National Library of Energy BETA

Sample records for materials preparation center

  1. Arc Casting Intermetallic Alloy (Materials Preparation Center)

    SciTech Connect (OSTI)

    2010-01-01

    Arc casting of intermetallic (La-Ni-Sn) AB5 alloy used for metal hydride hydrogen storage. Upon solidification the Sn is partially rejected and increases in concentration in the remaining liquid. Upon completing solidification there is a great deal of internal stress in the ingot. As the ingot cools further the stress is relieved. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  2. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  3. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  4. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  5. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  6. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  7. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Academic, industrial, and international researchers from across the globe can access the center through its user program. Brief proposals are peer- reviewed for both non-proprietary (at no cost to the user) and proprietary (with cost-recovery rates) research. The center's goal is to support and explore ways to create functional hybrid nanomaterials and to tailor nanoscale interactions for grand

  8. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific ...

  9. Preparation of asymmetric porous materials

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  10. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based

  11. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  12. Energy Frontier Research Center Center for Materials Science of Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  13. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in Lightweight Materials...

  14. LANSCE | Lujan Center | Biology Preparation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology Preparation Laboratory The Lujan Center Biolab offers a variety of capabilities. 1) Biodeuteration Lab (BDL) We run a protein expression lab for perdeuteration of user proteins. We offer full perdeuteration (~99%) using our algal-based media for bacterial growth. We also have M9 minimal media made in D2O for expression of up to ~85% perdeuteration. Users can use our lab in person or mail-in a plasmid for us to express for them. We also have standard protein expression equipment:

  15. Process for preparing energetic materials

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Lee, Ronald S. (Livermore, CA); Tillotson, Thomas M. (Tracy, CA; , Hrubesh, Lawrence W. (Pleasanton, CA); Swansiger, Rosalind W. (Livermore, CA); Fox, Glenn A. (Livermore, CA)

    2011-12-13

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  16. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nanophase Materials Sciences and Panos Datskos of ORNL Measurement Science and Systems Engineering Division The technology, based on nonlinear nanomechanical resonators,...

  17. Center for Lightweighting Automotive Materials and Processing...

    Broader source: Energy.gov (indexed) [DOE]

    GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

  18. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People...

  19. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Click here to view Seminar archives Upcoming Events User Meeting - Center for Nanophase Materials Sciences, August 10-12, 2016, Oak Ridge, TN view Past Events

  20. Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California, Santa Barbara NREL Purdue University Los Alamos News May 15, 2014 Multi-junction Solar Cells to Push CPV Efficiencies Beyond 50% Oct 30, 2013 Materials Professor...

  1. Materials Science and Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Engineering Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  2. Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic and Ionic Functionality on the Nanoscale * Developing instrumentation and techniques to image and understand the functionality of nanoscale materials and interacting assemblies * Research on optoelectronic, ferroelectric, ionic and electronic transport, and catalytic phenomena at the nanoscale * Understand energy transfer at nanoscale interfaces Functional Polymer and Hybrid Architectures * Advancing our fundamental understanding of the links between polymer structure, property and

  3. Preparation and screening of crystalline inorganic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (La Jolla, CA); Xiang, Xiaodong (Danville, CA); Goldwasser, Isy (Palo Alto, CA); Brice{hacek over (n)}o, Gabriel (Baldwin Park, CA); Sun, Xiao-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  4. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS Updates The CNMS has a new director Sean Smith from the University of Queensland in Australia has accepted the position of director for the Center for Nanophase Materials...

  5. Center for Nanophase Materials Sciences Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nanophase Materials Sciences Strategic Plan 2015-2019 October 2014 iii CONTENTS Page List of Figures ................................................................................................................................ iv Executive Summary ........................................................................................................................ v 1. The CNMS as Research and User Facility

  6. Preparation Of Energy Storage Materials

    DOE Patents [OSTI]

    Li, Lin Song (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2003-12-02

    A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.

  7. Preparation of energy storage materials

    DOE Patents [OSTI]

    Li, Lin Song (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2003-01-01

    A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.

  8. Facilities | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The Center for Energy Efficient Materials occupies approximately 3,000 square feet of assignable space in Phelps Hall. This space houses the Administrative offices of the Center, including offices for the Director, the Executive Director, the Financial Analyst, visiting scientists, and a number of post-docs, graduate students and undergraduate students. Two small seminar rooms are also included. The Institute for Energy Efficiency is co-located on the same floor, providing close

  9. Research | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research CEEM is one of 46 Energy Frontier Research Centers funded by the Department of Energy to address the energy challenge through technological advancements. The Center was launched in August 2009 and focuses on fundamental research in the three key areas of photovoltaics, thermoelectrics, and solid-state lighting. These technologies are strongly inter-related, not only through the materials they employ and physical principles upon which they operate, but also in the synergies resulting

  10. Edison Material Technology Center EMTEC | Open Energy Information

    Open Energy Info (EERE)

    Material Technology Center EMTEC Jump to: navigation, search Name: Edison Material Technology Center (EMTEC) Place: Dayton, Ohio Zip: 45420 Product: String representation "A...

  11. Herty Advanced Materials Development Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Herty Advanced Materials Development Center Herty Advanced Materials Development Center Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout ...

  12. International Center for Materials Research ICMR | Open Energy...

    Open Energy Info (EERE)

    Name: International Center for Materials Research (ICMR) Place: Kawasaki-shi, Kanagawa, Japan Zip: 210-0855 Product: International Center for Materials Reseach is a Japanese...

  13. Photocatalytic methods for preparation of electrocatalyst materials

    DOE Patents [OSTI]

    Nwoga, Tochi Tudor; Kawahara, Kazuo; Li, Wen; Song, Yujiang; Shelnutt, John A; Miller, James E; Medforth, Craig John; Ueno, Yukiyoshi; Kawamura, Tetsuo

    2013-12-17

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in proton exchange membrane fuel cells (PEM-FCs).

  14. Photocatalytic methods for preparation of electrocatalyst materials

    DOE Patents [OSTI]

    Li, Wen; Kawamura, Tetsuo; Nagami, Tetsuo; Takahashi, Hiroaki; Muldoon, John; Shelnutt, John A; Song, Yujiang; Miller, James E; Hickner, Michael A; Medforth, Craig

    2013-09-24

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).

  15. A Look Inside Argonne's Center for Nanoscale Materials | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory A Look Inside Argonne's Center for Nanoscale Materials Share Topic Programs Materials science Nanoscience

  16. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting 2015: Planning CNMS Science for Its 2nd Decade with a UNIQUE ROUNDTABLE FORMAT Announcement REGISTRATION-Closed Call for Abstracts ABSTRACT SUBMISSION-Closed Venue & Access Important Dates Travel & Lodging Agenda Program Committee Contact Us CNMS Home The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory and its User Executive Committee are pleased to announce the CNMS User Meeting on September 1-2, 2015 with the theme of "Planning CNMS Science

  17. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Lithium-Air Battery Based on Lithium Superoxide More Borophene: Atomically Thin Metallic Boron More Ratiometric Sensing of Toxins using Quantum Dots More One Direction: nanocircuitry with semiconducting graphene nanoribbons More Keys to Access: Argonne-INCREASE partnership opens doors to collaboration More Video Highlight A Look Inside Argonne's Center for Nanoscale Materials BROCHURES & NEWSLETTERS CNM Overview Brochure CNM Fact Sheet Key Research Areas Nanofabrication & Devices

  18. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS News Enhanced Electric Conductivity at Ferroelectric Vortex Cores in BiFeO3 Nina Balke,1 Benjamin Winchester,2 Wei Ren,3 Ying Hao Chu,4,5 Anna N. Morozovska,6 Eugene A. Eliseev,7 Mark Huijben,8 Rama K. Vasudevan,9 Petro Maksymovych,1 Jason Britson,2 Stephen Jesse,1 Igor Kornev,10 Ramamoorthy Ramesh,5 Laurent Bellaiche,3 Long Qing Chen,2 and Sergei V. Kalinin1 1 The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 2 Department of Materials

  19. Center for Next Generation of Materials by Design: Incorporating

    Office of Science (SC) Website

    Metastability (CNGMD) | U.S. DOE Office of Science (SC) Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Print Text Size: A A A FeedbackShare Page CNGMD Header Director William Tumas Lead

  20. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matthew Rigsby Researcher - Oakridge National Lab rigsbyma@ornl.gov List Image Spencer Robbins Materials Scientist - TeraPore Technologies, Inc. swr43@cornell.edu List Image...

  1. GATE Center of Excellence in Lightweight Materials and Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Lightweight Materials and Manufacturing Technologies GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ti026_vaidya_2012_p.pdf More Documents & Publications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence in Lightweight Materials

  2. Center for Nanophase Materials Sciences (CNMS) - Core Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization Core materials characterization

  3. News > > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News + Events In This Section Why Partnerships? Current Partners Project Updates News & Events Resources Join News EMC2 News Center news updates 36 entries Archived News Stories...

  4. Center for the Computational Design of Functional Layered Materials (CCDM)

    Office of Science (SC) Website

    | U.S. DOE Office of Science (SC) the Computational Design of Functional Layered Materials (CCDM) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for the Computational Design of Functional Layered Materials (CCDM) Print Text Size: A A A FeedbackShare Page CCDM Header Director John Perdew Lead Institution Temple University Year Established 2014 Mission To

  5. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anions where capable of inducing cage formation. In a current user project (for Ken Jacobson, NIH), we are preparing polyamido(amine) (PAMAM) dendrimers for investigation as...

  6. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Materials at Irradiation and Mechanical Extremes A BES Energy Frontier Research Center Home Teams Partners Others Summer School G. R. Odette Professional Preparation Department of Mechanical Engineering and Department of Materials University of California Santa Barbara, Santa Barbara, CA 93016 odette@engineering.ucsb.edu , 805-893-3525 1965 Rensselaer Polytechnic Institute, Engineering Science, B.S.; 1968 Massachusetts Institute of Technology, Nuclear Engineering, M.S; 1971

  7. Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS, Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trends on Rare Earth Materials in Japan | Department of Energy Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS, Research Trends on Rare Earth Materials in Japan Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS, Research Trends on Rare Earth Materials in Japan PDF icon Session_A7_Hono_NIMS.pdf More Documents & Publications Spomenka Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe Tom Lograsso, Ames Laboratory (Iowa State University), Future

  8. SciDAC Outreach Center Participates in "Materials for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Participates in "Materials for Energy Applications" Workshop February 1, 2012 David Skinner From Jan. 30 to Feb. 1 Berkeley Lab hosted an invitation-only workshop on...

  9. GATE Center of Excellence in Lightweight Materials and Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit...

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AL 35487 (USA) 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) 3-Department of Chemistry, University of Kentucky,...

  11. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Department of Chemistry, Vanderbilt University, Station B 351824, Nashville, TN 37235, USA 2 Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, 1 Bethel...

  12. News > > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News + Events In This Section EMC2 News Archived News Stories News EMC2 News Center news updates 36 entries Archived News Stories Previous news stories from emc2 81 entries Home ...

  13. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 1-2, 2015. Instructions for preparing posters: Tabletop poster boards and adhesive Velcro tabs will be provided for mounting posters. You may bring your poster to the...

  14. Center for Lightweighting Automotive Materials and Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti010_mallick_2011_o.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

  15. Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Multi-Unit Dwelling Communities San Diego Prepares for Electric Vehicles in Multi-Unit Dwelling Communities to someone by E-mail Share Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in Multi-Unit Dwelling Communities on Facebook Tweet about Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in Multi-Unit Dwelling Communities on Twitter Bookmark Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in Multi-Unit Dwelling

  16. Instructional Materials | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructional Materials Instructional Materials Solar Energy Learn about the quality of electromagnetic radiation produced by the sun and investigate on how this energy is captured and transferred into usable forms of energy. Explore this process in natural systems, like photosynthetic organisms, as well as manmade systems for producing electricity from sunlight. Download Solar Materials Here | Solar Energy Kit Overview Learning Modules: Kit #1: Spectroradiometry and Chlorophyll Spectroscopy Kit

  17. Center for Nanophase Materials Sciences (CNMS) - Nanofabrication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clean room space for carrying out material modification using advanced lithographic, etching, thin-film deposition, and characterization tools. Process Design Assistance with...

  18. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can provide insights for the development of new materials for solar cells, solid-state lighting and superconductor power transmission. Computer codes will be made...

  19. Current Partners > Partnerships > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below. More information about each of these, and other partners coming soon. General Motors Honeoye Falls, NY Primet Precision Materials Ithaca, NY Ford Motor Corporation...

  20. Past Events | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrolab, Inc. Jan 24, 2014 | 2:00 PM - 3:00 PM Novel Semiconductor Materials for High-Efficiency Multijunction Photovoltaics Seminar Series Paul Blom: Research Director, Max...

  1. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were recently purchased with American Recovery and Reinvestment Act funds, including new SEM and TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the...

  2. 2009 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sols Morgan Stefik, Surbhi Mahajan, Hiroaki Sai, Thomas H. Epps III, Frank S. Bates, Sol M. Gruner, Francis J. DiSalvo and Ulrich Wiesner Chemistry of Materials Vol.21, p....

  3. Featured Projects: Center for Materials at Irradiation and Mechanical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extremes: Los Alamos Lab About CMIME The Center for Materials at Irradiation and Mechanical Extremes (CMIME) is a Department of Energy (DOE) Energy Frontier Research Center (EFRC) designed to understand, at the atomic scale, the behavior of materials subject to extreme radiation doses and mechanical stress in order to synthesize new materials that can tolerate such conditions. It is a collaborative effort led by Los Alamos National Laboratory (LANL) that includes the Massachusetts Institute

  4. Coated woven materials and method of preparation

    DOE Patents [OSTI]

    McCreary, William J. (Los Alamos, NM); Carroll, David W. (Los Alamos, NM)

    1981-01-01

    Coating of woven materials so that not only the outer surfaces are coated has been a problem. Now, a solution to that problem is the following: Woven materials are coated with materials, for example with metals or with pyrolytic carbon, which materials are deposited in Chemical Vapor Deposition (CVD) reactions using a fluidized bed so that the porosity of the woven material is retained and so that the tiny filaments which make up the strands which are woven (including inner as well as outer filaments) are substantially uniformly coated.

  5. Center for Nanophase Materials Sciences (CNMS) - Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THEMES Electronic and Ionic Functionality on the Nanoscale (EIFN) The overarching goal of the EIFN theme is to explore electronic and ionic material functionalities on the atomic scale and extend this knowledge to the emergent behaviors at the scales of individual nanoparticles and defects and finally to the macroscale, where function can be translated into new technologies. We aim to harness this knowledge to understand and control fundamental mechanisms of coupling between electronic and ionic

  6. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events CNMS User Newsletters People Contact Us Upcoming Events and Latest News Call For Proposals - OPEN! (Deadline May 4) CNMS User Meeting - August 10-12, 2016 Career Opportunities Recent News: Researchers Stack the Odds for Novel Optoelectronic 2D Materials, Lab Manager Beetle-inspired discovery could reduce frost's costly sting, EurekAlert Submit your ideas for improving CNMS! Research Highlights In-situ Environment Shines Light and Neutrons on Structure-Function Evolution of Polymers

  7. EFRC - Center for Defect Physics in Structural Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory EFRC - Center for Defect Physics in Structural Materials Research Personnel Publications Modeling This project will help incorporate our new, efficient, order-N (where N is the number of scattering sites in a defected crystal) method for solving the Poisson's equation for site-centered electronic-structure method used within the center (i.e., the LSMS code) for critical simulations. The method will be extended in collaboration to develop capabilities for relaxation by atomic

  8. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IN THE NEWS Archived News "Researchers Stack the Odds for Novel Optoelectronic 2D Materials," Lab Manager (March 2, 2016) "Beetle-inspired discovery could reduce frost's costly sting," EurekAlert (January 22, 2016) "ORNL cell-free protein synthesis is potential lifesaver," EurekAlert! (December 29, 2015) "UT-ORNL breakthrough aims to improve tech gadgets, TVs," Oak Ridge Today (December 28, 2015) "New acoustic technique reveals structural information

  9. Center for Nanoscale Materials Fact Sheet | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet The Center for Nanoscale Materials at Argonne National Laboratory is a premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center through its user program for both nonproprietary and proprietary research. PDF icon cnm_fact_sheet

  10. Center for Nanophase Materials Sciences (CNMS) - Proposal Review Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROPOSAL REVIEW COMMITTEE Center for Nanophase Materials Sciences Dr. Mark Aindow Department of Materials Science and Engineering University of Connecticut Dr. Marin Alexe Department of Physics University of Warwick Professor Rodney Andrews Director, Center for Applied Energy Research University of Kentucky Dr. Gaurav Arya Department of Nanoengineering University of California, San Diego Professor Perla B. Balbuena Department of Chemical Engineering Texas A&M University Dr. Kenneth J. Balkus

  11. Center for Lightweighting Automotive Materials and Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ti_06_mallick.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies

  12. Preparation of nanostructured materials having improved ductility

    DOE Patents [OSTI]

    Zhao, Yonghao; Zhu, Yuntian T.

    2010-04-20

    A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy, then refining the grain size of the workpiece at a temperature at or below room temperature, and then aging the workpiece to precipitate second phase particles in the nanosized grains of the workpiece that increase the ductility without decreasing the strength of the workpiece.

  13. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Nastasi image of George Gray Contact Information Professor, University of Nebraska-Lincoln Email: Mike Nastasi Phone: 402-472-3852 Bio Education Ph.D., Materials Science and Engineering, Cornell University, 1986 M.S., Materials Science and Engineering, Cornell University, 1983 B.S., Materials Science and Engineering, Cornell University, 1981 Research and Professional Experience Director, Center for Materials at Irradiation and Mechanical Extremes, 2009-present Nano

  14. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  15. A Look Inside Argonne's Center for Nanoscale Materials

    SciTech Connect (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-01-29

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  16. Center for Nanophase Materials Sciences (CNMS) - 2011 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 CNMS User Meetin Center for Nanophase Materials Sciences Oak Ridge National Laboratory September 19-20, 2011 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User Meeting Agenda Agendas for featured workshops: Advanced Scanning Probe Microscopies at the CNMS: Materials Structure and Function from Atomic to Micron Scales September 21-22, 2011 Materials by Design September 21-22, 2011 Sustainable Energy Future: Nanomaterials Enabled

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS RESEARCH Systematic reduction of sign errors in many-body calculations of atoms and molecules M. Bajdich,1 M. L. Tiago,1 R. Q. Hood,2 P. R. C. Kent,3 F. A. Reboredo1 1Materials Science and Technology Division, Oak Ridge National Laboratory 2Condensed Matter and Materials Division, Lawrence Livermore National Laboratory 3Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: We have developed a new systematically convergeable algorithm - Self-Healing Diffusion

  18. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Amit Misra IMage of Nathan Mar Contact Information Los Alamos National Laboratory Materials Physics and Applications Division Center for Integrated Nanotechnologies Phone: (505) 667-9860 amisra@lanl.gov Bio Education Ph.D. (Sep'1994), Materials Science and Engineering, University of Michigan, Ann Arbor M.S. (May 1991), Materials Science and Engineering, University of Michigan, Ann Arbor B.S. (May 1989), Metallurgical Engineering, Institute of Technology-BHU, India Research

  19. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  20. Templates and Examples - Preparing Test Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Templates and Examples - Preparing Test Materials Templates and Examples - Preparing Test Materials Here you will find custom templates and EERE-specific examples you can use to plan, conduct, and report on your usability and analysis activities. Facilitator script - Includes introductory script, pre- and post-test interview questions, scenarios, and prompts Note taker's spreadsheet - For note takers to record verbal comments, paths, task success scores, and SUS scores Facilitator/observer note

  1. Method for preparing dielectric composite materials

    DOE Patents [OSTI]

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2004-11-23

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  2. Dielectric composite materials and method for preparing

    DOE Patents [OSTI]

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2003-07-29

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supramolecular Self-Assembly of p-conjugated Hydrocarbons via 2D Cooperative CH/p Interaction Qing Li*, Chengbo Han**, Scott R Horton*, Miguel Fuentes-Cabrera*, Bobby G. Sumpter*, Wenchang Lu**, Jerry Bernholc**†, Petro Maksymovych*, and Minghu Pan* *Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge,Tennessee **Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, North Carolina †Computer Science and

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gordon Bell Prize Emerges From Ongoing Computational Nanoscience Endstation Effort Achievement: A team led by Thomas Schulthess, including Gonzalo Alvarez, Mike Summers, Thomas Maier, and Paul Kent from the Computer Science and Mathematics Division (CSMD) and the Center for Nanophase Materials Sciences (CNMS) Nanomaterials Theory Institute; Jeremy Meredith and Ed D'Azevedo from CSMD; Markus Eisenbach and Don Maxwell from the National Center for Computational Sciences (NCCS); and Jeff Larkin and

  5. Center for Nanophase Materials Sciences (CNMS) - About CNMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ABOUT CNMS The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) is one of five nanoscience research centers (NSRCs) funded by the U.S. Department of Energy (DOE) Scientific User Facilities Division. It provides a diverse user community - predominantly in the US but also internationally - with access to state-of-the-art nanoscience research capabilities, expertise, and equipment. The scientists at the CNMS also drive a world class science program with

  6. Method of preparing corrosion resistant composite materials

    DOE Patents [OSTI]

    Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

    1993-01-01

    Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  7. Center for Nanophase Materials Sciences (CNMS) - 2012 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 CNMS USER MEETING Center for Nanophase Materials Sciences Oak Ridge National Laboratory September 14, 2012 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User Meeting Agenda and Abstract Booklet Agendas for featured workshops: Nanoscale Imaging for Energy Applications September 11-13, 2012 (begins 1pm on 9/11) Transmission Electron Microscopy for Soft Materials September 12-13, 2012 Second Photovoltaics School (Photovoltaics from

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electromechanical Actuation and Current-Induced Metastable States in Suspended Single-Crystalline VO2 Nanoplatelets A. Tselev,1 J. D. Budai,2 E. Strelcov,3 J. Z. Tischler,2 A. Kolmakov3, and S. V. Kalinin1 1-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 3-Physics Department, Southern Illinois University Carbondale, Carbondale, IL 62901 Achievement A

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An optimized nanoparticle separator enabled by elecron beam induced deposition J. D. Fowlkes,1 M. J. Doktycz2 and P. D. Rack1,3 1Nanofabricatin Research Laboratory, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 2Biological and Nanoscale Systems Group, Biosciences Division, Oak Ridge National Laboratory 3Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN Achievement Size-based separations technologies will inevitably benefit from

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic Nucleation Mechanism of Polarization Switching on Ferroelectric Surfaces Peter Maksymovych,1 Stephen Jesse,1 Mark Huijben,2 Ramamoorthy Ramesh,2 Anna Morozovska,3 Samrat Choudhury,4 Long-Qing Chen,4 Arthur P. Baddorf,1 and Sergei V. Kalinin1 1Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; 2Department of Materials Sciences and Engineering and Department of Physics, University of California Berkeley; 3Lashkaryov Institute for Semiconductor Physics, National

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polarization Control of Electron Tunneling into Ferroelectric Surfaces Peter Maksymovych1, Stephen Jesse1, Pu Yu2, Ramamoorthy Ramesh2, Arthur P. Baddorf,1 and Sergei V. Kalinin1 1 The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2Department of Materials Sciences and Engineering and Department of Physics, University of California Berkeley Achievement We have discovered that polarization switching in 30-50 nm oxide films of lead-zirconate and bismuth

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Interface Reconstruction in Functional Oxides Junsoo Shin,1,2 Albina Borisevich,1 Vincent Meunier,3 Jing Zhou,4 E. Ward Plummer,5 Sergei V. Kalinin,3 and Arthur P. Baddorf3 1-Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 2-Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996 3-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 4-Department of

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis of Well-defined Poly(amino acids): Polytyrosine Derivatives Jamie M. Messman1, Deanna L. Pickel1, Apostolos Avgeropoulos2, and Nikolaos Politakos2 1Macromolecular Nanomaterials Group, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2Department of Materials Science and Engineering, University of Ioannina, Greece Achievement In collaboration with CNMS users from the University of Ioannina, Greece, we developed a synthesis route for the monomer,

  14. Home > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Directors Paul Mutolo and Héctor Abruña Catalyst aging The Muller group helps determine aging mechanisms in fuel cell nanoparticle cata... A recipe for the future Prof. Darrell Schlom and his research group are cooking up new oxides for ... Mission THE ENERGY MATERIALS CENTER AT CORNELL Advancing the science of energy conversion and storage by understanding and exploiting fundamental properties of active materials and their interfaces. News + Events Room-temperature lithium metal battery

  15. Biology Chemistry & Material Science Laboratory 1 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories 1 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 1 Inventory The BioChemMat Lab 1 at SSRL is dedicated to researcher experiments, including x-ray absorption and emission spectroscopies, macromolecular crystallography, x-ray scattering, and x-ray imaging. The labs are maintained for final-stage sample preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution

  16. Biology Chemistry & Material Science Laboratory 2 | Sample Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories 2 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 2 Inventory The BioChemMat Lab 2 (BCM 2) at SSRL is dedicated to researcher experiments, including x-ray absorption and emission spectroscopies, macromolecular crystallography, x-ray scattering, and x-ray imaging. The labs are maintained for final-stage sample preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding,

  17. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  18. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  19. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanoscale Materials (CNM) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  20. Apparatus for preparing cornea material for tabbed (sutureless) transplantation

    DOE Patents [OSTI]

    Collins, Joseph Patrick (7517 Fourth Ave. North, St. Petersburg, FL 33710)

    1997-01-01

    A tool and a method for preparing a donor material used in sutureless corneal transplants uses a first cutting portion to prepare a donor blank having tabbed portions extending outwardly radially. A second cutting portion is used to cut the central portion of the blank. The tool is used as a guide member for the second cutting portion. In one embodiment the tool has slits laterally defined therethrough which allow the tabbed portions of the donor material to be thinned to a desired thickness using a scalpel. In an another embodiment the second cutting portion is a round trephine which is used to simultaneously trim each of the tabbed portions.

  1. Apparatus for preparing cornea material for tabbed (sutureless) transplantation

    DOE Patents [OSTI]

    Collins, J.P.

    1997-07-22

    A tool and a method for preparing a donor material used in sutureless corneal transplants uses a first cutting portion to prepare a donor blank having tabbed portions extending outwardly radially. A second cutting portion is used to cut the central portion of the blank. The tool is used as a guide member for the second cutting portion. In one embodiment the tool has slits laterally defined therethrough which allow the tabbed portions of the donor material to be thinned to a desired thickness using a scalpel. In an another embodiment the second cutting portion is a round trephine which is used to simultaneously trim each of the tabbed portions. 26 figs.

  2. Novel Materials Preparation & Processing Methodologies | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Novel Materials Preparation & Processing Methodologies Research Personnel Updates Publications Magnetic Memory Moves into the Ultra-Fast Lane Read More Finding the Right Stuff Read More Previous Pause Next Synthesis The growth, control and modification of novel materials in single crystal and polycrystalline form, represent a national core competency that is essential for scientific advancement within and across traditional disciplinary boundaries, and are critical components

  3. Center for Nanophase Materials Sciences (CNMS) - 2010 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 CNMS User Meeting Center for Nanophase Materials Sciences Oak Ridge National Laboratory September 13-14, 2010 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User Meeting Agenda Agendas for associated workshops: Next Generation Force-Fields for Nanoscience September 15-16, 2010 Sustainable Energy Future: Focus on Organic Photovoltaics September 15-16, 2010 Scanning Probe Microscopy for Energy Applications September 15-17, 2010

  4. Center for Nanophase Materials Sciences (CNMS) - 2014 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 CNMS USER MEETING Center for Nanophase Materials Sciences Oak Ridge National Laboratory September 15-19, 2014 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User Meeting Agenda and Abstract Booklet Panel Session: Q&A with CNMS Senior Staff Agendas for featured workshops: Electrochemical Strain Microscopy September 15-16, 2014 In Situ Electron Microscopy and Imaging September 18-19, 2014

  5. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature.

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micro/nanofabricated environments for synthetic biology C. Patrick Collier and Michael L. Simpson Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial micro- and nanofabricated structures

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding the Interaction Between Nanoscale Building Blocks and Biologically Relevant Molecules X. Zhao (CNMS Postdoc), A. Striolo (U of Oklahoma, now CNMS User), and P. T. Cummings (CNMS Staff) Scientists at Oak Ridge National Laboratory's new Center for Nanophase Materials Sciences (CNMS) are leading the way in developing detailed molecular-level understanding of how nanomaterials may interact with biologically important molecules. A provocative experimental study, published in 2004,

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antioxidant Deactivation on Graphenic Nanocarbon Surfaces Xinyuan Liu,1 Sujat Sen,1 Jingyu Liu,1 Indrek Kulaots,2 David Geohegan,3 Agnes Kane,4 Alex A. Puretzky,3 Christopher M. Rouleau,3 Karren L. More,5 G. Tayhas R. Palmore,2 and Robert H. Hurt2 1-Dept Chemistry, Brown University 2-School of Engineering, Brown University 3-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 4-Dept Pathology & Laboratory Medicine, Brown University 5-Shared Research Equipment Facility, Oak

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature of the Pairing Interaction in the Hubbard Model of High-Temperature Superconductors Thomas A. Maier (CNMS Staff); Douglas J. Scalapino (CNMS User), University of California, Santa Barbara, and Mark Jarrell (CNMS User) University of Cincinnati Achievement The nature of the pairing interaction that mediates superconductivity in the two-dimensional Hubbard model has been addressed numerically in a user project at the Center for Nanophase Materials Sciences. The Hubbard model exhibits several

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length Gang Cheng,1 Yuri B. Melnichenko,1 George D. Wignall,1 Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: The cooperative interactions among functional segments of biopolymers have led to attempts to

  12. Center for Nanophase Materials Sciences (CNMS) - User Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACKNOWLEDGEMENT GUIDELINES Sponsor Acknowledgement CNMS users must include the following acknowledgement on all publications that include work done at the CNMS: [A portion of]* This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. *DOE expects the acknowledgment to indicate which parts of the reported work were supported by which agency whenever possible. Therefore, it is preferable to state, for example, "Fabrication of

  13. Center for Defect Physics in Structural Materials - CDP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Defect Physics in Structural Materials - CDP LLNL Co-PI: Randy Hood [e-mail] [bio] Goals of LLNL Research Atomic and magnetic interactions treated using ab initio density functional theory (DFT). Quantum Monte Carlo (QMC) calculations of defect structures and energetics to validate and improve DFT treatment. QMC calculations of vacancy, divacancy, and self-interstitial defects and helium-vacancy complexes in aluminum are underway. QMC Benchmark Accuracy Total energies calculated using

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization and Carbonization of Highly-Oriented Poly(diiododiacetylene) Nanofibers Liang Luo,1 Christopher Wilhelm,1 Christopher N. Young,2 Clare P. Grey,1 Gary P. Halada,2 Kai Xiao,3 Ilia N. Ivanov,3 Jane Y. Howe,4 David B. Geohegan,3 and Nancy S. Goroff1 1-Department of Chemistry, State University of New York, Stony Brook, NY 11794 2-Department of Material Science and Engineering, State University of New York, Stony Brook, NY 11794 3-Center for Nanophase Materials Sciences, Oak Ridge

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable Metallic Conductance in Ferroelectric Nanodomains Peter Maksymovych,1 Anna N. Morozovska,2,3 Pu Yu,4 Eugene A. Eliseev,3 Ying-Hao Chu,4,5 Ramamoorthy Ramesh,4 Arthur P. Baddorf,1 and Sergei V. Kalinin1 1 Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 2 Institute of Semiconductor Physics, National Academy of Science of Ukraine,41, pr. Nauki, 03028 Kiev, Ukraine 3 Institute for Problems of Materials Science, National Academy of Science of

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Voltage, Low-Power Organic Light-Emitting Transistors for AMOLED Displays M. A. McCarthy,1,2 B. Liu,1 E. P. Donoghue,1 I. Kravchenko,3 D. Y. Kim,2 F. So,2 and A. G. Rinzler1 1-Department of Physics, University of Florida, Gainesville, FL 32611 2-Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 3-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 Achievement Organic light-emitting diode (OLED) layers have

  17. Summary 2012 Internship Projects | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Internship Projects Name Mentor Advisor Major Project Title Benjamin Abrams Ferenc Somodi Dan Morse Physics Preparation of Silicon Containing Anode Materials for Lithium-Ion Batteries Carl Bycraft Emmett Perl John Bowers Electrical Engineering Quantum Efficiency Measurement for Multijunction Photovoltaics Benjamin Campo Nathan Pffaf Steve DenBaars Electrical Engineering Temperature Evolution of Light Emitting Diode Efficiency Rachel Harris Chris Liman Michael Chabynic Investigating Degradation

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spin injection in conjugated polymer for enhanced solid-state lighting efficiency Bin Hu and Yue Wu (CNMS users), University of Tennessee; An-Ping Li and Jian Shen (CNMS Staff), and Jane Howe (ORNL) Achievement In this work, we have explored the introduction of spin polarization in p-conjugated polymer MEHPPV [Poly(2-methoxy-5-(2'-methylhexyloxy)-1,4 phenylenevinylene] by using spin injection from ferromagnetic materials. The approach uses thermal deposition to prepare Co nanodots on polymer

  19. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Alumni Page 1 of 3 ⇐ Previous | Next ⇒ Here are past members and where they are now. List Image Mahmut Aksit Senior Materials Chemist - 3M ma573@cornell.edu List Image Nicole Benedek Asst. Professor - UT Austin nicole.benedek@austin.utexas.edu List Image Robert Berger Asst. Professor - Western Washington University robert.berger@wwu.edu List Image Turan Birol Postdoc - Rutgers University tb238@cornell.edu List Image Raymond Burns Product Research Technologist - Exxon Mobile

  20. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights ARCHIVED CNMS RESEARCH HIGHLIGHTS Correlating Electronic Transport to Atomic Structures in Self-Assembled Quantum Wires Shengyong Qin,1 Tae-Hwan Kim,1 Yanning Zhang,2 Wenjie Ouyang,2 Hanno H. Weitering,3 Chih-Kang Shih,4 Arthur P. Baddorf,1 Ruqian Wu,2 and An-Ping Li1 1-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 2-Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 3-Department of Physics and

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PS-b-P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics Zhenzhong Sun1, Kai Xiao2, Jong Kahk Keum3, Xiang Yu2, Kunlun Hong1, Jim Browning3, Ilia Ivanov1, Jihua Chen2, Jose Alonzo3, Dawen Li1, Bobby Sumpter2, Andrew Payzant2, Christopher Rouleau2, and David Geohegan2 1-Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 3-Neutron

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal Cover Journal of Applied Physics March 15, 2008 issue A team of researchers from the Center for Nanophase Materials Sciences (CNMS) has written the cover article in the March 15, 2008, issue of the Journal of Applied Physics. "Surface characterization and functionalization of carbon nanofibers" is a comprehensive review article authored by K. L. Klein, A. V. Melechko, T. E. McKnight, S. T. Retterer, P. D. Rack, J. D. Fowlkes, D. C. Joy and M. L. Simpson. This team is widely

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Conductivity of Ferroelectric Domain Walls in BiFeO3 Peter Maksymovych,1 Jan Seidel,2-3 Ying Hao Chu,4 Pingping Wu,5 Arthur P. Baddorf,1 Long-Qing Chen,5 Sergei V. Kalinin,1 and Ramamoorthy Ramesh2-3 1 Center for Nanophase Materials Science, Oak Ridge National Laboratory 2 Lawrence Berkeley National Laboratory 3 University of California, Berkeley 4 National Chiao Tung University, Taiwan 5 Pennsylvania State University Achievement Two years ago, electrical conductivity was discovered in

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS CONTACTS Mailing address: Center for Nanophase Materials Sciences Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6496 FAX: 865.574.1753 Staff Directory Organization Chart Director Hans Christen christenhm@ornl.gov P: 865.574.5081 Deputy Director Bobby Sumpter sumpterbg@ornl.gov P: 865.574.4973 Division Administrative Support Amanda Zetans, zetansac@ornl.gov P: 865.241.1182 User Program Manager Tony Haynes, hayneste@ornl.gov P: 865.576.2858 Operations Manager Scott

  5. Center for Nanophase Materials Sciences (CNMS) - Soft Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Core materials characterization Core materials characterization

  6. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOE Patents [OSTI]

    Bhattacharya, R.N.; Ginley, D.S.

    1998-07-28

    A process is described for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  7. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath; Ginley, David S.

    1998-01-01

    A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  8. CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and people highlights from the Lujan Neutron Scattering Center at LANSCE CENTER SCIENCE & PEOPLE the Lujan April 2014 LA-UR-14-22812 I N S I D E 2 Seeking design rules for efficient lighting sources 3 Rate-dependent deformation mechanisms in beryllium 4 Improved understanding of a semiconductor used in infrared detectors 6 Mike Fitzsimmons elected NNSA Fellow 7 Pressure tuning: a new approach for making zero thermal expansion materials 8 Neutron scattering enables structural

  9. Feed Materials Production Center annual environmental report for calendar 1989

    SciTech Connect (OSTI)

    Dugan, T.A.; Gels, G.L.; Oberjohn, J.S.; Rogers, L.K.

    1990-10-01

    The mission of the Department of Energy's (DOE) Feed Materials Production Center (FMPC) has been to process uranium for United States' defense programs. On July 10, 1989, the FMPC suspended production operations, but remains on standby for certain segments of production. The FMPC also manages the storage of some radioactive and hazardous materials. As part of its operations, the FMPC continuously monitors the environment to determine that it is operating within federal and state standards and guidelines regarding emission of radioactive and nonradioactive materials. Data collected from the FMPC monitoring program are used to calculate estimates of radiation dose for residents due to FMPC operations. For 1989, the estimate of dose through the air pathway, excluding radon, indicated that people in the area were exposed to less than 6% of the DOE guideline established to protect the public from radiation exposure. When radon emissions are included, the dose from FMPC operations during 1989 was less than 22% of the annual background radiation dose in the Greater Cincinnati area. This report is a summary of FMPC's environmental activities and monitoring program for 1989. An Environmental Compliance Self-Assessment presents the FMPC's efforts to comply with environmental regulations through June 1990. 44 refs., 48 figs.

  10. Boron-copper neutron absorbing material and method of preparation

    DOE Patents [OSTI]

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry (Palos Hts., IL)

    1991-01-01

    A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.

  11. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect (OSTI)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  12. Postdoctoral Research Fellow Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & transport properties of the materials, which in turn can be used to engineer better solid electrolyte materials 2. Automation & Data Analytics * Designing a new material for...

  13. Environmental Survey preliminary report, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    This report presents the preliminary findings from the first phase of the environmental survey of the United States Department of Energy (DOE) Feed Materials Production Center (FMPC), conducted June 16 through 27, 1986. The survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with the FMPC. The survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the survey involves the review of existing site environmental data, observations of the operations carried on at FMPC, and interviews with site personnel. The survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its onsite activities. The Sampling and Analysis Plan will be executed by a DOE national laboratory or a support contractor. When completed, the results will be incorporated into the FMPC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the FMPC survey. 41 refs., 20 figs., 25 tabs.

  14. Executive Summaries for the Hydrogen Storage Materials Center...

    Broader source: Energy.gov (indexed) [DOE]

    contains the executive summaries of the final technical reports from the three Hydrogen Storage Centers of Excellence that operated from 2005 through 2010 to develop advanced...

  15. Staff > > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Leadership Team Faculty Directory Researchers, Postdocs & Graduates Scientific Advisory Board Center Alumni Here are past members and where they are now.

  16. Resources > Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    + Events Resources for Prospective Partners CONTENT COMING SOON Cornell Standard NDA Sample Sponsored Contract Language Standard Intellectual Property terms Center member form...

  17. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials physicists. He is also Director of the Doctoral Training Centre on Theory and Simulation of Materials at Imperial, where he leads 50 academics in the Departments of...

  18. Ames Laboratory a partner in DOE Center for Computational Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials, as well as a companion database to predict targeted properties with energy-related application to thermoelectric materials. READ MORE at Brookhaven National Laboratory....

  19. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    Fuel Cell Technologies Publication and Product Library (EERE)

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. T

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standing Friedel Waves, Standing Spin Waves, and Indirect Bandgap Optical Transition in Nanostructures Jun-Qiang Lu1, X.-G. Zhang1,2, and Sokrates T. Pantelides3 1Center for...

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expression Optimization and Synthetic Gene Networks in Cell-free Systems David K. Karig,1 Sukanya Iyer,2,3 Michael L. Simpson,1,4,5 Mitchel J. Doktycz,1,2 1-Center for Nanophase...

  2. Mahmut Aksit > Senior Materials Chemist - 3M > Center Alumni > The Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Center at Cornell Mahmut Aksit Senior Materials Chemist - 3M ma573@cornell.edu Formerly a member of the Robinson Group, he received his PhD in June 2014.

  3. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Kenneth J. McClellan Contact Information Los Alamos National Laboratory Materials Science & Technology Division Structure/Property Relations, MS G755 Phone: (505) 667-5452 kmcclellan@lanl.gov Bio Education Ph.D., Materials Science and Engineering, Case Western Reserve University, 1994 M.S., Materials Science and Engineering, Case Western Reserve University, 1991 B.S., Metallurgy and Materials Science, Case Western Reserve University, 1988 Research and Professional

  4. In Silico Screening of Carbon Capture Materials | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome In Silico Screening of Carbon Capture Materials

  5. Comparison of preparation techniques for nuclear materials for transmission electron microscopy (TEM)

    SciTech Connect (OSTI)

    Aitkaliyeva, Assel; Madden, James W.; Miller, Brandon D; Cole, James I; Gan, Jian

    2015-04-01

    Preparation of highly radioactive and irradiated nuclear fuels and materials for transmission electron microscopy (TEM) is conjoined with a set of unique challenges, including but not limited to personnel radiation exposure and contamination. The paper evaluates three specimen preparation techniques for preparation of irradiated materials and determines which technique yields to the most reliable characterization of radiation damage microstructure. Various specimen preparation artifacts associated with each technique are considered and ways of minimizing these artifacts are addressed.

  6. Center for Inverse Design: Modality 3 - Discovery of Missing Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3: Discovery of Missing Materials Modality 3 applies to yet discovered, currently undocumented materials. This approach is designed for a different class of problems: when the materials we would like to consider are simply undocumented standard compilations, i.e., they have not yet been made. Like the other two modalities, this one also involves a search space. But unlike Modalities 1 and 2, the steps involved in Modality 3 are: Calculate the stable crystal structure of a given hypothetical

  7. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory - Ellen Cerreta Image of Ellen Contact Information Los Alamos National Laboratory Materials Science and Technology Division MST-8, Structure/Property Relations Group Phone: (505) 665-2576 ecerreta@lanl.gov Bio Education Ph.D. (2001), Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania M.S. (1997), Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania B.S. (1996), Aerospace Engineering, University of

  8. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Pascal Bellon image of George Gray Contact Information Professor University of Illinois, Urbana-Champaign Department of Materials Science and Engineering Phone: (217)2675-0284 bellon@uiuc.edu http://www.mse.uiuc.edu/faculty/Bellon.html Bio Education Post-Doctoral Research Associate, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1993-1994 Ph.D., Materials Science, Université Pierre et Marie Curie, Paris, France, 1989

  9. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Robert S. Averback Contact Information University of Illinois at Urbana-Champaign Department of Materials Science and Engineering Donald W. Hamer Professor and Interim Department Head Phone: (217) 333-4302 averback@illinois.edu Bio Education Postdoctoral fellow in Materials Science, Cornell University, 1973 Ph.D., Physics, Michigan State University, 1966 B.S., Physics, Dickinson College, 1966 Research and Professional Experience Professor of Materials Science and

  10. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Traditional structural materials degrade and fail under intense irradiation, but certain nanocomposites contain high volume fractions of "super sink" interfaces that allow these materials to self-heal.Understanding how radiation damage is trapped and removed at such interfaces will help in designing a new class of radiation-tolerant materials that would make future nuclear reactors maximally safe, sustainable, and efficient. This (movie/figure) shows the

  11. Diffusion in porous crystalline materials | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome porous crystalline materials Previous Next List Rajamani Krishna, Chem. Soc. Rev., 2012,41, 3099-3118 DOI: 10.1039/C2CS15284C Graphical abstract: Diffusion in porous crystalline materials Abstract: The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review

  12. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Materials Science, Case Western Reserve University, 1989 Lancaster University, England, 1987 Research and Professional Experience Technical Staff Member, Los Alamos...

  13. Center for Nanophase Materials Sciences (CNMS) - Related ORNL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In particular, the facilities listed on this page offer a variety of capabilities for materials characterization and computational nanoscience that may enhance the research...

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Step-by-step growth of epitaxially aligned polythiophene by surface-confined oligomerization J. A. Lipton-Duffin,1,2 J. A. Miwa,1,2 M. Kondratenko,2,3 F. Cicoira,1,2 B. G. Sumpter,4 V. Meunier,4 D. F. Perepichka,2,3 F. Rosei,1,2 1-INRS-ÉMT, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2 Canada 2-Center for Self-Assembled Chemical Structures 3-Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC, H3A 2K6 CANADA 4-Center for Nanophase

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ Phase Separation of NiAu Alloy Nanoparticles for Preparing Highly Active Au/NiO CO Oxidation Catalysts Shenghu Zhou, Hongfeng Yin, Viviane Schwartz, Zili Wu, David Mullins, Bryan Eichhorn, Steven H. Overbury, and Sheng Dai Achievement A new type of catalyst has been synthesized which has high activity and a low propensity for deactivation by coalescence. The concept is based upon an architecture in which a nanosized metal particle is stabilized by its strong attachment to an oxide

  16. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were recently purchased with American Recovery and Reinvestment Act funds, including new SEM and TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievement: The material of choice for spintronics device today is FeMgOFe tunnel ... by modi?cation of the interface is an important topic in spintronics research. ...

  18. Carbon Dioxide Capture: Prospects for New Materials | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture: Prospects for New Materials Previous Next List D. M. D'Alessandro, B. Smit, and J. R. Long, Angew. Chem.-Int. Edit. 49 (35), 6058 (2010) DOI: 10.1002...

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Weitering, Nature Materials 7, 539 (2008). The research was sponsored by the National Human Genome Research Institute, National Institutes of Health Grant R01HG002647 (CZ), NSF...

  20. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Nathan Mara IMage of Nathan Mar Contact Information Staff Scientist Los Alamos National Laboratory Metallurgy, MS G770 Phone: (505) 667-8665 Fax: (505) 667-5268 namara@lanl.gov Bio Education Ph.D., Materials Science and Eng., University of California-Davis, 2005 B.S., Mechanical Engineering and Materials Science, University of California-Davis, 2000 Research and Professional Experience Technical staff member, Los Alamos National Lab, March 2008 - present Director's

  1. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Yongqiang Wang image of George Gray Contact Information Los Alamos National Laboratory Ion Beam Materials Laboratory, Team Leader Phone: (505) 665-1596 yqwang@lanl.gov Bio Education Ph. D in Nuclear Physics and Technology, Lanzhou University (China), 1992 M.S. in Nuclear Physics and Technology, Lanzhou University (China), 1988 B.S. in Nuclear Physics and Technology, Lanzhou University (China), 1984 Research and Professional Experience Team Leader, Ion Beam Materials

  2. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory This movie shows our molecular dynamics simulation of a collision cascade near an asymmetric Σ11 tilt grain boundary in copper over a time of 380 ps. The grain boundary is at the center of the system. The top and bottom layers are fixed. The atoms are colored by their energies, and only defects are shown, including those atoms in the grain boundary and fixed surface. A primary knock-on atom (PKA) with 4-keV kinetic energy is initiated 15 angstroms below the grain

  3. Biomimicry in metal-organic materials | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Biomimicry in metal-organic materials Previous Next List Muwei Zhang, Zhi-Yuan Gu, Mathieu Bosch, Zachary Perry, Hong-Cai Zhou, Coordination Chemistry Reviews, (2014) DOI: 10.1016/j.ccr.2014.05.031 1-s2.0-S0010854514001672-fx1 Abstract: Nature has evolved a great number of biological molecules which serve as excellent constructional or functional units for metal-organic materials (MOMs). Even though the study of biomimetic

  4. Preparation and screening of crystalline zeolite and hydrothermally-synthesized materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2005-03-08

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Designing New Materials with Nanostructures as Building Blocks Vincent Meunier and Sefa Dag, CNMS Jose Manuel Romo Herrera, Mauricio Terrones and Humberto Terrones, Instituto Potosino de Investigacion Cientifica y Tecnologica, San Luis Potosi, Mexico Novel and robust networks, tailored from nanostructures as building blocks, are the foundations for constructing nano- and microdevices. However, assembling nanostructures into ordered micronetworks remains a significant challenge in nanotechnology.

  6. Method of preparing thin porous sheets of ceramic material

    SciTech Connect (OSTI)

    Swarr, T.E.; Nickols, R.C.; Krasij, M.

    1987-03-24

    A method is described of forming a thin porous sheet of ceramic material comprising: providing a slurry of fine ceramic particles and liquid carrier including binder material; spray drying the slurry to form generally spherical porous agglomerates having a rough surface texture; calcining the agglomerates at a sufficient temperature to drive off the binder material and fix the fine ceramic particles in agglomerates of spiky morphology while substantially maintaining the porosity of the particles; slurrying the calcined agglomerates with binder and volatile material to form a slip for casting as a tape; spreading a thin layer of the slip onto a smooth substrate and drying the slip to set the binder and drive off the volatile material to form a porous sheet of ceramic material.

  7. Preparations and characterizations of novel graphite-like materials and some high oxidation state fluorine chemistry

    SciTech Connect (OSTI)

    Shen, Ciping

    1992-11-01

    Novel graphite-like materials, BC{sub x} (6>x{ge}3), have been prepared using BCl{sub 3} and C{sub 6}H{sub 6} at 800--1000C, and C{sub x}N (14>x{ge}5) have been synthesized using C{sub 5}H{sub 5}N and Cl{sub 2} at 680C--986C. Bulk and thin film characterization were used to study the structure and bonding in these solids. C{sub 8}K(NH{sub 3}){sub 1.1} was prepared by reacting C{sub 8}K with gaseous NH{sub 3}. The carbon sub-lattice is hexagonal: a = 2.47 {Angstrom}, c = 6.47 {Angstrom}. The smaller a parameter and lower conductivity are attributed to smaller electron transfer from K to the conduction band solvation of K by NH{sub 3}. A simplified liquid phase method for synthesizing Li-graphite intercalation compounds has been developed; synthesis of a lamellar mixed conductor, C{sub x}{sup +}Li{sub 2}N{sup {minus}}, has been attempted. Stability and conductivity of (BN){sub 3}SO{sub 3}F have been studied; it was shown to be metallic with a specific conductivity of 1.5 S{center_dot}cm{sup {minus}1}. Its low conductivity is attributed to the low mobility of holes in BN sheets.

  8. Preparation of high nitrogen compound and materials therefrom

    DOE Patents [OSTI]

    Huynh, My Hang V. (Los Alamos, NM); Hiskey, Michael A. (Los Alamos, NM)

    2006-10-10

    The high-nitrogen compound of the formula ##STR00001## was prepared. Pyrolysis of the compound yields carbon nitrides C.sub.2N.sub.3 and C.sub.3N.sub.5. The carbon nitrides vary in their density, texture, and morphology.

  9. Method for the preparation of ferrous low carbon porous material

    SciTech Connect (OSTI)

    Miller, Curtis Jack

    2014-05-27

    A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS RESEARCH Synthesis and Directed Growth of Single-Crystal TCNQ-Cu Organic Nanowires K. Xiao, J. Tao, and Z. Liu (CNMS Postdocs); I. N. Ivanov, A.A. Puretzky, Z. Pan, and D.B. Geohegan (CNMS Staff); and S. J. Pennycook (ORNL) Achievement Few synthesis experiments have been reported for nanowires of organic semiconductors, despite the proposed use of organic thin-film materials in energy-related optoelectronic devices such as solid state lighting and photovoltaic cells. Although nanostructures

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertically Aligned Carbon Nanofibers Arrays Record Electrophysiological Signals Zhe Yu and Barclay Morrison III, (Department of Biomedical Engineering, Columbia University), T. E. McKnight, M. N. Ericson, (ESTD, ORNL) A. V. Melechko, and M. L. Simpson (CNMS, ORNL) Achievement The controlled synthesis and directed assembly of nanoscale materials is a key requirement to create functional interfaces between synthetic and biological systems. Along these lines, recent advances in the controlled

  12. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Alfredo Caro Image of Alfredo Caro Contact Information MST-8, MS G755 Los Alamos National Laboratory 505-665-2083 Bio Alfredo Caro joined Los Alamos National Laboratory in March 2010, coming from Lawrence Livermore National Lab, where he worked for seven years in fusion and fission computational materials science. While completing his Ph.D. at the Swiss Federal Institute of Technology, Caro's research covered experimental work on radiation damage; later, during his years at

  13. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Blas Uberuaga image of blas urberuaga Contact Information Technical Staff Member Los Alamos National Laboratory Materials Science and Technology Division Phone: (505) 667-9105 blas@lanl.gov Bio Education: Ph.D. in Physics, University of Washington, 2000 M.S. in Physics, University of Washington, 1996 B.A. in Physics, University of Idaho, 1994 Research and Professional Experience: Technical Staff Member, Los Alamos National Laboratory, 2004-present Postdoctoral Researcher,

  14. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory George T. (Rusty) Gray III image of George Gray Contact Information Laboratory Fellow Los Alamos National Laboratory Dynamic Materials Properties, Testing, and Modeling Los Alamos, NM 87545 Phone: (505) 667-5452 rusty@lanl.gov Bio Education Ph.D. in Metallurgical Engineering, Carnegie-Mellon University, 1981 M.S. in Metallurgical Engineering, South Dakota School of Mines and Technology, 1977 B.S. in Metallurgical Engineering, South Dakota School of Mines and Technology,

  15. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Irene J. Beyerlein image of Irene Beyerlain Contact Information Los Alamos National Laboratory Theoretical Division Fluid Dynamics and Solid Mechanics Phone: (505) 665-2231 irene@lanl.gov Bio Education Ph.D., Theoretical and Applied Mechanics, Cornell University, 1997; Minors in Materials Science and Probability and Statistics B.S., Mechanical Engineering, Clemson University, 1993 Research and Professional Experience Technical Staff Member, Los Alamos National Laboratory,

  16. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory J. Demkowicz image of michael demkowicz Contact Information MIT Department of Materials Science and Engineering Phone: (617)324-6563 demkowicz@mit.edu Bio Education Ph.D., Mechanical Engineering, Massachusetts Institute of Technology, June 2005; Minor in Finance, MIT Sloan School of Business, June 2005 B.S., Physics, University of Texas-Austin, August 2000 B.S., Aerospace Engineering and Engineering Mechanics, University of Texas-Austin, August 2000 B.A., Plan II Humanities

  17. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Quanxi Jia image of George Gray Contact Information Laboratory Fellow Los Alamos National Laboratory Materials Physics and Applications Division Phone: (505) 667-2716 qxjia@lanl.gov Bio Education Ph.D., Electrical & Computer Engineering from SUNY at Buffalo, NY, 1991 M.S., Electronic Engineering, Jiaotong University, Xian, China, 1985 B.S., Electronic Engineering, Jiaotong University, Xian, China, 1982 Research and Professional Experience Laboratory Fellow, Los Alamos

  18. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Timothy Germann german Contact Information Los Alamos National Laboratory Theoretical Division Physics and Chemistry of Materials Group Phone: (505) 665-9772 tcg@lanl.gov Bio Education Ph.D., Chemical Physics, Harvard University, 1995 B.S., Computer Science, University of Illinois, Urbana-Champaign, 1991 B.S., Chemistry, University of Illinois, Urbana-Champaign, 1991 Research and Professional Experience Technical Staff Member, Los Alamos National Laboratory, April

  19. Center for Nanophase Materials Sciences (CNMS) - Functional Polymer and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Architectures (FPHA) FUNCTIONAL POLYMER AND HYBRID ARCHITECTURES (FPHA) The overarching goal of the Functional Polymer and Hybrid Architectures (FPHA) theme is to understand, design, and manipulate the multiscale self-assembly of macromolecular and hybrid materials to tailor electronic transport and response. The emphasis is on probing the mechanisms of self-assembly that are essential for the development of functional hybrid architectures of relevance to energy technologies, such as

  20. Method of preparing and handling chopped plant materials

    DOE Patents [OSTI]

    Bransby, David I. (2668 Wire Rd., Auburn, AL 36832)

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling the Edge Morphology in Graphene Layers using Electron Irradiation: From Sharp Atomic Edges to Coalesced Layers Forming Loops Eduardo Cruz-Silva,1 Andrés R. Botello-Méndez,2 Zachary Barnett,1 X. Jia,3 M.S. Dresselhaus,4 Humberto Terrones,2 Mauricio Terrones,5 Bobby G. Sumpter,1 Vincent Meunier1 1- Oak Ridge National Laboratory, Oak Ridge, TN 2-Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Belgium 3-Department of Materials Science and

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder O. Delaire,1 K. Marty,1 M. B. Stone,1 P. R. C. Kent,1 M. S. Lucas,2 D. L. Abernathy,1 D. Mandrus,1 B. C. Sales1 1- Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 Achievement We have shown how, in some materials, there can be a surprisingly strong coupling between certain features of the electronic structure and the way the atoms in a solid

  3. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Steve Valone IMage of Steve Valone Contact Information MST-8, MS G755 Los Alamos National Laboratory 505-667-2067 Bio Steve Valone received his Ph.D. in theoretical chemistry from the University of North Carolina in 1980. In 1981, he became a Director's-funded postdoc at Los Alamos National Laboratory in the physical chemistry group; in 1984, he joined the technical staff in the Materials Science & Technology Division, where he worked on a wide variety of modeling

  4. Center for Nanophase Materials Sciences (CNMS) - Archived News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWS "New material could lead to longer-lasting batteries," PC World (October 24, 2014) "Super stable garnet ceramics may be ideal for high-energy lithium batteries," ChemEurope (October 23, 2014) "Novel approach to magnetic measurements atom-by-atom," Uppsala University (October 1, 2014) "Pixel Engineered Electronics Have Growth Potential," Rice University (September 29, 2014) "Interface surprises may motivate novel oxide electronic devices,"

  5. Methane storage in advanced porous materials | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Methane storage in advanced porous materials Previous Next List Trevor A. Makal, Jian-Rong Li, Weigang Lu and Hong-Cai Zhou, Chem. Soc. Rev., 2012,41, 7761-7779 DOI: 10.1039/C2CS35251F Abstract: The need for alternative fuels is greater now than ever before. With considerable sources available and low pollution factor, methane is a natural choice as petroleum replacement in cars and other mobile applications. However,

  6. Raw material preparation for ultra high production rate sintering

    SciTech Connect (OSTI)

    Kortmann, H.A.; Ritz, V.J.; Cappel, F.; Weisel, H.; Richter, G.

    1995-12-01

    An R and D program in pot grate sintering showed, that an intensive preparation of ores, additives and coke breeze improves the sintering capacity. The tests were conducted using an ore mixture composed of typical ores imported to Europe. The highest capacities were attained up to 63.8 t/m{sup 2} {times} 24 h maximum for a sinter which well fulfills the high requirements on chemical, physical and metallurgical properties.

  7. Method of preparing thin porous sheets of ceramic material

    DOE Patents [OSTI]

    Swarr, T.E.; Nickols, R.C.; Krasij, M.

    1984-05-23

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  8. Method of preparing thin porous sheets of ceramic material

    DOE Patents [OSTI]

    Swarr, Thomas E. (South Windsor, CT); Nickols, Richard C. (East Hartford, CT); Krasij, Myron (Avon, CT)

    1987-03-24

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  9. Method for preparing polyolefin composites containing a phase change material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1990-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  10. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    SciTech Connect (OSTI)

    Simpson, Lin

    2009-11-30

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. The report presents a review of the material status as related to DOE hydrogen storage targets and explains the basis for the down select decisions.

  11. Cermet materials prepared by combustion synthesis and metal infiltration

    DOE Patents [OSTI]

    Holt, J.B.; Dunmead, S.D.; Halverson, D.C.; Landingham, R.L.

    1991-01-29

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced. 6 figures.

  12. Cermet materials prepared by combustion synthesis and metal infiltration

    DOE Patents [OSTI]

    Holt, Joseph B. (San Jose, CA); Dunmead, Stephen D. (Davis, CA); Halverson, Danny C. (Modesto, CA); Landingham, Richard L. (Livermore, CA)

    1991-01-01

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.

  13. Grained composite materials prepared by combustion synthesis under mechanical pressure

    DOE Patents [OSTI]

    Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  14. SciDAC Outreach Center Participates in "Materials for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications" Workshop SciDAC Outreach Center Participates in "Materials for Energy Applications" Workshop SciDAC Outreach Center Participates in "Materials for Energy Applications" Workshop February 1, 2012 David Skinner From Jan. 30 to Feb. 1 Berkeley Lab hosted an invitation-only workshop on Materials for Energy Applications, which was jointly sponsored by all 17 DOE national laboratories. This three-day conference-the first of a planned series-was held to

  15. Materials Dow Select Decisions Made Within DOEs Chemical Hydrogen Storage Center of Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report Submitted by: The Chemical Hydrogen Storage Center of Excellence Coordinating Council Authors: Kevin C. Ott, Los Alamos National Laboratory Sue Linehan, Rohm and Haas Company Frank Lipiecki, Rohm and Haas Company Christopher L. Aardahl, Pacific Northwest National Laboratory May 2008 Acknowledgements The

  16. Héctor D. Abruña > Director, Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emile M. Chamot Professor Chemistry and Chemical Biology > Faculty Directory > The Energy Materials Center at Cornell Héctor D. Abruña Director, Energy Materials Center at Cornell Emile M. Chamot Professor Chemistry and Chemical Biology Research Group Webpage hda1@cornell.edu Professor Abruña, Emile M. Chamot Professor of Chemistry, completed his graduate studies with Royce W. Murray and Thomas J. Meyer at the University of North Carolina at Chapel Hill in 1980 and was a

  17. Materials for storage and release of hydrogen and methods for preparing and using same

    DOE Patents [OSTI]

    Autrey, Thomas S. (West Richland, WA); Gutowska, Anna (Richland, WA); Shin, Yongsoon (Richland, WA); Li, Liyu (Richland, WA)

    2008-01-08

    The invention relates to materials for storing and releasing hydrogen and methods for preparing and using same. The materials exhibit fast release rates at low release temperatures and are suitable as fuel and/or hydrogen sources for a variety of applications such as automobile engines.

  18. Novel Materials for Energy Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Materials for Energy Research Novel Materials for Energy Research The Ames Laboratory is home to the Materials Preparation Center (MPC). The MPC is a DOE Basic Energy...

  19. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect (OSTI)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.

  20. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    SciTech Connect (OSTI)

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  1. Method for the preparation of thallium-containing superconducting materials by precipitation

    DOE Patents [OSTI]

    Bunker, Bruce C. (Albuquerque, NM); Lamppa, Diana L. (Albuquerque, NM); Voigt, James A. (Albuquerque, NM)

    1991-01-01

    This invention provides improved methods for the preparation of precursor powders that are used in the preparation of superconducting ceramic materials that contain thallium. A first solution that contains the hydrogen peroxide and metal cations, other than thallium, that will be part of the ceramic is quickly mixed with a second solution that contains precipitating anions and thallium (I) to form a precipitate which is dried to yield precursor powders. The precursor powders are calcined an sintered to produce superconducting materials that contain thallium.

  2. Biomolecular hybrid material and process for preparing same and uses for same

    DOE Patents [OSTI]

    Kim, Jungbae [Richland, WA

    2010-11-23

    Disclosed is a composition and method for fabricating novel hybrid materials comprised of, e.g., carbon nanotubes (CNTs) and crosslinked enzyme clusters (CECs). In one method, enzyme-CNT hybrids are prepared by precipitation of enzymes which are subsequently crosslinked, yielding crosslinked enzyme clusters (CECs) on the surface of the CNTs. The CEC-enzyme-CNT hybrids exhibit high activity per unit area or mass as well as improved enzyme stability and longevity over hybrid materials known in the art. The CECs in the disclosed materials permit multilayer biocatalytic coatings to be applied to surfaces providing hybrid materials suitable for use in, e.g., biocatalytic applications and devices as described herein.

  3. Building America Solution Center Shows Builders How to Save Materials Costs While Saving Energy

    SciTech Connect (OSTI)

    Gilbride, Theresa L.

    2015-06-15

    This short article was prepared for the U.S. Department of Energy's Building America Update newsletter. The article identifies energy and cost-saving benefits of using advanced framing techniques in new construction identified by research teams working with the DOE's Building America program. The article also provides links to guides in the Building America Solution Center that give how-to instructions for builders who want to implement advanced framing construction. The newsletter is issued monthly and can be accessed at http://energy.gov/eere/buildings/building-america-update-newsletter

  4. Bulk-scaffolded hydrogen storage and releasing materials and methods for preparing and using same

    DOE Patents [OSTI]

    Autrey, S Thomas [West Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Gutowska, Anna [Richland, WA; Li, Liyu [Richland, WA; Li, Xiaohong S [Richland, WA; Shin, Yongsoon [Richland, WA

    2011-06-21

    Compositions are disclosed for storing and releasing hydrogen and methods for preparing and using same. These hydrogen storage and releasing materials exhibit fast release rates at low release temperatures without unwanted side reactions, thus preserving desired levels of purity and enabling applications in combustion and fuel cell applications.

  5. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    SciTech Connect (OSTI)

    Kelly, K.E.

    1994-11-09

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

  6. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS in the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARCHIVED CNMS IN THE NEWS Peter Cummings to Receive Touloukian Award from the American Society of Mechanical Engineers Peter Cummings, Principal Scientist at the Center for Nanophase Materials Sciences and John R. Hall Professor at Vanderbilt University, will receive the 2012 Yeram S. Touloukian Award from the American Society of Mechanical Engineers (ASME). The award, consisting of a bronze medal, certificate and travel grant, is awarded once every three years to recognize outstanding technical

  7. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment Opportunities The Center employs qualified postdoctoral researchers at LANL on all CMIME research teams. Background in mechanical behavior and/or radiation effects in structural metals and/or ceramics is needed, with expertise in interfaces and defects in materials. In experimental research, skills in high-resolution TEM (preferably aberration-corrected TEM) are required. In theoretical research, skills in atomistic modeling are required. US citizenship is not required. Want more

  8. Subtask 1: Molecules, Materials, and Systems for Solar Fuels | ANSER Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne-Northwestern National Laboratory 1: Molecules, Materials, and Systems for Solar Fuels Home > Research > Subtask 1 The above figure depicts an iridium catalyst used for water splitting. The above figure depicts an iridium catalyst used for water splitting. The greatest challenge facing the development of solar fuels is efficient fuel production at acceptable rates and driving forces. The ANSER Center is confronting this challenge by taking a hierarchical approach to designing,

  9. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-11-09

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

  10. Nanoparticles > Complex Oxides > Research > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Nanoparticles The nanoparticle synthesis efforts at EMC2 mostly take place in the Frank DiSalvo group, and focus on preparing useful fuel cell electrocatalysts in nanoparticle form. The research groups in EMC2 (formerly the Cornell Fuel Cell Institute) have discovered that bulk ordered intermetallic compounds- a class of solid materials that are made of multiple metals, but are not random alloys- show impressive resistance to poisoning as anode catalysts, and amazing activity for

  11. Prepared

    Office of Legacy Management (LM)

    Prepared for Division of Remedial Action Projects U.S. Department of Energy COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTYM NIAGARA FALLS STORAGE SITE LEWISTON, NEW YORK B.P. ...

  12. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOE Patents [OSTI]

    Doddapaneni, Narayan (Alburquerque, NM); Wang, James C. F. (Livermore, CA); Crocker, Robert W. (Fremont, CA); Ingersoll, David (Alburquerque, NM); Firsich, David W. (Dayton, OH)

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  13. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    DOE Patents [OSTI]

    Doddapaneni, N.; Wang, J.C.F.; Crocker, R.W.; Ingersoll, D.; Firsich, D.W.

    1999-03-16

    A method is described for producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of {approx_equal} 80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere. 4 figs.

  14. A novel nanocomposite material prepared by intercalating photoresponsive dendrimers into a layered double hydroxide

    SciTech Connect (OSTI)

    Tanaka, Toshiyuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Matsukawa, Junpei; Fujita, Yasuhiko; Takaguchi, Yutaka; Matsuda, Motohide; Miyake, Michihiro

    2010-02-15

    A novel combination for an inorganic-organic nanocomposite material was demonstrated. Anthryl dendron, i.e., poly(amidoamine) dendron with an anthracene chromophore group at the focal point, was incorporated in the interlayer space of ZnAl-NO{sub 3} type layered double hydroxide (LDH) through an anion-exchange reaction. The photoabsorption and fluorescence properties of the resulting material were different from those of the bare anthryl dendron molecule. It was suggested that the change in photochemical properties was due to the organization and pi-pi interaction of anthracene chromophores within the interlayer of the LDH. - Graphical abstract: A novel inorganic-organic nanocomposite material, a layered double hydroxide (LDH) containing photoresponsive dendrimers in the interlayer space, was successfully prepared through an ion-exchange reaction. The resulting material exhibited unique photochemical properties, compared to those of the bare photoresponsive dendrimer molecule.

  15. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  16. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS in the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARCHIVED CNMS IN THE NEWS Sergei V. Kalinin Wins ACerS Robert L. Coble Award for Young Scholars Sergei V. Kalinin, who is a member of the Imaging Functionality Group in the Center for Nanophase Materials Sciences Division, will be honored at the 111th Annual Meeting of The American Ceramic Society (ACerS), October 26, 2009, in Pittsburgh, Pennsylvania, with the Robert L. Coble Award for Young Scholars. Dr. Kalinin is cited for "seminal contributions in understanding ferroelectric and

  17. Staff > Faculty Directory > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faculty Directory List Image Héctor D. Abruña Director, Energy Materials Center at Cornell Emile M. Chamot Professor Chemistry and Chemical Biology hda1@cornell.edu List Image Lynden Archer Marjorie L. Hart Chair Chemical and Biomolecular Engineering laa25@cornell.edu List Image Tomás Arias Professor Department of Physics taa2@cornell.edu List Image Joel Brock Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics jdb20@cornell.edu List Image Geoff Coates Tisch

  18. Project T100 -- Hazardous Materials Management and Emergency Response Training Center (HAMMER)

    SciTech Connect (OSTI)

    Norton, C.E.

    1994-11-09

    The scope of this Quality Assurance Program Plan (QAPP) is to provide a system of Quality Assurance reviews and verifications on the design and construction of the Hazardous Materials Management and Emergency Response (HAMMER) Training Center, project 95L-EWT-100 at Hanford. The reviews and verifications will be on activities associated with design, procurement, and construction of the HAMMER project which includes, but is not limited to earthwork, placement of concrete, laying of rail, drilling of wells, water and sewer line fabrication and installation, communications systems, fire protection/detection systems, line tie-ins, building and mock-up (prop) construction, electrical, instrumentation, pump and valves and special coatings.

  19. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    Fuel Cell Technologies Publication and Product Library (EERE)

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  20. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    SciTech Connect (OSTI)

    Klebanoff, Lennie

    2007-09-01

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  1. The proposed fixation of sludge in cement at the Feed Materials Production Center

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1990-12-01

    The Feed Materials Production Center (FMPC), located near Cincinnati, Ohio, is a government-owned facility. Westinghouse Materials Company of Ohio (WMCO) is the prime contractor to the United States Department of Energy (DOE) at the FMPC. DOE has entered into a Consent Agreement with the United States Environmental Protection Agency (US EPA) to remediate the FMPC site. A project known as the Environmental Remedial Action (ERA) Project was created to accomplish the task of remediating the site. The majority of the estimated $2-billion ERA Project was broken into five smaller manageable subtasks called operable units.'' Each operable unit is handled as a project with its own project manager/engineer. Due to the project's complexity and stringent completion dates, DOE and WMCO have devised a project management philosophy to ensure the successful completion of the ERA Project. This paper will discuss the ERA project and the development needs to accomplish this project. In particular, development of processes for the treatment of waste sludges for Operable Units 1 and 4 will be discussed. Operable Units 2 sludges will be treated in a similar fashion to Operable Unit 1 if it is determined these sludges need treatment. 4 refs., 5 figs., 9 tabs.

  2. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    SciTech Connect (OSTI)

    Soloveichik, Grigorii

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of prospective organic liquid fuels was studied. During EFRC program various types of electrocatalysts, classes of fuels, and membranes have been investigated.

  3. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOE Patents [OSTI]

    Abney, Kent D. (30 San Juan St., Los Alamos, NM 87544); Kinkead, Scott A. (70 Canada Cir., Los Alamos, NM 87544); Mason, Caroline F. V. (148 Piedra Loop, Los Alamos, NM 87544); Rais, Jiri (Fr. Krizka 11, 17000 Praha 7, CZ)

    1997-01-01

    Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  4. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOE Patents [OSTI]

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  5. Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts

    DOE Patents [OSTI]

    Laine, R.M.; Hirschon, A.S.; Wilson, R.B. Jr.

    1987-12-29

    A process is described for the preparation of a multimetallic catalyst for the hydrodenitrogenation of an organic feedstock, which process comprises: (a) forming a precatalyst itself comprising: (1) a first metal compound selected from compounds of nickel, cobalt or mixtures thereof; (2) a second metal compound selected from compounds of chromium, molybdenum, tungsten, or mixtures thereof; and (3) an inorganic support; (b) heating the precatalyst of step (a) with a source of sulfide in a first non-oxidizing gas at a temperature and for a time effective to presulfide the precatalyst; (c) adding in a second non-oxidizing gas to the sulfided precatalyst of step (b) an organometallic transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the metal components; and (d) optionally heating the chemically combined catalyst of step (b) in vacuum at a temperature and for a time effective to remove residual volatile organic materials. 12 figs.

  6. Logan Daum > Analyst - DC Energy > Center Alumni > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Logan Daum Analyst - DC Energy lrd56@cornell.edu Formerly a graduate student with the Fennie Group, Logan joined DC Energy in June of 2013

  7. Young Investigator Program > Research > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Young Investigator Program In This Section YIA1 - Chen YIA2 - Rodríguez-Calero YIA3 - Rodriguez-López YIA4 - Hernández-Burgos YIA5 - Khurana YIA6 - Potash Young Investigator Program This program is designed to encourage Center postdocs and students to submit collaborative proposals for new research projects that advance the Center's overall programmatic goal of advancing the science of energy conversion and storage by understanding and exploiting fundamental properties of active

  8. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  9. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  10. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOE Patents [OSTI]

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  11. Henry Kostalik > Researcher - 3M > Center Alumni > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Henry Kostalik Researcher - 3M hak27@cornell.edu Originally a member of the Coates Group, Henry received his PhD from Cornell in 2011. He is now working as a Sr. Research Specialist at 3M Corporate Research Laboratory.

  12. Nuclear Waste Materials Characterization Center. Semiannual progress report, April 1985-September 1985

    SciTech Connect (OSTI)

    Mendel, J.E.

    1985-12-01

    Work continued on converting MCC Quality Assurance practices to comply with the national QA standard for nuclear facilities, ANSI/ASME NQA-1. Support was provided to the following: Office of Geologic Repositories; Salt Repository Project; Basalt Waste Isolation Project; Office of Defense Waste and Byproducts Management; Hanford Programs; Transportation Technology Center; and West Valley Demonstration Project. (LM)

  13. Calendar of Research Meetings > News + Events > The Energy Materials Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Cornell News + Events In This Section EMC2 News Upcoming Events Calendar of Research Meetings Archived News RSS & Calender Feeds 2013-2014 Research Meetings To download a pdf listing of upcoming Center Research Meetings and Seminars click here

  14. Center for Inverse Design: Modality 2 - Design of Materials with Targeted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionality 2: Design of Materials with Targeted Functionality Modality 2 applies to cases where we have numerous-perhaps thousands-of materials, each with a single (usually ground-state) configuration, and the desired target property is complex, so it currently cannot be computed on the fly. In this case, we use "design principles"-derived quantities that can be calculated for each material and which suggest key materials parameters that need to be obtained to get the relevant

  15. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related EFRC News What are EFRCs? Energy Frontier Research Centers address energy and science "grand challenges" in a broad range of research areas, which were defined through a series of technical workshops conducted by the DOE's Office of Science, Office of Basic Energy Sciences. The 46 EFRCs were selected from a pool of some 260 applications received in response to a Funding Opportunity Announcement issued by the DOE Office of Science. Selection was based on a rigorous merit review

  16. The Ohio State University Bioproducts Innovation Center Sustainable Materials Networking Event

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Bioenergy Technologies Office Deputy Director Dr. Valerie Reed addressed members of The Ohio State University Bioproducts Innovation Center on October 15, 2015, on the main campus of The Ohio State University. Dr. Reed spoke about important upcoming opportunities from the U.S. Department of Energy and the U.S. Department of Agriculture supporting the national bioeconomy.

  17. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael I. Baskes Dr. Baskes obtained his B.S. degree at Caltech in 1965 in engineering and received his Ph.D. in 1970 at Caltech in Materials Science. He was then employed at Sandia National Laboratories, Livermore for 29 years. At Sandia he was a staff member until 1983. He was then supervisor of the Scientific Computing Division, the Theoretical Division, the Joining and Physical Metallurgy Division, and the Materials and Process Research Division. He was also manager of the Materials and

  18. Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility

    DOE Patents [OSTI]

    Holloway, A.

    1992-01-07

    The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10[sup 4]Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures. 6 figs.

  19. Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility

    DOE Patents [OSTI]

    Holloway, Aleksey (522 N. 32nd St., Omaha, NE 68131)

    1992-01-07

    The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10.sup.4 Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures.

  20. Naval Air Warfare Center, Aircraft Division at Warminster Environmental Materials Program. Phase 1. Interim report, October 1989-May 1992

    SciTech Connect (OSTI)

    Spadafora, S.J.; Hegedus, C.R.; Clark, K.J.; Eng, A.T.; Pulley, D.F.

    1992-06-24

    With the recent increase in awareness about the environment, there is an expanding concern of the deleterious effects of current materials and processes. Federal, state and local environmental agencies such as the EPA, State Air Resource Boards and local Air Quality Management Districts (AQMD) have issued legislation that restrict or prohibit the use and disposal of hazardous materials. National and local laws like the Clean Air and Clean Water Acts, Resource Conservation and Recovery Act, and AQMD regulations are examples of rules that govern the handling and disposal of hazardous materials and waste. The Department of Defense (DoD), in support of this effort, has identified the major generators of hazardous materials and hazardous waste to be maintenance depots and operations, particularly cleaning, pretreating, plating, painting and paint removal processes. Reductions of waste in these areas has been targeted as a primary goal in the DOD. The Navy is committed to significantly reducing its current hazardous waste generation and is working to attain a near zero discharge of hazardous waste by the year 2000. In order to attain these goals, the Naval Air Warfare Center Aircraft Division at Warminster has organized and is carrying out a comprehensive program in cooperation with the Naval Air Systems Command, the Air Force and the Department of Energy that deal with the elimination or reduction of hazardous materials. .... Environmental materials, Organic coatings, Inorganic pretreatments, Paint removal techniques, Cleaners, CFC'S.

  1. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    William D. Nix Professor Nix obtained his B.S. degree in Metallurgical Engineering from San Jose State College, and his M.S. and Ph.D. degrees in Metallurgical Engineering and Materials Science, respectively, from Stanford University. He joined the faculty at Stanford in 1963 and was appointed Professor in 1972. He was named the Lee Otterson Professor of Engineering at Stanford University in 1989 and served as Chairman of the Department of Materials Science and Engineering from 1991 to 1996. He

  2. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Project Office Director Michael Nastasi (505) 667-7007 Co-Director Amit Misra (505) 667-9860 cmime@lanl.gov Resources Employment Opportunities News Related EFRC News - What are EFRCs? - Another LANL EFRC - Materials at Extremes EFRCs Upcoming Events Scientific Hypotheses Absorption and recombination of point and line defects at interfaces Hypotheses: The atomic structure of the interface controls the absorption, emission, storage and annihilation of defects at the interface. Misfit

  3. Electrode-active material for electrochemical batteries and method of preparation

    DOE Patents [OSTI]

    Varma, R.

    1983-11-07

    A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  4. Electrode-active material for electrochemical batteries and method of preparation

    DOE Patents [OSTI]

    Varma, Ravi (Hinsdale, IL)

    1987-01-01

    A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  5. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOE Patents [OSTI]

    Sasaki, Darryl Y. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Daitch, Charles E. (Charlottesville, VA); Shea, Kenneth J. (Irvine, CA); Rush, Daniel J. (Philadelphia, PA)

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  6. In silico screening of carbon-capture materials | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome In silico screening of carbon-capture materials Previous Next List L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, and B. Smit, Nat Mater 11 (7), 633 (2012) DOI: 10.1038/nmat3336 Abstract: One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO2 from

  7. Why Partnerships? > Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View Slideshow › This page has images associated with it. Click above to view. Ford_logo Lockhhed_logo Primet_logo In This Section Why Partnerships? Current Partners Project Updates News & Events Resources Join PARTNERSHIPS Why Partnerships? ›Project Updates ›News + Events › Why Partnerships? Researchers at emc2 are focusing research resources on understanding and development of novel materials to improve energy technologies. We see our role as contributing necessary elements to

  8. Composition and methods of preparation of target material for producing radionuclides

    DOE Patents [OSTI]

    Seropeghin, Yurii D; Zhuikov, Boris L

    2013-05-28

    A composition suitable for use as a target containing antimony to be irradiated by accelerated charged particles (e.g., by protons to produce tin-117m) comprises an intermetallic compound of antimony and titanium which is synthesized at high-temperature, for example, in an arc furnace. The formed material is powdered and melted in an induction furnace, or heated at high gas pressure in gas static camera. The obtained product has a density, temperature stability, and heat conductivity sufficient to provide an appropriate target material.

  9. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  10. Comparison of LiV{sub 3}O{sub 8} cathode materials prepared by different methods

    SciTech Connect (OSTI)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.; Saidi, Y.; Barker, J.; Olsen, I.I.; Pynenburg, R.; Koksbang, R.

    1996-03-01

    Lithium trivanadate, LiV{sub 3}O{sub 8}, can be prepared in a finely dispersed form by dehydration of aqueous lithium vanadate gels. Two methods of dehydration, both easily adaptable to large-scale production, are described in this work: freeze drying and spray drying. After heat-treatment of the dried gels (xerogels) to remove loosely bound water they show a high capacity for lithium insertion, approaching four additional lithium per formula unit, and good reversibility as electrode materials for high energy density lithium cells. How the heat-treatment temperature influences the crystal structure is demonstrated as well as the electrochemical properties of the vanadium oxide.

  11. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

    2011-11-02

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  12. Executive Summaries for the Hydrogen Storage Materials Center of Excellence- Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE

    Broader source: Energy.gov [DOE]

    This report contains the executive summaries of the final technical reports from the three Hydrogen Storage Centers of Excellence that operated from 2005 through 2010 to develop advanced hydrogen storage materials in the areas of Chemical Hydrogen Storage Materials, Hydrogen Sorbents, and Reversible Metal Hydrides.

  13. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Geophysical Experiences Materials Design Calendar NSEC Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission...

  14. Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.

    SciTech Connect (OSTI)

    Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L.

    2010-01-01

    Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

  15. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  16. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2011-11-02

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  17. Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V

    SciTech Connect (OSTI)

    Takeuchi, Esther Sans; Takeuchi, Kenneth James; Marschilok, Amy Catherine

    2013-07-26

    Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

  18. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff

    2011-11-03

    'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  19. Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summaries for the Hydrogen Storage Materials Centers of Excellence Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE Period of Performance: 2005-2010 Fuel Cell Technologies Program Office of Energy Efficiency and Renewable Energy U. S. Department of Energy April 2012 2 3 Primary Authors: Chemical Hydrogen Storage (CHSCoE): Kevin Ott, Los Alamos National Laboratory Hydrogen Sorption (HSCoE): Lin Simpson, National Renewable Energy Laboratory Metal Hydride

  20. Critical Materials and Rare Futures: Ames Laboratory Signs a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Signs a New Agreement on Rare-Earth Research June 15, 2011 - 7:07pm Addthis The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to...

  1. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    SciTech Connect (OSTI)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  2. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  3. 10 Start-Ups to Watch > EMC2 News > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Start-Ups to Watch November 2nd, 2015 › We love our mobile devices but have to put up with a modern-day anxiety: the peculiar discomfort felt when a battery indicator turns red. What if, rather than a desperate search for an outlet for the phone or electric car, we had more powerful, longer-lived batteries? Surpassing the performance of today's lithium-ion batteries will require new active materials that react with each other in novel ways. Materials firms are working to develop new

  4. The Ohio State University Bioproducts Innovation Center Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio State University Bioproducts Innovation Center Sustainable Materials Networking Event The Ohio State University Bioproducts Innovation Center Sustainable Materials Networking...

  5. Extreme Environments (EFree) Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extreme Environments (EFree ) Center LLNL Co-PI: Jonathon Crowhurst e-mail bio Novel materials for energy applications Ultrafast reflectivity measurements under high pressure...

  6. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  7. A HUMAN RELIABILITY-CENTERED APPROACH TO THE DEVELOPMENT OF JOB AIDS FOR REVIEWERS OF MEDICAL DEVICES THAT USE RADIOLOGICAL BYPRODUCT MATERIALS.

    SciTech Connect (OSTI)

    COOPER, S.E.; BROWN, W.S.; WREATHALL, J.

    2005-02-02

    The U.S. Nuclear Regulatory Commission (NRC) is engaged in an initiative to risk-inform the regulation of byproduct materials. Operating experience indicates that human actions play a dominant role in most of the activities involving byproduct materials, which are radioactive materials other than those used in nuclear power plants or in weapons production, primarily for medical or industrial purposes. The overall risk of these activities is strongly influenced by human performance. Hence, an improved understanding of human error, its causes and contexts, and human reliability analysis (HRA) is important in risk-informing the regulation of these activities. The development of the human performance job aids was undertaken by stages, with frequent interaction with the prospective users. First, potentially risk significant human actions were identified based on reviews of available risk studies for byproduct material applications and of descriptions of events for byproduct materials applications that involved potentially significant human actions. Applications from the medical and the industrial domains were sampled. Next, the specific needs of the expected users of the human performance-related capabilities were determined. To do this, NRC headquarters and region staff were interviewed to identify the types of activities (e.g., license reviews, inspections, event assessments) that need HRA support and the form in which such support might best be offered. Because the range of byproduct uses regulated by NRC is so broad, it was decided that initial development of knowledge and tools would be undertaken in the context of a specific use of byproduct material, which was selected in consultation with NRC staff. Based on needs of NRC staff and the human performance related characteristics of the context chosen, knowledge resources were then compiled to support consideration of human performance issues related to the regulation of byproduct materials. Finally, with information sources and an application context identified, a set of strawman job aids was developed, which was then presented to prospective users for critique and comment. Work is currently under way to develop training materials and refine the job aids in preparation for a pilot evaluation.

  8. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    SciTech Connect (OSTI)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  9. Division of Materials Science (DMS) meeting presentation

    SciTech Connect (OSTI)

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  10. NNSA Service Center Chart | Department of Energy

    Office of Environmental Management (EM)

    NNSA Service Center Chart NNSA Service Center Chart Office of Chief Counsel at the NNSA Service Center in Albuquerque, NM PDF icon NNSA Service Center Chart More Documents & Publications Technical Qualification Program Accreditation Schedule 2011 Annual Planning Summary for NNSA Service Center (NNSASC) EIS-0466: Notice of Intent to Prepare an Environmental Impact Statement

  11. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

    2011-11-02

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  12. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Engineering Center University of Wisconsin-Madison Experimental and Numerical Studies of the Temperature Field in Selective Laser Sintering to Improve Shrinkage and Warpage Prediction Prof. Dr.-Ing. Natalie Rudolph Polymer Engineering Center Department of Mechanical Engineering University of Wisconsin-Madison 1513 University Ave Madison, WI 53706 Advanced Qualification of Additive Manufacturing Materials Workshop, July 20-21, 2015 in Santa Fe, NM Polymer Engineering Center University of

  13. Center for Advanced Photophysics | About The Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Victor Klimov - Center for Advanced Solar Photophysics Message from Center Director The solution to the global energy challenge requires revolutionary breakthroughs in areas such as the conversion of solar energy into electrical power or chemical fuels. The principles for capturing solar light and converting it into electrical charges have not changed for more than four decades. Previous advances in this area have mostly relied on iterative improvements in material quality and/or device

  14. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome US DOE Energy Frontier Research Center The Center for Revolutionary Materials for Solid State Energy Conversion will focus on solid state conversion of thermal energy to useful electrical power, both to increase the efficiency of traditional industrial energy processes and to tap new unused sources of energy such as solar thermal. Additionally materials with enhanced thermoelectric properties will find application in high efficiency, environmentally benign climate control systems. Our

  15. Emery Station Operations Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emery Station Operations Center

  16. Purdue University Energy Center | Open Energy Information

    Open Energy Info (EERE)

    society is currently seeking as society prepares for the eventual transition from fossil fuels to other energy sources. References: Purdue University Energy Center1 This...

  17. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama Birmingham at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  18. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center of...

  19. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  20. Center for Functional Nanomaterials

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  1. Contact us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact us Home Director Donald T Morelli Professor of Materials Science and Director, MSUDOE Energy Frontier Research Center Department of Chemical Engineering & Materials...

  2. Energy Security Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Security Center Energy Security Center Developing new ideas for reliable, secure, and sustainable carbon neutral energy solutions for the nation-the portal to LANL's diverse energy security research enterprise. Contact Leader Steven Buelow (505) 663 5629 Email Program Administrator Jutta Kayser (505) 663-5649 Email Research focus areas Materials and concepts for clean energy Science for renewable energy sources Superconducting cables Energy storage Fuel cells Mitigating impacts of global

  3. LANSCE | Lujan Center | Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Lujan Center: Science & People The Lujan Center, Science & People April 2014 In This Issue: * Olivier Gourdon: A crystallographer keen on showing off the revealing properties of neutrons *Seeking design rules for efficient lighting sources * Rate-dependent deformation mechanisms in beryllium * Improved understanding of a semiconductor used in infrared detectors * Mike Fitzsimmons elected NNSA Fellow * Pressure tuning: a new approach for making zero thermal expansion materials *

  4. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Contact Courses Summer School Engineering Information Science, Technology Geophysics, Planetary Physics, Signatures Applied Geophysical Experiences Materials Design Calendar NSEC » Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission critical research at LANL and the outside research community. Contact Director Robert Ecke (505) 667-6733 Email Deputy Director Aric Hagberg (505) 665-4958 Email Executive Administrator Elissa (Ellie) Vigil (505)

  5. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24

  6. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  7. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  8. <...

  9. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, Richard W. (Hinsdale, IL); Nieman, G. William (Evanston, IL); Weertman, Julia R. (Evanston, IL)

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  10. Y-12 History Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 History Center Y-12 History Center Located within the New Hope Center at Y-12, the History Center houses a fascinating collection of informational materials and historical...

  11. High Performance Computing Data Center Metering Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Computing Data Center Metering Protocol Prepared for: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Prepared by: Thomas Wenning Michael MacDonald Oak Ridge National Laboratory September 2010 ii Introduction Data centers in general are continually using more compact and energy intensive central processing units, but the total number and size of data centers continues to increase to meet progressive computing

  12. Facilities and Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities and Centers Center for Electrical Energy Storage Argonne Tandem Linac Accelerator System Argonne-Northwestern Solar Energy Research Center Center for Nanoscale Materials Facilities & Centers Argonne's Physical Sciences and Engineering Directorate is home to several different state-of-the-art national user facilities as well as two Energy Frontier Research Centers. The Argonne Tandem Linac Accelerator System (ATLAS) is a leading user facility for nuclear structure research in the

  13. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency &

  14. Materials for light-induced water splitting: In situ controlled surface preparation of GaPN epilayers grown lattice-matched on Si(100)

    SciTech Connect (OSTI)

    Supplie, Oliver; May, Matthias M.; Stange, Helena; Hhn, Christian; Lewerenz, Hans-Joachim; Hannappel, Thomas

    2014-03-21

    Energy storage is a key challenge in solar-driven renewable energy conversion. We promote a photochemical diode based on dilute nitride GaPN grown lattice-matched on Si(100), which could reach both high photovoltaic efficiencies and evolve hydrogen directly without external bias. Homoepitaxial GaP(100) surface preparation was shown to have a significant impact on the semiconductor-water interface formation. Here, we grow a thin, pseudomorphic GaP nucleation buffer on almost single-domain Si(100) prior to GaPN growth and compare the GaP{sub 0.98}N{sub 0.02}/Si(100) surface preparation to established P- and Ga-rich surfaces of GaP/Si(100). We apply reflection anisotropy spectroscopy to study the surface preparation of GaP{sub 0.98}N{sub 0.02} in situ in vapor phase epitaxy ambient and benchmark the signals to low energy electron diffraction, photoelectron spectroscopy, and x-ray diffraction. While the preparation of the Ga-rich surface is hardly influenced by the presence of the nitrogen precursor 1,1-dimethylhydrazine (UDMH), we find that stabilization with UDMH after growth hinders well-defined formation of the V-rich GaP{sub 0.98}N{sub 0.02}/Si(100) surface. Additional features in the reflection anisotropy spectra are suggested to be related to nitrogen incorporation in the GaP bulk.

  15. Center for Advanced Solar Photophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome to the Center for Advanced Solar Photophysics (CASP) Solution-processed solar cells The goal of this center is to explore and exploit the unique physics of nanostructured materials to boost the efficiency of solar energy conversion through novel light-matter interactions, controlled excited-state dynamics, and engineered carrier-carrier coupling. Examples of phenomena that are studied in the center include field enhancement in metal nanostructures for improved light-harvesting and

  16. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  17. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  18. LANSCE | Lujan Center | Instruments | SMARTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer for Materials Research at Temperature and Stress | SMARTS Materials in Extreme Environments and Geoscience The SMARTS is a third-generation neutron diffractometer optimized for the study of engineering materials. It was funded by DOE and constructed at the Lujan Center, coming online in the summer of 2001. SMARTS provides an exciting range of capabilities for studying polycrystalline materials focusing on two areas: the measurement of deformation under stress and extreme

  19. Feed Materials Production Center. Final phase-in report volume 11 of 15 waste management, October 25, 1985--December 31, 1985

    SciTech Connect (OSTI)

    Watts, R.E.

    1986-01-17

    This volume of the Transition Final Report provides the findings, recommendations and corrective actions for the Waste Management areas developed during the phase-in actions by Westinghouse Materials Company (WMCO). The objective is to provide a summary of the studies and investigations performed by the WMCO Company during the transition period. The Waste Management effort at FMPC was expanded in 1984 when a separate group was formed within the NLO organization. This is considered to be an area where significant increase in priority and effort must be applied to resolve waste management problems and to bring the site in conformity to regulations and the Environmental Health/Safety Standards. During the transition, there was a comprehensive investigation in all areas of air, liquid and solid waste management for nuclear, chemical and conventional wastes. Not all of these investigations are documented in this report, but the information gathered was used in the development of the budgets (cost accounts), programs, and organizational planning.

  20. Electrochemically induced deposition method to prepare {gamma}-MnO{sub 2}/multi-walled carbon nanotube composites as electrode material in supercapacitors

    SciTech Connect (OSTI)

    Fan Zhen

    2008-08-04

    The {gamma}-MnO{sub 2}/multi-walled carbon nanotube ({gamma}-MnO{sub 2}/MWNT) composite has been prepared by electrochemically induced deposition method. The morphology and crystal structure of the composite were investigated by X-ray diffraction and scanning electron microscopy, respectively. The capacitive properties of the {gamma}-MnO{sub 2}/MWNT composite have been investigated by cyclic voltammetry (CV). A specific capacitance (based on {gamma}-MnO{sub 2}) as high as 579 F g{sup -1} is obtained at a scan rate of 10 mV s{sup -1} in 0.1 M Na{sub 2}SO{sub 4} aqueous solution. Additionally, the {gamma}-MnO{sub 2}/MWNT composite electrode shows excellent long-term cycle stability (only 2.4% decrease of the specific capacitance is observed after 500 CV cycles)

  21. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River National Lab ttt45@cornell.edu List Image Giang Vo Research Investigator - Dupont gdv8@cornell.edu List Image Deli Wang Professor - Huazhong University of Science &...

  22. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. * PDOS measurements performed on polycrystalline samples have identified the...

  1. LANSCE | Lujan Center | Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Instruments Lujan Center Flight Paths Instrument Suite by Science Crystallography: NPDF, HIPD, HIPPO,PCS Engineering and Strain: HIPPO, SMARTS, NPDF Disordered Materials: NPDF, HIPD, HIPPO Large Scale Structures: LQD, ASTERIX Magnetism: ASTERIX, HIPD, HIPPO Biology: PCS, LQD Neutron Imaging: HIPPO, SMARTS, NPDF Nuclear Science and Technology: DANCE, FP5, FP12 Instrument Suite by Technique Powder Diffractometers: HIPD, HIPPO, NPDF, SMARTS Engineering Diffraction: SMARTS Reflectometer:

  2. Center for Energy Nanoscience at USC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics The Center for Energy Nanoscience (CEN) synthesizes a variety of semiconductor nanostructure materials to exploit their unique geometrical, electrical, and optical...

  3. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3,072 Material Simulations in Joint Center for Artificial Photosynthesis (JCAP) PI: Frances A. Houle, Lawrence Berkeley National Laboratory Edison 3,072 LLNL MFE Supercomputing...

  4. Center for Electrochemical Energy Science | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their...

  5. Center for Inverse Design: Inverse Design Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Design Approach This page describes the inverse materials design methodology used by the Center for Inverse Design, which integrates and combines the following: (1) theory,...

  6. Electron Microscopy Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Group (EMC) develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials challenges. EMC...

  7. The Learning Center | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Learning Center Rare Earths for Science The Ames Laboratory has been actively involved in the preparation of very pure rare earth metals since the early 1940s, when Dr. Frank...

  8. Howard Baker Center for Public Policy Nuclear Power Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared...

  9. LANSCE | Lujan Center | Chemical & Sample Prep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Sample Preparation For general questions, please contact the Lujan Center Chemical and Sample Preparation Laboratory responsible: Charles Kelsey | ckelsey@lanl.gov | 505.665.5579 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact theLujan Center Experiment Coordinator: TBA Chemistry Laboratories High-Pressure Laboratory X-ray Laboratory Spectroscopy Laboratory Clean Room Laboratory Glove box - He atmosphere High-purity water Diamond

  10. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  11. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect (OSTI)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution.

  12. Photochemical preparation of plutonium pentafluoride

    DOE Patents [OSTI]

    Rabideau, Sherman W. (Los Alamos, NM); Campbell, George M. (Los Alamos, NM)

    1987-01-01

    The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

  13. Research Staff | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff Research staff members in NREL's Materials Science Center are aligned within four groups: Materials Physics, Analytical Microscopy and Imaging Science, Interfacial and Surface Science, and Thin-Film Materials Science and Processing. For lead researcher contacts, see our research areas. For our business contact, see Work with Us. Photo of Nancy Haegel Nancy Haegel Center Director, Materials Science Center Email | 303-384-6548 Materials Physics Photo of Angelo Mascarenhas Angelo

  14. Preparing for Your Visit | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People...

  15. Centers | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Centers Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Print Text Size: A A A FeedbackShare Page EFRC Map Centers ordered alphabetically by state and then by center name California Light-Material Interactions in Energy Conversion (LMI) Ralph Nuzzo, California Institute of Technology Center for Nanoscale Controls on Geologic CO2 (NCGC) Donald DePaolo, Lawrence Berkeley

  16. Preparing for the Quality Control Inspector Certification Exam

    Broader source: Energy.gov [DOE]

    This presentation, prepared by the Building Performance Center and the Washington Department of Commerce, identifies how individuals can better prepare for the Home Energy Professional Quality Control Inspector Certification Exam.

  17. EIS-0462: Notice of Intent to Prepare an Environmental Impact...

    Broader source: Energy.gov (indexed) [DOE]

    Crowned Ridge Wind Energy Center Project, South Dakota Intent to Prepare an Environmental Impact Statement and to Conduct Scoping Meetings: Interconnection of the Proposed Crowned...

  18. EIS-0461: Notice of Intent to Prepare an Environmental Impact...

    Broader source: Energy.gov (indexed) [DOE]

    Hyde County Wind Energy Center Project, South Dakota Notice of Intent to Prepare an Environmental Impact Statement and to Conduct Scoping Meetings: Interconnection of the Proposed...

  19. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center Congressional Testimony Testimony to Congress by various members of OE. Library Repository of reports and documents; fact sheets; presentations and other documentation from peer review events; and Federal Register notices. Educational Resources Educational material on the generation, transmission, and usage of electricity as well as how the electric grid works and how it needs to be modernized. Reporting Reporting to OE including Electric Disturbance Incidents and

  20. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy for chemical analysis Organizers: Sergey Shilov and James Burgess (Bruker Optics) Local Contact: Brad Lokitz, ORNL Event overview: Join us to learn about Infrared and...

  1. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solids, and thin films. Non-ambient options include controlled temperature and humidity cells, flow cells, and grazing-incidence SAXS for in-plane characterization of thin...

  2. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Newsletter 2010 Welcome Sean Smith CNMS Division Director Editor's Note: On August 1, the CNMS was pleased to welcome its new director, Sean Smith, who joined us from the...

  3. The Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relationship between the probability of negative entropy producing states (i.e., violations of the second law of thermodynamics), the probability of positive entropy...

  4. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alcohol-free facility. The Guest House is a 3 floor, 47 room, 71 bed inn (23 rooms with King beds and 24 rooms with 2 ex-long double beds). All rooms have a mini fridge and...

  5. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Controllable Complex Oxide Heterointerface" - Zhiqun Lin, Georgia Institute of Technology "Crafting Functional Nanocrystals by Capitalizing on Nonlinear Block Copolymers...

  6. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The results of the user survey we conducted are presented in this issue. The UEC elections have just concluded, and our users community has elected a new committee to serve...

  7. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its start, it is clear to me the obvious advantages of becoming an active user, and I hope that you will too. The success of CNMS is strongly dependent on the cutting-edge...

  8. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory in Oak Ridge, Tennessee. The annual user meeting combines oral presentations, poster sessions, workshops and tutorials into a compact program designed...

  9. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solid. Inelastic neutron scattering measurements of Fe1-xCoxSi alloys were combined with quantum mechanics based calculations to show why the alloys exhibit unusual softening as...

  10. Publications | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Zhang, Y., Bahk, J.-H., Lee, J., Birkel, C. S., Snedaker, M. L., Liu, D., Zeng, H., Moskovits, M., Shakouri, A. and Stucky, G. D. (2014), HOT CARRIER FILTERING IN SOLUTION PROCESSED HETEROSTRUCTURES: A PARADIGM FOR IMPROVING THERMOELECTRIC EFFICIENCY. Adv. Mater., 26: 2755-2761. [10.1002/adma.201304419] Huang, Ye; Wen, Wen; Mukherjee, Subhrangsu; Ade, Harald; Kramer, Edward J.; and Bazan, Guillermo C. High-Molecular-Weight Insulating Polymers Can Improve the Performance of Molecular

  11. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a cryo-ultra-microtome, to be transferred into the microscope while being held at liquid nitrogen temperatures. Plans are being made for a two day workshop on operating and...

  12. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE

  13. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NIST), Gaithersburg, MD where I lead a project on Nanoparticle Assembly in Complex Fluids. Before joining NIST, I completed my Ph.D. in 2001 in Polymer Science and...

  14. Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In This Section Why Partnerships? Current Partners Project Updates News & Events Resources Join PARTNERSHIPS PARTNERSHIPS PARTNERSHIPS Why Partnerships? Project Updates News...

  15. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. L. R. Baylor, W. L. Gardner, X. Yang, R. J. Kasica, M. A. Guillorn, B. Blalock, H. Cui, D. K. Hensley, S. Islam, D. H. Lowndes, A. V. Melechko, V. I. Merkulov, D. C. Joy, P. D. Rack, M. L. Simpson, and D. K. Thomas, "Initial Lithography Results from the Digital Electrostatic

  16. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Carbon J. Bernholc, W. Lu, S. M. Nakhmanson, V. Meunier, and M. Buongiorno Nardelli, "Multiscale Simulations of Quantum Structures," p. 18 in Proceedings of DoD 2005 Users Group Conference, IEEE Computer Society (2005). J.-G. Che and H. P. Cheng, "First-Principles

  17. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Alonzo, J., Z. Huang, M. Liu, J. W. Mays, R. G. Toomey, M. D. Dadmun, and S. M. Kilbey, "Looped Polymer Brushes Formed by Self-Assembly of Poly(2-vinylpyridine)-Polystyrene-Poly(2-vinylpyridine) Triblock Copolymers at the Solid-Fluid Interface. Kinetics of Preferential

  18. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Alexander, N. R., K. M. Branch, I. C. Iwueke, S. A. Guelcher, and A. M. Weaver, "Extracellular Matrix Rigidity Promotes Invadopodia Activity," Curr. Biol. 18(17), 1295-9 (2008). Ankner, J. F., X. Tao, C. E. Halbert, J. F. Browning, S. M. Kilbey III, O. A. Swader, M. D.

  19. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Alonzo, J.; Mays, J. W.; Kilbey II, S. M., "Forces of Interaction Between Surfaces Bearing Looped Polymer Brushes in Good Solvent," Soft Matter 5 (9), 1897-1904 (2009). Arenholz, E.; van der Laan, G.; Yang, F.; Kemik, N.; Biegalski, M. D.; Christen, H. M.; Takamura, Y,

  20. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Alvarez, G., "Implementation of the SU(2) Hamiltonian Symmetry for the DMRG Algorithm," Comput. Phys. Commun. 183 (10), 2226-2232 (2012). Alves, F.; Grbovic, D.; Kearney, B.; Karunasiri, G., "Microelectromechanical Systems Bimaterial Terahertz Sensor with Integrated

  1. Organic Photovoltaics | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics As an overarching goal, the CEEM OPV group seeks to understand conjugated polymer and small molecule semiconductor blends that function as the active layer in solar cell devices. The effort brings together a cohesive and mutually complementary set of experts to understand what may appear at first sight to be unrelated phenomena. Indeed, the collective CEEM OPV effort very recently led to the design, processing, structural characterization, theoretical understanding and

  2. People | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Administration/Staff Name E-mail Address Telephone Title Allen, Jane jane [at] iee [dot] ucsb [dot] edu (805) 893-3488 Business Officer Auston, David auston [at] iee [dot] ucsb [dot] edu (805) 893-3376 Executive Director Bowers, John bowers [at] ece [dot] ucsb [dot] edu (805) 893-8447 Director Faculty/Researchers Name E-mail Address Telephone Group(s)* Bazan, Guillermo bazan [at] chem [dot] ucsb [dot] edu (805) 893-5538 OPV Bowers, John bowers [at] ece [dot] ucsb [dot] edu (805) 893-8447

  3. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Reaction with Tin Anodes: Experiment and Theory," ... for High Avidity Microbial Capture," ... Layers of Proton Exchange Membrane Fuel Cells," J. Phys. Chem. ...

  4. Center for Nanophase Materials Sciences (CNMS) - Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESEARCH HIGHLIGHTS Archived highlights Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. In situ microscopy explains why Pt-Co nanoparticles outperform commercial Pt fuel cell catalysts Individual Pt3Co catalyst nanoparticles (NPs) were imaged during in situ thermal annealing from 350-800°C in a scanning transmission electron microscope (STEM) to

  5. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RECENT PUBLICATIONS Jump to Archived publication lists Available soon - Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Agapov, R. L.; Boreyko, J. B.; Briggs, D. P.; Srijanto, B. R.; Retterer, S. T.; Collier, C. P.; Lavrik, N. V., "Asymmetric Wettability of Nanostructures Directs Leidenfrost Droplets," ACS Nano 8 (1), 860-867 (2014).

  6. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Zutic, "Semiconductor Spintronics," Acta Physica Slovaca, 57, 565-907 (342 pages) (2007). ... Zutic, I., J. Fabian, and S. C. Erwin, "Bipolar Spintronics: from Spin injection to ...

  7. Upcoming Events | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Events Events Upcoming Events Past Events

  8. Theory & Computation > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory & Computation In This Section Computation & Simulation Theory & Computation Computation & Simulation...

  9. Resources | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Simulation Techniques 1. MATLAB program for calculating drift mobilities of III-V compound semiconductors using the Rode iterative method. Click here to download Online...

  10. 2012 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 37(7), pp 642-650, 2012 DOI: 10.1557mrs.2012.143 A computationally efficacious free-energy functional for studies of inhomogeneous liquid water R Sundararaman, K ...

  11. Contact Us | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Map to CEEM View Full Size Map For more information, please contact: John Bowers, Director bowers at ece dot ucsb dot edu 805-893-8447 David H. Auston, Executive...

  12. Center for Nanophase Materials Sciences (CNMS) - Nanomaterials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THEORY INSTITUTE (NTI): THEORY, MODELING & SIMULATION CAPABILITIES NTI Computational Cluster The NTI maintains a 12 teraflop Beowulf cluster in support of the capacity-level...

  13. Travel & Hotels | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time and hassle saved will be more than worth it. UC Santa Barbara is an easy 5 minute cab ride from the Santa Barbara Airport, see taxi information below. For Santa Barbara...

  14. Iowa lab gets critical materials research center

    Broader source: Energy.gov [DOE]

    The DOE hub is set to be the largest R&D effort toward alleviating the global shortage of rare earth metals.

  15. Center for Nanophase Materials Sciences (CNMS) - Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    officio seat on the SAC. Proposal Review Committees (PRCs) Evaluation of General User (GU) proposals will be carried out by appropriately constituted Proposal Review Committees....

  16. 2013 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cations (Li+ and Mg2+) K Hernndez-Burgos, GG Rodrguez-Calero, W Zhou, SE Burkhardt, ... energy storage technologies S Conte, GG Rodrguez-Calero, SE Burkhardt, MA Lowe ...

  17. 2014 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Theoretical Studies of Carbonyl-Based Organic Molecules for Energy Storage Applications: The Heteroatom and Substituent Effect K Hernndez-Burgos, SE Burkhardt, GG ...

  18. 2015 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films CR DeBlase, K Hernndez-Burgos, KE Silberstein, GG Rodrguez-Calero, RP Bisbey, HD Abrua, ...

  19. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meet various research needs. The chemical or physical exfoliation of graphite is a straightforward method to produce graphene with least synthesis effort, since it takes advantage...

  20. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alkemade, P.F.A.; Miro, H.; van Veldhoven, E.; Maas, D. J.; Smith, D. A.; Rack, P. D., ... Jo, J. Y.; Chen, P.; Sichel, R. J.; Baek, S. H.; Smith, R. T.; Balke, N.; Kalinin, S. V.; ...

  1. Center for Nanophase Materials Sciences (CNMS) - Microsocpy,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical composition in sample environment. 4-circle X-ray diffraction 4-circle plus translation stage, high temperature, in-plane thin film diffraction. Also texture,...

  2. 2010 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CV Subban, Q Zhou, A Hu, TE Moylan, FT Wagner and FJ DiSalvo Journal of the American Chemical Society, 132(49), pp 17531-17536, 2010 DOI: 10.1021ja1074163 Pt-Decorated PdCo@PdC...

  3. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.; Decker, S. .R; Bu, L. T.; Zhao, X. C.; McCabe, C.; Wohlert, J.; Bergenstrahle, M.; Brady, J. W.; Adney, W. S.; Himmel, M. E.; Crowley, M. F., ":The O-Glycosylated Linker from...

  4. Center for Nanophase Materials Sciences (CNMS) - Macromolecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymerization: Extensive expertise in free radical and controlled radical (ATRP, NMP, RAFT) polymerizations. Ring Opening Polymerization: Expertise in the controlled ring-opening...

  5. News | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News May 15, 2014 Multi-junction Solar Cells to Push CPV Efficiencies Beyond 50% GaN-based solar cells for integration to multi-junction photovoltaics could raise concentrated...

  6. Portsmouth Environmental Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Environmental Information Center Portsmouth Environmental Information Center PORTS EIC.jpg The Portsmouth Environmental Information Center (EIC) provides greater accessibility for residents interested in learning more about DOE's environmental management activities being conducted at the Portsmouth Gaseous Diffusion Plant. A reading room is available for residents who wish to review material at the center, while copies of documents at the EIC can be reproduced free of charge for the

  7. Materials Down Select Decisions Made Within DOE's Chemical Hydrogen...

    Energy Savers [EERE]

    Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of Excellence Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center...

  8. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  9. Bisfuel links - Research centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research centers http://bioenergy.asu.edu/" target="_blank">Center for Bioenergy and Photosynthesis

  10. RW Prepared

    Office of Legacy Management (LM)

    r tz s /r;1 RW Prepared by Oak Ridge Associated Un iversities Prepared for Division of Remedial Action Projects U.S. Department of Energy C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F - S I T E P R O P E R T Y B N I A G A R A F A L L S S T O R A G E S I T E L E W I S T O N , N E W Y O R K J . D . B E R G E R R a d i o l o g i c a l S i t e A s s e s s m e n t p r o g r a m Manpower Education, Research, and Training Division FINAL REPORT M a y 1 9 8 4 COMPREEENSIVE

  11. About Us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Home Mission Statement The mission of this Center is to investigate, at a most fundamental level, the physical and chemical principles that will allow the understanding of how advanced thermoelectric materials function and the design and synthesis of such materials. Focus The Center for Revolutionary Materials for Solid State Energy Conversion will focus on solid state conversion of thermal energy to useful electrical power, both to increase the efficiency of traditional industrial

  12. Templates and Examples - Preparing Test Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    templates and EERE-specific examples you can use to plan, conduct, and report on your usability and analysis activities. Facilitator script - Includes introductory script, pre- and...

  13. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  14. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  10. Deputy Secretary Daniel Poneman's Remarks at the Tokyo American Center --

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As Prepared for Delivery | Department of Energy Daniel Poneman's Remarks at the Tokyo American Center -- As Prepared for Delivery Deputy Secretary Daniel Poneman's Remarks at the Tokyo American Center -- As Prepared for Delivery December 15, 2011 - 12:00pm Addthis Thank you, Jeff, for the introduction. Jeff has recently returned to Japan as the Department of Energy's attaché here. He continues the long tradition of excellent energy officers that have helped to support Japan across a broad

  11. EIS-0430: Taylorville Energy Center in Taylorville, Illinois | Department

    Office of Environmental Management (EM)

    of Energy 0: Taylorville Energy Center in Taylorville, Illinois EIS-0430: Taylorville Energy Center in Taylorville, Illinois Documents Available for Download November 9, 2009 EIS-0430: Notice of Intent to Prepare an Environmental Impact Statement Federal Loan Guarantee to Support Construction and Start-up of the Taylorville Energy Center in Taylorville, Illinois

  12. Danforth Center Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Danforth Center Tour Danforth Center Tour As part of our Events & Topics in Bioenergy and the Environment series, we hosted a tour to the Donald Danforth Plant Science Center to get a behind-the-scenes look at all the fascinating science being done on site.

  13. Preparing for the Quality Control Inspector Certification Exam | Department

    Energy Savers [EERE]

    of Energy Preparing for the Quality Control Inspector Certification Exam Preparing for the Quality Control Inspector Certification Exam This presentation, prepared by the Building Performance Center and the Washington Department of Commerce, identifies how individuals can better prepare for the Home Energy Professional Quality Control Inspector Certification Exam. File preparing_for_the_qci_ exam_4_18_14.pptx More Documents & Publications QCI Exam Test-Taking Tips from Community Housing

  14. DOE - Office of Legacy Management -- Center for Energy and Environmental

    Office of Legacy Management (LM)

    Research - PR 02 Center for Energy and Environmental Research - PR 02 FUSRAP Considered Sites Site: Center for Energy and Environmental Research (PR.02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Documents Related to Center for Energy and Environmental Research

  15. DOE - Office of Legacy Management -- Energy Technology Engineering Center -

    Office of Legacy Management (LM)

    044 Energy Technology Engineering Center - 044 FUSRAP Considered Sites Site: Energy Technology Engineering Center (044) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Energy Technology Engineering Center (ETEC) is a former Department of Energy research laboratory that tested components and systems for liquid metal cooled nuclear

  16. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  17. Center for Functional Nanomaterials (CFN) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Functional Nanomaterials (CFN) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES

  18. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Nanotechnologies (CINT) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  19. NREL: Education Center - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Events Unless otherwise notified, events listed here will be held at the NREL Education Center, 15013 Denver West Parkway, Golden, CO. The...

  20. Child Development Centers

    Broader source: Energy.gov [DOE]

    Headquarters operates National Association for the Education of Young Children (NAEYC) accredited child development centers at its Forrestal and Germantown facilities. Each center provides day care...

  1. NREL: Photovoltaics Research - Materials Applications and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

  2. Multidisciplinary and Multicultural Environment | Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials for oxidation of water to oxygen and hydrogen ions. In the Center for Bio-Inspired Solar Fuel Production at ASU, Amir was involved in a collaborative project on...

  3. Center for Advanced Solar Photophysics | Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Devices within CASP Jeffrey M. Pietryga Center for Advanced Solar Photophysics, Chemistry Division, LANL Wednesday, March 18th, 1:30pm Chemistry Division Auditorium, TA-46, Bld. 535, Rm. 103 Abstract This presentation is the second in a series of informational seminars conducted in conjunction with a call for exploratory projects (http://casp.lanl.gov/call.shtml) issued by the Center for Advanced Solar Photophysics (CASP). Here, I will examine the material and device development

  4. DOE - Office of Legacy Management -- Pittsburgh Energy Technology Center -

    Office of Legacy Management (LM)

    029 Pittsburgh Energy Technology Center - 029 FUSRAP Considered Sites Site: Pittsburgh Energy Technology Center (029 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The former Pittsburgh Energy and Technology Center in Bruceton, Pennsylvania has merged with the Morgantown Energy Technology Center, and in December 1999 became the National

  5. Spectroscopy of semiconductor materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ag 3 VO 4 as a New p-Type Transparent Conducting Material Using systematic design principles, the Center for Inverse Design is exploring a new class of ternary p-type transparent...

  6. First National Technology Center

    Broader source: Energy.gov [DOE]

    Speaker presentation prepared by Dennis Hughes, a lead property manager with First National Buildings Inc.

  7. tracc-comuting-center-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Research and Analysis Computing Center

  8. Preparation of gas selective membranes

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.; Funk, E.W.

    1988-06-14

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  9. Preparation of gas selective membranes

    DOE Patents [OSTI]

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    Gas separation membranes which possess improved characteristics as exemplified by selectivity and flux may be prepared by coating a porous organic polymer support with a solution or emulsion of a plasticizer and an organic polymer, said coating being effected at subatmospheric pressures in order to increase the penetration depth of the coating material.

  10. DOE Prepared for Implementation of Oak Ridge Transuranic Waste Processing

    Office of Environmental Management (EM)

    Center Services | Department of Energy Oak Ridge Transuranic Waste Processing Center Services DOE Prepared for Implementation of Oak Ridge Transuranic Waste Processing Center Services October 9, 2015 - 4:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) awarded a contract on June 18, 2015 to North Wind Solutions, LLC for support services at the Oak Ridge Transuranic Waste Processing Center (TWPC) in Oak

  11. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  12. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  13. News | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Home Full Updated List of Publications Now Available Online! The full publication list of the RMSSEC EFRC is avaialble online at the follwoing DOE website. This list is frequently updated and will provide users with the latest information on Center publications. http://science.energy.gov/bes/efrc/publications/ New ZT record set by RMSSEC researchers - appears in Nature magazine RMSSEC researchers have once again set a new recored in terms of thermoelectric performance of a material. In work

  14. Method for preparing radiopharmaceutical complexes

    DOE Patents [OSTI]

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1989-05-02

    A method for preparing radiopharmaceutical complexes that are substantially free of the reaction materials used to produce the radiopharmaceutical complex is disclosed. The method involves admixing in a suitable first solvent in a container a target seeking ligand or salt or metal adduct thereof, a radionuclide label, and a reducing agent for said radionuclide, thereby forming said radiopharmaceutical complex; coating the interior walls of the container with said pharmaceutical complex; discarding the solvent containing by-products and unreacted starting reaction materials; and removing the radiopharmaceutical complex from said walls by dissolving it in a second solvent, thereby obtaining said radiopharmaceutical complex substantially free of by-products and unreacted starting materials.

  15. ODU establishes a Center for Accelerator Science | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atom-smashing experiments, as well as for materials processing, medical imaging and radiation therapies against cancer. The center will receive personnel and funding support from...

  16. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  17. 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (SLAC) | Department of Energy Stanford Linear Accelerator Center Site Office (SLAC) 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24 months, and the planned cost and schedule for each NEPA review identified. PDF icon 2010 Annual Planning Summary for

  18. Green Jobs Training Center

    Broader source: Energy.gov [DOE]

    Provides an overview of the training available through the Green Jobs Training Center including certification courses and the apprenticeship program.

  19. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  20. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Technology First National Technology Center Center Dennis Hughes FMA, RPA, P.E. Lead Property Manager, First National Buildings, Inc. 2 First National Technology First National Technology Center Center First National of Nebraska, Inc. - $12 Billion Assets - 5,400 employees - 6.6 million customers in 50 states - 60 banking locations Nebraska, Colorado, Kansas, South Dakota,Texas, Illinois - Largest in house merchant processor in United States Top ten VISA® and MasterCard® processor Top

  1. ARM - External Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govExternal Data Center External Data Center Order Data Description of External Data Streams Data Viewers and Plots (selected data sets) XDC Documentation External Data Center The ARM External Data Center (XDC) at Brookhaven National Laboratory identifies sources and acquires data, called "external data", to augment the data being generated within the program. The scientific need and the priorities for acquiring, processing and archiving the external data-streams are established by the

  2. Data center cooling method

    DOE Patents [OSTI]

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  3. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http://www.anl.gov/cnm/group/electron-microscopy-center. UChicago Argonne LLC Privacy & Security Notice

  4. Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement

    Office of Environmental Management (EM)

    on Rare-Earth Research | Department of Energy Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research June 15, 2011 - 7:07pm Addthis The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of

  5. Deputy Secretary Poneman's Remarks at a Conference Hosted by Center for

    Energy Savers [EERE]

    Transatlantic Relations & the Atlantic Council Conference - As Prepared for Delivery | Department of Energy a Conference Hosted by Center for Transatlantic Relations & the Atlantic Council Conference - As Prepared for Delivery Deputy Secretary Poneman's Remarks at a Conference Hosted by Center for Transatlantic Relations & the Atlantic Council Conference - As Prepared for Delivery May 31, 2011 - 6:07pm Addthis Deputy Secretary of Energy Daniel Poneman Remarks - As Prepared for

  6. Combinatorial sythesis of organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  7. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  9. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  11. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet lab is located in Rm 109 of the Far Experimental Hall near the MEC, CXI, and XCS hutches. It conveniently serves all LCLS hutches and is available for final stage sample preparation. Due to space limitations, certain types of activities may be restricted and all access must be scheduled in advance. User lab bench

  12. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  13. Westin Convention Center Hotel, Pittsburgh, PA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for Harsh Service Conditions Workshop, November 19 - 20, 2015 Westin Convention Center Hotel, Pittsburgh, PA Topic - Materials for Harsh Service Conditions Page 1 of 4 11/12/2015 Overall Purpose * To gather input from stakeholders on the vision of future opportunities and technical challenges facing development and scale-up of materials, process, and equipment that can make step-change improvements of system performance in harsh service conditions. The Advanced Manufacturing Office

  14. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  15. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  16. Carnegie Endowment for International Peace: Moscow Center | Department of

    Energy Savers [EERE]

    Energy Carnegie Endowment for International Peace: Moscow Center Carnegie Endowment for International Peace: Moscow Center March 16, 2006 - 11:53am Addthis Remarks as Prepared for Secretary Bodman Thank you . . . I'm pleased to be here. I'd like to thank the Carnegie Endowment's Moscow Center for hosting this event. Here in Moscow - as in Washington and around the world - the Carnegie Endowment has distinguished itself as a relevant player in nearly all policy debates related to

  17. What Is the Alternative Fuels and Advance Vehicles Data Center? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    Document gives an overview of the material and tools on the Alternative Fuels and Advanced Vehicles Data Center Web site.

  18. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  19. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  20. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  1. Preparation of Core-Shell Coordination Molecular Assemblies via...

    Office of Scientific and Technical Information (OSTI)

    Title: Preparation of Core-Shell Coordination Molecular Assemblies via the Enrichment of ... Subject: membrane, carbon capture, materials and chemistry by design, synthesis (novel ...

  2. PNNL: Center for Molecular Electrocatalysis - Glossary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glossary catalyst: a material, such as a metal or synthesized metal complex, that speeds a reaction without being consumed by it. The reaction occurs at the catalyst's active site. electrocatalyst: molecules that speed the conversion of electrical energy into chemical bonds in fuels, such as hydrogen or ammonia. These catalysts can also speed the breaking of chemical bonds to release energy. EFRC: See Energy Frontier Research Center Energy Frontier Research Center: a Department of Energy funded

  3. Immobilized lipid-bilayer materials

    DOE Patents [OSTI]

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  4. Relativistic Guiding Center Equations

    SciTech Connect (OSTI)

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  5. NREL: Education Center - Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Programs NREL's Education Center in Golden, Colorado, offers a variety of program topics and experiences for students and adult groups addressing renewable energy and energy efficiency innovations and introducing the work of NREL. Monthly tours are also offered to give visitors an overview of our sustainable campus and featured buildings. Printable Version Education Center Home Hours, Directions & Contact Information Group Programs Students Adults Campus

  6. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nonlinear Studies Center for Nonlinear Studies We conduct and support basic scientific research in nonlinear and complex systems phenomena and promote their use in applied research programs. Contact CNLS Office (505) 667-1444 Email Leader Robert Ecke (505) 667-6733 Email Conducting and supporting basic scientific research in nonlinear and complex systems phenomena The Center for Nonlinear Studies (CNLS) at Los Alamos chooses a small number (two to three) focus topics periodically and

  7. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responds to radiological incident August 27, 2012 The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The

  8. WIPP - Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Joint Information Center is located at 4021 National Parks Highway in Carlsbad, N.M. Joint Information Center In the unlikely event of an emergency, the WIPP Joint Information Center (JIC) serves as a central control point to coordinate multi-agency efforts to issue timely and accurate information to the public, news media and project employees. Emergency contact information: The public If the JIC is activated, members of the general public, including family members, may call (575) 234-7380

  9. LANSCE | Lujan Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Center at LANSCE LANSCE » Lujan Center LANSCE Lujan Home Apply for Beamtime Scientists & Expertise Lujan Instruments User Resources Industrial Users Publications Training Office Science Thrust Areas Science Highlights Data Management Plan Contacts Lujan Center Leader Gus Sinnis 505.667.6069 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Victor Fanelli 505.667.8755 User Program Administration

  10. Call issued for Lujan Neutron Scattering Center proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call issued for Lujan Neutron Scattering Center proposals Call issued for Lujan Neutron Scattering Center proposals The Lujan Neutron Scattering Center invites proposals addressing science of NNSA and LANL programmatic interest for the 2014 run cycle. May 20, 2014 Don Brown works at the SMARTS (Spectrometer for Materials Research at Temperature and Stress) instrument. Don Brown works at the SMARTS (Spectrometer for Materials Research at Temperature and Stress) instrument. This call for proposals

  11. DOE - Office of Legacy Management -- Stanford Linear Accelerator Center -

    Office of Legacy Management (LM)

    005 Stanford Linear Accelerator Center - 005 FUSRAP Considered Sites Site: Stanford Linear Accelerator Center (005) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Stanford Linear Accelerator Center was established in 1962 as a research facility for high energy particle physics. The Environmental Management mission at this site is to

  12. APS Conference Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines intellectual stimulation with natural beauty. The Conference Center is within walking distance of the Argonne Guest House, a full-service, professionally-managed hotel and...

  13. Center of Innovation- Energy

    Broader source: Energy.gov [DOE]

    Jill Stuckey, Director, Center fof Innovation - Energy, presents on Georgia's workforce development opportunities for the Biomass/Clean Cities States Webinar.

  14. NREL: Education Center - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to reply. Your name: Your email address: Your message: Send Message Printable Version Education Center Home Hours, Directions & Contact Information Group Programs A Model of...

  15. Game Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Game Center September 2, 2010 It's a feature of Thomas Jefferson National Accelerator Laboratory that it has at least two other names, including Jefferson Lab and JLab. Similarly, parts of our organization go by different names - the Theory group, the Theory Department, the Theory Center and the Center for Theoretical and Computational Physics. But a new name might be "Game Center." Let me explain. Large-scale computing has been a major deal for the Department of Energy for many years.

  16. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  17. ARM - News Center Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CenterNews Center Archive Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes107 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog Events

  18. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 1513 University Ave 1035 Mechanical Engineering building natalie.rudolph@wisc.edu Dielectric Analysis Dipl.-Phys. Alexander Chaloupka Fraunhofer ICT Branch...

  19. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal ...docsfy06osti39181.pdf Electricity rates (residential, commercial, ...

  20. ASU EFRC - Center researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center researchers Chad Simmons Academic Professional Gerdenis Kodis Research Assistant Professor Raimund Fromme Faculty Research Associate Yuichi Terazono Faculty Research Associate

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Energy Strategy Development The New Hampshire Office of Energy Planning, in consultation with the New Hampshire Energy Advisory Council, prepared a 10-year energy strategy...

  2. Company Name: Preparer Name: Company Address: Preparer Title:

    Gasoline and Diesel Fuel Update (EIA)

    Company Name: Preparer Name: Company Address: Preparer Title: Company City: Preparer Company Name: Company State: Preparer Address: Company Zip Code: Preparer City: Preparer State: Parent Company Name: Preparer Zip Code: Parent Company Street Address: Preparer Phone #: Parent Company City: Preparer Fax #: Parent Company State: Preparer E-mail Address: Parent Company Zip Code: Supervisor Name: Supervisor Title: Supervisor Company Name: Supervisor Address: Supervisor City: Supervisor State:

  3. Center for Advanced Solar Photophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for Exploratory Projects CASP invites LANL researchers to propose new ideas, materials, methods or theories to support and expand the goals and capabilities of the Center. Accepted proposals will be funded in the range of $20K - $40K for an initial exploratory period of up to 9 months. Successful seed projects may then be further considered for future longer-term funding. All LANL researchers may apply. Students and post-docs are strongly encouraged to respond to this call. Information on

  4. Fabrication of brittle materials -- current status

    SciTech Connect (OSTI)

    Scattergood, R.O.

    1988-12-01

    The research initiatives in the area of precision fabrication will be continued in the upcoming year. Three students, T. Bifano (PhD), P. Blake (PhD) and E. Smith (MS), finished their research programs in the last year. Sections 13 and 14 will summarize the essential results from the work of the Materials Engineering students Blake and Smith. Further details will be presented in forthcoming publications that are now in preparation. The results from Bifano`s thesis have been published in adequate detail and need not be summarized further. Three new students, S. Blackley (MS), H. Paul (PhD), and S. Smith (PhD) have joined the program and will continue the research efforts in precision fabrication. The programs for these students will be outlined in Sections 15 and 16. Because of the success of the earlier work in establishing new process models and experimental techniques for the study of diamond turning and diamond grinding, the new programs will, in part, build upon the earlier work. This is especially true for investigations concerned with brittle materials. The basic understanding of material response of nominally brittle materials during machining or grinding operations remains as a challenge. The precision fabrication of brittle materials will continue as an area of emphasis for the Precision Engineering Center.

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) UIUC Workshop Acknowledgements To be included as an LMI-EFRC publication, paper acknowledgements must be carefully worded. Please use the following as a guideline in preparing the "Acknowledgements" section in your manuscripts that include the LMI-EFRC as a source of support. For work solely funded by the LMI-EFRC At minimum, please use this wording: "This work was supported by the DOE 'Light-Material Interactions in Energy Conversion' Energy Frontier

  6. EIS-0505: Notice of Intent to Prepare Environmental Impact Statement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: Notice of Intent to Prepare Environmental Impact Statement EIS-0505: Notice of Intent to Prepare Environmental Impact Statement Vantage to Pomona Heights 230 kV Transmission Line Project, Yakima, Grant, Benton and Kittitas Counties, Washington The Bureau of Land Management (BLM) announced its intent to prepare, with U.S. Army Yakima Training Center as a joint lead agency, an EIS that would evaluate the potential environmental impacts of a proposal to construct a

  7. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect (OSTI)

    Berscheid, Alan P.

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  8. Energy efficient data centers

    SciTech Connect (OSTI)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case study findings, and participation in data center industry meetings and workshops. Industry partners enthusiastically provided valuable insight into current practice, and helped to identify areas where additional public interest research could lead to significant efficiency improvement. This helped to define and prioritize the research agenda. The interaction involved industry representatives with expertise in all aspects of data center facilities, including specialized facility infrastructure systems and computing equipment. In addition to the input obtained through industry workshops, LBNL's participation in a three-day, comprehensive design ''charrette'' hosted by the Rocky Mountain Institute (RMI) yielded a number of innovative ideas for future research.

  9. DOE to establish Energy Frontier Research Center at NREL - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL DOE to establish Energy Frontier Research Center at NREL Center to study new solar materials by combining predictive theory with experiment May 27, 2009 The U. S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will be home to a new multi-million-dollar Energy Frontier Research Center (EFRC) established by the DOE Office of Science. NREL's Center for Inverse Design will pursue advanced scientific research on material discovery for energy. It is one of 46 Centers

  10. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities

  11. NREL Announces New Center Directors to lead R&D, Analysis Efforts - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Announces New Center Directors to lead R&D, Analysis Efforts September 29, 2014 The Energy Department's National Renewable Energy Laboratory recently named leaders in the renewable energy field as center directors. Paul Basore has been named Director of the Materials Applications and Performance Center; Dave Mooney as Director of the Strategic Energy Analysis Center; Nancy Haegel as Director of NREL's Materials Science Center; Jao van de Lagemaat as Director of

  12. Howard Baker Center for Public Policy Nuclear Power Conference | Department

    Energy Savers [EERE]

    of Energy Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Ambassador Baker for that warm introduction and for all the good work you and the University of Tennessee are sponsoring through the Baker Center for Public Policy. I also want to thank Representative Hamilton and the Wilson Center for hosting this event on such an important

  13. Dry pulverized solid material pump

    DOE Patents [OSTI]

    Meyer, John W. (Palo Alto, CA); Bonin, John H. (Sunnyvale, CA); Daniel, Jr., Arnold D. (Alameda, CA)

    1984-07-31

    Apparatus is shown for substantially increasing the feed rate of pulverized material into a pressurized container. The apparatus includes a rotor that is mounted internal to the pressurized container. The pulverized material is fed into an annular chamber defined by the center of the rotor. A plurality of impellers are mounted within the annular chamber for imparting torque to the pulverized material.

  14. Center for Inverse Design: Research Thrusts and Subtasks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Thrusts and Subtasks The Center for Inverse Design creates an unprecedented coupling of theory and experiment to realize the thesis that inverse design can revolutionize the way materials science will be done in the future. Inverse design entails the theory-driven search of materials with given functionality, and discovery of hitherto unreported materials with relevant functionality. We have three thrusts, with six subtasks, that map directly into the overall Center objectives.

  15. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 115

  16. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 244

  17. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 373

  18. Theory Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Jefferson Lab Theory Center Theoretical research at Jefferson Lab is critical to the lab's efforts to fulfill its scientific mission. A D D I T I O N A L L I N K S: Research Seminars Recent Talks Positions Student Fellowship JPAC top-right bottom-left-corner bottom-right-corner Theory Center The Center for Theoretical and Computational Physics pursues a broad program of research in support of the physics being studied at Jefferson Lab and related facilities around the world. The Theory

  19. ARM - News Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes107 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog Events Employment Research

  20. Materials Down Select Decisions Made Within DOE's Chemical Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Center of Excellence | Department of Energy Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of Excellence Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of Excellence Technical report describing DOE's Chemical Hydrogen Storage Center of Excellence investigation into various hydrogen storage materials and progress towards meeting DOE's hydrogen storage targets. The report presents a review of the material status as

  1. Preparation of Non Oxide Ceramics in Thermal Plasma

    SciTech Connect (OSTI)

    Singh, S. K.

    2008-10-23

    Titanium carbonitride (TiCN) and ultrafine SiC have been prepared in extended arc thermal plasma reactors using graphite electrodes. The prepared materials have been characterized by a variety of analytical methods. It has been possible to produce the materials in a very short time period.

  2. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  3. Alternative Fuels Data Center: Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on Google Bookmark Alternative Fuels Data Center: Biodiesel on Delicious Rank Alternative Fuels Data Center: Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Biodiesel on

  4. Alternative Fuels Data Center: Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Contacts to someone by E-mail Share Alternative Fuels Data Center: Contacts on Facebook Tweet about Alternative Fuels Data Center: Contacts on Twitter Bookmark Alternative Fuels Data Center: Contacts on Google Bookmark Alternative Fuels Data Center: Contacts on Delicious Rank Alternative Fuels Data Center: Contacts on Digg Find More places to share Alternative Fuels Data Center: Contacts on AddThis.com...

  5. Alternative Fuels Data Center: Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center:

  6. Alternative Fuels Data Center: Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More

  7. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  8. Alternative Fuels Data Center: Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on

  9. Alternative Fuels Data Center: Tools

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools to someone by E-mail Share Alternative Fuels Data Center: Tools on Facebook Tweet about Alternative Fuels Data Center: Tools on Twitter Bookmark Alternative Fuels Data Center: Tools on Google Bookmark Alternative Fuels Data Center: Tools on Delicious Rank Alternative Fuels Data Center: Tools on Digg Find More places to share Alternative Fuels Data Center: Tools on AddThis.com... Tools The Alternative Fuels Data Center offers a large collection of helpful tools. These calculators,

  10. Alternative Fuels Data Center: Widgets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Widgets to someone by E-mail Share Alternative Fuels Data Center: Widgets on Facebook Tweet about Alternative Fuels Data Center: Widgets on Twitter Bookmark Alternative Fuels Data Center: Widgets on Google Bookmark Alternative Fuels Data Center: Widgets on Delicious Rank Alternative Fuels Data Center: Widgets on Digg Find More places to share Alternative Fuels Data Center: Widgets on AddThis.com... Widgets

  11. Alternative Fuels Data Center: Glossary

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Glossary to someone by E-mail Share Alternative Fuels Data Center: Glossary on Facebook Tweet about Alternative Fuels Data Center: Glossary on Twitter Bookmark Alternative Fuels Data Center: Glossary on Google Bookmark Alternative Fuels Data Center: Glossary on Delicious Rank Alternative Fuels Data Center: Glossary on Digg Find More places to share Alternative Fuels Data Center: Glossary on AddThis.com...

  12. Alternative Fuels Data Center: Webmaster

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Webmaster to someone by E-mail Share Alternative Fuels Data Center: Webmaster on Facebook Tweet about Alternative Fuels Data Center: Webmaster on Twitter Bookmark Alternative Fuels Data Center: Webmaster on Google Bookmark Alternative Fuels Data Center: Webmaster on Delicious Rank Alternative Fuels Data Center: Webmaster on Digg Find More places to share Alternative Fuels Data Center: Webmaster on

  13. BPA Visitor Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and is located at BPA headquarters in Portland, Oregon at 905 NE 11th Ave. (Public Transit @ the Lloyd Center MAX Station). Many of the publications available in the Visitor...

  14. Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  15. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Lujan Publications: 2009 - 2012 2012 | 2011 | 2010 | 2009 Publication acknowledgement Lujan Center monitors the number of papers published as a result of the use of our facilities. The Lujan Center's sponsoring agencies requires users to publish results from their non proprietary research. Authorship of publications based on research from user facilities should reflect the normal considerations of recognizing collaborations. Proprietary users are not required to publish. Users are

  16. Data center cooling system

    SciTech Connect (OSTI)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  17. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase deployment of biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive maps and analysis of all relevant biomass data with the purpose of growing the domestic bioenergy market for biofuels and biopower

  18. Silicon Materials and Devices (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its silicon materials and devices research. The scope and core competencies and capabilities are discussed.

  19. Materials for Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    launches Nano Design Works to support materials commercialization and accelerate the translation of research into products TMR Blog New Argonne centers focus on nanotech, EV energy...

  20. Silicon Materials and Devices (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Silicon Materials and Devices that includes scope, core competencies and capabilities, and contact/web information.