop, characterize and investigate the properties of magnetic thin films and superlattices. Molecular Materials Synthesis and characterization of molecular materials that have novel

74

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

75

NREL: Wind Research - Field Verification Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Verification Project Field Verification Project The mission of the Field Verification Project (FVP) was to enable U.S. industry to complete the research, testing, and field verification needed to fully develop advanced wind energy technologies that lead the world in cost-effectiveness and reliability. The project, completed in 2003, included cost-shared research with industry partners to lead to the development of advanced technology wind turbines and support for projects that verify performance of wind turbine technologies in actual operational applications. FVP provided small wind turbine (<=100 kW) manufacturers with opportunities to operate and monitor their turbines under a range of distributed power applications and environments throughout the United States. This experience helped U.S. companies validate and improve the

76

Laboratory Technology Research: Abstracts of FY 1996 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

NONE

1996-12-31T23:59:59.000Z

77

Laboratory technology research: Abstracts of FY 1998 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

NONE

1998-11-01T23:59:59.000Z

78

Scenes from Argonne's Materials Engineering Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share Description B-roll for the Materials Engineering Research Facility Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Lithium-ion batteries Programs...

79

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

80

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 LBNL senior materials scientist and UC Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals and composites, Ritchie has illuminated groundbreaking cracking patterns and the underlying mechanistic processes using the x-ray synchrotron micro-tomography at ALS Beamline 8.3.2. Summary Slide ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter.

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

82

NREL: Biomass Research - Microalgal Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Microalgal Biofuels Projects Microalgal Biofuels Projects A photo of a man in a white lab coat holding a glass flask that contains a small amount of clear green liquid. An NREL researcher analyzes algae samples for oil content using the Fluorescence Activated Cell Sorter. NREL's microalgal biofuels projects focus on determining the feasibility and economic capability of employing algae as a cost-effective feedstock for fuel production. NREL researchers pioneered developing microalgal biofuels by leading the U.S. Department of Energy Aquatic Species Program from 1979 to 1996. Among NREL's RD&D projects in converting microalgae to biofuels are: Development of Algal Strains NREL and Chevron Corp. are collaborating to develop techniques to improve the production of liquid transportation fuels using microalgae. The

83

Coupled Site Characterization and Foundation Analysis Research Project  

E-Print Network (OSTI)

Analysis Research Project: Rational Selection of for Drained-Strength Bearing Capacity Analysis Manhattan Research Project: Rational Selection of for Drained-Strength Bearing Capacity Analysis Manhattan CollegeCoupled Site Characterization and Foundation Analysis Research Project: Rational Selection

Horvath, John S.

84

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2010 August 14, 2010 CX-004957: Categorical Exclusion Determination General Compression, Inc. -Fuel-Free, Ubiquitous, Compressed Air Energy Storage CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Watertown, Massachusetts Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004953: Categorical Exclusion Determination Fluidic Inc. -Enhanced Metal-Air Energy Storage System CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Scottsdale, Arizona Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004941: Categorical Exclusion Determination Makani Power, Inc. - Advanced Wind Turbine CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Alameda, California Office(s): Advanced Research Projects Agency - Energy August 13, 2010 CX-004925: Categorical Exclusion Determination

85

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 18, 2012 October 18, 2012 CX-009518: Categorical Exclusion Determination (0674-1585) Xilectric, Inc. - Low Cost Transportation Batteries CX(s) Applied: B3.6 Date: 10/18/2012 Location(s): Rhode Island, New York Offices(s): Advanced Research Projects Agency-Energy September 27, 2012 CX-010530: Categorical Exclusion Determination Electro-Autotrophic Synthesis of Higher Alcohols CX(s) Applied: B3.6 Date: 09/27/2012 Location(s): California, North Carolina, North Carolina Offices(s): Advanced Research Projects Agency-Energy September 19, 2012 CX-009902: Categorical Exclusion Determination Agrivida - Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops CX(s) Applied: B3.6 Date: 09/19/2012 Location(s): Massachusetts, Connecticut Offices(s): Advanced Research Projects Agency-Energy

86

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 18, 2009 December 18, 2009 CX-000850: Categorical Exclusion Determination 25A4274 - Energy Efficient Capture of Carbon Dioxide from Coal Flue Gas CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Illinois Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000841: Categorical Exclusion Determination 25A1381 - Affordable Energy from Water and Sunlight CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000585: Categorical Exclusion Determination 25A1152 - 1366 Direct Wafer: Enabling Terawatt Photovoltaics CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-009901: Categorical Exclusion Determination

87

NREL: Concentrating Solar Power Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's concentrating solar power (CSP) projects focus on components R&D and systems analysis related to power tower and parabolic trough technologies. We support the U.S. Department of Energy (DOE) in its CSP deployment efforts in the following areas: Collectors Receivers Power block Thermal energy storage Analysis. NREL received funding from DOE for concentrating solar power research projects. Through a competitive process, NREL was selected to lead the following projects: Novel Components to Overcome Existing Barriers-Particle Receiver Integrated with a Fluidized Bed Thermodynamic Cycle to Revolutionize CSP Systems-10-Megawatt Supercritical Carbon Dioxide (s-CO2) Turbine Test Nanomaterials for thermal energy storage in CSP plants In addition to these efforts, NREL is also a key partner on two other

88

Building Technologies Office: Vacuum Insulation Panels Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Insulation Vacuum Insulation Panels Research Project to someone by E-mail Share Building Technologies Office: Vacuum Insulation Panels Research Project on Facebook Tweet about Building Technologies Office: Vacuum Insulation Panels Research Project on Twitter Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Google Bookmark Building Technologies Office: Vacuum Insulation Panels Research Project on Delicious Rank Building Technologies Office: Vacuum Insulation Panels Research Project on Digg Find More places to share Building Technologies Office: Vacuum Insulation Panels Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research

89

Metalsbank Project for Materials and Componets Industry in Korea  

Science Conference Proceedings (OSTI)

Presentation Title, Metalsbank Project for Materials and Componets Industry in ... Korean government, the Ministry of Commerce, Industry & Energy (Ministry of ...

90

WEB RESOURCE: High Temperature Materials 21 Project (Phase 2)  

Science Conference Proceedings (OSTI)

Feb 10, 2007... thermal efficiency of power generation systems and advanced aeroengines. ... SOURCE: Harada, H. "High Temperature Materials 21 Project ...

91

Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)  

Science Conference Proceedings (OSTI)

In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

2012-08-01T23:59:59.000Z

92

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

New River Geothermal Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal...

93

FACT SHEET: Clean Coal University Research Awards and Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Clean Coal University Research Awards and Project Descriptions FACT SHEET: Clean Coal University Research Awards and Project Descriptions As part of President Obama's...

94

Crow Nation Students Participate in Algae Biomass Research Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation...

95

2013 Annual Planning Summary for the Advanced Research Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Annual Planning Summary for the Advanced Research Projects Agency - Energy 2013 Annual Planning Summary for the Advanced Research Projects Agency - Energy 2013 Annual Planning...

96

Advanced Research Projects Agency - Energy Program Specific Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Research Projects Agency - Energy Program Specific Recovery Plan Advanced Research Projects Agency - Energy Program Specific Recovery Plan Microsoft Word - 44F1801D.doc...

97

FACT SHEET: Clean Coal University Research Awards and Project Descriptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SHEET: Clean Coal University Research Awards and SHEET: Clean Coal University Research Awards and Project Descriptions IMPROVED ALLOYS By substantially increasing the pressure and temperature of the steam used to produce power, advanced ultrasupercritical (AUSC) coal-fired power plants improve generation efficiency, use less coal and release less carbon pollution. The implementation of AUSC boilers requires materials with high-temperature oxidation, corrosion and deformation resistance. These selected projects will develop new surface modification techniques or optimize existing techniques for the protection of high-temperature alloys used in AUSC coal-fired boilers and in advanced gas turbines. Southern Illinois University (Carbondale, Ill.) - Southern Illinois University Carbondale

98

NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS) and its alloys. The Module Reliability Team and Environmental Health and Safety Team were crosscutting. The teams comprised researchers from the solar industry, academia, and NREL who focused their efforts on improving materials, devices, and manufacturing processes-all

99

Materials Development Program: Ceramic Technology Project bibliography, 1984--1992  

DOE Green Energy (OSTI)

The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

Not Available

1994-03-01T23:59:59.000Z

100

Performance Metrics Research Project - Final Report  

SciTech Connect

NREL began work for DOE on this project to standardize the measurement and characterization of building energy performance. NREL's primary research objectives were to determine which performance metrics have greatest value for determining energy performance and to develop standard definitions and methods of measuring and reporting that performance.

Deru, M.; Torcellini, P.

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Enhancing Engineering Education through Undergraduate Research Projects  

E-Print Network (OSTI)

The Department of Electrical and Electronics Engineering in the University of the Philippines, Diliman requires its undergraduate students to take a course where they will do an undergraduate research project. This paper presents the history of the course, the way the course is handled, and how the course can enhance engineering education.

Joel Reyes Noche

2001-01-01T23:59:59.000Z

102

NREL: Vehicles and Fuels Research - Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

103

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

104

NREL: Biomass Research - Biochemical Conversion Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

105

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 21, 2011 November 21, 2011 CX-007697: Categorical Exclusion Determination Autogrid, Inc. - Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation CX(s) Applied: A9, B1.7 Date: 11/21/2011 Location(s): New York, California Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007689: Categorical Exclusion Determination Georgia Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks CX(s) Applied: A9 Date: 11/18/2011 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007684: Categorical Exclusion Determination Texas Engineering Experiment Station - Robust Adaptive Topology Control

106

Categorical Exclusion Determinations: Advanced Research Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 25, 2012 July 25, 2012 CX-008873: Categorical Exclusion Determination Oregon State University- Natural Gas Self-contained Home Filling Station CX(s) Applied: B3.6 Date: 07/25/2012 Location(s): Oregon, Colorado, Michigan Offices(s): Advanced Research Projects Agency-Energy April 17, 2012 CX-008671: Categorical Exclusion Determination Arizona State University - Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels - Phase II CX(s) Applied: A9, B3.6 Date: 04/17/2012 Location(s): Arizona, Arizona, Arizona, Minnesota, North Carolina Offices(s): Advanced Research Projects Agency-Energy February 17, 2012 CX-007812: Categorical Exclusion Determination Smart Wire Grid, Inc. - Distributed Power Flow Control Using Smart Wires for Energy Routing CX(s) Applied: A9, B1.7, B3.6

107

The Programmer's Apprentice Project: A Research Overview  

E-Print Network (OSTI)

The goal of the Programmer's Apprentice project is to develop a theory of how expert programmers analyze, synthesize, modify, explain, specify, verify and document programs. This research goal overlaps both artificial intelligence and software engineering. From the viewpoint of artificial intelligence, we have chosen programming as a domain in which to study fundamental issues of knowledge representation and reasoning. From the viewpoint of software engineering, we seek to automate the programming process by applying techniques from artificial intelligence.

Charles Rich; Richard C. Waters

1987-01-01T23:59:59.000Z

108

Scintillation Materials Research Center University of Tennessee  

E-Print Network (OSTI)

Conference (NSS-MIC) in Knoxville, TN, the NNSA NA-22 Office of Nonproliferation and Verification Research Materials" the NNSA NA-22 Office of Nonproliferation and Verification Research and Development, University and priorities. 2. NNSA: The SMRC staff participated in the NNSA NA-22 Office of Nonproliferation

Tennessee, University of

109

Utility stresses environmental programs, research projects  

Science Conference Proceedings (OSTI)

B.C. Hydro, the provincial electric utility of British Columbia, views environmental programs and research projects as an important part of its business. Many of these activities stem from some aspect of hydroelectric generation as the utility relies on 39 reservoirs and 30 hydro stations for the bulk of its electricity production. These programs and research projects are featured in B.C. Hydro's first annual Report on the Environment, which summarizes the utility's work to minimize the effects of operations on the natural and social environment. Some programs and research projects were initiated some years ago, while others are new. B.C.'s environmental programs include environmental audits and fish and wildlife compensation (mitigation) programs. In 1988, the utility and the province's Ministry of Environment, Lands and Parks began developing compensation programs to address water license requirements for B.C. Hydro's hydroelectric developments. Today, compensation programs for the Peace and Columbia river area serve as models for future programs. The utility also reports it is reviewing all operating orders for its water system to identify opportunities to make operations more sensitive to environmental concerns. Additionally, work is under way on a preliminary strategy for addressing fish and water quality issues and setting minimum flow requirements. And in an effort to control dust storms, B.C. Hydro reports it is studying native perennial plants that can endure the flooding/drawdown cycle typical of a water storage reservoir.

Not Available

1993-02-01T23:59:59.000Z

110

Building Technologies Office: Recovery Act-Funded HVAC Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Research Projects to someone by E-mail HVAC Research Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded HVAC Research Projects on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

111

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

. The information from this project contributes to Energy Research and Development Division's Buildings EndUse Energy Efficiency Program. For more information about the Energy Research and Development Division Energy Research and Development Division FINAL PROJECT REPORT TECHNICAL BRIEFS

112

NETL: News Release - Advanced Research Projects Selected to Support  

NLE Websites -- All DOE Office Websites (Extended Search)

September 17, 2008 September 17, 2008 Advanced Research Projects Selected to Support Development of Next-Generation Power Plants Applied Research Will Lead to Novel Sensors and Controls, Power Plant Simulations Morgantown, W. Va. - The U.S. Department of Energy (DOE) has selected four new research projects aimed at improving the efficiency, reliability, and environmental performance of power-generation systems that use coal, our Nation's most abundant energy resource. The selected projects will address the central challenge of advanced near-zero emission energy systems: producing power in an efficient and environmentally benign manner while reigning in costs for power providers and consumers. Following negotiation and awards, the projects will be added to the research portfolio of the Office of Fossil Energy's Coal Utilization Science (CUS) Program, a part of the Advanced Research Program. The goal of the larger program is to support coal and power systems development through breakthroughs in materials and processes, coal utilization science, sensors and controls, and computational energy science. The program is implemented and managed by DOE's National Energy Technology Laboratory (NETL).

113

Technology Base Research Project for electrochemical energy storage  

DOE Green Energy (OSTI)

The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

Kinoshita, Kim (ed.)

1991-06-01T23:59:59.000Z

114

Technology Base Research Project for electrochemical energy storage  

SciTech Connect

The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

Kinoshita, Kim (ed.)

1991-06-01T23:59:59.000Z

115

Laboratory technology research - abstracts of FY 1997 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

NONE

1997-11-01T23:59:59.000Z

116

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY  

Science Conference Proceedings (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

M. A. Alvin

2010-06-18T23:59:59.000Z

117

Alternative Fuels Data Center: Advanced Energy Research Project Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Energy Advanced Energy Research Project Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Energy Research Project Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Energy Research Project Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Google Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Delicious Rank Alternative Fuels Data Center: Advanced Energy Research Project Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Energy Research Project Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Energy Research Project Grants The Advanced Research Projects Agency - Energy (ARPA-E) was established

118

DOE Funds 21 Research, Development and Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development and Demonstration Projects for up to 78 Million to Promote Enhanced Geothermal Systems DOE Funds 21 Research, Development and Demonstration Projects for up to 78...

119

Research Projects to Convert Captured CO2 Emissions to Useful...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 06, 2010 Research Projects to Convert Captured CO2 Emissions to Useful Products Six Projects Selected by DOE Will Further Important Technologies for Helping Reduce CO2...

120

Los Alamos Lab: MPA: Materials Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Research Highlights Materials Research Highlights Advances in fuel cells (pdf) R. Borup (MPA-11) Innovative materials physics and applications (pdf) Metallic nanolayered composites exhibit ultra-high strength and ductility (pdf) N.A. Mara (MST-6); D. Bhattacharyya (MPA-CINT); P. Dickerson (MST-6); J.K. Baldwin (MPA-CINT); R.G. Hoagland (MST-8); A. Misra (MPA-CINT) Frontiers in thermoacoustic refrigeration and mixture separation (pdf) S. Backhaus (MPA-10); D. Geller (AET-3); B. Ward (AET-6); G. Swift (MPA-10) Submicron resolution ferromagnetic resonance microscopy using scanned probe MRFM (pdf) E. Nazaretski and R. Movshovich (MPA-10) Nanowire technologies for radiation detection applications (pdf) G. Brown (MST-8); T. Picraux (MPA-CINT); M. Hoffbauer (C-ADI) Development of improved radiation detector materials (pdf)

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Los Alamos Lab: MST: Materials Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Research Highlights Materials Research Highlights Advances in fuel cells (pdf) R. Borup (MPA-11) Innovative materials physics and applications (pdf) Metallic nanolayered composites exhibit ultra-high strength and ductility (pdf) N.A. Mara (MST-6); D. Bhattacharyya (MPA-CINT); P. Dickerson (MST-6); J.K. Baldwin (MPA-CINT); R.G. Hoagland (MST-8); A. Misra (MPA-CINT) Frontiers in thermoacoustic refrigeration and mixture separation (pdf) S. Backhaus (MPA-10); D. Geller (AET-3); B. Ward (AET-6); G. Swift (MPA-10) Submicron resolution ferromagnetic resonance microscopy using scanned probe MRFM (pdf) E. Nazaretski and R. Movshovich (MPA-10) Nanowire technologies for radiation detection applications (pdf) G. Brown (MST-8); T. Picraux (MPA-CINT); M. Hoffbauer (C-ADI) Development of improved radiation detector materials (pdf)

122

Building Technologies Office: Cold Climate Heat Pump Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Cold Climate Heat Pump Cold Climate Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Cold Climate Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Cold Climate Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Cold Climate Heat Pump Research Project on Google Bookmark Building Technologies Office: Cold Climate Heat Pump Research Project on Delicious Rank Building Technologies Office: Cold Climate Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Cold Climate Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

123

Magma Energy Research Project. Project summary, July 1, 1974--June 30, 1975  

DOE Green Energy (OSTI)

The objective of the Magma Energy Research Project now under way at Sandia Laboratories is to investigate the feasibility of extracting energy directly from deeply buried circulating magma sources. Project plans describe a concept whereby a fully closed heat exchanger system is inserted directly into such a magma source to allow the heat energy to be brought to the surface with minimal environmental impact. A summary of previous efforts is given. The achievements and future plans for source location and definition, source tapping, magma characterization, magma materials compatibilities studies, and energy extraction studies are outlined. (LBS)

Colp, J.L.; Davis, M.J.; Graeber, E.J.; Hardee, H.C.

1976-03-01T23:59:59.000Z

124

NETL: Utilization Projects - Novel Materials Development Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

include: (1) Characterize different fractions of gasification byproducts from the Polk Power plant from a materials development point of view. These characterization studies...

125

Bio-based Thermochromic Intelligent Roof Coating Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

based Thermochromic Intelligent Roof based Thermochromic Intelligent Roof Coating Research Project Bio-based Thermochromic Intelligent Roof Coating Research Project The Department of Energy is conducting research into bio-based thermochromic intelligent roof coatings. The coatings are developed from waste cooking oil. Project Description This project seeks to develop and demonstrate a waste cooking oil-based thermochromic smart roof coating technology that will adjust light transmission in response to temperature changes. This will reduce energy demands for temperature regulation. The project will also study the effects of different oil sources on coating properties. Project Partners This project is being undertaken between the Department of Energy and United Environment & Energy. Project Goals

126

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Selected to Advance Innovative Materials for Fossil Energy Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

127

The virtual firefly: an interdisciplinary undergraduate research project  

Science Conference Proceedings (OSTI)

This paper describes an interdisciplinary undergraduate research project involving students and faculty from the Biology and Computer Science departments at our college. The goal of the project is to conduct innovative biological research using a unique ...

Kevin Austin; Julie Dunlap; Matthew Glover; Joshua McKinnon; Duane Mohney; Michael Taft; Brian Vysocky; Christopher Cratsley

2005-05-01T23:59:59.000Z

128

A presentation by the Advanced Research Projects Agency - Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities A presentation by the Advanced Research Projects Agency -...

129

Project Plan Remove Special Nuclear Material (SNM) from Plutonium Finishing Plant (PFP) Project  

Science Conference Proceedings (OSTI)

This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove SNM Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev.0. This project plan is the top-level definitive project management document for the PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baseline to manage the execution of the Remove SNM Materials project. Any deviation to the document must be authorized through the appropriate change control process. The Remove SNM Materials project provides the necessary support and controls required for DOE-HQ, DOE-RL, BWHC, and other DOE Complex Contractors the path forward to negotiate shipped/receiver agreements, schedule shipments, and transfer material out of PFP to enable final deactivation.

BARTLETT, W.D.

1999-09-14T23:59:59.000Z

130

Map of Geologic Sequestration Training and Research Projects  

Energy.gov (U.S. Department of Energy (DOE))

A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

131

Advanced research workshop: nuclear materials safety  

SciTech Connect

The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectiveÑthe safe and secure storage and disposition of excess fissile nuclear materials.

Jardine, L J; Moshkov, M M

1999-01-28T23:59:59.000Z

132

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

The Alaska North Slope Stratigraphic Test Well The Alaska North Slope Stratigraphic Test Well image showing Donyon Rig Photo courtesy Doyon Drilling Inc Project Background Participants Status Report Maps of Research Area Science Plan Photo Gallery Well log Data From BP-DOE-US "Mount Elbert" Test Is Now Available. Digital well log data acquired at the February 2007 gas hydrates test well at Milne Point, Alaska are now available. Data include Gamma ray, neutron porosity, density porosity, three-dimensional high resolution resistivity, acoustics including compressional- and shear-wave data and nuclear magnetic resonance. A listing of the available data, as well as instructions on obtaining the data, can be found on the NETL Gas Hydrates Website . The drilling of the “Mt. Elbert prospect” within the Milne Point Unit

133

High Efficiency Low Emission Supermarket Refrigeration Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Low Emission Supermarket High Efficiency Low Emission Supermarket Refrigeration Research Project High Efficiency Low Emission Supermarket Refrigeration Research Project The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies. Project Description The project involves the development of a supermarket refrigeration system that can reduce greenhouse gas emissions and energy consumption when compared to existing systems. The challenge is to design a system that is capable of achieving low refrigerant leak rates while significantly reducing both the energy consumption and the refrigerant charge size. Project Partners Research is being undertaken between DOE and Oak Ridge National Laboratory. Project Goals

134

Major Facilities for Materials Research and Related Disciplines  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities for Materials Research and Related Disciplines Major Materials Facilities Committee Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, DC 1984 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee con- sisting of members of the National Academy of Sciences, the National

135

Projective behaviour of nur: quantitative experimental research  

Science Conference Proceedings (OSTI)

The paper presents the results of the experiment on the projective meaning of nur (German: only). The data from German shows that the prejacent of nur projects easily out of counterfactual if-clauses, whereas its projective ... Keywords: counterfactual and indicative conditionals, presupposition projection, semantics of nur (only) and auch (also)

Agata Maria Renans

2011-12-01T23:59:59.000Z

136

Technology Transfer: Success Stories: Industry-Lab Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

137

Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995  

Science Conference Proceedings (OSTI)

This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

NONE

1996-04-01T23:59:59.000Z

138

NETL: News Release - DOE Launches Project to Improve Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Japanese counterparts in producing stronger materials for ultra-high temperature coal-fired power plants, the Department of Energy is preparing to fund a new research...

139

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT ENERGY for: California Energy Commission Prepared by: San Diego State Research Foundation #12 Energy Commission Raquel E. Kravitz Program Manager Fernando Pina Office Manager Energy Systems Research

140

January 2007 Materials and services provided for projects that  

E-Print Network (OSTI)

January 2007 SERVICES Materials and services provided for projects that use the laboratory: fish the health of freshwater ecosystems #12;INTRODUCTION TO THE LAB The Aquatic Sciences Laboratory feeding fish health surveillance, external microscopic exams and ectoparasite diagnosis facilities

Lawrence, Rick L.

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Crosscutting Research Sensors and Controls Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

CROSSCUTTING RESEARCH PROGRAM The National Energy Technology Laboratory (NETL) Crosscutting Research Program is an applied research effort with a multi-disciplinary approach aimed...

142

NREL: Wind Research - New England Wind Energy Education Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Available Online January 14, 2013 From 2009 through 2011, the New England Wind Energy Education Project (NEWEEP), a project funded by the U.S. Department of Energy's...

143

Materials Research Needs for Near-Term Nuclear Reactors  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Material

John R. Weeks

144

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

current research projects are problems that demand scientific attention by virtue of their considerable technological significance in the energy

Authors, Various

2013-01-01T23:59:59.000Z

145

Projects Selected to Advance Innovative Materials for Fossil Energy Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selected to Advance Innovative Materials for Fossil Energy Selected to Advance Innovative Materials for Fossil Energy Power Systems Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems September 14, 2010 - 1:00pm Addthis Washington, DC - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent

146

NREL: Wind Research - Wind Project Development Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Development Updates A 2.3 megawatt Siemens wind turbine nacelle on route to the Record Hill Wind project in Roxbury, Maine. January 14, 2013 As a result of the...

147

Cold Climate Heat Pump Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Cold Climate Heat Pump Research Project Emerging Technologies » Cold Climate Heat Pump Research Project Cold Climate Heat Pump Research Project The U.S. Department of Energy is currently conducting research into cold climate heat pumps. The research is designed to overcome technical and economic barriers that limit market penetration in cold climates. Project Description This project seeks to develop a high-performance, cold climate heat pump technology using multi-stage compressor technology. Several vapor compression cycle configurations are being examined and optimized for superior performance. Target performance and preliminary results will be used to perform a detailed market assessment in order to investigate the national impact and potential market penetration. Project Partners Research is being undertaken through a cooperative research and development

148

Materials and Molecular Research Division annual report, 1978  

DOE Green Energy (OSTI)

Research is presented concerning materials science including metallurgy and ceramics; solid state physics; and materials chemistry; chemical sciences covering radiation science, chemical physics, and chemical energy; nuclear science; coal research; solar energy; magnetic fusion, conservation; and environmental research. (FS)

Not Available

1978-01-01T23:59:59.000Z

149

Seven Projects Aimed at Advancing Coal Research Selected for DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seven Projects Aimed at Advancing Coal Research Selected for DOE's Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program May 13, 2010 - 1:00pm Addthis Washington, DC -- Seven projects aimed at advancing coal research and development while providing research exposure to a new generation of scientists and engineers have been selected to participate in the U.S. Department of Energy's (DOE) University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coal conversion and utilization, by-product utilization, and technological development for advanced energy systems. These advanced systems -- efficient, ultra-clean energy plants -- are

150

Geologic Sequestration Training and Research Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Sequestration Training and Research Projects Geologic Sequestration Training and Research Projects Geologic Sequestration Training and Research Projects In September 2009, the U.S. Department of Energy announced more than $12.7 million in funding for geologic sequestration training and research projects. The 43 projects will offer training opportunities for graduate and undergraduate students that will provide the human capital and skills required for implementing and deploying carbon capture and storage technologies. The results of these projects (detailed below) will make a vital contribution to the scientific, technical, and institutional knowledge necessary to establish frameworks for the development of commercial CCS projects. These projects will produce a trained workforce necessary for the

151

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT SMART GRID ROADMAP FOR RENEWABLES INTEGRATION JULY 2013 CEC5002010029 Prepared for: California Energy Commission Prepared by: California Energy Commission Dave Michel Project Manager Mike Gravely Office Manager Energy Efficiency

152

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT SMUD OFFPEAK OVERCOOLING PROJECT DECEMBER 2007 CEC5002013066 Prepared for: California Energy Commission Prepared by: Davis Energy Group #12; PREPARED BY: Primary Author(s): David Springer Davis Energy Group Davis, CA

153

EPRI Materials Management Matrix Project Gap and Opportunity Assessment: Revision 0  

Science Conference Proceedings (OSTI)

An opportunity exists to leverage operating plant experience by proactively identifying and addressing materials performance issues for advanced light water reactor (ALWR) designs currently under consideration for new construction. The Electric Power Research Institute's (EPRI's) Advanced Nuclear Technology (ANT) program Materials Management Matrix (MMM) project was initiated to identify important materials performance issues. This report provides a distillation of the important gaps and opportunities id...

2011-12-01T23:59:59.000Z

154

Crow Nation Students Participate in Algae Biomass Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation Students Participate in Algae Biomass Research Project Thanks in part to DOE funding and technical support, student interns from the Crow Tribe in Montana had the opportunity to participate in an algae biomass research project that could help prepare them for cleantech jobs and pave the way for their Tribe to produce clean, renewable energy. The Cultivation and Characterization of Oil Producing Algae Internship placed students in a laboratory alongside established researchers to study local algae samples and evaluate their possible use in energy applications. The project focused on an integrated coal-to-liquid (ICTL) technology

155

Crow Nation Students Participate in Algae Biomass Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project Crow Nation Students Participate in Algae Biomass Research Project October 22, 2012 - 3:44pm Addthis Crow Nation Students Participate in Algae Biomass Research Project Thanks in part to DOE funding and technical support, student interns from the Crow Tribe in Montana had the opportunity to participate in an algae biomass research project that could help prepare them for cleantech jobs and pave the way for their Tribe to produce clean, renewable energy. The Cultivation and Characterization of Oil Producing Algae Internship placed students in a laboratory alongside established researchers to study local algae samples and evaluate their possible use in energy applications. The project focused on an integrated coal-to-liquid (ICTL) technology

156

FACT SHEET: Clean Coal University Research Awards and Project Descriptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: Clean Coal University Research Awards and Project FACT SHEET: Clean Coal University Research Awards and Project Descriptions FACT SHEET: Clean Coal University Research Awards and Project Descriptions As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced on June 6, 2012, that nine universities have won awards for research projects that will continue to support innovation and development of clean coal technologies. This fact sheet includes detailed project descriptions for each university-led research award. FACT SHEET_ Clean Coal University Project Descriptions_0.pdf More Documents & Publications University Coal Research Program 2013 Selections Report on Assessment of Environmentally--Assisted Fatigue for LWR Extended Service Conditions FAQS Reference Guide - Mechanical Systems

157

Research Projects at the CECM: Document Vault  

E-Print Network (OSTI)

Document Vault. The Vault Interface. The Document Vault project is intended to provide the basis for the flexible creation and use of on-line, multi-media ...

158

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network (OSTI)

staff at Southern California Edison and  Bonneville Power by Southern California Edison for this project.   Similar that Southern California Edison is initiating such tests 

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

159

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization project has resulted in a characterization of two large prospective methane hydrate accumulations (or trends); the Eileen Trend, which underlies but extends well...

160

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Participants The organizations involved in the DOENETL-funded Alaska North Slope Gas Hydrate Reservoir Characterization project, of which the drilling of the Mt. Elbert...

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ZEBRAlliance Research Project Shows Promising Results | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

on the homes. The project looked at the efficiency of two technologies: a foundation heat exchanger and a ground- source integrated heat pump. Other experiments were conducted...

162

Research Projects Addressing Technical Challenges to Environmentally...  

NLE Websites -- All DOE Office Websites (Extended Search)

projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously reducing environmental footprints and risks,...

163

Research Projects to Convert Captured CO2 Emissions to Useful...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The selected projects are described below: Research Triangle Institute (Durham, N.C.)--RTI will assess the feasibility of producing valuable chemicals, such as carbon monoxide,...

164

Green In Silico Project - Evolving Scientific Research out of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Green In Silico Project - Evolving Scientific Research out of the Lab into the Data Center - Environmental Benefits and Challenges of Scientific Computing Speaker(s): Peter James...

165

Energy Research Project, Review (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

identify, monitor, and evaluate research studies and demonstration projects pertaining to alternative energy and energy conservation systems and methodologies, including: (1) solar...

166

Super Building Insulation by CO2 Foaming Process Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Super Building Insulation by CO2 Foaming Emerging Technologies » Super Building Insulation by CO2 Foaming Process Research Project Super Building Insulation by CO2 Foaming Process Research Project The Department of Energy is currently researching the development of building superinsulation through a carbon dioxide (CO2) foaming process. Project Description This project seeks to develop building super insulation through a carbon dioxide foaming process that does not use hydrofluorocarbons (HFCs), and which produces insulation with a high R-value. Project Partners Research is being undertaken between the Department of Energy and The Industrial Science & Technology Network. Project Goals The goal of this project is to develop advanced insulation without HFC, and to achieve a competitive processing cost for CO2 foaming technology.

167

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

168

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF LARVAL Coastal Boundary Layer Flow SEPTEMBER 2007 CEC5002013049 Prepared for: California Energy Commission Energy Commission Joe O'Hagan Contract Manager Linda Spiegel Office Manager Energy Generation Research

169

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT Demonstration: California Energy Commission Prepared by: Electric Power Research Institute #12; Prepared by: Primary: California Energy Commission Jamie Patterson Contract Manager Fernando Pina Office Manager Energy Efficiency

170

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF STEAM5002013092AP Prepared for: California Energy Commission Prepared by: University of California #12 Energy Commission David Effross Contract Manager Linda Spiegel Office Manager Energy Generation Research

171

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT AUTOMATED ROOFTOP CEC5002013042 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Energy Commission Brad Meister Contract Manager Virginia Lew Office Manager Energy Efficiency Research

172

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT RESEARCH ROADMAP Energy Commission Prepared by: California Institute for Energy and Environment #12; Prepared National Laboratory One Cyclotron Road, Berkeley, CA 94720 Energy Commercialization, LLC 375 Cameron Circle

173

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Commission DC Direct Current DUA Distributed Utility Associates EPRI Electric Public ResearchPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT SITRAS® STATIC ENERGY STORAGE (SES) SYSTEM DEMONSTRATION PROGRAM Prepared for: California Energy Commission Prepared by

174

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT ENERGY for: California Energy Commission Prepared by: San Diego State Research Foundation #12: California Energy Commission Raquel Kravitz Program Manager Fernando Pina Office Manager Energy Systems

175

NETL: News Release - DOE Research Projects to Examine Promising...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage 75.5 Million in CCS Research Supported by Recovery Act Funds Washington, D.C. - The Department of...

176

Materials and Molecular Research Division annual report, 1977  

DOE Green Energy (OSTI)

Progress in research in structure of materials, mechanical, and physical properties, solid state physics, and materials chemistry, including chemical structure, high temperature and surface chemistry, is reported. (FS)

Not Available

1977-01-01T23:59:59.000Z

177

NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the area of polycrystalline thin-film materials and devices. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

178

Hoagland selected as a new Materials Research Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoagland selected as Materials Research Society Fellow Hoagland selected as Materials Research Society Fellow Hoagland selected as a new Materials Research Society Fellow Hoagland has made notable contributions in both experimental and computational materials research. July 9, 2013 Richard G. Hoagland Richard G. Hoagland The Materials Research Society (MRS) is an organization of materials researchers that promotes the advancement of interdisciplinary materials research to improve the quality of life. Richard G. Hoagland of the Laboratory's Materials Science in Radiation and Dynamic Extremes group has been honored with the rank of Fellow by the Materials Research Society (MRS). Hoagland is cited for "outstanding contributions in fracture mechanics and atomistic modeling of dislocation mechanisms of deformation and fracture of metals, ceramics and nanolayered

179

FSM Research Administrators' Workshop Series Cost Principles for Sponsored Projects  

E-Print Network (OSTI)

FSM Research Administrators' Workshop Series Cost Principles for Sponsored Projects October 4, 2012 degree of accuracy #12;Examples of Direct Costs · Salaries and fringe benefits of project personnel, unallowable. Other factors affecting allowability of costs: · Reasonable · Allocable to the proposed project

Chisholm, Rex L.

180

Cost Estimation for Cross-organizational ERP Projects: Research Perspectives  

E-Print Network (OSTI)

Cost Estimation for Cross-organizational ERP Projects: Research Perspectives Maya Daneva, Roel There are many methods for estimating size, effort, schedule and other cost aspects of IS projects, but only one project cost should include. 1. Introduction The integration strategies of today's networked organizations

Wieringa, Roel

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Next Generation Nuclear Plant Materials Research and Development Program Plan  

SciTech Connect

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

G.O. Hayner; R.L. Bratton; R.N. Wright

2005-09-01T23:59:59.000Z

182

ATTACHMENT CATEGORICAL EXCLUSION FOR SMALL-SCALE RESEARCH AND DEVELOPMENT PROJECTS USING NANOSCALE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CATEGORICAL EXCLUSION FOR SMALL-SCALE RESEARCH AND DEVELOPMENT PROJECTS USING NANOSCALE MATERIALS, PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND,WASH[NGTON Proposed Adion: The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) proposes to conduct indoor small-scale research and development projects and small-scale pilot projects using nanoscale materials. Nanoscale materials are engineered materials consisting of, or containing structures of between 1 and 100 nanometers (nm) that make use of properties unique to nanoscale forms of materials. Location of Action: The proposed action would occur on the Pacific Northwest National Laboratory (PNNL) Site and in the vicinity ofPNNL facilities in the State of Washington. Description of the Proposed Action:

183

Sensors and Controls Characteristics Reference Guide Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensors and Controls Characteristics Sensors and Controls Characteristics Reference Guide Research Project Sensors and Controls Characteristics Reference Guide Research Project The U.S. Department of Energy (DOE) is currently conducting research into a reference guide about building sensors and controls characteristics. Project Description This project seeks to develop a Sensors and Controls Characteristics Reference Guide through a series of market engagements with building researchers, manufacturers, and users. When completed, the reference will serve as a guide to develop and deploy low-cost sensor systems defined by high-value case studies, as well as develop and deploy a "controls" open-source platform that enables validation and adoption of algorithms. Project Partners Research is being undertaken by DOE, Pacific Northwest National Laboratory,

184

Bold, Transformational Energy Research Projects Win $151 Million in Funding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bold, Transformational Energy Research Projects Win $151 Million in Bold, Transformational Energy Research Projects Win $151 Million in Funding Bold, Transformational Energy Research Projects Win $151 Million in Funding October 26, 2009 - 12:00am Addthis San Francisco, Calif. - The Department of Energy today announced major funding for 37 ambitious research projects - including some that could allow intermittent energy sources like wind and solar to provide a steady flow of power, or use bacteria to produce automotive fuel from sunlight, water and carbon dioxide. The $151 million in funding is being awarded through the Department's recently-formed Advanced Research Projects Agency-Energy ("ARPA-E"). ARPA-E's mission is to develop nimble, creative and inventive approaches to transform the global energy landscape while advancing America's technology

185

SOLERAS - University Research Project. Progress report 2  

Science Conference Proceedings (OSTI)

Progress to date on each of the research efforts in direct solar energy applications at public and private institutions of higher education and research in the United States is addressed. Some research topics covered include: concentrating optics for PV conversion; wind power; solar ponds; photosynthesis; amorphous silicon alloys; passive cooling; crystal growth of gallium arsenides; and solar insolation. The period of work covered by these reports is June 1984 through February 1985.

Not Available

1985-03-01T23:59:59.000Z

186

Materials Research Support at the Office of Basic Energy Sciences  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Federal Funding Workshop. Presentation Title, Materials Research Support at ...

187

Laboratory E133 - Material Science and Hydrogen Research ...  

Science Conference Proceedings (OSTI)

... E137 | E138. Laboratory E133 - Material Science and Hydrogen Research Laboratory. Laboratory Contacts. Name: Kimberly ...

2013-09-05T23:59:59.000Z

188

Materials Research Applied to National Needs (MARANN) in Honor ...  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... About this Symposium. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium, Materials Research Applied to National Needs ...

189

Materials research to advance fossil energy technologies at the NETL  

Science Conference Proceedings (OSTI)

A brief overview of materials research being carried out by the National Energy Technology Laboratory to advance fossil energy technologies.

Powell, C.A.

2006-10-18T23:59:59.000Z

190

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network (OSTI)

that supports the Energy Systems Integration Program throughResearch  Energy Systems Integration  Environmentally to PIER’s Energy Systems Integration Program.   For more 

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

191

Geothermal project summaries. Geothermal energy research, development and demonstration program  

DOE Green Energy (OSTI)

Summaries of all Division of Geothermal Energy supported projects for which contracts have been executed are compiled. Each summary includes pertinent statistical data for that project and an abstract summarizing the project plans and accomplishments. The projects summarized fall into six categories: engineering research and development, resource exploration and assessment, hydrothermal technology applications, advanced technology applications, utilization experiments, and environmental control and institutional studies. (MHR)

Not Available

1976-09-01T23:59:59.000Z

192

Facilities | Materials Research Laboratory at Illinois  

NLE Websites -- All DOE Office Websites (Extended Search)

at the Nanoscale Programming Function via Soft Materials Materials for Extreme Irradiation Environments Directory Faculty Staff Operations Safety News MRL Newsletters Events...

193

Magma Energy Research Project, FY 1979 annual progress report  

DOE Green Energy (OSTI)

The objective of the Magma Energy Research Project is to define the scientific feasibility of extracting energy from magma bodies. Activities to accomplish the objective are divided into five tasks: resource location and identification; source tapping; magma characterization; materials compatibility; and energy extraction. The program activities of FY 1979 are summarized here according to the individual tasks. Major emphasis of the program in the last year was on field experimentation with the United States Geological Survey in geoscience and technological studies at the Kilauea Iki lava lake. Other major efforts included installation of the magma simulation facility and magma-metal compatibility studies. The Magma Energy Advisory Panel also met during this period. Efforts and results are summarized.

Colp, J.L.

1979-12-01T23:59:59.000Z

194

First-Of-Its-Kind Search Engine Will Speed Materials Research | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-Of-Its-Kind Search Engine Will Speed Materials Research First-Of-Its-Kind Search Engine Will Speed Materials Research First-Of-Its-Kind Search Engine Will Speed Materials Research November 3, 2011 - 1:05pm Addthis Washington, D.C. - Researchers from the Department of Energy's (DOE's) Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT) jointly launched today a groundbreaking new online tool called the Materials Project, which operates like a "Google" of material properties, enabling scientists and engineers from universities, national laboratories and private industry to accelerate the development of new materials, including critical materials. "By accelerating the development of new materials, we can drive discoveries that not only help power clean energy, but also are used in

195

First-Of-Its-Kind Search Engine Will Speed Materials Research | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-Of-Its-Kind Search Engine Will Speed Materials Research First-Of-Its-Kind Search Engine Will Speed Materials Research First-Of-Its-Kind Search Engine Will Speed Materials Research November 3, 2011 - 1:05pm Addthis Washington, D.C. - Researchers from the Department of Energy's (DOE's) Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT) jointly launched today a groundbreaking new online tool called the Materials Project, which operates like a "Google" of material properties, enabling scientists and engineers from universities, national laboratories and private industry to accelerate the development of new materials, including critical materials. "By accelerating the development of new materials, we can drive discoveries that not only help power clean energy, but also are used in

196

NETL: Utilization Projects - Western Research Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Applications Background Montana-Dakota Utilities operates fluidized bed combustor burning North Dakota lignite in a sand bed. The ash material can't be used in conventional...

197

American kestrel (Falco sparverius) GIS research project  

Science Conference Proceedings (OSTI)

Nest box locations are sometimes difficult to locate, even if you know where to look. It's even harder if you only know the general vicinity to look in. My project will give precise locations, within 20 ft. sometimes, of 126 American kestrel (Falco sparverius) ...

Scott Morrison; Sari Hou

2004-05-01T23:59:59.000Z

198

Exploratory case study research: Outsourced project failure  

Science Conference Proceedings (OSTI)

Context: IT plays an increasingly strategic role in the business performance of organizations, however, the development of strategic IT systems involves a high degree of risk and outsourcing the development of such systems increases the risk. Objective: ... Keywords: Case study methodology, Outsourced software development, Project failure, Risk framework, Software development risk factors

J. M. Verner; L. M. Abdullah

2012-08-01T23:59:59.000Z

199

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

200

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Low-GWP Refrigerants Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Low-GWP Refrigerants Research Project Emerging Technologies » Low-GWP Refrigerants Research Project Low-GWP Refrigerants Research Project The U.S. Department of Energy is currently conducting research into low global warming potential (GWP) refrigerants. As concerns about climate change intensify, it is becoming increasingly clear that suitable low-GWP refrigerants will be needed for both new and existing residential and commercial heating, ventilation, air conditioning, and refrigeration (HVAC&R) equipment. Project Description This project seeks to develop alternative refrigerants for HVAC&R equipment. The overall environmental impacts of alternative refrigerants will be assessed using a life cycle climate performance model that accounts for direct emissions associated with refrigerant leaks and indirect

202

University Teams Lead Innovative Solar Research Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Teams Lead Innovative Solar Research Projects University Teams Lead Innovative Solar Research Projects University Teams Lead Innovative Solar Research Projects August 28, 2012 - 2:55pm Addthis A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? The Energy Department is investing in two university-led projects to improve the performance of concentrated solar power systems. Research teams at the University of California, Los Angeles and the University of Arizona are launching projects aimed at improving the performance and lowering costs of solar energy systems.

203

University Teams Lead Innovative Solar Research Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Innovative Solar Research Projects Lead Innovative Solar Research Projects University Teams Lead Innovative Solar Research Projects August 28, 2012 - 2:55pm Addthis A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya/Sandia National Laboratory. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? The Energy Department is investing in two university-led projects to improve the performance of concentrated solar power systems. Research teams at the University of California, Los Angeles and the University of Arizona are launching projects aimed at improving the performance and lowering costs of solar energy systems.

204

Secretary Chu Announces $130 Million for Advanced Research Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $130 Million for Advanced Research Projects Secretary Chu Announces $130 Million for Advanced Research Projects Secretary Chu Announces $130 Million for Advanced Research Projects April 20, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Department of Energy Secretary Steven Chu announced today that up to $130 million from the Advanced Research Projects Agency-Energy (ARPA-E) will be made available to develop five new program areas that could spark critical breakthrough technologies and secure America's energy future. Today's funding opportunity announcement comes two months after ARPA-E announced six of its projects have secured more than $100 million in outside private capital investment - indications that the business community is eager to invest in truly innovative solutions to the country's energy challenges.

205

Secretary Chu Announces $130 Million for Advanced Research Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million for Advanced Research Projects 30 Million for Advanced Research Projects Secretary Chu Announces $130 Million for Advanced Research Projects April 20, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Department of Energy Secretary Steven Chu announced today that up to $130 million from the Advanced Research Projects Agency-Energy (ARPA-E) will be made available to develop five new program areas that could spark critical breakthrough technologies and secure America's energy future. Today's funding opportunity announcement comes two months after ARPA-E announced six of its projects have secured more than $100 million in outside private capital investment - indications that the business community is eager to invest in truly innovative solutions to the country's energy challenges. "ARPA-E is unleashing American innovation to strengthen America's global

206

Carbon Dioxide Heat Pump Water Heater Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Emerging Technologies » Carbon Dioxide Heat Pump Water Heater Research Project Carbon Dioxide Heat Pump Water Heater Research Project The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Carbon dioxide is a refrigerant with a global warming potential (GWP) of 1. The CO2 heat pump water heater research seeks to develop an improved life cycle climate performance compared to conventional refrigerants. For example, R134a, another type of refrigerant, has a GWP of 1,300. Project Description This project seeks to develop a CO2-based heat pump water heater (HPWH)

207

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Well - Location Maps Well - Location Maps Maps of Prospect The Mt. Elbert prospect is located within the Milne Point Unit on Alaska’s North Slope. The Milne Point field, one of a number of distinct oil fields on the North Slope, extends offshore into the Beaufort Sea and is situated north of the large Kuparuk Field and northwest of the well known Prudhoe Bay Field. Map showing project location Map showing Milne Point Unit on Alaska’s North Slope The work done under the “Alaska North Slope Gas Hydrate Reservoir Characterization” project has resulted in a characterization of two large prospective methane hydrate accumulations (or trends); the Eileen Trend, which underlies but extends well beyond the Milne Point field, and the Tarn Trend to the west of the Kuparuk Field.

208

Materials Science and Engineering Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory...

209

Materials Research Highlights Archive | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Archive VULCAN Fires Up Research Across a Range of User Problems The SNS engineering diffractometer, VULCAN, only recently completed commissioning, although it...

210

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

211

Magma Energy Research Project, FY80 annual progress report  

SciTech Connect

The technical feasibility of extracting energy from magma bodies is explored. Five aspects of the project are studied: resource location and definition, source tapping, magma characterization, magma/material compatibility, and energy extraction.

Colp, J.L. (ed.)

1982-04-01T23:59:59.000Z

212

Geothermal Energy Research and Development Program; Project Summaries  

Science Conference Proceedings (OSTI)

This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

None

1994-03-01T23:59:59.000Z

213

Manhattan Project: More Uranium Research, 1942  

Office of Scientific and Technical Information (OSTI)

Cubes of uranium metal, Los Alamos, 1945 MORE URANIUM RESEARCH Cubes of uranium metal, Los Alamos, 1945 MORE URANIUM RESEARCH (1942) Events > Difficult Choices, 1942 More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 During the first half of 1942, several routes to a bomb via uranium continued to be explored. At Columbia University, Harold Urey worked on the gaseous diffusion and centrifuge systems for isotope separation in the codenamed SAM (Substitute or Special Alloy Metals) Laboratory. At Berkeley, Ernest Lawrence continued his investigations on electromagnetic separation using the "calutron" he had converted from his thirty-seven-inch cyclotron. Phillip Abelson, who had moved from the Carnegie Institution and the National Bureau of Standards to the Naval Research Laboratory, continued his work on liquid thermal diffusion but with few positive results, and he had lost all contact with the S-1 Section of the Office of Scientific Research and Development. Meanwhile Eger Murphree's group hurriedly studied ways to move from laboratory experiments to production facilities.

214

Coupled Site Characterization and Foundation Analysis Research Project  

E-Print Network (OSTI)

Coupled Site Characterization and Foundation Analysis Research Project: Further Research into the Rational Selection of for Bearing Capacity Analysis under Drained-Strength Conditions Manhattan College Research Report No. CE/GE-00-3 by John S. Horvath, Ph.D., P.E. Professor of Civil Engineering Manhattan

Horvath, John S.

215

Department of Materials Research in Progress  

E-Print Network (OSTI)

Todorov Queen's University, Belfast Mr Shunichiro Ueno Coal Ash Limited, UK RESEARCH FELLOWS Dr Heiko

216

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Graphite Research Reactor Documents Brookhaven Graphite Research Reactor Documents Feasibility Study (PDF) Proposed Remedial Action Plan (PDF) Record of Decision (PDF) RD/RA Work Plan for the BGRR Pile (PDF) RD/RA Work Plan for the Bioshield (PDF) RD/RA Work Plan for the BGRR Cap (PDF) Brookhaven Graphite Research Reactor Explanation of Significant Differences (PDF) (4/12) NYSDEC Approval Letter for BGRR ESD (PDF) (5/12) USEPA Approval Letter for BGRR ESD (PDF) (6/12) DOE BGRR ESD Transmittal Letter (PDF) (7/12) Remedial Design Implementation Report (PDF) (12/11) Completion Reports Removal of the Above-Ground Ducts and Preparation of the Instrument House (708) for Removal (PDF) - April 2002 Below-Ground Duct Outlet Air Coolers, Filters and Primary Liner Removal (PDF) - April 2005 Canal and Deep Soil Pockets Excavation and Removal (PDF) - August

217

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

218

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

219

Department of Materials Research in Progress  

E-Print Network (OSTI)

& Engineering Materials for nuclear energy system, fission reactors, nuclear fuels, energy policy solidification; microgravity processing. Xudong Wang Assistant Professor, Materials Sci & Eng Nanomaterials and photoelectrochemical devices; nanomaterials for energy storage; nanoelectronics; nano-biomaterials. Jay Samuel Senior

Paxton, Anthony T.

220

Solid oxide materials research accelerated electrochemical testing  

DOE Green Energy (OSTI)

The objectives of this work were to develop methods for accelerated testing of cathode material for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

Armstrong, T.R.; Windisch, C.; Arey, B.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EM Research - Argonne National Laboratories, Materials Sicence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Emerging Materials Display 5 10 15 20 25 30 50 100 All Title EM-Heating Effects EM- Electronic Valves EM-Breaking Up EM-Exploring Complexity EM-Narrow Phase Fields EM...

222

Minnesota Agripower Project, Task IV research report  

DOE Green Energy (OSTI)

Economic analysis is being conducted by the Department of Applied Economics in support of Minnesota Alfalfa Producer`s development of alfalfa as a dedicated biomass feedstock for energy production. University Researchers have assisted in the development and implementation of inventory control systems and procedures. This report lists the tasks for which researchers are currently finalizing economic analysis. The tasks encompass three main areas: (1) optimization of feedstock transportation system, (2) analysis of market potential for new alfalfa products, and (3) total systems analysis.

Fruin, J.; Tiffany, D.

1997-10-30T23:59:59.000Z

223

Autonomous Research Systems for Materials Science  

Science Conference Proceedings (OSTI)

Dictionary-based Diffraction Microscopy for Materials · Effective Extraction of Both Impurity Diffusion Coefficients and Interdiffusion Coefficients for Diffusivity ...

224

NETL: News Release - Seven Projects Aimed at Advancing Coal Research  

NLE Websites -- All DOE Office Websites (Extended Search)

May 13, 2010 May 13, 2010 Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program Department's Longest Running Student-Teacher Initiative Provides Research Exposure for Future Scientists and Engineers Washington, D.C. - Seven projects aimed at advancing coal research and development while providing research exposure to a new generation of scientists and engineers have been selected to participate in the U.S. Department of Energy's (DOE) University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coal conversion and utilization, by-product utilization, and technological development for advanced energy systems. These advanced systems - efficient, ultra-clean energy plants - are envisioned to co-produce electric power, fuels, chemicals and other high-value products from coal with near-zero emissions, including greenhouse gases such as carbon dioxide.

225

Highly Energy Efficient Wall Systems Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highly Energy Efficient Wall Systems Highly Energy Efficient Wall Systems Research Project Highly Energy Efficient Wall Systems Research Project The Department of Energy is currently conducting research into highly energy efficient wall systems. Walls with high R-values are better insulators, and their development can help buildings come closer to having zero net energy consumption. Project Description This project seeks to develop a commercially viable wall system up to R-40 through integration of vacuum technology with the exterior insulated façade system (EIFS). Dow Corning will develop a wall system configuration of expanded polystyrene vacuum isolation panels that can be specified for R-values of 20, 30, and 40. This project also aims to develop a unitized protection system of vacuum isolation panels and to validate current code

226

Energy Department Announces Five Research Projects to Improve Mining  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five Research Projects to Improve Five Research Projects to Improve Mining Efficiency Energy Department Announces Five Research Projects to Improve Mining Efficiency May 5, 2005 - 12:42pm Addthis WASHINGTON, DC - As part of the Bush Administration's continuing effort to make more efficient use of America's domestic energy resources while maintaining sound stewardship of the environment, the U.S. Department of Energy (DOE) today announced the selection of five new research and development (R&D) projects worth more than $3 million to develop new mining technologies that will reduce energy use and lower costs. The Energy Department will contribute nearly $1.88 million to this effort, matched by $1.13 million from the private sector. "Mining is very energy-intensive, and DOE's investment in mining

227

Texas Offshore Pilot Research Project | Open Energy Information  

Open Energy Info (EERE)

Texas Offshore Pilot Research Project Texas Offshore Pilot Research Project Jump to: navigation, search Name Texas Offshore Pilot Research Project Facility Texas Offshore Pilot Research Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Gulf of Mexico TX Coordinates 26.186°, -97.077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.186,"lon":-97.077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

The Advanced Research Projects, OAS-RA-11-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Report Audit Report The Advanced Research Projects Agency - Energy OAS-RA-11-11 August 2011 Department of Energy Washington, DC 20585 August 22, 2011 MEMORANDUM FOR THE DIRECTOR, ADVANCED RESEARCH PROJECTS AGENCY - ENERGY FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Advanced Research Projects Agency - Energy" BACKGROUND The Advanced Research Projects Agency - Energy (ARPA-E), an agency within the Department of Energy, was authorized in 2007 as part of the America COMPETES Act (COMPETES Act). The goals of ARPA-E are to enhance domestic economic security through the development of energy technologies and to ensure that the United States maintains a technological lead in

229

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT AFFORDABLE MULTIFAMILY ZERO ENERGY NEW HOMES Prepared for: California Energy Commission Prepared by: Global Global Green USA Santa Monica, CA 90405 Contract Number: 500-04-023 Prepared for: California Energy

230

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT PRODUCTION OF SOLADIESEL RD® FROM CELLULOSIC FEEDSTOCKS JULY 2011 CEC5002013019 Prepared for: California Energy 650-780-4777 www.solazyme.com Contract Number: PIR08048 Prepared for: California Energy Commission

231

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT AN ASSESSMENT: California Energy Commission Prepared by: University of California, Davis #12; PREPARED BY: Primary Number: 500-01-016 Prepared for: California Energy Commission Prab Sethi Contract Manager Linda Spiegel

232

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT HIGHTECH BUILDINGS DECEMBER 2008 CEC5002013062 Prepared for: California Energy Commission Prepared by-06-053 Prepared for: California Energy Commission Paul Roggensack Contract Manager Virginia Lew Office Manager

233

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT LIGHTING CALIFORNIA'S FUTURE RetrofitIntegrated Classroom Lighting System (RICLS) Prepared for: California Energy Commission Managed by: Architectural Energy Corporation Prepared by: Finelite Inc. FEBRUARY 2013 CEC

234

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT PLANNING ALTERNATIVE5002013021 Prepared for: California Energy Commission Prepared by: Facet Decision Systems, Inc. #12-08-030 Prepared for: California Energy Commission Linda Spiegel Contract Manager Linda Spiegel Office Manager

235

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT Developing5002013109 Prepared for: California Energy Commission Prepared by: Growpro Inc #12; Prepared by Waimauku, New Zealand Contract Number: PIR-07-001 Prepared for: California Energy Commission Abolghasem

236

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT IMPACTS OF SHORTTERM Prepared for: California Energy Commission Prepared by: TIAX LLC #12; Prepared by: Primary Brown, Lawrence Berkeley National Laboratory Contract Number: MAQ-07-02 Prepared for: California Energy

237

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT Technology MARCH 2013 CEC5002012077 Prepared for: California Energy Commission Prepared by: Heschong Mahone-03-026 Prepared for: California Energy Commission Kristy Chew Contract Manager Fernando Pina Office Manager Energy

238

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT PRELIMINARY ESTIMATES5002013051 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Laboratory: 500-99-013 Prepared for: California Energy Commission Steve Ghadiri Contract Manager Fernando Piña

239

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT A SEASONAL DECEMBER 2011 CEC5002013035 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Laboratory Berkeley, CA 96270 Contract Number: 500-02-004 Prepared for: California Energy

240

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT INTEGRATING BUILDING Energy Commission Prepared by: Architectural Energy Corporation #12; PREPARED BY: Primary Author(s): Russ Derickson Architectural Energy Corporation Boulder, CO Contract Number: 500-99-013 Prepared for

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT HYBRID SOLAR LIGHTING5002013067 Prepared for: California Energy Commission Prepared by: Oakridge National Laboratory Insert-04-034-18 Prepared for: California Energy Commission Hassan Mohammed Contract Manager Linda Speigel Office Manager

242

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT Energy Commission Prepared by: Lawrence Berkeley National Laboratory #12; PREPARED BY: Primary.lbl.gov Contract Number: 500-06-053 Prepared for: California Energy Commission Paul Roggensack Contract Manager

243

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Gurnari of the Costa Mesa Westin Hotel, for their help throughout this project and in the writing interest energy research by partnering with RD&D entities, including individuals, businesses, utilities

244

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT GREENGUIDE FOR SUSTAINABLE ENERGY EFFICIENT REFRIGERATED STORAGE FACILITIES MARCH 2013 CEC-500-2013-145 Prepared for: California Energy for: California Energy Commission Anish Gautam Contract Manager Virginia Lew Office Manager Energy

245

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY AND ENERGY EFFICIENCY IN CALIFORNIA AIR QUALITY MANAGEMENT DISTRICTS DECEMBER 2011 CEC5002013047 Prepared for: California Energy Commission Prepared by: Synapse Energy

246

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT Energy Commission Prepared by: Lawrence Berkeley National Laboratory #12; PREPARED BY: Primary-09-010 Prepared for: California Energy Commission Matthew Fung Contract Manager Virginia Lew Office Manager Energy

247

Carbon Dioxide-Based Heat Pump Water Heater Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy is currently conducting research into carbon dioxide (CO2) heat pump water heaters. This project will employ innovative techniques to adapt water heating technology to...

248

2011 ANNUAL PLANNING SUMMARY FOR ADVANCED RESEARCH AND PROJECTS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for each NEPA review identified. APS-2011-WAPA.xls More Documents & Publications 2010 Annual Planning Summary for Advanced Research Projects Agency-Energy (ARPA-E) 2011 Annual...

249

Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994  

SciTech Connect

Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

Abdelghani, A.

1994-06-01T23:59:59.000Z

250

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT RWE SCHOTT SOLAR Energy Commission Prepared by: RWE Schott Solar, Inc #12; PREPARED BY: Primary Author(s): Miles C: California Energy Commission Hassan Mohammed Project Manager Linda Spiegel Office Manager Energy Generation

251

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT Integrated CHP Using UltraLow NOx Supplemental Firing MARCH 2013 CEC5002013043 Prepared for: California Energy://www.gastechnology.org Contract Number: PNG-07-006 Prepared for: California Energy Commission Gail Wiggett Project Manager Linda

252

Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project.

Bougaenko, S.E.; Kraev, A.E. [International Nuclear Safety Center of the Russian MINATOM, Moscow (Russian Federation); Hill, D.L.; Braun, J.C.; Klickman, A.E. [Argonne National Lab., IL (United States). International Nuclear Safety Center

1998-08-01T23:59:59.000Z

253

Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100  

SciTech Connect

The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

Borgeson, M.E.

1994-11-09T23:59:59.000Z

254

NIST Creates Center for Advanced Materials Research  

Science Conference Proceedings (OSTI)

Jun 25, 2013 ... The planned center, which NIST expects to fund at approximately $25 million ... and data and informatics tools related to advanced materials.

255

Materials Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Study on the Dynamics of Poly(alkylene oxide)s" Contact: Christine Gerstl Theory meets experiment: structure-property relationships in an electrode material for...

256

Energy Frontier Research Centers Announced - Materials ...  

Science Conference Proceedings (OSTI)

May 6, 2009... from solar energy and electricity storage, to materials sciences, biofuels, advanced nuclear systems, and carbon capture and sequestration.

257

Biorefinery and Carbon Cycling Research Project  

Science Conference Proceedings (OSTI)

In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

2012-06-08T23:59:59.000Z

258

The Spallation Neutron Source: A powerful tool for materials research  

SciTech Connect

When completed in 2006, the Spallation Neutron Source (SNS) will use an accelerator to produce the most intense beams of pulsed neutrons in the world. This unique facility is being built by a collaboration of six US Department of Energy laboratories and will serve a diverse community of users drawn from academia, industry, and government labs. The project continues on schedule and within budget, with commissioning and installation of all systems going well. Installation of 14 state-of-the-art instruments is under way, and design work is being completed for several others. These new instruments will enable inelastic and elastic-scattering measurements across a broad range of science such as condensed-matter physics, chemistry, engineering materials, biology, and beyond. Neutron Science at SNS will be complemented by research opportunities at several other facilities under way at Oak Ridge National Laboratory.

Mason, Thom [ORNL; Anderson, Ian S [ORNL; Ankner, John Francis [ORNL; Egami, Takeshi [ORNL; Ekkebus, Allen E [ORNL; Herwig, Kenneth W [ORNL; Hodges, Jason P [ORNL; Horak, Charlie M [ORNL; Horton, Linda L [ORNL; Klose, Frank Richard [ORNL; Mesecar, Andrew D. [University of Illinois, Chicago; Myles, Dean A A [ORNL; Ohl, M. [Forschungszentrum Julich, Julich, Germany; Zhao, Jinkui [ORNL

2006-01-01T23:59:59.000Z

259

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-01-01T23:59:59.000Z

260

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Was the BGRR Decommissioned? Why Was the BGRR Decommissioned? BGRR The Brookhaven Graphite Research Reactor (BGRR) at Brookhaven National Laboratory (BNL) was decommissioned to ensure the complex is in a safe and stable condition and to reduce sources of groundwater contamination. The BGRR contained over 8,000 Curies of radioactive contaminants from past operations consisting of primarily nuclear activation products such as hydrogen-3 (tritium) and carbon-14 and fission products cesium-137 and strontium-90. The nature and extent of contamination varied by location depending on historic uses of the systems and components and releases, however, the majority of the contamination (over 99 percent) was bound within the graphite pile and biological shield. Radioactive contamination was identified in the fuel handling system deep

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Brookhaven Graphite Research Reactor | Environmental Restoration Projects |  

NLE Websites -- All DOE Office Websites (Extended Search)

- Cleanup Actions - Cleanup Actions Since the Brookhaven Graphite Research Reactor (BGRR) was shut down in 1968, many actions have been taken as part of the complex decommissioning. The actions undertaken throughout the BGRR complex ensure that the structures that remain are in a safe and stable condition and prepared it for long-term surveillance and maintenance. Regulatory Requirements The decommissioning of the BGRR was conducted under the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1992, an Interagency Agreement (PDF) among the DOE, the U.S. Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC) became effective. The IAG provided the overall framework for conducting environmental restoration activities at

262

Biocompatible Nanoparticle Materials in Cancer Research  

Science Conference Proceedings (OSTI)

The challenges and future perspectives of nanomedicine in cancer research will .... Self-Adaptive, Ultra-Compliant Shape Memory Alloys for Medical Implant ...

263

Research Using Human Subjects/Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

obtained for routine patient care that would have been discarded if not used for research Private information, such as medical information, that can be readily identified...

264

Final report - Magma Energy Research Project  

DOE Green Energy (OSTI)

Scientific feasibility was demonstrated for the concept of magma energy extraction. The US magma resource is estimated at 50,000 to 500,000 quads of energy - a 700- to 7000-yr supply at the current US total energy use rate of 75 quads per year. Existing geophysical exploration systems are believed capable of locating and defining magma bodies and were demonstrated over a known shallow buried molten-rock body. Drilling rigs that can drill to the depths required to tap magma are currently available and experimental boreholes were drilled well into buried molten rock at temperatures up to 1100/sup 0/C. Engineering materials compatible with the buried magma environment are available and their performances were demonstrated in analog laboratory experiments. Studies show that energy can be extracted at attractive rates from magma resources in all petrologic compositions and physical configurations. Downhole heat extraction equipment was designed, built, and demonstrated successfully in buried molten rock and in the very hot margins surrounding it. Two methods of generating gaseous fuels in the high-temperature magmatic environment - generation of H/sub 2/ by the interaction of water with the ferrous iron and H/sub 2/, CH/sub 4/, and CO generation by the conversion of water-biomass mixtures - have been investigated and show promise.

Colp, J.L.

1982-10-01T23:59:59.000Z

265

Tritium research laboratory cleanup and transition project final report  

Science Conference Proceedings (OSTI)

This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

Johnson, A.J.

1997-02-01T23:59:59.000Z

266

Materials and Systems Research MSRI | Open Energy Information  

Open Energy Info (EERE)

and Systems Research MSRI and Systems Research MSRI Jump to: navigation, search Name Materials and Systems Research (MSRI) Place Salt Lake City, Utah Zip 84104 Product MSRI is a producer of solid oxide fuel cell and holds patents for new technologies in related areas of fuel cells. References Materials and Systems Research (MSRI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Materials and Systems Research (MSRI) is a company located in Salt Lake City, Utah . References ↑ "Materials and Systems Research (MSRI)" Retrieved from "http://en.openei.org/w/index.php?title=Materials_and_Systems_Research_MSRI&oldid=348671" Categories: Clean Energy Organizations Companies

267

INCITE grants awarded to 59 computational research projects | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

INCITE grants awarded to 59 computational research projects INCITE grants awarded to 59 computational research projects November 16, 2013 Printer-friendly version ARGONNE, IL., November 18, 2013-The U.S. Department of Energy's Office of Science announced 59 projects, promising to accelerate scientific discovery and innovation, that will share nearly 6 billion core hours on two of America's fastest supercomputers dedicated to open science. Their work will advance knowledge in critical areas from sustainable energy technologies to the environmental consequences of energy use. The allocations come from the Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program. Through it, the world's most advanced computational research projects from academia, government, and industry are given access to the Department of Energy's (DOE's)

268

HVAC Radial Air Bearing Heat Exchangers Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radial Air Bearing Heat Exchangers Radial Air Bearing Heat Exchangers Research Project HVAC Radial Air Bearing Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) radial air bearing heat exchangers. Rotary air bearing heat exchanger technology simultaneously solves four long standing problems of conventional "fan-plus-finned-heat-sink" heat exchangers. Project Description This project seeks to design, fabricate, and test successive generations of prototype radial air bearing heat exchanger devices based on lessons learned and further insights into device optimization, computational fluid dynamic studies for parametric optimization and determination of scaling laws, and laboratory measurement of flow field and heat transfer

269

ALS Ceramics Materials Research Advances Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

and at temperature. "The nickel-based superalloy materials that are currently used in our gas-turbine engines have reached the absolute limit of their temperature range," says...

270

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT PROBABILISTIC TRANSMISSION CONGESTION FORECASTING DECEMBER 2012 CEC-500-2013-120 Prepared for: California Energy Commission Prepared by: Electric Research Institute Contract Number: UC MR-052 Prepared for: California Energy Commission Jamie Patterson

271

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT ENERGY INNOVATIONS: California Energy Commission Prepared by: San Diego State Research Foundation #12; Prepared by: Primary-1858 (619) 594-1900 Contract Number: 500-98-014 Prepared for: California Energy Commission Raquel E. Kravitz

272

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT ENERGY INNOVATIONS: California Energy Commission Prepared by: San Diego State Research Foundation #12; Prepared by: Primary Diego, CA 92182-1858 (619) 594-1900 Contract Number: 500-98-014 Prepared for: California Energy

273

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT POTENTIAL TARGETS AND BENEFITS FOR URBAN ENERGY SYSTEMS RESEARCH MAY 2009 CEC-500-2010-009 Prepared for: California Energy Commission Institute of the Environment Los Angeles, CA Contract Number: BOA-99-207-P Prepared for: California Energy

274

Solar heating and cooling. Research and development: project summaries  

DOE Green Energy (OSTI)

The Conservation and Solar Applications Solar Heating and Cooling Research and Development Program is described. The evolution of the R and D program is described and the present program is outlined. A series of project descriptions summarizes the research and development presently supported for further development of collectors, thermal energy storage and heat exchangers, heat pumps, solar cooling, controls, and systems. (MHR)

Not Available

1978-05-01T23:59:59.000Z

275

Recent Metrology Research of Thermoelectric Materials at NIST  

Science Conference Proceedings (OSTI)

On-Site Speaker (Planned), Winnie Wong-Ng. Abstract Scope, The increased interest in research and development on thermoelectric materials in recent years is ...

276

Electronic Materials Research: Present and Future Trends - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 1971... and it has been largely the advances in materials research and technology that have led to new and improved devices and systems. It follows ...

277

Research and Development of Nano-Composite Materials for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Research and Development of Nano-Composite Materials for Hydrogen Storage. Author(s), Yoshitsugu Kojima. On-Site Speaker (Planned) ...

278

Research on Materials Simulation and the Promotion of Global ...  

Science Conference Proceedings (OSTI)

Aims of the forum are e.g. fostering the international networking of the major national materials research institutes, sharing knowledge and instrumentation and ...

279

Materials and Molecular Research Division: Annual report, 1986  

DOE Green Energy (OSTI)

Research activities are reported under the following headings: materials sciences, chemical sciences, nuclear sciences, fossil energy, energy storage systems, and work for others. (DLC)

Phillips, N.E.; Muller, R.H.; Peterson, C.V.

1987-07-01T23:59:59.000Z

280

Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996  

Science Conference Proceedings (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

NONE

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

New York State Energy Research and Development Authority. Research projects` update project status as of March 31, 1997  

Science Conference Proceedings (OSTI)

This report provides an update of the New York State Energy Research and Development Authority (NYSERDA) program. The NYSERDA research and development program has five major areas: industry, buildings, energy resources, transportation, and environment. NYSERDA organizes projects within these five major areas based on energy use and supply, and end-use sectors. Therefore, issues such as waste management, energy products and renewable energy technologies are addressed in several areas of the program. The project descriptions presented are organized within the five program areas. Descriptions of projects completed between the period April 1, 1996, and March 31, 1997, including technology-transfer activities, are at the end of each subprogram section.

NONE

1997-07-01T23:59:59.000Z

282

NREL: Hydrogen and Fuel Cells Research - Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials The Advanced Materials group within NREL's Materials and Computational Sciences Center develops novel and optimized materials for energy-related applications that include sorption-based hydrogen storage, fuel cells, catalysts, photovoltaics, batteries, electrochromics, electronics, sensors, electricity conduction, and thermal management. These R&D efforts use first-principle models combined with state-of-the-art synthetic and characterization techniques to rationally design and construct advanced materials with new and improved properties. In addition to creating specific material properties tailored for the application of interest by understanding the underlying chemical and physical mechanisms involved, the research focuses on developing materials

283

TDAG Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research TDAG Research Background information Originally Environmental Chemistry Team Started in early 90s Field or "On Site" Analytical Method Development Field GC & MS, Mobile Lab (at DOE & DOD sites) Portable XRF (Pb, Hg, As) Chemical Sensors Site Investigations Analysis of environmental samples Analytical Method Development Chemical agent determination (Projects at DPG, APG, RMA) Environmental analysis (EPA methods) Process analysis (CAMDS, AMTEX) Current Capabilities Neutron Activation Facility - Dedicated to NAUTICAS Project for the ONR, but may be available for other projects. (Homeland security, Catalysis studies) ICP/MS Lab - Perkin Elmer. Used for trace characterization of metals GC/MS Lab - Perkin Elmer Clarus 600 GC/MS system. Used for

284

Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management  

Science Conference Proceedings (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

NONE

1995-07-14T23:59:59.000Z

285

Western Kentucky University Research Foundation Biodiesel Project  

SciTech Connect

Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the next 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily fermented to create ethanol. In the United States almost all starch ethanol is mainly manufactured from corn grains. The technology for manufacturing corn ethanol can be considered mature as of the late 1980s. In 2005, 14.3 % of the U.S. corn harvest was processed to produce 1.48 x10{sup 10} liters of ethanol, energetically equivalent to 1.72 % of U.S. gasoline usage. Soybean oil is extracted from 1.5 % of the U.S. soybean harvest to produce 2.56 x 10{sup 8} liters of bio-diesel, which was 0.09 % of U.S. diesel usage. However, reaching maximum rates of bio-fuel supply from corn and soybeans is unlikely because these crops are presently major contributors to human food supplies through livestock feed and direct consumption. Moreover, there currently arguments on that the conversion of many types of many natural landscapes to grow corn for feedstock is likely to create substantial carbon emissions that will exacerbate globe warming. On the other hand, there is a large underutilized resource of cellulose biomass from trees, grasses, and nonedible parts of crops that could serve as a feedstock. One of the potentially significant new bio-fuels is so called "cellulosic ethanol", which is dependent on break-down by microbes or enzymes. Because of technological limitations (the wider variety of molecular structures in cellulose and hemicellulose requires a wider variety of microorganisms to break them down) and other cost hurdles (such as lower kinetics), cellulosic ethanol can currently remain in lab scales. Considering farm yields, commodity and fuel prices, farm energy and agrichemical inputs, production plant efficiencies, byproduct production, greenhouse gas (GHG) emissions, and other environmental effects, a life-cycle evaluation of competitive indicated that corn ethanol yields 25 % more energy than the energy invested in its production, whereas soybean bio-diesel yields 93 % more. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12 % by the production and combustion of ethanol and 41 % by bio-diesel. Bio-diesel also releases less ai

Pan, Wei-Ping [Principal Investigator] [Principal Investigator; Cao, Yan [Co-Principal Investigator] [Co-Principal Investigator

2013-03-15T23:59:59.000Z

286

Ris National Laboratory Materials Research Department  

E-Print Network (OSTI)

. Department of Energy for hydrogen storage materials regarding hydrogen density and stabillity viz. H2 (m) > 6 Introduction Magnesium hydride, MgH2, has a high theoretical gravimetric hydrogen density of H2 (m) = 7.6 wt wt.% and desorption of hydrogen at 1 bar below 85 C, corresponding to a formation enthalpy of Hf

287

Center for Nanophase Materials Sciences (CNMS) - Active CNMS User Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

ACTIVE USER PROJECTS ACTIVE USER PROJECTS Proposal Cycle 2013B: expire July 31, 2014 Proposal Cycle 2013A: expire January 31, 2014 Proposal Cycle 2012B (extended): expire July 31, 2014 Proposal Cycle 2012A: (extended): expire January 31, 2014 Proposal Cycle 2013B: expire January 31, 2014 X-ray diffraction and scattering techniques for the study of interfacial phenomena in energy storage materials Gabriel Veith, ORNL [CNMS2013-201] Atomic scale study of the reduction of metal oxides Guangwen Zhou, State University of New York at Binghamton [CNMS2013-210] Local Switching Studies in PbZr0.2Ti0.8O3 (001), (101), and (111) Films Lane Martin, University of Illinois, Urbana-Champaign [CNMS2013-211] Direct Observation of Domain Structure and Switching Process in Strained

288

Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, October 1, 1993--December 31, 1993  

Science Conference Proceedings (OSTI)

This quarterly project status report discusses research projects being conducted on hazardous materials in aquatic environments of the Mississippi River basin. We continued to seek improvement in our methods of communication and interactions to support the inter-disciplinary, inter-university collaborators within this program. In addition to the defined collaborative research teams, there is increasing interaction among investigators across projects. Planning for the second year of the project has included the development of our internal request for proposals, and refining the review process for selection of proposals for funding.

Not Available

1993-12-31T23:59:59.000Z

289

The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs  

Science Conference Proceedings (OSTI)

This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

NONE

1996-01-01T23:59:59.000Z

290

MATERIALS PHYSICS AND PROCESSING (MPP) Project Team: J.L. Jordan-Sweet  

NLE Websites -- All DOE Office Websites (Extended Search)

MATERIALS PHYSICS AND PROCESSING (MPP) MATERIALS PHYSICS AND PROCESSING (MPP) Project Team: J.L. Jordan-Sweet 1 , V. Kiryukhin 2 , C. Lavoie 1 , C.E. Murray 1 , C.S. Nelson 3 , I.C. Noyan 4 1 IBM Research Division, 2 Rutgers University, 3 Brookhaven National Laboratory, 4 Columbia University TECHNIQUES AND CAPABILITIES APPLICATIONS SPECIFIC PROJECTS / ADDITIONAL INFORMATION * High-throughput, real-time, in-situ rapid thermal annealing (RTA) studies of structural changes in thin films, film stacks, and nanopatterned samples: * Phase transformations, texture changes, barrier failure, interfacial roughening, etc. * X-ray diffraction (XRD) and scattering techniques on solids, including thin films, stacks, nanopatterned samples, magnetic and strongly correlated systems, and bulk materials. Capability for

291

DOE Funded Research Projects Win 30 R&D Awards for 2008 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funded Research Projects Win 30 R&D Awards for 2008 Funded Research Projects Win 30 R&D Awards for 2008 DOE Funded Research Projects Win 30 R&D Awards for 2008 June 22, 2008 - 2:15pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman announced today that researchers from the U.S. Department of Energy's (DOE) National Laboratories and Y-12 National Security Complex have won 30 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted awards are presented annually in recognition of exceptional new products, processes, materials or software developed throughout the world and introduced into the market the previous year. "I'm very proud that Department of Energy scientists and engineers captured

292

DOE Funded Research Projects Win 30 R&D Awards for 2008 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funded Research Projects Win 30 R&D Awards for 2008 Funded Research Projects Win 30 R&D Awards for 2008 DOE Funded Research Projects Win 30 R&D Awards for 2008 June 22, 2008 - 2:15pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman announced today that researchers from the U.S. Department of Energy's (DOE) National Laboratories and Y-12 National Security Complex have won 30 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted awards are presented annually in recognition of exceptional new products, processes, materials or software developed throughout the world and introduced into the market the previous year. "I'm very proud that Department of Energy scientists and engineers captured

293

NREL: Biomass Research - Projects in Integrated Biorefinery Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Integrated Biorefinery Processes Projects in Integrated Biorefinery Processes A photo of a control room with four large computer screens. A man and a woman are looking at the screens. The Thermochemical Process Development Unit is equipped with sophisticated process monitoring and operation control systems. NREL is focused on integrating all the biomass conversion unit operations. With extensive knowledge of the individual unit operations, NREL is well-positioned to link these operations together at the mini-pilot and pilot scales. Among the integrated biorefinery projects are: Sorghum to Ethanol Research Initiative Sorghum shows promising characteristics as a feedstock for biofuel production. However, little basic research data exists. NREL is performing integrated research on sorghum by studying it at every step along the

294

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

295

Nuclear materials research progress reports for 1979  

DOE Green Energy (OSTI)

Research is presented concerning iodide stress corrosion cracking of zircaloy, self-diffusion of oxygen in hypostoichiometric urania, surface chemistry of epitaxial silicon deposition by thermal cracking of silane, kinetics of laser pulse vaporization of UO/sub 2/, gas laser model for laser induced evaporation, solubility of hydrogen in uranium dioxide, thermal gradient migration of metallic inclusions in UO/sub 2/, molecular beam studies of atomic hydrogen reduction of oxides, and thermal gradient brine-inclusion migration in salt. (FS)

Olander, D.R.

1979-12-01T23:59:59.000Z

296

Photovoltaic Advanced Research and Development Project: Solar Radiation Research annual report  

DOE Green Energy (OSTI)

This report gives an overview of the fiscal year 1990 research activities and results under the Solar Radiation Research Task of the Photovoltaic Advanced Research and Development Project at the Solar Energy Research Institute. The activities under this task include developing and applying measurement techniques, instrumentation, and data and models to understand and quantify the response of photovoltaic devices to variations in broadband and spectra solar radiation. The information presented in this report was presented at the SERI Photovoltaic Advanced Research and Development Project 10th Review Meeting, October 1990, and will be published in a special issue of Solar Cells dedicated to the meeting.

Riordan, C.; Hulstrom, R.; Cannon, T.; Myers, D.; Stoffel, T.

1990-11-01T23:59:59.000Z

297

Material management: experience on the Alaska North Slope Project. [Kuparuk River Project  

SciTech Connect

The Kuparuk River Unit Project started in 1978, with the first major production facility sea lifted to the construction site on the North Slope of Alaska in the summer of 1981. The oil production field is located approximately 25 miles west of the Prudhoe Bay facility and 250 miles north of the Arctic Circle. The size of the Kuparuk site is 215 square miles, overlaying a projected recoverable reservoir of 1.2 billion barrels of oil. The present plan calls for approximately 50 drillsite pads, with the possibility of up to 32 wells on each pad. Modular construction was the most cost-effective method to use. The need for intensive material management on the Kuparuk River Unit Project became evident as the scope of engineering effort increased, shortening the amount of time available for acquisition of purchased materials and for the construction of the modules to meet the annual six-week sea-lift delivery period. The logistics of the Kuparuk construction site, the timeframe required to do the modular construction, the support facilities necessary, and several contractors and types of contracts, required Stearns Catalytic Corporation to consider a sophisticated material control system to identify the various areas of concern. The computerized system set up to solve the problems is discussed here generically.

Humphreys, R.B.

1985-08-01T23:59:59.000Z

298

Nuclear materials research progress reports for 1977  

DOE Green Energy (OSTI)

Research is reported concerning radiation enhancement of stress corrosion cracking of Zircaloy, surface chemistry of epitaxial Si deposited by thermal cracking of silane, thermal gradient migration of metallic inclusions in UO/sub 2/, molecular beam studies of atomic H and reduction of oxides, mass transfer and reduction of UO/sub 2/, kinetics of laser pulse vaporization of UO/sub 2/, retention and release of water by UO/sub 2/ pellets, and solubility of H in UO/sub 2/. (FS)

Olander, D.R.

1977-12-01T23:59:59.000Z

299

HVAC Optimized Heat Exchangers Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimized Heat Exchangers Research Optimized Heat Exchangers Research Project HVAC Optimized Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) optimized heat exchangers. The information generated in this study will demonstrate performance improvements that can be achieved through optimization of refrigerant circuitry for non-uniform inlet air distribution. The tubing circuitry on fin-tube heat exchangers used in residential space-conditioning systems is typically designed assuming uniform airflow through the finned passageways. However, the air flow in installed systems is highly non-uniform, resulting in mismatched refrigerant-air heat transfer that reduces the capacity of the heat exchanger and efficiency of

300

EPRI Materials Management Matrix Project: U.S.--Advanced Pressurized Water Reactor Materials Management Tables  

Science Conference Proceedings (OSTI)

The Electric Power Research Institutes (EPRIs) Advanced Nuclear Technology (ANT) Program has initiated a Materials Management Matrix (MMM) initiative to systematically assess new plant designs and identify gaps and opportunities that, if addressed at appropriate times in the life cycle of a plant, could significantly improve performance of the materials used in new plant designs. Products developed by this initiative are intended to be living reports that will be periodically updated through the licensin...

2011-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Final Technical Summary: Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials  

DOE Green Energy (OSTI)

The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

Michael Mullins, Tony Rogers, Julia King, Jason Keith, Bahne Cornilsen, Jeffrey Allen, Ryan Gilbert, Joseph Holles.

2010-09-28T23:59:59.000Z

302

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT PILOT PHASE OF A FIELD STUDY TO DETERMINE WASTE OF WATER AND ENERGY IN RESIDENTIAL HOT WATER DISTRIBUTION SYSTEMS JULY 2009 CEC-500-2013-135 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Laboratory #12;PREPARED

303

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT LIFE-CYCLE ASSESSMENT AND URBAN SUSTAINABILITY OCTOBER 2010 CEC-500-2013-129 Prepared for: California Energy Commission Prepared by: University for: California Energy Commission Erik Stokes Contract Manager Linda Spiegel Office Manager Energy

304

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF STEAM for: California Energy Commission Prepared by: University of California #12; PREPARED BY: Primary-781-5791 951-781-5790 (fax) Contract Number: 500-09-008 Prepared for: California Energy Commission David

305

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT DEMONSTRATION OF ADVANCED-2013-147 Prepared for: California Energy Commission Prepared by: Electric Power Group, LLC #12;PREPARED BY: Primary: California Energy Commission Jamie Patterson Contract Manager Fernando Pina Office Manager Energy Systems

306

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT SMART GRID INFORMATION ASSURANCE AND SECURITY TECHNOLOGY ASSESSMENT DECEMBER 2010 CEC5002013056 Prepared for: California Energy-278-7659 www.csus.edu Contract Number: CEC-500-2008-027 Prepared for: California Energy Commission David

307

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT INTEGRATING BIOENERGETICS, SPACIAL for: California Energy Commission Prepared by: University of California, Santa Barbara #12;PREPARED BY Number: UC MRA-061 Prepared for: California Energy Commission Joe O'Hagan Contract Manager Linda Spiegel

308

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT LOW­COST, ENERGY­SAVING, SOLID STATE SMART WINDOWS AUGUST 2012 CEC5002013026 Prepared for: California Energy Commission Number: PIR-10-049 Prepared for: California Energy Commission Dustin Davis Contract Manager Virginia Lew

309

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT CALIFORNIA TRANSMISSION CONGESTION ASSESSMENT DECEMBER 2007 CEC-500-2011-007 Prepared for: California Energy Commission Prepared by: Electric Pasadena, CA Contract Number: BOA-142 Prepared for: California Energy Commission Jamie Patterson Contract

310

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT THE ICHTHYOPLANKTON OF KING HARBOR, REDONDO BEACH, CALIFORNIA 19742006 APRIL 2008 CEC5002013053 Prepared for: California Energy Angeles, CA 90041 Contract Number: 500-04-025 Prepared for: California Energy Commission Joseph O

311

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF NEW TESTING PROTOCOLS FOR MEASURING THE PERFORMANCE OF SHOWERHEADS MARCH 2010 CEC-500-2013-130 Prepared for: California Energy: California Energy Commission Brad Meister Contract Manager Virginia Lew Office Manager Energy Efficiency

312

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

i Energy Research and Development Division FINAL PROJECT REPORT INLET AIR SPRAY COOLING ENHANCEMENT FOR AIRCOOLED CONDENSERS JUNE 2007 CEC5002013058 Prepared for: California Energy CommissionFilippo Maulbetsch Consulting Menlo Park, CA 94025 Contract Number: 500-02-014 Prepared for: California Energy

313

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT INTEGRATING BUILDING COMMISSIONING INTO STATE BUILDING CONSTRUCTION DECEMBER 2010 CEC-500-2013-117 Prepared for: California Energy Commission Prepared by: Architectural Energy Corporation #12;PREPARED BY: Primary Author(s): Russ Derickson

314

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT COMPENSATION CEC5002013114 Prepared for: California Energy Commission Prepared by: Stratus Consulting Inc. #12-04-025 Prepared for: California Energy Commission Joe O'Hagan Contract Manager Linda Spiegel Office Manager Energy

315

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT POLICY TO FACILITATE DEMAND RESPONSE JUNE 2008 CEC5002010015 Prepared for: California Energy Commission Prepared'Monte Information Services, Inc. Ukiah, CA 95482 Contract Number: 500-99-013 Prepared for: California Energy

316

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT NOVEMBER 2010 CEC5002013048 Prepared for: California Energy Commission Prepared by: California Biomass Collaborative BIOFUELS as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views

317

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT AIRQUALITY IMPACTS OF HEAT5002013061 Prepared for: California Energy Commission Prepared by: Altostratus Inc. A L T O S T R Contract Number: 500-08-007 Prepared for: California Energy Commission Marla Mueller Contract Manager Guido

318

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT Production of Substituted Natural 2012 CEC5002013104 Prepared for: California Energy Commission Prepared by: University of California-781-5791 951-781-5790 (fax) www.ucr.edu Contract Number: 500-11-004 Prepared for: California Energy Commission

319

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT NEW ENGINE TECHNOLOGY FOR CALIFORNIA'S COMBINED HEAT AND POWER MARKET MARCH 2013 CEC-500-2013-119 Prepared for: California Energy Commission Waltham, MA 02451 781-466-6431 www.tecogen.com Contract Number: PIR-08-022 Prepared for: California Energy

320

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT LIFECYCLE ENERGY: California Energy Commission Prepared by: University of California, Berkeley Department of Civil-1712 510-642-7300 Contract Number: 500-02-004 Work Authorization MR-048 Prepared for: California Energy

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT THE VALUE OF NATURAL GAS STORAGE-2013-131 Prepared for: California Energy Commission Prepared by: ICF International #12;PREPARED BY: Primary Author: California Energy Commission David Michel Contract Manager Fernando Pina Office Manager Energy Systems

322

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT ENERGY REDUCTION IN MEMBRANE-2013-132 Prepared for: California Energy Commission Prepared by: University of California, Irvine and Kennedy Main Street, Suite 140 Irvine, CA 92614 Contract Number: MRA-02-082 Prepared for: California Energy

323

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT DRILLING AND TESTING Prepared for: California Energy Commission Prepared by: Layman Energy Associates, Inc. #12; PREPARED BY: Primary Author(s): Erik B. Layman Layman Energy Associates, Inc. 1584 Cordova Drive San Luis

324

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT DRILLING AND TESTING5002013083AP Prepared for: California Energy Commission Prepared by: Layman Energy Associates, Inc. #12; PREPARED BY: Primary Author(s): Erik B. Layman Layman Energy Associates, Inc. 1584 Cordova Drive San Luis

325

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT RANKING AND PRIORITIZING THE DEPLOYMENT OF COMMUNITY- SCALE ENERGY MEASURES BASED ON THEIR INDIRECT EFFECTS IN CALIFORNIA'S CLIMATE ZONES MARCH 2013 CEC-500-2013-122 ALTOSTRATUS Prepared for: California Energy Commission Prepared by

326

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT SUMMARY OF RECENT WIND INTEGRATION STUDIES Experience from 2007-2010 APRIL 2012 CEC-500-2013-124 Prepared for: California Energy Commission Prepared by: California Wind Energy Collaborative #12;PRIMARY AUTHOR(S): Phillip de Mello C.P. (Case) van

327

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

of Numerical Weather Prediction for Intra-Day Solar Forcasting number 500-08-017 conducted by the UniversityEnergy Research and Development Division FINAL PROJECT REPORT EVALUATION OF NUMERICAL WEATHER PREDICTION FOR SOLAR FORECASTING Prepared for: California Energy Commission Prepared by: California Solar

328

The National Hurricane Research Project: 50 Years of Research, Rough Rides, and Name Changes  

Science Conference Proceedings (OSTI)

After the disastrous Atlantic hurricane season of 1954, the Weather Bureau created the National Hurricane Research Project (NHRP) to advance tropical cyclone science and improve forecasts. In the late 1950s, NHRP pioneered quantitative ...

Neal M. Dorst

2007-10-01T23:59:59.000Z

329

NREL: Photovoltaics Research - New Materials, Devices, and Processes for  

NLE Websites -- All DOE Office Websites (Extended Search)

New Materials, Devices, and Processes for Advanced Concepts New Materials, Devices, and Processes for Advanced Concepts Computational Science and Theory We can use high-performance computing tools in modeling and simulation studies of semiconductor and other solar materials. We also determine the performance of solar devices. Theoretical studies can help us understand underlying physical principles or predict useful chemical compositions and crystalline structures. Scientific Computing Experimental Materials Science Solid-State Theory. NREL has strong complementary research capabilities in organic photovoltaic (OPV) cells, transparent conducting oxides (TCOs), combinatorial (combi) methods, and atmospheric processing. From fundamental physical studies to applied research relating to solar industry needs, we are developing the

330

Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995  

Science Conference Proceedings (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

NONE

1996-04-01T23:59:59.000Z

331

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-12-01T23:59:59.000Z

332

Building thermal envelope systems and materials (BTESM) monthly progress report for DOE Office Buildings Energy Research  

SciTech Connect

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-11-01T23:59:59.000Z

333

2004 research briefs :Materials and Process Sciences Center.  

Science Conference Proceedings (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

334

Low Dose Radiation Research Program: DOE / NASA Joint Funded Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/NASA Joint Funded Projects DOE/NASA Joint Funded Projects NASA Source Photo Space explorers are subject to exposure to low dose ionizing radiation. Research that helps determine health risks from this exposure is funded by NASA and DOE. Source: NASA DOE's Low Dose Program and the National Aeronautics and Space Administration (NASA) jointly fund new research to develop a better scientific basis for understanding risks to humans from exposures to low doses or low fluences of ionizing radiation. Research must focus on elucidating molecular mechanisms and pathways involved in normal radiobiological responses to low dose exposure, and must have the potential to ultimately increase understanding of health outcomes from radiation exposures that are at or near current workplace exposure

335

SC Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Surface Chemistry Research Overview The Surface Chemistry Group is a part of the Materials Science Division at Argonne National Laboratory. The focus of this group's work is the control surface species, composition, and structure at length scales that range from atomic level to micrometers. The group's expertise includes time-of-flight ion mass spectrometry, tunable laser spectroscopy, ion sputtering, laser-surface interactions, vapor phase deposition, electrical and electrochemical characterization, and device assembly. We have numerous collaborations within Argonne as well as with chemists, physicists, and materials scientists around the world. Research Directed Energy Interactions with Surfaces Nanostructured Thin Films Interfaces for Solar Energy Conversion

336

Research Areas - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

http://www.msd.anl.gov/research-areas Sun, 12 Jan 2014 01:06:27 +0000 Joomla! 1.6 - Open Source Content Management en-gb Dynamics of Active Self-Assemble Materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials krajniak@anl.gov (Ken Krajniak) Fri, 13 May 2011 17:17:28 +0000 Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) BiFeO3 Nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures

337

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

338

Materials and Molecular Research Division annual report 1980  

DOE Green Energy (OSTI)

Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

Not Available

1981-06-01T23:59:59.000Z

339

SC Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research > Research Groups Research > Research Groups Research Groups Display # 5 10 15 20 25 30 50 100 All Title Research Groups CMT Personnel CMT Research CMT Links Condensed Matter Theory ECS Personnel ECS Research ECS Highlights Energy Conversion and Storage EM-Heating Effects EM- Electronic Valves EM-Breaking Up EM-Exploring Complexity EM-Narrow Phase Fields EM Pnictide Phase Diagram EM Molten Polysulfides EM Materials By Design EM Iron Pnictides EM Personnel EM D.J. Miller EM D.G. Hinks EM M.Grimsditch EM Tunneling EM Structural Features EM Seamless Joining EM Role of Reactive Elements EM Residual Strains EM Proximity Interactions EM Interface Roughness EM Growth Strains EM Grain Boundaries EM Extending the Phase EM Exploring the Mechanism EM Double Exchange EM Research EM Links EM Home IM Odin III

340

NREL: Biomass Research - Chemical and Catalyst Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Catalyst Science Projects Chemical and Catalyst Science Projects A photo of a large white tank the size of a water heater. Several metal fittings stick out of the sides of the tank. Thin tubes are attached to some of the fittings and lead to flow meters and other metal pipes. Researchers use experimental data from this four-inch fluidized bed reactor to develop and validate gasification process models. NREL uses chemical analysis to study biomass-derived products online during the conversion process. Catalysts are used in the thermochemical conversion process to convert tars (a byproduct of gasification) to syngas and to convert syngas to liquid transportation fuels. Among the chemical and catalyst science projects at NREL are: Catalyst Fundamentals NREL is working to develop and understand the performance of catalyst and

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FUNDAMENTAL FLUIDIZATION RESEARCH PROJECT DOE/E~0575 ENVIRONMENTAL ASSESSMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUNDAMENTAL FLUIDIZATION RESEARCH PROJECT FUNDAMENTAL FLUIDIZATION RESEARCH PROJECT DOE/E~0575 ENVIRONMENTAL ASSESSMENT JANUARY 1994 Prepared by U.S. Department of Energy Morgantown Energy Technology Center P.O. Box 880 Morgantown, WV 26507-0880 q e!" .t= I \, F= ··-0 Nov 1 5 19911a n V \) r I Iv,ASTER tJ :DISTRIBUTION OF THIS DOCUMENT IS UNL~ITe:> Jf DISCLAIMER This report was .. prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

342

NXRS Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Neutron and X-Ray Scattering Research Vision Recent advances in neutron and x-ray scattering instrumentation at major DOE facilities such as the Spallation Neutron Source and Advanced Photon Source provide unprecedented insights into complex phenomena in bulk and interfacial materials. The vision of our group is to harness the complementarity of neutrons and x-rays to study how materials respond on a range of length and time scales to phase competition, so that we can learn to control emergent behavior and generate functional properties in materials that impact energy use. Mission Our mission is to use neutrons and x-rays to investigate the structure and dynamics of bulk and interfacial materials with properties that are useful for energy applications, such as superconductivity, magnetism and

343

Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project  

SciTech Connect

This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

Reynolds, T. D.; Easterling, S. D.

2010-10-01T23:59:59.000Z

344

[Materials Research Collaborative Access Team] Final Report - DOE Grant No.DEFG0200ER45811  

SciTech Connect

Operations Funding for the Materials Research Collaborative Access Team. In the proposal they presented five specific objectives for the MR-CAT Insertion Device beam line: (1) enable the accomplishment of the best possible science at MR-CAT; (2) facilitate efficient set-up and operations of a variety of complex materials-related experiments; (3) open the beamlines' facilities to scientists and science projects from non-traditional backgrounds and disciplines, respectively; (4) enable efficient 24 hour use of the beamline through interdisciplinary research teams and appropriate operations support; and (5) develop selected operations modes in support of the MR-CAT institutions, DOE collaborators, and general users.

Carlo Segre

2004-05-02T23:59:59.000Z

345

Energy Efficient Community Development in California: Chula Vista Research Project  

SciTech Connect

In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, the central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.

Gas Technology Institute

2009-03-31T23:59:59.000Z

346

Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly report, October 1, 1995--December 31, 1995  

SciTech Connect

The quarterly status report for the Materials Compatibility and Lubricants Research Program is presented. Objectives for 1 October 1995--31 December 1995 include completion of contract negotiations for Study of Foaming Characteristics project, and finalizing Phase IV and Phase V projects.

Szymurski, S.R.

1996-02-01T23:59:59.000Z

347

Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87  

SciTech Connect

Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

NONE

1997-10-01T23:59:59.000Z

348

Annual Planning Summaries: Advanced Research and Projects Agency (ARPA-E) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Projects Agency Research and Projects Agency (ARPA-E) Annual Planning Summaries: Advanced Research and Projects Agency (ARPA-E) Document(s) Available For Download February 2, 2012 2012 Annual Planning Summary for Advanced Research Projects Agency-Energy The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Advanced Research Projects Agency-Energy. January 26, 2011 2011 Annual Planning Summary for Advanced Research and Projects Agency (ARPA-E) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Advanced Research and Projects Agency (ARPA-E). February 1, 2010 2010 Annual Planning Summary for Advanced Research Projects Agency-Energy (ARPA-E) Annual Planning Summaries briefly describe the status of ongoing NEPA

349

Researchers Devise New Stress Test for Irradiated Materials | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials July 20, 2011 - 3:58pm Addthis Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at the National Center for Electron Microscopy, the team could examine — with nanoscale resolution — the localized nature of this deformation. | Courtesy of Lawrence Berkeley National Laboratory Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects

350

Researchers Devise New Stress Test for Irradiated Materials | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials July 20, 2011 - 3:58pm Addthis Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at the National Center for Electron Microscopy, the team could examine — with nanoscale resolution — the localized nature of this deformation. | Courtesy of Lawrence Berkeley National Laboratory Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects

351

Materials and Components Technology Division research summary, 1992  

SciTech Connect

The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

Not Available

1992-11-01T23:59:59.000Z

352

2012 Annual Planning Summary for Advanced Research Projects Agency-Energy  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Advanced Research Projects Agency-Energy.

353

Management of Biological Materials in Wastewater from Research & Development Facilities  

SciTech Connect

PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

2011-04-01T23:59:59.000Z

354

INCITE grants awarded to 59 computational research projects | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Synergia simulation of a bunched beam including particles (green) and self-fields (purple). Click to enlarge. Credit: James Amundson, Fermilab Synergia simulation of a bunched beam including particles (green) and self-fields (purple). Click to enlarge. Credit: James Amundson, Fermilab Synergia simulation of a bunched beam including particles (green) and self-fields (purple). Click to enlarge. Credit: James Amundson, Fermilab INCITE grants awarded to 59 computational research projects November 18, 2013 Tweet EmailPrint ARGONNE, Ill. - The U.S. Department of Energy's Office of Science announced 59 projects, promising to accelerate scientific discovery and innovation, that will share nearly 6 billion core hours on two of America's fastest supercomputers dedicated to open science. Their work will advance knowledge in critical areas, from sustainable energy technologies to the environmental consequences of energy use.

355

Manhattan Project: Basic Research at Los Alamos, 1943-1944  

Office of Scientific and Technical Information (OSTI)

Norris Bradbury, Robert Oppenheimer, Richard Feynman, Enrico Fermi, and others, Los Alamos, 1946 BASIC RESEARCH AT LOS ALAMOS Norris Bradbury, Robert Oppenheimer, Richard Feynman, Enrico Fermi, and others, Los Alamos, 1946 BASIC RESEARCH AT LOS ALAMOS (Los Alamos: Laboratory, 1943-1944) Events > Bringing It All Together, 1942-1945 Establishing Los Alamos, 1942-1943 Early Bomb Design, 1943-1944 Basic Research at Los Alamos, 1943-1944 Implosion Becomes a Necessity, 1944 Oak Ridge and Hanford Come Through, 1944-1945 Final Bomb Design, 1944-1945 Atomic Rivals and the ALSOS Mission, 1938-1945 Espionage and the Manhattan Project, 1940-1945 Enrico Fermi The first few months at Los Alamos were occupied with briefings on nuclear physics for the technical staff and with planning research priorities and organizing the laboratory. Leslie Groves called once again on Warren Lewis to head a committee, this time to evaluate the Los Alamos program. The committee's recommendations resulted in the coordinated effort envisioned by those who advocated a unified laboratory for bomb research. Enrico Fermi (left) took control of critical mass experiments and standardization of measurement Hans Bethe techniques. Plutonium purification work, begun at the Met Lab, became high priority at Los Alamos, and increased attention was paid to metallurgy. The committee also recommended that an engineering division be organized to collaborate with physicists on bomb design and fabrication. The laboratory was thus organized into four divisions: theoretical (Hans A. Bethe, right); experimental physics (Robert F. Bacher); chemistry and metallurgy (Joseph W. Kennedy); and ordnance (Navy Captain William S. "Deke" Parsons). Like other Manhattan Project installations, Los Alamos soon began to expand beyond initial expectations.

356

Materials and Components Technology Division research summary, 1991  

Science Conference Proceedings (OSTI)

This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

Not Available

1991-04-01T23:59:59.000Z

357

Research Areas - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

http://www.msd.anl.gov http://www.msd.anl.gov 2014-01-12T01:06:27+00:00 Joomla! 1.6 - Open Source Content Management Dynamics of Active Self-Assemble Materials 2011-05-13T17:17:28+00:00 2011-05-13T17:17:28+00:00 http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials Ken Krajniak krajniak@anl.gov Self-assembly, a natural tendency of simple building blocks to organize into complex architectures is a unique opportunity for materials science. In-depth understanding of self-assembly paves the way for design of tailored smart materials for emerging energy technologies. However, self-assembled materials pose a formidable challenge: they are intrinsically complex, with an often hierarchical organization occurring on many nested length and time scales. This program

358

Sandia LDRD-funded project looks at advanced materials for reactors...  

NLE Websites -- All DOE Office Websites (Extended Search)

LDRD-funded project looks at advanced materials for reactors | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

359

Advances in Materials Research in the Yucca Mountain Project  

Science Conference Proceedings (OSTI)

Since 1978 the design of the waste package evolved from thick walled carbon ... Products and Actinides in High-Burnup Mixed Oxide Fuels for Fast Reactors.

360

Walking the City: Manhattan Projects [Research and Debate  

E-Print Network (OSTI)

Walking the City: Manhattan Projects Ben Jacks How do wethis survey to projects circumscribed by Manhattan’s shores.

Jacks, Ben

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Material and energy recovery in integrated waste management systems: Project overview and main results  

Science Conference Proceedings (OSTI)

Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

Consonni, Stefano, E-mail: stefano.consonni@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); Giugliano, Michele [DIIAR, Environmental Section, Politecnico di Milano, P.za L. Da Vinci 32, 20133 Milan (Italy); Massarutto, Antonio [Dse, Universita degli Studi di Udine and IEFE, Via Tomadini 30/a, 33100 Udine (Italy); Ragazzi, Marco [Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Saccani, Cesare [DIEM, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

2011-09-15T23:59:59.000Z

362

SRS Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Synchrotron Radiation Studies Research Overview This program develops new capabilities using the nation's synchrotron radiation facilities and applies them to cutting-edge problems in materials science. In particular, we aim to play a leading scientific role at the Advanced Photon Source (APS). X-ray scattering studies take advantage of the high brilliance APS x-ray source for in-situ and time-resolved studies of surface and thin film structure. These include investigations of synthesis processes such as vapor-phase epitaxy and electrochemical deposition, and studies of electric-field-driven ferroelectric domain dynamics. High-resolution angle-resolved photoemission is used to understand the nature of superconductivity in the hi-Tc materials. New thrusts focus on exploring science enabled by future facilities such as

363

Contracts for field projects and supporting research on enhanced oil recovery  

SciTech Connect

This report contains information on contracts for field projects and supporting research on enhanced oil recovery. Brief descriptions of research programs are included. (CBS)

Not Available

1990-05-01T23:59:59.000Z

364

Shape Stable and Highly Conductive Nano-Phase-Change Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shape Stable and Highly Conductive Nano-Phase-Change Materials Research Project Shape Stable and Highly Conductive Nano-Phase-Change Materials Research Project The Department of...

365

DOE Funded Research Projects Win 31 R D 100 Awards for 2007 October...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

366

DOE Funded Research Projects Win 30 R&D 100 Awards for 2008 ...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

367

DOE National Laboratory Research Projects Win 31 R&D 100 Awards...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

368

Mr. Steve lappe, Project Leader Hazardous Materials Bureau  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico 87502-6110 Subject Transmittal of the Audit Report for the Savannah River SiteCentral Characterization Project Recertification Audit A 1 001 Dear Mr. Zappe : This...

369

FINAL REPORT VELA UNIFORM PROJECT SPONSORED BY THE ADVANCED RESEARCH PROJECTS AGENCY OF THE  

Office of Legacy Management (LM)

VUF -1009 VUF -1009 FINAL REPORT - VELA UNIFORM PROJECT SPONSORED BY THE ADVANCED RESEARCH PROJECTS AGENCY OF THE DEPARTMENT OF DEFENSE AND THE U. S. ATOMIC ENERGY COMMl SSlON FALLON, NEVADA OCTOBER 26,1963 FINAL REPORT OF OFF-SITE SURVEILLANCE Southwestern Radiological Health Laboratory September 1, 1964 Issuance Date: November 27, 1964 L E G A L N O T I C E This report war preprred a r an account of Government rponrored work. Neither the Unlted Strtor, nor the Commlerlon, nor m y perron acting on behalf of the Commlrslon: A. Maker any warranty o r reprerentition, exprerred o r Implied, wlth respect to the accu- racy, completanerr, o r urefulners of the lnfornutlon contrlned in thls report, o r that the u r e of any lnformnti~n. apparatur, method, o r procerr dlrclored in thlr report may not infringe

370

Program on Technology Innovation: EPRI Materials Management Matrix (MMM) Project  

Science Conference Proceedings (OSTI)

The Economic Simplified Boiling Water Reactor (ESBWR) Risk Priority Evaluation is the third activity supporting development of the ESBWR Materials Management Matrix (MMM). The first phase involved developing a list of in-scope components and materials of construction. The second phase focused on development of an ESBWR-specific Degradation Matrix (DM), which supplies important input into the Risk Priority Evaluation process documented in this report, and can help in understanding the opinions of material...

2008-03-24T23:59:59.000Z

371

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

SciTech Connect

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

1976-04-01T23:59:59.000Z

372

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

DOE Green Energy (OSTI)

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

Not Available

1976-04-01T23:59:59.000Z

373

A presentation by the Advanced Research Projects Agency - Energy (ARPA-E)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A presentation by the Advanced Research Projects Agency - Energy A presentation by the Advanced Research Projects Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities A presentation by the Advanced Research Projects Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities Research Opportunities with the DOE for Historically Black Colleges and Universities A presentation by the Advanced Research Projects Agency - Energy (ARPA-E) on Research Opportunities with the DOE for Historically Black Colleges and Universities More Documents & Publications Advanced Research Projects Agency -EnergyDepartment Before the House Science, Space, and Technology Committee Advanced Research Projects Agency - Energy Program Specific Recovery Plan

374

Research on polycrystalline thin-film materials, cells, and modules  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%--20%), low cost ($50/m{sup 2}), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe{sub 2} and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials. 26 refs., 12 figs, 1 tab.

Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

1990-11-01T23:59:59.000Z

375

Project definition study for research facility access and science education  

SciTech Connect

This UTA/SMU project definition study describes critical customer services and research programs which draw upon SSC assets to meet regional needs in two major components: Science Education; Academic/Small Business R and D Facility Access. The location of the SSC in Texas constituted a significant stimulus to R and D activities in Texas, encouraging new initiatives in high energy physics, as well as stimulating other areas of physics and related sciences. An important aspect of maximizing the utility of the investment in the SSC should be to re-allocate SSC assets in ways that maintain that momentum. This study addresses several ways to achieve that end, extending benefits to all of physics, the sciences in general and particularly, to science education.

Rosen, S.P. [Univ. of Texas, Arlington, TX (United States). Coll. of Science; Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

1994-10-01T23:59:59.000Z

376

Pacific Lamprey Research and Restoration Project : Annual Report 2001.  

DOE Green Energy (OSTI)

Pacific lamprey (Lampetra tridentata) has significantly declined along the Oregon coast and in the Columbia River Basin (Downey et al. 1993; Close and Jackson 2001). Declines in adults can be partially attributed to hydroelectric dams, which have impeded passage of adult Pacific lamprey in the Columbia and Snake rivers, thus effecting larval recruitment in the basin. Adult pacific lamprey also declined in numbers in the Umatilla River, a tributary of the Columbia River. In addition to hydro power dams in the Columbia River, habitat alterations and chemical treatments have been involved in the collapse of Pacific lamprey populations in the Umatilla River. To initiate the restoration effort, CTUIR began developing a restoration plan in 1998. The goal of the lamprey research and restoration project is to restore natural production of Pacific lampreys in the Umatilla River to self-sustaining and harvestable level. This report is summarizing the studies and restoration efforts concluded in 2001.

Close, David A.

2002-11-01T23:59:59.000Z

377

NTRCI Legacy Engine Research and Development Project Final Technical Report  

SciTech Connect

The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engineâ??s commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector was designed, manufactured and demonstrated in the GEN2.5B prototype.

Connie Smith-Holbert; Joseph Petrolino; Bart Watkins; David Irick

2011-12-31T23:59:59.000Z

378

Research Areas - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured Thin Films Nanostructured Thin Films Theme: The Nanostructured Thin Films program is focused on the synthesis, characterization, and modeling of dimensionally constrained materials systems in which a nano-scale trait of the material (e.g. grain size, film thickness, interfacial boundary, etc.) fundamentally determines its structure-property relationships. The work performed in this program falls primarily into two areas: (1) studies of thin-film growth phenomena and film properties, with emphasis on diamond and multicomponent oxides; and (2) first principles quantum-mechanical calculations that model thin film growth processes and electronic structure. Frequently, the experimental and theoretical efforts are coordinated on common scientific issues in a particular material system. Current research is devoted to (a) growth

379

Sodium fast reactor fuels and materials : research needs.  

SciTech Connect

An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

Denman, Matthew R.; Porter, Douglas (Idaho National Laboratory, Idaho Falls, ID); Wright, Art (Argonne National Laboratory Argonne, IL); Lambert, John (Argonne National Laboratory Argonne, IL); Hayes, Steven (Idaho National Laboratory, Idaho Falls, ID); Natesan, Ken (Argonne National Laboratory Argonne, IL); Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Garner, Frank (Radiation Effects Consulting. Richland, WA); Walters, Leon (Advanced Reactor Concepts, Idaho Falls, ID); Yacout, Abdellatif (Argonne National Laboratory Argonne, IL)

2011-09-01T23:59:59.000Z

380

EM Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Emerging Materials Recent Highlights Overview: This program emphasizes materials synthesis and processing, advanced characterizations and studies of materials properties, all aimed at a fundamental understanding of materials that have potential for applications. Currently the program concentrates on complex oxides with two connected goals: Understanding the complex interrelationship between charge and spin degrees of freedom and with crystal structure Understanding the proximity interactions which occur when an oxide shares a common boundary with a metal or other oxides. Recent highlights: Quantum Spins Mimic Refrigerator Magnets quantum spins October 11, 2012 The behavior of magnetic moments in metal oxides such as iridates is dominated by strong spin-orbit coupling effects. In layered compounds such as Sr3Ir2O7, the direction of these moments is controlled at the quantum level by dipolar interactions that are akin to those of classical bar magnets. From a functional standpoint, our findings suggest novel routes toward engineered structures that allow manipulation of moments without magnetic fields, a general strategy for future low-power electronics platforms.

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal materials project input for conversion technology task  

DOE Green Energy (OSTI)

This ongoing laboratory-based high risk/high payoff R D program has already yielded several durable cost-effective materials of construction which are being used by the geothermal energy industry. In FY 1992, R D in the following areas will be performed: (1) advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive composites for heat exchange applications, (4) corrosion mitigation at the Geysers, and (5) high-temperature chemical coupling materials to bond elastomers to steel substrates. Work to address other materials problems will commence in FY 1993, as their needs are verified. All of the activities will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. 3 figs., 2 tabs.

Kukacka, L.E.

1991-04-01T23:59:59.000Z

382

Geothermal materials project input for conversion technology task  

DOE Green Energy (OSTI)

This ongoing laboratory-based high risk/high payoff R and D program has already yielded several durable cost-effective materials of construction for geothermal energy processes. In FY 1991, R and D in the following areas will be performed: (1) development and downhole testing of advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight (1.1 g/cc) well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive scale-resistant composites for heat-exchanger tubing, (4) high-temperature chemical coupling materials which can be used to bond elastomers to steel substrates, and (5) high-temperature elastomers for use in downhole drill motors. Contingent upon the results, work on heat-exchanger tubing and lost-circulation control materials will be completed FY 1991 and the other activities will be continued in FY 1992. Work on other materials needs will commence in FY 1992. These include the in situ conversion of drilling fluids into well-completion materials and ceramic-type well casing. All of the subtasks will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. Results to date are discussed. 2 refs., 2 figs., 2 tabs.

Kukacka, L.E.

1990-08-01T23:59:59.000Z

383

MF Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Magnetic Films Research Vision: Our vision is to address the grand challenges in condensed matter and materials physics via the exploration of the realm of nanomagnetism. Nanomagnetism is connected to fundamental questions of how the energy demands of future generations will be met via the utilization of wind turbines as a viable alternate energy source, and electric vehicles as alternatives to continued fossil-fuel consumption. Nanomagnetism is connected to the question of how the information technology revolution will be extended via the advent of spintronics and the possibilities of communication by means of pure spin currents. Nanomagnetism provides deep issues to explore in the realms of nanoscale confinement, physical proximity, far-from-equilibrium phenomena, and ultrafast and emergent

384

Application of the BISON Fuel Performance Code to the FUMEX-III Coordinated Research Project  

SciTech Connect

INL recently participated in FUMEX-III, an International Atomic Energy Agency sponsored fuel modeling Coordinated Research Project. A main purpose of FUMEX-III is to compare code predictions to reliable experimental data. During the same time period, the INL initiated development of a new multidimensional (2D and 3D) multiphysics nuclear fuel performance code called BISON. Interactions with international fuel modeling researchers via FUMEX-III played a significant and important role in the BISON evolution, particularly influencing the selection of material and behavioral models which are now included in the code. BISON's ability to model integral fuel rod behavior did not mature until 2011, thus the only FUMEX-III case considered was the Riso3-GE7 experiment, which includes measurements of rod outer diameter following pellet clad mechanical interaction (PCMI) resulting from a power ramp late in fuel life. BISON comparisons to the Riso3-GE7 final rod diameter measurements are quite reasonable. The INL is very interested in participation in the next Fuel Modeling Coordinated Research Project and would like to see the project initiated as soon as possible.

R. L. Williamson; S. R. Novascone

2012-04-01T23:59:59.000Z

385

An Overview of the Beijing 2008 Olympics Research and Development Project (B08RDP)  

Science Conference Proceedings (OSTI)

The Beijing 2008 Olympics Research and Development Project (B08RDP), initiated in 2004 under the World Meteorological Organization (WMO) World Weather Research Programme (WWRP), undertook the research and development of mesoscale ensemble prediction ...

Yihong Duan; Jiandong Gong; Jun Du; Martin Charron; Jing Chen; Guo Deng; Geoff DiMego; Masahiro Hara; Masaru Kunii; Xiaoli Li; Yinglin Li; Kazuo Saito; Hiromu Seko; Yong Wang; Christoph Wittmann

2012-03-01T23:59:59.000Z

386

Present and Future Automotive Composite Materials Research Efforts at DOE  

DOE Green Energy (OSTI)

Automobiles of the future will be forced to travel fi.uther on a tank of fuel while discharging lower levels of pollutants. Currently, the United States uses in excess of 16.4 million barrels of petroleum per day. Sixty-six percent of that petroleum is used in the transportation of people and goods. Automobiles currently account for just under two-thirds of the nation's gasoline consumptio~ and about one-third of the total United States energy usage. [1] By improving transportation related fiel efficiency, the United States can lessen the impact that emissions have on our environment and provide a cleaner environment for fiture generations. In 1992, The Department of Energy's (DOE) Office of Transportation Materials completed a comprehensive program plan entitled, The Lightweight MateriaIs (LWko Multi-Year Program Plan, for the development of technologies aimed at reducing vehicle mass [2]. This plan was followed in 1997 by the more comprehensive Office of Advanced Automotive Technologies research and development plan titled, Energy Eficient Vehicles for a Cleaner Environment [3] which outlines the department's plans for developing more efficient vehicles during the next ~een years. Both plans identi~ potential applications, technology needs, and R&D priorities. The goal of the Lightweight Materials Program is to develop materials and primary processing methods for the fabrication of lighter weight components which can be incorporated into automotive systems. These technologies are intended to reduce vehicle weight, increase fuel efficiency and decrease emissions. The Lightweight Materials program is jointly managed by the Department of Energy(DOE) and the United States Automotive Materials Partnership (USAMP). Composite materiak program work is coordinated by cooperative research efforts between the DOE and the Automotive Composites Consortium (ACC).

Warren, C.D.

1999-07-03T23:59:59.000Z

387

Factors that affect software systems development project outcomes: A survey of research  

Science Conference Proceedings (OSTI)

Determining the factors that have an influence on software systems development and deployment project outcomes has been the focus of extensive and ongoing research for more than 30 years. We provide here a survey of the research literature that has addressed ... Keywords: Development processes, institutional context, people and action, project content, project outcomes

Laurie McLeod; Stephen G. MacDonell

2011-10-01T23:59:59.000Z

388

Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981  

DOE Green Energy (OSTI)

This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

Bradley, R.A. (comp.) [comp.

1981-12-01T23:59:59.000Z

389

DOE-Funded Research Projects Win 39 R&D Awards for 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-Funded Research Projects Win 39 R&D Awards for 2010 DOE-Funded Research Projects Win 39 R&D Awards for 2010 WASHINGTON, DC - U.S. Department of Energy researchers have won 39 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted awards are presented annually in recognition of exceptional new products, processes, materials or software developed throughout the world and introduced into the market the previous year. "I want to congratulate all of this year's winners on their awards and thank them for their work," Energy Secretary Steven Chu said. "The large number of winners from the Department of Energy's national labs every year is a clear sign that our labs are doing some of the most innovative research in the world. This work benefits us all by enhancing America's competitiveness, ensuring our security, providing new energy solutions and expanding the frontiers of our knowledge. Our national labs are truly national treasures, and it is wonderful to see their work recognized once again."

390

ESS 2012 Peer Review - Advanced Sodium Battery - Joonho Koh, Materials & Systems Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Battery Sodium Battery Joonho Koh (jkoh@msrihome.com), Greg Tao (gtao@msrihome.com), Neill Weber, and Anil V. Virkar Materials & Systems Research, Inc., 5395 W 700 S, Salt Lake City, UT 84104 Company Introduction History  Founded in 1990 by Dr. Dinesh K. Shetty and Dr. Anil V. Virkar  Currently 11 employees including 5 PhDs  10,000 ft² research facility in Salt Lake City, Utah MSRI's Experience of Na Batteries Status of the Na Batteries Overall Project Description Goal Develop advanced Na battery technology for enhanced safety, reduced fabrication cost, and high-power performance Approach  Innovative cell design using stronger structural materials  Reduction of the fabrication cost using a simple and reliable processing technique

391

Argonne CNM: Electronic and Magnetic Materials and Devices Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic & Magnetic Materials & Devices Electronic & Magnetic Materials & Devices Group Leader: Saw-Wai Hla The objective of the Electronic and Magnetic Materials and Devices (EMMD) group at the CNM is to discover, understand, and utilize new electron and spin-based materials and phenomena in constrained geometries. Potential benefits include reduced power dissipation, new medical imaging methods and therapies, improved efficiency of data storage by spin current and electrical field-assisted writing, and enhanced energy conversion in photovoltaic devices. Research Activities Understanding complex magnetic order and coupling phenomena: Magnetic nanostructures are prone to complex magnetic ordering phenomena that do not occur in the bulk and that will have strong impact on the further development of functional magnetic nanostructures. Basic science on the influence of demagnetizing effects, geometrical frustration, next-nearest neighbor exchange interactions, unusual anisotropy values, and the spin-orbit interaction at reduced dimensionality are performed with a special focus on temperature-dependent magnetic order-disorder transitions.

392

NREL: Photovoltaics Research - III-V Multijunction Materials and Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

III-V Multijunction Materials and Devices R&D III-V Multijunction Materials and Devices R&D NREL has a strong research capability in III-V multijunction photovoltaic (PV) cells. The inverted metamorphic multijunction (IMM) technology, which is fundamentally a new technology path with breakthrough performance and cost advantages, is a particular focus. We invented and first demonstrated the IMM solar cell and introduced it to the PV industry. Our scientists earlier invented and demonstrated the first-ever multijunction PV cell-and then worked with industry to develop the industry-standard GaInP/Ga(In)As/Ge) technology. III-V multijunction cells, which address both space and terrestrial power needs, have achieved the highest energy conversion efficiencies of all PV cells, with the current record exceeding 40%.

393

NREL: Wind Research - Wind for Schools Project Funding Case Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind for Schools Project Funding Case Studies August 26, 2013 The Wind for Schools project is part of the U.S. Department of Energy's (DOE's) Wind Powering America initiative....

394

Fluor Hanford Nuclear Material Stabilization Project Welding Manual  

SciTech Connect

The purpose of this section of the welding manual is to: (1) Provide a general description of the major responsibilities of the organizations involved with welding. (2) Provide general guidance concerning the application of codes related to welding. This manual contains requirements for welding for all Fluor Hanford (FH) welding operators working on the W460 Project, in the Plutonium Finishing Plant (PFP) at the U. S. Department of Energy (DOE) Hanford facilities. These procedures and any additional requirements for these joining processes can be used by all FH welding operators that are qualified. The Welding Procedure Specifications (WPS) found in this document were established from Procedure Qualification Records (PQR) qualified by FH specifically for the W460 Project. PQRs are permanent records of the initial testing and qualification program and are used to backup, and support, the WPS. The identification numbers of the supporting PQR(s) are recorded on each WPS. All PQRs are permanently stored under the supervision of the Fluor Hanford Welding Engineer (FHWE). New PQRs and WPSs will continue to be developed as necessary. The qualification of welders, welding operators and welding procedures will be performed for FH under supervision and concurrent of the FHWE. All new welding procedures to be entered in this manual or welder personnel to be added to the welder qualification database, shall be approved by the FHWE.

BERKEY, J.R.

2000-10-20T23:59:59.000Z

395

The impact of the formula student competition on undergraduate research projects  

Science Conference Proceedings (OSTI)

Starting from their freshman year, automotive engineering students at FH Joanneum are involved in project work within the framework of project-based learning. Software projects complementary to the regular courses in the second and third semester increase ... Keywords: formula student, project based learning, self-motivation, undergraduate research

Günter Bischof; Emilia Bratschitsch; Annette Casey; Thomas Lechner; Markus Lengauer; Adrian Millward-Sadler; Domagoj Rubeša; Christian Steinmann

2009-10-01T23:59:59.000Z

396

Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

CNMS USER RESEARCH CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature. E.g., homeostasis - regulation of a cell's internal environment to maintain stability and function at the mesoscale (i.e., cell) in the face of an unpredictable environment - is maintained even though there is considerable noise at the nanoscale (protein, RNA, molecular motor). A recent ACS Nano

397

Pacific Lamprey Research and Restoration Project, Annual Report 2002.  

DOE Green Energy (OSTI)

Pacific lamprey (Lampetra tridentata) has significantly declined along the Oregon coast and in the Columbia River Basin (Downey et al. 1993, Close and Jackson 2001). Declines in adults can be partially attributed to hydroelectric dams, which have impeded passage of adult Pacific lamprey in the Columbia and Snake rivers (Moser et al. 2002), thus effecting larval recruitment in the basin (Moser and Close in press). Adult Pacific lamprey also declined in numbers in the Umatilla River, a tributary of the Columbia River (Close and Jackson 2001). In addition to hydro power dams in the Columbia River, habitat alterations and chemical treatments have been involved in the collapse of Pacific lamprey populations in the Umatilla River (Close 1999). To initiate the restoration effort, CTUIR began developing a restoration plan in 1998. The goal of the lamprey research and restoration project is to restore natural production of Pacific lampreys in the Umatilla River to self-sustaining and harvestable level. This report is summarizing the studies and restoration efforts concluded in 2002.

Close, David; Aronsuu, Kimmo; Jackson, Aaron

2003-07-01T23:59:59.000Z

398

Ground Source Heat Pump Data Mining Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Source Heat Pump Data Mining Ground Source Heat Pump Data Mining Research Project Ground Source Heat Pump Data Mining Research Project The U.S. Department of Energy is currently conducting research into ground source heat pump (GSHP) data mining. This project seeks to build public awareness of GSHP technology through the development of case studies outlining costs and benefits. Project Description This project seeks to produce in-depth case studies on the costs and benefits of American Recovery and Reinvestment Act -funded GSHP demonstration projects, including cross-cutting summaries of lessons learned and best practices for design, installation, and operation. Project Partners Research is being undertaken between the Department of Energy and Oak Ridge National Laboratory. Project Goals

399

DIVISION OF ISOTOPES DEVELOPMENT RESEARCH AND DEVELOPMENT PROJECTS: 1968. Progress Reports on Sponsored Work.  

SciTech Connect

This is the second edition of the Division of Isotopes Development project summaries. It presents a short summary of objectives, results, and future plans for each research or development project sponsored by the Division within each of eight program areas.

none,

1969-01-01T23:59:59.000Z

400

Data base on dose reduction research projects for nuclear power plants. Volume 5  

SciTech Connect

This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

Khan, T.A.; Yu, C.K.; Roecklein, A.K. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States)

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Variable Speed Air-Source Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into advanced variable speed air-source integrated heat pumps (AS-IHPs). Project Description This project seeks to develop AS-IHP products for the larger air-source system market. Development focuses on a fully variable capacity or variable speed AS-IHP option. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy, Oak Ridge National Laboratory, and a CRADA partner. Project Goals The goal of this project is the development of a fully variable-speed version of an AS-IHP product that can provide heating, ventilation, and air

402

DOE-Funded Research Projects Win 39 R&D Awards for 2010 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

39 R&D Awards for 2010 39 R&D Awards for 2010 DOE-Funded Research Projects Win 39 R&D Awards for 2010 July 9, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy researchers have won 39 of the 100 awards given out this year by R&D Magazine for the most outstanding technology developments with promising commercial potential. The coveted awards are presented annually in recognition of exceptional new products, processes, materials or software developed throughout the world and introduced into the market the previous year. "I want to congratulate all of this year's winners on their awards and thank them for their work," Energy Secretary Steven Chu said. "The large number of winners from the Department of Energy's national labs every year

403

Modular Pebble Bed Reactor Project, University Research Consortium Annual Report  

Science Conference Proceedings (OSTI)

This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: · Improved fuel particle performance · Reactor physics · Economics · Proliferation resistance · Power conversion system modeling · Safety analysis · Regulatory and licensing strategy Recent accomplishments include: · Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. · A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. · Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. · A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. · A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. · Safety issues associated with air ingress are being evaluated. · Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. · PEBBED, a fast deterministic neutronic code package suitable for numerous repetitive calculations has been developed. Use of the code has focused on scoping studies for MPBR design features and proliferation issues. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor physics calculations have also been performed with the MCNP and VSOP codes. Furthermore, studies on the proliferation resistance of the MPBR fuel cycle has been initiated using these code · Issues identified during the MPBR research has resulted in a NERI proposal dealing with turbo-machinery design being approved for funding beginning in FY01. Two other NERI proposals, dealing with the development of a burnup “meter” and modularization techniques, were also funded in which the MIT team will be a participant. · A South African MPBR fuel testing proposal is pending ($7.0M over nine years).

Petti, David Andrew

2000-07-01T23:59:59.000Z

404

Pacific Lamprey Research and Restoration Project : Annual Report 1999.  

SciTech Connect

This report summarizes results of research activities conducted from 1996 through 1999. The findings in these chapters represent the efforts of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and collaborative efforts among other researchers working on Pacific lampreys (Lampetra tridentata) under this project. The findings in these chapters will help management and recovery of Pacific lampreys in the Columbia River Basin. Traditional Ecological Knowledge (TEK) of Pacific lampreys from tribal members within the Confederated Tribes of the Umatilla Indian Reservation was useful in gaining baseline life history information. Tribal members described harvesting two types of lampreys from spring through fall, the short brown type and the long dark type. Lamprey spawning distribution was from the mouth to the headwaters in the Umatilla River. Larval lampreys were observed in the mud and sand areas of the river. Tribal members observed major declines in lampreys within the Columbia River basin. Larval Pacific lampreys were distributed throughout the John Day River basin. Larval distribution in the other subbasins was patchy and limited to the lower reaches of the streams. Larval densities were highly variable in the Middle Fork John Day and North Fork John Day rivers, as opposed to the Main stem John Day River. Larval lengths varied little in the Middle Fork John Day and North Fork John Day rivers, but were highly variable in the Main stem John Day River. Larval abundance decreased as we moved upstream in the Columbia and Snake rivers. In addition, we found strong evidence for lack of larval recruitment as distance increased from the mouth of the Columbia River. We identified clinical indicators of stress in adult Pacific lampreys. Plasma glucose became elevated soon after acute stress and remained elevated for one week. Plasma lactate also became elevated by 30 minutes; however, it decreased to resting levels by one hour after application of the stressor. Muscle lactate was shown to have an inverse relationship with glucose. Muscle lactate levels decreased by 4 hours and remained depressed for two days. Plasma chloride ions decreased by one hour, then returned to resting levels by 8 hours, decreased again at 24 hours, and then recovered by 48 hours. The steroid cortisol was not found in the plasma of Pacific lampreys. Our study suggests plasma glucose, lactate, chloride ions, and muscle lactate can be used as clinical indicators of stress in Pacific lampreys.

Close, David A.

2001-10-01T23:59:59.000Z

405

Columbia River: Terminal fisheries research project. 1994 Annual report  

DOE Green Energy (OSTI)

Columbia River terminal fisheries have been conducted in Youngs Bay, Oregon, since the early 1960`s targeting coho salmon produced at the state facility on the North Fork Klaskanine River. In 1977 the Clatsop County Economic Development Council`s (CEDC) Fisheries Project began augmenting the Oregon Department of Fish and Wildlife production efforts. Together ODFW and CEDC smolt releases totaled 5,060,000 coho and 411,300 spring chinook in 1993 with most of the releases from the net pen acclimation program. During 1980-82 fall commercial terminal fisheries were conducted adjacent to the mouth of Big Creek in Oregon. All past terminal fisheries were successful in harvesting surplus hatchery fish with minimal impact on nonlocal weak stocks. In 1993 the Northwest Power Planning Council recommended in its` Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin. The findings of the initial year of the study are included in this report. The geographic area considered for study extends from Bonneville Dam to the river mouth. The initial year`s work is the beginning of a 2-year research stage to investigate potential sites, salmon stocks, and methodologies; a second 3-year stage will focus on expansion in Youngs Bay and experimental releases into sites with greatest potential; and a final 5-year phase establishing programs at full capacity at all acceptable sites. After ranking all possible sites using five harvest and five rearing criteria, four sites in Oregon (Tongue Point, Blind Slough, Clifton Channel and Wallace Slough) and three in Washington (Deep River, Steamboat Slough and Cathlamet Channel) were chosen for study.

Hirose, P.; Miller, M.; Hill, J.

1996-12-01T23:59:59.000Z

406

Research Projects to Address Technical Challenges Facing Small...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to improve the safety and minimize the environmental impacts of oil and natural gas exploration and production. Brief descriptions of the selected projects follow: DaniMer...

407

Researchers Describe Project to Merge Cloud Computing and Supercomputi...  

NLE Websites -- All DOE Office Websites (Extended Search)

DD project was to demonstrate a proof-of-concept capability for this novel high-performance computing (HPC) environment. The "traditional" cloud design approach often starts with...

408

Energy Department Announces Five Research Projects to Improve...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process This project will evaluate a two-stage dewatering process developed at the University of Kentucky, using vacuum and pressure to remove water from very small coal...

409

The estimation and management of cost over the life cycle of metallurgical research projects.  

E-Print Network (OSTI)

?? The purpose of this study is to determine whether all costs over the life cycle of metallurgical research projects are included in the initial… (more)

Odendaal, Maria Magdalena

2009-01-01T23:59:59.000Z

410

RECIPIENT:Desert Research Institute STATE:NV PROJECT Tall Tower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Institute STATE:NV PROJECT Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada; NREl Tracking TITLE: No. 11-012 Funding Opportunity...

411

Advancements in Nuclear Materials Research at the Idaho National ...  

Science Conference Proceedings (OSTI)

... Atom Probe (LEAP) and Transmission Electron Microscope (TEM) capable of ... Limited Materials Availability: Considering the Importance of Materials Market ...

412

Materials Research from Fundamentals to Application: A Portrait of ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Merton C. Flemings Honorary Symposium: Materials out of the Box: On ...

413

Overview of APEEM Thermal Control Research Projects (Presentation)  

Science Conference Proceedings (OSTI)

NREL researchers work on advancing power electronics and electric machines for many applications including advanced vehicles.

Kelly, K.

2007-11-06T23:59:59.000Z

414

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetration of LNG in the South Coast Air Basin and maximum capacity at the Energía Costa Azul LNG terminal of 950 million cubic LIST OF TABLES Table ES1: Parameters for the Eight Realistic LNG Scenarios Projected for the Year 2023

415

Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly MCLR program technical progress report, January 1, 1995--March 31, 1995  

Science Conference Proceedings (OSTI)

The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The Air-Conditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.

Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.

1995-04-01T23:59:59.000Z

416

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

417

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Transient-Mediated fate determination in a transcriptional circuit of HIV Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a novel technique of discovering the details of these interactions through the measurement of the structure of stochastic fluctuations that occur in neighboring nanoscale system components that can be directly imaged. In this work [Nature Genetics, 40(4), 466-470 (2008)], in collaboration with a

418

Contracts for field projects and supporting research on enhanced oil recovery  

SciTech Connect

Research programs in enhanced recovery are briefly described. A publications list from the Bartlesville Project Office and an index of the companies and institutions performing the research are included in the report. (CBS)

Not Available

1989-09-01T23:59:59.000Z

419

Ultra High p-doping Material Research for GaN Based Light Emitters  

Science Conference Proceedings (OSTI)

The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

Vladimir Dmitriev

2007-06-30T23:59:59.000Z

420

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network (OSTI)

Sciences and the Office of Fossil Energy Research, of theSecretary for Fossil Energy, Office of Coal Research,Secretary for Fossil Energy, Office of Coal Research,

Authors, Various

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Forecasting and Verifying in a Field Research Project: DOPLIGHT '87  

Science Conference Proceedings (OSTI)

Verification of forecasts during research field experiments is discussed and exemplified using the DOPLIGHT '87 experiment. We stress the importance of forecast verification if forecasting is to be a serious component of the research. A direct ...

Charles A. Doswell III; John A. Flueck

1989-06-01T23:59:59.000Z

422

High Efficiency Low Emission Supermarket Refrigeration Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies.

423

Low Dose Radiation Research Program: Funded Project Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

Funded Project Descriptions Funded Project Descriptions Non-Invasive Early Detection and Molecular Analysis of Low X-Ray Dose Effects in the Lens Jointly funded by NASA and DOE Principal Investigator: Lee Goldstein, M.D., Ph.D., Associate Professor in Psychiatry, Neurology, Ophthalmology, Pathology and Laboratory Medicine, & Biomedical Engineering, Boston University’s School Medicine, College of Engineering, and Photonics Center. Boston, Ma. The project includes a new DOE FWP (~$400 K over 3 years) to Lawrence Berkeley National Laboratory with Eleanor Blakely as Project Leader. The work includes a subcontract to support the collaboration of Polly Chang of SRI, International, Menlo Park, CA. and is scheduled to begin as early as August 2009. This proposal was submitted in response to the joint DOE/NASA

424

NREL: Wind Research - Wind for Schools Project Enters 2013 with...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Schools Project Enters 2013 with 124 Turbine Installations and Lessons to Share: A Wind Powering America Success Story January 28, 2013 On January 14-15, 2013, Wind Powering...

425

SOLERAS - University Research Project. Progress report 1, December 1984  

Science Conference Proceedings (OSTI)

Progress to date on each of the research efforts in direct solar energy applications at public and private institutions of higher education and research in the United States is addressed. Some research topics covered include: concentrating optics for PV conversion; wind power; solar ponds; photosynthesis; amorphous silicon alloys; passive cooling; crystal growth of gallium arsenides; and solar insolation.

Not Available

1984-12-01T23:59:59.000Z

426

Unsolicited Projects in 2012: Research in Computer Architecture, Modeling,  

Office of Science (SC) Website

2: Research in Computer Architecture, 2: Research in Computer Architecture, Modeling, and Evolving MPI for Exascale Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

427

Programmatic mission capabilities - chemistry and metallurgy research replacement (CMRR) project  

Science Conference Proceedings (OSTI)

CMRR will have analysis capabilities that support all the nuclear-material programs and national security needs. CMRR will replace the aging CMR Building and provide a key component responsive infrastructure necessary to sustain all nuclear programs and the nuclear-weapons complex. Material characterization capabilities - evaluate the microstructures and properties of nuclear materials and provide experimental data to validate process and performance models. Analytical chemistry capabilities - provide expertise in chemical and radiochemical analysis of materials where actinide elements make up a significant portion of the sample.

Gunderson, L Nguyen [Los Alamos National Laboratory; Kornreich, Drew E [Los Alamos National Laboratory; Wong, Amy S [Los Alamos National Laboratory

2011-01-04T23:59:59.000Z

428

Advanced, Low-Cost Solar Water Heating Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Low-Cost Solar Water Heating Advanced, Low-Cost Solar Water Heating Research Project Advanced, Low-Cost Solar Water Heating Research Project The U.S. Department of Energy is currently conducting research into advanced low-cost solar water heating. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Project Description This project seeks to identify and resolve technical, performance, and cost barriers to the development of easy-to-install and reliable solar water heating systems for all major U.S. climate regions. The project will also evaluate opportunities for breakthrough system innovations and innovations in advanced system performance ratings. Project Partners

429

Optics and materials research for controlled radiant energy transfer in buildings. Final technical report  

DOE Green Energy (OSTI)

The primary objective of this project was to perform the optics and materials research necessary to identify and solve the technical problems associated with fabricating durable, variable reflectivity electrochromic windows for energy efficient buildings and vehicles. The research performed at the Tufts Electro-Optics Technology Center (EOTC) has identified and solved nearly all the significant problems, as discussed below in this final technical report. There still remains, however, one important problem to be solved--i.e., to better understand the science of deposition processes and thereby develop and optimize one or more production-worthy deposition processes that could be used for the practical production of affordable, variable reflectivity electrochromic windows. Therefore, it is recommended that such studies be carried out with the goals of: (1) determining the probable practical limits of performance; and, very importantly, (2) to develop and optimize deposition processes that could be used for the practical production of affordable electrochromic windows.

Goldner, R.B.

1996-07-01T23:59:59.000Z

430

3rd World Materials Research Institute Forum & Energy ...  

Science Conference Proceedings (OSTI)

... 1: Energy/Materials policy H.Kung (DOE), R.Tomellini (EC), M.Kitagawa (NIMS) Session 2: Materials Technologies for Solar Energy Session 3 ...

2012-10-02T23:59:59.000Z

431

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

narrow gap materials including some superconductors, heavy-Fermion compounds, and many thermoelectric materials. Our results demonstrate the importance of including these...

432

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

the Division of Materials Sciences, Office of Basic EnergyDivision of lllaterials Sciences, Office of Basic :energyDivision of Materials Sciences, Office of the Basic Energy

Authors, Various

2013-01-01T23:59:59.000Z

433

ARPA-E Awards $156 Million for Groundbreaking Energy Research Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $156 Million for Groundbreaking Energy Research Awards $156 Million for Groundbreaking Energy Research Projects ARPA-E Awards $156 Million for Groundbreaking Energy Research Projects October 31, 2011 - 1:29pm Addthis ARPA-E Awards $156 Million for Groundbreaking Energy Research Projects Alexa McClanahan Communications Support Contractor to ARPA-E What does this mean for me? Five new ARPA-E programs (PETRO, REACT, HEATS, GENI and Solar ADEPT) represent significant steps in making new clean energy technologies viable and marketable. Last month, ARPA-E Director Arun Majumdar announced 60 cutting-edge research projects across five programs. All told, the projects are worth $156 million and aim to dramatically improve how the U.S. uses and produces energy. The five new programs each take a unique yet promising approach to

434

Heat Extraction Project, geothermal reservoir engineering research at Stanford  

DOE Green Energy (OSTI)

The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

Kruger, P.

1989-01-01T23:59:59.000Z

435

USDA and DOE Fund 10 Research Projects to Accelerate Bioenergy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to spur research into improving the efficiency and cost-effectiveness of growing biofuel and bioenergy crops. The investments are part of a broader effort by the Obama...

436

NETL: News Release - NETL Selects Sensor Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and combustion. The awards are being made in a competitive selection through the Instrumentation, Sensors and Control System program, a part of NETL's Advanced Research...

437

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network (OSTI)

ve materials, useful for energy conversion applications, such as early detection of flaws in nuclear

Authors, Various

2011-01-01T23:59:59.000Z

438

Manhattan Project: Early Uranium Research, 1939-1941  

Office of Scientific and Technical Information (OSTI)

Ernest Lawrence, Arthur Compton, Vannevar Bush, and James Conant discuss uranium research, Berkeley, March 29, 1940. EARLY URANIUM RESEARCH Ernest Lawrence, Arthur Compton, Vannevar Bush, and James Conant discuss uranium research, Berkeley, March 29, 1940. EARLY URANIUM RESEARCH (1939-1941) Events > Early Government Support, 1939-1942 Einstein's Letter, 1939 Early Uranium Research, 1939-1941 Piles and Plutonium, 1939-1941 Reorganization and Acceleration, 1940-1941 The MAUD Report, 1941 A Tentative Decision to Build the Bomb, 1941-1942 President Franklin D. Roosevelt responded to the call for government support of uranium research quickly but cautiously. He appointed Lyman J. Briggs, director of the National Bureau of Standards, head of the Advisory Committee on Uranium, which met for the first time on October 21, 1939. The committee, including both civilian and military representation, was to coordinate its activities with Alexander Sachs and look into the current state of research on uranium to recommend an appropriate role for the federal government. In early 1940, only months after the outbreak of war in Europe, the Uranium Committee recommended that the government fund limited research on isotope separation as well as Enrico Fermi's and Leo Szilard's work on fission chain reactions at Columbia University (below).

439

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Lu (PNNL). The development of the dynamic phasor model was led by Bernard Lesieutre (LBNL by David Chassin (PNNL). The research for the white paper on load monitoring was conducted by Henry Huang (PNNL). The research for the white paper on uncertainty analysis was conducted by Ian Hiskens

440

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

research support in the advancement of daylighting. A number of organizations formally signed fenestration systems and the development of Window 6 and Radiance to help advance this work. John Mardaljevic · EnergyRelated Environmental Research · Energy Systems Integration · Environmentally Preferred Advanced

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Review and Selection of Research Projects | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Review and Selection of Research Projects Review and Selection of Research Projects High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Merit / Review Policies Early Career Research Opportunities in High Energy Physics Graduate Fellows in High Energy Theory Guidelines Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Peer Merit / Review Policies Review and Selection of Research Projects Print Text Size: A A A RSS Feeds FeedbackShare Page All research projects supported by the Office of High Energy Physics (HEP)

442

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network (OSTI)

Science of Alloy Oesign," EXXON Colloquia in Metallurgy,Research Dr. W. C. Baird Exxon Research Dr. T. P. WilsonLiquid-Solid Particle Erosion," Exxon Corporate Research Lab

Authors, Various

2010-01-01T23:59:59.000Z

443

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

ELECTRIC FUEL IMPLEMENTATION IN CALIFORNIA: OVERCOMING BATTERY FIRST-COST HURDLES JUNE 2011 CEC-500 for Transportation Electric Fuel Implementation in California: Overcoming Battery First-Cost Hurdles is the final Battery First-Cost Hurdles project (contract number UC MRA-02-086) conducted by University of California

444

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

National Laboratory #12; Prepared by: Primary Author(s): Mark Morgan, Project Manager (PNNL) Ian Dobson (PNNL) Nader Samaan (PNNL) David Newman (University of Alaska) Siri Varadan (KEMA) Pacific Northwest National Laboratory (PNNL) 902 Battelle Boulevard P.O. Box 999, MSIN K1-85 Richland, WA 99352 509

445

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

, Merced and Randy Gee, MaryJane Hale and Guenter Fischer of Sol Focus. Please site this report acknowledge the guidance and assistance given by Heater Poiry, Steve Horne, Gary Conley, Randy Gee, MaryJane Hale, and Guenter Fischer of Sol Focus Project team members included: Alfonso Tovar, Jesus

446

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

GENERATION USING PARABOLIC TROUGH SOLAR COLLECTION NOVEMBER 2010 CEC5002011040 Prepared for: California Generation Using Parabolic Trough Solar Collection is the final report for the Reduce Natural Gas Use for Industrial Process Heat using High- Temperature Parabolic Trough Solar Collectors project (Contract Number

447

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network (OSTI)

DEVELOPMENT 1. Photovoltaic Energy Conversion a. Research onof CuxS(Cd-Zn)S Photovoltaic Solar Energy Converters. PapersResearch on Photovoltaic Solar Energy Converters. Professor

Authors, Various

2011-01-01T23:59:59.000Z

448

An overview of an illuminator of opportunity passive radar research project and its signal processing research directions  

Science Conference Proceedings (OSTI)

In this paper, an overview of an Illuminator Of Opportunity (IOO) passive radar research project being conducted at DSTO is presented, with a specific focus on the signal processing research directions that are being investigated. The overview provides ... Keywords: Bistatic radar, Passive coherent location

J. Palmer; S. Palumbo; A. Summers; D. Merrett; S. Searle; S. Howard

2011-09-01T23:59:59.000Z

449

DOE Research Projects to Examine Promising Geologic Formations for CO2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Projects to Examine Promising Geologic Formations for Research Projects to Examine Promising Geologic Formations for CO2 Storage DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage September 16, 2009 - 1:00pm Addthis Washington, DC - The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2). View Project Details Funding for the projects includes $49.75 million from the 2009 American Reinvestment and Recovery Act and will result in substantial employment opportunities for local and regional organizations over the next three years while providing hands-on scientific experience for individuals looking to be employed in the carbon capture and storage (CCS) industry.

450

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation Ohio State University Nitin Padture Project Dates: 1012008 - 9302011 Area of Research: Materials...

451

DOE Announces up to $29.3 Million in Projects for Research, Development,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $29.3 Million in Projects for Research, up to $29.3 Million in Projects for Research, Development, and Demonstration of Alternative Vehicle Technologies DOE Announces up to $29.3 Million in Projects for Research, Development, and Demonstration of Alternative Vehicle Technologies December 3, 2008 - 4:58pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced the selection of six cost-shared research projects for the development and demonstration of alternative vehicle technology projects totaling a DOE investment of up to $14.55 million over three years, subject to annual appropriations. Private sector contributions will further increase the financial investment for a total of up to $29.3 million. The selections announced today are part of DOE's continuing work to develop high

452

2013 Annual DOE-NE Materials Research Coordination Meeting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Currently, materials research is performed in several NE programs, including NE Advanced Modeling and Simulation (NEAMS), Fuel Cycle Research and Development (FCRD), Advanced Reactor Technologies

453

2013 Annual DOE-NE Materials Research Coordination Meeting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Currently, materials research is performed in several NE programs, including NE Advanced Modeling and Simulation (NEAMS), Fuel Cycle Research and Development (FCRD), Advanced Reactor Technologies

454

Low Dose Radiation Research Program: Current Funded Project Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

Funded Project Descriptions Funded Project Descriptions Effects Of Low Doses of Radiation on DNA Repair Jointly funded by NASA and DOE Eric J Ackerman Pacific Northwest National Laboratory Richland, WA 99352 Dr. Ackerman will study the effect of low doses of ionizing radiation on the repair of different types of damage to DNA, including damage from ionizing radiation and that produced by the normal internal operation of the cell. Using a very sensitive technique called host cell reactivation assay (HCR), he will quantitatively measure the repair of each type of DNA damage and thereby measure if the cellular repair system itself has been damaged. He will also determine if unique forms of DNA repair system damage are induced by low doses of cosmic radiation exposure present during space

455

Low Dose Radiation Research Program: Project Descriptions-Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Descriptions-Archive Project Descriptions-Archive Effects Of Low Doses of Radiation on DNA Repair Eric J Ackerman (former PNNL) (Jointly funded by NASA and DOE) Pacific Northwest National Laboratory Richland, WA Dr. Ackerman will study the effect of low doses of ionizing radiation on the repair of different types of damage to DNA, including damage from ionizing radiation and that produced by the normal internal operation of the cell. Using a very sensitive technique called host cell reactivation assay (HCR), he will quantitatively measure the repair of each type of DNA damage and thereby measure if the cellular repair system itself has been damaged. He will also determine if unique forms of DNA repair system damage are induced by low doses of cosmic radiation exposure present during space

456

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network (OSTI)

of Materials in In-situ Oil Shale Retorting Environments,"of Materials in In-Situ Oil Shale Environments," 8thUtilization of Metals in Oil Shale Retort Components Alan V.

Authors, Various

2010-01-01T23:59:59.000Z

457

Materials and Molecular Research Division annual report 1983  

Science Conference Proceedings (OSTI)

Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

Searcy, A.W.; Muller, R.H.; Peterson, C.V.

1984-07-01T23:59:59.000Z

458

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

Payload Weight (CO) Models Support Energy-Saving Microwave Technologies (NY) Materials Advance Chemical with Marshall Space Flight Center, PWR used its rocket engine experience to make clean energy gasification technology. Compared to standard gasification systems, the capital cost to build a commercial plant using PWR

459

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 89  

SciTech Connect

Summaries are presented for the DOE contracts related to supported research for thermal recovery of petroleum, geoscience technology, and field demonstrations in high-priority reservoir classes. Data included for each project are: title, contract number, principal investigator, research organization, beginning date, expected completion date, amount of award, objectives of the research, and summary of technical progress.

NONE

1998-04-01T23:59:59.000Z

460

Final Report for Project Titled Nanoporous Materials: Experimental Studies and Molecular Simulations  

DOE Green Energy (OSTI)

In recent years significant research has been carried out aimed at developing a fundamental understanding of the phenomena involved in the transport of mixtures in nanoporous systems, such as adsorbents and membranes, which are crucial to many industrial separation processes. Carbon molecular-sieve membranes (CMSM) were the key focus early on in our DOE/BES-supported investigations. They are thought to be more stable and versatile than polymeric membranes, and capable of operating at higher temperatures, up to 300 C. In our research the emphasis was on understanding the factors determining the ability of the CMSM to separate mixtures based on differences in molecular mobility, and in affinity to the pore surface. Our study involved: (1) the preparation and characterization of the CMSM; (2) the computational modeling of their structure, and (3) the measurement and computer simulations of sorption and transport of mixtures through the membranes. The membranes developed are currently undergoing field-testing by Media & Process Technology (M & PT), our industrial collaborators in the project. In this research project we adopted the methodology and tools developed with the nanoporous CMSM to the preparation of novel membranes and films made of SiC. Our efforts were motivated here by the growing interest in the hydrogen economy, which has necessitated the development of robust nanoporous films that can be used as membranes and sensors in high-temperature and pressure processes related to H{sub 2} production. SiC is a promising material for these applications due to its many unique properties, such as high thermal conductivity, thermal shock resistance, biocompatibility, resistance in acidic and alkali environments, chemical inertness (e.g., towards steam, H{sub 2}S, NH{sub 3}, and HCl, of particular concern for H{sub 2} production from biomass and coal), and high mechanical strength. Though the CMSM exhibit many similar good properties, they are themselves unstable in the presence of O{sub 2} and steam at temperatures higher than 300 C (conditions typically encountered in reactive separations for H{sub 2} production). Other inorganic membranes, like ceramic (e.g., alumina, silica, and zeolite) and metal (Pd, Ag, and their alloys) membranes have, so far, also proven unstable, in such high-temperature applications in the presence of steam and H{sub 2}S. The preparation of SiC nanoporous membranes involves two important steps. First, the preparation of appropriate SiC porous supports, and second the deposition on these supports of crack- and pinhole-free, thin nanoporous SiC films. Our early research, in collaboration with M & PT, focused on the preparation of quality porous SiC substrates. Our recent efforts involved the deposition of thin nanoporous films on these substrates by the pyrolysis of pre-ceramic polymeric precursors. We have made substantial strides in this area (as discussed further in Section II) preparing hydrogen-selective membranes and films. The objective of the project was not only to advance the 'state-of-the-art' of preparing the SiC membranes and films, but also to significantly broaden our understanding of factors that determine the ability of the SiC materials to separate gas mixtures, based on differences in molecular mobility and molecule-pore surface interactions. It is only such an improved fundamental understanding that will lead to further substantial improvements in the techniques for preparing such materials. In our studies we proceeded along two paths: (1) the preparation and characterization of SiC membranes, and the computational modeling of their molecular structure, and (2) the measurement and simultaneous computer simulation of sorption and transport of mixtures through the membranes. Coupling experiments and simulations facilitated our efforts to relate the membrane's structure with its transport properties, and separation efficacy. This, in turn, enabled progress towards the long-term goal of first-principle molecular engineering and design of improved materials for adsorption and separati

Muhammad Sahimi and Theodore T. Tsotsis

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions  

Science Conference Proceedings (OSTI)

This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

Maloy, Stuart A. [Los Alamos National Laboratory; Busby, Jeremy T. [ORNL

2012-06-12T23:59:59.000Z

462

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

The sensitivity assessments include tax credits, energy value, capacity value, reduced solar costs, expanded the quality of life in California by bringing environmentally safe, affordable, and reliable energy services · EnergyRelated Environmental Research · Energy Systems Integration · Environmentally Preferred Advanced

463

Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

Ian McKirdy

2011-07-01T23:59:59.000Z

464

Research Areas, Condensed Matter Physics & Materials Science Department,  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Studies of Nanoscale Structure and Structural Defects in Advanced Materials: The goal of this program is to study property sensitive structural defects in technologically-important materials such as superconductors, magnets, and other functional materials at nanoscale. Advanced quantitative electron microscopy techniques, such as coherent diffraction, atomic imaging, spectroscopy, and phase retrieval methods including electron holography are developed and employed to study material behaviors. Computer simulations and theoretical modeling are carried out to aid the interpretation of experimental data. Electron Spectroscopy Group's primary focus is on the electronic structure and dynamics of condensed matter systems. The group carries out studies on a range materials including strongly correlated systems and thin metallic films. A special emphasis is placed on studies of high-Tc superconductors and related materials.

465

DOE National Laboratory Research Projects Win 31 R&D Awards for 2007 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Research Projects Win 31 R&D Awards for Laboratory Research Projects Win 31 R&D Awards for 2007 DOE National Laboratory Research Projects Win 31 R&D Awards for 2007 October 19, 2007 - 3:21pm Addthis WASHINGTON, DC - The U.S. Department of Energy's Under Secretary for Science Raymond L. Orbach today lauded researchers from ten of the Department of Energy's world-class national laboratories that last night were awarded 31 of the world's top 100 scientific and technological innovations in 2007, as judged by R&D Magazine. The awards are presented annually in recognition of the most outstanding technology developments with commercial potential. 18 of the awards won by DOE lab researchers were shared with researchers from universities and businesses. R&D Magazine presented the awards last night at its 45th Annual R&D Awards

466

Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget  

Science Conference Proceedings (OSTI)

This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

Kollar, Lenka; Mathews, Caroline E.

2009-07-01T23:59:59.000Z

467

DOE and USDA Select Projects for more than $24 Million in Biomass Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and USDA Select Projects for more than $24 Million in Biomass DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants November 12, 2009 - 12:00am Addthis Washington, DC - The U.S. Departments of Agriculture and Energy today announced projects selected for more than $24 million in grants to research and develop technologies to produce biofuels, bioenergy and high-value biobased products. Of the $24.4 million announced today, DOE plans to invest up to $4.9 million with USDA contributing up to $19.5 million. Advanced biofuels produced through this funding are expected to reduce greenhouse gas emissions by at least 50 percent compared to fossil fuels. "The selected projects will help make bioenergy production from renewable

468

DOE and USDA Select Projects for more than $24 Million in Biomass Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and USDA Select Projects for more than $24 Million in Biomass and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants DOE and USDA Select Projects for more than $24 Million in Biomass Research and Development Grants November 12, 2009 - 12:00am Addthis Washington, DC - The U.S. Departments of Agriculture and Energy today announced projects selected for more than $24 million in grants to research and develop technologies to produce biofuels, bioenergy and high-value biobased products. Of the $24.4 million announced today, DOE plans to invest up to $4.9 million with USDA contributing up to $19.5 million. Advanced biofuels produced through this funding are expected to reduce greenhouse gas emissions by at least 50 percent compared to fossil fuels. "The selected projects will help make bioenergy production from renewable

469

NIST Hosts Two International Materials Research Meetings in ...  

Science Conference Proceedings (OSTI)

... Lectures will focus on the materials aspects of solar energy, hydrogen and biofuels, energy storage and conversion, energy efficiency and nuclear ...

2012-10-01T23:59:59.000Z

470

Magma energy research project: state-of-the-project report, October 1, 1978  

DOE Green Energy (OSTI)

The feasibility of extracting energy from magma bodies is investigated. The work done in FY 76, 77, and 78 in the following tasks are summarized; resource location and definition, source tapping, magma characterization and materials compatibility, and energy extraction. (MHR)

Colp, J.L.; Traeger, R.K.

1980-02-01T23:59:59.000Z

471

Project no.: INCO-WBC-1-509173 Specific Target Research Project  

E-Print Network (OSTI)

(Bosnia-Herzegovina). The consortium of the RECOAL project aims to establish the scientific and technical Paul Tabbush HEIS Hydro-Engineering Institute Sarajevo, Bosnia and Herzegovina Tarik Kupusovic, Hamid Custovic UBAL University of Banja Luka, Bosnia and Herzegovina Mihajlo Markovic TEP Thermo-electric power

472

University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992  

SciTech Connect

This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

Not Available

1992-07-01T23:59:59.000Z

473

Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy Categorical Exclusion Determination Form Program or Field Office: Advanced Research Projects Agency - Energy Project Title: (0207-1609) Planar Energy - Solid-State All Inorganic Rechargeable Lithium Batteries Location: Florida Proposed Action or Project Description: American Recover), and Reinvestment Act: ~ Funding will support laboratory, bench scale, and pilot scale research and development on lithium battery manufacturing processes for use in electrical energy storage for transportation. Categorical Exclusion(s) Applied: x ~ 83.6 Sitinglconstruct1onJoperationldecommlssloning of facilities for bench-scale research, conventional laboratory operations, smalJ..scale research and development and pilot projects *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of to CFRIO 21 £::lli:klkrc

474

The Sydney 2000 World Weather Research Programme Forecast Demonstration Project: Overview and Current Status  

Science Conference Proceedings (OSTI)

The first World Weather Research Programme (WWRP) Forecast Demonstration Project (FDP), with a focus on nowcasting, was conducted in Sydney, Australia, from 4 September to 21 November 2000 during a period associated with the Sydney 2000 Olympic ...

T. Keenan; P. Joe; J. Wilson; C. Collier; B. Golding; D. Burgess; P. May; C. Pierce; J. Bally; A. Crook; A. Seed; D. Sills; L. Berry; R. Potts; I. Bell; N. Fox; E. Ebert; M. Eilts; K. O'Loughlin; R. Webb; R. Carbone; K. Browning; R. Roberts; C. Mueller

2003-08-01T23:59:59.000Z

475

Energy's Technology Research Project (TRP) Program W(C)-93-015  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

made in the course of or under arrangements entered into under the Department of Energy's Technology Research Project (TRP) Program W(C)-93-015 The Department of Energy (DOE) is...

476

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

Science Conference Proceedings (OSTI)

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

477

ARPA-E Announces $40 Million for Research Projects to Develop Cleaner and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPA-E Announces $40 Million for Research Projects to Develop ARPA-E Announces $40 Million for Research Projects to Develop Cleaner and Cheaper Transportation Choices for Consumers ARPA-E Announces $40 Million for Research Projects to Develop Cleaner and Cheaper Transportation Choices for Consumers March 22, 2013 - 11:32am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Department of Energy today announced that approximately $40 million from its Advanced Research Projects Agency-Energy (ARPA-E) will be made available for two new programs that will engage our country's brightest scientists, engineers and entrepreneurs to develop technologies that shift our cars and trucks off oil. One program will develop cost effective and energy efficient manufacturing techniques to process and recycle metals that could help make lighter vehicles. The second program

478

Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

That Will Advance Solid Oxide Fuel Cell Research That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development July 27, 2012 - 1:00pm Addthis Washington, D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant fossil energy resources have been selected for further research by the Department of Energy (DOE). The projects, managed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL), are valued at a total of $4,391,570, with DOE contributing $3,499,250 and the remaining cost provided by the recipients. Four of the selected projects will pursue advances in cathode performance,

479

EMSL Research and Capability Development Proposals Nonlinear Radiation Response and Transport Properties in Scintillating Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Figure 1. Time-of-Flight (TOF) versus light Figure 1. Time-of-Flight (TOF) versus light output (L) of CsI:Tl to He + ions. The inset is an example where L=263 is determined for particles with certainty energy (TOF=840). The energy resolution can be determined by ∆L/L = 45/263. The light-energy dependence and energy resolution can be observed as the difference in curvature and dispersive of the data. EMSL Research and Capability Development Proposals Nonlinear Radiation Response and Transport Properties in Scintillating Materials Project start date: Spring 2007 EMSL Lead Investigator: Yanwen Zhang Deposition and Microfabrication, EMSL, PNNL Co-investigators: Vaithiyalingam Shutthanandan Deposition and Microfabrication, EMSL, PNNL Scintillation response has wide applications in the field of astronomy, medical physics, high-energy

480

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 78, quarter ending March 31, 1994  

Science Conference Proceedings (OSTI)

This report presents descriptions of various research projects and field projects concerned with the enhanced recovery of petroleum. Contract numbers, principal investigators, company names, and project management information is included.

NONE

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials research project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Activity theory: A framework for design and reporting on research projects based on ICT  

Science Conference Proceedings (OSTI)

We propose using activity theory as a basis for designing and reporting on research projects that focus on information and communication technology (ICT) as a means to support educational processes. Adopting the theory, we describe teaching/learning ... Keywords: activity theory, evaluation, project design and reports, theoretical models

Rosa-Maria Bottino; Giancarlo Chiappini; Paola Forcheri; Enrica Lemut; Maria-Teresa Molfino

1999-09-01T23:59:59.000Z

482

Implementing information systems with project teams using ethnographic-action research  

Science Conference Proceedings (OSTI)

Architecture, engineering, and construction (AEC) projects are characterized by a large variation in requirements and work routines. Therefore, it is difficult to develop and implement information systems to support projects. To address these challenges, ... Keywords: Action research, Construction, Design, Engineering, Ethnography, Information management

Timo Hartmann; Martin Fischer; John Haymaker

2009-01-01T23:59:59.000Z

483

ECS Research - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Energy Conversion and Storage Research Energy conversion This work is a continuation of the successful work performed at Berkeley National Lab. Building on the research on Pt-alloy single crystals which was published in Science, research at Argonne focuses on a deeper understanding of the type of surface necessary to facilitate the Oxygen Reduction Reaction (ORR), the troubled cathode reaction of a fuel cell. The anode side of the fuel cell is not neglected and research on the Hydrogen Oxidation Reaction (HOR) and CO oxidation reactions is one of the group's core priorities. Efforts, however, do not end there. By investigating the effects of anything may be present at or near the electrode surface, such as anions, cations and ionomer, an insight into the mechanism behind

484

Final Technical Report for the MIT Annular Fuel Research Project  

SciTech Connect

MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research ENergy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in poer density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghuse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited.

Mujid S. Kazimi; Pavel Hejzlar

2008-01-31T23:59:59.000Z

485

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network (OSTI)

November 21, 1980. 15. Exxon Corporation, Baton Rouge,of the Actinide Metals," Exxon Corporation, Linden, NewUniversity F. R. Gamble Exxon Research and Engineering T.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

486

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network (OSTI)

III Nuclear Sciences IV Fossil Energy v Advanced isotopeInvestigators [See Fossil Energy Section] f. Electrochemicaland the Office of Fossil Energy Research, of the U.S.

Authors, Various

2010-01-01T23:59:59.000Z

487

Advanced gasification projects. [Support research needs; contains list of advanced gasification projects supported by US DOE  

Science Conference Proceedings (OSTI)

An analysis of the needs for coal gasification reveals the following principal categories of information gaps that can be filled by programs already in progress or those readily initiated. The gaps are technology base needs required for successful application of both currently available and advanced gasification processes. The need areas are classified as follows: Reactor design/performance, gas cleaning/cooling separation, acid-gas removal/gas shift/gas conversion, wastewater treatment, and general data base on both state-of-the-art and advanced technologies. During the future operating and optimization phases of most of the coal gasification projects, when additional troubles will surface, the technical support program described herein will have provided the additional data base needed to correct deficiencies and/or to advance the state-of-the-art. The report describes US DOE supported projects in this area: brief description, title, contractor, objective, accomplishments, current work and possible application.

Not Available

1982-02-01T23:59:59.000Z

488