Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

2

High Performance Computing (HPC) Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HPC Division High Performance Computing (HPC) Division Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of...

3

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

4

Chemical Sciences Division | Advanced Materials |ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

5

Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Research Groups in the Materials Science Division Condensed Matter Theory Carries out theoretical work on superconductivity, electronic structure and magnetism. Emerging Materials Emphasizes an integrated materials synthesis and science program that focuses on correlated electron transition metal oxides, chalcogenides with enhanced thermoelectric performance, and novel superconductors, including pnictides and cuprates. Energy Conversion and Storage The energy conversion and storage group focuses on charge-transfer processes, as well as the chemical environment in the vicinity of electrode surfaces. Magnetic Films Research to develop, characterize and investigate the properties of magnetic thin films and superlattices. Molecular Materials Synthesis and characterization of molecular materials that have novel

6

Materials Science Division - Argonne National Laboratories, Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

7

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

8

Nuclear Engineering Division Irradiated Materials Laboratory  

E-Print Network [OSTI]

Nuclear Engineering Division Irradiated Materials Laboratory The Irradiated Materials Laboratory (IML) in Argonne's Nuclear Engineering Division is used to conduct research on the behavior. #12;C O N TA C T > Dr. Michael C. Billone | 630-252-7146 | billone@anl.gov | Nuclear Engineering

Kemner, Ken

9

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network [OSTI]

..........................................................................................................................................2! 1.1 SAFETY CULTURE .......................................................4! 3. SAFETY RESPONSIBILITY, AUTHORITY, ACCOUNTABILITY AND A JUST CULTURE.........5! 3Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by

10

First Name Last Name Title Company Email David Alman Director-Material Performance Division National Energy Technology Laboratory david.alman@netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Collaborative National Conference - June 10, 2013 - Attendees Technologies Collaborative National Conference - June 10, 2013 - Attendees First Name Last Name Title Company Email David Alman Director-Material Performance Division National Energy Technology Laboratory david.alman@netl.doe.gov Tim Avampato Program Manager Eaton timjavampato@eaton.com Sharon Beermann-Curtin Program Officer Office of Naval Research sharon.beermanncurti@navy.mil Seth Blumsack Associate Professor Pennsylvania State University sab51@psu.edu Phil Bolin Chief Engineer Power Systems Group Mitsubishi Electric Power Products, Inc. phil.bolin@meppi.com Dushan Boroyevich Professor. Co-Director Virginia Tech - CPES mhawthor@vt.edu Steve Bossart Senior Analyst National Energy Technology Laboratory steven.bossart@netl.doe.gov Gary Bowers Commercial-Industrial Director S&C Electric Company gary.bowers@sandc.com

11

Fusion & Materials for Nuclear Systems Division | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fusion & Materials for Nuclear Systems SHARE Fusion & Materials for Nuclear Systems Division Fusion holds the promise of significant power with no carbon emissions and minimal...

12

Los Alamos Lab: Materials Physics & Applications Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ADEPS Materials Physics and Applications, MPA ADEPS Materials Physics and Applications, MPA About Us Organization Jobs Materials Physics & Applications Home Center for Integrated Nanotechnologies Superconductivity Technology Center Condensed Matter and Magnet Science Sensors & Electrochemical Devices Materials Chemistry CONTACTS Division Leader Antoinette Taylor Deputy Division Leader David Watkins Point of Contact Susan Duran 505-665-1131 Materials Physics and Applications Division serves as the Laboratory's focal point for fundamental materials physics and materials chemistry, provides world-class user facilities, unique experimental capabilities, and the scientific talent and infrastructure to facilitate understanding and control of materials properties, and develops and apply materials-based solutions

13

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

14

Materials Science Division Project Safety Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Miller, Electron Microscopes Miller, Electron Microscopes Project No. 20006.3 Materials Science Division Project Safety Review Safety Analysis Form (03/08) Date of Submission March 12, 2010 FWP No.: 58405 Project Title User Experimental Work with Electron Microscopes in the Electron Microscopy Center This Safety Analysis Form (SAF) supersedes previous versions of 20006 and its modifications. Is this a (check one) new submission renewal supplemental modification X Principal Investigator(s) Dean Miller Other Participants (excluding administrative support personnel) EMC staff and EMC users (Attach participant signature sheet) Project dates: Start: March 2010 End: Open-ended This form is to be completed for all new investigations or experimental projects that are conducted in MSD laboratories, and for all ongoing such projects that undergo significant change from their original

15

Iver Anderson, Division of Materials Sciences and Engineering...  

Broader source: Energy.gov (indexed) [DOE]

and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver Anderson, Division of Materials Sciences and...

16

Irradiation Performance - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Testing > Materials Testing > Irradiation Performance Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Irradiated Materials Overview Light Water Reactor Materials Other Current Activities Future Directions Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Irradiation Performance Bookmark and Share The activities of the Irradiation Performance Section (IPS) are aimed at determining and assessing normal-operation and accident behavior of neutron-irradiated material throughout the life cycle of the materials. The conditions of interest are normal in-reactor operation, design-basis accidents, intermediate storage in pools and dry casks, and ultimate

17

Michael Norman - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael Norman Michael Norman Michael Norman Division Director Argonne Distinguished Fellow Bldg. 223, S-235 (630) 252-3518 (630) 252-8042 FAX This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Quick Links Publications Invited Conference Talks Recent Preprints and Publications Education Ph.D. Physics, Tulane University, 1983 B.S. Physics, Louisiana State University - Shreveport, 1979 (Summa Cum Laude) Honors LSUS Circle of Excellence Award (2008) University of Chicago Distinguished Performance Award (1999) Fellow of the American Physical Society (1995) Professional Experiences 2011-present: Director, Materials Science Division 2009-present: Principal Investigator, Center for Emergent Superconductivity 2008-present: Argonne Distinguished Fellow

18

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nxrs Sun, 12 Jan 2014 01:06:54 nxrs Sun, 12 Jan 2014 01:06:54 +0000 Joomla! 1.6 - Open Source Content Management en-gb Bogdan Dabrowski http://www.msd.anl.gov/dabrowski http://www.msd.anl.gov/dabrowski lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 19:32:54 +0000 Fanny M. Simoes http://www.msd.anl.gov/division-personnel/personnel/personnel-nxrs/fanny-m-simoes http://www.msd.anl.gov/division-personnel/personnel/personnel-nxrs/fanny-m-simoes mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 19:54:06 +0000 Gian P. Felcher http://www.msd.anl.gov/felcher http://www.msd.anl.gov/felcher lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 19:31:01 +0000 Jared Allred http://www.msd.anl.gov/division-personnel/personnel/personnel-nxrs/jared-allred http://www.msd.anl.gov/division-personnel/personnel/personnel-nxrs/jared-allred

19

64 _____________________________________Math & Computational Sciences Division High Performance Computing and Visualization  

E-Print Network [OSTI]

64 _____________________________________Math & Computational Sciences Division High Performance Computing and Visualization Research and Development in Visual Analysis Judith Devaney Terrence Griffin John

Perkins, Richard A.

20

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FRM FRM For the Public Awards and Honors Highlights Publications U.S. Program Planning Visiting ORNL For Researchers Profiles Program Manager Program Management ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles Accessing LAMDA Facility Our People Program Manager, Program Management, Facilities Find People ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

administrative-staff Sun, 12 Jan administrative-staff Sun, 12 Jan 2014 01:06:50 +0000 Joomla! 1.6 - Open Source Content Management en-gb Catherine Beles http://www.msd.anl.gov/division-personnel/personnel/administrative-staff/catherine-beles http://www.msd.anl.gov/division-personnel/personnel/administrative-staff/catherine-beles tkendall@anl.gov (Tim Kendall) Tue, 29 Mar 2011 14:20:22 +0000 George Beranek http://www.msd.anl.gov/beranek http://www.msd.anl.gov/beranek tkendall@anl.gov (Tim Kendall) Tue, 29 Mar 2011 14:20:22 +0000 George W. Crabtree http://www.msd.anl.gov/crabtree http://www.msd.anl.gov/crabtree msditadmin@anl.gov (Administrator) Thu, 31 Mar 2011 23:12:00 +0000 Janice M. Coble http://www.msd.anl.gov/coble http://www.msd.anl.gov/coble mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 21:51:12 +0000 Julie Emery

22

Performance Metrics and Budget Division (HC-51) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Performance Metrics and Budget Division (HC-51) Performance Metrics and Budget Division (HC-51) Performance Metrics and Budget Division (HC-51) MISSION: The mission of the Performance Metrics and Budget Division (HC-51) is to support the effective and efficient implementation of the Department of Energy's human capital initiatives and functions through the strategic integration of corporate human capital performance metrics and the budget of the Office of the Chief Human Capital Officer (HC). FUNCTIONS: Human capital performance measurement and strategic functions at the DOE and interagency levels include: Provides analytical support and strategic advice to internal and external HC stakeholders on the appropriate and effective use of performance metrics as a key to effective strategic human capital management.

23

David Hinks - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > David Hinks EM > David Hinks David Hinks Materials Scientist Bldg. 223, C-229 Phone: 630-252-5471 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography David G. Hinks is a Senior Chemist in the Materials Science Division. He joined Argonne after receiving his PhD from Oregon State University in 1968. He received the DOE-BES Materials Sciences Award for Outstanding Scientific Achievement in 1982 and 1987, and the 1987 Laboratory Director's Award and ANL Pacesetter Award. He received the University of Chicago Distinguished Performance Award in 1989, and is a top-100 ISI Highly Cited Researcher for 1981-1999. Selected Publications "Evidence for Intrinsic Impurities in the High-Temperature Superconductor Bi2Sr2CaCu2O8-d from 17O Nuclear Magnetic Resonance", B. Chen, S. Mukhopadhyay, W.P. Halperin, P. Guptasarma, and D.G. Hinks, Phys. Rev. B 77, 052508 (2008) [doi]

24

Seminars - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seminars Seminars Materials Science 2013 Seminars December December 3 - Joseph Sklenar Northwestern University Ferromagnetic Resonance and Spin Wave Studies in Permalloy Nanostructures and YIG Films December 4 - Andrey Varlamov CNR-SPIN, Viale del Politecnico Tunnel-Fluctuoscopy: Fluctuation Induced Low-Bias Anomaly December 4 - Inti Sodemann University of Texas, Austin Broken SU(4) Symmetry and The Fractional Quantum Hall Effect in Graphene December 6 - Anh Ngo University of Wisconsin-Madison Mechanisms for oxygen surface exchange at the solid oxide fuel cell cathodes: a case study on the surface of La1-xSrxCoO3-δ December 12 - Rebecca Sichel-Tissot Drexel University Synchrotron X-Ray Diffraction from Perovskite Thin Films: Probing the Effects of Microscopic Structure on Macroscopic Properties

25

Colloquium 2010 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Materials Science 2010 Colloquium Archive 21-January-2010 Prof. Cheol Seong Hwang, Seol National University Identification and formation mechanism of conducting nano-filaments in TiO2 resistive switching thin film 28-January-2010 Dr. Haifeng Ding, Nanjing University 11-February-2010 Dr. John Schlueter, Materials Science Division Molecular Architectures for Control of Electron Spin and Its Transport, 16-April-2010 Prof. Albrecht Jander, Oregon State University Nanostructured Magentic Materails for Inductors 29-April-2010 Prof. Aldo Romero, CINVESTAV-Unidad Queretaro, Mexico 06-May-2010 Dr. Alex Zayak, UC Berkeley/Molecular Foundry, LBNL 20-May-2010 Dr. Matthew J. Highland, Materials Science Division 27-May-2010 Dr. Mark Stiles, National Institute of Standards and Technology

26

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTG MTG For the Public News & Highlights Publications Seminars Workshops Our People Group Leader, Staff Members Find People Fact Sheet Energy Frontier Research Center Center for Defect Physics (EFRC) Related Groups Computational Materials Science Group (CSMD) Nanomaterials Theory Institute (CNMS) Single Crystal Diffraction Group (NScD) University of Tennesee (MSE) ORNL Materials in Extreme Environments Other Useful Links American Physical Society DOE Office of Science Institute of Physics Office of Basic Energy Sciences National Energy Research Scientific Computing Center The Minerals, Metals & Materials Society U.S. Department of Energy Advanced Materials Group In The News PSD Directorate › MST DivisionMaterials Theory Group The Materials Theory Group (MTG) of the Materials Science and Technology

27

A. A. Abrikosov Materials Science Division Argonne National Moratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developments in the Theory of HTSC Developments in the Theory of HTSC A. A. Abrikosov Materials Science Division Argonne National Moratory Argonne, IL 60439 Distribution: 1-2. M. J. Masek 3. B. D. Dunlap 4. G. W. Crabtree 5 . A. A. Abrikosov 6 - Editorial Office 7. Authors September, 1994 This work is supported by the Division of Materials Sciences, Office of Basic Energy Sciences of DOE, under contract No. W-31- 109-ENG-38, DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or as sun^^ any legal liabili- ty or responsibility for the accuracy, completenes, or usefulness of any information, appa-

28

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Selected Publications Our People Contacts by Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment ShaRE User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Correlated Electron Materials Group In The News PSD Directorate › MST Division › Correlated Electron Materials Group CdSiP2Tin Flux The ultimate aim of our research is to attain a better understanding of complex materials, particularly those that are important to clean energy technologies. For example, we are currently investigating the relationship between magnetism and superconductivity, new mechanisms for enhancing

29

SC Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Surface Chemistry Research Overview The Surface Chemistry Group is a part of the Materials Science Division at Argonne National Laboratory. The focus of this group's work is the control surface species, composition, and structure at length scales that range from atomic level to micrometers. The group's expertise includes time-of-flight ion mass spectrometry, tunable laser spectroscopy, ion sputtering, laser-surface interactions, vapor phase deposition, electrical and electrochemical characterization, and device assembly. We have numerous collaborations within Argonne as well as with chemists, physicists, and materials scientists around the world. Research Directed Energy Interactions with Surfaces Nanostructured Thin Films Interfaces for Solar Energy Conversion

30

Qing'an Li - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Qing'an Li EM > Qing'an Li Qing'an Li Scientific Associate Sr Bldg. 223, A-113 Phone: 630-252-3996 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Qing'an Li was an Assistant Research Scientist at Institute of Physics, Chinese Academy of Sciences after receiving his doctorate in July 1993 working on superconducting electronics. He was a postdoctoral fellow at University of Tokyo, Japan working on superconducting electronics in 1996. In 1997, he became a Visiting Scientist (postdoc) at the Materials Science Division of the Argonne National Laboratory, and started to study the transport properties of colossal magnetoresistance (CMR) materials in the Emerging Materials group. At the Institute of Physics, Chinese Academy of Sciences, Li was an Associated Research Scientist in 2000, a Research scientist, and Professor in 2001, working on magnetic and transport properties of transition metal oxides. In 2006, he visited the Materials Science Division of the Argonne National Laboratory as a Visiting Scientist, working on the transport properties of intermetallic compounds of rare-earth and transition metals, transition metal oxides, etc. and became a Scientific Associate Sr. in Emerging Materials group in 2009.

31

Aronson-021612 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aronson-021612 Aronson-021612 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Igor Aronson Materials Science Division Argonne National Laboratory TITLE: "Active Colloids: From Self-Assembled Swimmers to Simple Robots" DATE: Thursday, May 17, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: Self-assembly, a natural tendency of simple building blocks to organize into complex architectures is a unique opportunity for contemporary materials science. In order to support structural complexity and functional diversity, self-assembled materials must actively consume energy and "live" out of equilibrium. We study a variety of simple active colloidal systems: from a suspension of swimming bacteria to a

32

Hong-060911 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hong-060911 Hong-060911 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Seungbum Hong Argonne National Laboratory Materials Science Division TITLE: "Visualization of Ferroelectric Domain Behavior Using Atomic Force Microscopy" DATE: Thursday, June 9, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: Ferroelectric materials possess spontaneous polarization - net electric dipole moment per unit volume, of which magnitude and direction determine the surface charge density, and of which direction can be switched by electric field larger than a threshold called coercive field. As polycrystalline materials have grains with different crystallographic orientations and various grain boundaries dividing those grains,

33

Liu-082913 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liu-082913 Liu-082913 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Yaohua Liu Materials Science Division, ANL TITLE: Interface Magnetism in Heteroepitaxial Complex Oxide Films DATE: Thursday, August 29, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Ray Osborn Refreshments will be served at 10:45 a.m. ABSTRACT: Complex oxide materials host many interesting collective phenomena in condensed matter physics, such as high-temperature superconductivity, various forms of magnetism and ferroelectricity, as well as phase competitions between these states. Recently, it has become possible to create heteroepitaxial complex oxide films with atomic precision, and such structures are of keen interest because modified bonding at the interfaces can give rise to fundamentally new phenomena and

34

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CST CST For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Capabilities Current Research Materials Our People Group Leader, Staff Members Find People Fact Sheet Group Poster Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Corrosion Science and Technology Group Corrosion Kinetics in simulated high-temperature/high-pressure environments

35

Colloquium 2011 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Materials Science 2011 Colloquium Archive January 27th Dr. John Mitchell Argonne National Laboratory What in the World is M2D2? *** A part of the "Future States" lecture series *** February 10th Prof. Kieron Burke UC Davis How Density Functional Theory Will Revolutionize Modern Materials Science February 17th Prof. Noel Elman MIT The Next Generation of Biomedical Microdevices February 24th Dr. James Rondinelli Argonne National Laboratory Designing Improper Ferroelectrics in Ultra-short Perovskite Superlattices March 31st Joel Moore UC Berkeley New Topologically Ordered Phases of Condensed Matter April 18th Dr. Dieter Wolf Materials Science Division From Radiation Damage to Radiation-induced Self-organization: A Paradigm for the Design of Novel Materialsfor Nuclear Energy?

36

Matveev-032212 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Matveev-032212 Matveev-032212 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Konstantin Matveev Materials Science Division Argonne National Laboratory TITLE: "Equilibration of Electrons in Quantum Wires" DATE: Thursday, March 22, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: I will discuss transport of electrons through one-dimensional conductors. Experiments show that at low temperatures conductance of such quantum wires takes the universal value of 2e2/h. Conductance quantization is well understood theoretically and is expected to persist as long as the temperature remains small compared to the Fermi energy. On the other hand, numerous experiments show that conductance of quantum wires acquires

37

Helmut Claus - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Helmut Claus EM > Helmut Claus Helmut Claus STA Senior Physicist Bldg. 223, A-133 Phone: 630-252-4030 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Helmut Claus is a Senior Scientist STA in the Material Sciences Division at Argonne National Laboratory. He received his PhD summa cum laude from the Technische Hochschule Karlsruhe, Germany, in 1965. He is Professor Emeritus in the Department of Physics, University of Illinois at Chicago. His research areas include magnetic and superconducting properties of materials. Selected Publications Phase diagram of Ba1-xKxFe2As2, S. Avci, O. Chmaissem,D.-Y. Chung, S. Rosenkranz, E. A. Goremychkin, J. P. Castellan, I. S. Todorov, J. A. Schlueter, H. Claus, A. Daoud-Aladine, D. D. Khalyavin, M. G. Kanatzidis, R. Osborn, Phys. Rev. B 85, 184507 (2012) [doi]

38

Stan-020912 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stan-020912 Stan-020912 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Marius Stan Nuclear Engineering Division (NE), ANL Computational Institute, University of Chicago TITLE: "Computational Microscopy" DATE: Thursday, February 9, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Mike Norman Refreshments will be served at 10:45 a.m. ABSTRACT: Interesting and important properties and phenomena occur in materials at various scales, from angstroms to meters and from femtoseconds to days or even years. Scientists have developed experimental, theoretical, and computational tools to study specific properties and phenomena within rather narrow length and time intervals, as imposed by the limitations of individual techniques. This approach is often referred to as "science at

39

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TFN TFN For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Core Compentencies Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Thin Films and Nanostructures Group Complex oxide thin films and heterostructures are important for not only fundamental physics, but also a wide range of exciting opportunities in

40

Auciello-011212 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Auciello-011212 Auciello-011212 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Orlando Auciello Materials Science Division Argonne National Laboratory TITLE: "Update on the Science and Technology of Multifunctional Oxides and Ultrananocrystalline Diamond Films and Applications to a New Generation of Multifunctional Devices and Systems " DATE: Thursday, January 12, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: A new generation of multifunctional oxides and the well known ultrananocrystalline diamond (UNCD) thin films are yielding new physics and providing the bases for a new generation of micro/nano-electronics and biomedical devices and biosystems that will make a major impact in micro/nano-electronics and in the health and way of life of people

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hoffmann-011912 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hoffmann-011912 Hoffmann-011912 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Axel Hoffmann Materials Science Division Argonne National Laboratory TITLE: "Spin Hall Effects: A Pathway towards Charge-Free Spintronics" DATE: Thursday, January 19, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Sam Bader Refreshments will be served at 10:45 a.m. ABSTRACT: As semiconducting electronic devices are miniaturized to ever-smaller dimensions, power dissipation becomes an ever-increasing problem due to leakage charge currents. Spintronics may help addressing some of these issues by utilizing besides the charge degree of freedom also the electron spin. Towards this end, pure spin currents [1] may eliminate some of the limitations due to charge currents and their concomitant power

42

Kim-062311 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

62311 62311 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Bum Joon Kim Argonne National Laboratory Materials Science Division TITLE: "Topological and correlated electron physics in 5d transition-metal oxide iridates" DATE: Thursday, June 23, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: The recent discovery of the topological insulator revealed that relativistic spin-orbit coupling can provide a novel route to realization of a new quantum phase of matter. The physics behind this surprising finding is understood at the level of one-electron picture without electron-electron interactions, or correlation effects, which have been the main driver for researches on transition-metal oxides in the past few

43

Dieter M. Gruen - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dieter M. Gruen Dieter M. Gruen Dieter M. Gruen Argonne Distinguished Fellow Bldg. 200, D-165 Phone: 630-252-3513 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Dieter M. Gruen, an internationally respected innovator, is a senior scientist in the Materials Science Division at Argonne National Laboratory. He received B.S. (1944, cum laude) and M.S. (1947) degrees in chemistry from Northwestern University and the Ph.D. (1951) in chemical physics from the University of Chicago. Dr. Gruen has received a number of awards and recognitions. Among them are the: Materials Research Society 2000 Medal for the synthesis and characterization of ultrananocrystalline diamond films. Energy 100 A ward for the 308 nm excimer laser system for cardiovascular applications as one of the top scientific contributions in the Department of Energy's history.

44

Curtiss-111711 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Curtiss-111711 Curtiss-111711 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Larry Curtiss Argonne National Laboratory Materials Science Division TITLE: "Recent Developments in Li-O2 Chemistry for Li-Air Batteries" DATE: Thursday, November 17, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Anand Bhattacharya Refreshments will be served at 10:45 a.m. ABSTRACT: Nonaqueous Li-air batteries have a much superior theoretical gravimetric energy density compared to conventional Li-ion batteries, and thus have the potential for making long-range electric vehicles a reality. Two major problems that have limited the successful development of Li-air batteries to date have been related to severe difficulties in attaining reversibility and low charge overpotentials. This seminar will cover recent

45

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ABD ABD For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Research Projects Our People Group Leader, Staff Members, Facilities Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Alloy Behavior and Design Group The principal technical contact for discussing potential projects in the Alloy Behavior and Design Group is Dr. Easo P. George, Group Leader.

46

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STG STG For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Sponsored Research Programs Our People Contacts by Group Leader, Staff Members Find People Related Cooperative Research and Development Agreement Work for Others Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Scattering and Thermophysics Group The Scattering and Thermophysics Group aims to be a national leader in materials characterization using diffraction and thermophysical property measurement methods. The diffraction portion of the Group utilizes laboratory x-ray, synchrotron x-ray, and neutron diffraction facilties to solve problems from phase stability to residual stress and texture. The thermography and thermophysical properties of the Group has exceptional

47

Qingbiao Zhao - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Qingbiao Zhao EM > Qingbiao Zhao Qingbiao Zhao Qingbiao Zhao Postdoctoral Appointee Bldg. 223, A-110 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Qingbiao joined the Materials Science Division of Argonne National Laboratory in September 2011, to study crystal growth of iridates by flux approaches, and investigate their electronic and magnetic properties. Qingbiao received his BS degree in Chemistry from University of Science and Technology of China in 2006. As an undergraduate researcher he studied synthesis of nickel nanomaterials for novel morphology and higher magnetic coercivity. In 2007 he came to the USA to pursue a PhD degree with Dr. Hanno zur Loye in the University of South Carolina. His thesis focused on single crystal growth of Fe, Co containing oxides and magnetic property studies, particularly the interconnection among phase transitions, magnetic moment change, and valence disproportionation in Co-containing one-dimensional crystal structures.

48

Bum Joon Kim - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Bum Joon Kim EM > Bum Joon Kim Bum Joon Kim Assistant Physicist Bldg. 223, A-129 Phone: 630-252-5347 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Bumjoon ("BJ") Kim is a staff scientist in the Material Science Division. He received B. A. from Korea Advanced Institute of Science and Technology in 1999 and Ph. D. from Seoul National University in 2005. His thesis involved angle-resolved photoemission (ARPES) studies of transition-metal oxides. Before joining MSD in 2010, he held postdoctoral position in University of Michigan and visiting assistant professor in University of Tokyo. His current research focuses on 5d transition-metal oxides, in which strong spin-orbit coupling and correlation effects conspire to realize novel phases of matter. His research program encompasses single crystal growth and characterizations, elastic and inelastic x-ray scattering, and ARPES.

49

Alex Martinson - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SC > Alex Martinson SC > Alex Martinson Alex Martinson Alex Martinson Principal Investigator, Assistant Chemist Bldg. 200,D-169 Phone: 630-252-7520 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education Ph.D. Physical Chemistry, Northwestern University - 2008 B.A., Chemistry and Mathematics, Luther College - 2003 Professional Experience Assistant Chemist, Argonne National Laboratory - 2009-present Director's Postdoctoral Fellow, Argonne National Laboratory - 2008-2009 Publications have received over 1600 citations with an h-index of 17 (see Google Scholar Page). Author and inventor on 5 patents and pending applications. Research Interests Alex Martinson is an Assistant Chemist at ANL in the Materials Science Division, Surface Chemistry Group. The aim of his research is to elucidate and exploit a multitude of technologically relevant optoelectronic processes that occur at the interface between conductors, semiconductors, and ionic conductors. The research tests the limits of what is possible in materials synthesis and device fabrication at length scales approaching the atomic level. Present work is intended to advance the science of solar energy conversion through the design, modeling, and fabrication of nanoscale photovoltaic (PV) and solar fuels platforms. Disruptive designs are enabled through the precise spatial and chemical control afforded by atomic layer deposition. These studies explore the intersection of earth-abundant materials, photoelectrochemistry, and thin film PV in order to study their synergies and reveal the shortcomings of our control over energy and matter.

50

Daniel Bugaris - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Daniel Bugaris EM > Daniel Bugaris Daniel E. Bugaris Daniel E. Bugaris Postdoctoral Appointee Bldg. 223, A-125 Phone: 630-252-5525 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Daniel joined the Materials Science Division at Argonne National Laboratory in March 2012. His research focuses on the exploration of superconducting behavior in pnictide and intermetallic systems exhibiting competing interactions, as well as in narrow gap semiconductors. The aim of this program is to rationally design a homologous series of phases with tunable building blocks to enable the generation of specific compositions with predictable structures. Materials of interest will possess a high degree of structural and compositional freedom and chemical/electronic complexity with which to investigate (i) density-wave instabilities (spin and charge), and their suppression through chemical doping in order to generate superconductivity that may emerge from phase competition, and (ii) how narrow energy band gaps and facile doping properties could lead to a superconducting state. Daniel received his BS in Chemistry from the University of Notre Dame in 2005 and his PhD in Chemistry from Northwestern University in 2009, advised by Prof. James A. Ibers. His thesis research involved the solid-state chemistry of uranium halides and chalcogenides, with an emphasis on their crystal growth, structures, and physical properties. Daniel joined the research group of Prof. Hans-Conrad zur Loye at the University of South Carolina in October 2009 as a post-doctoral fellow, where he worked on the structural characterization of perovskite oxides via neutron diffraction in order to better understand their potential application as electrode materials in solid oxide fuel cells.

51

Momentive Performance Materials Distillation Intercharger  

E-Print Network [OSTI]

Presenter: Nicki (Collins) Boucher Project Team: T. Baisley, C. Beers, R. Cameron, K. Holman, T. Kotkoskie, K. Norris Momentive Performance Materials Inc. Waterford, NY May 23, 2013 Industrial Energy Technology Conference ACC Responsible... Care? Energy Efficiency Program Momentive Performance Materials Distillation Interchanger ESL-IE-13-05-20 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Copyright 2013 Momentive Performance...

Boucher, N.; Baisley, T.; Beers, C.; Cameron, R.; Holman, K.; Kotkoskie, T.; Norris, K.

2013-01-01T23:59:59.000Z

52

NREL: Photovoltaics Research - Materials Applications and Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photovoltaics Research Printable Version Materials Applications & Performance Staff The materials applications & performance staff members at the National Renewable Energy...

53

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RSG RSG For Public Research Support Services Environmental, Safety, and Health Facilities Operations Management Information Technology Nuclear & Radiological Control Procurement & Engineering Services Quality Assurance Services Training & Support Services For Researchers Profiles Group Leader AGR Program POC Avid+ Coordinator BUS Chemical Recycling and Used Oil Coordinator Business Cards Coordinator Chemical Hygiene Officer Computer Hardware Issues Technician Craft Work POC Credit Card/PR Coordinator Division Nuclear Criticality Safety Manager (AGR Program) Division Training Officer Division Safety Officer Electrical Safety POC Emergency Preparedness Coordinator Engineering Services Coordinator Environmental Protection Officers ESH Checklists for Procured Services POC

54

Kenneth Gray - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Kenneth Gray EM > Kenneth Gray Kenneth Gray Group Leader, Sr. Physicist Bldg. 223, A-125 Phone: 630-252-9595 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Kenneth E. Gray is a Senior Scientist in the Materials Science Division. His experimental thesis involved tunneling studies of superconductors and non-equilibrium effects. He joined Argonne's superconductivity group as a post-doc, and in 1972 became a staff member specializing in non-equilibrium effects in superconductors. He is presently the group leader of the Emerging Materials Group. He was the Director for the NATO Advanced Study Institute "Nonequilibrium Superconductivity, Phonons and Kapitza Boundaries" Maratea, Italy, August 25-September 5, 1980 and Chairman of the "1992 Applied Superconductivity Conference" Chicago, Illinois, August 23-28, 1992. He was the Thin Film Research Area Coordinator for the NSF Science and Technology Center for Superconductivity (University of Illinois, Urbana), Feb. 1989-Jan. 1992. He edited Nonequilibrium Superconductivity, Phonons and Kapitza Boundaries, (Plenum Publishing Corporation, 1981). He holds 5 patents, and Research and Development Magazine recognized two of his inventions as among the 100 most significant technical products of their year. These are the Superconducting Tunnel Junction Transistor in 1979 and the 3He/4He Dilution Refrigerator (with P. Roach) in 1988. He received the 1989 Significant Implication for Department of Energy Related Technologies in Solid State Physics - "Thin-Film Superconducting Device Concepts and Development". He has co-authored 250 publications (5300 citations) and is known for research collaborations on flux dynamics and point-contact tunneling in high-temperature superconductors and transport measurements in the highly anisotropic colossal magnetoresistive layered manganites. He is a Senior Scientist and the Group Leader for the Emerging Materials Group at Argonne. His current research interests include tunneling in exotic superconductors, phase diagrams of layered manganites and non-equilibrium effects in complex electronic oxides. He was also an integral part of the recent development of a compact solid-state source for THz radiation.

55

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured Thin Films Nanostructured Thin Films Theme: The Nanostructured Thin Films program is focused on the synthesis, characterization, and modeling of dimensionally constrained materials systems in which a nano-scale trait of the material (e.g. grain size, film thickness, interfacial boundary, etc.) fundamentally determines its structure-property relationships. The work performed in this program falls primarily into two areas: (1) studies of thin-film growth phenomena and film properties, with emphasis on diamond and multicomponent oxides; and (2) first principles quantum-mechanical calculations that model thin film growth processes and electronic structure. Frequently, the experimental and theoretical efforts are coordinated on common scientific issues in a particular material system. Current research is devoted to (a) growth

56

Dempsey-012114 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dempsey-012114 Dempsey-012114 MATERIALS SCIENCE SEMINAR SPEAKER: Nora Dempsey Institut Néel - CNRS, 
France TITLE: High performance hard magnetic films: from model systems to micro-system applications DATE: Monday, January 14, 2013 TIME: 11:00 a.m. PLACE: Building 223 / S-105 HOST: Jidong Samuel Jiang ABSTRACT: High performance hard magnetic materials are of growing importance for clean energy technologies (hybrid electric vehicles, gearless wind turbines...) and have great potential for use in micro-systems. In this talk I will report on the preparation and characterisation of NdFeB thick films. On the one hand these films are used as model systems to study magnetization reversal, with the aim of guiding the development of heavy rare earth free magnets. On the other, they are

57

News Archive - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Archive News Archive News & Events Archive January 2, 2013 Chaotic 'spin vortices' could lead to new computer memories November 30, 2012 Department of Energy awards up to $120 million for battery hub to Argonne-led group October 11, 2012 Quantum spins mimic refrigerator magnets August 16, 2012 Drs. Nenad Markovic and Vojislav Stamenkovic received Distinguished Performance Award August 6, 2012 Nestor Zaluzec Receives Honor June 29, 2012 Dieter Gruen retires 65 years May 14, 2012 Argonne, Universities partner to design advanced materials April 23, 2012 Magnetic Modes March 15, 2012 Gian Felcher receives 2012 Sustained Research Prize of the Neutron Scattering Society of America December 14, 2011 7 things you may not know about catalysis December 8, 2011 Making molecular hydrogen more efficiently

58

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

of Materials in In-situ Oil Shale Retorting Environments,"of Materials in In-Situ Oil Shale Environments," 8thCorrosion of Metals in Oil Shale Retorting Environments,"

Authors, Various

2010-01-01T23:59:59.000Z

59

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

of Materials in In-situ Oil Shale Retorting Environments,"of Materials in In-Situ Oil Shale Environments," 8thUtilization of Metals in Oil Shale Retort Components Alan V.

Authors, Various

2010-01-01T23:59:59.000Z

60

Michael Zach - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SM > Michael Zach SM > Michael Zach Michael Zach Resident Associate Bldg. 223,C-133 Phone: (715)346-3179 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Quick Links Selected Publications Education M.S., Ph.D., Chemistry under Prof. Reginald Penner, University of California, Irvine; 2002 B.S., Chemistry (ACS) and Chemistry with Polymer option, University of Wisconsin - Stevens Point; Graduation with honors, 1997 Professional Experience Glenn Seaborg Postdoctoral Research Fellow, Argonne National Laboratory Miller Postdoctoral Research Fellow, Miller Institute University of California, Berkeley, 2002 Joint appointment to NASA-Ames Research Center, 2003 Awards Elected to the American Association for the Advancement of Science, Pacific Division (AAAS-PD) Board of Directors as Council Member at Large. Term 2002 -2005

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

Principal Investigators James Evans Douglas FuerstenauCells. Professor James lV. Evans of the Materials Scienceinitiated by Professor James W. Evans in fiscal year 1979.

Authors, Various

2011-01-01T23:59:59.000Z

62

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network [OSTI]

573 Solar Energy Systems MS 779/ME 779 Solid State Ionics and Electrochemistry D. Nanomaterials MS 530 Introduction to Solid State Physics Course/Semester/Grade ______________________________ * Both courses listed Characterization of Materials MS 784 Topics in Materials Science ME 502 Intellectual Assets: Creation, Protection

Lin, Xi

63

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http://www.msd.anl.gov http://www.msd.anl.gov 2014-01-12T01:06:27+00:00 Joomla! 1.6 - Open Source Content Management Dynamics of Active Self-Assemble Materials 2011-05-13T17:17:28+00:00 2011-05-13T17:17:28+00:00 http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials Ken Krajniak krajniak@anl.gov Self-assembly, a natural tendency of simple building blocks to organize into complex architectures is a unique opportunity for materials science. In-depth understanding of self-assembly paves the way for design of tailored smart materials for emerging energy technologies. However, self-assembled materials pose a formidable challenge: they are intrinsically complex, with an often hierarchical organization occurring on many nested length and time scales. This program

64

Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

PACKAGING AND TRANSFER PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials Regulations

65

Pellin-051211 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pellin-051211 Pellin-051211 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Michael Pellin Argonne National Laboratory Physical Sciences & Engineering TITLE: "Atomic layer Deposition for Energy Materials" DATE: Thursday, May 12, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Alex Martinson Refreshments will be served at 10:45 a.m. ABSTRACT: As materials synthesis evolves from building exquisite materials for ever smaller electronics circuits to addressing the nation¹s energy needs (with consequent massive scale), new relatively inexpensive synthetic methods and techniques need to be developed. Among the challenges is the need to find scalable crystalline film synthesis methods. If solar photovoltaics, for instance, are to contribute significantly to electrical

66

NXRS Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Neutron and X-Ray Scattering Research Vision Recent advances in neutron and x-ray scattering instrumentation at major DOE facilities such as the Spallation Neutron Source and Advanced Photon Source provide unprecedented insights into complex phenomena in bulk and interfacial materials. The vision of our group is to harness the complementarity of neutrons and x-rays to study how materials respond on a range of length and time scales to phase competition, so that we can learn to control emergent behavior and generate functional properties in materials that impact energy use. Mission Our mission is to use neutrons and x-rays to investigate the structure and dynamics of bulk and interfacial materials with properties that are useful for energy applications, such as superconductivity, magnetism and

67

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

Stainless Steel in Coal Gasification Environments, LBL-733Z.of Materials Used in Coal Gasification Plants, AGA- ERDA-MPCon ~hterials for the Gasification of Coal, presented to the

Authors, Various

2011-01-01T23:59:59.000Z

68

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

of Fe-Cr-Ni Alloys in Coal Gasifier Environments," OxidationStructural ~latorials in Coal Gasifier Atmospheres," UCLA,char parti- cles in coal gasifiers consist of materials with

Authors, Various

2013-01-01T23:59:59.000Z

69

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

will also be conducted in shale oil product material. 1979Publications and Reports d. Oil Shale Retort Components A.in Simulated In-Situ Oil Shale Retorts Research Plans for

Authors, Various

2013-01-01T23:59:59.000Z

70

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

and total Immer sion 1n shale oil on the corrosion of steel1013 steel. Exposure to shale oil at 300 C for 100 hoursof Materials in In-situ Oil Shale Retorting Environments,"

Authors, Various

2010-01-01T23:59:59.000Z

71

Research and Devlopment Associate Center for Nanophase Materials Sciences Division  

E-Print Network [OSTI]

: i) selective conversion of biomass-derived compounds; ii) rechargeable metal-air batteries as next. · Heterogeneous catalysis and electrocatalysis on metals, metal compounds, and nano- materials. · Current focuses

Pennycook, Steve

72

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Studies" in High Performance Batteries for Electric-VehicleElectrodes for Metal-Air Batteries 6. Oxygen Reduction vdthfor Advanced Storage Batteries Lutgard C. De Jonghe,

Searcy, Alan W.

2010-01-01T23:59:59.000Z

73

McHenry-121913 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

McHenry-121913 McHenry-121913 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Michael McHenry IEEE Distinguished Lecturer, Carnegie Mellon University TITLE: Nanocomposite Magnets for Power Electronic Applications DATE: Thursday, Dec. 19, 2013 TIME: 11:00 am PLACE: ESB 241, Conference Room D172 HOST: Olle Heinonen ABSTRACT: Recent USDOE workshops highlight the need for advanced soft magnetic materials leveraged in novel designs of power electronic components and systems for power conditioning and grid integration. Similarly soft magnetic materials figure prominently in applications in electric vehicles and high torque motors. Dramatic weight and size reductions are possible in such applications. Nanocomposites also hold potential for applications in active magneocaloric cooling of such devices.

74

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http://www.msd.anl.gov/research-areas Sun, 12 Jan 2014 01:06:27 +0000 Joomla! 1.6 - Open Source Content Management en-gb Dynamics of Active Self-Assemble Materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials krajniak@anl.gov (Ken Krajniak) Fri, 13 May 2011 17:17:28 +0000 Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) BiFeO3 Nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures

75

NREL: Photovoltaics Research - Materials Applications and Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

76

EM Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Emerging Materials Recent Highlights Overview: This program emphasizes materials synthesis and processing, advanced characterizations and studies of materials properties, all aimed at a fundamental understanding of materials that have potential for applications. Currently the program concentrates on complex oxides with two connected goals: Understanding the complex interrelationship between charge and spin degrees of freedom and with crystal structure Understanding the proximity interactions which occur when an oxide shares a common boundary with a metal or other oxides. Recent highlights: Quantum Spins Mimic Refrigerator Magnets quantum spins October 11, 2012 The behavior of magnetic moments in metal oxides such as iridates is dominated by strong spin-orbit coupling effects. In layered compounds such as Sr3Ir2O7, the direction of these moments is controlled at the quantum level by dipolar interactions that are akin to those of classical bar magnets. From a functional standpoint, our findings suggest novel routes toward engineered structures that allow manipulation of moments without magnetic fields, a general strategy for future low-power electronics platforms.

77

Materials and Chemical Sciences Division annual report 1989  

SciTech Connect (OSTI)

This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

Not Available

1990-07-01T23:59:59.000Z

78

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

10. P. L. Richards, The Josephson Junction as a Detector ofPerformance Linnts of a Josephson Junction Wrixer, submittedUsing a Point Contact Josephson Junction, J. App1. Phys. *4.

Authors, Various

2011-01-01T23:59:59.000Z

79

Kim-011713 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11713 11713 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Sang Ouk Kim Institute for Basic Science (IBS) Department of Materials Science and Engineering, KAIST TITLE: Directed Molecular Assembly of Soft Nanomaterials DATE: Thursday, January 17, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Seungbum Hong Refreshments will be served at 10:45 a.m. ABSTRACT: Establishing a robust and versatile nanofabrication process has been a central issue in nanotechnology. Molecular self-assembly has several advantages over other methods such that molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction

80

Guo-Ren Bai - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guo-Ren Bai Guo-Ren Bai Guo-Ren Bai Bldg. 212, C-230 Phone: 630-252-4966 Fax: 630-252-4798 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education Department of Science and Engineering, Harbin Institute of Technology, China - 1968 Employment Interfacial Material Group, Materials Sciences, Argonne National Laboratory 1989-present Shanghai Institute of Metallurgy, hinese Academy of Science 1970-1998 Expertise Hands-on experience on thin film synthesis techniques such as CVD, MOCVD, PECVD, FECVD Hands-on experience on synthesis of nano-crystal films and nano-particles of metal oxides by MOCVD and MOCVC. Proficiency in optimization of process variables to obtain desirable phase, crystallinity, morphology, orientation, compositions, and grain size for a variety of metal oxide films and nano-particles

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Kotliar-081811 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kotliar-081811 Kotliar-081811 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Gabriel Kotliar Department of Physics and Astronomy Rutgers University TITLE: "Strongly Correlated Materials: the Dawn of the Theoretical Spectroscopy Era?" DATE: Thursday, August 18, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Mike Norman Refreshments will be served at 10:45 a.m. ABSTRACT: Strongly correlated electron systems are one of the most fertile areas for surprising discoveries such as high temperature superconductivity, colossal magnetoresistance, volume collapses and metal to insulator transitions. For theorist, correlated electron systems, pose one of the greatest non perturbative challenges in physics. For many years, and for good reasons, strongly correlated solids were thought to be off

82

Paul Fuoss - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRS > Paul Fuoss SRS > Paul Fuoss Paul Fuoss Group Leader, Senior Physicist Bldg. 223, A-213 Phone: 630-252-3289 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Paul H. Fuoss received his B.S. in Physics from the South Dakota School of Mines and Technology in 1975 and a Ph.D. in Materials Science from Stanford University in 1980. While a graduate student, he created x-ray anomalous scattering techniques to study the short and long-range structure in amorphous materials. Dr. Fuoss joined the staff of Bell Laboratories in 1980 and pioneered the use of x-ray scattering techniques to study surface structures, amorphous thin films and crystal growth. He was a co-leader of the AT&T Bell Labs beamline development effort at the NSLS, was actively

83

Hla-092613 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hla-092613 Hla-092613 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Saw Wai Hla Center for Nanoscale Materials, ANL & Ohio University TITLE: Frontiers of STM Manipulations: Imaging Atomic Spin to Operating Nanomachines DATE: Thursday, Sept. 26, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Seungbum Hong Refreshments will be served at 10:45 a.m. ABSTRACT:We combine a variety of scanning tunneling microscope (STM) manipulation schemes with tunneling spectroscopy techniques to image and manipulate properties of atoms and molecules on surfaces. This talk will highlight recent advances achieved by manipulation at atomic and molecular scale [1-4]. In spintronic area, we will present imaging and manipulation of atomic spin using a spin-polarized STM tip [1], and the spin fiction

84

SRS Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Synchrotron Radiation Studies Research Overview This program develops new capabilities using the nation's synchrotron radiation facilities and applies them to cutting-edge problems in materials science. In particular, we aim to play a leading scientific role at the Advanced Photon Source (APS). X-ray scattering studies take advantage of the high brilliance APS x-ray source for in-situ and time-resolved studies of surface and thin film structure. These include investigations of synthesis processes such as vapor-phase epitaxy and electrochemical deposition, and studies of electric-field-driven ferroelectric domain dynamics. High-resolution angle-resolved photoemission is used to understand the nature of superconductivity in the hi-Tc materials. New thrusts focus on exploring science enabled by future facilities such as

85

Chang-032813 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chang-032813 Chang-032813 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Clarence Chang Kavli Institute for Cosmological Physics TITLE: Superconducting technology and the South Pole Telescope: connecting Material Sciences with Cosmology DATE: Thursday, March 28, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Ray Osborn Refreshments will be served at 10:45 a.m. ABSTRACT: Advances in superconducting Transition Edge Sensors (TES) are enabling new measurements relevant for understanding the origins, composition, and evolution of the Universe. I will discuss how TES technology is opening new windows into cosmology through ground-breaking measurements of the Cosmic Microwave Background (CMB) radiation with the South Pole Telescope (SPT), a 10-m mm-wave observatory at the geographic

86

Seungbum Hong - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IM > Seungbum Hong IM > Seungbum Hong Seungbum Hong Seungbum Hong Materials Scientist Bldg. 212, C-220 Phone: 630-252-1366 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Quick Links Publications Education B.S. (summa cum laude, 1994) in Ceramic, M. S. (1996) and Ph. D. (2000) in Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea Professional Experience Member of Research Staff & Project Leader, Samsung Advanced Institute of Technology, Korea, 2000-2007 Post-doctoral researcher, Swiss Federal Institute of Technology, Lausanne, Switzerland, 2000-2001 Research Supervision 16 students and post-docs supervised since 2000 Selected Awards Rising Researcher Fellowship, Korea Research Foundation, 1998-1999

87

Gray-030812 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gray-030812 Gray-030812 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Stephen K. Gray Center for Nanoscale Materials (CNM) Argonne National Laboratory TITLE: "Quantum Dot - Surface Plasmon Interactions" DATE: Thursday, March 8, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: I discuss theoretical predictions of how quantum dots (QDs) interact with plasmonic systems (e.g. metal nanoparticles). The QD is treated either as a dipole emitter, as an effective, polarizable medium, or with a quantum mechanical density matrix approach. The combined system is modeled with computational electrodynamics. The presence of the quantum dot can significantly alter the optical response of the system. I show how the

88

Law-066812 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Law-066812 Law-066812 MATERIALS SCIENCE COLLOQUIUM SPEAKER: PROF. MATT LAW University of California - Irvine TITLE: "Developing Earth Abundant and Quantum Dot Materials for Thin-Film Photovoltaics" DATE: Thursday, June 28, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: This talk describes projects in our group to develop thin-film photovoltaics based on earth-abundant iron pyrite (FeS2) active layers and PbSe quantum dot (QD) solids. I will first introduce the promise and challenge of pyrite, describe solution- and gas-phase syntheses of pyrite films, and present preliminary electrical characterization of pyrite layers and device stacks. Then I will switch gears to highlight several projects

89

Hwang-050312 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hwang-050312 Hwang-050312 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Prof. Harold Y. Hwang Stanford University and SLAC National Accelerator Laboratory TITLE: "Emergent Phenomena at Oxide Interfaces" DATE: Thursday, May 3, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: Complex oxides are fascinating systems which host a vast array of unique phenomena, such as high temperature (and unconventional) superconductivity, 'colossal' magnetoresistance, all forms of magnetism and ferroelectricity, as well as (quantum) phase transitions and couplings between these states. In recent years, there has been a mini-revolution in the ability to grow thin film heterostructures of these materials with atomic precision. With this level of control, the electrostatic boundary

90

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPNM SPNM For the Public Awards Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Capabilities Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive | Honors and Awards Archive Lynn Boatner, Joanne Ramey, Hu Longmire, research featured in the 2013 Allied High Tech Products, Inc. Calendar in the form of a color micrograph for the month of March, 2013.

91

Bauer-082312 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bauer-082312 Bauer-082312 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Prof. Gerrit E. W. Bauer Institute of Materials Research Tohoku University, Japan Kavli Institute of NanoScience, TU Delft, The Netherlands TITLE: IEEE Magnetics Society Distinguished Lecture "Spin Caloritronics" DATE: Thursday, August 23, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Axel Hoffmann Refreshments will be served at 10:45 a.m. ABSTRACT: The spin degree of freedom of the electron affects not only charge, but also heat and thermoelectric transport, leading to new effects in small structures that are studied in the field of spin caloritronics (from calor, the Latin word for heat). This lecture addresses the basic physics of spin caloritronics. Starting with an introduction into thermoelectrics and Onsager's reciprocity

92

Seshadri-120513 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seshadri-120513 Seshadri-120513 MATERIALS SCIENCE COLLOQUIUM This colloquium has been canceled and will be rescheduled at a later time. SPEAKER: Prof. Ram Seshadri University of California, Santa Barbara TITLE: Solid-state Chemistry in Energy Efficiency: Lighting Phosphors and Thermoelectric Materials DATE: Thursday, December 5, 2013 TIME: 11:00 am PLACE: Bldg. 241, Conference Room D172 HOST: Ray Osborn ABSTRACT: In the first part, I will address phosphors that play a key role in the now almost-mature solid-state white-lighting technologies based on combining a III-nitride-based near-UV or blue solid-state light source with down-conversion to longer wavelengths.[1] Almost all widely used phosphors comprise a crystalline oxide, nitride, or oxynitride host that is appropriately doped with either Ce3+ or Eu2+. Optical excitation into these

93

Sandeman-012113 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandeman-012113 Sandeman-012113 JOINT PSE/MSD SEMINAR SPEAKER: Karl G. Sandeman Department of Physics TITLE: "(Tri)critical Phase Transitions in Magnetocaloric Materials " DATE: Monday, January 21, 2013 TIME: 3:00 p.m. PLACE: Building 223 / S-105 HOST: Seungbum Hong ABSTRACT: Much of today's research in so-called functional materials is driven by the quest for technologies that use energy more efficiently and reduce our impact on the environment. Such pressures drive a renewed investigation of some of the most fundamental properties of condensed matter. Solid-state phase transitions are one good example. In order to find an energy efficient solution to the problem of reducing our use of HFCs in a variety of cooling applications, a new field has been defined.

94

Bredas-121511 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bredas-121511 Bredas-121511 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Jean-Luc Bredas Georgia Tech TITLE: "Electronic and Optical Processes in Organic Semiconductors: The Case of Organic Solar Cells" DATE: Thursday, December 15, 2011 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: John Schlueter Refreshments will be served at 10:45 a.m. ABSTRACT: Our objective in this presentation is two-fold. First, we provide a general overview of the optical and electronic processes that take place in a solid-state organic solar cell, which we define as a cell in which the semiconducting materials between the electrodes are organic, be them polymers, oligomers, or small molecules. We briefly turn our attention to: (i) optical absorption and exciton formation; (ii) exciton migration to the

95

Rodichev-121213 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rodichev-121213 Rodichev-121213 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dimitri Rodichev LPEM, France TITLE: Confinement in Superconductors: A Scanning Tunneling Spectroscopy Study DATE: Thursday, Dec. 12, 2013 TIME: 11:00 am PLACE: ESB 241, Conference Room D172 HOST: Thomas Proslier ABSTRACT:The most famous macroscopic quantum phenomenon - superconductivity - is characterized by a nanometer-length scale, called coherence length ξ, at which the superconducting condensate evolves in space. The confinement of a superconducting material to scales comparable to ξ should substantially modify the superconducting properties. We addressed the problem of confinement in superconductivity by choosing a quasi-ideal model system - Pb atoms deposited in-situ on atomically clean surface of

96

talapin-101812 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

talapin-101812 talapin-101812 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Prof. Dmitri Talapin Department of Chemistry and James Frank Institute University of Chicago TITLE: Department of Chemistry and James Frank Institute DATE: Thursday, October 18, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 HOST: Seungbum Hong ABSTRACT: Colloidal nanocrystals can combine the advantages of crystalline inorganic semiconductors with the size-tunable electronic structure and inexpensive solution-based device fabrication. Single- and multicomponent nanocrystal assemblies, also known as superlattices, provide a powerful general platform for designing two- and three-dimensional solids with tailored electronic, magnetic, and optical properties. Unlike atomic and molecular crystals where atoms, lattice geometry, and interatomic distances

97

Lee 092712 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lee 092712 Lee 092712 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Ho Nyung Lee Oakridge National Laboratory TITLE: "Epitaxy of Multivalent Oxides: Fast Reversible Redox Reactions and Magnetism in Perovskite Cobaltites" DATE: Thursday,September 27, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 ABSTRACT:Perovskite-typed complex oxides with multivalent transition metals exhibit a wide spectrum of physical properties, including ferroelectricity, superconductivity, ferromagnetism, ion conductivity, and catalytic activity. Owing to the high ionic conductivity and, sometimes, electronic conductivity offered from several multivalent transition metal oxides, perovskite oxides have attracted lots of attention for solid oxide fuel cell and electrochemical sensor applications. However, high ionic

98

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Connect with PJG Connect with PJG For the Public Awards & Honors R&D100 Awards R&D100 Award Posters For Researchers Profiles For Industry Research Thrust Areas Advanced Alloys Advanced Steels Amorphous Bulk Metallic Glasses Nano Crystalline Composites Ni-Based Alloys Ti Alloys Advanced Processing Additive Manufacturing Electronic Packaging Gelcasting Infrared/Photonic Processing Laser Interference Patterning Magnetic Field Processing Powder Metallurgy Pulse Thermal-Processing (PTP) Ceramics Ceramics Conventional Metals Processing Casting Extrusion Forging Lightweight Metals Aluminum Magnesium Titanium Modeling Materials Behavior Under Severe Environments Microstructure Modeling During Phase Transformations Process Modeling and Simulation: Energy Transport Sensors and Data Acquisition Techniques

99

1Nuclear Materials Technology Division/Los Alamos National Laboratory Publications  

E-Print Network [OSTI]

, the United States had no easy way of recover- ing plutonium from its nuclear weapons with- out generating1Nuclear Materials Technology Division/Los Alamos National Laboratory 0 Publications Nuclear Fuels-Dehydride Recycle Process for Plutonium Recovery 4-5 Electrolytic Decontamination of Oralloy 6 Applied Weapons

100

Fei Han - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Fei Han EM > Fei Han Fei Han Fei Han Postdoctoral Appointee Bldg. 223, A-110 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Fei Han joined Argonne National Laboratory in June 2012 as a postdoctoral appointee. His current research is exploratory synthesis of new superconductors. His research interests include unconventional superconductors, Mott insulators, topological insulators and other strongly correlated materials. Fei obtained his BS degree in materials physics from University of Science and Technology of China in 2007. As an undergraduate researcher he studied growth of superconducting cuprate thin films via magnetron sputtering. In 2007 he came to Beijing to pursue a PhD degree with Professor Hai-Hu Wen in Institute of Physics, Chinese Academy of Sciences. His PhD research was focused on synthesis and characterization of structural and transport properties of superconductors, especially the iron-based superconductors. As of now, Fei has published more than 20 papers. His total citation is about 400 and his h-index is 9.

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Materials Sciences and Engineering (MSE) Division Homepage | U.S. DOE  

Office of Science (SC) Website

MSE Home MSE Home Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Materials Sciences and Engineering (MSE) Division supports fundamental experimental and theoretical research to provide the knowledge base for the discovery and design of new materials with novel structures, functions, and properties. This knowledge serves as a basis for the development of new materials for the generation, storage, and use of energy and for mitigation of the environmental impacts of energy use. (details) The MSE research portfolio consists of the research focus areas in the

102

Seminars 2012 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Materials Science 2012 Seminar Archive January January 13th - Ming Tang Lawrence Livermore National Laboratory Stress-Diffusion Coupling in Olivine Cathodes for Li-ion Batteries January 16th - Jonathan Keeling University of St. Andrews, United Kingdom Condensation, superfluidity, and lasing of coupled light-matter systems January 23rd - Wade DeGottardi University of Illinois at Urbana-Champaign Majorana fermions in a spin-ladder system January 23rd - Sergey Artyukhin Moscow Institute of Physics and Technology Solitonic Arrays and Magnetoelectric Switching in Rare Earth Orthoferrites January 25th - Geoffrey Oxberry Massachusetts Institute of Technology Advances in the Model Reduction of Chemistry for Reacting Flow Simulations January 27th - Tianheng Han Massachusetts Institute of Technology

103

Armitage-050913 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Armitage-050913 Armitage-050913 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Prof. N. Peter Armitage The Johns Hopkins University TITLE: THz investigations of exotic quantum states of matter DATE: Thursday, May 9, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Ray Osborn Refreshments will be served at 10:45 a.m. ABSTRACT: "The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are ... completely known..." ...or so was claimed in 1929 by P.A.M. Dirac shortly after the Schrodinger equation had been verified for few electron systems like H2 and He. Dirac continued that the difficulty in extending this success to largersystems is "only that the exact application of these laws leads to equations much

104

Gutt-111512 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gutt-111512 Gutt-111512 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Christian Gutt DESY, Germany TITLE: X-Ray Snapshots of Magnets and Liquids Using X-Ray Free-Electron Lasers DATE: Thursday, November 15, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 HOST: Paul Fuoss Refreshments will be served at 10:45 a.m. ABSTRACT: X-ray free-electron laser sources provide extremely high-intensity and ultashort X-ray pulses which allow to access ultrafast phenomena in condensed matter on the nanoscale. In this talk I will report on results and future challenges of resonant magnetic scattering experiments using the FEL sources FLASH, LCLS and FERMI [1-3]. We investigated via IR pump / FEL probe experiments the ultrafast response of magnetic domain configurations in Co/Pt multilayer systems [4] to an

105

Edith Perret - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRS > Edith Perret SRS > Edith Perret Edith Perret Postdoctoral Appointee Bldg. 212, C-223 Phone: 630-252-3132 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Edith Perret received her degree in materials science in 2006 from ETH Zurich, Switzerland. During her doctoral studies (2006-2010), she investigated the structure of molecular liquids under nanometer confinement by synchrotron x-ray reflectivity and surface force experiments at the Swiss Light Source (SLS) of the Paul Scherrer Institute in Switzerland. Prof. J. Friso van der Veen and Prof. Manfred Heuberger supervised her. In autumn 2010 she worked as a scientist at the EMPA St.Gallen in Switzerland. Her project consisted of analyzing small-angle x-ray scattering data of

106

Koulakov-062713 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Koulakov-062713 Koulakov-062713 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Alexei Koulakov Cold Spring Harbor Laboratory, NY TITLE: Formation of brain maps: nurture versus nature DATE: Thursday, June 27, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: Ivar Martin Refreshments will be served at 10:45 a.m. ABSTRACT: In the brain, neurons are organized according to their functional properties into multiple maps such as retinotopic, ocular dominance, orientation preference, direction of motion, and others. To a large degree, these maps are reflections of connections between neurons. Two factors contribute to the formation of neuronal connections, and, by extension, of the brain maps. First, much of the connectivity is determined by the rules specified in the genome and is therefore hardwired. Second, connections can

107

Shpyrko1-011013 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shpyrko1-011013 Shpyrko1-011013 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Oleg Shpyrko University of California, San Diego TITLE: "Coherent X-ray Nanovision" DATE: Thursday, January 10, 2013 TIME: 11:00 a.m. PLACE: Building 212 / A-157 Refreshments will be served at 10:45 a.m. ABSTRACT: Attempts to produce focusing x-ray optics date back to the days of Roentgen, however, it was not until the past decade that X-ray Microscopy has finally been able to achieve sub-100 nmresolution. We have used X-ray micro-diffraction in combination with X-ray Photon Correlation Spectroscopy to investigate slow relaxation dynamics of Charge Density Wave domains in antiferromagnetic Chromium and TaS2. I will discuss similarities between dynamics in these charge- and spin-ordered condensates and dynamics

108

Adler-091913 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Adler-091913 Adler-091913 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Stuart Adler University of Washington TITLE: Theory and Application of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS) DATE: Thursday, Sept. 19, 2013 TIME: 11:00 am PLACE: 11:00 a.m. - Bldg. 212, Conference Room A157 HOST: Hoydoo You ABSTRACT: Traditional electrochemical impedance spectroscopy (EIS) involves measuring the response of an electrochemical system or device to a small-amplitude perturbation. However, a significant limitation of EIS is that it only probes the linearized response, filtering out potentially useful information contained in the nonlinear behavior. Over the last 7 years, our group has pioneered an extension of EIS called nonlinear EIS, (NLEIS) that attempts to capture this lost nonlinear information via

109

Yuasa-110812 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yuasa-110812 Yuasa-110812 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Professor Shinji Yuasa AIST Japan (IEEE Distinguished Lecturer) TITLE: "Magnetoresistance and Spin-Transfer Torque in Magnetic Tunnel Junctions" DATE: Thursday, November 8, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 HOST: Axel Hoffmann Refreshments will be served at 10:45 a.m. ABSTRACT: A magnetic tunnel junction (MTJ) consisting of a thin insulating layer (a tunnel barrier) sandwiched between two ferromagnetic electrodes exhibits the tunnel magnetoresistance (TMR) effect due to spin-dependent electron tunneling. Since the discovery of room-temperature TMR in the mid-1990s, MTJs with an amorphous aluminum oxide (Al-O) tunnel barrier have been studied extensively. Such MTJs exhibit a magnetoresistance (MR) ratio of

110

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PCM PCM For the Public Visiting ORNL For Researchers Profiles Group Leader Program Manager Staff Members Facilities Final Report on Economic Analysis of Deploying Used Batteries in Power Systems Document For Industry Research Catalysis by Design Zeolites Materials for Catalysis Photocatalytic C02 Our People Group Leader, Program Manager, Staff Members, Facilities Find People Programs Thin-Film Rechargeable Lithium, Lithium-Ion, and Li-Free Batteries Program Membrane Separations Research Program Related Programs ORNL Technologies Recent News & Features News Releases Archive | Features Archive Recent Honors & Awards Award Archives Honors & Awards Achives | ORNL Spotlight Archives] Nancy Dudney, was recently elected as a Electrochemical Society Fellow in recognition of her scientific achievements and service to the

111

SC Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research > Research Groups Research > Research Groups Research Groups Display # 5 10 15 20 25 30 50 100 All Title Research Groups CMT Personnel CMT Research CMT Links Condensed Matter Theory ECS Personnel ECS Research ECS Highlights Energy Conversion and Storage EM-Heating Effects EM- Electronic Valves EM-Breaking Up EM-Exploring Complexity EM-Narrow Phase Fields EM Pnictide Phase Diagram EM Molten Polysulfides EM Materials By Design EM Iron Pnictides EM Personnel EM D.J. Miller EM D.G. Hinks EM M.Grimsditch EM Tunneling EM Structural Features EM Seamless Joining EM Role of Reactive Elements EM Residual Strains EM Proximity Interactions EM Interface Roughness EM Growth Strains EM Grain Boundaries EM Extending the Phase EM Exploring the Mechanism EM Double Exchange EM Research EM Links EM Home IM Odin III

112

Liao-020713 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liao-020713 Liao-020713 MATERIALS SCIENCE SEMINAR SPEAKER: Zhaoliang Liao Louisiana State University TITLE: The dead layer and critical behavior of La2/3Sr1/3MnO3 ultra thin film DATE: Thursday, February 07, 2013 TIME: 2:00 p.m. PLACE: Building 223 / S-105 HOST: Anand Bhattacharya ABSTRACT: "Dead layer"-the insulating behavior in ultrathin films of metallic oxides-is an intriguing property of thin TMO films. The question is, is this effect caused by dimensional confinement, or by the interface, strain, segregation, impurity, or stoichiometry. Utilizing UHV Laser-MBE growth technique, we have systematically studied the thickness-dependence of structure/properties for La2/3Sr1/3MnO3 (LSMO) on SrTiO3(001) by using in-situ characterization such as LEED, XPS and STM, and ex-situ transport

113

Iacocca-011013 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iacocca-011013 Iacocca-011013 MATERIALS SCIENCE SEMINAR SPEAKER: Ezio Iacocca University of Gothenburg, Sweden TITLE: Micromagnetic simulations of highly non-linear modes in spin torque oscillators: propagating, solitonic and magnetic dissipative droplet modes DATE: Thursday, January 10, 2013 TIME: 2:00 p.m. PLACE: Building 223, Conference Room S105 HOST: Olle Heinonen ABSTRACT: Magnetic dynamics can be locally excited in spin valve structures by the current-induced spin transfer torque (STT). Such devices are generally referred to as Spin Torque Oscillators where the high current densities required are, for instance, achieved by patterning a metallic nanocontact on top of the spin valve (NC-SV). The resulting dynamics are analytically described with the Landau-Lifshitz-Gilbert-Slonczewski

114

MF Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Magnetic Films Research Vision: Our vision is to address the grand challenges in condensed matter and materials physics via the exploration of the realm of nanomagnetism. Nanomagnetism is connected to fundamental questions of how the energy demands of future generations will be met via the utilization of wind turbines as a viable alternate energy source, and electric vehicles as alternatives to continued fossil-fuel consumption. Nanomagnetism is connected to the question of how the information technology revolution will be extended via the advent of spintronics and the possibilities of communication by means of pure spin currents. Nanomagnetism provides deep issues to explore in the realms of nanoscale confinement, physical proximity, far-from-equilibrium phenomena, and ultrafast and emergent

115

John Pearson - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MF > John Pearson MF > John Pearson John Pearson Principle Materials Engineer Bldg. 223, B-137 Phone: 630-252-7738 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education M.S. Southern Illinois University - 1987 Studied ion irradation effects in Si and Zr-Al alloys with the guidance of Lynn Rehn and Paul Okamoto (MSD-ANL). Thesis combined Transmission Electron Diffraction with Brillouin Light Scattering to study the effects of disorder on elastic constants Research and Expertise I joined the Magnetic Films Group in 1987 as a Scientific Assistant. I design and implement experiments in cooperation with the principal investigators of the Magnetic Films Group. I have studied thin-films, multilayers and superlattices with Electron Microscopy. I am involved in studies of magnetic coupling including Fe/Cr wedges using UV-photoemission, and Surface Magneto-Optical Kerr Effect (SMOKE). Currently, research includes STM studies on self-assembled magnetic nanostructures, and transport properties of lithographically patterned nanostructures.

116

ECS Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Energy Conversion and Storage Research Energy conversion This work is a continuation of the successful work performed at Berkeley National Lab. Building on the research on Pt-alloy single crystals which was published in Science, research at Argonne focuses on a deeper understanding of the type of surface necessary to facilitate the Oxygen Reduction Reaction (ORR), the troubled cathode reaction of a fuel cell. The anode side of the fuel cell is not neglected and research on the Hydrogen Oxidation Reaction (HOR) and CO oxidation reactions is one of the group's core priorities. Efforts, however, do not end there. By investigating the effects of anything may be present at or near the electrode surface, such as anions, cations and ionomer, an insight into the mechanism behind

117

Ray Osborn - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NXRS > Ray Osborn NXRS > Ray Osborn Ray Osborn Raymond Osborn Bldg. 223, D-209 Phone: 630-252-9011 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education Ph.D., Solid State Physics, University of Southampton, UK B.Sc (1st class honours), Physics, Imperial College of Science and Technology, London, UK. Honors Fellow of the American Physical Society University of Chicago Distinguished Performance Award (2006) Professional Service Scientific Director, National School of Neutron and X-ray Scattering (2001-2007). Chair, Publication Committee, International Conference on Strongly Correlated Electron Systems, Ann Arbor, MI (2001). Member, International Advisory Board, International Conference on Strongly Correlated Electron Systems, Vienna (2005).

118

Materials Performance in USC Steam  

SciTech Connect (OSTI)

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

119

HIGH-PERFORMANCE COATING MATERIALS  

SciTech Connect (OSTI)

Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

SUGAMA,T.

2007-01-01T23:59:59.000Z

120

Berry phase effects on electronic properties Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,  

E-Print Network [OSTI]

Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Ming-Che Chang Department of PhysicsBerry phase effects on electronic properties Di Xiao Materials Science and Technology Division, Oak

Wu, Zhigang

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

122

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 LBNL senior materials scientist and UC Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals and composites, Ritchie has illuminated groundbreaking cracking patterns and the underlying mechanistic processes using the x-ray synchrotron micro-tomography at ALS Beamline 8.3.2. Summary Slide ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter.

123

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

124

High performance Zintl phase TE materials with embedded nanoparticles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

performance Zintl phase TE materials with embedded nanoparticles High performance Zintl phase TE materials with embedded nanoparticles Performance of zintl phase thermoelectric...

125

Materials performance in fluidized-bed air heaters  

SciTech Connect (OSTI)

Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock & Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

Natesan, K.; Podolski, W.

1991-12-01T23:59:59.000Z

126

Materials performance in fluidized-bed air heaters  

SciTech Connect (OSTI)

Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

Natesan, K.; Podolski, W.

1991-12-01T23:59:59.000Z

127

Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division  

Office of Legacy Management (LM)

AUG 0 3 1998 AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly Utilized Sites Remedial Action Program (FUSRAP). As you may know, FUSRAP is no longer administered and executed by DOE as Congress transferred the program to the U.S. Army Corps of Engineers beginning.in fiscal year 1998. Nonetheless, we weighed the information included in your letter against the

128

COMPARATIVE ASSESSMENT OF MATERIAL PERFORMANCE IN DEMO  

E-Print Network [OSTI]

for sufficient time. Reliable estimates of component lifetimes are an important part of power plant design The basic DEMO design used in the present study is a 1.8 GW device (2.2 GW total thermal power ­ including simulation models and capabilities to assess material performance under the neutron irradiation conditions

129

Significant changes in the Code rules in Section VIII, Division 1 concerning material and welding  

SciTech Connect (OSTI)

Several very significant changes to the Code rules in Section VIII, Division 1 concerning materials and welding have been made since the 1950 Code. These changes include: (1) Improved steel making practice which has resulted in significant changes to the type of materials permitted for the construction of Section VIII vessels. (2) In 1950 no impact testing was required on any material for use at temperatures of {minus}20F and above. And when impact testing was required, the impact value was 15 ft-lb minimum average on Charpy type, keyhole, or U-notch specimens. (3) In the mid-1960`s, the impact test requirement was changed to Charpy type, V-notch specimens, a much more severe test. (4) In 1987 the Code published new toughness rules for carbon and low-alloy steels. (5) In regard to welding, a very significant improvement has been the use of low-hydrogen electrodes which started in the 1950`s. Few welding electrode specifications existed in the early editions of the Code. A recent improvement in electrode specification is moisture resistant electrodes.

Doty, W.D. [Doty and Associates, Pittsburgh, PA (United States)

1996-12-01T23:59:59.000Z

130

Performance of scintillation materials at cryogenic temperatures  

E-Print Network [OSTI]

An increasing number of applications of scintillators at low temperatures, particularly in cryogenic experiments searching for rare events, has motivated the investigation of scintillation properties of materials over a wide temperature range. This paper provides an overview of the latest results on the study of luminescence, absorption and scintillation properties of materials selected for rare event searches so far. These include CaWO4, ZnWO4, CdWO4, MgWO4, CaMoO4, CdMoO4, Bi4Ge3O12, CaF2, MgF2, ZnSe and AL2O3-Ti. We discuss the progress achieved in research and development of these scintillators, both in material preparation and in the understanding of scintillation mechanisms, as well as the underlying physics. To understand the origin of the performance limitation of self-activated scintillators we employed a semi-empirical model of conversion of high energy radiation into light and made appropriate provision for effects of temperature and energy transfer. We conclude that the low-temperature value of the light yield of some modern scintillators, namely CaWO4, CdWO4 and Bi4Ge3O12, is close to the theoretical limit. Finally, we discuss the advantages and limitations of different materials with emphasis on their application as cryogenic phonon-scintillation detectors (CPSD) in rare event search experiments.

V. B. Mikhailik; H. Kraus

2010-01-29T23:59:59.000Z

131

MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS  

SciTech Connect (OSTI)

The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

DOE

2005-09-13T23:59:59.000Z

132

Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)  

SciTech Connect (OSTI)

A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

Baum, Gregory A.

2014-02-01T23:59:59.000Z

133

Wall System Innovations: Familiar Materials, Better Performance  

Broader source: Energy.gov (indexed) [DOE]

1 1 Wall System Innovation Vladimir Kochkin Joseph Wiehagen April 2013 Wall Innovation Metrics  High R (thermal and air barrier)  High Performance  Durable, structural  Build-able  Low transition risk to builders  50% Building America Goal  ≈ R25+ (CZ 4 and higher) 2 Background  Technologies for high-R walls have been proposed and used for over 25 years  But real market penetration is very low  Often the last EE measure implemented by builders (e.g. E*) 3 Background  High-R wall solutions have not achieved a broad level of standardization and commonality  A large set of methods and materials entered the market  Multiple and conflicting details  Wall characteristics are more critical = RISK 4 New Home Starts -

134

Materials Performance in USC Steam Portland  

SciTech Connect (OSTI)

Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

G.R. Holcomb; J. Tylczak; R. Hu

2011-04-26T23:59:59.000Z

135

Waste Package Materials Performance Peer Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review A consensus peer review of the current technical basis and the planned experimental and modeling program for the prediction of the long-term performance of waste package materials being considered for use in a proposed repository at Yucca Mountain, Nevada. Waste Package Materials Performance Peer Review A Compilation of Special Topic Reports Wastepackagematerials_PPRP_final.pdf Evaluation of the Final Report: Waste Package Materials Performance Peer Review Panel Multi-Purpose_Canister_System_Evaluation.pdf More Documents & Publications Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water

136

Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980  

SciTech Connect (OSTI)

Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research.

Truhan, J.J.; Hopper, R.W.; Gordon, K.M. (eds.)

1980-10-28T23:59:59.000Z

137

Advances in materials science, Metals and Ceramics Division. Triannual progress report, February-May 1980  

SciTech Connect (OSTI)

Research is reported in the magnetic fusion energy and laser fusion energy programs, aluminium-air battery and vehicle research, geothermal research, nuclear waste management, basic energy science, and chemistry and materials science. (FS)

Truhan, J.J.; Gordon, K.M. (eds.)

1980-08-01T23:59:59.000Z

138

Accident Performance of Light Water Reactor Cladding Materials  

SciTech Connect (OSTI)

During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

139

Achieving Transformational Materials Performance in a New Era of Science  

ScienceCinema (OSTI)

The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

John Sarrao

2010-01-08T23:59:59.000Z

140

Time Division Multiplexing of Network Access by Security Groups in High Performance Computing Environments.  

E-Print Network [OSTI]

??It is commonly known that High Performance Computing (HPC) systems are most frequently used by multiple users for batch job, parallel computations. Less well known, (more)

Ferguson, Joshua

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Efficient materialization of dynamic web data to improve web performance  

Science Journals Connector (OSTI)

The issues of performance, response efficiency and data consistency are among the most important ones for data intensive Web sites on the Internet today. In order to deal with these issues we analyze and evaluate a materialization policy that may be ...

Christos Bouras; Agisilaos Konidaris

2002-08-01T23:59:59.000Z

142

Decoupling Interrelated Parameters for Designing High Performance Thermoelectric Materials  

Science Journals Connector (OSTI)

Decoupling Interrelated Parameters for Designing High Performance Thermoelectric Materials ... Solution Processed Cu2CoSnS4 Thin Films for Photovoltaic Applications ... Earth abundant alternative chalcopyrite Cu2CoSnS4 (CCTS) thin films were deposited by a facile solgel process onto larger substrates. ...

Chong Xiao; Zhou Li; Kun Li; Pengcheng Huang; Yi Xie

2014-02-11T23:59:59.000Z

143

Materials Science Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Archive Publications Archive Invited Articles, Book Chapters, Books Edited, Book Reviews Journal Articles Conference Proceedings Invited Articles, Book Chapters, Books Edited, Book Reviews K. A. Carrado, L. Xu, S. Seifert, R. Csencsits, C. A. A. Bloomquist, "Polymer-Clay Nanocomposites Derived from Polymer-Silicate Gels", Invited Book Chaper for Polymer-Clay Nanocomposites, G. Beall, T. J. Pinnavaia, eds., Wiley & Sons, UK 2000, chap. 3, pp. 47-63. M. L. Jenkins and M. A. Kirk, Characterization of Radiation Damage by Transmission Electron Microscopy, edited by B. Cantor, et al., Institute of Physics Publishing : Birstol, UK, pp. 1-224; (2001). K. Furuya, M. Song, K. Mitsuishi, R. C. Birtcher, C. W. Allen and S.E. Donnelly, "Direct Imaging for Atomic Structure of Xe Nanocrystals Embedded in

144

High Performance Abrasion-Resistant Materials: Lessons from Nature  

E-Print Network [OSTI]

Basics of abrasion resistance materials The progressive lossachieve abrasion resistance, materials need to posses highresistance materials

Wang, Qianqian

2012-01-01T23:59:59.000Z

145

High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects  

DOE Patents [OSTI]

As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

Deri, Robert J. (Pleasanton, CA); DeGroot, Anthony J. (Castro Valley, CA); Haigh, Ronald E. (Arvada, CO)

2002-01-01T23:59:59.000Z

146

Key Elements of and Materials Performance Targets for Highly Insulating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Elements of and Materials Performance Targets for Highly Insulating Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Title Key Elements of and Materials Performance Targets for Highly Insulating Window Frames Publication Type Journal Article LBNL Report Number LBNL-5099E Year of Publication 2011 Authors Gustavsen, Arlid, Steinar Grynning, Dariush K. Arasteh, Bjørn Petter Jelle, and Howdy Goudey Journal Energy and Buildings Volume 43 Issue 10 Pagination 2583-2594 Date Published 10/2011 Keywords Fenestration, heat transfer modeling, thermal performance, thermal transmittance, u-factor, window frames Abstract The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.

147

Momentive Performance Materials Inc MPM | Open Energy Information  

Open Energy Info (EERE)

Momentive Performance Materials Inc MPM Momentive Performance Materials Inc MPM Jump to: navigation, search Name Momentive Performance Materials Inc (MPM) Place Albany, New York Zip 12211 Product New York-based subsidiary that operates in two segments namely silicones and quartz. These versatile materials help enable new developments across industrial and consumer applications. Coordinates 42.707237°, -89.436378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.707237,"lon":-89.436378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Functionalized Materials From Elastomers to High Performance Thermoplastics  

SciTech Connect (OSTI)

Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis-polyisoprene, natural rubber is no longer needed for the manufacturing of tires, but vulcanization is still utilized.

Laura Ann Salazar

2003-05-31T23:59:59.000Z

149

EVALUATION OF THE FINAL REPORT: WASTE PACKAGE MATERIALS PERFORMANCE PEER  

Broader source: Energy.gov (indexed) [DOE]

EVALUATION OF THE FINAL REPORT: WASTE EVALUATION OF THE FINAL REPORT: WASTE PACKAGE MATERIALS PERFORMANCE PEER REVIEW PANEL B00000000-01717-5700-00005 REV 00 August 2002 This document is not an official copy and is for informational purposes only. QA: QA B00000000-01717-5700-00005 REV 00 August 2002 Evaluation of the Final Report: Waste Package Materials Performance Peer Review Panel Prepared by: Jack N. Bailey, Jack D. Cloud, Thomas E. Rodgers, and Tammy S.E. Summers Prepared for: U.S. Department of Energy Yucca Mountain Site Characterization Office P.O. Box 364629 North Las Vegas, Nevada 89036-8629 Prepared by: Bechtel SAIC Company, LLC 1180 Town Center Drive Las Vegas, Nevada 89144 Under Contract Number DE-AC28-01RW12101 Disclaimer Signature Page Change History Acknowledgments

150

Corrosion performance of ceramic materials in slagging environments  

SciTech Connect (OSTI)

Conceptual designs of advanced combustion systems that use coal as feedstock require high-temperature furnaces and heat transfer surfaces that can operate at temperatures much higher than in current coal-fired power plants. Combination of elevated temperatures and hostile combustion environments requires advanced ceramics. Objectives of this program are to evaluate the (a) chemistry of gaseous and condensed products arising during coal combustion, (b) corrosion behavior of candidate materials in air, slag, and salt environments, and (c)residual mechanical properties of the materials after corrosion. Temperatures in the range of 1000-1400 C for ceramics and 600-1000 C for metallic alloys are emphasized. Coal/ash chemistries developed on the basis of thermodynamic/kinetic calculations, together with slags from actual combustors, are used. Materials being evaluated include monolithic Si carbides from several sources: Si nitride, Si carbide in alumina composites, Si carbide fibers in a Si carbide-matrix composite, and some advanced Ni-base alloys. This paper presents results from an ongoing program on corrosion performance of candidate ceramic materials exposed to air, salt, and slag environments and their effect on flexural strength and energy absorbed during fracture of these materials. 10 figs, 4 tabs, 8 refs.

Natesan, K.

1996-10-01T23:59:59.000Z

151

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1995-05-09T23:59:59.000Z

152

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

1995-01-01T23:59:59.000Z

153

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1996-01-23T23:59:59.000Z

154

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

1996-01-01T23:59:59.000Z

155

Electron Transport Materials: Synthesis, Properties and Device Performance  

SciTech Connect (OSTI)

We report the design, synthesis and characterization, thermal and photophysical properties of two silane based electron transport materials, dibenzo[b,d]thiophen-2-yltriphenylsilane (Si{phi}87) and (dibenzo[b,d]thiophen-2-yl)diphenylsilane (Si{phi}88) and their performance in blue organic light emitting devices (OLEDs). The utility of these materials in blue OLEDs with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C']picolinate (Firpic) as the phosphorescent emitter was demonstrated. Using the silane Si{phi}87 as the electron transport material (ETm) an EQE of 18.2% was obtained, with a power efficiency of 24.3 lm/W (5.8V at 1mA/cm{sup 2}), in a heterostructure. When Si{phi}88 is used, the EQE is 18.5% with a power efficiency of 26.0 lm/W (5.5V at 1mA/cm{sup 2}).

Cosimbescu, Lelia; Wang, Liang; Helm, Monte L.; Polikarpov, Evgueni; Swensen, James S.; Padmaperuma, Asanga B.

2012-06-01T23:59:59.000Z

156

New MEA Materials for Improved DMFC Performance, Durability and Cost  

SciTech Connect (OSTI)

Abstract Project Title: New MEA Materials for Improved DMFC Performance, Durability and Cost The University of North Florida (UNF)--with project partners the University of Florida, Northeastern University, and Johnson Matthey--has recently completed the Department of Energy (DOE) project entitled New MEA Materials for Improved DMFC Performance, Durability and Cost. The primary objective of the project was to advance portable fuel cell MEA technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a passive water recovery MEA (membrane electrode assembly). Developers at the University of North Florida identified water management components as an insurmountable barrier to achieving the required system size and weight necessary to achieve the energy density requirements of small portable power applications. UNF developed an innovative passive water recovery MEA for direct methanol fuel cells (DMFC) which provides a path to system simplification and optimization. The passive water recovery MEA incorporates a hydrophobic, porous, barrier layer within the cathode electrode, so that capillary pressure forces the water produced at the cathode through holes in the membrane and back to the anode. By directly transferring the water from the cathode to the anode, the balance of plant is very much simplified and the need for heavy, bulky water recovery components is eliminated. At the heart of the passive water recovery MEA is the UNF DM-1 membrane that utilizes a hydrocarbon structure to optimize performance in a DMFC system. The membrane has inherent performance advantages, such as a low methanol crossover (high overall efficiency), while maintaining a high proton conductivity (good electrochemical efficiency) when compared to perfluorinated sulfonic acid membranes such as Nafion. Critically, the membrane provides an extremely low electro-osmotic drag coefficient of approximately one water molecule per proton (versus the 2-3 for Nafion) that minimizes flooding issues at the cathode, which often fatally limit open cathode MEA performance. During this successfully completed DOE program the project team met all of the project goals. The team built and tested over 1,500 MEAs with a wide range of different manufacturing chemistries and process conditions. This project demonstrated that the UNF MEA design could be fabricated with a high degree of reproducibility and repeatability. Some specific achievements include: Durability - The UNF MEA has demonstrated over 11,000 hours continuous operation in a short stack configuration. The root cause of an off-state degradation issue was successfully mitigated by modifying the manufacturing process by changing the wetting agents used in the catalyst printing. The stability of the anode electrode was increased by replacing the anode electrodes with a stabilized PtRu/C catalyst. The overall degradation rate was significantly reduced through optimization of the MEA operating conditions. Performance - The project team optimized the performance of the critical MEA sub-components. By increasing the membrane thickness, the methanol crossover was reduced, thereby increasing the fuel utilization efficiency without sacrificing any electrochemical performance. The reduction in methanol crossover increased the fuel utilization efficiency from 78% to over 90%. The liquid barrier layer was optimized to provide improved reproducibility, thereby improving stack voltage uniformity and reliability. Additionally the barrier layer water permeability was lowered without sacrificing any power density, thereby enabling increased operating temperature. Improvements in the cathode catalyst selection and coating provided an additional 10% to 20% improvement in the MEA performance at the target operating range. Cost - Commercially scalable processes were developed for all of the critical MEA components which led to improved yields and lower overall manufacturing costs. Furthermore, significant steps have been made in improving the process control, which increases MEA

Fletcher, James H. [University of North Florida; Campbell, Joseph L. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J. [University of North Florida

2013-09-16T23:59:59.000Z

157

FINAL REPORT WASTE PACKAGE MATERIALS PERFORMANCE PEER REVIEW PANEL  

Broader source: Energy.gov (indexed) [DOE]

REPORT REPORT WASTE PACKAGE MATERIALS PERFORMANCE PEER REVIEW PANEL FEBRUARY 28, 2002 This document is not an official copy and is for informational purposes only. Signature Page Preface Executive Summary TABLE OF CONTENTS 1. INTRODUCTION 1.1 Organization of the Peer Review 1.2 Objectives of the Review 1.3 Content of the Final Report 2. MAIN FINDINGS 2.1 Perspective 2.2 Overall Findings 2.3 Corrosion Degradation Modes 2.4 Higher or Lower Temperature Operating Modes 2.5 Long-Term Uniform Corrosion of Passive Metal 2.6 Alloy Specification and Comparison 2.7 Technical Issues to be Resolved 2.8 Organizational-Managerial Issues 3. SUMMARY OF DEGRADATION MODES AND CONTRIBUTING FACTORS 3.1 Introduction 3.2 Repository Conditions: Overview of Time, Temperature, Environment

158

THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION  

SciTech Connect (OSTI)

Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

Gupta, N.

2010-03-04T23:59:59.000Z

159

Development of improved performance refractory liner materials for slagging gasifiers  

SciTech Connect (OSTI)

Refractory liners for slagging gasifiers used in power generation, chemical production, or as a possible future source of hydrogen for a hydrogen based economy, suffer from a short service life. These liner materials are made of high Cr2O3 and lower levels of Al2O3 and/or ZrO2. As a working face lining in the gasifier, refractories are exposed to molten slags at elevated temperature that originate from ash in the carbon feedstock, including coal and/or petroleum coke. The molten slag causes refractory failure by corrosion dissolution and by spalling. The Albany Research Center is working to improve the performance of Cr2O3 refractories and to develop refractories without Cr2O3 or with Cr2O3 content under 30 wt pct. Research on high Cr2O3 materials has resulted in an improved refractory with phosphate additions that is undergoing field testing. Results to date of field trials, along with research direction on refractories with no or low Cr2O3, will be discussed.

Kwong, Kyei-Sing; Bennett, James P.; Powell, Cynthia; Thomas, Hugh; Krabbe, Rick

2005-01-01T23:59:59.000Z

160

Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97  

SciTech Connect (OSTI)

This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

Newkirk, L.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Earth Sciences Division Research Summaries 2006-2007  

E-Print Network [OSTI]

the commencement of the Earth Sciences Division 30 yearstelling. Happy Anniversary! Earth Sciences Division ears YTritium in Engineered and Earth Materials Stefan Finsterle,

DePaolo, Donald

2008-01-01T23:59:59.000Z

162

Enhanced performance of graphite anode materials by AlF3 coating...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance of graphite anode materials by AlF3 coating for lithium-ion batteries. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries....

163

Energy Technology Division research summary 1997.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

NONE

1997-10-21T23:59:59.000Z

164

Performance of Thermal Insulation Containing Microencapsulated Phase Change Material  

SciTech Connect (OSTI)

The objective of this study is dynamic thermal performance microencapsulated phase change material (PCM) blended with loose-fill cellulose insulation. Dynamic hot-box testing and heat-flux measurements have been made for loose-fill cellulose insulation with and without uniformly distributed microencapsulated PCM. The heat flux measurements were made with a heat-flow-meter (HFM) apparatus built in accordance with ASTM C 518. Data were obtained for 1.6 lb{sub m}/ft{sup 3} cellulose insulation containing 0 to 40 wt% PCM. Heat-flux data resulting from a rapid increase in the temperature on one side of a test specimen initially at uniform temperature were analyzed to access the effect of PCM on total heat flow. The heat flux was affected by the PCM for about 100 minutes after the temperature increase. The total heat flow during this initial period decreased linearly with PCM content from 6.5 Btu/ft{sup 2} at 0% PCM to 0.89 Btu/ft{sup 2} for 40 wt% PCM. The cellulose insulation with PCM discharged heat faster than the untreated cellulose when the hot-side temperature of the test specimen was reduced. In addition, hot-box apparatus built in accordance with ASTM C 1363 was utilized for dynamic hot-box testing of a wood stud wall assembly containing PCM-enhanced cellulose insulation. Experimental data obtained for wood-frame wall cavities containing cellulose insulation with PCM was compared with results obtained from cavities containing only cellulose insulation.

Kosny, Jan [ORNL] [ORNL; Yarbrough, David [R & D Services] [R & D Services; Syed, Azam M [ORNL] [ORNL

2007-01-01T23:59:59.000Z

165

Performance of MHD insulating materials in a potassium environment  

SciTech Connect (OSTI)

The objectives of this study are to evaluate the compatibility of the MHD insulating materials boron nitride and silicon nitride in a potassium environment at temperatures of 1000 and 1400{degrees}F (538 and 760{degrees}C, respectively) and to measure the electrical conductivities of the specimens before and after exposure to potassium. Based on the test results, an assessment is to be made of the suitability of these materials for application as insulator materials in an MHD channel.

Natesan, K.; Park, J.H.; Rink, D.L. (Argonne National Lab., IL (United States)); Thomas, C.A. (USDOE Pittsburgh Energy Technology Center, PA (United States))

1991-12-01T23:59:59.000Z

166

High Performance Zintl Phase TE Materials with Embedded Particles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TE Materials with Embedded Particles Presents results from embedding nanoparticles in magnesium silicide alloy matrix reducing thermal conductivity by phonon scattering and...

167

Predicting the Performance of Edge Seal Materials for PV (Presentation)  

SciTech Connect (OSTI)

Edge seal materials were evaluated using a 100-nm film of Ca deposited on glass and laminated to another glass substrate. As moisture penetrates the package it converts the Ca metal to transparent CaOH2 giving a clear indication of the depth to which moisture has entered. Using this method, we have exposed test samples to a variety of temperature and humidity conditions ranging from 45C and 10% RH up to 85C and 85% RH, to ultraviolet radiation and to mechanical stress. We are able to show that edge seal materials are capable of keeping moisture away from sensitive cell materials for the life of a module.

Kempe, M.; Panchagade, D.; Dameron, A.; Reese, M.

2012-03-01T23:59:59.000Z

168

Controlling Performance of Laminated Composites Using Piezoelectric Materials  

E-Print Network [OSTI]

Composite materials are increasingly used in aerospace, underwater, and automotive structures. Their use in structural applications is dictated by the outstanding strength and stiffness while being lightweight in addition to their flexibility...

Hasan, Zeaid

2012-02-14T23:59:59.000Z

169

Selection and performance of Materials for Biomass Gasifiers  

SciTech Connect (OSTI)

Production of syngas through gasification or pyrolysis offers one of the more efficient routes for utilization of biomass resources; however, the containment structures used for many of these thermochemical processes are exposed to severe environments that limit their longevity and reliability. Studies have been conducted for three of these systems, and superior alternative materials have been identified. Improved materials will be of even greater importance in proposed gasification systems, many of which will generate even more extreme operating conditions.

Keiser, James R [ORNL] [ORNL; Hemrick, James Gordon [ORNL] [ORNL; Meisner, Roberta A [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)] [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Blau, Peter J [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Pint, Bruce A [ORNL] [ORNL

2010-01-01T23:59:59.000Z

170

Materials Chemistry and Performance of Silicone-Based Replicating Compounds.  

SciTech Connect (OSTI)

Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

2014-11-01T23:59:59.000Z

171

Corrosion performance of materials for advanced combustion systems  

SciTech Connect (OSTI)

Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces capable of operating at much higher temperatures than those in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments requires development and application of advanced ceramic materials for heat exchangers in these designs. This paper characterizes the chemistry of coal-fired combustion environments over the wide temperature range of interest in these systems and discusses some of the experimental results for several materials obtained from laboratory tests and from exposures in a pilot-scale facility.

Natesan, K. [Argonne National Lab., IL (United States); Freeman, M.; Mathur, M. [Pittsburgh Energy Technology Center, PA (United States)

1995-05-01T23:59:59.000Z

172

Los Alamos National Laboratory Est. 1943 MPA Materials Matter--Newsletter of the Materials Physics and Applications Division I N S I D E  

E-Print Network [OSTI]

, satellites in deep space, secure communications without need for encryption, medical applicationsJune 2010 Los Alamos National Laboratory · Est. 1943 MPA Materials Matter to the advancement of technology in New Mexico. Intel, the New Mexico Technology Council, and Sandia National

173

Irradiation test of electrical insulation materials performed at  

E-Print Network [OSTI]

as possible · The insulation material penetration by the beam should be as large as possible #12;Beam energy required for the sample irradiation Depth of bean penetration in water for various beam energy value H20. Wronka, Soltan Inst. #12;Dose rate in function of distance form the accelerator gun for 6 MeV structure 6

McDonald, Kirk

174

Energetic nano-materials: Opportunities for enhanced performances  

Science Journals Connector (OSTI)

This paper deals with the contribution of nano-materials to the contemporary pyrotechnics science. The breakthroughs in this domain are illustrated by several examples of energetic nano-materials recently studied in our laboratory. The solidification of energetic phases in a porous matrix (Cr2O3) was used to prepare and to stabilize at nano-scale explosive particles. The thermo-chemical behaviour of RDX nano-particles strongly differs from the one of micron-sized RDX. For instance, the temperature at which the decomposition occurs is significantly lowered and the melting point is removed. The effect of the decomposition of RDX nano-particles on the matrix in which they are trapped was observed for the first time by the atomic force microscopy. The Cr2O3/RDX nano-composite materials were mixed with aluminium nano-particles in order to formulate gas-generating nano-thermites (GGNT). The combustion of GGNT involves a synergy mechanism in which the decomposition of RDX nano-particles fragments the Cr2O3 matrix and primes the thermite reaction. Classical nano-thermites were obtained by mixing nano-particles (diameter <100nm) of metallic oxides (WO3) with a reducing metal (Al). These materials were used to demonstrate that nano-particles (i) significantly lower the ignition delay time and (ii) remarkably increase the combustion rate. Finally, pure RDX nano-particles are prepared by a continuous process of crystallization.

Denis Spitzer; Marc Comet; Christian Baras; Vincent Pichot; Nelly Piazzon

2010-01-01T23:59:59.000Z

175

Marine Bio-Nanotechnology: High-Performance Materials from Sponge Silicatein  

E-Print Network [OSTI]

Title: Marine Bio-Nanotechnology: High-Performance MaterialsChemical Biology (2005); Nanotechnology Review (2005, 2006);Marine biotechnology; nanotechnology; sponge; silica;

Morse, Daniel E.

2007-01-01T23:59:59.000Z

176

Alternative High-Performance Motors with Non-Rare Earth Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

177

Corrosion performance of materials for advanced combustion systems  

SciTech Connect (OSTI)

Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces capable of operating at more elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates development/application of advanced ceramic materials in these designs. This report characterizes the chemistry of coal-fired combustion environments over the wide temperature range that is of interest in these systems and discusses preliminary experimental results on several materials (alumina, Hexoloy, SiC/SiC, SiC/Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4}, ZIRCONIA, INCONEL 677 and 617) with potential for application in these systems.

Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

1993-12-01T23:59:59.000Z

178

Nuclear Science and Engineering - Divisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home NSED Divisions The Nuclear Science and Engineering Directorate (NSED) organization is composed of ORNL's only DOE Energy Innovation Hub, a program office, and the following five divisions. Fuel Cycle and Isotopes Division (FCID) FCID focuses on advancing the applications of medical, industrial, and research isotopes (developing separation processes for the processing of radioisotopes and spent nuclear fuels) and designing robotic systems and unique facilities for the safe handling of nuclear materials. Fusion Energy Division (FE) FE is developing the understanding required for an attractive fusion energy source through integrated research, and is pursuing near term applications of plasma science and technology in support of national goals. Global Nuclear Security Technology Division (GNSTD)

179

Prospects for accelerated development of high performance structural materials Steven J. Zinkle a,  

E-Print Network [OSTI]

in the operational per- formance and radiation resistance of structural materials during the past few decadesProspects for accelerated development of high performance structural materials Steven J. Zinkle a for fission and fusion energy applica- tions, by linking material fabrication to thermo-mechanical properties

Ghoniem, Nasr M.

180

EIA - Census Division List  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables > Census Division List Supplemental Tables > Census Division List Supplemental Tables to the Annual Energy Outlook 2010 Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lamp Divisions  

Office of Legacy Management (LM)

--- --- /A;; i :' r%i;in~house ilEc;' i:Z3:~cra:ion Lamp Divisions , _.. (I +i. 0 :,,,rg. . I . . -= i?e p/q! qe)-' &se pw E.rcale?l iev, Je!sey 07m March 20, 1 gs? ::r . J. A. Jones I ti. 5. Muclear Regulatory Commission .> = ..- haterials Licensing Branch -s - ,.I, - - Division of Fuel Cycle and hateri al Safety LY. , $2 - _ . ' -' . 3 _- - Yeshington, C. C. 2@555 - :_ :--, =-- -- .-?J -.: y...., : :- 7 Dear Mr. Jones : y-- --, ? . *I 2=15 2 r; X -P The following is our final report of the decontamination efZor?s takz in our Bui Iding 7 basement and wi 11 also serve to update our report i& November 12, 1980. As stated in NRC' s report of December 22, 1983, two closeout inspect ions were conducted by your King of Prussia off i ce on November 21 and December 2,

182

Improving Performance on Data-Intensive Applications Using a Load Balancing Methodology Based on Divisible Load Theory  

Science Journals Connector (OSTI)

Data-intensive applications are those that explore, query ... , and, in general, process very large data sets. Generally, these applications can be ... implementations show severe performance problems mainly due ...

Claudia Rosas; Anna Sikora; Josep Jorba

2014-02-01T23:59:59.000Z

183

Census Division List  

Gasoline and Diesel Fuel Update (EIA)

Supplement Tables to the Annual Energy Outlook 2003 Supplement Tables to the Annual Energy Outlook 2003 Census Division List Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California Mississippi Oklahoma Idaho Hawaii

184

Census Division List  

Gasoline and Diesel Fuel Update (EIA)

5 5 Census Division List Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California Mississippi Oklahoma Idaho Hawaii Tennessee Texas Montana Oregon

185

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Publications J. R. I. Lee, H. D. Whitley, R. W. Meulenberg, A. Wolcott, J. Z. Zhang, D. Prendergast, D. D. Lovingood, G. F. Strouse, T. Ogitsu, E. Schwegler, L. J. Terminello and T. van Buuren. Ligand-Mediated Modification of the Electronic Structure of CdSe Quantum Dots. Nano Letters 12, 2763 (2012). abstract » B. Zamft, L. Bintu, T. Ishibashi and C. Bustamante. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proceedings of the National Academy of Sciences 109, 8948 (2012). abstract » W. Morris, B. Volosskiy, S. Demir, F. Gandara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart and O. M. Yaghi. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorganic chemistry 51, 6443 (2012). abstract »

186

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Latest News Latest News Research Highlights Events Calendar Newsletter Archive Research Highlights 2013 A Square Peg in a Round Hole: Nanocrystals Pass Through Tiny Constrictions Unchanged A team of researchers have observed an iron nanocrystal move through a constriction in a carbon nanotube with a smaller diameter than that of the nanocrystal, driven by an electric current. It's the nanoscience equivalent of putting a square peg in a round hole. more» Increasing NMR/MRI Sensitivity through Optical Hyperpolarization in Diamond Dynamic nuclear polarization, which transfers the spin polarization of electrons to nuclei, is routinely applied to enhance the sensitivity of nuclear magnetic resonance. This method is particularly useful when spin hyperpolarization can be produced and controlled optically or electrically.

187

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Cell Efficiencies Steve Louie, Marco Bernardi, Jeff Neaton and Johannes Lischner developed the first ab initio method for characterizing hot carriers in semiconductors. more...

188

Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 - 6/13/06 3 - 6/13/06 Superconducting Magnet Division S&T Committee Program Review June 22-23, 2006 Conference Room A, Bldg. 725, BNL DRAFT AGENDA Thursday, June 22 0830 Executive Session to address the charge S. Aronson (25 min) 0855 Welcome S. Aronson (5 min) 0900 Superconducting Magnet Division Status & M. Harrison (45 + 15 min) Issues - mission statement, core competencies, themes, program, problems, etc. 1000 Themes - Nb3Sn, HTS, Direct wind, Accelerator integration, P. Wanderer (20 + 10 min) rapid cycling Core Competencies 1030 Superconducting Materials A. Ghosh (20 + 5 min) 1055 Break 1110 Magnetic Design R. Gupta (20 + 5 min) 1135 Magnet Construction M. Anerella (20 + 5 min) 1200 Magnet Testing G. Ganetis (20 + 5 min)

189

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy Conversion Devices  

E-Print Network [OSTI]

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy of applications, such as sensing, data storage, and energy conversion. For example, perovskite solid solutions

Rappe, Andrew M.

190

High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

191

Experimental study to determine basic performance characteristics of recycled glass as beach nourishment material  

E-Print Network [OSTI]

Since significant amounts of recycled glass may be used as a substitute of materials for beach nourishment in urban beaches, laboratory experiments were proposed to understand the performance characteristics of glass versus natural sand. A first...

Cruz Castro, Oscar

2003-01-01T23:59:59.000Z

192

EIA - Census Division List  

Gasoline and Diesel Fuel Update (EIA)

9 9 Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California Mississippi Oklahoma Idaho Hawaii Tennessee Texas Montana Oregon

193

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production of battery cells, magnetic field processing, specialized rolling technologies, additive manufacturing, etc. Laboratories for comprehensive evaluations of low-level...

194

E-Division activities report  

SciTech Connect (OSTI)

E (Experimental Physics) Division carries out basic and applied research in atomic and nuclear physics, in materials science, and in other areas related to the missions of the Laboratory. Some of the activities are cooperative efforts with other divisions of the Laboratory, and, in a few cases, with other laboratories. Many of the experiments are directly applicable to problems in weapons and energy, some have only potential applied uses, and others are in pure physics. This report presents abstracts of papers published by E (Experimental Physics) Division staff members between July 1983 and June 1984. In addition, it lists the members of the scientific staff of the division, including visitors and students, and some of the assignments of staff members on scientific committees. A brief summary of the budget is included.

Barschall, H.H. (comp.)

1984-07-01T23:59:59.000Z

195

Tempe Transportation Division: LNG Turbine Hybrid Electric Buses  

SciTech Connect (OSTI)

Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

Not Available

2002-02-01T23:59:59.000Z

196

Cathode Performance as a Function of Inactive Materials and Void Fractions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Performance as a Function of Inactive Materials and Void Fractions Cathode Performance as a Function of Inactive Materials and Void Fractions Title Cathode Performance as a Function of Inactive Materials and Void Fractions Publication Type Journal Article Year of Publication 2010 Authors Zheng, Honghe, Gao Liu, Xiangyun Song, Paul L. Ridgway, Shidi Xun, and Vincent S. Battaglia Journal Journal of Electrochemical Society Abstract Li[Ni1/3Co1/3Mn1/3]O2 -based laminates of approximately the same loading and of varying levels of poly(vinylidene fluoride) (PVDF) binder and acetylene black (ratio held constant) were fabricated and calendered to different porosities, with the objective to investigate performance on a volume basis. The electronic conductivity of the laminates depends strongly on the inactive material content but not significantly on porosity. Electrochemical impedance spectroscopy studies found that charge-transfer resistance with calendering varied greatly with inactive material content. When the electrode contains low levels of inactive material (2% PVDF and 1.6% carbon), calendering significantly reduced the bulk resistance of the electrode. With high levels of inactive material (8% PVDF and 6.4% carbon), charge-transfer resistance increased with increased calendering. Above a certain level, depending on the overall composition, the inactive material reduces ionic transport to the active material surface. For a plug-in hybrid electric vehicle required to go 40 miles at an average rate of 20 miles/h with a 38 kW 10 s power-pulse capability, the cell chemistry studied is energy-limited. Therefore, based on the results of this study, the cathode should be compressed to 10% porosity with a minimal amount of inactive material

197

Division Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Synthetic Methods for Homogeneous and Heterogeneous Catalysts Novel Synthetic Methods for Homogeneous and Heterogeneous Catalysts Our research is directed at developing novel synthetic methods for homogeneous and heterogeneous catalysts. To that end, we are particularly interested in developing well-defined and predictive synthetic routes to pure metals, semiconductors, and insulators. Current projects include the vapor-phase synthesis of photon-harvesting materials and the controlled synthesis of supported first-row transition metal nanoparticles for catalysis. synthetic methods for homogeneous catalysts Our vapor-phase synthesis program is directed at synthesizing higher-order (3 or more elemental components), kinetically stable materials for photon-harvesting (PH) applications such as photocatalysis and photovoltaics. The versatility of solution phase chemical synthesis has yet to be achieved in advanced inorganic materials. The few higher order PH absorber materials which have been reported display unique combinations of thermodynamic stability and kinetic accessibility. We are interested in moving off the phase diagrams to synthesize novel materials with improved photon harvesting abilities for catalysis.

198

Developing standard performance testing procedures for material control and accounting components at a site  

SciTech Connect (OSTI)

The condition of a nuclear material control and accountability system (MC&A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC&A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC&A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC&A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC&A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC&A performance-testing procedures were the basis for a Guide for MC&A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

Scherer, Carolynn P [Los Alamos National Laboratory; Bushlya, Anatoly V [ROSATOM, RUSSIA; Efimenko, Vladimir F [IPPE, RUSSIA; Ilyanstev, Anatoly [IPPE, RUSSIA; Regoushevsky, Victor I [IPPE, RUSSIA

2010-01-01T23:59:59.000Z

199

RESEARCH UPDATE Ecology Division  

E-Print Network [OSTI]

1 RESEARCH UPDATE Ecology Division Biotype has changed its name to Ecotype! Following the re-organisation of Forest Research into five science Divisions and three Support Divisions, the former Woodland Ecology Branches to form the new Ecology Division. We decided to give the divisional newsletter a new name (and

200

Resistance Spot Welding of Aluminum Alloy to Steel with Transition Material - From Process to Performance  

SciTech Connect (OSTI)

This paper summarizes work to date on resistance spot welding (RSW) of aluminum alloy to mild steel from process development to performance evaluation. A cold-rolled strip material is introduced as a transition material to aid the resistance welding process. The optimal welding parameters and electrode selections were established using a combination of experimental and analytical approaches. The mechanical behaviors of welded samples was evaluated using static and dynamic strength tests and cyclic fatigue tests. A statistical analysis was also performed to analyze the effect of different failure modes on the sample's peak load and energy absorption.

Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.; Shao, H; Kimchi, Menachem; Menachem Kimchi and Wanda Newman

2004-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Census Division List  

Gasoline and Diesel Fuel Update (EIA)

please contact the National Energy Information Center at (202) 586-8800. please contact the National Energy Information Center at (202) 586-8800. Supplement Tables to the Annual Energy Outlook 2002 Census Division List Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska

202

Materials performance in coal-fired fluidized-bed combustion environments  

SciTech Connect (OSTI)

Development of cogeneration systems that involve combustion of coal in a fluidized bed for the generation of electricity and process heat has been in progress for a number of years. This paper addresses some of the key components in these systems, materials requirements/performance, and areas where additional effort is needed to improve the viability of these concepts for electric power generation.

Natesan, K.

1993-07-01T23:59:59.000Z

203

Experimental and numerical evaluation of electromagnetic acoustic transducer performance on steel materials  

E-Print Network [OSTI]

Experimental and numerical evaluation of electromagnetic acoustic transducer performance on steel 2011 Keywords: Electromagnetic Acoustic Transducers Magnetostriction Lorentz force Steel a b s t r a c of the test object. A wide variety of steel materials is employed in many industrial applications, so

Nagy, Peter B.

204

Phase-change materials to improve solar panel's performance Pascal Biwole1,2,*  

E-Print Network [OSTI]

-change materials to improve solar panel's performance Pascal Biwole1,2,* , Pierre Eclache3 , Frederic Kuznik3 1-mail:phbiwole@unice.fr Abstract: High operating temperatures induce a loss of efficiency in solar photovoltaic and thermal panels set-up. Results show that adding a PCM on the back of a solar panel can maintain the panel

205

Nuclear Science and Technology Division - Home page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

image image image - mural in bldg 5200 image image Fuels, Isotopes, and Nuclear Materials image Fuels, Isotopes, and Nuclear Materials Nuclear System Analysis, Design, and Safety image Nuclear System Analysis, Design, and Safety WELCOME Performing basic and applied R&D for the Department of Energy, the National Nuclear Security Administration, and other government agencies, as well as supporting and leveraging industrial partnerships Mission Statement The Nuclear Science and Technology Division at Oak Ridge National Laboratory will provide leading-edge science, technology, and engineering research that support our Nation's nuclear science and technology enterprise across a broad spectrum of applications including but not limited to advanced nuclear power systems, nuclear medicine,and nuclear

206

Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protein Stability Engineering Protein Stability Engineering BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Protein Stability Engineering Figure 1. Ribbon diagram of a stabilized antibody fragment (scFv) that binds the B. anthracis protein BclA Figure 1. Ribbon diagram of a stabilized antibody fragment (scFv) that binds the B. anthracis protein BclA. The stabilizing amino acid modifications are depicted as blue spheres. Dr. Rose Wilton, Principal Investigator Proteins such as antibodies and enzymes represent a rich source of molecular recognition tools and catalytic reagents that is unmatched in other materials. Protein reagents have wide ranging applications from field-deployable biosensors and industrial processes to human therapeutics. However, the relative fragility of antibodies and enzymes severely complicates their use outside of controlled laboratory environments. The challenge is to develop protein reagents with long shelf-life and improved thermostability.

207

Division Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Revealing Reaction Mechanisms by Combining Raman Spectroscopy and Quantum Chemistry Revealing Reaction Mechanisms by Combining Raman Spectroscopy and Quantum Chemistry ChemCatChem cover Using Raman spectroscopy and density functional methods, an experimental and theoretical research team at Argonne National Laboratory led by Dr. Christopher L. Marshall have identified the molecular intermediates and reaction mechanisms during the polymerization of furfuryl alcohol (ChemCatChem, Cover story, September 19, 2011, vol. 3, issue 9, 1451-1458). Furfuryl alcohol, which is derived from biomass, is a sustainable building block for polymeric materials and alternative fuels.[1-7] Polymerization of furfuryl alcohol in acidic media has been proposed by several research groups.[8-14] However, the current work is the first to distinguish the controversial intermediate species (dienes and diketones) using a

208

Biosciences Division | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Newsletters Organizational Charts Research Highlights Media Mentions Energy and Transportation Science Division Electrical and Electronics Systems Research Division Building Technologies Program Sustainable Transportation Program Clean Energy Home | Science & Discovery | Clean Energy | Supporting Organizations | Biosciences Division SHARE Biosciences Division The objective of the Biosciences Division (BSD) at Oak Ridge National Laboratory is to advance science and technology to better understand complex biological systems and their relationship with the environment. The division has expertise and special facilities in genomics, computational biology, microbiology, microbial ecology, biophysics and structural biology, and plant sciences. This collective expertise includes

209

Chemical technology division: Annual technical report 1987  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

Not Available

1988-05-01T23:59:59.000Z

210

Chemical Technology Division annual technical report, 1986  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

Not Available

1987-06-01T23:59:59.000Z

211

Chemical Technology Division annual technical report 1989  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

Not Available

1990-03-01T23:59:59.000Z

212

The effect of parent metal properties on the performance of Lattice Block Material{trademark}  

SciTech Connect (OSTI)

Lattice Block Material{trademark}, or LBM{trademark} is a unique lightweight structure consisting of repeated cells with an internal node connected to, in the most common configuration, 14 ligaments. In its metallic version, this product is available in a variety of castable metals including aluminum alloys, copper alloys, nickel alloys and steels. The relationship between LBM structural performance (strength and stiffness) and parent metal properties is investigated using compression tests in three primary orientations and 3-pt. bend tests. Analytical assessment of the LBM via finite element analysis shows reasonable agreement with experimental findings and provides predictions for LBM capabilities with different materials, unit cell sizes and ligament geometries.

Renauld, M.L.; Giamei, A.F.; Thompson, M.S. [United Technologies Research Center, East Hartford, CT (United States). Materials and Structures Technology Dept.; Priluck, J. [JAMCORP, Wilmington, MA (United States)

1998-12-31T23:59:59.000Z

213

Former Sites Restoration. Division  

Office of Legacy Management (LM)

@j&s* **$r* :. .+:., @j&s* **$r* :. .+:., II' .,.. I .&i. , :"': T.1 . i *&+t&&., @i i -:.+; L I. * . . .p.isit-!'..r'ir~i _, +.&.., . I. :?I,?.* .L,! j?' aa&* pi 4 L', ..b,- ., .e /w.1( ,v_.c ~A&$?>*:, ,..:.' .1 > . . . . . *. ,.. .I., .( j .~.~:,;;,.".,Certificafion ,Dockef for The ;,il' t:i~>$:+-.. ~~y:Remeciial Action. Performed "' . ::;:cxcgt the @+zb Gate Site in . ;' ! ,Oak Ridge, Tennessee, 7.99 7- 7 992 -.. Department .of Energy Former Sites Restoration. Division . ,Oak Ridge Operations .Office _. February 7 994 @ Printed on recycledhcy&ble paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE ELZA GAP SITE IN OAK RIDGE, TENNESSEE, 1991-1992 FEBRUARY 1994 I Prepared for UNITED STATES DEPARTMENT OF ENERGY

214

Division of Administration  

E-Print Network [OSTI]

Contracts & Procurement Don Green Controller Steven Yim Budget Planning & Administration Sarah Song Admin Operations Lieutenant Scot Willey Administration Lieutenant John Brockie Division Communication Editorial Communication Editorial Board looks forward to improving communication within and from the Division and welcomes

de Lijser, Peter

215

Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint  

SciTech Connect (OSTI)

Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

2014-08-01T23:59:59.000Z

216

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

217

Division of Agriculture,  

E-Print Network [OSTI]

DAFVM Division of Agriculture, Forestry, and Veterinary M e d i c i n e Visit us online at www to the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine. Discrimination based-3-14) Mississippi State University's Division of Agriculture, Forestry, and Veterinary Medicine, or DAFVM

Ray, David

218

X-ray Science Division: Groups  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

219

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0, No. 2 [http://eetd.lbl.gov/newsletter/nl37/] 0, No. 2 [http://eetd.lbl.gov/newsletter/nl37/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL 2011: VOL. 10, NO. 2 Carbon Cycle 2.0 Analysis Team Carbon Sequestration Study Materials Genome Project Increased Building Ventilation VOC Cleaning Technology Fort Irwin Lighting Testbed Tracking the Sun IV Cool Coatings for Cars Research Highlights Sources and Credits Understanding how effectively new technologies can save energy, water, and materials-as well as reduce energy costs and greenhouse gas emissions-is the goal of the Carbon Cycle 2.0 Energy and

220

STATEMENT OF CONSIDERATIONS REQUEST BY ALLEGHENY TECHNOLOGIES WAH CHANG DIVISION FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

ALLEGHENY TECHNOLOGIES WAH CHANG DIVISION FOR AN ADVANCE ALLEGHENY TECHNOLOGIES WAH CHANG DIVISION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42513; W(A)-05-053, CH-1340 The Petitioner, Allegheny Technologies, Wah Chang Division (ATI) was awarded a cooperative agreement for the performance of work entitled, "Evaluation of a Functional Interconnect for Solid Oxide Fuel Cells." The purpose of the project is the creation of a materials system for a solid oxide fuel cell interconnect. Work will focus on metallic materials such as ferritic stainless steels and nickel-base alloys in various combinations and configura-tions. Testing will focus on the elevated temperature degradation of surfaces in simulated fuel cell environments.\This award is a

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TTUS FP&C Design & Building Standards Division 15 Mechanical  

E-Print Network [OSTI]

TTUS FP&C Design & Building Standards Division 15 ­ Mechanical Division 15 ­ Mechanical the performance of the building systems. If the project team would like an exception to the standards's Representative. Page 1 of 39 #12;TTUS FP&C Design & Building Standards Division 15 ­ Mechanical

Gelfond, Michael

222

Performance-oriented packaging: A guide to identifying and designing. Identifying and designing hazardous materials packaging for compliance with post HM-181 DOT Regulations  

SciTech Connect (OSTI)

With the initial publication of Docket HM-181 (hereafter referred to as HM-181), the U.S. Department of Energy (DOE), Headquarters, Transportation Management Division decided to produce guidance to help the DOE community transition to performance-oriented packagings (POP). As only a few individuals were familiar with the new requirements, elementary guidance was desirable. The decision was to prepare the guidance at a level easily understood by a novice to regulatory requirements. This document identifies design development strategies for use in obtaining performance-oriented packagings that are not readily available commercially. These design development strategies will be part of the methodologies for compliance with post HM-181 U.S. Department of Transportation (DOT) packaging regulations. This information was prepared for use by the DOE and its contractors. The document provides guidance for making decisions associated with designing performance-oriented packaging, and not for identifying specific material or fabrication design details. It does provide some specific design considerations. Having a copy of the regulations handy when reading this document is recommended to permit a fuller understanding of the requirements impacting the design effort. While this document is not written for the packaging specialist, it does contain guidance important to those not familiar with the new POP requirements.

Not Available

1994-08-01T23:59:59.000Z

223

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kick-off Meeting, Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Objective and Technical Barriers Addressed More efficient, low-cost humidifiers can increase fuel cell inlet humidity: Reduce system cost and size of balance of plant; Improve fuel cell performance; Improve fuel cell durability. OBJECTIVE: Demonstrate a durable, high performance water

224

Hierarchically Structured Ni3S2/Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors  

Science Journals Connector (OSTI)

Hierarchically Structured Ni3S2/Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors ... Therefore, the active surface area of the Ni3S2 nanoparticles is increased, which further enhances the capacitive performance of the composite electrode. ... nickel sulfide; carbon nanotube; composite; cathode material; asymmetric supercapacitor ...

Chao-Shuan Dai; Pei-Yi Chien; Jeng-Yu Lin; Shu-Wei Chou; Wen-Kai Wu; Ping-Hsuan Li; Kuan-Yi Wu; Tsung-Wu Lin

2013-11-05T23:59:59.000Z

225

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2, No. 1 [http://eetd.lbl.gov/newsletter/nl44/] 2, No. 1 [http://eetd.lbl.gov/newsletter/nl44/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER 2013: VOL. 12, NO. 1 Buildings Performance Database EnergyIQ Wind Technologies Report Lighting Testbeds Q&A with Ed Vine SEAD Report - India Efficient A/C Li/S Cathode Technology Conductive Binder for Li-ion Batteries Research Highlights Sources and Credits We cover a lot of ground in the issue of EETD News you're now reading. Investing in energy performance upgrades for your commercial building? Read about the Building Performance Database. Wondering about the state of wind power in the U.S.? We've got you covered with the

226

Performance evaluation of DAAF as a booster material using the onionskin test  

SciTech Connect (OSTI)

Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in Diaminoazoxyfurazan (DAAF) for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemispherical IHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.

Morris, John S [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory; Hooks, Daniel E [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Harry, Herbert H [Los Alamos National Laboratory

2010-12-02T23:59:59.000Z

227

Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect  

E-Print Network [OSTI]

Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field, University of California, Berkeley, California 94720, United States Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States § Department of Applied Physics

Javey, Ali

228

Enhanced performance of high temperature aluminate cementitious materials incorporated with Cu powders for thermal energy storage  

Science Journals Connector (OSTI)

Abstract Cementitious materials have been extensively developed in thermal energy storage system of solar thermal power. This paper deals with the volume heat capacity, thermal conductivity, thermal expansion coefficient, and compressive strength of aluminate cementitious thermal energy storage materials with the addition of metal Cu powders. The specimens were subjected to heat-treatment at 105, 350, and 900C, respectively. In the heating process, Cu powders gradually oxidized to Cu2O and CuO, providing a so-called mass compensation mechanism for the composite paste. Meanwhile, it indicates that volume heat capacity and thermal conductivity both increase with increasing Cu powders content and decrease with the rising temperature. The optimum thermal properties were obtained at 15wt% Cu powders loading. In addition, Calorimetric Test, XRD, TGDSC, and MIP are performed for characterizing the hydration rates, the phases, the mass/heat evolution, and the pore distribution, respectively.

Huiwen Yuan; Yu Shi; Chunhua Lu; Zhongzi Xu; Yaru Ni; Xianghui Lan

2015-01-01T23:59:59.000Z

229

Assessment of cathode active materials from the perspective of integrating environmental impact with electrochemical performance  

Science Journals Connector (OSTI)

Abstract A method was brought forward for assessing cathode active materials from a perspective that accounts for the environmental impact and the electrochemical performance. Then the integrated performance, referred to as the final environmental impact, was quantified into a dimensionless score, \\{EIc\\} (see Eq. (2)). Subsequently, four types of cathode active materials LiFePO4/C, LiFe0.98Mn0.02PO4/C, LiFe0.98Ti0.02PO4/C, and FeF3(H2O)3/C were assessed. The results were: (1) the \\{EIc\\} sequence was LiFePO4/C (1.76E-02Pt) > LiFe0.98Ti0.02PO4/C (1.74E-02 Pt) > LiFe0.98Ti0.02PO4/C (1.66E-02Pt) >FeF3(H2O)3/C (4.98E-03 Pt), which meant FeF3(H2O)3/C was the optimal material and had the minimal final environmental impact. (2) With regard to the eleven impact categories, the category respiratory effects exerted by inorganics made up the largest percentage of the \\{EIc\\} for the four materials. (3) In the aspects of \\{EIm\\} (EI (Eco-indicator) value of a 1 kg cathode active material), average specific discharge capacity, and cycle life, the sub-optimal materials' sequence of theoretical potential for optimization was as follows: LiFe0.98Ti0.02PO4/C > LiFe0.98Mn0.02PO4/C > LiFePO4/C. This meant that the final environmental impact of LiFePO4/C was the most difficult to reduce, and the impact of LiFe0.98Ti0.02PO4/C could not be reduced very easily. (4) To reduce the final environmental impact, the following concrete measures were recommended: (a) the optimization of the synthesis processes for smaller particle diameters; (b) the adoption of other surface-coating agents, utilizing (other) dopants; (c) the substitution of the energy-efficient instruments for the energy-intensive instruments; (d) the optimization of the synthesis processes to contain fewer electricity-intensive steps.

Yajuan Yu; Dong Wang; Kai Huang; Xiang Wang; Yuhan Liang; Weijun Sun; Bo Chen; Shi Chen

2014-01-01T23:59:59.000Z

230

Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance  

SciTech Connect (OSTI)

Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in ferromagnetic materials of relevance to the Industries of the Future (IOF).

Ludtka, GERALD M.

2005-03-31T23:59:59.000Z

231

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consumers Kept Consumers Kept the Lights On Lawrence Berkeley National Laboratory Atmospheric Sciences Advanced Technologies Building Technologies Energy Analysis Indoor Environment Vol. 3 No. 4 News 1 California Consumers Kept the Lights On 3 A Quick and Easy Web-Based Assess- ment Tool for Day/Electric Lighting 5 Berkeley Lab Model Tracks Indoor Anthrax Dispersal 7 Rating "Green" Laboratories-Labs21 Environmental Performance Criteria 9 Research Highlights The mission of the Environmental Energy Technologies Division is to perform research and development leading to better energy technologies and the reduction of adverse energy- related environmental impacts. Environmental Energy Technologies Division continued on page 2 In this Issue C alifornia consumers-not mild weather or the cooling economy-should get credit

232

APPLICATION DIVISION III & PSYCHOLOGY  

E-Print Network [OSTI]

APPLICATION DIVISION III & PSYCHOLOGY Shared Overhead Funds Name: Date: Project Title: Amount and Psychology are intended to provide new and continuing faculty with special help to bring research

Aalberts, Daniel P.

233

Engineering Division Superconducting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10152014 Joseph V. Minervini 74 35 MW superconducting motor Superconducting Fault Current Limiter (SCFL) Technology & Engineering Division HTS (MgB 2 ) * DC superconducting...

234

Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program  

SciTech Connect (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others.

Farmer, J

2007-07-09T23:59:59.000Z

235

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: 4: Vol. 5, No. 4 Cool Colors Project: Improved Materials for Cooler Roofs BVAMP: Simplifying Assessment of Building Vulnerability NARAC Expands its Reach: Minimize Chemical-Biological Weapons Casualties How to Buy Green Power New Federal Efficiency Standards for Residential Furnaces and Boilers: EETD Researchers Estimate Potential Impacts Research Highlights Sources and Credits PDF of EETD News Cool Colors Project: Improved Materials for Cooler Roofs Drawing of a house with a cool roof Roofs and the rainbow of colors used in roofing materials are getting cooler and cooler, thanks to research by scientists in the Lawrence Berkeley National Laboratory (Berkeley Lab) Environmental Energy Technologies Division (EETD). The cooler roofs get, the more energy and money they save. A new research program in cool materials is developing the

236

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

237

HEALTH SCIENCES Division of  

E-Print Network [OSTI]

HEALTH SCIENCES Division of University of nevada, Las vegas IMPACT How we serve our students, our community, and our state #12;academic impact UNLV's Division of Health Sciences is a vital force in the Las Vegas metropolitan area, educating desperately needed health care professionals and taking on some

Cho, Hokwon

238

DIVISION & TECHNICAL COMMITTEE MEMBERSHIP: -Division Chair of the ASME NDE (Nondestructive Evaluation) Division, 2003-2005  

E-Print Network [OSTI]

DIVISION & TECHNICAL COMMITTEE MEMBERSHIP: - Division Chair of the ASME NDE (Nondestructive Evaluation) Division, 2003-2005 - Member of the Executive Committee of the ASME NDE Engineering Division, 1997-present - Secretary and Vice-Chairman of the ASME NDE Division from 2001 to 2003 - Program

Wong, Pak Kin

239

Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans  

Broader source: Energy.gov (indexed) [DOE]

3/107 3/107 Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans Implementing Sustainability: The Institutional-Behavioral Dimension Elizabeth L. Malone Tom Sanquist Amy K. Wolfe Rick Diamond Christopher Payne Jerry Dion January 2011 (Updated June 2013) Federal Energy Management Program U.S. Department of Energy DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road

240

Experimental performances of a battery thermal management system using a phase change material  

Science Journals Connector (OSTI)

Abstract Li-ion batteries are leading candidates for mobility because electric vehicles (EV) are an environmentally friendly mean of transport. With age, Li-ion cells show a more resistive behavior leading to extra heat generation. Another kind of problem called thermal runway arises when the cell is too hot, what happens in case of overcharge or short circuit. In order to evaluate the effect of these defects at the whole battery scale, an air-cooled battery module was built and tested, using electrical heaters instead of real cells for safety reasons. A battery thermal management system based on a phase change material is developed in that study. This passive system is coupled with an active liquid cooling system in order to initialize the battery temperature at the melting of the PCM. This initialization, or PCM solidification, can be performed during a charge for example, in other words when the energy from the network is available.

Charles-Victor Hmery; Franck Pra; Jean-Franois Robin; Philippe Marty

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3/107 3/107 Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans Implementing Sustainability: The Institutional-Behavioral Dimension Elizabeth L. Malone Tom Sanquist Amy K. Wolfe Rick Diamond Christopher Payne Jerry Dion January 2011 (Updated June 2013) Federal Energy Management Program U.S. Department of Energy DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road

242

2 Dynamic analysis of mixed ion beams/materials effects on the performance 3 of ITER-like devices  

E-Print Network [OSTI]

1 2 Dynamic analysis of mixed ion beams/materials effects on the performance 3 of ITER-like devices 4 Tatyana Sizyuk ,1 , Ahmed Hassanein 5 School of Nuclear Engineering, Center for Materials undersimultaneous ion penetration and mixing, scattering, reflection, physical and chemical sputtering, 20dynamic

Harilal, S. S.

243

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-07-01T23:59:59.000Z

244

Effect of Climates and Building Materials on House Wall Thermal Performance  

Science Journals Connector (OSTI)

The residential housing sectors consume a large amount of fossil fuel energy. Hence the sector is responsible for huge amount of greenhouse gas emission to the atmosphere. Most energy used in the residential housing sector is mainly for space heating and cooling. In order to reduce the energy consumption in the housing sector, energy smart house wall system is required to develop. It is difficult to achieve higher thermal efficiency by using current building wall systems with their construction materials and methods. Although some studies on different aspects of residential housing were reported in the open literature, scant information is available on energy smart house wall systems for the main stream housing. Therefore, the primary objective of this study is to investigate several new house wall systems using various construction materials in order achieve higher thermal efficiency for ongoing heating and cooling. Thermal energy performance modeling was undertaken for two current and four new house wall systems for varied climate conditions across Australia. The findings revealed that at new house wall systems can provide higher energy efficiency and the reduction of greenhouse gas emission for major locations in Australia.

Fayez Aldawi; Firoz Alam; Iftekhar Khan; Mohamed Alghamdi

2013-01-01T23:59:59.000Z

245

Materials performance in a high-level radioactive waste vitrification system  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) is a Department of Energy Facility designed to vitrify highly radioactive waste. An extensive materials evaluation program has been completed on key components in the DWPF after twelve months of operation using nonradioactive simulated wastes. Results of the visual inspections of the feed preparation system indicate that the system components, which were fabricated from Hastelloy C-276, should achieve their design lives. Significant erosion was observed on agitator blades that process glass frit slurries; however, design modifications should mitigate the erosion. Visual inspections of the DWPF melter top head and off gas components, which were fabricated from Inconel 690, indicated that varying degrees of degradation occurred. Most of the components will perform satisfactorily for their two year design life. The components that suffered significant attack were the borescopes, primary film cooler brush, and feed tubes. Changes in the operation of the film cooler brush and design modifications to the feed tubes and borescopes is expected to extend their service lives to two years. A program to investigate new high temperature engineered materials and alloys with improved oxidation and high temperature corrosion resistance will be initiated.

Imrich, K.J.; Chandler, G.T.

1996-06-17T23:59:59.000Z

246

Mechanical and electrochemical performance of composite cathode contact materials for solid oxide fuel cells  

SciTech Connect (OSTI)

The feasibility of adding glass or inorganic binder to conventional SOFC cathode contact materials (CCM) in order to improve bonding to adjacent materials in the cell stack is assessed. Two glasses (SEM-COM SCZ-8 and Schott GM31107) and one inorganic binder (Aremco 644A) are mixed with LSM particles to produce composite CCM pastes. These are used to bond Mn1.5Co1.5O4-coated stainless steel mesh current collectors to anode-supported button cells. The cells are operated at 800 C for about 1000 h. The cell with SCZ-8 addition to the CCM displays quite stable operation (3.9%/1000 h degradation), whereas the other additives lead to somewhat higher degradation rate. Bonding of the CCM to coated stainless steel coupons is also assessed. Interfacial fracture toughness is determined using a four-point bend test. The fracture toughness for LSM Schott glass (12.3 N mm 1), LSM SCZ-8 glass (6.8 N mm 1) and LSM 644A binder (5.4 N mm 1) are significantly improved relative to pure LSM (1.7 N mm 1). Indeed, addition of binder or glass is found to improve bonding of the CCM layer without sacrificing cell performance.

Tucker, Michael C. [Lawrence Berkeley National Laboratory (LBNL); Dejonghe, Lutgard C. [Lawrence Berkeley National Laboratory (LBNL); Garcia-Negron, Valerie [Material Science and Technology Division, Oak Ridge National Laboratory; Trejo, Rosa M [ORNL; Lara-Curzio, Edgar [ORNL

2013-01-01T23:59:59.000Z

247

High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques  

Science Journals Connector (OSTI)

Abstract A very common problem in solar power generation plants and various other industrial processes is the existing gap between the period of thermal energy availability and its period of usage. This situation creates the need for an effective method by which excess heat can be stored for later use. Latent heat thermal energy storage is one of the most efficient ways of storing thermal energy through which the disparity between energy production or availability and consumption can be corrected, thus avoiding wastage and increasing the process efficiency. This paper reviews a series of phase change materials, mainly inorganic salt compositions and metallic alloys, which could potentially be used as storage media in a high temperature (above 300C) latent heat storage system, seeking to serve the reader as a comprehensive thermophysical properties database to facilitate the material selection task for high temperature applications. Widespread utilization of latent heat storage systems has been held back by the poor thermal conductivity and some other inherent drawbacks of the use of PCMs; this paper reviews several heat transfer and performance enhancement techniques proposed in the literature and discusses a number of design considerations that must be taken into account aiming to provide a broad overview for the design of high temperature latent heat based thermal energy storage systems.

Bruno Crdenas; Noel Len

2013-01-01T23:59:59.000Z

248

Studies of perovskite materials for high-performance storage media, piezoelectric, and solar energy conversion devices  

E-Print Network [OSTI]

Perovskite materials are crucial in a variety of important technological applications. Using quantum-mechanical simulations and accurate molecular dynamics models, we have computationally investigated ferroelectric materials ...

Nelson, Keith Adam

249

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Containing the Effects of Containing the Effects of Chemical and Biological Agents in Buildings Lawrence Berkeley National Laboratory Air Quality Advanced Technologies Building Technologies Energy Analysis Indoor Environment Vol. 3 No. 3 News 1 Containing the Effects of Chemical and Biological Agents in Buildings 3 Laser Ultrasonic Sensor Streamlines Papermaking Process 5 Building a Smarter Light: The IBECS Network/Ballast Interface 6 IPMVP-from a DOE-Funded Iniative to a Not-for-Profit Organization 8 Skylight Well Reduces Solar Heat Gain 9 Research Highlights The mission of the Environmental Energy Technologies Division is to perform research and development leading to better energy technologies and the reduction of adverse energy- related environmental impacts. Environmental Energy Technologies Division

250

Energy Technology Division research summary - 1999.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

NONE

1999-03-31T23:59:59.000Z

251

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSK, BR) and the Scientific User Facilities Division (XGZ, EAK, APL) and the Division of Materials Sciences and Engineering (DMN), U.S. Department of Energy. Citation for...

252

LIBRARY COMMITTEE BERKELEY DIVISION of the ACADEMIC SENATE  

E-Print Network [OSTI]

LIBRARY COMMITTEE BERKELEY DIVISION of the ACADEMIC SENATE Annual Report 1996-97 The Library administration of the Library and perform[ing] such other duties relative to the Library as may be committed to the Division." · In accordance with this charge, the Library Committee took action on the following topics

California at Berkeley, University of

253

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

Jie Guan; Nguyen Minh

2003-10-01T23:59:59.000Z

254

Principal Investigators | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frank Collart Frank Collart BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Frank Collart Biosciences Division Bldg: 202 Room: A-357 Email: fcollart@anl.gov Phone: (630) 252-4859 Fax: (630) 252-5517 Education Professional Experience Publication List Research Highlights > Education: 1984, Ph.D, Medical College of Ohio, Medical Sciences 1982, M.S., Bowling Green State University, Chemistry 1977, B.A., Bowling Green State University, Chemistry > Professional Experience: 1994-present: Molecular Biologist; Biosciences Division, Argonne National Laboratory. 1989-1994: Assistant Molecular Biologist; Division of Biological and Medical Research, Argonne National Laboratory. 1984-1989: Postdoctoral Appointee, Supervisor: Dr Eliezer Huberman; Division of Biological and Medical Research, Argonne National Laboratory.

255

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

256

High-performance beam-plasma neutron sources for fusion materials development  

SciTech Connect (OSTI)

The design and performance of a relatively low-cost, plasma-based, 14-MeV deuterium-tritium neutron source for accelerated end-of-life testing of fusion reactor materials are described. An intense flux (up to 5 [times] 10[sup 18] n/m[sup 2][center dot]s) of 14-MeV neutrons is produced in a fully ionized high-density tritium target (n[sub e] [approx] 3 [times] 10[sup 21] m[sup [minus]3]) by injecting a current of 150-keV deuterium atoms. The tritium plasma target and the energetic D[sup +] density produced by D[sup 0] injection are confined in a [<=] 0.16-m-diam column by a linear magnet set, which provides magnetic fields up to 12 T. Energy deposited by transverse injection of neutral beams at the midpoint of the column is transported along the plasma column to the end regions. Three variations of the neutron source design are discussed, differing in the method of control of the energy transport. Emphasis is on the design in which the target plasma density is maintained in a region where electron thermal conduction along the column is the controlling energy-loss process.

Coensgen, F.H.; Casper, T.A.; Correll, D.L.; Damm, C.C.; Futch, A.H.; Logan, B.G.; Molvik, A.W. (Lawrence Livermore National Lab., CA (United States))

1990-10-01T23:59:59.000Z

257

Innovative Materials, Processes, and Tools Improve Performance, Quality of White LEDs  

Broader source: Energy.gov [DOE]

Lumileds Lighting joined forces with Sandia National Laboratories to investigate critical materials issues related to solid-state lighting technology.

258

Detector Performance of Ammonium-Sulfide-Passivated CdZnTe and CdMnTe Materials  

SciTech Connect (OSTI)

Dark currents, including those in the surface and bulk, are the leading source of electronic noise in X-ray and gamma detectors, and are responsible for degrading a detector's energy resolution. The detector material itself determines the bulk leakage current; however, the surface leakage current is controllable by depositing appropriate passivation layers. In previous research, we demonstrated the effectiveness of surface passivation in CZT (CdZnTe) and CMT (CdMnTe) materials using ammonium sulfide and ammonium fluoride. In this research, we measured the effect of such passivation on the surface states of these materials, and on the performances of detectors made from them.

Kim, K.H.; Bolotnikov, A.E.; Camarda, G.S.; Marchini, L.; Yang, G.; Hossain, A.; Cui, Y.; Xu, L.; and James, R.B.

2010-08-01T23:59:59.000Z

259

Mesoporous MnO2/Carbon Aerogel Composites as Promising Electrode Materials for High-Performance Supercapacitors  

Science Journals Connector (OSTI)

Mesoporous MnO2/Carbon Aerogel Composites as Promising Electrode Materials for High-Performance Supercapacitors ... In this Letter, we explored a novel route to prepare mesoporous MnO2/carbon aerogel composites by electrochemical deposition assisted by gas bubbles. ... The results of nitrogen adsorption?desorption experiments and electrochemical measurements showed that these obtained mesoporous MnO2/carbon aerogel composites had a large specific surface area (120 m2/g), uniform pore-size distribution (around 5 nm), high specific capacitance (515.5 F/g), and good stability over 1000 cycles, which give these composites potential application as high-performance supercapacitor electrode materials. ...

Gao-Ren Li; Zhan-Ping Feng; Yan-Nan Ou; Dingcai Wu; Ruowen Fu; Ye-Xiang Tong

2010-01-12T23:59:59.000Z

260

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alexei Koshelev 2011-03-29T14:56:16+00:00 Alexei Koshelev 2011-03-29T14:56:16+00:00 2011-03-29T14:56:16+00:00 http://www.msd.anl.gov/koshelev Lacey Bersano lbersano@anl.gov   Alexei Koshelev

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

em Sun, 12 Jan 2014 01:06:52 em Sun, 12 Jan 2014 01:06:52 +0000 Joomla! 1.6 - Open Source Content Management en-gb Arief Wibowo http://www.msd.anl.gov/wibowo http://www.msd.anl.gov/wibowo tkendall@anl.gov (Tim Kendall) Wed, 21 Sep 2011 20:56:14 +0000 Bum Joon Kim http://www.msd.anl.gov/b-kim http://www.msd.anl.gov/b-kim mleece@anl.gov (Matt Leece) Tue, 29 Mar 2011 19:52:00 +0000 Constantinos Stoumpos http://www.msd.anl.gov/stoumpos http://www.msd.anl.gov/stoumpos lbersano@anl.gov (Lacey Bersano) Thu, 12 Jan 2012 16:10:16 +0000 Daniel Bugaris http://www.msd.anl.gov/bugaris http://www.msd.anl.gov/bugaris lbersano@anl.gov (Lacey Bersano) Thu, 12 Jan 2012 16:10:16 +0000 Daniel Shoemaker http://www.msd.anl.gov/shoemaker http://www.msd.anl.gov/shoemaker mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 18:51:24 +0000 David Hinks

262

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anand Bhattacharya 2011-03-29T15:50:34+00:00 Anand Bhattacharya 2011-03-29T15:50:34+00:00 2011-03-29T15:50:34+00:00 http://www.msd.anl.gov/bhattacharya Lacey Bersano lbersano@anl.gov   Anand Bhattacharya Physicist Bldg. 440, A-233 Phone: 630-252-6518  anand@anl.gov

263

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bogdan Dabrowski 2011-04-05T19:32:54+00:00 Bogdan Dabrowski 2011-04-05T19:32:54+00:00 2011-04-05T19:32:54+00:00 http://www.msd.anl.gov/dabrowski Lacey Bersano lbersano@anl.gov   Bogdan Dabrowski STA Faculty Appointee Bldg. 223,D-225 Phone: 630-252-5541 dabrowski@anl.gov

264

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sc Sun, 12 Jan 2014 01:06:55 sc Sun, 12 Jan 2014 01:06:55 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alex Martinson http://www.msd.anl.gov/martinson http://www.msd.anl.gov/martinson lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 16:26:49 +0000 Alexander Zinovev http://www.msd.anl.gov/zinovev http://www.msd.anl.gov/zinovev lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 17:23:36 +0000 Cornel Emil Tripa http://www.msd.anl.gov/tripa http://www.msd.anl.gov/tripa lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 16:31:49 +0000 David G. Willingham http://www.msd.anl.gov/willingham http://www.msd.anl.gov/willingham lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 18:02:49 +0000 Dieter M. Gruen http://www.msd.anl.gov/gruen http://www.msd.anl.gov/gruen lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar

265

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

srs Sun, 12 Jan 2014 01:06:56 srs Sun, 12 Jan 2014 01:06:56 +0000 Joomla! 1.6 - Open Source Content Management en-gb Andi M. Barbour http://www.msd.anl.gov/barbour http://www.msd.anl.gov/barbour lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 15:49:48 +0000 Boyd W. Veal Jr. http://www.msd.anl.gov/veal http://www.msd.anl.gov/veal lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 16:03:26 +0000 Carol Thompson http://www.msd.anl.gov/thompson http://www.msd.anl.gov/thompson lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 15:46:45 +0000 Chad Folkman http://www.msd.anl.gov/folkman http://www.msd.anl.gov/folkman lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 15:52:47 +0000 Chenhui Zhu http://www.msd.anl.gov/c-zhu http://www.msd.anl.gov/c-zhu lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:35:00 +0000 Daniel

266

Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5:58+00:00 Joomla! 1.6 - Open Source 5:58+00:00 Joomla! 1.6 - Open Source Content Management Frontpage of site 2011-03-03T12:02:20+00:00 2011-03-03T12:02:20+00:00 http://www.msd.anl.gov/content/uncategorised/frontpage-of-site Administrator msditadmin@anl.gov

FEATURED ARTICLE

267

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

personnel Sun, 12 Jan 2014 01:06:11 +0000 personnel Sun, 12 Jan 2014 01:06:11 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alan McArthur http://www.msd.anl.gov/mcarthur http://www.msd.anl.gov/mcarthur mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 21:47:53 +0000 Alex Martinson http://www.msd.anl.gov/martinson http://www.msd.anl.gov/martinson lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 16:26:49 +0000 Alexander Zinovev http://www.msd.anl.gov/zinovev http://www.msd.anl.gov/zinovev lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 17:23:36 +0000 Alexei Abrikosov http://www.msd.anl.gov/abrikosov http://www.msd.anl.gov/abrikosov lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:49:38 +0000 Alexei Koshelev http://www.msd.anl.gov/koshelev http://www.msd.anl.gov/koshelev lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 14:56:16 +0000 Alexey

268

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mm Sun, 12 Jan 2014 01:06:53 mm Sun, 12 Jan 2014 01:06:53 +0000 Joomla! 1.6 - Open Source Content Management en-gb Bryan S. Ringstrand http://www.msd.anl.gov/ringstrand http://www.msd.anl.gov/ringstrand mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 21:50:25 +0000 Chunrong Yin http://www.msd.anl.gov/yin http://www.msd.anl.gov/yin lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 18:59:07 +0000 David Horner http://www.msd.anl.gov/horner http://www.msd.anl.gov/horner lbersano@anl.gov (Lacey Bersano) Thu, 31 Mar 2011 14:41:22 +0000 Gihan Kwon http://www.msd.anl.gov/kwon http://www.msd.anl.gov/kwon mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 19:56:06 +0000 Glen Ferguson http://www.msd.anl.gov/ferguson http://www.msd.anl.gov/ferguson lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 18:40:19 +0000 Haiying He http://www.msd.anl.gov/he

269

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

06+00:00 Joomla! 1.6 - Open Source 06+00:00 Joomla! 1.6 - Open Source Content Management Alan McArthur 2011-06-27T21:47:53+00:00 2011-06-27T21:47:53+00:00 http://www.msd.anl.gov/mcarthur Matt Leece mleece@anl.gov   Alan McArthur STA Electrical Engineer Bldg. 211, A-102A Phone:(630)252-2757 mcarthur@anl.gov     Alan McArthur

270

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cmt Sun, 12 Jan 2014 01:06:51 cmt Sun, 12 Jan 2014 01:06:51 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alexei Abrikosov http://www.msd.anl.gov/abrikosov http://www.msd.anl.gov/abrikosov lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:49:38 +0000 Alexey Galda http://www.msd.anl.gov/galda http://www.msd.anl.gov/galda lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 19:17:50 +0000 Andreas Glatz http://www.msd.anl.gov/glatz http://www.msd.anl.gov/glatz lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:55:34 +0000 Arthur J. Fedro http://www.msd.anl.gov/fedro http://www.msd.anl.gov/fedro lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 18:53:28 +0000 Brian Skinner http://www.msd.anl.gov/skinner http://www.msd.anl.gov/skinner lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 19:03:06 +0000 Gian

271

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tdag Sun, 12 Jan 2014 01:06:56 tdag Sun, 12 Jan 2014 01:06:56 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alan McArthur http://www.msd.anl.gov/mcarthur http://www.msd.anl.gov/mcarthur mleece@anl.gov (Matt Leece) Mon, 27 Jun 2011 21:47:53 +0000 Barbara L. Hall http://www.msd.anl.gov/hall http://www.msd.anl.gov/hall mherman@anl.gov (Matt Herman) Fri, 01 Apr 2011 19:17:45 +0000 Dean A. Bass http://www.msd.anl.gov/bass http://www.msd.anl.gov/bass tkendall@anl.gov (Tim Kendall) Wed, 23 Mar 2011 01:45:09 +0000 Donald A. Peterson http://www.msd.anl.gov/peterson http://www.msd.anl.gov/peterson tkendall@anl.gov (Tim Kendall) Wed, 23 Mar 2011 01:45:09 +0000 John F. Schneider http://www.msd.anl.gov/schneider http://www.msd.anl.gov/schneider tkendall@anl.gov (Tim Kendall) Wed, 23 Mar 2011 01:45:09 +0000 Kenneth L.

272

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arief Wibowo 2011-09-21T20:56:14+00:00 Arief Wibowo 2011-09-21T20:56:14+00:00 2011-09-21T20:56:14+00:00 http://www.msd.anl.gov/wibowo Tim Kendall tkendall@anl.gov

Arief Wibowo Arief Wibowo Postdoctoral Appointee Bldg. 223, A-110 Phone: 630-252-3996 awibowo@anl.gov

273

Awards - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awards Awards Awards ACA Bertram E. Warren Award D. Price - 1997 ACCA Programming Competition N. Adams - 2009 - 2nd place Alumni Achievement Awards J. D. Jorgensen - 1992 - Honored Alumnus from Brigham Young University College of Physical and Mathematical Sciences B. J. Kestel (1957) - 1998 - Distinguished Alumni Achievement Award from Joliet Junior College Dieter Gruen - 2001 - Alumni Merit Award from Northwestern University American Academy of Arts and Sciences A. A. Abrikosov - Foreign Honorary Member - 1991 American Physical Society Axel Hoffmann - Fellow - 2012 Alder Award S. Bader - 2007 Oliver E. Buckley Condensed Matter Prize J. C. Campuzano - 2011 - for physics work in spectroscopy American Vacuum Society S. Bader - 1999 S. Bader - 2001 - John A. Thornton Memorial Award

274

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sm Sun, 12 Jan 2014 01:06:56 sm Sun, 12 Jan 2014 01:06:56 +0000 Joomla! 1.6 - Open Source Content Management en-gb Alexei Koshelev http://www.msd.anl.gov/koshelev http://www.msd.anl.gov/koshelev lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 14:56:16 +0000 Andrey Sokolov http://www.msd.anl.gov/sokolov http://www.msd.anl.gov/sokolov lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 20:47:47 +0000 Arnaud Demortiere http://www.msd.anl.gov/demortiere http://www.msd.anl.gov/demortiere lbersano@anl.gov (Lacey Bersano) Thu, 06 Oct 2011 15:06:40 +0000 Carlos A. Chaparro http://www.msd.anl.gov/chaparro http://www.msd.anl.gov/chaparro lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr 2011 20:56:05 +0000 David L. Piet http://www.msd.anl.gov/piet http://www.msd.anl.gov/piet lbersano@anl.gov (Lacey Bersano) Tue, 05 Apr

275

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5+00:00 Joomla! 1.6 - Open Source 5+00:00 Joomla! 1.6 - Open Source Content Management Alex Martinson 2011-04-05T16:26:49+00:00 2011-04-05T16:26:49+00:00 http://www.msd.anl.gov/martinson Lacey Bersano lbersano@anl.gov   Alex Martinson   Alex Martinson Principal Investigator, Assistant Chemist Bldg. 200,D-169 Phone: 630-252-7520 martinson@anl.gov

276

Division Personnel - Argonne National Laboratories, Materials Sicence  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

im Sun, 12 Jan 2014 01:06:52 im Sun, 12 Jan 2014 01:06:52 +0000 Joomla! 1.6 - Open Source Content Management en-gb Becky Videtic http://www.msd.anl.gov/videtic http://www.msd.anl.gov/videtic mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 20:10:42 +0000 Bin Liu http://www.msd.anl.gov/b-liu http://www.msd.anl.gov/b-liu mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 20:19:19 +0000 Charudatta Phatak http://www.msd.anl.gov/phatak http://www.msd.anl.gov/phatak mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 20:07:38 +0000 Geunhee Lee http://www.msd.anl.gov/g-lee http://www.msd.anl.gov/g-lee mleece@anl.gov (Matt Leece) Tue, 05 Apr 2011 20:18:00 +0000 Guo-Ren Bai http://www.msd.anl.gov/bai http://www.msd.anl.gov/bai lbersano@anl.gov (Lacey Bersano) Tue, 29 Mar 2011 19:25:57 +0000 Jeffery Klug http://www.msd.anl.gov/klug http://www.msd.anl.gov/klug mleece@anl.gov

277

Achieving High Performance Polymer Tandem Solar Cells via Novel Materials Design  

E-Print Network [OSTI]

assisted preparation of narrow-bandgap conjugated polymers for high performance bulk heterojunction solar

Dou, Letian

2014-01-01T23:59:59.000Z

278

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF PIEZOELECTRIC MATERIALS FOR ROADWAY ENERGY HARVESTING Cost of Energy and Demonstration Roadmap Prepared for: California Energy Commission Prepared by: DNV KEMA Energy & Sustainability JANUARY 2014 CEC5002013007

279

People | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lynda Dieckman Lynda Dieckman BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Lynda Dieckman Bldg: 202 Room: B265 E-mail Lynda Dieckman Phone: (630) 252-3953 Full Information Research Highlights > Education: 1989, Ph.D, University of Cincinnati, Physiology and Biophysics 1985, M.S., Case Western Reserve, Biology 1981, B.S., John Carroll University, Biology > Professional Experience: 2008-present Functional Genomics Specialist, Biosciences Division, Argonne National Laboratory, Argonne, IL 2002-2008 Molecular Biologist/Environmental Safety and Health and Quality Assurance Coordinator, Biosciences Division, Argonne National Laboratory, Argonne, IL 1997-2002 Special Term Appointee, Biosciences Division, Argonne National Laboratory, Argonne, IL

280

Genomics Division Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PIs PIs Mark Biggin Jim Bristow Jan-Fang Cheng Inna Dubchak Suzanna Lewis Chris Mungall Len Pennacchio Eddy Rubin Axel Visel Divisional Information Support Staff Seminars Diversity Directory Contact Us The characterization and analysis of genome sequences from such diverse organisms as humans to the most primitive soil microbe represent a watershed opportunity for biology. The Genomics Division is taking advantage of this wealth of new information. While it is well known that DNA encodes the basic blue print of life, it is not known how best to interpret most of this information. To address this question, laboratories within the division are developing computational, biochemical, genetic, and imaging methods to decipher the complex sequence motifs that control RNA transcription, DNA replication, and chromosome structure. The Division is

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Argonne Physics Division - ATLAS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

[Argonne Logo] [DOE Logo] [Argonne Logo] [DOE Logo] Physics Division Home News Division Information Contact Organization Chart Directory ES&H Scientific Staff Publications Awards & Honors Pictures & Videos New Faces PHY Webmail Meeting Rooms Research Low Energy Medium Energy Theory Accelerator R&D Research Highlights Seminars & Events Colloquium Division Seminar MEP Seminar Theory Seminar Heavy Ion Discussion Student Lunch Talk ATLAS arrowdn Facility Schedules User Info Proposals Targetlab CARIBU FMA Gammasphere GRETINA HELIOS AGFA Search Argonne ... Search ATLAS Facility User Info Proposals Beam Schedule Safety Gammasphere GRETINA FMA CARIBU HELIOS AGFA Targetlab Workshop 2009 25 Years of ATLAS Gretina Workshop ATLAS Gus Savard Guy Savard, Scientific Director of ATLAS Welcome to ATLAS, the Argonne Tandem Linac Accelerator System. ATLAS is the

282

Proceedings of 2009 NSF Engineering Research and Innovation Conference, Honolulu, Hawaii Grant #0423484 Separation and Energy Use Performance of Material Recycling Systems  

E-Print Network [OSTI]

#0423484 Separation and Energy Use Performance of Material Recycling Systems Timothy Gutowski Malima I Abstract: This paper outlines current research on the performance of recycling processes and systems of recycling processes. Descriptive terminology for separation performance is presented. The goal

Gutowski, Timothy

283

Materials sciences programs, Fiscal year 1997  

SciTech Connect (OSTI)

The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

NONE

1998-10-01T23:59:59.000Z

284

Information Management Division (HC-14) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Information Management Division (HC-14) Information Management Division (HC-14) Information Management Division (HC-14) Mission Statement This division provides operational support and consultative advice to the Chief Human Capital Officer and Departmental Senior Management on matters pertaining to the acquisition, deployment and maintenance of enabling technology to support the tactical and strategic management of human capital related to accomplishing Department goals and program objectives. The mission also entails establishing and providing assistance and guidance on the use of technology-supported business process reengineering; investment analysis; performance measurement; strategic development and application of information systems and infrastructure; policies to provide improved management of information resources and technology; and better,

285

U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)  

SciTech Connect (OSTI)

This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

286

Effect of microstructure, grain size, and rare earth doping on the electrorheological performance of nanosized particle materials  

E-Print Network [OSTI]

and grain sizes were prepared by doping TiO2 or ZrO2 with rare earth (RE) elements, and by changingEffect of microstructure, grain size, and rare earth doping on the electrorheological performance-Hua Zhang,c Shu-Mei Chen,d Rui-Li Huange and Song Gaoa a State Key Laboratory of Rare Earth Materials

Gao, Song

287

C-AD Accelerator Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

288

Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation  

SciTech Connect (OSTI)

Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

Li, Q.

2011-05-18T23:59:59.000Z

289

Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments  

SciTech Connect (OSTI)

As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01T23:59:59.000Z

290

High-performance computing in the chemistry and physics of materials  

Science Journals Connector (OSTI)

...Special feature 1005 117 45 High-performance computing in the chemistry and physics...London WC1H OAJ, UK High performance computing (HPC) is now a key enabling...exploited the UKs national high-performance computing facilities-over two...

2011-01-01T23:59:59.000Z

291

Performance improvement of Ge-Sb-Te material by GaSb doping for phase change memory  

SciTech Connect (OSTI)

Effects of GaSb doping on phase change characteristics of Ge-Sb-Te material are investigated by in situ resistance and x-ray diffraction measurement, optical spectroscopy, and x-ray photoelectron spectroscopy. The crystallization temperature and data retention of Ge-Sb-Te material increase significantly by the addition of GaSb, which results from the high thermal stability of amorphous GaSb. In addition, GaSb-doped Ge-Sb-Te material exhibits faster crystallization speed due to the change in electronic states as a result of the formation of chemical bonds with Ga element. Incorporation of GaSb is highly effective way to enhance the comprehensive performance of Ge-Sb-Te material for phase change memory.

Lu, Yegang [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China) [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Zhonghua; Song, Sannian; Cheng, Limin; Song, Zhitang [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)] [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Shen, Xiang; Wang, Guoxiang; Dai, Shixun [Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211 (China)] [Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211 (China)

2013-06-17T23:59:59.000Z

292

integration division Human Systems  

E-Print Network [OSTI]

Vibration Test Facility incorporates state-of-the-art vibration generation and measurement hardwareintegration division Human Systems ISIS Vibration Test Facility Objective Approach Impact 1. Assess impact of flight-like whole-body vibration on human operational capabilities and ability to maintain

293

Experimental Research on Thermal Performance of Lightweight Envelope Integrated with Phase Change Material  

Science Journals Connector (OSTI)

Present relief camp built with lightweight envelope has obvious cold-house effect and poor indoor thermal environment. Advantage of phase change material provides one possible way to improve thermal...

Jun Wang; Long Xu; Enshen Long

2014-01-01T23:59:59.000Z

294

The preparation of PANI/CA composite electrode material for supercapacitors and its electrochemical performance  

Science Journals Connector (OSTI)

Polyaniline (PANI)/carbon aerogel (CA) composite electrode materials were prepared by chemical oxidation polymerization. The morphology of PANI/CA composite was examined by scanning electron microscopy. The re...

Hongfang An; Ying Wang; Xianyou Wang; Na Li

2010-04-01T23:59:59.000Z

295

Thermal Performance of Microencapsulated Phase Material (MPCM) Slurry in a Coaxial Heat Exchanger  

E-Print Network [OSTI]

Microencapsulated phase change material (MPCM) slurries and coil heat exchangers had been recently studied separately as enhancers of convective heat transfer processes. Due to the larger apparent heat related to the phase change process...

Yu, Kun

2014-05-08T23:59:59.000Z

296

Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion  

Broader source: Energy.gov [DOE]

Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor

297

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2001: 2001: Vol. 2, No. 4 The California Energy Crisis: A Brief Summary of Events The California Energy Crisis: Long-and Short-Term Solutions High-Performance Commercial Building Systems Supporting the Cool Roofs Standard Meteorology, Energy, and Air Quality High-Performance Fume Hood Reduces Energy Use 50% The New Berkeley Lamp Lights the Way to Energy Savings Two Web Sites Help Californians Save Energy Research Highlights Sources and Credits PDF of EETD News The California Energy Crisis: A Brief Summary of Events Editor's Note: This special issue of EETD News examines the California energy crisis of 2001, and research and development underway at the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory focused on helping to solve the crisis, both in the short and

298

Chemistry Division Department of Biological  

E-Print Network [OSTI]

1 Chemistry Division Department of Biological and Chemical Sciences, Illinois Institute-13 Chemistry Division invites nominations for Kilpatrick Fellowship for the academic year 2012's Chemistry Department from 1947­1960. Mary Kilpatrick was a chemistry faculty member from 1947

Heller, Barbara

299

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

E-Print Network [OSTI]

Norway Abstract The thermal performance of windows is important for energyNorway Norwegian University of Science and Technology Howdy Goudey Lawrence Berkeley National Laboratory Environmental Energy

Gustavsen, Arild

2012-01-01T23:59:59.000Z

300

Ramesh Gupta | Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ramesh Gupta Ramesh Gupta Ramesh Gupta has always been a leader in the world of superconducting magnets, which are essential to great modern accelerators such as the Relativistic Heavy Ion Collider at BNL, and the Large Hadron Collider at CERN, Switzerland. For the past decade, Lab researchers have been exploring the use of new materials that become superconducting at higher temperatures. Gupta, head of the High Temperature Superconductor (HTS) Research and Development Group in the Superconducting Magnet Division, is among those exploring avenues for HTS magnets that are energy efficient and have magnetic fields that are a million times stronger than the Earth's. These new magnets could revolutionize use in future accelerators, play a key role in energy efficiency and storage, and make possible new

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Maintenance Assessment Plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

MAINTENANCE MAINTENANCE Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: An effective facilities maintenance program should optimize the material condition of components and equipment to support safe and effective operations and ensure the peak performance and reliability of those systems and equipment important to operations. Criteria: The program, facility or operation has a Maintenance Implementation Plan (MIP), or equivalent document, which defines and documents the approach to conduct of maintenance. The maintenance organization structure is well defined and understood. Responsibilities, organizational interfaces, and administrative activities are adequately defined and implemented to provide timely availability of

302

Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material  

E-Print Network [OSTI]

of the energy storage floor is designed,which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The PCM thermal storage time is studied in relation to the floor surface temperature under different low-temperature hot...

Qiu, L.; Wu, X.

2006-01-01T23:59:59.000Z

303

Division Name Will  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C O N TA C T > Claude B. Reed | f C O N TA C T > Claude B. Reed | f a x: 63 0- 25 2- 32 96 | C BR e e d@ anl . go v | Nuclear Engineering Division | www.ne.anl.gov Argonne National Laborator y, 9700 South Cass Avenue, Lemont, IL 60439 August 2013 Nuclear Engineering Division Proton beam on lithium film experiment for the FRIB stripper Argonne National Laboratory has developed a liquid lithium charge stripper for use in the Facility for Rare Isotope Beams (FRIB) located at Michigan State University. FRIB will provide intense beams of rare isotopes that cannot be handled by ordinary means, creating a challenge to find a workable concept for the charge stripper and to test it in a beamline environment. The advantages of liquid lithium are: a) the heat deposited on the medium is carried away by the fast moving

304

Life Sciences Division Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The vision of the Life Sciences Division is to advance basic knowledge, and The vision of the Life Sciences Division is to advance basic knowledge, and the health of humans and the biosphere, by elucidating the 4-Dimensional dynamics of complex biological systems -- ranging from molecules to microbes to humans. Research Highlights New Imaging Technique Identified to Monitor Progression of Heart Failure In a recent publication of Journal of Nuclear Medicine, a team of scientists from Berkeley Lab, the University of Utah, and UC San Francisco describe a new imaging technique used to monitor the progression of heart failure. More » Unlocking the Secrets of Proteins Cryoelectron microscopy is helping to unlock the secrets of proteins as never before, thanks to technology developed for one of the world's most powerful electron microscopes, TEAM, at Berkeley Lab's National Center for

305

Argonne Physics Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RBW RBW Robert B. Wiringa (the guy on the right) phone: 630/252-6134 FAX: 630/252-6008 e-mail: wiringa@anl.gov Biographical sketch 1972 B.S., Rensselaer Polytechnic Institute 1974 M.S., University of Illinois at Urbana-Champaign 1978 Ph.D., University of Illinois at Urbana-Champaign 1978-80 Research Associate, Los Alamos Scientific Laboratory 1981-83 Research Associate, Argonne National Laboratory 1983-87 Assistant Physicist, Argonne National Laboratory 1987-99 Physicist, Argonne National Laboratory 2000- Senior Physicist, Argonne National Laboratory Visiting appointments 1993 Visiting Associate & Lecturer, California Institute of Technology Honors, Organizations, Committees, etc. 1994-2001 Chief, Theory Group, Physics Division, Argonne National Laboratory 1997-2000 Webmaster, Division of Nuclear Physics, American Physical

306

Performance evaluation of booster materials in the plastic bonded explosive PBX 9502 in a hemispherical wave breakout test  

SciTech Connect (OSTI)

An explosive booster is normally required to initiate detonation in an insensitive high explosive (lHE). Booster materials must be ignitable by a conventional detonator and deliver sufficient energy and favorable pulse shape to initiate the IHE charge. The explosive booster should be as insensitive as reasonably possible to maintain the overall safety margin of the explosive assembly. A hemispherical wave breakout test termed the on ionskin test is one of the methods of testing the performance of booster materials in an initiation train assembly. There are several variations of this basic test which are known by other names. In this test, the wave breakout time-position history at the surface of a hemispherical IHE acceptor charge is recorded, and the relative uniformity of breakout allows qualitative comparison between booster candidates and quantitative comparison of several metrics. The results of a series of onionskin experiments evaluating the performance of some new booster formulations in the triaminotrinitrobenzene (TA TB) -based plastic bonded explosive PBX 9502 will be presented. The boosters were tested in an onionskin arrangement in which the booster pellet was cylindrical, and the tests were performed at a temperature of-55{sup o}C to emphasize variations in spreading performance. The modification from the traditional hemispherical geometry facilitated efficient explosive fabrication and charge assembly, but the results indicate that this geometry was not ideal for several reasons. Despite the complications arising from geometry, promising performance was observed from booster formulations including 3,3' -diamino-4,4'azoxyfurazan.

Hooks, Daniel E [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Francois, Elizabeth [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

307

Effects of Bipolar Plate Material and Impurities in Reactant Gases on PEM Fuel Cell Performance  

Science Journals Connector (OSTI)

Farmingdale State College of the State University of New York, Farmingdale, New York 11735; Chemical Engineering & Pilot Plant Department, National Research Center, Dokki, Giza, Egypt; Advanced Energy Research and Technology Center (AERTC), Materials Science and Engineering Department, Stony Brook University, Stony Brook, New York 11794-2275; Energy Sciences and Technology Department, Brookhaven National Laboratory, Upton, New York 11973 ... Renewable energy sources such as solar, wind, and biomasses could be utilized to produce hydrogen through electrolysis, thermolysis, or biothermochemistry and fermentation processes. ...

Hazem Tawfik; Kamel El-Khatib; Yue Hung; Devinder Mahajan

2007-11-28T23:59:59.000Z

308

Remediation of asbestos containing materials by Joule heating vitrification performed in a pre-pilot apparatus  

Science Journals Connector (OSTI)

A remediation method for asbestos containing materials based on vitrification by Joule heating is presented. Crystal phase transformations of several asbestos minerals were investigated. The vitrification technology on a pre-pilot scale was applied to cement-asbestos pipes containing simultaneously chrysotile and crocidolite. The progressive heating up to 1600C led to the complete melting of fibrous minerals and the rapid cooling of the melt formed a monolithic glass. Mineralogical (XRD) and morphological (SEM) analysis showed absence of crystalline phases within the glass. The external part of the Joule heated volume was not melted but lacked asbestos because of an irreversible thermal conversion of asbestos and silicate minerals into high temperature silicates (enstatite and diopside). An absolute filter integrated in the gas effluent treatment system avoided the release of asbestos fibres during the vitrification process. This process assured the complete remediation of asbestos containing materials and its scaling up to the field application could be a suitable industrial treatment of tons of material.

Francesco Dellisanti; Piermaria L. Rossi; Giovanni Valdr

2009-01-01T23:59:59.000Z

309

Metals and Ceramics Division progress report for period ending December 31, 1992  

SciTech Connect (OSTI)

This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

Craig, D.F.; Weir, J.R. Jr.

1993-04-01T23:59:59.000Z

310

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Highlights Research Highlights Research Highlights Berkeley Lab Researchers Share in 2013 Supercomputing Award International Supercomputing Conference In June, at the International Scientific Computing Conference in Leipzig, Germany, the German Gauss Center for Supercomputing bestowed its 2013 Gauss Award to a paper titled "TUE, A New Energy-Efficiency Metric Applied at ORNL's Jaguar." Authors of the paper included Environmental Energy Technologies Division researchers William Tschudi and Henry Coles, along with other Members of the Energy Efficient High Performance Computing Working Group (EE HPC WG): Michael K. Patterson (Intel), Stephen W. Poole, Chung-Hsing Hsu, and Don Maxwell (Oak Ridge National Laboratory), David J. Martinez (Sandia National Laboratories), and Natalie Bates (EE HPC WG). The

311

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Q&A with Cindy Regnier, Manager of the Facility for Low-Energy A Q&A with Cindy Regnier, Manager of the Facility for Low-Energy eXperiments in Buildings (FLEXLAB) The Facility for Low-Energy eXperiments in Buildings (FLEXLAB) is designed to be a national focal point for developing, simulating, and testing energy-efficient technologies and strategies for buildings. FLEXLAB users will conduct research and develop technologies at FLEXLAB on single components as well as whole-building integrated design and operation. This research is aimed at substantially lowering the energy use, and improving the comfort and performance, of both new and existing buildings. FLEXLAB is a facility of Lawrence Berkeley National Laboratory's Environmental Energy Technologies Division (EETD). Artist's conception of a portion of the FLEXLAB facility

312

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: 2: Vol. 3, No. 4 California Consumers Kept the Lights On Quick and Easy Web-Based Assessment Tool for Day/Electric Lighting Berkeley Lab Model Tracks Indoor Anthrax Dispersal Rating "Green" Laboratories-Labs21 Environmental Performance Criteria Research Highlights Sources and Credits PDF of EETD News California Consumers Kept the Lights On California consumers-not mild weather or the cooling economy-should get credit for avoiding blackouts and keeping the lights on in summer 2001 by embracing energy efficiency and conservation and reducing their peak demand by 3,000 to 5,500 megawatts (MW), according to research by scientists at the Environmental Energy Technologies Division. This is the conclusion reached in a new analysis of the consumer response

313

Amy W. Apon, Ph.D. Professor and Chair, Computer Science Division  

E-Print Network [OSTI]

performance computing, impact of high performance computing to research competiveness, sustainable funding, Division of Computer Science, Clemson University 20082011 Director, Arkansas High Performance Computing Center 20042008 Director of High Performance Computing, University of Arkansas 20072011 Professor

Duchowski, Andrew T.

314

A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance  

SciTech Connect (OSTI)

A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 m was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 C, though 600 C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: Potassium lithium titanate was prepared by solid-state reaction. Lower temperature reaction resulted in smaller sized particles of titanate. 600 C was good enough to obtain single phased potassium lithium titanate. The product exhibited better performance as photocatalyst.

Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Igarashi, Shota, E-mail: uxei_yoshi_yoshi@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Sato, Soh, E-mail: rookie_so_sleepy@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan)

2013-10-15T23:59:59.000Z

315

New methods and materials for solid phase extraction and high performance liquid chromatography  

SciTech Connect (OSTI)

This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.

Dumont, P.J.

1996-04-23T23:59:59.000Z

316

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.

Jie Guan; Atul Verma; Nguyen Minh

2003-04-01T23:59:59.000Z

317

PERFORMANCE TESTING OF SPRING ENERGIZED C-RINGS FOR USE IN RADIOACTIVE MATERIAL PACKAGINGS CONTAINING TRITIUM  

SciTech Connect (OSTI)

This paper describes the sealing performance testing and results of silver-plated inconel Spring Energized C-Rings used for tritium containment in radioactive shipping packagings. The test methodology used follows requirements of the American Society of Mechanical Engineers (ASME) summarized in ASME Pressure Vessel Code (B&PVC), Section V, Article 10, Appendix IX (Helium Mass Spectrometer Test - Hood Technique) and recommendations by the American National Standards Institute (ANSI) described in ANSI N14.5-1997. The tests parameters bound the predicted structural and thermal responses from conditions defined in the Code of Federal Regulations 10 CFR 71. The testing includes an evaluation of the effects of pressure, temperature, flange deflection, surface roughness, permeation, closure torque, torque sequencing and re-use on performance of metal C-Ring seals.

Blanton, P; Kurt Eberl, K

2007-10-23T23:59:59.000Z

318

Environmental Protection Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Details Site Details EPD Home Staff List (pdf) Org Chart (pdf) Compliance / Permits Programs Other Information Land Use & Institutional Controls Mapping Site Environmental Reports Environmental Monitoring Plan (EMP) Spill Response BNL Site Index Can't View PDFs? Developing Environmental Products and Services for Brookhaven Stakeholders The Environmental Protection Division (EPD) develops and delivers environmental products and services for all Brookhaven stakeholders. We manage environmental programs such as pollution prevention, groundwater protection, and natural resource management; provide technical assistance on environmental requirements; maintain the Laboratory's IS0 14001-registered Environmental Management System; prepare environmental permit applications; conduct environmental monitoring; manage data

319

Development of electron reflection suppression materials for improved thermionic energy converter performance using thin film deposition techniques  

SciTech Connect (OSTI)

Nonideal electrode surfaces cause significant degree of electron reflection from collector during thermionic converter operation. The effect of the collector surface structure on the converter performance was assessed through the development of several electron reflection suppression materials using various thin film deposition techniques. The double-diode probe method was used to compare the J-V characteristics of converters with polished and modified collector surfaces for emitter temperature and cesium vapor pressure in the ranges of 900-2000 K and 0.02-1.5 torr, respectively. The coadsorption of cesium and oxygen with respective partial vapor pressures of {approx}1.27 torr and a few microtorrs reduced the emitter work function to a minimum value of 0.99 eV. It was found that the collector surfaces with matte black appearance such as platinum black, voided nickel from radio-frequency plasma sputtering, and etched electroless Ni-P with craterlike pore morphology exhibited much better performance compared with polished collector surface. For these thin films, the increase in the maximum output voltage was up to 2.0 eV. For optimum performance with minimum work function and maximum saturation emission current density, the emitter temperature was in the range of 1100-1500 K, depending on the collector surface structure. The use of these materials in cylindrical converter design and/or in combination with hybrid mode triode configuration holds great potential in low and medium scale power generators for commercial use.

Islam, Mohammad; Inal, Osman T.; Luke, James R. [Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); New Mexico Institute of Mining and Technology, Institute for Engineering Research and Applications (IERA) , 901 University Blvd. SE, Albuquerque, New Mexico 87106-4339 (United States)

2006-10-15T23:59:59.000Z

320

DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review  

SciTech Connect (OSTI)

The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

2007-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material  

SciTech Connect (OSTI)

Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use of forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to not only produce environmentally friendly products, but also forms that are proliferation resistant. All of these waste forms as well as others, are designed to take advantage of the unique properties of the ceramic systems.

Wicks, G.G.

2001-03-28T23:59:59.000Z

322

Operations Division at Berkeley Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Box DivisionsDepartments Suggestions Search: Go | Advanced Emergency Action Guide Quick Reference LBNL Emergency Preparedness Website LBNL Emergency Preparedness Employee Pocket...

323

Los Alamos Lab: Bioscience Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Serves the Nation by Reducing Threats to Humans and the Environment Welcome to Bioscience Division Our research integrates biology, chemistry, physics, and computational sciences...

324

Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography  

SciTech Connect (OSTI)

Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 {micro}l injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few {micro}l of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

Freeze, R.

1997-10-08T23:59:59.000Z

325

High performance PEM fuel cells - from electrochemistry and material science to engineering development of a multicell stack. Interim report  

SciTech Connect (OSTI)

Under Task 1, it was shown that apparently identical MEAs of 50 Cm2 active area with 1.4 mg/cm2 Pt./C cathodes (20 wt % Pt on C) and 0.3 mg/cm2 Pt/C anodes with 40 microns thickness Gore-Select(TM) PEM material did not give identical performance, except in the Tafel region. This indicates that their overall active surface areas at low current density were identical, and that performance suffered at high current density in the range of interest. In all cases, this is shown as a change in polarization slope in the linear region. The slope of the best of these cells was 0.25 ohms cm2, and that of the worst was ca. 0.36 ohms cm2. In consequence, the performance of the best cell at 0.7 V with humidified gases was 0.44 A/cm2, and that of the worst was 0.3 A/cm2. These are substantially less than 0.7 A/cm2 at 0.7 V, which has been achieved in 5 cm2 cells. This is the fuel cell performance level required to achieve the overall system` performance goals (i.e., 0.7 A/cm2 and 0.7 V on hydrogen and air at atmospheric pressure). The variable polarization slope gives the impression of an internal resistance component, but the internal resistance measured at high frequency is rather low, about 0.12 ohms cm2. Thus, the differences in performance observed are either due to problems with the flow-field, or to dispersion in performance between individual MEAs, which otherwise contain identical components made by identical methods.

Appleby, A.J.

1997-03-04T23:59:59.000Z

326

Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report  

SciTech Connect (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter.

Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

2009-03-16T23:59:59.000Z

327

Equipment and Piping Labeling Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

EQUIPMENT AND PIPING LABELING EQUIPMENT AND PIPING LABELING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as opposed to tracing its schematic, and to reduce personnel exposure to radiation and hazardous materials. This assessment provides a basis for evaluating the effectiveness of the contractor's program for labeling equipment and piping and for establishing compliance

328

Principal Investigators | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R. Michael Miller R. Michael Miller BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne R. Michael Miller Bldg: 203 Room: E161 9700 South Cass Avenue Argonne, Illinois 60439 Email: rmmiller@anl.gov Phone: (630) 252-3395 Fax: (630) 252-8895 Research Highlights Publications > Education: 1975 Ph.D., Illinois State University, Botany and Mycology 1971 M.S., Illinois State University, Biological Sciences 1969 B.S., Colorado State University, Botany > Professional Experience: 2005-current Senior Terrestrial Ecologist, Biosciences Division, Argonne National Laboratory 2007-current Senior Fellow, Institute for Genomic & Systems Biology, University of Chicago and Argonne National Laboratory 2006-2008

329

Argonne Physics Division - ATLAS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Safety General Radiation Electrical Experiment Safety at ATLAS The Management and Staff at ATLAS and Argonne National Laboratory are fully dedicated to integrating safety into all aspects of work at our facilities. We believe that it is completely possible, and absolutely essenital, to carry out effective research programs without compromising safety. Indeed, the process of incorporating safety into accelerator operations and experimental research begins at the earliest stages. All experiments, equipment, and procedures are reviewed extensively for safety issues prior to their approval. For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding safety at

330

News Releases | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Releases News Releases BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Biosciences Division News Releases Protein crystal samples are placed on a small metal tip so X-rays from the adjacent beam pipe can pass through them and diffract off the atoms inside the crystal. Lessening X-ray damage is healthy for protein discovery data too December 16, 2013 - New recommendations for using X-rays promise to speed investigations aimed at understanding the structure and function of biologically important proteins - information critical to the development of new drugs. Read more. Kayakers and boats traverse the branch of the Chicago River in the downtown area Argonne partners with Metropolitan Water Reclamation District to study Chicago River microbe population

331

Eastern Audits Division  

Broader source: Energy.gov (indexed) [DOE]

Work Plan for FY 2014 Work Plan for FY 2014 Eastern Audits Division  Follow-up of the Reindustrialization Program at East Tennessee Technology Park  Audit of the Department's Management of High-Risk Property  Audit of the Department's Efforts to Reduce Mercury Contamination at the Y-12 National Security Complex  Non-conforming Equipment and Parts at the Savannah River Site  Audit of the Department's Facility Contractors' Use of No Bid Subcontracts  Decontamination and Decommissioning Activities at the Oak Ridge National Laboratory  The Department's Audit Resolution and Follow-up Process  Legacy Management Activities at Selected Sites  Department's Contract Awards Made to Alaska Native Corporation  Readiness of the Saltstone Disposal Facility at the Savannah River Site

332

Guidance Systems Division ,  

Office of Legacy Management (LM)

Oockec No. 10-0772 Oockec No. 10-0772 22 OCT 1981 Bcndlx CorporaLion ' Guidance Systems Division , ATTN: Mr. Wf 11 la,,, Hnrr,,or Manngar, PlanL Englne0rtny Teterboro, New Jersey 07608 uwm STATES NUCLEAll I-IEOULATOIJY COMMISSION REGION i 631 PARK A"LH"I KIN0 OF PR"ISIA. PCNNIVLVANIA ID40' Gentlemen: Subject: Inspectfon 81-15 _ "-- .,; .z .;; Thts refers to the closeout safety \nspectlon conducted by Ms. M. Campbell of this office on August 27, 1961, of activities formerly authorized by NRC License No. STB-424 and to the c!lscussions of our findings held by f4s. Campbell with yourseif aL Lhe conclusion of the inspection. This closeout inspection. was conducted as part of an NRC effort to ensure that facilities where,llcensed activities were forxrrly conducted meet current NRC criteria for release for

333

Systems Division NO. REV. NO.  

E-Print Network [OSTI]

Aerospace Systems Division NO. REV. NO. EATM-17 PCU - SOLAR PANEL SIMULATOR TEST REPORT:' Courtois ~ll~K. Hsi #12;MO. REV. MO. EATM-17 ~ Systems Division PCU - Solar Panel Simulator Test Report Conditioning Unit (PCU) is compatible with a solar panel array. The Solar Panel Simulator and the PCU Test Set

Rathbun, Julie A.

334

Argonne Physics Division - ATLAS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stable Beams Available from ATLAS Updated August, 2009 Beam currents listed in the table were obtained with naturally occurring material for the given isotope. The maximum energy...

335

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, No. 1 [http://eetd.lbl.gov/newsletter/nl32/] 9, No. 1 [http://eetd.lbl.gov/newsletter/nl32/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER NEWSLETTER: VOL. 9, NO. 1 Ashok Gadgil Named Director of Environmental Energy Technologies Division Arsenic Removal Technologies ARPA-E Funding Low-Energy Buildings User Facility ECMA International Standard U.S. Wind Power Market Clean Energy Ministerial Research Highlights Sources and Credits A new Division Director for the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, a story about one of his research team's projects to remove naturally-

336

Argonne Physics Division - Theory Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Division Seminar: R-150 @ 3:30pm Division Seminar: R-150 @ 3:30pm 14 April 2011 Stefano Gandolfi Los Alamos National Laboratory stefano@lanl.gov Quantum Monte Carlo Study of Strongly Correlated Fermions: Neutron Matter, Neutron Stars and Cold Atoms Division Seminar: R-150 @ 3:30pm 31 March 2011 Lucas Platter Chalmers University of Technology, Göteborg platter@chalmers.se Effective Field Theories for Nuclear Systems Division Seminar: R-150 @ 3:30pm 17 February 2011 Alexandros Gezerlis University of Washington gezerlis@uw.edu Bridging the Gap: Fermions in Nuclear Structure and Nuclear Astrophysics Special Day: Tuesday 15 February 2011 Louis H. Kauffman UIC kauffman@uic.edu Topological Quantum Information and the Jones Polynomial Division Seminar: R-150 @ 3:30pm 10 February 2011 JoaquÃ-n Drut

337

Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.  

SciTech Connect (OSTI)

Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L. (Chemical Sciences and Engineering Division); (Illinois Inst. of Tech.); (King Saud Univ.)

2010-01-01T23:59:59.000Z

338

Environmental Protection Division (EPD), Brookhaven National Laboratory,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EMS Home EMS Home ESSH Policy Environmental Protection Division Other Information BNL Site Index Can't View PDFs? Brookhaven National Laboratory ISO 14001 Environmental Management System OHSAS 18001 Occupational Health & Safety Assessment Series One of Brookhaven National Laboratory's highest priorities is ensuring that the Laboratory's environmental, safety and health (ESH) performance measures up to its world class status in science. Brookhaven Science Associates (BSA), the contractor operating the Laboratory on behalf of the U.S. Department of Energy, takes ESH performance very seriously. As part of their commitment to responsible ESH operations, they have established an Environmental Management System (EMS) and Occupational Safety and Health (OSH) Management System.

339

Physical Behavior of Materials | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physical Behavior of Materials Physical Behavior of Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Physical Behavior of Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports basic research on the behavior of materials in response to external stimuli, such as temperature, electromagnetic fields, chemical environments, and the proximity effects of surfaces and interfaces. Emphasis is on the relationships between performance (such as

340

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Division of Distributed Solar Technology Contractors' Pro-Division of Distributed Solar Technology Insolation Assess-view argues that solar technologies should not be developed.

Cairns, E.J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andof the Division of Geothermal Energy, and is compatible with

Authors, Various

2012-01-01T23:59:59.000Z

342

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Population Impacts of Geothermal Energy Development in thethe DOE Division of Geothermal Energy. S. L. Phillips and E.to DOE Division of Geothermal Energy, January 30, 1980.

Cairns, E.J.

2010-01-01T23:59:59.000Z

343

Tougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science |  

E-Print Network [OSTI]

and satellites. To create the new fiber, researchers began with carbon nanotubes--cylindrical-shaped carbonTougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science | Nanotechnology | Engineering | Material

Espinosa, Horacio D.

344

Work Controls Assessment Plan Assessment Plan Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

WORK CONTROLS WORK CONTROLS Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division Performance Objective: Management should have an established work control process in place with authorized, controlled and documented methods that provide an accurate status of the work to be performed. Criteria: Work planning addresses applicable laws, codes and regulations. Work planning includes operational configuration constraints; material, tool, and manpower requirements; inter-organizational coordination; operational history; special training; safety considerations; hazards protection requirements; post-maintenance testing; quality control requirements; and other considerations as necessary. The work to be accomplished is defined by identifying the existing

345

Recycling of Flue Gas Desulfurization residues in gneiss based hot mix asphalt: Materials characterization and performances evaluation  

Science Journals Connector (OSTI)

Abstract On the one hand, huge amount of Flue Gas Desulfurization (FGD) residues, produced during scrubbing flue gas, is discarded as solid waste. Such solid waste would cause serious environmental problems. One the other hand, high quality aggregates, such as limestone and basalt, are running out due to the rapid development of highway construction. Ungraded aggregates such as gneiss are therefore considered in China to replace the high quality aggregates. The application of FGD residues as a filler in gneiss based asphalt mixturehas benefits both in environmental and economic sides. The main objective of this research was to visualize the raw materials characterization and evaluate the effect of FGD residues on the performance of gneiss based asphalt mixture. X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning Electron Microscope (SEM), Differential Scanning Calorimetric & Thermal gravimetric (DSCTG) were used to investigate the features of raw materials. The performance of gneiss based asphalt mixture including high-temperature deformation resistance, low-temperature crack resistance and moisture-induced damage resistance were evaluated. Dynamic creep test, three-point bending test, Retained Marshall Stability (RMS), Tensile Strength Ratio (TSR), Indirect Tensile (IDT) strength and Resilient Modulus (MR) test were conducted and analyzed. Dissipated Creep Strain Energy to fracture (DCSEf) ratio, fracture energy and model analysis were also used to evaluate moisture resistance, crack resistance and deformation resistance of asphalt mixture respectively. Research results indicate that FGD residues can partly improve the moisture resistance and crack resistance of gneiss asphalt mixture, while it might worse the high-temperature deformation resistance.

Zongwu Chen; Shaopeng Wu; Fuzhou Li; Juyong Chen; Zhehuan Qin; Ling Pang

2014-01-01T23:59:59.000Z

346

High Performance Valve Materials  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

347

Environmental Protection Division (ENV)  

National Nuclear Security Administration (NNSA)

All fill material not included in the samples was treated as waste and an asphalt patch or cold patch was applied to seal the location. (see photographs from field visits at...

348

Physics division annual report 2006.  

SciTech Connect (OSTI)

This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

Glover, J.; Physics

2008-02-28T23:59:59.000Z

349

Performance evaluation of polymer/clay nanocomposite thermal protection systems based on polyethylene glycol phase change material  

Science Journals Connector (OSTI)

Phase change materials (PCMs) are substances with a high ... can be utilized in designing the heat protective materials as well as in the thermal energy...

Ahmad Reza Bahramian; Leila Sadat Ahmadi; Mehrdad Kokabi

2014-03-01T23:59:59.000Z

350

Study on thermal performance of high power LED employing aluminum filled epoxy composite as thermal interface material  

Science Journals Connector (OSTI)

Abstract This paper elucidates the thermal behavior of an LED employing metal filled polymer matrix as thermal interface material (TIM) for an enhanced heat dissipation characteristic. Highly thermal conductive aluminum (Al) particles were incorporated in bisphenol A diglycidylether (DGEBA) epoxy matrix to study the effect of filler to polymer ratio on the thermal performance of high power LEDs. The curing behavior of DGEBA was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The dispersion nature of the Al fillers in polymer matrix was verified with Field Emission Scanning Electron Microscope (FESEM). The thermal performance of synthesized Al filled polymer composite as TIM was tested with an LED employing thermal transient measurement technique. Comparing the filler to polymer ratio, the rise in junction temperature for 60wt% Al filled composite was higher by 11.1C than 50wt% Al filled composite at cured state. Observed also from the structure function analysis that the total thermal resistance was 10.96K/W higher for 60wt% Al filled composite compared to 50wt% Al filled composite. On the other hand, a significant rise of 9.5C in the junction temperature between cured and uncured samples of 50wt% Al filled polymer TIM was observed and hence the importance of curing process of metal filled polymer composite for effective heat dissipation is discussed extensively in this work.

P. Anithambigai; S. Shanmugan; D. Mutharasu; T. Zahner; D. Lacey

2014-01-01T23:59:59.000Z

351

Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application  

Science Journals Connector (OSTI)

Abstract In order to harvest solar energy, thermal energy storage (TES) system with Phase Change Material (PCM) has been receiving greater attention because of its large energy storage capacity and isothermal behavior during charging and discharging processes. In the present experimental study, shell and tube TES system using paraffin wax was used in a water heating system to analyze its performance for solar water heating application. Energy and exergy including their cost analyses for the TES system were performed. Accordingly, total life cycle cost was calculated for different flow rates of the Heat Transfer Fluid (HTF). With 0.033kg/min and 0.167kg/min flow rates of water as HTF, energy efficiencies experienced were 63.88% and 77.41%, respectively, but in exergy analysis, efficiencies were observed to be about 9.58% and 6.02%, respectively. Besides, the total life cycle cost was predicted to be $ 654.61 for 0.033kg/min flow rate, which could be reduced to $ 609.22 by increasing the flow rate to 0.167kg/min. Therefore it can be summarized that total life cycle cost decreases with the increase of flow rate.

M.H. Mahfuz; M.R. Anisur; M.A. Kibria; R. Saidur; I.H.S.C. Metselaar

2014-01-01T23:59:59.000Z

352

Patents: Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Division > Patents About the Division > Patents Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Patents Bookmark and Share Printable Patents List ( PDF PDF file, 225 KB) Over 50 patents have been issued to Nuclear Engineering Division staff members by the US Patent Office from 2000 to present. The table below features a complete list of patents (2000-present) issued

353

Chemical Sciences Division: Research: Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Programs Programs The Chemical Sciences Division (CSD) is one of Berkeley Laboratory's basic research divisions. The CSD is composed of individual research groups that conduct research in the areas of chemical physics and the dynamics of chemical reactions, the structure and reactivity of transient species, electron spectroscopy, surface chemistry and catalysis, electrochemistry, chemistry of the actinide elements and their relationship to environmental issues, and atomic physics. The division's 28 principal investigators, many of whom are on the faculty of the University of California at Berkeley, direct the individual research projects and the work of 6 staff scientists, 41 postdoctoral researchers, and 75 graduate students. Our research staff continues to achieve fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients using both state-of-the-art experimental and theoretical methods. In addition, the division supports a strong effort in heterogeneous and homogeneous catalysis.

354

CIVIC KNOWLEDGE Division of the  

E-Print Network [OSTI]

THE CIVIC KNOWLEDGE PROJECT ___________ ___________ Division of the Humanities University of Chicago CONTACT INFORMATION ___________ CIVIC KNOWLEDGE PROJECT OFFICE Edelstone Rm 133 6030 IDEAS ___________ The aim of the Civic Knowledge Project (CKP) is to develop and strengthen community

He, Chuan

355

DIVISION 16 -ELECTRICAL 16000 GENERAL  

E-Print Network [OSTI]

Electrical Code American National Standards Institute National Electrical Manufacturers Association Institute of Electrical & Electronics Engineers Insulated Cable Engineers Association 3. Three copies of the followingDIVISION 16 - ELECTRICAL _____________________________________________________________ 16000

356

A technical note on performance testing of a solar box cooker provided with sensible storage material on the surface of absorbing plate  

Science Journals Connector (OSTI)

A box type solar cooker having a double glass cover and a plane mirror reflector has been tested for its thermal performance. In the present study, performance of solar box cooker has been compared by using two different sensible heat storage materials (sand and granular carbon). By using these materials as a mixture and spread it over absorber tray in the form of thin layer and fully packed with a float glass shows the significant improvement in the performance of box type solar cooker.

Abhishek Saxena; Varun; Ghanshyam Srivastava

2012-01-01T23:59:59.000Z

357

Nuclear Engineering Division Think, explore, discover, innovate  

E-Print Network [OSTI]

Nuclear Engineering Division Think, explore, discover, innovate Never miss important updates managed by UChicago Argonne, LLC 1 Nuclear Engineering Division: Awards Listing (1980 ­ present) Web: http Division of Educational Programs J.C. Braun L.W. Deitrich #12;Nuclear Engineering Division Think, explore

Kemner, Ken

358

Performance indicators, third quarter CY-1991  

SciTech Connect (OSTI)

Secretary of Energy Notice (SEN-29-91) directed that a Department- wide uniform system of Performance Indicators (PI's) for trending and analyzing operational data to help assess and support progress in improving performance and in strengthening line management control of operations relating to environmental safety, and health activities'' be developed. This Performance Indicator Report represents a compilation of data for the third quarter of calendar year 1991 for the following Lawrence Berkeley Laboratory (LBL) facilities: (1) Bevalac, (2) 88-Inch Cyclotron, (3) Materials Sciences Division.

Not Available

1992-01-01T23:59:59.000Z

359

Performance indicators, third quarter CY-1991  

SciTech Connect (OSTI)

Secretary of Energy Notice (SEN-29-91) directed that a Department- wide ``uniform system of Performance Indicators (PI`s) for trending and analyzing operational data to help assess and support progress in improving performance and in strengthening line management control of operations relating to environmental safety, and health activities`` be developed. This Performance Indicator Report represents a compilation of data for the third quarter of calendar year 1991 for the following Lawrence Berkeley Laboratory (LBL) facilities: (1) Bevalac, (2) 88-Inch Cyclotron, (3) Materials Sciences Division.

Not Available

1992-01-01T23:59:59.000Z

360

Theoretical and Experimental Thermal Performance Analysis of Complex Thermal Storage Membrane Containing Bio-Based Phase Change Material (PCM)  

SciTech Connect (OSTI)

Since 2000, an ORNL research team has been testing different configurations of PCM-enhanced building envelop components to be used in residential and commercial buildings. During 2009, a novel type of thermal storage membrane was evaluated for building envelope applications. Bio-based PCM was encapsulated between two layers of heavy-duty plastic film forming a complex array of small PCM cells. Today, a large group of PCM products are packaged in such complex PCM containers or foils containing arrays of PCM pouches of different shapes and sizes. The transient characteristics of PCM-enhanced building envelope materials depend on the quality and amount of PCM, which is very often difficult to estimate because of the complex geometry of many PCM heat sinks. The only widely used small-scale analysis method used to evaluate the dynamic characteristics of PCM-enhanced building products is the differential scanning calorimeter (DSC). Unfortunately, this method requires relatively uniform, and very small, specimens of the material. However, in numerous building thermal storage applications, PCM products are not uniformly distributed across the surface area, making the results of traditional DSC measurements unrealistic for these products. In addition, most of the PCM-enhanced building products contain blends of PCM with fire retardants and chemical stabilizers. This combination of non-uniform distribution and non-homogenous composition make it nearly impossible to select a representative small specimen suitable for DSC tests. Recognizing these DSC limitations, ORNL developed a new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. An experimental analytical protocol to analyze the dynamic characteristics of PCM thermal storage makes use of larger specimens in a conventional heat-flow meter apparatus, and combines these experimental measurements with three-dimensional (3-D) finite-difference modeling and whole building energy simulations. Based on these dynamic tests and modeling, ORNL researchers then developed a simplified one-dimensional (1-D) model of the PCM-enhanced building component that can be easily used in whole-building simulations. This paper describes this experimental-analytical methodology as used in the analysis of an insulation assembly containing a complex array of PCM pouches. Based on the presented short example of whole building energy analysis, this paper describes step-by-step how energy simulation results can be used for optimization of PCM-enhanced building envelopes. Limited results of whole building energy simulations using the EnergyPlus program are presented as well.

Kosny, Jan [ORNL; Stovall, Therese K [ORNL; Shrestha, Som S [ORNL; Yarbrough, David W [ORNL

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Performance Computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Science, Computing, Applied Math » Information Science, Computing, Applied Math » High Performance Computing High Performance Computing Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of strategic national interest Gary Grider High Performance Computing Division Leader Randal Rheinheimer High Performance Computing Deputy Division Leader Contact Us Carol Hogsett Student/Internship Opportunities Email Division Office Email Managing world-class supercomputing centers Powerall simulations modeling Read caption + The Powerwall is used by LANL scientists to view objects and processes in 3D. High Performance Computing video 13:01 Gary Grider, HPC Divison Leader The High Performance Computing (HPC) Division supports the Laboratory mission by managing world-class Supercomputing Centers.

362

Chemical Technology Division annual technical report, 1993  

SciTech Connect (OSTI)

Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

1994-04-01T23:59:59.000Z

363

Argonne Physics Division - ATLAS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The ATLAS Program Advisory Committee (PAC) Since ATLAS is a National User Facility and available for experiments to anyone in the world, all experiments to be performed at ATLAS...

364

Laboratory Protection Division, Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Points of Contact Points of Contact Organization Chart (pdf) Groups Emergency Services Emergency Management Security Operations BNL Site Access Main Gate Access Forms Welcome to the... Laboratory Protection Division (LP) Mission Statement: To serve and protect Brookhaven National Laboratory's staff, guests, and interests from the undesirable consequences of unwanted events by providing preparedness, assessment, engineering, and immediate response services for all types of security and non-security related emergencies. Protect DOE special nuclear materials, classified matter, sensitive information, and property against theft, diversion, or destruction; prevent the sabotage of programs that could result in significant scientific or financial impact; prevent the malevolent release of hazardous materials including radiological, chemical, and infectious agents or other criminal acts protecting people, property, and national security, providing a safe and secure environment for employees, the public, and the environment.

365

TO: Procurement Directors FROM: Director, Policy Division  

Broader source: Energy.gov (indexed) [DOE]

6 6 DATE: April 14, 2011 TO: Procurement Directors FROM: Director, Policy Division Office of Procurement and Assistance Policy Office of Procurement and Assistance Management SUBJECT: DOE 2011 Continuity of Operations (COOP) Awareness Briefing Available to Contractors SUMMARY: For each contract requiring or involving responsibility for work or operations at DOE/NNSA sites or facilities that support or perform essential functions/activities that directly support National Essential Functions (NEF), Mission Essential Functions (MEF), Primary Mission Essential Functions (PMEF), or Essential Supporting Activities (ESA) the Contractor Requirements Document (CRD) DOE Order 150.1, Continuity Programs, sets forth the contractor responsibility for a Continuity of

366

UNION CARBIDE MZALS DIVISION tiiAGARA FALLS, NEW YDRK  

Office of Legacy Management (LM)

PRELIF",INARY SURVEY 0' PRELIF",INARY SURVEY 0' ELECTRDMET iORPDF.&TiCIN UNION CARBIDE MZALS DIVISION tiiAGARA FALLS, NEW YDRK Work performed by the Health and Safety Research Division Dak Ridge National Laboratory Oak Ridge, Tennessee 37830 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Fornierly Utilized Sites-- Remedial Action Program ,ELECTRD?'ISi 60RPOR:TION UNiON CARBIDE METALS DIVlSIOti NiASARA FALLS, NEA YORK At the requests o f the Department of Energy (DOE, then ERDA), a preliminary survey was performed at the former Electromet Plant (cur- rently Union Carbide Corporation - Metals Division plant) in Niagara Falls, Neh' York (see Fig. l), on August 24, 1976, to assess the radio- logical status 0 f those facilities utilized under~Manhattan Engineer

367

DOE - Office of Legacy Management -- Bendix Corp Frieze Division - MD 0-01  

Office of Legacy Management (LM)

Bendix Corp Frieze Division - MD Bendix Corp Frieze Division - MD 0-01 FUSRAP Considered Sites Site: BENDIX CORP., FRIEZE DIVISION (MD.0-01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore , Maryland MD.0-01-1 Evaluation Year: 1987 MD.0-01-3 Site Operations: Produced "classified units" believed to be electronics components - no radioactive materials involved. MD.0-01-1 MD.0-01-3 Site Disposition: Eliminated - No radioactive materials handled at this site MD.0-01-3 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None MD.0-01-3 Radiological Survey(s): No Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to BENDIX CORP., FRIEZE DIVISION

368

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Vol. 10, No. 3 [http://eetd.lbl.gov/newsletter/nl38/] 2: Vol. 10, No. 3 [http://eetd.lbl.gov/newsletter/nl38/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2012 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER 2012: VOL. 10, NO. 3 Middle-Income Energy Savings LIGTT Greenhouse Gas Standards Port of Oakland Study Ashok Gadgil Wins Zayed Award Max Tech Research Highlights Sources and Credits Congratulations to EETD Division Director Ashok Gadgil, winner of the Zayed Future Energy Prize lifetime achievement award, about which you can read in this issue. We also present research on how energy efficiency program managers can better reach middle-income families, and perhaps

369

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: 0: Vol. 9, No. 1 Ashok Gadgil Named Director of Environmental Energy Technologies Division Arsenic Removal Technologies ARPA-E Funding Low-Energy Buildings User Facility ECMA International Standard U.S. Wind Power Market Clean Energy Ministerial Research Highlights Sources and Credits PDF of EETD News Ashok Gadgil Named New EETD Director Ashok Gadgil Ashok Gadgil has been named Director of Lawrence Berkeley National Laboratory's (Berkeley Lab's) Environmental Energy Technologies Division (EETD). Serving as the Acting Division Director since October, he replaces Arun Majumdar who is now Director of the DOE's Advanced Research Projects Agency-Energy (ARPA-E). Gadgil is a Professor in Civil and Environmental Engineering at UC Berkeley and joined EETD in 1988. He is recognized for

370

Fermilab's Accelerator and Research Divisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 19, 1996 July 19, 1996 Number 14 Fixed-target experimenters not only expect Fermilab's Accelerator and Research Divisions to turn water into wine-they need 10 different vintages. Providing beam to fixed-target experiments presents the challenge of converting high-inten- sity protons into 10 separate beams of varying intensities and particles, from kaons to neu- trinos. The Accelerator Division generates and splits the beam, and then hands the protons off to the Research Division, which converts them into beams of different particles. The process begins with a breath of hydrogen gas. Eventually the hydrogen atoms lose their outer electrons and become a stream of protons-the formation of the beam. Physicists measure two characteristics of the beam: its energy (eV) and its intensity. Intensity

371

Highlights: Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Division > Highlights About the Division > Highlights Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Click on the "Date" header to sort the NE highlights in chronological order (ascending or descending). You may also search through the NE highlights for a specific keyword/year;

372

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, No. 4 [http://eetd.lbl.gov/newsletter/nl31/] 8, No. 4 [http://eetd.lbl.gov/newsletter/nl31/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING NEWSLETTER: VOL. 8, NO. 4 OpenADR's Steps Toward a National Smart Grid Standard Dangers of Third-Hand Smoke Energy Efficiency Workforce Training John Newman Wins the Acheson Award Net Metered PV Systems Recovery Act Grant Program Evaluation Sources and Credits As the nation continues moving toward a more energy-efficient economy, research at the Environmental Energy Technologies Division plays its part in developing the technologies it needs for the Smart Grid, and in evaluating policies aimed at increasing energy efficiency

373

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, No. 2 [http://eetd.lbl.gov/newsletter/nl33/] 9, No. 2 [http://eetd.lbl.gov/newsletter/nl33/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL NEWSLETTER: VOL. 9, NO. 2 Driving Demand Bennett-Nordman IEEE Standard Nicotine and Ozone SVOW Renewables Portfolio Standard Report Kerosene Lamp Particulate Study Research Highlights Sources and Credits New ways of convincing homeowners of the benefits of energy efficiency improvements to their homes-and new language to use in discussing these benefits-is discussed in a report titled "Driving Demand" from Environmental Energy Technologies Division researchers. This issue also

374

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF NEW TESTING PROTOCOLS FOR MEASURING THE PERFORMANCE OF SHOWERHEADS MARCH 2010 CEC-500-2013-130 Prepared for: California Energy: California Energy Commission Brad Meister Contract Manager Virginia Lew Office Manager Energy Efficiency

375

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ENERGY AND ENVIRONMENTAL PERFORMANCE: California Energy Commission Prepared by: Summers Consulting, LLC #12;PREPARED BY: Primary Author(s): Matthew-041 Prepared for: California Energy Commission Abolghasem Edalati Contract Manager Linda Spiegel Office Manager

376

ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 12: Fire and Life Safety  

E-Print Network [OSTI]

ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 12: Fire and Life Safety Fire Protection SystemProcedImpair.pdf The purpose of these procedures is to minimize the downtime of active fire protection systems by closely controlling their impairment (any condition in which a fire protection system cannot perform its designed fire

Wechsler, Risa H.

377

Synthesis and electrochemical performance of LiMnxFex?1PO4/C cathode material for lithium secondary batteries  

Science Journals Connector (OSTI)

Carbon-coated LiMn0.8Fe0.2PO4.../C (C = 5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) cathode material is synthesized using a solid-state method. No impurity is found within the synthesized active material, which is con...

Hyun-Soo Kim; Kyung Min Jin; Bong Soo Jin

2011-10-01T23:59:59.000Z

378

Structural Biology | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane Protein Membrane Protein Expression System BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Membrane Protein Engineering Membrane protein expression system The cell membrane serves as the interface between an organism and its environment, and internal membranes in eukaryotes separate functional compartments within cells. Proteins inserted in these membranes carry out many essential biological processes including uptake of nutrients, excretion of wastes, signal transduction, and response to external stimuli. In addition, membrane proteins are used in elaborate bioenergetic schemes to fuel all normal cellular activities in healthy organisms. In this post-genomic era, about 35% of the genes in any genome encode membrane proteins. The fraction of proteins associated with the membrane in eukaryotes may be even higher (up to 40%). Notably, membrane proteins constitute the majority of drug targets, thus knowledge of the structures of these proteins would contribute greatly to our understanding of biological processes. Unfortunately, structural information for membrane proteins is exceedingly scarce. It is notoriously difficult to purify quantities of native material that are sufficient for crystallization attempts. As a result, to date, the three-dimensional structures of ~60 unique transmembrane proteins are known in comparison to the structures of representatives of more than ~4000 soluble protein families.

379

Publishing Division The Edinburgh Building  

E-Print Network [OSTI]

Publishing Division The Edinburgh Building Shaftesbury Road Cambridge CB2 2RU, UK TELEPHONE 01223 The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York NY 10011-4211, USA 477 Williamstown Road

Rosenberger, Alfred H.

380

Environmental Transport Division: 1979 report  

SciTech Connect (OSTI)

During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PUBLIC HEALTH DIVISION Coronavirus infections  

E-Print Network [OSTI]

PUBLIC HEALTH DIVISION Coronavirus infections MERS-CoV (Middle Eastern respiratory syndrome people who cared for those who were sick with MERS also became ill. MERS might come from other sources with diabetes, lung disease or other serious health problems appear to be at higher risk for severe illness

Khan, Javed I.

382

Oregon Land Management Division - Easements | Open Energy Information  

Open Energy Info (EERE)

Division - Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Land Management Division - Easements Author Oregon Land Management Division...

383

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery  

Science Journals Connector (OSTI)

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery ... Yu, A.; Park, H. W.; Davies, A.; Higgins, D.; Chen, Z.; Xaio, X.Free-Standing Layer-by-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries J. Phys. ...

Fathy M Hassan; Abdel Rahman Elsayed; Victor Chabot; Rasim Batmaz; Xingcheng Xiao; Zhongwei Chen

2014-07-31T23:59:59.000Z

384

BME 344: Biological Performance of Materials Winter Quarter 2005 8:00-9:20am Tu/Th, Room M166 TECH  

E-Print Network [OSTI]

Textbooks: Biological Performance of Materials. Fundamentals of Biocompatibility., by Jonathan Black, 3rd Edition, Marcel Dekker, 1999. Intermolecular and Surface Forces, by Jacob Israelachvili, 2nd Edition policy on academic integrity can be found in the student handbook or at: (http

MacIver, Malcolm A.

385

Investigation of materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials performances in high moisture materials performances in high moisture environments including corrosive contaminants typical of those arising by using alternative fuels in gas turbines Gerald Meier, Frederick Pettit and Keeyoung Department of Materials Science and Engineering, Jung University of Pittsburgh Pittsburgh, PA 15260 Peer review Workshop III UTSR Project 04 01 SR116 October 18-20, 2005 Project Approach Task I Selection and Preparation of Specimens Task II Selection of Test Conditions Specimens : GTD111+CoNiCrAlY and Pt Aluminides, N5+Pt Aluminides Deposit : No Deposit, CaO, CaSO 4 , Na 2 SO 4 1150℃ Dry 1150℃ Wet 950℃ Wet 750℃ SO 3 950℃ Dry Selection of Test Temperature, T 1 , Gas Environment and Deposit Composition, D

386

Structural Biology | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photosynthetic Photosynthetic Reaction Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Membrane Protein Engineering Photosynthetic reaction center: A novel quantum electronic circuit element Living cells contain a large variety of biomolecular complexes which self-assemble, recognize and control each other. These nanoscale devices, referred to as bionanodevices, perform critical cell functions such as gene expression, energy conversion, motion, signaling and metabolism. Recent advances in nanotechnology have paved the way to new possibilities and challenges for integrating highly efficient bionanodevices, designed and perfected by Nature during billions of years of evolution, into useful electronic devices. The main scientific and technological challenge in achieving this goal is the successful linkage of the biological components with the conventional, inorganic components. We are developing, implementing, and characterizing a new photobioelectronic device which converts light energy (photons) into an electronic signal by using the photosynthetic reaction center of purple bacteria as the active photoelement

387

Procurement Division | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procurement Division Introduction Technology Transfer Furth Plasma Physics Library Contact Us Lab Leadership Directory Careers Human Resources Environment, Safety & Health...

388

Computing and Computational Sciences Directorate - Divisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCSD Divisions Computational Sciences and Engineering Computer Sciences and Mathematics Information Technolgoy Services Joint Institute for Computational Sciences National Center...

389

LOTO Authorized Personnel | Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lockout/Tagout (LOTO) Personnel Lockout/Tagout (LOTO) Personnel Primary Authorized Employee Have the training and/or experience to exercise group and system-level judgments, and are authorized to lockout and tagout any equipment for which they have division's approval. If coordinated multiple lock and tags are applied by more than one employee, those of the "primary authorized employee" must be the first to be applied and the last to be removed. SMD - LOTO Primary Authorized Personnel Name Phone # Systems/Group Raymond Ceruti Ext. 7116 Mechanical Engineering Technical Support John Cintorino Ext. 2544 Magnet Test & Measurement Joseph D'Ambra Ext. 3764 Superconducting Materials R&D Sebastian Dimaiuta Ext. 5265 Electrical Systems Technical Support Glenn Jochen Ext. 7320 Mechanical Engineering Technical Support

390

Technical basis for performance goals, design requirements, and material recommendations for the NNWSI [Nevada Nuclear Waste Storage Investigations] Repository Sealing Program  

SciTech Connect (OSTI)

The objectives are to develop performance goals, to assess the need for seals, to define design requirements, and to recommend potential sealing materials for the sealing system. Performance goals are the allowable amounts of water that can enter the waste disposal areas directly from the rock mass above the repository and indirectly from shafts and ramps connecting to the underground facility. These goals are developed using a numerical model that calculates radionuclide releases. To determine the need for sealing, estimates of water flow into shafts, ramps, and the underground facility under anticipated conditions are developed and are compared with the performance goals. It is concluded that limited sealing measures, such as emplacement of shaft fill, are sufficient to properly isolate the radioactive waste in the repository. A broad range of sealing design options and associated hydrologic design requirements are proposed to provide a greater degree of assurance that the hydrologic performance goals can be met even if unanticipated hydrologic flows enter the waste disposal areas. The hydrologic design requirements are specific, hydraulic conductivity values selected for specific, seal design options to achieve the performance goals. Using these hydrologic design requirements and additional design requirements, preferred materials are identified for continued design and laboratory analyses. In arriving at these preferred materials, results from previous laboratory testing are briefly discussed. 96 refs., 48 figs., 28 tabs.

Fernandez, J.A.; Kelsall, P.C.; Case, J.B.; Meyer, D.

1987-09-01T23:59:59.000Z

391

Electronic Materials Letters, Vol. 4, No. 3 (2008), pp. 103-105 The Enhancement of Cycle-Life Performance in  

E-Print Network [OSTI]

for Energy Conversion and Storage, and Research Institute of Advanced Materials, Seoul National University-ion battery, Al2O3, LiCoO2, nanoscale, coating 1. INTRODUCTION Commercial rechargeable lithium-ion batteries

Park, Byungwoo

392

Thermal Performance of a Novel Heat Transfer Fluid Containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials  

E-Print Network [OSTI]

The present research work aims to develop a new heat transfer fluid by combining multiwalled carbon nanotubes (MWCNT) and microencapsulated phase change materials (MPCMs). Stable nanofluids have been prepared using different sizes of multiwalled...

Tumuluri, Kalpana

2011-08-08T23:59:59.000Z

393

Effects of different particle sizes on electrochemical performance of spinel LiMn2O4 cathode materials  

Science Journals Connector (OSTI)

For the preparation of cathode sheets, a slurry was formed by mixing the active material (85%), acetylene black (10%)...N...-methyl-2-pyrrolidone, NMP). The mixed slurry was coated onto an aluminum current collec...

Ting-Feng Yi; Xin-Guo Hu; Chang-Song Dai; Kun Gao

2007-06-01T23:59:59.000Z

394

Template-Free Electrochemical Synthesis of Sn Nanofibers as High-Performance Anode Materials for Na-Ion Batteries  

Science Journals Connector (OSTI)

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea ... sciences and engineering. ...

Do-Hwan Nam; Tae-Hee Kim; Kyung-Sik Hong; Hyuk-Sang Kwon

2014-10-28T23:59:59.000Z

395

Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes  

Broader source: Energy.gov [DOE]

Fact sheet describing project that will leverage research and materials from a previously developed, low-cost coating process and apply the research to lower cost polymer membranes

396

Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries  

SciTech Connect (OSTI)

The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

Wang Zhong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); General Research Institute for Nonferrous Metal, Beijing 100088 (China); Tian Wenhuai [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yang Rong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Xingguo [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: xgli@pku.edu.cn

2007-12-15T23:59:59.000Z

397

EARTH SCIENCES Lower-Division Requirements  

E-Print Network [OSTI]

2012-2013 EARTH SCIENCES Lower-Division Requirements Math 20A_____ 20B_____ 20C_____ 20D (BILD 3) _____ SIO 50* _____ Group A: Earth Science Upper-Division Core Requirements (all courses _____ Introduction to Geophysics SIO 104 _____ Paleobiology and History of Life* Group B: Upper-Division Earth

Constable, Steve

398

Chemical Marketing and Economics Division reprints  

Science Journals Connector (OSTI)

Chemical Marketing and Economics Division reprints ... The ACS Chemical Marketing and Economics Division has available reprints of the symposiums listed below. ... Make checks payable to Chemical Marketing and Economics Division, ACS, and send to the assistant treasurer, H. C. McClure, Richardson Co., 2700 West Lake St., Melrose Park, Ill. ...

1968-09-16T23:59:59.000Z

399

The Division of Biology & Biomedical Sciences  

E-Print Network [OSTI]

The Division of Biology & Biomedical Sciences what will YOU discover? #12;620students more than 470faculty 36departments 12programs and one YOU. DBBS Division of Biology and Biomedical Sciences Washington. The Division of Biology and Biomedical Sciences (DBBS) is ideally positioned to foster the interdisciplinary

Kornfeld, S. Kerry

400

OFFICE OF THE DIVISION ENGINEER CORPS OF ENGINEERS, MISSISSIPPI VALLEY DIVISION  

E-Print Network [OSTI]

OFFICE OF THE DIVISION ENGINEER CORPS OF ENGINEERS, MISSISSIPPI VALLEY DIVISION P.O. BOX 80, 1400 39181-0080, who is also the Division Engineer, Department of the Army, Mississippi Valley Division River at Cairo, Illinois and Baton Rouge, Louisiana, is approximately 726 miles long. Navigation

US Army Corps of Engineers

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Supporting Information: Holey Silicon as efficient thermoelectric material  

E-Print Network [OSTI]

Supporting Information: Holey Silicon as efficient thermoelectric material Jinyao Tang1, 3, 3 1 Department of Chemistry, 2 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA. 3 Materials Sciences Division, Lawrence Berkeley National

Yang, Peidong

402

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1999: 1999: Vol. 1, No. 1 Characterizing Diesel Particle Exhaust Miscellaneous Electricity Use COMIS: An Interzonal Air-Flow Model GenOpt: A Generic Optimization Program News from the D.C. Office Around the Division The A-Team Report Sources and Credits PDF of EETD News Characterizing Diesel Particle Exhaust Recent concern about the risks to human health from airborne particulates such as those in diesel exhaust has motivated a group at the Environmental Energy Technologies Division to investigate the use of scattered polarized light. The goals are to characterize these particles and develop an instrument to measure these characteristics in real time. Having such an instrument can help regulatory authorities develop standards and monitor air quality. Airborne particulates, especially those less than 2.5

403

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1, No. 4 [http://eetd.lbl.gov/newsletter/nl43/] 1, No. 4 [http://eetd.lbl.gov/newsletter/nl43/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING 2013: VOL. 11, NO. 4 Deep Energy Retrofits Health-Based Ventilation Standard-Interview with Max Sherman Energy-Efficient School Districts Guide Nanometer Laser-Based Chemical Sensing Demand-to-Grid Lab Research Highlights Sources and Credits Research that examines how homes can save 70 percent or more of their energy use is this issue's cover story. EETD researchers studied several northern California homes whose owners implemented their own plans to make extreme reductions in energy consumption and found that

404

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, No. 3 [http://eetd.lbl.gov/newsletter/nl34/] 9, No. 3 [http://eetd.lbl.gov/newsletter/nl34/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER NEWSLETTER: VOL. 9, NO. 3 Commercial Buildings Clean Energy Research Center OpenADR Alliance Energy Efficient Data Center Retrofit Home Energy Score Pilot Program Tracking the Sun III Research Highlights Sources and Credits The Department of Energy's Commercial Building Partnerships initiative is establishing collaborations to increase energy efficiency in new and existing commercial buildings. It teams National Laboratory researchers and private technical experts with commercial building owners and

405

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011: Vol. 10, No. 1 [http://eetd.lbl.gov/newsletter/nl36/] 2011: Vol. 10, No. 1 [http://eetd.lbl.gov/newsletter/nl36/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER 2011: VOL. 10, NO. 1 Energy Information Systems ISO 50001 BEST Dairy Benchmarking Program Wind Power Report Cool Roofs Workshop Research Highlights Sources and Credits In this issue, you can learn about EETD's work to analyze energy information systems (EIS) and improve their utilization in commercial buildings. We also look at ISO 50001, a new standard that helps industrial and commercial enterprises operate energy-efficiently,

406

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, No. 3 [http://eetd.lbl.gov/newsletter/nl30/] 8, No. 3 [http://eetd.lbl.gov/newsletter/nl30/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER NEWSLETTER: VOL. 8, NO. 3 Hidden Costs of Energy Production NRC Report The Rosenfeld Named After California's Godfather of Energy Solar Photovoltaic Report II Release Methane in Central California Wind Power Property Values Community Wind FABS21 Release Franchise Tax Board Data Center Project Sources and Credits This issue addresses everything from a National Academy of Sciences report on the hidden costs of energy production to tools for making semiconductor fabrication facilities and data centers more

407

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, No. 4 [http://eetd.lbl.gov/newsletter/nl35/] 9, No. 4 [http://eetd.lbl.gov/newsletter/nl35/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING 2011: VOL. 9, NO. 4 Fuel Cell Research Programmable Thermostats A Bright Spot for Solar Saving Electricity in a Hurry Nanostructured Antifogging Coatings Fluorescent Lighting Research Highlights Sources and Credits This month, EETD News highlights some of its research activities in fuel cells; an energy efficiency expert describes how Japan can save energy in a hurry to help offset supply losses from Fukushima; and a lighting expert discusses why fluorescent

408

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, No. 2 [http://eetd.lbl.gov/newsletter/nl29/] 8, No. 2 [http://eetd.lbl.gov/newsletter/nl29/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2009 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL NEWSLETTER: VOL. 8, NO. 2 Closing in on Zero-Energy Buildings Heinz Award Honors Berkeley Lab's Ashok Gadgil Green Chemistry: Lasers Detect Explosives and Hazardous Waste Photocatalytic Oxidation (PCO) Air Cleaners: Reducing Energy Use While Clearing the Air Energy Reduction for Energy Research New Study Sheds Light on the Growing U.S. Wind Power Market Recovery Act Funding Enables Berkeley Lab to Help Federal Agencies Improve Energy Efficiency Research

409

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11, No. 3 [http://eetd.lbl.gov/newsletter/nl42/] 11, No. 3 [http://eetd.lbl.gov/newsletter/nl42/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER 2013: VOL. 11, NO. 3 The New York Times Building Building Control Virtual Test Bed Simergy Climate Change and the Insurance Industry Energy Storage Research Hub ARPA-E Funds Berkeley Lab Projects Utility Energy-Efficiency Programs California's Energy Future FLEXLAB Testbeds Construction FLEXLAB Partners Research Highlights Sources and Credits Better tools to simulate building energy use, new funding for advanced research in batteries and energy-efficient

410

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conductive Adhesive Improves Lithium-ion Battery Storage by 30 Percent Conductive Adhesive Improves Lithium-ion Battery Storage by 30 Percent An award-winning technology that can boost the capacity of rechargeable lithium-ion batteries has just gotten even better. Lawrence Berkeley National Laboratory (Berkeley Lab) battery researcher Gao Liu and his team earned a coveted R&D 100 Award this year for their invention of an electrically conductive rubbery adhesive that can be mixed with particles of silicon to form a battery's negative electrode, or anode. Lithium-ion batteries whose anodes are built with this "conducting polymer binder" can store 30 percent more power than those with conventional anodes made with aggregated carbon particles. Now, by literally tinkering at the edges of this new polymer material, researchers have raised its performance

411

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fi lter could also help fi lter could also help California comply with tighter U.S. EPA arsenic drinking-water standard. A shok G ad g i l, a s c ient i st i n t he Environmental Energy Technologies Division at Lawrence Berkeley National Laboratory (Berkeley Lab), is developing a cheap and effective way to provide safe drinking water to 60 million Bangladeshis who live with the threat of arsenic poisoning.

412

Design and Evaluation of Novel High Capacity Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Christopher Johnson and Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE...

413

Center for Materials at Irradiation and Mechanical Extremes:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Blas Uberuaga image of blas urberuaga Contact Information Technical Staff Member Los Alamos National Laboratory Materials Science and Technology Division Phone: (505) 667-9105...

414

Center for Materials at Irradiation and Mechanical Extremes:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quanxi Jia image of George Gray Contact Information Laboratory Fellow Los Alamos National Laboratory Materials Physics and Applications Division Phone: (505) 667-2716...

415

Center for Materials at Irradiation and Mechanical Extremes:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Timothy Germann german Contact Information Los Alamos National Laboratory Theoretical Division Physics and Chemistry of Materials Group Phone: (505) 665-9772 tcg@lanl.gov Bio...

416

Center for Materials at Irradiation and Mechanical Extremes:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kenneth J. McClellan Contact Information Los Alamos National Laboratory Materials Science & Technology Division StructureProperty Relations, MS G755 Phone: (505) 667-5452...

417

Generalized buffering of pass transistor logic (PTL) stages using Boolean division and don't cares  

E-Print Network [OSTI]

the outputs of the PTL blocks, while also reducing the height and delay of the PTL block. PTL synthesis with generalized buffering was implemented in two different ways. In the first approach, Boolean division was used to perform generalized buffering...

Garg, Rajesh

2007-09-17T23:59:59.000Z

418

A Novel Resonant Metallo-Dielectric Structure for Design ofHigh Performance -,U Meta-Materials  

E-Print Network [OSTI]

-material with periodic configuration constructed of small size metallo-dielectric transmission-line resonators magnetically coupled to transmission line model of the medium. It is demonstrated that the permeability resonant transmission line sectors. Compared to the loop circuit configuration, the inclusions (metalo

Sarabandi, Kamal

419

Michael M. Thackeray Argonne National Laboratory Chemical Sciences and Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

M. Thackeray M. Thackeray Argonne National Laboratory Chemical Sciences and Engineering Division 9700 South Cass Avenue, Building 205 Argonne, IL 60439-4837 phone: 630/252-9184, fax: 630/252-4176 Email: thackeray@anl.gov Professional Experience 1994-Present. Argonne National Laboratory, Argonne Distinguished Fellow, Group Leader and Senior Scientist, Electrochemical Energy Storage Department, Chemical Sciences and Engineering Division. 1983-1994. Council for Scientific and Industrial Research (CSIR), Division of Materials Science and Technology, Pretoria, South Africa (Manager and Senior Research Officer, Battery Technology Unit). 1981-82; 1985. Oxford University (Postdoctoral Appointee, Academic Visitor). 1973-1982. CSIR, National Physical Research Laboratory, Pretoria, South Africa (Research

420

Chemical and Analytical Sciences Division progress report for the period January 1, 1993--December 31, 1994  

SciTech Connect (OSTI)

This report provides brief summaries of progress in the Chemical and Analytical Sciences Division (CASD) during 1993 and 1994. The first four chapters, which cover the research mission, are organized to mirror the major organizational units of the division and indicate the scope of the research portfolio. These divisions are the Analytical Spectroscopy Section, Nuclear and Radiochemistry Section, Organic Chemistry Section, and Physical and Materials Chemistry Section. The fifth and sixth chapters summarize the support activities within CASD that are critical for research progress. Finally, the appendices indicate the productivity and recognition of the staff in terms of various forms of external publications, professional activities, and awards.

Poutsma, M.L.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Revisit of Energy Use and Technologies of High PerformanceEnvironmental Energy Technologies Division May 2014 ThisRevisit of Energy Use and Technologies of High Performance

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

422

Amur Energy Division | Open Energy Information  

Open Energy Info (EERE)

Amur Energy Division Amur Energy Division Jump to: navigation, search Name Amur Energy Division Place 46001 Valencia, Spain Sector Solar Product Engineering and construction group specialising in large solar power plants. References AMUR[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! TODO: Determine if this company is valid. This article is a stub. You can help OpenEI by expanding it. Amur Energy Division is a company located in Spain. Related Links http://findarticles.com/p/articles/mi_m5CNK/is_2007_Jan_4/ai_n24998390/ http://www.businesswirenet.org/pr/index.php/id/jesus-linares-gil-chairman-and-ceo-of-ae http://solarstocks.blogspot.com/2007_01_01_archive.html References ↑ "Amur Energy Division" Retrieved from "http://en.openei.org/w/index.php?title=Amur_Energy_Division&oldid=391205"

423

Solid State Division progress report for period ending March 31, 1992  

SciTech Connect (OSTI)

During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

Green, P.H.; Hinton, L.W. (eds.)

1992-09-01T23:59:59.000Z

424

High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program  

SciTech Connect (OSTI)

The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

2007-09-19T23:59:59.000Z

425

High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Tin dioxide nanoparticles on nitrogen doped graphene aerogel (SnO2-NGA) hybrid are synthesized by one-step hydrothermal method and successfully applied in lithium-ion batteries as a free-standing anode. The electrochemical performance of SnO2-NGA hybrid is investigated by galvanostatic chargedischarge cycling, rate capability test, cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the SnO2-NGA hybrid with freestanding spongy-like structure exhibit remarkable lithium storage capacity (1100mAhg?1 after 100 cycles), good cycling stability and high rate capability. The outstanding performance is attributed to the uniform SnO2 nanoparticles, unique spongy-like structure and N doping defect for Li+ diffusion.

Chunhui Tan; Jing Cao; Abdul Muqsit Khattak; Feipeng Cai; Bo Jiang; Gai Yang; Suqin Hu

2014-01-01T23:59:59.000Z

426

HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.  

SciTech Connect (OSTI)

Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

2001-10-12T23:59:59.000Z

427

Administration and Organization Division of Graduate Affairs  

E-Print Network [OSTI]

. . . . . . . . . . . . Geoffrey W. Chase Imperial Valley Campus . . . . . . . . . . . . . . . . . . . . . . David E. Pearson the Imperial Valley Campus; Dean of the Graduate Division or designee, who will chair the committee; Provost

Gallo, Linda C.

428

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andsuch diverse areas as geothermal energy, oil recovery, in-

Authors, Various

2012-01-01T23:59:59.000Z

429

EARTH SCIENCES DIVISION. ANNUAL REPORT 1977.  

E-Print Network [OSTI]

8erkeley Laboratory (LBL), the Earth Sciences Division, wasactivation analysis: rare earth element distribution (D)can be used to generate earth- quake records for use in

Witherspoon, P.A.

2011-01-01T23:59:59.000Z

430

Supervisory General Engineer (Facility Engineering Division Director)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will lead the Facility Engineering Division by providing internal and independent safety system oversight of Waste Isolation Pilot Plant (WIPP) operations in...

431

Geothermal: Sponsored by OSTI -- Nuclear Technology Division...  

Office of Scientific and Technical Information (OSTI)

Nuclear Technology Division annual progress report for period ending June 30, 1973 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

432

Colorado Air Pollution Control Division - Construction Permits...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission...

433

Procurement Division Introduction | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Furth Plasma Physics Library Procurement Division Introduction The Princeton Plasma Physics Laboratory (PPPL) is operated by Princeton University under...

434

X-Ray Science Division (XSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Science Division (XSD) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

435

Enforcement Letter, Westinghouse Waste Isolation Division - October...  

Broader source: Energy.gov (indexed) [DOE]

Division related to four noncompliances with the requirements of the Quality Assurance Rule andor the Occupational Radiation Protection Rule at DOE's Waste Isolation...

436

Effects of fluorine substitution on the electrochemical performance of layered Li-excess nickel manganese oxides cathode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Li[Li1/6Ni1/4Mn7/12]O2?xFx (x=0, 0.025, 0.05, 0.075, 0.1) as the cathode materials for rechargeable lithium batteries have been synthesized via the co-precipitation method followed by a high-temperature solid-state reaction. Field emission scanning electron microscopy images exhibit that fluorine substitution catalyzes the growth of the primary particles. Although the initial discharge capacity decreases as the fluorine content increasing, the fluorine substituted materials present significant improvement in the cycling performance. Among the synthesized materials, Li[Li1/6Ni1/4Mn7/12]O1.95F0.05 exhibits excellent high temperature (50C) cycling performance with a capacity retention of 93.7% after 30 cycles while the bare Li[Li1/6Ni1/4Mn7/12]O2 cathode exhibited only 73.7%.

Hongxiao Li; Li-Zhen Fan

2013-01-01T23:59:59.000Z

437

In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn  

E-Print Network [OSTI]

We present ab initio studies of structures, energetics, and diffusion properties of Mg in Si, Ge, and Sn diamond structures to evaluate their potential as insertion type anode materials for Mg batteries. We show that Si could provide the highest specific capacities (3817 mAh g-1) and the lowest average insertion voltage (~0.15 eV vs. Mg) for Mg storage. Nevertheless, due to its significant percent lattice expansion (~216%) and slow Mg diffusion, Sn and Ge are more attractive; both anodes have lower lattice expansions (~120 % and ~178 %, respectively) and diffusion barriers (~0.50 and ~0.70 eV, respectively for single-Mg diffusion) than Si. We show that Mg-Mg interactions at different stages of charging can decrease significantly the diffusion barrier compared to the single atom diffusion, by up to 0.55 eV.

Malyi, Oleksandr I; Manzhos, Sergei; 10.1016/j.jpowsour.2013.01.114

2013-01-01T23:59:59.000Z

438

Enhancement of thermopower of TAGS-85 high-performance thermoelectric materials by doping with the rare earth Dy  

SciTech Connect (OSTI)

Enhancement of thermopower is achieved by doping the narrow-band semiconductor Ag{sub 6.52}Sb{sub 6.52}Ge{sub 36.96}Te{sub 50} (acronym TAGS-85), one of the best p-type thermoelectric materials, with 1 or 2% of the rare earth dysprosium (Dy). Evidence for the incorporation of Dy into the lattice is provided by X-ray diffraction and increased orientation-dependent local fields detected by {sup 125}Te NMR spectroscopy. Since Dy has a stable electronic configuration, the enhancement cannot be attributed to 4f-electron states formed near the Fermi level. It is likely that the enhancement is due to a small reduction in the carrier concentration, detected by {sup 125}Te NMR spectroscopy, but mostly due to energy filtering of the carriers by potential barriers formed in the lattice by Dy, which has large both atomic size and localized magnetic moment. The interplay between the thermopower, the electrical resistivity, and the thermal conductivity of TAGS-85 doped with Dy results in an enhancement of the power factor (PF) and the thermoelectric figure of merit (ZT) at 730 K, from PF = 28 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.3 in TAGS-85 to PF = 35 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.5 in TAGS-85 doped with 1 or 2% Dy for Ge. This makes TAGS-85 doped with Dy a promising material for thermoelectric power generation.

Levin, Evgenii; Budko, Serfuei; Schmidt-Rohr, Klaus

2012-04-10T23:59:59.000Z

439

W. E. Mott, Director, Division of Environmental Control Technology, HQ  

Office of Legacy Management (LM)

Eyergy Eyergy pak t??pEOperatlons dak Ridge, Tennessee 37830 December 12, 1977 W. E. Mott, Director, Division of Environmental Control Technology, HQ Germantown, M.S. E-201 REPORT OF FINDINGS: ALLIED CHEMICAL CORPORATION SITES AT NORTH CLAYMONT, DELAWARE; MARCUS HOOK, PENNSYLVANIA, AND BALTIMORE, MARYLAND The following information summarizes our findings and conclusions relative to the reassessment of the subject sites. Information supplied from files of the former Atomic Energy Commission, Division of Raw Materials, indicates the company was engaged during the 1950's in research and development and pilot scale operations on uranium recovery at North Claymont, Delaware, and possibly at other Allied Chemical sites at Marcus Hook, Pa., and Baltimore, Md. under

440

Hao Li - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Hao Li EM > Hao Li Hao Li Hao Li Postdoctoral Appointee Bldg. 223, A-110 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Hao joined Argonne as a postdoctoral appointee in January 2013. His current research is on the larger single crystal growth of semiconducting chalcohalides for X-ray and gamma-ray detection. One of the promising crystals is Tl6SeI4, which has shown a higher figure of merit than commercial CdZnTe. The target of his work is to grow detector-size and detector-grade single crystals using Bridgman, traveling heater, and flux methods. Hao obtained his BS degree (2005) from Wuhan University of Science and Technology. He completed his PhD degree in Condensed Matter of Physics (2010) under the supervision of Prof. Guofu Wang at the Fujian Institute of Research on Structure of Matter, Chinese Academy of Science. His doctoral thesis was on large single-crystal growth of novel tungstate laser crystals. In July 2010 he joined the Kanatzidis group in Northwestern University as a postdoctoral fellow working on exploratory synthesis and large single crystal growth of Cs-based chalcogenide compounds for X-ray and gamma-ray detection.

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MSD Information - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2+00:00 Joomla! 1.6 - Open Source 2+00:00 Joomla! 1.6 - Open Source Content Management Quantum spins mimic refrigerator magnets 2012-10-16T21:07:14+00:00 2012-10-16T21:07:14+00:00 http://www.msd.anl.gov/highlights/quantum-spins Tim Kendall tkendall@anl.gov Quantum spins mimic refrigerator magnets By Joseph Bernstein • October 11, 2012

The behavior of magnetic moments in metal

442

MSD Information - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

all-colloquiums Sun, 12 Jan 2014 all-colloquiums Sun, 12 Jan 2014 01:07:22 +0000 Joomla! 1.6 - Open Source Content Management en-gb Shpyrko1-011013 http://www.msd.anl.gov/colloquiums/shpyrko-011013 http://www.msd.anl.gov/colloquiums/shpyrko-011013 lbersano@anl.gov (Lacey Bersano) Wed, 09 Jan 2013 22:42:10 +0000 Veryovkin-112912 http://www.msd.anl.gov/colloquiums/veryovkin-112912 http://www.msd.anl.gov/colloquiums/veryovkin-112912 lbersano@anl.gov (Lacey Bersano) Fri, 09 Nov 2012 20:40:43 +0000 Hryn-022113 http://www.msd.anl.gov/colloquiums/hryn-022113 http://www.msd.anl.gov/colloquiums/hryn-022113 lbersano@anl.gov (Lacey Bersano) Fri, 19 Oct 2012 13:14:27 +0000 Lee 092712 http://www.msd.anl.gov/colloquiums/h-lee-092712 http://www.msd.anl.gov/colloquiums/h-lee-092712 lbersano@anl.gov (Lacey

443

SM Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Superconductivity and Magnetism Research Vision The continuing discovery of novel superconductors outruns our ability to explain and control their behavior. Strong electron correlations in the cuprates give rise to unconventional pairing mechanisms and gap symmetries. The large anisotropy and high thermal energies generate novel pancake vortices, Abrikosov and Josephson vortices and a new liquid vortex phase. Furthermore, a succession of novel insulating, magnetic, non-Fermi liquid, and pseudo-gapped phases arises in the normal state. In addition, MgB2 and the iron pnictides add multiband behavior. Our vision is to understand the electronic and vortex properties of novel superconductors and to control their macroscopic behavior by adjusting their nanoscale

444

ECS Home - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home Energy Conversion and Storage The energy conversion and storage group focuses on charge-transfer processes, as well as the chemical environment in the vicinity of electrode surfaces. As the name indicates there are two main research directions. The energy conversion part focuses mainly on fuel cell reactions, with a special focus on the oxygen reduction reaction (ORR), in cooperation with several industrial partners. A better insight in the ORR through single-crystal work and the synthesis of novel nanoparticulate catalysts has led to an increase in activity and stability of fuel cell cathode catalysts with reduced noble-metal content. A new direction for the group is the energy storage part where the focus will be put on lithium-air batteries.

445

CMT Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Condensed Matter Theory Research Technical Progress Superconductivity Nobel Prize in physics awarded to Abrikosov at Stockholm ceremony: ARGONNE, Ill. (Dec. 10, 2003) Ñ The 2003 Nobel Prize in physics was awarded to Alexei A. Abrikosov of the U.S. Department of Energy's Argonne National Laboratory at a ceremony in Stockholm. Abrikosov shared the prize with two colleagues for theories about how matter can show bizarre behavior at extremely low temperatures. The Royal Swedish Academy of Sciences cited Abrikosov, Anthony J. Leggett and Vitaly L. Ginzburg for their work concerning two phenomena called superconductivity and superfluidity. ARPES spectra in the superconducting state of the cuprates are characterized by a low binding energy feature (quasiparticle peak), and a

446

TDAG Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research TDAG Research Background information Originally Environmental Chemistry Team Started in early 90s Field or "On Site" Analytical Method Development Field GC & MS, Mobile Lab (at DOE & DOD sites) Portable XRF (Pb, Hg, As) Chemical Sensors Site Investigations Analysis of environmental samples Analytical Method Development Chemical agent determination (Projects at DPG, APG, RMA) Environmental analysis (EPA methods) Process analysis (CAMDS, AMTEX) Current Capabilities Neutron Activation Facility - Dedicated to NAUTICAS Project for the ONR, but may be available for other projects. (Homeland security, Catalysis studies) ICP/MS Lab - Perkin Elmer. Used for trace characterization of metals GC/MS Lab - Perkin Elmer Clarus 600 GC/MS system. Used for

447

SaeHwan Chun - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > SaeHwan Chun EM > SaeHwan Chun SaeHwan Chun SaeHwan Chun Postdoctoral Appointee Bldg. 223, S-205 Phone: 630-252-3996 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Quick Links Publications Biography SaeHwan Chun joined Argonne in February 2013 as a postdoctoral researcher. His work focuses on the study of novel magnetic ground states in 3d, 4d and 5d transition-metal oxides via single crystal growth, electrical transport, and magnetic property measurements. SaeHwan received his B. A. in Physics from the Korea Advanced Institute of Science and Technology (KAIST) in 2006 and Ph. D. in Physics from Seoul National University in 2012, advised by Prof. Kee Hoom Kim. His thesis focused on the synthesis of new multiferroic single crystals, in particular hexagonal ferrites (hexaferrites) and the electric/magnetic transport measurements of their magnetoelectric effects to realize cross-control of the electric and magnetic properties by magnetic field and electric fields, respectively. Before joining Argonne, he held a postdoctoral position in Seoul National University working with THz time domain spectroscopy to investigate electromagnons in multiferroic hexaferrites.

448

Zhili Xiao - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SM > Zhili Xiao SM > Zhili Xiao Zhili Xiao Physicist Appointment Bldg. 223, C-133 Phone: 630-252-8762 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Education Ph.D., Experimental Physics, University of Konstanz, Germany, 1996 M.S., Solid State Physics, Sichuan University, Chengdu, China, 1988 Professional Experience January 2004 - present: Physicist, Argonne National Laboratory June 2009 - present: Professor, Northern Illinois University Oct 2004 - May 2009: Associate Professor, Northern Illinois University Jan 2004 - Sep 2004: Visiting Associate Professor, Northern Illinois University Sep 2001- Jan 2004: Visiting scientist, Argonne National Laboratory Dec 1997- Sep 2001: Research Associate in Dept. of Physics and Astronomy, Rutgers University, Piscataway, New Jersey

449

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry http://www.msd.anl.gov 2014-01-12T01:07:26+00:00 Joomla! Chemistry http://www.msd.anl.gov 2014-01-12T01:07:26+00:00 Joomla! 1.6 - Open Source Content Management Nanostructured Thin Films 2011-03-24T15:53:27+00:00 2011-03-24T15:53:27+00:00 http://www.msd.anl.gov/research-areas/nanostructured-thin-films Lacey Bersano lbersano@anl.gov Nanostructured Thin Films Staff Principal Investigator John A. Carlisle Larry A. Curtiss Dieter M. Gruen Postdoc Paola Bruno Chao Liu Nevin Naguib Bing Shi Michael Sternberg Jian

450

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

C. Drobny,! \\. Pines, S. Sinton, D.P. Weitekamp, ancl D. \\8042. 3. W. S. Warren, S. Sinton, D. fJ. Weitekamp, and A.G. Drobny, A. Pines-, S. Sinton, D. and D. Wemmer, "Fourier

Authors, Various

2013-01-01T23:59:59.000Z

451

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Electrochemical Engineering of Batteries," invited lecture,Electrochemical Engineering of Batteries," Invited lecture.Electrochemical engineering of Batteries," invited lecture,

Authors, Various

2010-01-01T23:59:59.000Z

452

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

in High Energy-Density Batteries, Proc. 11th Intersocietyin High Energy-Density Batteries, 11th Intersociety Energyin High Energy-Density Batteries, LBL-S186, June 1976. 4. C.

Authors, Various

2010-01-01T23:59:59.000Z

453

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Catalysis on Metal Surfaces," Union Carbide, Tarrytown, NewCatalysis on Metal Surfaces," Union Carbide, Tarrytu\\\\'11,metal specimens tested (A-53 mild steel, 304SS and 316SS) with coal and silicon carbide

Authors, Various

2013-01-01T23:59:59.000Z

454

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

E. L. Muetterties, "Metal Carbide Clusters," Prog. Inorg.and E. L. Muetterties, "Metal Carbide Clusters Synthesisbration of graphite and a metal carbide, e.g. , ZrC, with an

Authors, Various

2010-01-01T23:59:59.000Z

455

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

tpresent address: Institut flir Atom-und Festkorper- physik,Max Planck Insi tute flir Festkorperfurschung, Stuttgart,

Authors, Various

2010-01-01T23:59:59.000Z

456

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

a 5 v/o addition of S-spodumene, Li20'Al20304Si02, couldreaction of Si3N4 with S-spodumene to form solid solutions,

Authors, Various

2011-01-01T23:59:59.000Z

457

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Our data of electrical properties vs measurement temperaturecoefficient I)-I vs HIT and T. 1. ELECTRICAL CONDUCTION AND

Authors, Various

2013-01-01T23:59:59.000Z

458

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

M. Sakarcan M. Spears James Evans D. J. S. Y. Coates LittleM. Evans, Anthony G. Evans, James W. Falicov, Leo Gronsky,John A. Little, James W, Evans, and Kenneth H. Kestmacott

Searcy, Alan W.

2010-01-01T23:59:59.000Z

459

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

M. Spears M. Thouless James Evans 0. Coates S. Lympany Y.Norman M. Evans, A. G. Evans, James W. Falicov, L. H.by Electron Microscopy* James W. Evans and Kenneth H.

Authors, Various

2010-01-01T23:59:59.000Z

460

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Corrosion Fatigue and Hydrogen Embrittlement," in Analyticalbehavior dominated by hydrogen embrittlement mechanisms atimmune to embrittlement in the presence of hydrogen gas. In

Authors, Various

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

Chang and D. H. Klalm Hydrogen embrittlement of metals is anthe resistance to hydrogen embrittlement because the rotor

Authors, Various

2011-01-01T23:59:59.000Z

462

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Characterization of Thermal Barrier Ceramic Coatings . . .stabilized zirconia thermal barrier ceramic coat ing wasfor the application of ceramic thermal barrier coatings.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

463

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

types and forms of ceramic thermal barrier coatings andfatigue resist ance of ceramic thermal barrier coatings byoverlay coatings, and ceramic or thermal barrier coatings.

Authors, Various

2010-01-01T23:59:59.000Z

464

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

in Alkyne Metathesis: Flash Pyrolysis of Substituted n4-the products of vacuum flash pyrolysis of tetralin (! ) at

Authors, Various

2013-01-01T23:59:59.000Z

465

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Conver sion of 1 Vacuum flash pyrolysis, 0.05 torr, quartzother si on of 1 Vacuum flash pyrolysis, 0.05 torr, quartz2i were subjected to flash vacuum pyrolysis at low contact

Searcy, Alan W.

2010-01-01T23:59:59.000Z

466

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

c g n W U C l 6 a r c. Oil Shale Retort Components* Alan V.Investigator Introduction. An oil-shale-containing crucibleof I t e t a l s in Oil Shale Environments," LBL-12019. 2.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

467

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

be active in in- situ oil shale environments. ContinuationCorrosion of Alloys in Oil Shale Retorting Atmospheres E. S.Elliott TIle in-situ oil shale retorting process generates

Authors, Various

2011-01-01T23:59:59.000Z

468

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Publications and Reports d. Oil Shale Retort Components A.in Simulated In-Situ Oil Shale Retorts Research Plans forP. 1111ittle and A. V. Levy, "Oil Shale Eetort Components,"

Authors, Various

2013-01-01T23:59:59.000Z

469

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

decomposition of powdered brucite in vacuo, Mg(OH)Z(s) ~MgO on the Fraction of Brucite (Mg(OH)2) Powder Decomposed,

Authors, Various

2011-01-01T23:59:59.000Z

470

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

be estimated either from data for CF4 or from data for ONF3'Cg1rF6 -+ (CF:ln + Ir(m) +CF4+C2F6, etc. Single crystal work

Authors, Various

2011-01-01T23:59:59.000Z

471

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

electric and magnetic fields. We have named this new light source the MlI.GNETICALLY CONFINED ARC DISCHARGE

Authors, Various

2011-01-01T23:59:59.000Z

472

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

which originate from coal ash, on the corrosion process. Theit has not been found in coal ash, a question arises aboutcoal tar i n a diverse molecular-weight range. The presence of entrained ash

Authors, Various

2010-01-01T23:59:59.000Z

473

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

TWork partially supported by NSF. ^University of Lulea,Lulea, Sweden. Fig. 20- Accommodations of transformation

Searcy, Alan W.

2010-01-01T23:59:59.000Z

474

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

the Liquid-Junction Photovoltaic Cell Work in Progress 1981of Liquid-Junction Photovoltaic Cells," Minneapolis meetingliquid-junction photovoltaic cells. 1. MATHEMATICAL MODELING

Authors, Various

2010-01-01T23:59:59.000Z

475

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

J. Bonfiglio H. Bryndza P. Comita J. Froraner J. Huggins A,1980). 7. M. R. Herman, P. B. Comita, C. B. Moore and R. G.1980). 7. M. R. Berman, P. B. Comita, C. B. Moore, and R. G.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

476

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Bonfiglio Bryndza Carriere Comita Janowicz Seidler SeidlerIBL Reports 1. P. B. Comita, M. R. Berman, C. B. Moore and5. T. P. Lockhart, P. B. Comita and R. G. Bergman," Kinetic

Authors, Various

2010-01-01T23:59:59.000Z

477

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

l. tBrief version of LBL-9975, submitted to J. Chem. Phys.Phys. , October 1979, LBL-9975. 14. Randal K. Sparks, "

Authors, Various

2013-01-01T23:59:59.000Z

478

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Air Electrodes for Metal-Air Batteries 6. Oxygen ReductionAir Electrodes for Metal-Air Batteries The objective of thismechani cally recharged metal-air batteries, where only a

Searcy, Alan W.

2010-01-01T23:59:59.000Z

479

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

trically rechargeable metal-air batteries, the positivebatteries, and water electrolyzers, air elec trodes are being used increasingly in metal

Authors, Various

2010-01-01T23:59:59.000Z

480

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

of Fe-Cr--Al Alloys in Coal Gasifier Operating Environments,Corrosion of Metals in Coal Gasifier Environments, NACEstain- less steel in a coal gasifier are a mate- rial that

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

Alloys Under Coal Gasifier Condi tions . . . . . . . . . .components of a coal gasifier are exposed to extremelytemperature of a typical coal gasifier (1227 K for the Synu~

Authors, Various

2010-01-01T23:59:59.000Z

482

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

for careful thermal manage ment of battery modules. Figurefor precise thermal management of LiAl/FeS battery modules.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

483

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

Kenneth Raymond, Glenn T. Seaborg, Andrew Streitwieser,Kenneth Raymond, Glenn T. Seaborg, Andrew Streitwiser, Jr. ,in 1978: (! l Glenn T. Seaborg received the American

Authors, Various

2011-01-01T23:59:59.000Z

484

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

a surface Scholar Award. Glenn Seaborg received the DanielNeil Bartlett, John G. Glenn T. Seaborg, Andrew Streitwiser,Kenneth Raymond, Glenn T. Seaborg, Andrew Streit- wiser,

Authors, Various

2010-01-01T23:59:59.000Z

485

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Schaefer, Henry F. , H I Seaborg, Glenn T. Searcy, Alan W.Kenneth N. Raymond, Glenn T. Seaborg, Andrew Streitwieser,

Authors, Various

2010-01-01T23:59:59.000Z

486

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

a Guggenheim Fellowship. Glenn Seaborg was made one of theN. Schaefer, Henry K , III Seaborg, Glenn T. Searcy, Alan W.Kenneth N. Raymond, Glenn T. Seaborg, Andrew Streitaieser,

Searcy, Alan W.

2010-01-01T23:59:59.000Z

487

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Re- sistively Shunted Josephson Junction," Phys. Rev. L e tQuantum Limited Josephson Junction Noise," American Physicalin the Physics of Josephson Junctions," Second International

Searcy, Alan W.

2010-01-01T23:59:59.000Z

488

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

Nb-Nb Thin-Film Josephson Junctions, J. Appl. Phys. 47,4955). 9. J. Clarke, Josephson Junction Detectors, Physico-f Noise in Metals, Josephson Junctions, and Music," seminar

Authors, Various

2010-01-01T23:59:59.000Z

489

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

a Resistively Shunted Josephson Junction," Phys. Rev. Lett.Point Noise Using a Josephson Junction," B u l l . Am. Phys.t i v e l y Shunted Josephson Junctions," submitted to Phys.

Authors, Various

2010-01-01T23:59:59.000Z

490

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

of conventional water electrolysis and those offor conventional water electrolysis. The reasons for thisto be capable of the electrolysis of water with no external

Authors, Various

2010-01-01T23:59:59.000Z

491

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

ultra-high sensitive far in frared bolometric detectors to temperatures in the he neighborhood of 100 mk.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

492

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

Templeton, Structure of Uranyl Nitrate Di-Tetrahydrofuran,1972). c. Structure of Uranyl Nitrate Di-Tetrahydrofurangeometry is typical of uranyl nitrate :f:~ is the same as

Authors, Various

2011-01-01T23:59:59.000Z

493

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Water Bridged Dimer of Uranyl Nitrate," LBL-99T\\, submitted2, A Water- Bridged Dimer of Uranyl Nitrate Imidazoliuma 1:1 milJimole of uranyl nitrate hexahydrate ancl imidazole

Authors, Various

2013-01-01T23:59:59.000Z

494

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Bronsted coefficient) and Tafel slope. The reaction orderssize mA/rag at 0.85 V (RHE) Tafel slope (mV) Pt Ru Ir Rh Pdtemperature-independent Tafel slope above 400 K of 120 5 m

Searcy, Alan W.

2010-01-01T23:59:59.000Z

495

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

More than a decade of hydrogen-air fuel cell research andand Hydrogen Utilization in an Acid Fuel Cell," Electrochem.

Authors, Various

2013-01-01T23:59:59.000Z

496

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

hydrogen-air fuel cell research and development has led to the general conclusion that the most cost-

Authors, Various

2011-01-01T23:59:59.000Z

497

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

hydrogen-air fuel cell research and development has led to the general conclusion that the most cost-

Authors, Various

2013-01-01T23:59:59.000Z

498

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

J. M. Felthatn Kouba Stein Tachikawa J. R. H. W. C. T. G. K.Williams, J. Zimmie, M. Tachikawa, and E. L. Muetterties, "78, 668 (1981). 6 . M. Tachikawa and E. L. Muetterties, "

Authors, Various

2010-01-01T23:59:59.000Z

499

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

102, 1725 (1980). fl2. M. Tachikawa, A. C. Sievert, E. L.hydrocarbons. to. M. Tachikawa and E. L. Muetterties, "MetalBeno, J . M. Williams, M. Tachikawa, and E. L. Muetterties,

Searcy, Alan W.

2010-01-01T23:59:59.000Z

500

Earth Sciences Division Research Summaries 2006-2007  

SciTech Connect (OSTI)

Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from J

DePaolo, Donald; DePaolo, Donald

2008-07-21T23:59:59.000Z