Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE)...

2

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

3

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

4

Nuclear Engineering Division Irradiated Materials Laboratory  

E-Print Network [OSTI]

Nuclear Engineering Division Irradiated Materials Laboratory The Irradiated Materials Laboratory (IML) in Argonne's Nuclear Engineering Division is used to conduct research on the behavior. #12;C O N TA C T > Dr. Michael C. Billone | 630-252-7146 | billone@anl.gov | Nuclear Engineering

Kemner, Ken

5

EL Program: Sustainable Engineered Materials Program Manager: Aaron Forster, Division  

E-Print Network [OSTI]

1 EL Program: Sustainable Engineered Materials Program Manager: Aaron Forster, Division Associate Program Manager: None Strategic Goal: Sustainable and Energy-Effic Infrastructure 731 ient Manufacturing used in infrastructure, construction, and manufacturing are not able to ensure sustainable performance

6

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network [OSTI]

Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by: signed Feb. 9, 2012 Rick Kelly, Facility/EH&S Manager Submitted by: signed Feb. 9, 2012 Miquel Salmeron.1 RESPONSIBILITY AND AUTHORITY THROUGH LINE MANAGEMENT............................................................5

7

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Staff Seminars in Metallurgy and Materials Science,University, Department of Metallurgy, Cleveland, OH, JuneMaterials Research," Metallurgy Division, Department of

Searcy, Alan W.

2010-01-01T23:59:59.000Z

8

CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY  

E-Print Network [OSTI]

6/29/11 CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY Argonne Division, preferably by e-mail (norman@anl.gov), otherwise by regular mail (MSD-223, Argonne National Lab, Argonne, IL 60439). Please use the subject line "CMT Search" in any e-mail correspondence. Argonne

9

64 _____________________________________Math & Computational Sciences Division High Performance Computing and Visualization  

E-Print Network [OSTI]

64 _____________________________________Math & Computational Sciences Division High Performance Computing and Visualization Research and Development in Visual Analysis Judith Devaney Terrence Griffin John

Perkins, Richard A.

10

Materials and Components Technology Division research summary, 1992  

SciTech Connect (OSTI)

The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

Not Available

1992-11-01T23:59:59.000Z

11

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

of trans­ uranium organometallic chemistry, particularlyfor Uranium Isotope Separation," Chemistry Division, IsotopeOlander, "Uranium Enrichment by Laser," Chemistry Division,

Searcy, Alan W.

2010-01-01T23:59:59.000Z

12

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials Science and

13

Materials Performance in USC Steam  

SciTech Connect (OSTI)

Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

2011-09-07T23:59:59.000Z

14

The Materials Reliability Division has established several capabilities for analyzing the reliability of  

E-Print Network [OSTI]

The Materials Reliability Division has established several capabilities for analyzing the reliability of small scale structures, including a number of custom instruments developed specifically@boulder.nist.gov FACILITIES Measurement Facilities: Small-Scale Mechanical Reliability Materials Science and Engineering

15

Momentive Performance Materials Distillation Intercharger  

E-Print Network [OSTI]

Presenter: Nicki (Collins) Boucher Project Team: T. Baisley, C. Beers, R. Cameron, K. Holman, T. Kotkoskie, K. Norris Momentive Performance Materials Inc. Waterford, NY May 23, 2013 Industrial Energy Technology Conference ACC Responsible... Care? Energy Efficiency Program Momentive Performance Materials Distillation Interchanger ESL-IE-13-05-20 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Copyright 2013 Momentive Performance...

Boucher, N.; Baisley, T.; Beers, C.; Cameron, R.; Holman, K.; Kotkoskie, T.; Norris, K.

2013-01-01T23:59:59.000Z

16

YOU are responsible for your own ESH performance! ES&H Information HEP Division  

E-Print Network [OSTI]

YOU are responsible for your own ESH performance! ES&H Information ­ HEP Division October 2011.................................................................................................................................................. x8831 ES&H Coordinator Leon Reed

Kemner, Ken

17

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

ld Strength of Sialon-Type Materials . . High-Temperatureand Reports . . . . . . . . . . . C. Materials Chemistry 1.VIII. APPENDICES A. Materials and Molecular Research

Authors, Various

2011-01-01T23:59:59.000Z

18

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

Stress Behavior of Superplastic Materials 5. Fe-Ni Cryogenicof Aluminum Silicate Materials Preparation of Spinel PowderCalCUlations for Bulk Materials and for Adsorbates on Transi

Authors, Various

2010-01-01T23:59:59.000Z

19

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

20

Waste Package Materials Performance Peer Review | Department...  

Broader source: Energy.gov (indexed) [DOE]

Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review A consensus peer review of the current technical basis and the planned experimental...

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

of Materials in In-situ Oil Shale Retorting Environments,"of Materials in In-Situ Oil Shale Environments," 8thCorrosion of Metals in Oil Shale Retorting Environments,"

Authors, Various

2010-01-01T23:59:59.000Z

22

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

of Materials in In-situ Oil Shale Retorting Environments,"of Materials in In-Situ Oil Shale Environments," 8thUtilization of Metals in Oil Shale Retort Components Alan V.

Authors, Various

2010-01-01T23:59:59.000Z

23

Materials and Molecular Research Division annual report 1983  

SciTech Connect (OSTI)

Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

Searcy, A.W.; Muller, R.H.; Peterson, C.V.

1984-07-01T23:59:59.000Z

24

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

at room temperature in a hydraulic press. The clamp was thenof such materials. A hydraulic press is used to co~)act

Authors, Various

2011-01-01T23:59:59.000Z

25

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

of Phase Diagrams in Metallurgy and Ceramics, Natl. BureauFillldamental Reactions in Metallurgy, Solid State Physicsthe cell. CXBL 783-7645) of metallurgy and Material Science,

Authors, Various

2011-01-01T23:59:59.000Z

26

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

d. Powder Metallurgy Milton R. Pickus, PrincipaZby the Powder Metallurgy Infiltration Method, (M.S. Thesis)I. MATERIALS SCIENCES A. Metallurgy and Ceramics 1. Heavy

Authors, Various

2010-01-01T23:59:59.000Z

27

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Williams Department of Metallurgy and Materials EngineeringEXXON Colloquia in Metallurgy, Linden, NJ, September 4,of Extraction Metallurgy ' 8 1 , London, England, Inst. Min.

Authors, Various

2010-01-01T23:59:59.000Z

28

Materials and Molecular Research Division: Annual report, 1986  

SciTech Connect (OSTI)

Research activities are reported under the following headings: materials sciences, chemical sciences, nuclear sciences, fossil energy, energy storage systems, and work for others. (DLC)

Phillips, N.E.; Muller, R.H.; Peterson, C.V.

1987-07-01T23:59:59.000Z

29

Materials and Molecular Research Division annual report 1980  

SciTech Connect (OSTI)

Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

Not Available

1981-06-01T23:59:59.000Z

30

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

will also be conducted in shale oil product material. 1979Publications and Reports d. Oil Shale Retort Components A.in Simulated In-Situ Oil Shale Retorts Research Plans for

Authors, Various

2013-01-01T23:59:59.000Z

31

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

and total Immer­ sion 1n shale oil on the corrosion of steel1013 steel. Exposure to shale oil at 300 C for 100 hoursof Materials in In-situ Oil Shale Retorting Environments,"

Authors, Various

2010-01-01T23:59:59.000Z

32

Research and Devlopment Associate Center for Nanophase Materials Sciences Division  

E-Print Network [OSTI]

: i) selective conversion of biomass-derived compounds; ii) rechargeable metal-air batteries as next. · Heterogeneous catalysis and electrocatalysis on metals, metal compounds, and nano- materials. · Current focuses

Pennycook, Steve

33

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network [OSTI]

Structure & Dislocations in Matls MS/ME 535 Green Manufacturing MS/ME 545 Electrochemistry of Fuel Cells Microelectronic Device Manufacturing MS/ME 580 Theory of Elasticity MS 784 Topics in Materials Science ENGINEERING

Lin, Xi

34

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network [OSTI]

Structure & Dislocations in Matls MS/ME 535 Green Manufacturing MS/ME 545 Electrochemistry of Fuel Cells Intro to Materials Science and Engineering MS/EC 579 Microelectronic Device Manufacturing MS/ME 580

Lin, Xi

35

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

Stainless Steel in Coal Gasification Environments, LBL-733Z.of Materials Used in Coal Gasification Plants, AGA- ERDA-MPCon ~hterials for the Gasification of Coal, presented to the

Authors, Various

2011-01-01T23:59:59.000Z

36

Materials and Chemical Sciences Division annual report, 1987  

SciTech Connect (OSTI)

Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

Not Available

1988-07-01T23:59:59.000Z

37

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Immer­ sion 1n shale oil on the corrosion of steel was alsoof Metals in Oil Shale Environments," NACE Corrosion 82,Levy, "Corrosion of Materials in In-situ Oil Shale Retorting

Authors, Various

2010-01-01T23:59:59.000Z

38

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

of Fe-Cr-Ni Alloys in Coal Gasifier Environments," OxidationStructural ~latorials in Coal Gasifier Atmospheres," UCLA,char parti- cles in coal gasifiers consist of materials with

Authors, Various

2013-01-01T23:59:59.000Z

39

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Studies" in High Performance Batteries for Electric-VehicleElectrodes for Metal-Air Batteries 6. Oxygen Reduction vdthfor Advanced Storage Batteries Lutgard C. De Jonghe,

Searcy, Alan W.

2010-01-01T23:59:59.000Z

40

Materials and Chemical Sciences Division annual report 1989  

SciTech Connect (OSTI)

This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

Not Available

1990-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Materials and Molecular Research Division annual report 1982  

SciTech Connect (OSTI)

This report is divided into: materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced isotope separation technology (AISI), energy storage, magnetic fusion energy (MFE), nuclear waste management, and work for others (WFO). Separate abstracts have been prepared for all except AIST, MFE, and WFO. (DLC)

Not Available

1983-05-01T23:59:59.000Z

42

Materials and Molecular Research Division. Annual report 1981  

SciTech Connect (OSTI)

Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

Not Available

1982-08-01T23:59:59.000Z

43

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

10. P. L. Richards, The Josephson Junction as a Detector ofPerformance Linnts of a Josephson Junction Wrixer, submittedUsing a Point Contact Josephson Junction, J. App1. Phys. *4.

Authors, Various

2011-01-01T23:59:59.000Z

44

Division of Materials Sciences and Engineering | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirectionsWorkplace » Diversity,Materials

45

Refractory Lining Material Improves Gasifer Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

water GASIFICATION CHAMBER the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Refractory Lining Material Improves Gasifier Performance Award Winning...

46

Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts  

E-Print Network [OSTI]

It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

Pablo L. Saldanha

2010-02-04T23:59:59.000Z

47

Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts  

E-Print Network [OSTI]

It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

Saldanha, Pablo L

2009-01-01T23:59:59.000Z

48

Berry phase effects on electronic properties Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,  

E-Print Network [OSTI]

Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Ming-Che Chang Department of PhysicsBerry phase effects on electronic properties Di Xiao Materials Science and Technology Division, Oak

Wu, Zhigang

49

Materials Performance in USC Steam  

SciTech Connect (OSTI)

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

50

HIGH-PERFORMANCE COATING MATERIALS  

SciTech Connect (OSTI)

Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

SUGAMA,T.

2007-01-01T23:59:59.000Z

51

Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program  

SciTech Connect (OSTI)

This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

NONE

1996-11-01T23:59:59.000Z

52

Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program  

SciTech Connect (OSTI)

This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

NONE

1996-06-01T23:59:59.000Z

53

Packaging and Transfer of Hazardous Materials and Materials of...  

Broader source: Energy.gov (indexed) [DOE]

PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSANevada Site Office Facility Representative Division Performance...

54

Significant changes in the Code rules in Section VIII, Division 1 concerning material and welding  

SciTech Connect (OSTI)

Several very significant changes to the Code rules in Section VIII, Division 1 concerning materials and welding have been made since the 1950 Code. These changes include: (1) Improved steel making practice which has resulted in significant changes to the type of materials permitted for the construction of Section VIII vessels. (2) In 1950 no impact testing was required on any material for use at temperatures of {minus}20F and above. And when impact testing was required, the impact value was 15 ft-lb minimum average on Charpy type, keyhole, or U-notch specimens. (3) In the mid-1960`s, the impact test requirement was changed to Charpy type, V-notch specimens, a much more severe test. (4) In 1987 the Code published new toughness rules for carbon and low-alloy steels. (5) In regard to welding, a very significant improvement has been the use of low-hydrogen electrodes which started in the 1950`s. Few welding electrode specifications existed in the early editions of the Code. A recent improvement in electrode specification is moisture resistant electrodes.

Doty, W.D. [Doty and Associates, Pittsburgh, PA (United States)

1996-12-01T23:59:59.000Z

55

COMPARATIVE ASSESSMENT OF MATERIAL PERFORMANCE IN DEMO  

E-Print Network [OSTI]

for sufficient time. Reliable estimates of component lifetimes are an important part of power plant design The basic DEMO design used in the present study is a 1.8 GW device (2.2 GW total thermal power ­ including simulation models and capabilities to assess material performance under the neutron irradiation conditions

56

Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)  

SciTech Connect (OSTI)

A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

Baum, Gregory A.

2014-02-01T23:59:59.000Z

57

Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups: Report on the joint meeting, July 9, 1986  

SciTech Connect (OSTI)

This paper contains a collection of viewgraphs from a joint meeting of the Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups. A list of contributing topics is: PPPL update, ATF update, Los Alamos RFP program update, status of DIII-D, PMI graphite studies at ORNL, PMI studies for low atomic number materials, high heat flux materials issues, high heat flux testing program, particle confinement in tokamaks, helium self pumping, self-regenerating coatings technical planning activity and international collaboration update. (LSP)

Watson, R.D. (ed.)

1986-09-01T23:59:59.000Z

58

High performance Zintl phase TE materials with embedded nanoparticles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials with Embedded Particles Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles...

59

Materials Performance in USC Steam Portland  

SciTech Connect (OSTI)

Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

G.R. Holcomb; J. Tylczak; R. Hu

2011-04-26T23:59:59.000Z

60

The Materials Reliability Division has established several capabilities for measuring the interaction  

E-Print Network [OSTI]

DIVISION A biological safety cabinet used for cell culture. An environmental chamber used for accelerated. These include the ability to culture cells, handle tissues, and employ a wide range of biological assays custom instrumentation to measure response from the macro- to the nano-scale. Cell Culture Laboratory Our

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oral: Division of Polymeric Materials: Science & Engineering: Nano-and Micro-Scale Porous Polymer-Based Systems. Synthesis of [Bis(pyridine)salen]ZnII  

E-Print Network [OSTI]

Oral: Division of Polymeric Materials: Science & Engineering: Nano- and Micro-Scale Porous Polymer envisioned for these polymeric materials, enantioselectivity is one of the most challenging to incorporate.4/separation are often anticipated.5,6 Ideally, porous polymeric materials with chiral functionalities along their pores

62

Materials performance in coal gasification pilot plants  

SciTech Connect (OSTI)

This paper presents the results of several materials testing projects which were conducted in operating coal gasification pilot plants in the United States. These projects were designed to test potential materials of construction for commercial plants under actual operating conditions. Pilot plants included in the overall test program included the Hygas, Conoco Coal, Synthane, Bi-Gas, Peatgas (Hygas operating with peat), Battelle, U-Gas, Westinghouse (now KRW), General Electric (Gegas), and Mountain Fuel Resources plants. Test results for a large variety of alloys are discussed and conclusions regarding applicability of these materials in coal gasification environments are presented. 14 refs., 2 tabs.

Judkins, R.R.; Bradley, R.A.

1987-10-15T23:59:59.000Z

63

Chemical Technology Division annual technical report 1997  

SciTech Connect (OSTI)

The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

NONE

1998-06-01T23:59:59.000Z

64

Efficient Materialization of Dynamic Web Data to Improve Web Performance  

E-Print Network [OSTI]

Efficient Materialization of Dynamic Web Data to Improve Web Performance Christos Bouras, Agisilaos of performance, response efficiency and data consistency are among the most important ones for data intensive Web a materialization policy that may be applied to data intensive Web sites. Our research relies on the performance

Bouras, Christos

65

Chemical Emissions of Residential Materials and Products: Review of Available Information Environmental Energy Technologies Division  

E-Print Network [OSTI]

Chemical Emissions of Residential Materials and Products: Review of Available Information Contract 500-08-06. Chemical Emissions of Residential Materials and Products: Review of Available Information Henry Willem and Brett C. Singer LBNL-3938E #12;Chemical Emissions of Residential Materials

66

Materials Scale-up and Cell Performance Analysis  

Broader source: Energy.gov (indexed) [DOE]

LBNL Materials Scale-up and Cell Performance Analysis Vince Battaglia LBNL June 9, 2010 This presentation does not contain any proprietary, confidential, or otherwise restricted...

67

applications materials performance: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applications materials performance First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Performance...

68

Refractory Lining Material Improves Gasifer Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53Reference MaterialsRefiners SwitchSlag to

69

High Performance Valve Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHighMetalEnergyMaterials

70

Project materials [Commercial High Performance Buildings Project  

SciTech Connect (OSTI)

The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

None

2001-01-01T23:59:59.000Z

71

Automated accountability of hazardous materials at AlliedSignal Inc., Kansas City Division  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Kansas City Plant (KCP), currently operated by AlliedSignal Inc. has developed a comprehensive Hazardous Material Information System (HMIS). The purpose of this system is to provide a practical and automated method to collect, analyze and distribute hazardous material information to DOE, KCP associates, and regulatory agencies. The drivers of the HMIS are compliance with OSHA Hazard Communications, SARA reporting, pollution prevention, waste minimization, control and tracking of hazards, and emergency response. This report provides a discussion of this system.

Depew, P.L.

1993-12-01T23:59:59.000Z

72

1998 Chemical Technology Division Annual Technical Report.  

SciTech Connect (OSTI)

The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

1999-08-06T23:59:59.000Z

73

Accident Performance of Light Water Reactor Cladding Materials  

SciTech Connect (OSTI)

During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

74

Ferromagnetic Mn moments at SrRuO3/SrMnO3 interfaces Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439  

E-Print Network [OSTI]

Ferromagnetic Mn moments at SrRuO3/SrMnO3 interfaces Y. Choia Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 Y. Z. Yoo, O. Chmaissem, A. Ullah, S. Kolesnik, and C. W University, DeKalb, Illinois 60115 D. Haskel Advanced Photon Source, Argonne National Laboratory, Argonne

Haskel, Daniel

75

Materials integration issues for high performance fusion power systems.  

SciTech Connect (OSTI)

One of the primary requirements for the development of fusion as an energy source is the qualification of materials for the frost wall/blanket system that will provide high performance and exhibit favorable safety and environmental features. Both economic competitiveness and the environmental attractiveness of fusion will be strongly influenced by the materials constraints. A key aspect is the development of a compatible combination of materials for the various functions of structure, tritium breeding, coolant, neutron multiplication and other special requirements for a specific system. This paper presents an overview of key materials integration issues for high performance fusion power systems. Issues such as: chemical compatibility of structure and coolant, hydrogen/tritium interactions with the plasma facing/structure/breeder materials, thermomechanical constraints associated with coolant/structure, thermal-hydraulic requirements, and safety/environmental considerations from a systems viewpoint are presented. The major materials interactions for leading blanket concepts are discussed.

Smith, D. L.

1998-01-14T23:59:59.000Z

76

Materials science division light-water-reactor safety research program. Quarterly progress report, October - December 1981  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during October, November, and December 1981 on water-reactor-safety problems. The research and development areas covered are environmentally assisted cracking in light water reactors, transient fuel response and fission-product release, and clad properties for code verification.

Not Available

1982-05-01T23:59:59.000Z

77

Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups  

SciTech Connect (OSTI)

This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

Wilson, K.L. (ed.)

1985-10-01T23:59:59.000Z

78

Achieving Transformational Materials Performance in a New Era of Science  

ScienceCinema (OSTI)

The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

John Sarrao

2010-01-08T23:59:59.000Z

79

Compilation of reports from research supported by the Materials Engineering Branch, Division of Engineering: 1991--1993. Volume 2  

SciTech Connect (OSTI)

Since 1965, the Materials Engineering Branch, Division of Engineering, of the Nuclear Regulatory Commission`s Office of Nuclear Regulatory Research, and its predecessors dating back to the Atomic Energy Commission (AEC), has sponsored research programs concerning the integrity of the primary system pressure boundary of light water reactors. The components of concern in these research programs have included the reactor pressure vessel (RPV), steam generators, and the piping. These research programs have covered a broad range of topics, including fracture mechanics analysis and experimental work for RPV and piping applications, inspection method development and qualification, and evaluation of irradiation effects to RPV steels. This report provides as complete a listing as practical of formal technical reports submitted to the NRC by the investigators working on these research programs. This listing includes topical, final and progress reports, and is segmented by topic area. In many cases a report will cover several topics (such as in the case of progress reports of multi-faceted programs), but is listed under only one topic. Therefore, in searching for reports on a specific topic, other related topic areas should be checked also. The separate volumes of this report cover the following periods: Volume 1: 1965--1990 and Volume 2: 1991--1993.

Hiser, A.L. [comp.

1994-06-01T23:59:59.000Z

80

Time Division Multiplexing of Network Access by Security Groups in High Performance Computing Environments.  

E-Print Network [OSTI]

??It is commonly known that High Performance Computing (HPC) systems are most frequently used by multiple users for batch job, parallel computations. Less well known,… (more)

Ferguson, Joshua

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electron beam melting capability at Cabot Performance Materials  

SciTech Connect (OSTI)

Cabot Performance Materials is a manufacturer of selected performance metals from ores to finished powder and mill shapes. CPM has been a world leader for over 40 years in the technology and production of tantalum and niobium for the electronics, aerospace, defense, and chemical processing industries. This paper presents a historical overview of their electron beam furnaces culminating with the successful installation of a second 1200 KW furnace.

Fisher, J.G. [Cabot Performance Materials, Boyertown, PA (United States)

1995-12-31T23:59:59.000Z

82

High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects  

DOE Patents [OSTI]

As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

Deri, Robert J. (Pleasanton, CA); DeGroot, Anthony J. (Castro Valley, CA); Haigh, Ronald E. (Arvada, CO)

2002-01-01T23:59:59.000Z

83

Functionalized Materials From Elastomers to High Performance Thermoplastics  

SciTech Connect (OSTI)

Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis-polyisoprene, natural rubber is no longer needed for the manufacturing of tires, but vulcanization is still utilized.

Laura Ann Salazar

2003-05-31T23:59:59.000Z

84

Chemical Technology Division annual technical report, 1996  

SciTech Connect (OSTI)

CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

NONE

1997-06-01T23:59:59.000Z

85

Performance limits of fusion first-wall structural materials.  

SciTech Connect (OSTI)

Key features of fusion energy relate primarily to potential advantages associated with safety and environmental considerations and the near endless supply of fuel. However, it is generally concluded that high performance fusion power systems will be required in order to be economically competitive with other energy options. As in most energy systems, structural materials operating limits pose a primary constraint to the performance of fusion power systems. It is also recognized that for the case of fusion power, the first-wall/blanket system will have a dominant impact on both the economic and safety/environmental attractiveness of fusion energy. The first-wall blanket structure is particularly critical since it must maintain high integrity at relatively high temperatures during exposure to high radiation levels, high surface heat fluxes, and significant primary stresses. The performance limits of the first-wall/blanket structure will be dependent on the structural material properties, the coolant/breeder system, and the specific design configuration. Key factors associated with high performance structural materials include (1) high temperature operation, (2) a large operating temperature window, and (3) a long operating lifetime. High temperature operation is necessary to provide for high power conversion efficiency. As discussed later, low-pressure coolant systems provide significant advantages. A large operating temperature window is necessary to accommodate high surface heating and high power density. The operating temperature range for the structure must include the temperature gradient through the first wall and the coolant system AT required for efficient energy conversion. This later requirement is dependent on the coolant/breeder operating temperature limits. A long operating lifetime of the structure is important to improve system availability and to minimize waste disposition.

Smith, D. L.; Majumdar, S.; Billone, M.; Mattas, R. F.

1999-11-12T23:59:59.000Z

86

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1995-05-09T23:59:59.000Z

87

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

1995-01-01T23:59:59.000Z

88

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1996-01-23T23:59:59.000Z

89

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

1996-01-01T23:59:59.000Z

90

Corrosion performance of advanced structural materials in sodium.  

SciTech Connect (OSTI)

This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carb

Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

2012-05-16T23:59:59.000Z

91

Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97  

SciTech Connect (OSTI)

This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

Newkirk, L.

1997-12-01T23:59:59.000Z

92

Solid State Division  

SciTech Connect (OSTI)

This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1989-08-01T23:59:59.000Z

93

Electron Transport Materials: Synthesis, Properties and Device Performance  

SciTech Connect (OSTI)

We report the design, synthesis and characterization, thermal and photophysical properties of two silane based electron transport materials, dibenzo[b,d]thiophen-2-yltriphenylsilane (Si{phi}87) and (dibenzo[b,d]thiophen-2-yl)diphenylsilane (Si{phi}88) and their performance in blue organic light emitting devices (OLEDs). The utility of these materials in blue OLEDs with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C']picolinate (Firpic) as the phosphorescent emitter was demonstrated. Using the silane Si{phi}87 as the electron transport material (ETm) an EQE of 18.2% was obtained, with a power efficiency of 24.3 lm/W (5.8V at 1mA/cm{sup 2}), in a heterostructure. When Si{phi}88 is used, the EQE is 18.5% with a power efficiency of 26.0 lm/W (5.5V at 1mA/cm{sup 2}).

Cosimbescu, Lelia; Wang, Liang; Helm, Monte L.; Polikarpov, Evgueni; Swensen, James S.; Padmaperuma, Asanga B.

2012-06-01T23:59:59.000Z

94

Earth Sciences Division Research Summaries 2006-2007  

E-Print Network [OSTI]

the commencement of the Earth Sciences Division 30 yearstelling. Happy Anniversary! Earth Sciences Division ears YTritium in Engineered and Earth Materials Stefan Finsterle,

DePaolo, Donald

2008-01-01T23:59:59.000Z

95

New MEA Materials for Improved DMFC Performance, Durability and Cost  

SciTech Connect (OSTI)

Abstract Project Title: New MEA Materials for Improved DMFC Performance, Durability and Cost The University of North Florida (UNF)--with project partners the University of Florida, Northeastern University, and Johnson Matthey--has recently completed the Department of Energy (DOE) project entitled “New MEA Materials for Improved DMFC Performance, Durability and Cost”. The primary objective of the project was to advance portable fuel cell MEA technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a passive water recovery MEA (membrane electrode assembly). Developers at the University of North Florida identified water management components as an insurmountable barrier to achieving the required system size and weight necessary to achieve the energy density requirements of small portable power applications. UNF developed an innovative “passive water recovery” MEA for direct methanol fuel cells (DMFC) which provides a path to system simplification and optimization. The passive water recovery MEA incorporates a hydrophobic, porous, barrier layer within the cathode electrode, so that capillary pressure forces the water produced at the cathode through holes in the membrane and back to the anode. By directly transferring the water from the cathode to the anode, the balance of plant is very much simplified and the need for heavy, bulky water recovery components is eliminated. At the heart of the passive water recovery MEA is the UNF DM-1 membrane that utilizes a hydrocarbon structure to optimize performance in a DMFC system. The membrane has inherent performance advantages, such as a low methanol crossover (high overall efficiency), while maintaining a high proton conductivity (good electrochemical efficiency) when compared to perfluorinated sulfonic acid membranes such as Nafion. Critically, the membrane provides an extremely low electro-osmotic drag coefficient of approximately one water molecule per proton (versus the 2-3 for Nafion) that minimizes flooding issues at the cathode, which often fatally limit open cathode MEA performance. During this successfully completed DOE program the project team met all of the project goals. The team built and tested over 1,500 MEAs with a wide range of different manufacturing chemistries and process conditions. This project demonstrated that the UNF MEA design could be fabricated with a high degree of reproducibility and repeatability. Some specific achievements include: • Durability - The UNF MEA has demonstrated over 11,000 hours continuous operation in a short stack configuration. The root cause of an off-state degradation issue was successfully mitigated by modifying the manufacturing process by changing the wetting agents used in the catalyst printing. The stability of the anode electrode was increased by replacing the anode electrodes with a stabilized PtRu/C catalyst. The overall degradation rate was significantly reduced through optimization of the MEA operating conditions. • Performance - The project team optimized the performance of the critical MEA sub-components. By increasing the membrane thickness, the methanol crossover was reduced, thereby increasing the fuel utilization efficiency without sacrificing any electrochemical performance. The reduction in methanol crossover increased the fuel utilization efficiency from 78% to over 90%. The liquid barrier layer was optimized to provide improved reproducibility, thereby improving stack voltage uniformity and reliability. Additionally the barrier layer water permeability was lowered without sacrificing any power density, thereby enabling increased operating temperature. Improvements in the cathode catalyst selection and coating provided an additional 10% to 20% improvement in the MEA performance at the target operating range. • Cost - Commercially scalable processes were developed for all of the critical MEA components which led to improved yields and lower overall manufacturing costs. Furthermore, significant steps have been made in improving the process control, which increases MEA

Fletcher, James H. [University of North Florida; Campbell, Joseph L. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J. [University of North Florida

2013-09-16T23:59:59.000Z

96

Energy Technology Division research summary -- 1994  

SciTech Connect (OSTI)

Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

Not Available

1994-09-01T23:59:59.000Z

97

Development of improved performance refractory liner materials for slagging gasifiers  

SciTech Connect (OSTI)

Refractory liners for slagging gasifiers used in power generation, chemical production, or as a possible future source of hydrogen for a hydrogen based economy, suffer from a short service life. These liner materials are made of high Cr2O3 and lower levels of Al2O3 and/or ZrO2. As a working face lining in the gasifier, refractories are exposed to molten slags at elevated temperature that originate from ash in the carbon feedstock, including coal and/or petroleum coke. The molten slag causes refractory failure by corrosion dissolution and by spalling. The Albany Research Center is working to improve the performance of Cr2O3 refractories and to develop refractories without Cr2O3 or with Cr2O3 content under 30 wt pct. Research on high Cr2O3 materials has resulted in an improved refractory with phosphate additions that is undergoing field testing. Results to date of field trials, along with research direction on refractories with no or low Cr2O3, will be discussed.

Kwong, Kyei-Sing; Bennett, James P.; Powell, Cynthia; Thomas, Hugh; Krabbe, Rick

2005-01-01T23:59:59.000Z

98

Enhanced performance of graphite anode materials by AlF3 coating...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance of graphite anode materials by AlF3 coating for lithium-ion batteries. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries....

99

Energy Technology Division research summary 1997.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

NONE

1997-10-21T23:59:59.000Z

100

Corrosion and Materials Chemistry Reliable performance of materials in a given environment is very important for any  

E-Print Network [OSTI]

Corrosion and Materials Chemistry Reliable performance of materials in a given environment is very process, and especially in the chemical process industries, corrosion or environmental degradation to improve products can often lead to higher corrosion susceptibilities of the plant materials. Moreover

Li, Mo

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Performance of MHD insulating materials in a potassium environment  

SciTech Connect (OSTI)

The objectives of this study are to evaluate the compatibility of the MHD insulating materials boron nitride and silicon nitride in a potassium environment at temperatures of 1000 and 1400{degrees}F (538 and 760{degrees}C, respectively) and to measure the electrical conductivities of the specimens before and after exposure to potassium. Based on the test results, an assessment is to be made of the suitability of these materials for application as insulator materials in an MHD channel.

Natesan, K.; Park, J.H.; Rink, D.L. (Argonne National Lab., IL (United States)); Thomas, C.A. (USDOE Pittsburgh Energy Technology Center, PA (United States))

1991-12-01T23:59:59.000Z

102

High Performance Zintl Phase TE Materials with Embedded Particles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TE Materials with Embedded Particles Presents results from embedding nanoparticles in magnesium silicide alloy matrix reducing thermal conductivity by phonon scattering and...

103

The Materials Reliability Division has established a unique, state-of-the-art high-pressure gaseous  

E-Print Network [OSTI]

will be distributed to other hydrogen materials researchers as well as to the ASME for use by pipeline designers. Fatigue Testing In FY10 fatigue testing of existing and new pipeline steels that are proposed for hydrogen hydrogen test facility dedicated to measuring the mechanical properties of metallic and composite

104

Predicting the Performance of Edge Seal Materials for PV (Presentation)  

SciTech Connect (OSTI)

Edge seal materials were evaluated using a 100-nm film of Ca deposited on glass and laminated to another glass substrate. As moisture penetrates the package it converts the Ca metal to transparent CaOH2 giving a clear indication of the depth to which moisture has entered. Using this method, we have exposed test samples to a variety of temperature and humidity conditions ranging from 45C and 10% RH up to 85C and 85% RH, to ultraviolet radiation and to mechanical stress. We are able to show that edge seal materials are capable of keeping moisture away from sensitive cell materials for the life of a module.

Kempe, M.; Panchagade, D.; Dameron, A.; Reese, M.

2012-03-01T23:59:59.000Z

105

Controlling Performance of Laminated Composites Using Piezoelectric Materials  

E-Print Network [OSTI]

Composite materials are increasingly used in aerospace, underwater, and automotive structures. Their use in structural applications is dictated by the outstanding strength and stiffness while being lightweight in addition to their flexibility...

Hasan, Zeaid

2012-02-14T23:59:59.000Z

106

Selection and performance of Materials for Biomass Gasifiers  

SciTech Connect (OSTI)

Production of syngas through gasification or pyrolysis offers one of the more efficient routes for utilization of biomass resources; however, the containment structures used for many of these thermochemical processes are exposed to severe environments that limit their longevity and reliability. Studies have been conducted for three of these systems, and superior alternative materials have been identified. Improved materials will be of even greater importance in proposed gasification systems, many of which will generate even more extreme operating conditions.

Keiser, James R [ORNL] [ORNL; Hemrick, James Gordon [ORNL] [ORNL; Meisner, Roberta A [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)] [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Blau, Peter J [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Pint, Bruce A [ORNL] [ORNL

2010-01-01T23:59:59.000Z

107

Materials Science and Technology Division light-water-reactor safety research program: quarterly progress report, January-March 1983  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during January, February and March 1983 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, and Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems.

Not Available

1984-04-01T23:59:59.000Z

108

Materials Science Division light-water-reactor safety-research program. Quarterly progress report, April-June 1982. Volume 2  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during April, May, and June 1982 on water-reactor-safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, and Clad Properties for Code Verification.

Shack, W.J.; Rest, J.; Kassner, T.F.; Chung, H.M.; Claytor, T.N.; Kupperman, D.S.; Maiya, P.S.; Nichols, F.A.; Park, J.Y.; Ruther, W.E.; Yaggee, F.L.

1983-05-01T23:59:59.000Z

109

Materials Science Division light-water-reactor safety research program. Quarterly progress report, July-September 1982  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during July, August, and September 1982 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, Posttest Fuel Examination of the ORNL Fission Product Release Tests, and Examination of TMI-2 Fuel Specimens.

Shack, W.J.; Rest, J.; Kassner, T.F.; Neimark, L.A.; Chung, H.M.; Claytor, T.N.; Kupperman, D.S.; Maiya, P.S.; Nichols, F.A.; Park, J.Y.

1983-08-01T23:59:59.000Z

110

Los Alamos National Laboratory Est. 1943 MPA Materials Matter--Newsletter of the Materials Physics and Applications Division I N S I D E  

E-Print Network [OSTI]

, satellites in deep space, secure communications without need for encryption, medical applicationsJune 2010 Los Alamos National Laboratory · Est. 1943 MPA Materials Matter to the advancement of technology in New Mexico. Intel, the New Mexico Technology Council, and Sandia National

111

New MEA Materials for Improved DMFC Performance, Durability and...  

Broader source: Energy.gov (indexed) [DOE]

performance and durability - Johnson Matthey * MEA fabrication scale up and MEA optimization 2 Project Objectives * Leverage the PolyFuel Passive water recovery MEA design to...

112

Materials Chemistry and Performance of Silicone-Based Replicating Compounds.  

SciTech Connect (OSTI)

Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

2014-11-01T23:59:59.000Z

113

Alternative High-Performance Motors with Non-Rare Earth Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

114

Joanna McFarlane, Refuyat Ashen, and K.C. Cushman Separations and Materials Research Group, Nuclear Science and Technology Division  

E-Print Network [OSTI]

, Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge, Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge. Fuel mixtures that were considered included: biodiesel and standard diesel fuel, methyl-butanoate and n

Pennycook, Steve

115

Enhanced High and Low Temperature Performance of NOx Reduction Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12,Materials | Department of Energy 0

116

Enhanced High and Low Temperature Performance of NOx Reduction Materials |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12,Materials | Department of Energy 0Department

117

Key Elements of and Materials Performance Targets for Highly  

E-Print Network [OSTI]

and Technology, Hřgskoleringen 7A, NO-7491 Trondheim, Norway Abstract The thermal performance of windows of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U

118

Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)  

SciTech Connect (OSTI)

Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

2013-07-01T23:59:59.000Z

119

Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy  

E-Print Network [OSTI]

Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table

Subramanian, Venkat

120

Division of Finance Division of Finance Alignment  

E-Print Network [OSTI]

Division of Finance Division of Finance Alignment September 11, 2014 1 #12;Division of Finance of Finance Goal of the DF Alignment Project The internal and external alignment of the Division of Finance of Finance The Process We Followed 17 Meetings17 Meetings 120+ Pages of Data 103 Themes 12 Meta Themes Goals

Hayden, Nancy J.

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transportation Energy Technology DivisionEnergy Technology Division --TribologyTribology  

E-Print Network [OSTI]

-frictionless carbon coatings to the components when appropriate · Develop and evaluate polymer composite materials to their prototype using Hitco C/C composite and anodized aluminum material combination. · Fabricated and evaluatedTransportation Materials Energy Technology DivisionEnergy Technology Division -- Tribology

122

Momentive Performance Materials Inc MPM | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe Wind Farm JumpMomentive Performance

123

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a Job External ApplicantsSearch This page has

124

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a Job External ApplicantsSearch This page has

125

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy Conversion Devices  

E-Print Network [OSTI]

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy of applications, such as sensing, data storage, and energy conversion. For example, perovskite solid solutions

Rappe, Andrew M.

126

Superconducting Magnet Division  

E-Print Network [OSTI]

Superconducting Magnet Division DOE NP Program Review - July 06 1 Brookhaven Magnet Division - Nuclear Physics Program Support Activities Superconducting Magnet Program RHIC Operations Support Spin Summary Peter Wanderer, DOE review, July 25, 2006 Acting Head, Superconducting Magnet Division #12

127

RESEARCH UPDATE Ecology Division  

E-Print Network [OSTI]

1 RESEARCH UPDATE Ecology Division Biotype has changed its name to Ecotype! Following the re-organisation of Forest Research into five science Divisions and three Support Divisions, the former Woodland Ecology Branches to form the new Ecology Division. We decided to give the divisional newsletter a new name (and

128

Experimental study to determine basic performance characteristics of recycled glass as beach nourishment material  

E-Print Network [OSTI]

EXPERIMENTAL STUDY TO DFTERMINE BASIC PERI'ORMANCE CHARACTFRISTICS OI RECYCLED GLASS AS BEACH NOLiRISHMENT MATERIAL A Thesis by OSCAR CRUZ CASTRO Submined to the Office of Graduate Studies of Texas AkM University in partial I ulfillment... of the requirements for the degree ot MASTER OF SCIENCF. May 2003 Major Subject: Ocean Engineering EXPERIMENTAL STUDY TO DFTERMINE BASIC PERFORMANCE CHARACTERISTICS OF RECYCLED OLASS AS BEACH NOI JRISHMENT MATERIAL A Thesis by OSCAR CRUZ CASTRO Submitted...

Cruz Castro, Oscar

2003-01-01T23:59:59.000Z

129

Resistance Spot Welding of Aluminum Alloy to Steel with Transition Material - From Process to Performance  

SciTech Connect (OSTI)

This paper summarizes work to date on resistance spot welding (RSW) of aluminum alloy to mild steel from process development to performance evaluation. A cold-rolled strip material is introduced as a transition material to aid the resistance welding process. The optimal welding parameters and electrode selections were established using a combination of experimental and analytical approaches. The mechanical behaviors of welded samples was evaluated using static and dynamic strength tests and cyclic fatigue tests. A statistical analysis was also performed to analyze the effect of different failure modes on the sample's peak load and energy absorption.

Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.; Shao, H; Kimchi, Menachem; Menachem Kimchi and Wanda Newman

2004-05-11T23:59:59.000Z

130

Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials  

SciTech Connect (OSTI)

Two organic cathode materials based on poly(anthraquinonyl sulfide) structure with different substitution positions were synthesized and their electrochemical behavior and battery performances were investigated. The substitution positions on the anthraquinone structure, binders for electrode preparation and electrolyte formulations have been found to have significant effects on the battery performances of such organic cathode materials. The substitution position with less steric stress has higher capacity, longer cycle life and better high-rate capability. Polyvinylidene fluoride binder and ether-based electrolytes are favorable for the high capacity and long cycle life of the quinonyl organic cathodes.

Xu, Wu; Read, Adam L.; Koech, Phillip K.; Hu, Dehong; Wang, Chong M.; Xiao, Jie; Padmaperuma, Asanga B.; Graff, Gordon L.; Liu, Jun; Zhang, Jiguang

2012-02-01T23:59:59.000Z

131

Solid State Division progress report for period ending September 30, 1993  

SciTech Connect (OSTI)

This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasis on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.

Green, P.H.; Hinton, L.W. [eds.

1994-08-01T23:59:59.000Z

132

High performance materials in coal conversion utilization. Final report, October 1, 1993--September 30, 1996  

SciTech Connect (OSTI)

This report describes the research conducted at the University of Tennessee Space Institute on high performance materials for use in corrosive environments. The work was supported by a US Department of Energy University Coal Research grant. Particular attention was given to the silicon carbide particulate reinforced alumina matrix ceramic composite manufactured by Lanxide Corporation as a potential tubular component in a coal-fired recuperative high-temperature air heater. Extensive testing was performed to determine the high temperature corrosion effects on the strength of the material. A computer modeling of the corrosion process was attempted but the problem proved to be too complex and was not successful. To simplify the situation, a computer model was successfully produced showing the corrosion thermodynamics involved on a monolithic ceramic under the High Performance Power System (HIPPS) conditions (see Appendix A). To seal the material surface and thus protect the silicon carbide particulate from corrosive attack, a dense non porous alumina coating was applied to the material surface. The coating was induced by a defocused carbon dioxide laser beam. High temperature corrosion and strength tests proved the effectiveness of the coating. The carbon dioxide laser was also used to successfully join two pieces of the Lanxide material, however, resources did not allow for the testing of the resulting joint.

McCay, T.D.; Boss, W.H. [ed.; Dahotre, N. [and others

1996-12-01T23:59:59.000Z

133

Phase-change materials to improve solar panel's performance Pascal Biwole1,2,*  

E-Print Network [OSTI]

-change materials to improve solar panel's performance Pascal Biwole1,2,* , Pierre Eclache3 , Frederic Kuznik3 1-mail:phbiwole@unice.fr Abstract: High operating temperatures induce a loss of efficiency in solar photovoltaic and thermal panels set-up. Results show that adding a PCM on the back of a solar panel can maintain the panel

134

Impact of material system thermomechanics and thermofluid performance on He-cooled ceramic  

E-Print Network [OSTI]

as with helium-cooled ceramic breeder blanket systems. Thus, both the design and issue relevant R&D emphasis around the SiCf /SiC based helium gas-cooled ceramic breeder blanket systems of DREAM Nishio et al. [1Impact of material system thermomechanics and thermofluid performance on He-cooled ceramic breeder

Abdou, Mohamed

135

Experimental and numerical evaluation of electromagnetic acoustic transducer performance on steel materials  

E-Print Network [OSTI]

Experimental and numerical evaluation of electromagnetic acoustic transducer performance on steel 2011 Keywords: Electromagnetic Acoustic Transducers Magnetostriction Lorentz force Steel a b s t r a c of the test object. A wide variety of steel materials is employed in many industrial applications, so

Nagy, Peter B.

136

Chemical Technology Division annual technical report, 1986  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

Not Available

1987-06-01T23:59:59.000Z

137

Chemical technology division: Annual technical report 1987  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

Not Available

1988-05-01T23:59:59.000Z

138

Chemical Technology Division annual technical report 1989  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

Not Available

1990-03-01T23:59:59.000Z

139

The primary circuit materials properties results analysis performed on archive material used in NPP V-1 and Kola NPP Units 1 and 2  

SciTech Connect (OSTI)

A very brief summary is provided of a primary circuit piping material properties analysis. The analysis was performed for the Bohunice V-1 reactor and the Kola-1 and -2 reactors. Assessment was performed on Bohunice V-1 archive materials and primary piping material cut from the Kola units after 100,000 hours of operation. Main research program tasks included analysis of mechanical properties, corrosion stability, and microstructural properties. Analysis results are not provided.

Kupca, L.; Beno, P. [Nuclear Power Plants Research Institute Inc., Trnava (Slovakia)

1997-04-01T23:59:59.000Z

140

Division Student Liaisons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Division Student Liaisons 2014 OFFICE Division Student Liaison Work Email MailStop DIRECTOR'S OFFICE (EA-DO, PCM-DO, CGA-DO, CIO-DO, LC-DO, CFO-DO, HR-OEOD-DO,OMBUDS-DO, LANS,...

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Division of Administration  

E-Print Network [OSTI]

Contracts & Procurement Don Green Controller Steven Yim Budget Planning & Administration Sarah Song Admin Operations Lieutenant Scot Willey Administration Lieutenant John Brockie Division Communication Editorial Communication Editorial Board looks forward to improving communication within and from the Division and welcomes

de Lijser, Peter

142

High performance materials in coal conversion utilization. Technical progress report, October 1, 1994--December 31, 1994  

SciTech Connect (OSTI)

This is the fifth quarterly report on a three year grant regarding {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. UTSI has completed the planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) of C-ring sections of the production composite is complete.

NONE

1995-01-01T23:59:59.000Z

143

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

SciTech Connect (OSTI)

The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

2011-03-28T23:59:59.000Z

144

Division of Agriculture,  

E-Print Network [OSTI]

DAFVM Division of Agriculture, Forestry, and Veterinary M e d i c i n e Visit us online at www to the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine. Discrimination based-3-14) Mississippi State University's Division of Agriculture, Forestry, and Veterinary Medicine, or DAFVM

Ray, David

145

DIVISION OF GRADUATE STUDIES  

E-Print Network [OSTI]

recipients at the time of their graduation to monitor and project the scientific workforce. Between 1961DIVISION OF GRADUATE STUDIES 2012-2013 ACADEMIC YEAR REpORT Excellence in Action Division of Graduate Studies #12;Division of Graduate Studies Kent State University 2012 - 2013 Academic Year Report

Palffy-Muhoray, Peter

146

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

147

Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint  

SciTech Connect (OSTI)

Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

2014-08-01T23:59:59.000Z

148

High performance materials in coal conversion utilization. Technical progress report, October 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

This is the ninth quarterly report on a three year grant regarding {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is for a joint university/industry effort under the U.S. Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. UTSI has completed all the initially planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) and analysis of C-ring sections of the exposed production composite is complete. The development of a technique to laser coat the material has been the major activity while awaiting an innovatively produced new test sample. This sample will be tested and compared to the production tubes tested at UTSI.

NONE

1996-01-01T23:59:59.000Z

149

Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors  

SciTech Connect (OSTI)

Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

Zhang, Hongxin [ORNL; Bhat, Vinay V [ORNL; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL

2012-01-01T23:59:59.000Z

150

Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect  

E-Print Network [OSTI]

Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field, University of California, Berkeley, California 94720, United States Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States § Department of Applied Physics

Javey, Ali

151

Experimental and Simulation Approaches for Optimizing the Thermal Performance of Building Enclosures Containing Phase Change Materials  

E-Print Network [OSTI]

Experimental and Simulation Approaches for Optimizing the Thermal Performance of Building Enclosures Containing Phase Change Materials By Kyoung Ok Lee M.S., The University of Kansas, Lawrence, Kansas, 2013 M.Eng., Chung-Ang University... those for buildings (EIA, 2013). In the U.S., buildings consume about 40% of total energy used in the country (EIA, 2012) and about 40% of greenhouse gas emissions are attributed to building energy consumption (EIA, 2011). Space cooling and heating...

Lee, Kyoung Ok

2014-05-31T23:59:59.000Z

152

Performance-oriented packaging: A guide to identifying and designing. Identifying and designing hazardous materials packaging for compliance with post HM-181 DOT Regulations  

SciTech Connect (OSTI)

With the initial publication of Docket HM-181 (hereafter referred to as HM-181), the U.S. Department of Energy (DOE), Headquarters, Transportation Management Division decided to produce guidance to help the DOE community transition to performance-oriented packagings (POP). As only a few individuals were familiar with the new requirements, elementary guidance was desirable. The decision was to prepare the guidance at a level easily understood by a novice to regulatory requirements. This document identifies design development strategies for use in obtaining performance-oriented packagings that are not readily available commercially. These design development strategies will be part of the methodologies for compliance with post HM-181 U.S. Department of Transportation (DOT) packaging regulations. This information was prepared for use by the DOE and its contractors. The document provides guidance for making decisions associated with designing performance-oriented packaging, and not for identifying specific material or fabrication design details. It does provide some specific design considerations. Having a copy of the regulations handy when reading this document is recommended to permit a fuller understanding of the requirements impacting the design effort. While this document is not written for the packaging specialist, it does contain guidance important to those not familiar with the new POP requirements.

Not Available

1994-08-01T23:59:59.000Z

153

High performance materials in coal conversion utilization. Technical progress report, January 1, 1996--March 31, 1996  

SciTech Connect (OSTI)

This is the tenth quarterly report on a three year grant regarding ``High Performance Materials in Coal Conversion Utilization.`` The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. The object of this grant is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SiC{sub (p)}/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for its ability to withstand the pressures, temperatures and corrosion attack which would be encountered within a coal-fired high-temperature, high pressure air heater. The evaluation includes strength testing at elevated temperatures of production tubes as well as one tube manufactured with an innovative new technology. The feasibility of several joining and coating techniques will also be investigated. UTSI has completed all the initially planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) and analysis of C-ring sections of the exposed production composite is complete. The evaluation of a laser-induced coating to laser coat the material has been the major activity this quarter while awaiting an innovatively produced new DIMOX{trademark} test sample.

NONE

1996-04-01T23:59:59.000Z

154

Device Performance  

SciTech Connect (OSTI)

In the Device Performance group, within the National Center for Photovoltaic's Measurements and Characterization Division, we measure the performance of PV cells and modules with respect to standard reporting conditions--defined as a reference temperature (25 C), total irradiance (1000 Wm-2), and spectral irradiance distribution (IEC standard 60904-3). Typically, these are ''global'' reference conditions, but we can measure with respect to any reference set. To determine device performance, we conduct two general categories of measurements: spectral responsivity (SR) and current versus voltage (I-V). We usually perform these measurements using standard procedures, but we develop new procedures when required by new technologies. We also serve as an independent facility for verifying device performance for the entire PV community. We help the PV community solve its special measurement problems, giving advice on solar simulation, instrumentation for I-V measurements, reference cells, measurement procedures, and anomalous results. And we collaborate with researchers to analyze devices and materials.

Not Available

2006-06-01T23:59:59.000Z

155

High performance materials in coal conversion utilization. Technical progress report, July 1, 1995--September 30, 1995  

SciTech Connect (OSTI)

This is the eighth quarterly report on a three year grant regarding ``High Performance Materials in Coal Conversion Utilization.`` The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and the University of Pennsylvania and Lanxide Corporation are subcontractors. The object of this grant is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SiC{sub (p)}/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for its ability to withstand the pressures, temperatures and corrosion attack which would be encountered within a coal-fired high-temperature, high pressure air heater. The evaluation includes strength testing at elevated temperatures of production tubes as well as one manufactured with an innovative new technology. The feasibility of several joining and coating techniques are also being investigated. UTSI has completed all the initially planned laboratory exposure tests involving pulverized coal slag on the production Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) and analysis of C- ring sections of the exposed production composite are complete.

NONE

1995-10-01T23:59:59.000Z

156

High performance materials in coal conversion utilization. Technical progress report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

This is the seventh quarterly report on a three year grant regarding {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. UTSI has completed the planned laboratory exposure tests involving pulverized coal slag on the production of Lanxide DIMOX{trademark} ceramic composite material. In addition, the strength testing (at temperature) of C-ring sections of the production composite is complete and the analysis of the data is reported in a thesis which was submitted toward a M.S. degree.

NONE

1995-07-01T23:59:59.000Z

157

High performance materials in coal conversion utilization. Technical progress report, April 1, 1994--June 30, 1994  

SciTech Connect (OSTI)

This is the third quarterly report concerning this three year grant on {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. UTSI has completed one third of the planned laboratory exposure tests involving pulverized coal slag on the production of Lanxide DIMOS{sup TM} ceramic composite material. The upgrade of the MTS testing machine is underway and the strength testing (at temperature) of C-ring sections of the composite will begin next quarter.

Not Available

1994-10-01T23:59:59.000Z

158

High performance materials in coal conversion utilization. Technical progress report, January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

This is the second quarterly report concerning this three year grant on {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is for a joint university/industry effort under the US Department of Energy (DOE) University Coal Research Program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. The administrative details involved in the finalizing of the subcontracts and the acquisition of the cost shared equipment by UTSI and the U of Pa has slowed progress somewhat, however, the project should go smoothly from this point on. Most of the efforts of this quarter have gone toward preparing the equipment and plans for the laboratory tests. Research into the identification of a suitable protective coating based on thermodynamic considerations and the development of techniques for their application as well as joining ceramic materials has been initiated.

Not Available

1994-04-01T23:59:59.000Z

159

The electrochemical performance of ordered mesoporous carbon/nickel compounds composite material for supercapacitor  

SciTech Connect (OSTI)

A series of high performance ordered mesoporous carbon/nickel compounds composites have been synthesized by a combination of incipient wetness impregnation and hydrothermal method for the first time. X-ray diffraction (XRD), N{sub 2} adsorption/desorption isotherms and transmission electron microscopy (TEM) are used to characterize the composites derived at the hydrothermal temperature of 125, 150, 175, 200, 250, 275 and 300 {sup o}C. The formation of nanosized nickel compounds, fully inside the mesopore system, was confirmed with XRD and TEM. An N{sub 2} adsorption/desorption isotherms measurements still revealed mesoporosity for the host/guest compounds. It is noteworthy that an OMC/nickel nitrate hydroxide hydrate composite (OMCN-150) exhibits more excellent performance. Based on the various hydrothermal temperatures of the composite, the capacitance of an OMCN-150 delivering the best electrochemical performance is about 2.4 (5 mV s{sup -1}) and 1.5 (50 mV s{sup -1}) times of the pristine OMC. The capacitance retention of an OMCN-150 is 96.1%, which indicates that the electrochemical performance of the supercapacitor is improved greatly, and represents novel research and significant advances in the field of electrode composite materials for supercapacitor. -- Graphical abstract: A series of high performance nickel compound/ordered mesoporous carbon composites were synthesized by a combination of incipient wetness impregnation and hydrothermal method for the first time. Display Omitted

Feng, Jicheng; Zhao, Jiachang; Tang, Bohejin; Liu, Ping [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Xu, Jingli, E-mail: jinglixu@sues.edu.c [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China)

2010-12-15T23:59:59.000Z

160

Engineering Division Superconducting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Engineering Division Superconducting Magnet Technology for Fusion and Large Scale Applications Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion...

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance  

SciTech Connect (OSTI)

Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in ferromagnetic materials of relevance to the Industries of the Future (IOF).

Ludtka, GERALD M.

2005-03-31T23:59:59.000Z

162

Magnetocaloric Materials Stinus Jeppesen  

E-Print Network [OSTI]

Magnetocaloric Materials Stinus Jeppesen Risø-PhD-43(EN) Risø National Laboratory for Sustainable Jeppesen Title: Magnetocaloric Materials Division: Fuel Cells and Solid State Chemistry Division Risø.D. degree at The University of Copenhagen Abstract: New and improved magnetocaloric materials are one

163

Layered Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

164

High performance materials in coal conversion utilization. Technical progress report, October 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

This is the first quarterly report for this three year grant on {open_quotes}High Performance Materials in Coal Conversion Utilization.{close_quotes} The grant is a joint university/industry effort under the Department of Energy (DOE) University Coal Research program. The University of Tennessee Space Institute (UTSI) is the prime contractor and The University of Pennsylvania and Lanxide Corporation are subcontractors. It was initially planned to field test ceramic composite tubes furnished by Lanxide Corporation in conjunction with an on-going DOE magnetohydrodynamic (MHD) test series at UTSI. The MHD test program was curtailed due to funding limitations near the beginning of the grant so that the field test portion is now greatly reduced. Bench scale testing will replace most of the field testing. This development should have minimal effect on this research since there is now little interest in the affects of the potassium seeded MHD coal ash on heat exchanger surfaces. The objective is to test and analyze the heat and corrosion resistance of a SiC(p)/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for its ability to withstand the pressures, temperatures and corrosion attack which will be encountered within a coal-fired high-temperature, high-pressure air heater. The evaluation will include strength testing at elevated temperatures.

Not Available

1994-02-01T23:59:59.000Z

165

Preparation of certified working reference material sources for the national TRU waste performance demonstration program.  

SciTech Connect (OSTI)

Traceable non-destructive assay (NDA) standards containing a variety of radionuclides including uranium, americium, and plutonium oxides mixed with an inert matrix were prepared and certified for use in the U .S. Department of Energy's National TRU Waste Program (NTWP) . The NTWP requires traceable nuclear material standards of the Working Reference Material (WRM) class for qualification of NDA instrumentation that is used to quantify nuclear material in DOE-generated waste before the waste is shipped for final disposition at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico . Qualification and approval of measurement systems is accomplished in part through successful participation in the Non-Destructive Assay (NDA) Performance Demonstration Program (PDP) and is required for DOE and EPA regulatory compliance . An overview of the PDP program highlighting the role of the certified WRMs fabricated at LANL is presented, as well as a summary of the WRM fabrication process and an overview of the inventory of over 175 WRMs fabricated and deployed to DOE measurement facilities to date .

Mecklenburg, S. L. (Sandra L.); Thronas, D. L. (Denise L.); Wong, A. S. (Amy S.); Marshall, Robert S.,; Becker, G. K.

2003-01-01T23:59:59.000Z

166

Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program  

SciTech Connect (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others.

Farmer, J

2007-07-09T23:59:59.000Z

167

Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development  

SciTech Connect (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others.

Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

2008-01-09T23:59:59.000Z

168

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

169

Hypertension Research Division  

E-Print Network [OSTI]

Hypertension & Vascular Research Division Department of Internal Medicine Jeffrey L. Garvin, Ph.D. ­ Division Head #12;Prevalence of Hypertension in U.S. Men by Age and Ethnicity 18 ­ 29 30 ­ 39 40 ­ 49 50 Prevalence of High BP Adapted from Burt et al. Hypertension 1995;25:305. 25 50 75 #12;Introduction

Berdichevsky, Victor

170

Superconducting Magnet Division  

E-Print Network [OSTI]

Superconducting Magnet Division Ramesh Gupta 20T Target Solenoid with HTS Insert Solenoid Capture Laboratory New York, USA http://www.bnl.gov/magnets/staff/gupta #12;Superconducting Magnet Division Ramesh of HTS may significantly reduce the amount of Tungsten shielding · Summary #12;Superconducting Magnet

McDonald, Kirk

171

DIVISION & TECHNICAL COMMITTEE MEMBERSHIP: -Division Chair of the ASME NDE (Nondestructive Evaluation) Division, 2003-2005  

E-Print Network [OSTI]

DIVISION & TECHNICAL COMMITTEE MEMBERSHIP: - Division Chair of the ASME NDE (Nondestructive Evaluation) Division, 2003-2005 - Member of the Executive Committee of the ASME NDE Engineering Division, 1997-present - Secretary and Vice-Chairman of the ASME NDE Division from 2001 to 2003 - Program

Wong, Pak Kin

172

Materials Science and Technology Division Light-Water-Reactor Safety Research Program. Quarterly progress report, April-June 1983. Volume 2  

SciTech Connect (OSTI)

The progress report summarizes the Argonne National Laboratory work performed during April, May, and June 1983 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors, Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, and Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems.

Shack, W.J.

1984-06-01T23:59:59.000Z

173

Materials Science and Technology Division light-water-reactor safety research program. Quarterly progress report, July-September 1983. Volume 3  

SciTech Connect (OSTI)

This progress report summarizes the Argonne National Laboratory work performed during July, August, and September 1983 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light Water Reactors (reported elsewhere), Transient Fuel Response and Fission Product Release, Clad Properties for Code Verification, and Long-Term Embrittlement of Cast Duplex Stainless Steels in LWR Systems (reported elsewhere).

Not Available

1984-07-01T23:59:59.000Z

174

Energy Technology Division research summary - 1999.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

NONE

1999-03-31T23:59:59.000Z

175

LIBRARY COMMITTEE BERKELEY DIVISION of the ACADEMIC SENATE  

E-Print Network [OSTI]

LIBRARY COMMITTEE BERKELEY DIVISION of the ACADEMIC SENATE Annual Report 1996-97 The Library administration of the Library and perform[ing] such other duties relative to the Library as may be committed to the Division." · In accordance with this charge, the Library Committee took action on the following topics

California at Berkeley, University of

176

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-07-01T23:59:59.000Z

177

Materials performance in a high-level radioactive waste vitrification system  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) is a Department of Energy Facility designed to vitrify highly radioactive waste. An extensive materials evaluation program has been completed on key components in the DWPF after twelve months of operation using nonradioactive simulated wastes. Results of the visual inspections of the feed preparation system indicate that the system components, which were fabricated from Hastelloy C-276, should achieve their design lives. Significant erosion was observed on agitator blades that process glass frit slurries; however, design modifications should mitigate the erosion. Visual inspections of the DWPF melter top head and off gas components, which were fabricated from Inconel 690, indicated that varying degrees of degradation occurred. Most of the components will perform satisfactorily for their two year design life. The components that suffered significant attack were the borescopes, primary film cooler brush, and feed tubes. Changes in the operation of the film cooler brush and design modifications to the feed tubes and borescopes is expected to extend their service lives to two years. A program to investigate new high temperature engineered materials and alloys with improved oxidation and high temperature corrosion resistance will be initiated.

Imrich, K.J.; Chandler, G.T.

1996-06-17T23:59:59.000Z

178

Performance testing of aged hydrogen getters against criteria for interim safe storage of plutonium bearing materials.  

SciTech Connect (OSTI)

Hydrogen getters were tested for use in storage of plutonium-bearing materials in accordance with DOE's Criteria for Interim Safe Storage of Plutonium Bearing Materials. The hydrogen getter HITOP was aged for 3 months at 70 C and tested under both recombination and hydrogenation conditions at 20 and 70 C; partially saturated and irradiated aged getter samples were also tested. The recombination reaction was found to be very fast and well above the required rate of 45 std. cc H2h. The gettering reaction, which is planned as the backup reaction in this deployment, is slower and may not meet the requirements alone. Pressure drop measurements and {sup 1}H NMR analyses support these conclusions. Although the experimental conditions do not exactly replicate the deployment conditions, the results of our conservative experiments are clear: the aged getter shows sufficient reactivity to maintain hydrogen concentrations below the flammability limit, between the minimum and maximum deployment temperatures, for three months. The flammability risk is further reduced by the removal of oxygen through the recombination reaction. Neither radiation exposure nor thermal aging sufficiently degrades the getter to be a concern. Future testing to evaluate performance for longer aging periods is in progress.

Shepodd, Timothy J.; Nissen, April; Buffleben, George M.

2006-01-01T23:59:59.000Z

179

Physics Division computer facilities  

SciTech Connect (OSTI)

The Physics Division maintains several computer systems for data analysis, general-purpose computing, and word processing. While the VMS VAX clusters are still used, this past year saw a greater shift to the Unix Cluster with the addition of more RISC-based Unix workstations. The main Divisional VAX cluster which consists of two VAX 3300s configured as a dual-host system serves as boot nodes and disk servers to seven other satellite nodes consisting of two VAXstation 3200s, three VAXstation 3100 machines, a VAX-11/750, and a MicroVAX II. There are three 6250/1600 bpi 9-track tape drives, six 8-mm tapes and about 9.1 GB of disk storage served to the cluster by the various satellites. Also, two of the satellites (the MicroVAX and VAX-11/750) have DAPHNE front-end interfaces for data acquisition. Since the tape drives are accessible cluster-wide via a software package, they are, in addition to replay, used for tape-to-tape copies. There is however, a satellite node outfitted with two 8 mm drives available for this purpose. Although not part of the main cluster, a DEC 3000 Alpha machine obtained for data acquisition is also available for data replay. In one case, users reported a performance increase by a factor of 10 when using this machine.

Cyborski, D.R.; Teh, K.M.

1995-08-01T23:59:59.000Z

180

Studies of perovskite materials for high-performance storage media, piezoelectric, and solar energy conversion devices  

E-Print Network [OSTI]

Perovskite materials are crucial in a variety of important technological applications. Using quantum-mechanical simulations and accurate molecular dynamics models, we have computationally investigated ferroelectric materials ...

Nelson, Keith Adam

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Division Student Liaisons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

None Fire Protection (FP-DO) Robert J. Farris (Rob) 667-9045 sirraf@lanl.gov K493 Nuclear Criticality Safety None Operations Support Division (OS-DO) None Radiological...

182

Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and  

E-Print Network [OSTI]

Ultra-High Performance Concrete with Tailored Properties Cementitious materials comprise a large portion of domestic structures and infrastructure. The development of ultra-high performance concrete of buildings or structures to dynamic loading and fire. Overview of research program on UHPC or CEP (concrete

Li, Mo

183

New Prospects for High Performance SONAR, Chemical Sensor, and Communication Device Materials  

E-Print Network [OSTI]

), such as the cathode material lanthanum strontium cobalt ferrite (LSCF). The complexity of these multicomponent systems

Rappe, Andrew M.

184

A study of learning performance of e-learning materials design with knowledge maps  

E-Print Network [OSTI]

Information Security Project ING Information Security Project Microsoft e-learning Materials Project Microsoft e-learning Materials Project Knowledge MapsKnowledge Maps 66 Materials and Methods for Information-based e-learning materials 1616 Conclusion · Research topics elicited from projects. · Extended

Ouhyoung, Ming

185

Innovative Materials, Processes, and Tools Improve Performance, Quality of White LEDs  

Broader source: Energy.gov [DOE]

Lumileds Lighting joined forces with Sandia National Laboratories to investigate critical materials issues related to solid-state lighting technology.

186

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF PIEZOELECTRIC MATERIALS FOR ROADWAY ENERGY HARVESTING Cost of Energy and Demonstration Roadmap Prepared for: California Energy Commission Prepared by: DNV KEMA Energy & Sustainability JANUARY 2014 CEC5002013007

187

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

188

University of North Carolina at Charlotte Design and Construction Manual Section 2, Division 03 Concrete  

E-Print Network [OSTI]

. American Concrete Institute (ACI) B. American Society for Testing and Materials (ASTM) C. Portland Cement ­ Concrete SECTION 2 DIVISION 03 CONCRETE #12;University of North Carolina at Charlotte Design and Construction Manual Section 2, Division 03 ­ Concrete DIVISION 3 - CONCRETE Note: This is a guide for Designers

Xie,Jiang (Linda)

189

Materials sciences programs, Fiscal year 1997  

SciTech Connect (OSTI)

The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

NONE

1998-10-01T23:59:59.000Z

190

Chemical Sciences Division | Advanced Materials |ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemicalChemical

191

Detector Performance of Ammonium-Sulfide-Passivated CdZnTe and CdMnTe Materials  

SciTech Connect (OSTI)

Dark currents, including those in the surface and bulk, are the leading source of electronic noise in X-ray and gamma detectors, and are responsible for degrading a detector's energy resolution. The detector material itself determines the bulk leakage current; however, the surface leakage current is controllable by depositing appropriate passivation layers. In previous research, we demonstrated the effectiveness of surface passivation in CZT (CdZnTe) and CMT (CdMnTe) materials using ammonium sulfide and ammonium fluoride. In this research, we measured the effect of such passivation on the surface states of these materials, and on the performances of detectors made from them.

Kim, K.H.; Bolotnikov, A.E.; Camarda, G.S.; Marchini, L.; Yang, G.; Hossain, A.; Cui, Y.; Xu, L.; and James, R.B.

2010-08-01T23:59:59.000Z

192

Proceedings of 2009 NSF Engineering Research and Innovation Conference, Honolulu, Hawaii Grant #0423484 Separation and Energy Use Performance of Material Recycling Systems  

E-Print Network [OSTI]

#0423484 Separation and Energy Use Performance of Material Recycling Systems Timothy Gutowski Malima I Abstract: This paper outlines current research on the performance of recycling processes and systems of recycling processes. Descriptive terminology for separation performance is presented. The goal

Gutowski, Timothy

193

Performance testing of elastomeric seal materials under low and high temperature conditions: Final report  

SciTech Connect (OSTI)

The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

BRONOWSKI,DAVID R.

2000-06-01T23:59:59.000Z

194

U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)  

SciTech Connect (OSTI)

This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

195

Effect of microstructure, grain size, and rare earth doping on the electrorheological performance of nanosized particle materials  

E-Print Network [OSTI]

and grain sizes were prepared by doping TiO2 or ZrO2 with rare earth (RE) elements, and by changingEffect of microstructure, grain size, and rare earth doping on the electrorheological performance-Hua Zhang,c Shu-Mei Chen,d Rui-Li Huange and Song Gaoa a State Key Laboratory of Rare Earth Materials

Gao, Song

196

Cr-Ga-N materials for negative electrodes in Li rechargeable batteries : structure, synthesis and electrochemical performance  

E-Print Network [OSTI]

Electrochemical performances of two ternary compounds (Cr2GaN and Cr3GaN) in the Cr-Ga-N system as possible future anode materials for lithium rechargeable batteries were studied. Motivation for this study was dealt in ...

Kim, Miso

2007-01-01T23:59:59.000Z

197

Nuclear power plant cable materials : review of qualification and currently available aging data for margin assessments in cable performance.  

SciTech Connect (OSTI)

A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostlyinert' aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section - a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.

Celina, Mathias Christopher; Gillen, Kenneth Todd; Lindgren, Eric Richard

2013-05-01T23:59:59.000Z

198

Superconducting Magnet Division  

E-Print Network [OSTI]

Superconducting Magnet Division MAGNETIC DESIGN OF E-LENS SOLENOID AND CORRECTOR SYSTEM FOR RHIC* R Slotted Dipole Corrector Design · Slots are machined in an Al tube where superconducting wires are placed between superconducting and copper solenoid with superconducting solenoid at 6T · The desired field (>0

Ohta, Shigemi

199

Chemistry Division Department of Biological  

E-Print Network [OSTI]

1 Chemistry Division Department of Biological and Chemical Sciences, Illinois Institute-13 Chemistry Division invites nominations for Kilpatrick Fellowship for the academic year 2012's Chemistry Department from 1947­1960. Mary Kilpatrick was a chemistry faculty member from 1947

Heller, Barbara

200

Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments  

SciTech Connect (OSTI)

As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation  

SciTech Connect (OSTI)

Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

Li, Q.

2011-05-18T23:59:59.000Z

202

Thermal Performance of Microencapsulated Phase Material (MPCM) Slurry in a Coaxial Heat Exchanger  

E-Print Network [OSTI]

Microencapsulated phase change material (MPCM) slurries and coil heat exchangers had been recently studied separately as enhancers of convective heat transfer processes. Due to the larger apparent heat related to the phase change process...

Yu, Kun

2014-05-08T23:59:59.000Z

203

Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion  

Broader source: Energy.gov [DOE]

Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor

204

High performance materials in coal conversion utilization. Technical progress report, April 1, 1996--June 30, 1996  

SciTech Connect (OSTI)

Object is to test, analyze, and improve the heat and coal-slag corrosion resistance of a SiC(p)/Al{sub 2}O{sub 3} ceramic composite tubular material. The material will be evaluated for resistance to pressures, temperatures, and corrosion within a coal-fired high- temperature, high-pressure air heater. Microstructures and some mechanical properties of composite tubes were studied. Other studies include corrosion thermodynamic analysis of Al oxide coated composite.

NONE

1996-07-01T23:59:59.000Z

205

Environment, Health & Safety Division 31 July, 2009  

E-Print Network [OSTI]

Environment, Health & Safety Division 31 July, 2009 MEMORANDUM To: Division Safety Coordinators Division Liaisons All JHA Users From: John Seabury Environment, Health & Safety Division Subject: Job Hazard Analysis ­ Description of Work Rev 5 Discussion, Requirements, Helpful Hints and Examples

206

Computer, Computational, and Statistical Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computing CCS Division Computer, Computational, and Statistical Sciences Division Computational physics, computer science, applied mathematics, statistics and the integration of...

207

E-Print Network 3.0 - alternative high-performance material-based...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Biotechnology 3 February 13, 2008 Virtualized Environments for the Harness High Performance Computing Workbench 117 Virtualized Environments for the Harness Summary: February...

208

Metals and Ceramics Division progress report for period ending December 31, 1992  

SciTech Connect (OSTI)

This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

Craig, D.F.; Weir, J.R. Jr.

1993-04-01T23:59:59.000Z

209

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN PS DIVISION  

E-Print Network [OSTI]

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ­ PS DIVISION CERN/PS 2002-016 (AE) CLIC Note 514 practically conserved. However EGUN simulations have been performed to ensure electron laminar flow

Boyer, Edmond

210

Solid State Division progress report for period ending March 31, 1997  

SciTech Connect (OSTI)

This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

Green, P.H.; Hinton, L.W. [eds.

1997-12-01T23:59:59.000Z

211

A Materials Facilities Initiative -  

E-Print Network [OSTI]

A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

212

Amy W. Apon, Ph.D. Professor and Chair, Computer Science Division  

E-Print Network [OSTI]

performance computing, impact of high performance computing to research competiveness, sustainable funding, Division of Computer Science, Clemson University 20082011 Director, Arkansas High Performance Computing Center 20042008 Director of High Performance Computing, University of Arkansas 20072011 Professor

Duchowski, Andrew T.

213

Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material  

E-Print Network [OSTI]

of the energy storage floor is designed,which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The PCM thermal storage time is studied in relation to the floor surface temperature under different low-temperature hot...

Qiu, L.; Wu, X.

2006-01-01T23:59:59.000Z

214

Department of Materials Science & Engineering Spring 2012 Assessing the Performance of Energy Efficient Housing  

E-Print Network [OSTI]

of Energy Efficient Housing Overview Penn State's Department of Architecture partnered with the Union Country Housing Authority (UCHA) to create the Energy Efficient Housing Program (EEHP). A duplex was constructed and two homes were remodelled using energy efficient technologies and sustainable materials. UCHA

Demirel, Melik C.

215

Performance of a copper-lithium alloy as an impurity control system surface material for a fusion reactor  

SciTech Connect (OSTI)

A copper-lithium alloy was evaluated as a surface material for the impurity control system of the INTOR reactor. Both the medium edge temperature limiter regime and the low edge temperature divertor regime were examined. The analysis used TRIM code data to predict sputtering coefficients for copper-lithium with a 1.5 monolayer coverage of lithium. The REDEP code was used to evaluate the erosion performance for INTOR. Other properties such as fabrication and thermal performance were also briefly assessed. It was found, from the standpoint of erosion, that copper-lithium is a very good candidate material for the medium edge temperature regime, and also works well in the low edge temperature regime. For the medium edge temperature regime, the use of copper-lithium results in an almost negligible erosion rate over the entire limiter surface.

Brooks, J.N.; Krauss, A.R.; Mattas, R.F.; DeWald, A.B.

1984-10-01T23:59:59.000Z

216

Performance evaluation of booster materials in the plastic bonded explosive PBX 9502 in a hemispherical wave breakout test  

SciTech Connect (OSTI)

An explosive booster is normally required to initiate detonation in an insensitive high explosive (lHE). Booster materials must be ignitable by a conventional detonator and deliver sufficient energy and favorable pulse shape to initiate the IHE charge. The explosive booster should be as insensitive as reasonably possible to maintain the overall safety margin of the explosive assembly. A hemispherical wave breakout test termed the on ionskin test is one of the methods of testing the performance of booster materials in an initiation train assembly. There are several variations of this basic test which are known by other names. In this test, the wave breakout time-position history at the surface of a hemispherical IHE acceptor charge is recorded, and the relative uniformity of breakout allows qualitative comparison between booster candidates and quantitative comparison of several metrics. The results of a series of onionskin experiments evaluating the performance of some new booster formulations in the triaminotrinitrobenzene (TA TB) -based plastic bonded explosive PBX 9502 will be presented. The boosters were tested in an onionskin arrangement in which the booster pellet was cylindrical, and the tests were performed at a temperature of-55{sup o}C to emphasize variations in spreading performance. The modification from the traditional hemispherical geometry facilitated efficient explosive fabrication and charge assembly, but the results indicate that this geometry was not ideal for several reasons. Despite the complications arising from geometry, promising performance was observed from booster formulations including 3,3' -diamino-4,4'azoxyfurazan.

Hooks, Daniel E [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Francois, Elizabeth [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

217

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

E-Print Network [OSTI]

of Thermal Performance of the Exterior Envelopes of Wholethermal transmittance (U-factor) of the building envelope,envelope is far less. The reason for this can be found by comparing the thermal

Gustavsen, Arild

2012-01-01T23:59:59.000Z

218

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

E-Print Network [OSTI]

in light green. 2.5 Window Frame E (PVC) Window frame Eis polyvinyl chloride (PVC). We performed calculations forspacer = 0.25?0.1 W/(mK) ? pvc = 0.9 W/(mK), ? eff. ,spacer

Gustavsen, Arild

2012-01-01T23:59:59.000Z

219

Potential opportunities for nano materials to help enable enhanced nuclear fuel performance  

SciTech Connect (OSTI)

This presentation is an overview of the technical challenges for development of nuclear fuels with enhanced performance and accident tolerance. Key specific aspects of improved fuel performance are noted. Examples of existing nanonuclear projects and concepts are presented and areas of potential focus are suggested. The audience for this presentation includes representatives from: DOE-NE, other national laboratories, industry and academia. This audience is a mixture of nanotechnology experts and nuclear energy researchers and managers.

McClellan, Kenneth J. [Los Alamos National Laboratory

2012-06-06T23:59:59.000Z

220

The effect of squeeze clamping on the performance of polyethylene gas piping materials  

E-Print Network [OSTI]

THE EFFECT OF SQUEEZE CLAMPING ON THE PERFOIMANCE OF POLYETHYLENE GAS PIPING MATERIALS A Thesis by ROBERT ERNEST JONES JR. Subnitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1986 Major Subject: Mechanical Engineering THE EFFECT OF SQUEEZE CLMPING ON THE PERFOIKANCE OF POLYETHYLENE GAS PIPING HATERIALS A Thesis by ROBERT ERNEST JONES JR. Approved as to style arxl content by: Dr. Walter L. Bradley...

Jones, Robert Ernest

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective: DevelopMaterials|

222

Metals and Ceramics Division progress report for period ending December 31, 1993  

SciTech Connect (OSTI)

This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative R and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.

Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

1994-07-01T23:59:59.000Z

223

A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance  

SciTech Connect (OSTI)

A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.

Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Igarashi, Shota, E-mail: uxei_yoshi_yoshi@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan); Sato, Soh, E-mail: rookie_so_sleepy@yahoo.co.jp [Graduate School of Creative Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050 (Japan)

2013-10-15T23:59:59.000Z

224

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.

Jie Guan; Atul Verma; Nguyen Minh

2003-04-01T23:59:59.000Z

225

Field corrosion testing and performance of cable shielding materials in soils  

SciTech Connect (OSTI)

This article discusses the importance of corrosion resistance in cable-shielding materials, describes the mechanisms of shielding corrosion that occur in buried telephone cable, and evaluates the results of the six-year REA Horry Cooperative buried telephone cable corrosion test. In this study, both active and static cables were included. Withdrawals were made over a six-year period. These cables were evaluated for cable-shielding corrosion. Special attention was paid to the comparative behavior of active and static cables. Results indicate that steel shieldings are most susceptible to the effects of alternating current (AC) in active cables. Results of a wide range of shieldings are presented and evaluated.

Haynes, G.; Baboian, R. (Texas Instruments Inc., Electrochemical and Corrosion Lab., 34 Forest St., Mail Station 10-13, Attleboro, MA (US))

1989-09-01T23:59:59.000Z

226

Division Student Liaisons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle of Convection atDiversityDivision

227

Engineering Division Superconducting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment& Engineering Division

228

Chemical Technology Division annual technical report, 1994  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

NONE

1995-06-01T23:59:59.000Z

229

Chemical Technology Division, Annual technical report, 1991  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

Not Available

1992-03-01T23:59:59.000Z

230

Performance evaluation of diaminoazoxyfurazan (DAAF) as a booster material for insensitive high explosives using the onionskin test  

SciTech Connect (OSTI)

Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in DAAF for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemisphericallHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.

Morris, John S [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory; Hooks, Daniel E [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Harry, Herbert H [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

231

PERFORMANCE TESTING OF SPRING ENERGIZED C-RINGS FOR USE IN RADIOACTIVE MATERIAL PACKAGINGS CONTAINING TRITIUM  

SciTech Connect (OSTI)

This paper describes the sealing performance testing and results of silver-plated inconel Spring Energized C-Rings used for tritium containment in radioactive shipping packagings. The test methodology used follows requirements of the American Society of Mechanical Engineers (ASME) summarized in ASME Pressure Vessel Code (B&PVC), Section V, Article 10, Appendix IX (Helium Mass Spectrometer Test - Hood Technique) and recommendations by the American National Standards Institute (ANSI) described in ANSI N14.5-1997. The tests parameters bound the predicted structural and thermal responses from conditions defined in the Code of Federal Regulations 10 CFR 71. The testing includes an evaluation of the effects of pressure, temperature, flange deflection, surface roughness, permeation, closure torque, torque sequencing and re-use on performance of metal C-Ring seals.

Blanton, P; Kurt Eberl, K

2007-10-23T23:59:59.000Z

232

Chemical Technology Division. Annual technical report, 1995  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

1996-06-01T23:59:59.000Z

233

Energy Division progress report, fiscal years 1994--1995  

SciTech Connect (OSTI)

At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

Moser, C.I. [ed.

1996-06-01T23:59:59.000Z

234

Development of electron reflection suppression materials for improved thermionic energy converter performance using thin film deposition techniques  

SciTech Connect (OSTI)

Nonideal electrode surfaces cause significant degree of electron reflection from collector during thermionic converter operation. The effect of the collector surface structure on the converter performance was assessed through the development of several electron reflection suppression materials using various thin film deposition techniques. The double-diode probe method was used to compare the J-V characteristics of converters with polished and modified collector surfaces for emitter temperature and cesium vapor pressure in the ranges of 900-2000 K and 0.02-1.5 torr, respectively. The coadsorption of cesium and oxygen with respective partial vapor pressures of {approx}1.27 torr and a few microtorrs reduced the emitter work function to a minimum value of 0.99 eV. It was found that the collector surfaces with matte black appearance such as platinum black, voided nickel from radio-frequency plasma sputtering, and etched electroless Ni-P with craterlike pore morphology exhibited much better performance compared with polished collector surface. For these thin films, the increase in the maximum output voltage was up to 2.0 eV. For optimum performance with minimum work function and maximum saturation emission current density, the emitter temperature was in the range of 1100-1500 K, depending on the collector surface structure. The use of these materials in cylindrical converter design and/or in combination with hybrid mode triode configuration holds great potential in low and medium scale power generators for commercial use.

Islam, Mohammad; Inal, Osman T.; Luke, James R. [Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); New Mexico Institute of Mining and Technology, Institute for Engineering Research and Applications (IERA) , 901 University Blvd. SE, Albuquerque, New Mexico 87106-4339 (United States)

2006-10-15T23:59:59.000Z

235

DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review  

SciTech Connect (OSTI)

The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

2007-09-21T23:59:59.000Z

236

IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS  

SciTech Connect (OSTI)

Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

Xiaodi Huang; Richard Gertsch

2005-02-04T23:59:59.000Z

237

Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material  

SciTech Connect (OSTI)

Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use of forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to not only produce environmentally friendly products, but also forms that are proliferation resistant. All of these waste forms as well as others, are designed to take advantage of the unique properties of the ceramic systems.

Wicks, G.G.

2001-03-28T23:59:59.000Z

238

Physics division annual report 2005.  

SciTech Connect (OSTI)

This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

Glover, J.; Physics

2007-03-12T23:59:59.000Z

239

Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography  

SciTech Connect (OSTI)

Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 {micro}l injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few {micro}l of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

Freeze, R.

1997-10-08T23:59:59.000Z

240

Systems Division NO. REV. NO.  

E-Print Network [OSTI]

Aerospace Systems Division NO. REV. NO. EATM-17 PCU - SOLAR PANEL SIMULATOR TEST REPORT:' Courtois ~ll~K. Hsi #12;MO. REV. MO. EATM-17 ~ Systems Division PCU - Solar Panel Simulator Test Report Conditioning Unit (PCU) is compatible with a solar panel array. The Solar Panel Simulator and the PCU Test Set

Rathbun, Julie A.

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Superconducting Magnet Division Mike Harrison  

E-Print Network [OSTI]

Superconducting Magnet Division Mike Harrison The LARP Dipole R&D Program - D1 only Design (high beta lattice location) · Beam heating (first active element from the IP) #12;Superconducting aperture Field quality Issues not (well ?) understood #12;Superconducting Magnet Division Mike Harrison

Large Hadron Collider Program

242

Materials sciences programs, fiscal year 1994  

SciTech Connect (OSTI)

The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

NONE

1995-04-01T23:59:59.000Z

243

Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report  

SciTech Connect (OSTI)

An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and nickel-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling and tunnel boring applications. The observed corrosion resistance may enable applications of importance in industries such as: oil and gas production, refining, nuclear power generation, shipping, and others. Large areas have been successfully coated with these materials, with thicknesses of approximately one centimeter.

Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D'Amato, A; Aprigliano, L

2009-03-16T23:59:59.000Z

244

Materials Characterization Capabilities at the High Temperature...  

Broader source: Energy.gov (indexed) [DOE]

Annual Merit Review and Peer Evaluation Meeting Edgar Lara-Curzio HTML User Program Materials Science and Technology Division Oak Ridge National Laboratory Washington, DC June 9,...

245

Materials Characterization Capabilities at the High Temperature...  

Broader source: Energy.gov (indexed) [DOE]

Annual Merit Review and Peer Evaluation Meeting Edgar Lara-Curzio HTML User Program Materials Science and Technology Division Oak Ridge National Laboratory Washington, DC May 18,...

246

Hazardous Material Transportation Safety (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

247

Physics Division annual report 2004.  

SciTech Connect (OSTI)

This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make RIA, in the words of NSAC, ''the world-leading facility for research in nuclear structure and nuclear astrophysics''. The performance standards for new classes of superconducting cavities continue to increase. Driver linac transients and faults have been analyzed to understand reliability issues and failure modes. Liquid-lithium targets were shown to successfully survive the full-power deposition of a RIA beam. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for RIA holds the keys to unlocking important secrets of nature. The work described here shows how far we have come and makes it clear we know the path to meet these intellectual challenges. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

Glover, J.

2006-04-06T23:59:59.000Z

248

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Population Impacts of Geothermal Energy Development in thethe DOE Division of Geothermal Energy. S. L. Phillips and E.to DOE Division of Geothermal Energy, January 30, 1980.

Cairns, E.J.

2010-01-01T23:59:59.000Z

249

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andof the Division of Geothermal Energy, and is compatible with

Authors, Various

2012-01-01T23:59:59.000Z

250

Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.  

SciTech Connect (OSTI)

Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L. (Chemical Sciences and Engineering Division); (Illinois Inst. of Tech.); (King Saud Univ.)

2010-01-01T23:59:59.000Z

251

Physics division annual report 2006.  

SciTech Connect (OSTI)

This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

Glover, J.; Physics

2008-02-28T23:59:59.000Z

252

Tougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science |  

E-Print Network [OSTI]

and satellites. To create the new fiber, researchers began with carbon nanotubes--cylindrical-shaped carbonTougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science | Nanotechnology | Engineering | Material

Espinosa, Horacio D.

253

Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007  

SciTech Connect (OSTI)

Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

Tucker, R.

2008-04-01T23:59:59.000Z

254

Solid State Division progress report for period ending September 30, 1990  

SciTech Connect (OSTI)

This report covers research progress in the Solid State Division from April 1, 1989, to September 30, 1990. During this period, division research programs were significantly enhanced by the restart of the High-Flux Isotope Reactor (HFIR) and by new initiatives in processing and characterization of materials.

Green, P.H.; Hinton, L.W. (eds.)

1991-03-01T23:59:59.000Z

255

DIVISION 16 -ELECTRICAL 16000 GENERAL  

E-Print Network [OSTI]

Electrical Code American National Standards Institute National Electrical Manufacturers Association Institute of Electrical & Electronics Engineers Insulated Cable Engineers Association 3. Three copies of the followingDIVISION 16 - ELECTRICAL _____________________________________________________________ 16000

256

Division 1137 property control system  

SciTech Connect (OSTI)

An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

Pastor, D.J.

1982-01-01T23:59:59.000Z

257

Materials Performance buyers guide  

SciTech Connect (OSTI)

The MP Buyers Guide is an exclusive directory of manufacturers, suppliers, and consultants providing products and services for the prevention and control of corrosion. The Guide is divided into three primary directories: Company Directory, Product Directory, and Trade Name Directory. The Guide also contains a NACE Resource Directory. The index of products and services provides an extensive index of manufacturers, suppliers, and consultants, listed according to specific product categories. The index of suppliers, manufacturers, and consultants contains a detailed alphabetical list of more than 900 manufacturers, suppliers, and consultants providing products and services for corrosion prevention and control. Included are each company`s name, address, contact name, phone number, fax number, email address, branch offices, and a brief description of their products and services. The index of product names is an alphabetical listing of product trade names cross-referenced to the manufacturer, supplier, or consultant.

NONE

1996-11-01T23:59:59.000Z

258

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ADVANCED EPI TOOLS Energy Commission Prepared by: Applied Materials, Inc. #12; Prepared by: Primary Author(s): Nag-563-5224 Contract Number: PIR-10-055 Prepared for: California Energy Commission Dustin Davis Contract Manager

259

Los Alamos National Laboratory Prototype Fabrication Division CNM Briefing  

SciTech Connect (OSTI)

Prototype Fabrication Division designs, programs, manufactures, and inspects on-site high quality, diverse material parts and components that can be delivered at the pace the customer needs to meet their mission. Our goal is to bring vision to reality in the name of science.

Hidalgo, Stephen P. [Los Alamos National Laboratory; Keyser, Richard J. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

260

Lawrence Berkeley National Laboratory Engineering Division Office  

E-Print Network [OSTI]

/4867399 DMAttia@lbl.gov Administrative Staff Glenda Fish Division Office Administrator 510/4867123 GJFish

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nuclear Engineering Division Think, explore, discover, innovate  

E-Print Network [OSTI]

Nuclear Engineering Division Think, explore, discover, innovate Never miss important updates managed by UChicago Argonne, LLC 1 Nuclear Engineering Division: Awards Listing (1980 ­ present) Web: http Division of Educational Programs J.C. Braun L.W. Deitrich #12;Nuclear Engineering Division Think, explore

Kemner, Ken

262

Performance indicators, third quarter CY-1991  

SciTech Connect (OSTI)

Secretary of Energy Notice (SEN-29-91) directed that a Department- wide uniform system of Performance Indicators (PI's) for trending and analyzing operational data to help assess and support progress in improving performance and in strengthening line management control of operations relating to environmental safety, and health activities'' be developed. This Performance Indicator Report represents a compilation of data for the third quarter of calendar year 1991 for the following Lawrence Berkeley Laboratory (LBL) facilities: (1) Bevalac, (2) 88-Inch Cyclotron, (3) Materials Sciences Division.

Not Available

1992-01-01T23:59:59.000Z

263

Performance indicators, third quarter CY-1991  

SciTech Connect (OSTI)

Secretary of Energy Notice (SEN-29-91) directed that a Department- wide ``uniform system of Performance Indicators (PI`s) for trending and analyzing operational data to help assess and support progress in improving performance and in strengthening line management control of operations relating to environmental safety, and health activities`` be developed. This Performance Indicator Report represents a compilation of data for the third quarter of calendar year 1991 for the following Lawrence Berkeley Laboratory (LBL) facilities: (1) Bevalac, (2) 88-Inch Cyclotron, (3) Materials Sciences Division.

Not Available

1992-01-01T23:59:59.000Z

264

Chemical Technology Division annual technical report, 1993  

SciTech Connect (OSTI)

Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

1994-04-01T23:59:59.000Z

265

Chemical Technology Division, Annual technical report, 1991  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

Not Available

1992-03-01T23:59:59.000Z

266

Light-water-reactor safety materials engineering research programs. Quarterly progress report, January-March 1985. Volume 1  

SciTech Connect (OSTI)

This progress report summarizes work performed by the Materials Science and Technology Division of Argonne National Laboratory during January, February, and March 1985 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light-Water Reactors and Long-Term Embrittlement of Cast Duplex Stainless Steels in Light-Water-Reactor Systems. 42 refs.

Not Available

1986-03-01T23:59:59.000Z

267

Light-water-reactor safety materials engineering research programs. Volume 3. Quarterly progress report, October-December 1984  

SciTech Connect (OSTI)

This progress report summarizes work performed by the Materials Science and Technology Division of Argonne National Laboratory during October, November, and December 1984 on water reactor safety problems. The research and development areas covered are Environmentally Assisted Cracking in Light-Water Reactors and Long-Term Embrittlement of Cast Duplex Stainless Steels in Light-Water-Reactor Systems.

Not Available

1985-10-01T23:59:59.000Z

268

Physics division annual report 1999  

SciTech Connect (OSTI)

This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the ground-breaking research with Garnmasphere was the first study of the limits of stability with angular momentum in the shell stabilized nobelium isotopes. It was found that these heaviest nuclei could be formed at surprisingly high angular momentum, providing important new insight into the production mechanisms for super-heavy elements. Another focus continues to be experiments with short-lived beams for critical nuclear astrophysics applications. Measurements revealed that {sup 44}Ti is more readily destroyed in supernovae than was expected. Major progress was made in collecting and storing unstable ions in the Canadian Penning Trap. The technique of stopping and rapidly extracting ions from a helium gas cell led directly to the new paradigm in the production of rare isotope beams that became RIA. ATLAS provided a record 6046 hours of beam use for experiments in FY99. The facility pressed hard to support the heavy demands of the GammaSphere Research program but maintained an operational reliability of 93%. Of the 29 different isotopes provided as beams in FY99, radioactive beams of {sup 44}Ti and {sup 17}F comprised 6% of the beam time. The theoretical efforts in the Division made dramatic new strides in such topics as quantum Monte Carlo calculations of light nuclei to understand microscopic many-body forces in nuclei; QCD calculations based on the Dyson-Schwinger approach which were extended to baryon systems and finite temperatures and densities; the structure of heavy nuclei; and proton decay modes of nuclei far from stability. The medium-energy program continues to focus on new techniques to understand how the quark-gluon structure of matter impacts the structure of nuclei. The HERMES experiment began making measurements of the fraction of the spin of the nucleon carried by the glue. Drell-Yan experiments study the flavor composition of the sea of the proton. Experiments at Jefferson lab search for clues of QCD dynamics at the hadronic level. A major advance in trace isotope analysis was realized with pioneering work on Atom Trap Trace Analysis, exploitin

Thayer, K., ed.; Physics

2000-12-06T23:59:59.000Z

269

Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

Jubin, R.T.

1999-03-01T23:59:59.000Z

270

Computational Sciences and Engineering Division | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Sciences and Engineering Division SHARE Computational Sciences and Engineering Division The Computational Sciences and Engineering Division is a major research...

271

Computer Sciences and Mathematics Division | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Sciences and Mathematics Division SHARE Computer Sciences and Mathematics Division The Computer Science and Mathematics Division (CSMD) is ORNL's premier source of basic...

272

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF NEW TESTING PROTOCOLS FOR MEASURING THE PERFORMANCE OF SHOWERHEADS MARCH 2010 CEC-500-2013-130 Prepared for: California Energy: California Energy Commission Brad Meister Contract Manager Virginia Lew Office Manager Energy Efficiency

273

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ENERGY AND ENVIRONMENTAL PERFORMANCE: California Energy Commission Prepared by: Summers Consulting, LLC #12;PREPARED BY: Primary Author(s): Matthew-041 Prepared for: California Energy Commission Abolghasem Edalati Contract Manager Linda Spiegel Office Manager

274

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT RADIANT HEATING AND COOLING AND MEASURED HOME PERFORMANCE FOR CALIFORNIA HOMES JUNE 2013 CEC-500-2013-153 Prepared for: California Energy-Use Energy Efficiency · Renewable Energy Technologies · Transportation Radiant Heating and Cooling

275

Materials at LANL  

SciTech Connect (OSTI)

Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

Taylor, Antoinette J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

276

Environmental Transport Division: 1979 report  

SciTech Connect (OSTI)

During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

1980-03-01T23:59:59.000Z

277

Education Strategy Team Policy Division  

E-Print Network [OSTI]

Education Strategy Team Policy Division DFID 1 Palace Street London SW1E 5HE 30 October 2009 TEL fellowships in India under the Wellcome Trust/DBT India Alliance2 . We believe that such investment is vital/Global-health-research/WTX055734.htm 2 Wellcome Trust/DBT India Alliance: http://www.wellcomedbt.org/index.htm #12;to support

Rambaut, Andrew

278

Publishing Division The Edinburgh Building  

E-Print Network [OSTI]

Publishing Division The Edinburgh Building Shaftesbury Road Cambridge CB2 2RU, UK TELEPHONE 01223 Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York NY 10011-4211, USA 477 Williamstown Road Record [1] walter carl hartwig 2 The origin of primates [5] david tab rasmussen The earliest primates

Rosenberger, Alfred H.

279

Physics division annual report - October 2000.  

SciTech Connect (OSTI)

This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

Thayer, K. [ed.

2000-10-16T23:59:59.000Z

280

DIVISION 6 -WOOD AND PLASTICS 06000 GENERAL  

E-Print Network [OSTI]

DIVISION 6 - WOOD AND PLASTICS ________________________________________________________________________ 06000 GENERAL 1. For both woods and plastics, special attention is called to matters of flame spread-dried. 3. For exterior wood or plastic framed structures, see Division 4 for dimensions of Sample Panel

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories  

Office of Legacy Management (LM)

Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

282

Supporting Information: Holey Silicon as efficient thermoelectric material  

E-Print Network [OSTI]

Supporting Information: Holey Silicon as efficient thermoelectric material Jinyao Tang1, 3, 3 1 Department of Chemistry, 2 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA. 3 Materials Sciences Division, Lawrence Berkeley National

Yang, Peidong

283

Domestic olivine vs magnesite as a thermal-energy-storage material: performance comparisons for electrically heated room-size units in accordance with ASHRAE Standard 94. 2  

SciTech Connect (OSTI)

Electrically heated thermal-energy-storage (TES) heaters employing high-heat-capacity ceramic refractories for sensible heat storage have been in use in Europe for several years. With these heaters, low cost off-peak electrical energy is stored by heating a storage core composed of ceramic material to approximately 800/sup 0/C. During the peak period, no electrical energy is used as the building heating needs are supplied by extracting the stored heat from the core by forced air circulation. Recently significant interest in the use of off-peak TES units in the US has occured, leading to the search for a domestic supply of high heat capacity ceramic refractory material. North Carolina's extensive but under-utilized supply of refractory grade olivine has been proposed as a source of storage material for these units. In this paper, the suitability of North Carolina olivine for heat-storage applications is assessed by comparing its thermal performance with that of European materials. Using the method of ASHRAE Standard 94.2, the thermal performance of two small room-sized commercially available TES units was determined experimentally with two different storage materials, North Carolina olivine and German magnesite. Comparisons between the two materials are made and conclusions are drawn.

Laster, W.R.; Schoenhals, R.J.; Gay, B.M.; Palmour, H. III

1982-01-01T23:59:59.000Z

284

EARTH SCIENCES Lower-Division Requirements  

E-Print Network [OSTI]

2012-2013 EARTH SCIENCES Lower-Division Requirements Math 20A_____ 20B_____ 20C_____ 20D (BILD 3) _____ SIO 50* _____ Group A: Earth Science Upper-Division Core Requirements (all courses _____ Introduction to Geophysics SIO 104 _____ Paleobiology and History of Life* Group B: Upper-Division Earth

Constable, Steve

285

Finance Division EXTRA MILE AWARD PROGRAM  

E-Print Network [OSTI]

Finance Division EXTRA MILE AWARD PROGRAM Nomination Form Instructions Any fulltime or parttime permanent or temporary SPA employee within the Finance Division who works 20 or more provided. The seven major departments within the Finance Division to choose from are described below

Crews, Stephen

286

Analytical Chemistry Division's sample transaction system  

SciTech Connect (OSTI)

The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing.

Stanton, J.S.; Tilson, P.A.

1980-10-01T23:59:59.000Z

287

The Division of Biology & Biomedical Sciences  

E-Print Network [OSTI]

The Division of Biology & Biomedical Sciences what will YOU discover? #12;620students more than 470faculty 36departments 12programs and one YOU. DBBS Division of Biology and Biomedical Sciences Washington. The Division of Biology and Biomedical Sciences (DBBS) is ideally positioned to foster the interdisciplinary

Kornfeld, S. Kerry

288

Chemical Technology Division annual technical report, 1990  

SciTech Connect (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

Not Available

1991-05-01T23:59:59.000Z

289

High Performance Computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

view objects and processes in 3D. 13:01 Gary Grider, HPC Divison Leader The High Performance Computing (HPC) Division supports the Laboratory mission by managing world-class...

290

Design and Evaluation of Novel High Capacity Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Christopher Johnson and Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE...

291

analytical sciences division: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Division Environmental Management and Restoration Websites Summary: Chemical Sciences and Engineering Division Director Assoc Director Ops Assoc Director Science Yates...

292

Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries  

SciTech Connect (OSTI)

The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles.

Wang Zhong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); General Research Institute for Nonferrous Metal, Beijing 100088 (China); Tian Wenhuai [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yang Rong [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Xingguo [State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: xgli@pku.edu.cn

2007-12-15T23:59:59.000Z

293

Generalized buffering of pass transistor logic (PTL) stages using Boolean division and don't cares  

E-Print Network [OSTI]

the outputs of the PTL blocks, while also reducing the height and delay of the PTL block. PTL synthesis with generalized buffering was implemented in two different ways. In the first approach, Boolean division was used to perform generalized buffering...

Garg, Rajesh

2007-09-17T23:59:59.000Z

294

Thermal Performance of a Novel Heat Transfer Fluid Containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials  

E-Print Network [OSTI]

The present research work aims to develop a new heat transfer fluid by combining multiwalled carbon nanotubes (MWCNT) and microencapsulated phase change materials (MPCMs). Stable nanofluids have been prepared using different sizes of multiwalled...

Tumuluri, Kalpana

2011-08-08T23:59:59.000Z

295

Health, Safety, and Environment Division  

SciTech Connect (OSTI)

The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

Wade, C [comp.] [comp.

1992-01-01T23:59:59.000Z

296

Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Annual Technical Progress Report, Phase 1, 22 October 2002-30 September 2003  

SciTech Connect (OSTI)

The primary objectives of this subcontract are for Specialized Technology Resources, Inc., to work with U.S.-based PV module manufacturers representing crystalline silicon, polycrystalline silicon, amorphous silicon, copper indium diselenide (CIS), and other state-of-the-art thin-film technologies to develop formulations, production processes, prototype and qualify new low-cost, high-performance photovoltaic module encapsulants/packaging materials. The manufacturers will assist in identifying each materials' deficiencies while undergoing development, and then ultimately in qualifying the final optimized materials designed to specifically meet their requirements. Upon completion of this program, new low-cost, high-performance, PV module encapsulant/packaging materials will be qualified, by one or more end-users, for their specific application. Information gathering on topics related to thin-film module technology, including device performance/failure analysis, glass stability, and de vice encapsulation, has been completed. This information has provided concepts and considerations for module failure analysis, accelerated testing design, and encapsulation formulation strategy for thin-film modules.

Agro, S. C.; Tucker, R. T.

2004-03-01T23:59:59.000Z

297

Chemical and Analytical Sciences Division progress report for the period January 1, 1993--December 31, 1994  

SciTech Connect (OSTI)

This report provides brief summaries of progress in the Chemical and Analytical Sciences Division (CASD) during 1993 and 1994. The first four chapters, which cover the research mission, are organized to mirror the major organizational units of the division and indicate the scope of the research portfolio. These divisions are the Analytical Spectroscopy Section, Nuclear and Radiochemistry Section, Organic Chemistry Section, and Physical and Materials Chemistry Section. The fifth and sixth chapters summarize the support activities within CASD that are critical for research progress. Finally, the appendices indicate the productivity and recognition of the staff in terms of various forms of external publications, professional activities, and awards.

Poutsma, M.L.

1995-06-01T23:59:59.000Z

298

Analytical Chemistry Division annual progress report for period ending December 31, 1985  

SciTech Connect (OSTI)

Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

Shultz, W.D.

1986-05-01T23:59:59.000Z

299

Solid State Division progress report for period ending September 30, 1984  

SciTech Connect (OSTI)

During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

Green, P.H.; Watson, D.M. (eds.)

1985-03-01T23:59:59.000Z

300

Lubrication Behavior of Biolubricants and Antiwear Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11:00 AM - 12:00 PM Yan Zhou, Texas A&M University, College Station Materials Science and Technology Division Seminar High Temperature Materials Laboratory (Building 4515), Room...

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Novel Resonant Metallo-Dielectric Structure for Design ofHigh Performance -,U Meta-Materials  

E-Print Network [OSTI]

-material with periodic configuration constructed of small size metallo-dielectric transmission-line resonators magnetically coupled to transmission line model of the medium. It is demonstrated that the permeability resonant transmission line sectors. Compared to the loop circuit configuration, the inclusions (metalo

Sarabandi, Kamal

302

High-Performance Computing at Los  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and back to the loosened semantics of key value stores," says Gary Grider, High Performance Computing division leader at Los Alamos. - 2 - Computer simulations overall are...

303

Chapter 63 General Standards of Performance (Kentucky)  

Broader source: Energy.gov [DOE]

Kentucky Administrative Regulation Chapter 63, entitled Air Quality: General Standards of Performance, is promulgated under the authority of the Division of Air Quality within the Energy and...

304

Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983  

SciTech Connect (OSTI)

This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

Jackson, J.D.

1984-08-01T23:59:59.000Z

305

Chemical Technology Division annual technical report, 1992  

SciTech Connect (OSTI)

In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

1993-06-01T23:59:59.000Z

306

Solid State Division progress report for period ending March 31, 1992  

SciTech Connect (OSTI)

During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, superconductivity, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. The High Flux Isotope Reactor was returned to full operation.

Green, P.H.; Hinton, L.W. [eds.

1992-09-01T23:59:59.000Z

307

Energy Materials Coordinating Committee (EMaCC)  

SciTech Connect (OSTI)

This report summarizes EMaCC activities for fiscal year 1990 and describes the materials research programs of various offices and divisions within the department. The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the department. (JL)

Not Available

1991-05-31T23:59:59.000Z

308

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Revisit of Energy Use and Technologies of High PerformanceEnvironmental Energy Technologies Division May 2014 ThisRevisit of Energy Use and Technologies of High Performance

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

309

Jefferson Lab Divisions & Departments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson Lab Click on theJames D.AnnouncesWorldTherapy |Divisions

310

United States Automotive Materials Partnership LLC (USAMP)  

SciTech Connect (OSTI)

The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities thro

United States Automotive Materials Partnership

2011-01-31T23:59:59.000Z

311

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andsuch diverse areas as geothermal energy, oil recovery, in-

Authors, Various

2012-01-01T23:59:59.000Z

312

EARTH SCIENCES DIVISION. ANNUAL REPORT 1977.  

E-Print Network [OSTI]

8erkeley Laboratory (LBL), the Earth Sciences Division, wasactivation analysis: rare earth element distribution (D)can be used to generate earth- quake records for use in

Witherspoon, P.A.

2011-01-01T23:59:59.000Z

313

Supervisory General Engineer (Facility Engineering Division Director)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will lead the Facility Engineering Division by providing internal and independent safety system oversight of Waste Isolation Pilot Plant (WIPP) operations in...

314

Colorado Air Pollution Control Division - Construction Permits...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission...

315

X-Ray Science Division (XSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Science Division (XSD) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

316

Enforcement Letter, Westinghouse Waste Isolation Division - October...  

Broader source: Energy.gov (indexed) [DOE]

Division related to four noncompliances with the requirements of the Quality Assurance Rule andor the Occupational Radiation Protection Rule at DOE's Waste Isolation...

317

High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program  

SciTech Connect (OSTI)

The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

2007-09-19T23:59:59.000Z

318

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 3, MAY 2007 1197 An Interleave-Division-Multiplexing MISO System  

E-Print Network [OSTI]

-Division-Multiplexing MISO System With Partial CSI at Transmitter Chuxiang Li, Kai Li, Xiaodong Wang, Senior Member, IEEE-division-multiplexing (IDM) multiple-input­ single-output (MISO) system with partial channel state information (CSI the performance of such an IDM-MISO system. In particular, an SNR tracking method is proposed to calculate

Ping, Li

319

Earth Sciences Division Research Summaries 2006-2007  

SciTech Connect (OSTI)

Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from J

DePaolo, Donald; DePaolo, Donald

2008-07-21T23:59:59.000Z

320

In Conversation With Materials Scientist Ron Zuckermann  

SciTech Connect (OSTI)

Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.

Ron Zuckerman

2009-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

In Conversation With Materials Scientist Ron Zuckermann  

ScienceCinema (OSTI)

Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.

Ron Zuckerman

2010-01-08T23:59:59.000Z

322

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

in Ca0-Fe0-Si02 Slags," Ironmaking and Steelmaking, ~' No.in CaO-FeO-SiOz Slags," Ironmaking and Steelmaking, Q, No.

Authors, Various

2013-01-01T23:59:59.000Z

323

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

3. R. Sinclair, D. S. Gelles and G. Thomas, Preliminary34. R. Sinclair, D. S. Gelles and G. Thomas, PreliminaryL. E. Thomas and D. S. Gelles, Experimental ~~thods for

Authors, Various

2010-01-01T23:59:59.000Z

324

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

and Reports Powder Metallurgy Milton R. Piokus, Investigatorof a Thermoplastic-Powder Metallurgy Process for the Z. S.Prepared by Powder Metallurgy Techniques . . . . . . . 2.

Authors, Various

2011-01-01T23:59:59.000Z

325

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

TWork partially supported by NSF. ^University of Lulea,Lulea, Sweden. Fig. 20- Accommodations of transformation

Searcy, Alan W.

2010-01-01T23:59:59.000Z

326

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

and rf power leveL (XBL 7910-7232) RESEAIZCII PJJ\\J\\JS T:oRand rf power. (XBL 7910-7232) the films as a function of

Authors, Various

2013-01-01T23:59:59.000Z

327

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

the Liquid-Junction Photovoltaic Cell Work in Progress 1981of Liquid-Junction Photovoltaic Cells," Minneapolis meetingliquid-junction photovoltaic cells. 1. MATHEMATICAL MODELING

Authors, Various

2010-01-01T23:59:59.000Z

328

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

J. Bonfiglio H. Bryndza P. Comita J. Froraner J. Huggins A,1980). 7. M. R. Herman, P. B. Comita, C. B. Moore and R. G.1980). 7. M. R. Berman, P. B. Comita, C. B. Moore, and R. G.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

329

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Bonfiglio Bryndza Carriere Comita Janowicz Seidler SeidlerIBL Reports 1. P. B. Comita, M. R. Berman, C. B. Moore and5. T. P. Lockhart, P. B. Comita and R. G. Bergman," Kinetic

Authors, Various

2010-01-01T23:59:59.000Z

330

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

flash rates, unwanted infrared heating, and difficult to usepower) , No direct infrared heating from the flash source,

Authors, Various

2010-01-01T23:59:59.000Z

331

ACS DIVISION OF POLYMERIC MATERIALS: SCIENCE AND ENGINEERING  

E-Print Network [OSTI]

, interpenetrating polymer networks, IPNs. Other topics included the mechanical and morphological aspects of polymers textbook, "Introduction to Physical Polymer Science," with Wiley, 2004. While in retirement, he remains for Polymer Science and Engineering, and served as Education Chairman. His efforts at ACS have included

Gilchrist, James F.

332

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Our data of electrical properties vs measurement temperaturecoefficient I)-I vs HIT and T. 1. ELECTRICAL CONDUCTION AND

Authors, Various

2013-01-01T23:59:59.000Z

333

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

High Resolution Electron Energy loss (ELS), and Thermal Desorption Mass Spectrometry (High-Resolution Electron Microscopy Catalytic Gasification on Graphite Electron Energy Loss Spectrometry

Searcy, Alan W.

2010-01-01T23:59:59.000Z

334

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

of 1 mole of ClF5 ")\\uF6- to J\\uCl yields six moles ofreacts with XeF6 to foDll UF6. The M-F stretching and M-0appears more covalent than UF6-. However, if the bonding is

Authors, Various

2013-01-01T23:59:59.000Z

335

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

Introduction. Aside from UF6, uranium(IV) boro- hydride andPaP62- complexes, but not in the UF6 2- complex. AgaDl, the

Authors, Various

2010-01-01T23:59:59.000Z

336

Fusion & Materials for Nuclear Systems Division | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group focuses on the development and application of advanced remote handling systems, tooling, and facilities for hazardous and inaccessible environments. The group has decades of...

337

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Corrosion Fatigue and Hydrogen Embrittlement," in Analyticalbehavior dominated by hydrogen embrittlement mechanisms atimmune to embrittlement in the presence of hydrogen gas. In

Authors, Various

2010-01-01T23:59:59.000Z

338

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

Chang and D. H. Klalm Hydrogen embrittlement of metals is anthe resistance to hydrogen embrittlement because the rotor

Authors, Various

2011-01-01T23:59:59.000Z

339

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Characterization of Thermal Barrier Ceramic Coatings . . .stabilized zirconia thermal barrier ceramic coat­ ing wasfor the application of ceramic thermal barrier coatings.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

340

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

types and forms of ceramic thermal barrier coatings andfatigue resist­ ance of ceramic thermal barrier coatings byoverlay coatings, and ceramic or thermal barrier coatings.

Authors, Various

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

in Alkyne Metathesis: Flash Pyrolysis of Substituted n4-the products of vacuum flash pyrolysis of tetralin (! ) at

Authors, Various

2013-01-01T23:59:59.000Z

342

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Conver­ sion of 1 Vacuum flash pyrolysis, 0.05 torr, quartzother si on of 1 Vacuum flash pyrolysis, 0.05 torr, quartz2i were subjected to flash vacuum pyrolysis at low contact

Searcy, Alan W.

2010-01-01T23:59:59.000Z

343

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

C. Drobny,! \\. Pines, S. Sinton, D.P. Weitekamp, ancl D. \\8042. 3. W. S. Warren, S. Sinton, D. fJ. Weitekamp, and A.G. Drobny, A. Pines-, S. Sinton, D. and D. Wemmer, "Fourier

Authors, Various

2013-01-01T23:59:59.000Z

344

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Electrochemical Engineering of Batteries," invited lecture,Electrochemical Engineering of Batteries," Invited lecture.Electrochemical engineering of Batteries," invited lecture,

Authors, Various

2010-01-01T23:59:59.000Z

345

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

in High Energy-Density Batteries, Proc. 11th Intersocietyin High Energy-Density Batteries, 11th Intersociety Energyin High Energy-Density Batteries, LBL-S186, June 1976. 4. C.

Authors, Various

2010-01-01T23:59:59.000Z

346

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Office of Conservation and Solar Energy, U.S. Department ofOffice of Conservation and Solar Energy, DOE, arc reportedSecretary for Conservation and Solar Energy, Office of

Searcy, Alan W.

2010-01-01T23:59:59.000Z

347

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Catalysis on Metal Surfaces," Union Carbide, Tarrytown, NewCatalysis on Metal Surfaces," Union Carbide, Tarrytu\\\\'11,metal specimens tested (A-53 mild steel, 304SS and 316SS) with coal and silicon carbide

Authors, Various

2013-01-01T23:59:59.000Z

348

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

E. L. Muetterties, "Metal Carbide Clusters," Prog. Inorg.and E. L. Muetterties, "Metal Carbide Clusters Synthesisbration of graphite and a metal carbide, e.g. , ZrC, with an

Authors, Various

2010-01-01T23:59:59.000Z

349

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

tpresent address: Institut flir Atom-und Festkorper- physik,Max Planck Insi tute flir Festkorperfurschung, Stuttgart,

Authors, Various

2010-01-01T23:59:59.000Z

350

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Air Electrodes for Metal-Air Batteries 6. Oxygen ReductionAir Electrodes for Metal-Air Batteries The objective of thismechani­ cally recharged metal-air batteries, where only a

Searcy, Alan W.

2010-01-01T23:59:59.000Z

351

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

trically rechargeable metal-air batteries, the positivebatteries, and water electrolyzers, air elec­ trodes are being used increasingly in metal

Authors, Various

2010-01-01T23:59:59.000Z

352

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

diffusion layer, thus providing good metallurgical bonding.diffusion bands with the matrix, and thus provide strong bonding,

Authors, Various

2011-01-01T23:59:59.000Z

353

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network [OSTI]

Processing ENG MS/ME 532 Atomic Structure & Dislocations in Matls ENG MS/ME 535 Green Manufacturing ENG MS Manufacturing ENG MS/ME 580 Theory of Elasticity ENG MS 700 Advanced Special Topics GRS PY 745 Experimental

Lin, Xi

354

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network [OSTI]

MS 535/ME 535 Green Manufacturing MS 545/ME 545 Electrochemistry of Fuel Cells & Batteries MS 573/EC Product Management ME 584 Manufacturing Strategy ME 703 Managerial Cost Accounting EC 518 Software Project

Lin, Xi

355

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Re- sistively Shunted Josephson Junction," Phys. Rev. L e tQuantum Limited Josephson Junction Noise," American Physicalin the Physics of Josephson Junctions," Second International

Searcy, Alan W.

2010-01-01T23:59:59.000Z

356

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

Nb-Nb Thin-Film Josephson Junctions, J. Appl. Phys. 47,4955). 9. J. Clarke, Josephson Junction Detectors, Physico-f Noise in Metals, Josephson Junctions, and Music," seminar

Authors, Various

2010-01-01T23:59:59.000Z

357

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

a Resistively Shunted Josephson Junction," Phys. Rev. Lett.Point Noise Using a Josephson Junction," B u l l . Am. Phys.t i v e l y Shunted Josephson Junctions," submitted to Phys.

Authors, Various

2010-01-01T23:59:59.000Z

358

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

electrodeposition of electrolyte properties and of mass transport. Zinc is deposited onto highly polished platinum, nickel

Authors, Various

2010-01-01T23:59:59.000Z

359

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

of Voltage Barriers in Zinc Oxide Varistors," Appl. Phys.Relation- ships of a Zinc Oxide Varistor ! vlaterial," M.S.

Authors, Various

2013-01-01T23:59:59.000Z

360

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

Templeton, Structure of Uranyl Nitrate Di-Tetrahydrofuran,1972). c. Structure of Uranyl Nitrate Di-Tetrahydrofurangeometry is typical of uranyl nitrate :f:~ is the same as

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Water Bridged Dimer of Uranyl Nitrate," LBL-99T\\, submitted2, A Water- Bridged Dimer of Uranyl Nitrate Imidazoliuma 1:1 milJimole of uranyl nitrate hexahydrate ancl imidazole

Authors, Various

2013-01-01T23:59:59.000Z

362

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

the struc­ ture and chemistry of uranium(IV) and thor">nm(chemistry and mechanism of formation of the novel metallocycles, [(Me Si)2N]2MCH2SiMe2HSiMe3, where H i s thorium or uranium.

Authors, Various

2010-01-01T23:59:59.000Z

363

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

curring entity in uranium (VI) chemistry. Surpris- ium(IV)3. The uranium amide has no coordination chemistry. It canChemistry, Stanford University, Stanford, CA 94305. j. Fluoroalkoxides of Uranium (

Authors, Various

2011-01-01T23:59:59.000Z

364

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

~! hittZe, Corrosion in Simulated In-Situ Oil Shale Retortsl. A. V. Levy, "Corrosion of Metals in Oil Shale Retorts,''tested. 1. CORROSION IN SIMULATED IN- SITU OIL SHALE RETORTS

Authors, Various

2013-01-01T23:59:59.000Z

365

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

Temperature Corrosion of Alloys in Oil Shale RetortingSulfidation corrosion of metals in in-situ oil shalecorrosion combined oxidation-sulfidation in coal conversion system environments hav"e been found to be active in in- situ oil

Authors, Various

2011-01-01T23:59:59.000Z

366

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Simulated In-Situ Oil Shale Retorts Corrosion in Laboratory1. A. Levy, "Corrosion of Metals in Oil Shale RetortingIn-Situ Oil Shale Retorting Environments," N C Corrosion '80

Searcy, Alan W.

2010-01-01T23:59:59.000Z

367

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Pd Ni Ag CO SO Specific catalytic activity was defined as the current per unit weight of metal at an electrode

Searcy, Alan W.

2010-01-01T23:59:59.000Z

368

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

1976). Book 1. "Fundamental Aspects of Nuclear Reactor FuelNuclear Society Award for his book Fundamental Aspects of Nuclear Reactor

Authors, Various

2010-01-01T23:59:59.000Z

369

MATERIALS AND MOLECULAR RESEARCH DIVISION, ANNUAL REPORT 1976  

E-Print Network [OSTI]

Alloys Under Coal Gasifier Condi tions . . . . . . . . . .components of a coal gasifier are exposed to extremelytemperature of a typical coal gasifier (1227 K for the Synu~

Authors, Various

2010-01-01T23:59:59.000Z

370

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

of Fe-Cr--Al Alloys in Coal Gasifier Operating Environments,Corrosion of Metals in Coal Gasifier Environments, NACEstain- less steel in a coal gasifier are a mate- rial that

Authors, Various

2011-01-01T23:59:59.000Z

371

Iver Anderson, Division of Materials Sciences and Engineering, The Ames  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentat Larger Scale ||Department

372

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994 Los Alamos

373

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994 Los

374

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994 LosSummer

375

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994

376

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994Spring 1996

377

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994Spring

378

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994Spring6 Los

379

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter 1994Spring6

380

Nuclear Materials Technology Division/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergyWinter

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

a 5 v/o addition of S-spodumene, Li20'Al20304Si02, couldreaction of Si3N4 with S-spodumene to form solid solutions,

Authors, Various

2011-01-01T23:59:59.000Z

382

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

c g n W U C l 6 a r c. Oil Shale Retort Components* Alan V.Investigator Introduction. An oil-shale-containing crucibleof I t e t a l s in Oil Shale Environments," LBL-12019. 2.

Searcy, Alan W.

2010-01-01T23:59:59.000Z

383

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

be active in in- situ oil shale environments. ContinuationCorrosion of Alloys in Oil Shale Retorting Atmospheres E. S.Elliott TIle in-situ oil shale retorting process generates

Authors, Various

2011-01-01T23:59:59.000Z

384

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Publications and Reports d. Oil Shale Retort Components A.in Simulated In-Situ Oil Shale Retorts Research Plans forP. 1111ittle and A. V. Levy, "Oil Shale Eetort Components,"

Authors, Various

2013-01-01T23:59:59.000Z

385

Materials Physics and Applications Division Lead | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86(NHMFL)

386

Fusion & Materials for Nuclear Systems Division | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFunding availableFusion &

387

Los Alamos Lab: Materials Physics & Applications Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera A B C D » May » Los Alamos

388

Los Alamos Lab: Materials Physics & Applications Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera A B C D » May » Los AlamosADEPS

389

A. A. Abrikosov Materials Science Division Argonne National Moratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHeResearchcharm thatA8A

390

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

More than a decade of hydrogen-air fuel cell research andand Hydrogen Utilization in an Acid Fuel Cell," Electrochem.

Authors, Various

2013-01-01T23:59:59.000Z

391

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

hydrogen-air fuel cell research and development has led to the general conclusion that the most cost-

Authors, Various

2011-01-01T23:59:59.000Z

392

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

hydrogen-air fuel cell research and development has led to the general conclusion that the most cost-

Authors, Various

2013-01-01T23:59:59.000Z

393

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

and Microstructures of Dual Phase Steels Containing Silicon,Molybdenum Design of Dual Phase Steels with Carbide FanningFonnable HSLl\\ and Dual-Phase Steels," A. T. Davenport,

Authors, Various

2013-01-01T23:59:59.000Z

394

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

properties of Fe/Si/C dual phase steels investigating theX being Mo or V) dual phase steels. The important problemsdual phase structures in ternary Fe/Al/C and Fe/~b/C steels.

Authors, Various

2011-01-01T23:59:59.000Z

395

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980  

E-Print Network [OSTI]

Compositional Analysis of Dual Phase Steels by TransmissionMechanical Behavior of Dual Phase Steels Con­ taining Strongand Properties of Dual Phase Steels, The Metallurgical

Searcy, Alan W.

2010-01-01T23:59:59.000Z

396

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

Atom Distribution in a Dual-Phase Steel: Atom Probe Study,"N. Kim and G. Thomas, "Dual-Phase Steels for Pipelines," LBLand Properties of Dual-Phase Steels Containing Fine

Authors, Various

2010-01-01T23:59:59.000Z

397

Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint  

SciTech Connect (OSTI)

Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

2012-08-01T23:59:59.000Z

398

In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn  

E-Print Network [OSTI]

We present ab initio studies of structures, energetics, and diffusion properties of Mg in Si, Ge, and Sn diamond structures to evaluate their potential as insertion type anode materials for Mg batteries. We show that Si could provide the highest specific capacities (3817 mAh g-1) and the lowest average insertion voltage (~0.15 eV vs. Mg) for Mg storage. Nevertheless, due to its significant percent lattice expansion (~216%) and slow Mg diffusion, Sn and Ge are more attractive; both anodes have lower lattice expansions (~120 % and ~178 %, respectively) and diffusion barriers (~0.50 and ~0.70 eV, respectively for single-Mg diffusion) than Si. We show that Mg-Mg interactions at different stages of charging can decrease significantly the diffusion barrier compared to the single atom diffusion, by up to 0.55 eV.

Malyi, Oleksandr I; Manzhos, Sergei; 10.1016/j.jpowsour.2013.01.114

2013-01-01T23:59:59.000Z

399

Enhancement of thermopower of TAGS-85 high-performance thermoelectric materials by doping with the rare earth Dy  

SciTech Connect (OSTI)

Enhancement of thermopower is achieved by doping the narrow-band semiconductor Ag{sub 6.52}Sb{sub 6.52}Ge{sub 36.96}Te{sub 50} (acronym TAGS-85), one of the best p-type thermoelectric materials, with 1 or 2% of the rare earth dysprosium (Dy). Evidence for the incorporation of Dy into the lattice is provided by X-ray diffraction and increased orientation-dependent local fields detected by {sup 125}Te NMR spectroscopy. Since Dy has a stable electronic configuration, the enhancement cannot be attributed to 4f-electron states formed near the Fermi level. It is likely that the enhancement is due to a small reduction in the carrier concentration, detected by {sup 125}Te NMR spectroscopy, but mostly due to energy filtering of the carriers by potential barriers formed in the lattice by Dy, which has large both atomic size and localized magnetic moment. The interplay between the thermopower, the electrical resistivity, and the thermal conductivity of TAGS-85 doped with Dy results in an enhancement of the power factor (PF) and the thermoelectric figure of merit (ZT) at 730 K, from PF = 28 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.3 in TAGS-85 to PF = 35 ?W cm{sup ?1} K{sup ?2} and ZT ? 1.5 in TAGS-85 doped with 1 or 2% Dy for Ge. This makes TAGS-85 doped with Dy a promising material for thermoelectric power generation.

Levin, Evgenii; Budko, Serfuei; Schmidt-Rohr, Klaus

2012-04-10T23:59:59.000Z

400

School of Art Division of Graphic Design  

E-Print Network [OSTI]

.372.7763 419.372.6955 fax lyoung@bgsu.edu www.bgsu.edu/art BOWLING GREEN STATE UNIVERSITY Division of Graphic.bgsu.edu/art BOWLING GREEN STATE UNIVERSITY 1) Be of Junior (60+ hours) or Senior (90+ hours) standing withinSchool of Art Division of Graphic Design 1020 Fine Arts Center Bowling Green, Ohio 43403-0204 419

Moore, Paul A.

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Satellite Meteorology and Climatology Division Roadmap  

E-Print Network [OSTI]

Satellite Meteorology and Climatology Division Roadmap NOAA NESDIS Center for Satellite Applications and Research #12;SMCD Roadmap 2 NOAA/NESDIS/STAR Satellite Meteorology and Climatology Division Roadmap September 2005 NOAA Science Center, 5200 Auth Road, Room 712, Camp Springs, MD 20746 #12;SMCD

Kuligowski, Bob

402

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 of this administrative procedure has been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event

Mohaghegh, Shahab

403

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 Access been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

Mohaghegh, Shahab

404

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 Employment been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

Mohaghegh, Shahab

405

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

Mohaghegh, Shahab

406

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 3 Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted

Mohaghegh, Shahab

407

EMS Division Potential Benefits of Selected  

E-Print Network [OSTI]

driven by a high speed gas turbine supplied power to a 400 HP superconductive homopolar motor during at Overcome by New Technology: Cryocoolers & Cu Fiber brushes2 #12;EMS Division Baseline with Multi-turn Field Coil Multi-turn Armature Cryostat Steel Flux Return #12;EMS Division Homopolar Motor Technology

408

Fixed Income Division Nomura International plc  

E-Print Network [OSTI]

Fixed Income Division © Nomura International plc Symmetry methods for quadratic Gaussian models International plc Outline Motivation The quadratic Gaussian distribution The quadratic Gaussian process The quadratic Gaussian model #12;Fixed Income Division 3© Nomura International plc Part 1 Motivation #12;Fixed

Macrina, Andrea

409

The Division of Biology & Biomedical Sciences  

E-Print Network [OSTI]

The Division of Biology & Biomedical Sciences what will you discover? #12;what will you discover and Biomedical Sciences Washington University in St. Louis dbbs.wustl.edu On the cover: Moshi Song (left of other disciplines. The Division of Biology and Biomedical Sciences is ideally positioned to foster

Stormo, Gary

410

Metals and Ceramics Division progress report for period ending June 30, 1984  

SciTech Connect (OSTI)

This progress report covers the research and development activities of the Metals and Ceramics Division from January 1, 1983, through June 30, 1984. The format of the report follows the organizational structure of the division. Short summaries of technical work in progress in the various experimental groups are presented in six parts. Chapter 1 deals with the research and development activities of the Engineering Materials Section, Chapter 2 with the Processing Science and Technology Section, Chapter 3 with the Materials Science Section, Chapter 4 with Project Activities, Chapter 5 with Specialized Research Facilities and Equipment, and Chapter 6 with Miscellaneous Activities.

Brogden, I. (ed.)

1984-09-01T23:59:59.000Z

411

Chemical and Laser Sciences Division annual report 1989  

SciTech Connect (OSTI)

The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

Haines, N. (ed.)

1990-06-01T23:59:59.000Z

412

Environmental Sciences Division annual progress report for period ending September 30, 1991  

SciTech Connect (OSTI)

This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

Not Available

1992-04-01T23:59:59.000Z

413

5/3/12 PHYSICS DIVISION ESH BULLETIN 2004-15 1/2www.phy.ornl.gov/divops/ESH/04-15.htm  

E-Print Network [OSTI]

5/3/12 PHYSICS DIVISION ESH BULLETIN 2004-15 1/2www.phy.ornl.gov/divops/ESH/04-15.htm PHYSICS DIVISION ESH BULLETIN 200415 ORNL Procurement Quick Report (QR) November 1, 2004 The Procurement Quick? · Was the item/material used "as is"? #12;5/3/12 PHYSICS DIVISION ESH BULLETIN 2004-15 2/2www.phy.ornl.gov/divops/ESH

414

Table 23. Coal Receipts at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 23. Coal Receipts at Coke Plants by Census Division...

415

LiMn{sub 2}O{sub 4} nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries  

SciTech Connect (OSTI)

Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite has been successfully synthesized by a one-step hydrothermal method without post-heat treatment. In the nanocomposite, LiMn{sub 2}O{sub 4} nanoparticles of 10–30 nm in size are well crystallized and homogeneously anchored on the graphene nanosheets. The graphene nanosheets not only provide a highly conductive matrix for LiMn{sub 2}O{sub 4} nanoparticles but also effectively reduce the agglomeration of LiMn{sub 2}O{sub 4} nanoparticles. The nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite exhibited greatly improved electrochemical performance in terms of specific capacity, cycle performance, and rate capability compared with the bare LiMn{sub 2}O{sub 4} nanoparticles. The superior electrochemical performance of the nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite makes it promising as cathode material for high-performance lithium-ion batteries. - Graphical abstract: Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets (GNS) nanocomposite exhibit superior cathode performance for lithium-ion batteries compared to the bare LiMn{sub 2}O{sub 4} nanoparticles. Display Omitted - Highlights: • LiMn{sub 2}O{sub 4}/graphene nanocomposite is synthesized by a one-step hydrothermal method. • LiMn{sub 2}O{sub 4} nanoparticles are uniformly anchored on the graphene nanosheets. • The nanocomposite exhibits excellent cathode performance for lithium-ion batteries.

Lin, Binghui; Yin, Qing; Hu, Hengrun; Lu, Fujia [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Xia, Hui, E-mail: xiahui@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China)

2014-01-15T23:59:59.000Z

416

Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The common mission of the division is to advance science and technology to understand complex biological systems and their relationship with human health and the environment.

Mann, Reinhold C.

1999-06-01T23:59:59.000Z

417

Biology and Medicine Division: Annual report 1986  

SciTech Connect (OSTI)

The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

Not Available

1987-04-01T23:59:59.000Z

418

Earth Sciences Division collected abstracts: 1979  

SciTech Connect (OSTI)

This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

Henry, A.L.; Schwartz, L.L.

1980-04-30T23:59:59.000Z

419

Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes  

SciTech Connect (OSTI)

The performance of thin film metal-insulator-metal (MIM) diodes is investigated for a variety of large and small electron affinity insulators using ultrasmooth amorphous metal as the bottom electrode. Nb{sub 2}O{sub 5}, Ta{sub 2}O{sub 5}, ZrO{sub 2}, HfO{sub 2}, Al{sub 2}O{sub 3}, and SiO{sub 2} amorphous insulators are deposited via atomic layer deposition (ALD). Reflection electron energy loss spectroscopy (REELS) is utilized to measure the band-gap energy (E{sub G}) and energy position of intrinsic sub-gap defect states for each insulator. E{sub G} of as-deposited ALD insulators are found to be Nb{sub 2}O{sub 5}?=?3.8?eV, Ta{sub 2}O{sub 5}?=?4.4?eV, ZrO{sub 2}?=?5.4?eV, HfO{sub 2}?=?5.6?eV, Al{sub 2}O{sub 3}?=?6.4?eV, and SiO{sub 2}?=?8.8?eV with uncertainty of ±0.2?eV. Current vs. voltage asymmetry, non-linearity, turn-on voltage, and dominant conduction mechanisms are compared. Al{sub 2}O{sub 3} and SiO{sub 2} are found to operate based on Fowler-Nordheim tunneling. Al{sub 2}O{sub 3} shows the highest asymmetry. ZrO{sub 2}, Nb{sub 2}O{sub 5}, and Ta{sub 2}O{sub 5} based diodes are found to be dominated by Frenkel-Poole emission at large biases and exhibit lower asymmetry. The electrically estimated trap energy levels for defects that dominate Frenkel-Poole conduction are found to be consistent with the energy levels of surface oxygen vacancy defects observed in REELS measurements. For HfO{sub 2}, conduction is found to be a mix of trap assisted tunneling and Frenkel-Poole emission. Insulator selection criteria in regards to MIM diodes applications are discussed.

Alimardani, Nasir; Tan, Cheng; Lampert, Benjamin P.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, Arizona 85248 (United States)

2014-07-14T23:59:59.000Z

420

Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report  

SciTech Connect (OSTI)

The extension to LWRs of the use of Deep-Burn coated particle fuel envisaged for HTRs has been investigated. TRISO coated fuel particles are used in Fully-Ceramic Microencapsulated (FCM) fuel within a SiC matrix rather than the graphite of HTRs. TRISO particles are well characterized for uranium-fueled HTRs. However, operating conditions of LWRs are different from those of HTRs (temperature, neutron energy spectrum, fast fluence levels, power density). Furthermore, the time scales of transient core behavior during accidents are usually much shorter and thus more severe in LWRs. The PASTA code was updated for analysis of stresses in coated particle FCM fuel. The code extensions enable the automatic use of neutronic data (burnup, fast fluence as a function of irradiation time) obtained using the DRAGON neutronics code. An input option for automatic evaluation of temperature rise during anticipated transients was also added. A new thermal model for FCM was incorporated into the code; so-were updated correlations (for pyrocarbon coating layers) suitable to estimating dimensional changes at the high fluence levels attained in LWR DB fuel. Analyses of the FCM fuel using the updated PASTA code under nominal and accident conditions show: (1) Stress levels in SiC-coatings are low for low fission gas release (FGR) fractions of several percent, as based on data of fission gas diffusion in UO{sub 2} kernels. However, the high burnup level of LWR-DB fuel implies that the FGR fraction is more likely to be in the range of 50-100%, similar to Inert Matrix Fuels (IMFs). For this range the predicted stresses and failure fractions of the SiC coating are high for the reference particle design (500 {micro}mm kernel diameter, 100 {micro}mm buffer, 35 {micro}mm IPyC, 35 {micro}mm SiC, 40 {micro}mm OPyC). A conservative case, assuming 100% FGR, 900K fuel temperature and 705 MWd/kg (77% FIMA) fuel burnup, results in a 8.0 x 10{sup -2} failure probability. For a 'best-estimate' FGR fraction of 50% and a more modest burnup target level of 500 MWd/kg ,the failure probability drops below 2.0 x 10{sup -5}, the typical performance of TRISO fuel made under the German HTR research program. An optimization study on particle design shows improved performance if the buffer size is increased from 100 to 120 {micro}mm while reducing the OPyC layer. The presence of the latter layer does not provide much benefit at high burnup levels (and fast fluence levels). Normally the shrinkage of the OPyC would result in a beneficial compressive force on the SiC coating. However, at high fluence levels the shrinkage is expected to turn into swelling, resulting in the opposite effect. However, this situation is different when the SiC-matrix, in which the particles are embedded, is also considered: the OPyC swelling can result in a beneficial compressive force on the SiC coating since outward displacement of the OPyC outer surface is inhibited by the presence of the also-swelling SiC matrix. Taking some credit for this effect by adopting a 5 {micro}mm SiC-matrix layer, the optimized particle (100 {micro}mm buffer and 10 {micro}mm OPyC), gives a failure probability of 1.9 x 10{sup -4} for conservative conditions. During a LOCA transient, assuming core re-flood in 30 seconds, the temperature of the coated particle can be expected to be about 200K higher than nominal temperature (900K). For this event the particle failure fraction for a conservative case is 1.0 x 10{sup -2}, for the optimized particle design. For a FGR-fraction of 50% this value reduces to 6.4 x 10{sup -4}.

B. Boer; R. S. Sen; M. A. Pope; A. M. Ougouag

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Division annual progress report for period ending September 30, 1991  

SciTech Connect (OSTI)

The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

Stone, J.N. [ed.

1992-04-01T23:59:59.000Z

422

Plug-In Electric Vehicle R&D on High Energy Materials  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Electric Vehicle R&D on High Energy Materials Presented by John Vaughey Principal Investigator: Dennis Dees Chemical Sciences and Engineering Division Argonne National...

423

E-Print Network 3.0 - activation decoupler material Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Materials Science and Technology Division... and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical ... Source: Pint, Bruce...

424

Energy Division annual progress report for period ending September 30, 1993  

SciTech Connect (OSTI)

One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

Wolff, P.P. [ed.

1994-07-01T23:59:59.000Z

425

Energy Division annual progress report for period ending September 30, 1992  

SciTech Connect (OSTI)

Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

Counce, D.M.; Wolff, P.P. [eds.

1993-04-01T23:59:59.000Z

426

Community Development Department Building & Safety Division  

E-Print Network [OSTI]

BUILDING, RESIDENTIAL AND GREEN BUILDING CODES, AMENDING FREMONT MUNICIPAL CODE TITLE vn (BUILDING TO ENERGY REGULATIONS THE 2010 CALIFORNIA,GREEN BUILDING CODE The City of Fremont proposed to adopt local................ Community Development Department Building & Safety Division 39550 Liberty Street

427

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of electrolytes: IX, rare earth chlorides, nitrates, andU E OF AQUIFER RESPONSE TO EARTH TIDES AS A MEANS O F SLawrence Berkeley Laboratory, Earth Sciences Division, 1977.

Authors, Various

2012-01-01T23:59:59.000Z

428

Financial Services Division of Administration & Finance  

E-Print Network [OSTI]

Financial Services Division of Administration & Finance (657) 278-2512 / Fax (714) 278: May Wong / Financial Services (CP-300). Instructions are at Questions? Email Directive11@fullerton.eduwww.finance

de Lijser, Peter

429

INDIVIDUAL DISCIPLINES: HUMAN RESOURCES DIVISION MARKETING  

E-Print Network [OSTI]

INDIVIDUAL DISCIPLINES: HUMAN RESOURCES DIVISION MARKETING AND RECRUITMENT CAMPAIGN STAFF .:|:. Client: Y. Mankin, Computing Sciences #12;DESIGN MAIN MENU 1 2 344 4 5WEBSITES Joint BioEnergy Institute

430

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andi a , Mexico, i n Geothermal energy: a n o v e l t y becomes

Authors, Various

2012-01-01T23:59:59.000Z

431

Energy Research and Development Division STAFF REPORT  

E-Print Network [OSTI]

Energy Research and Development Division STAFF REPORT NATURAL GAS RESEARCH AND DEVELOPMENT 2013 Annual Report CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor OCTOBER 2013 CEC5002013111 #12; CALIFORNIA ENERGY COMMISSION Linda Schrupp Primary Authors Prepared for: California

432

Robert C. Holub Undergraduate Division Dean  

E-Print Network [OSTI]

less than coherent, consisting of a handful of interdisciplinary undergraduate programs (the UGIS part is the location of these various programs. The UGIS majors are located within the division (except in one case

Mofrad, Mohammad R. K.

433

ORNL/CON-224 Energy Division  

E-Print Network [OSTI]

ORNL/CON-224 Energy Division U.S. HEAT PUMP RESEARCH AND DEVELOPMENT PROJECTS 1976-1986 K. H ......................................... 2 3. ORGANIZATIONS SPONSORING HEAT PUMP ................. RESEARCH AND DEVELOPMENT ............................................... 223 9. NOVEL HEAT PUMP CYCLES ............ ........................... 228 10. CROSSCUTTING PROJECTS

Oak Ridge National Laboratory

434

Earth Sciences Division annual report 1989  

SciTech Connect (OSTI)

This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

Not Available

1990-06-01T23:59:59.000Z

435

Weapons Experiments Division Explosives Operations Overview  

SciTech Connect (OSTI)

Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

Laintz, Kenneth E. [Los Alamos National Laboratory

2012-06-19T23:59:59.000Z

436

NO. REV. NO. Systems Division DATE  

E-Print Network [OSTI]

-~ NO. REV. NO. EATM-15 PAGE OF ~ Systems Division DATE EASEP /PSEP Solar Panel Development Design+"'--.:L'_;;;J....;::::::..··-=·~::!!:!!!e::...._ K. Hsi #12;NO. REV. NO. EATM-15 EASEP/PSEP Solar Panel Development ~ Systems Division Design of the EASE-PSEP Solar Panel Array~PA::G:,:E:..::=l=~o:F~=2=7= DATE 20 Nov. 1968 1. 0 SUMMARY Electrical power

Rathbun, Julie A.

437

Earth Sciences Division collected abstracts: 1980  

SciTech Connect (OSTI)

This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

Henry, A.L.; Hornady, B.F. (eds.)

1981-10-15T23:59:59.000Z

438

Metals and Ceramics Division progress report for period ending September 30, 1991  

SciTech Connect (OSTI)

This report provides a brief overview of the activities and accomplishments of the Metals and Ceramics (M C) Division during fiscal year (FY) 1991. The division is organized to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by the US Department of Energy (DOE). Activities span the range from basic research (through applied research and engineering development) to industrial interactions (through cooperative research and a strong technology transfer program). The division is organized in functional groups that encompass nearly all of the disciplines needed to develop and to apply materials in high-temperature applications. Sections I through 5 describe the different functional groups; Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines; and Sect. 7 summarizes external interactions including cooperative research and development programs, educational activities, and technology transfer functions. Appendices describe the organizational structure, note personnel changes, present honors and awards received by division members, and contain listings of publications completed and presentations made at technical meetings.

Not Available

1992-03-01T23:59:59.000Z

439

Metals and Ceramics Division progress report for period ending September 30, 1991  

SciTech Connect (OSTI)

This report provides a brief overview of the activities and accomplishments of the Metals and Ceramics (M&C) Division during fiscal year (FY) 1991. The division is organized to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by the US Department of Energy (DOE). Activities span the range from basic research (through applied research and engineering development) to industrial interactions (through cooperative research and a strong technology transfer program). The division is organized in functional groups that encompass nearly all of the disciplines needed to develop and to apply materials in high-temperature applications. Sections I through 5 describe the different functional groups; Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines; and Sect. 7 summarizes external interactions including cooperative research and development programs, educational activities, and technology transfer functions. Appendices describe the organizational structure, note personnel changes, present honors and awards received by division members, and contain listings of publications completed and presentations made at technical meetings.

Not Available

1992-03-01T23:59:59.000Z

440

Organization of ISI by Divisions and Constituent Units Information Sciences Division  

E-Print Network [OSTI]

Biological Sciences Division Agricultural and Ecological Research Unit Human Genetics Unit Biological Unit Canteen Security Unit Medical Welfare Unit Telephone Unit Transport Unit Guest House Audio Visual

Bandyopadhyay, Antar

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

But Does It Last? Sustaining a Research-Based Curriculum in Upper-Division Electricity & Magnetism  

E-Print Network [OSTI]

But Does It Last? Sustaining a Research-Based Curriculum in Upper-Division Electricity & Magnetism Stephanie V. Chasteen, Rachel E. Pepper, Steven J. Pollock, Katherine K. Perkins Science Education course approach in junior-level electricity and magnetism (E&M). Almost all developed materials (i

Colorado at Boulder, University of

442

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-01-01T23:59:59.000Z

443

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-07-01T23:59:59.000Z

444

UNIVERSITY OF CALIFORNIA, SANTA CRUZ DIVISION OF GRADUATE STUDIES  

E-Print Network [OSTI]

and Graduate Division coordination of efforts to increase graduate support and postdoctoral placement through

California at Santa Cruz, University of

445

Accelerator Technology Division progress report, FY 1993  

SciTech Connect (OSTI)

This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-12-31T23:59:59.000Z

446

Chemistry and Materials Science Directorate 2005 Annual Report  

SciTech Connect (OSTI)

In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent discovery of a new source of coherent light adds a new tool to an array of methods we use to more fully understand the properties of materials. Insights into the early stages of polymer crystallization may lead to new materials for our national-security mission and private industry. (3) Science Supporting National Objectives at the Intersection of Chemistry, Materials Science, and Biology--We are improving drug binding for cancer treatment through the use of new tools that are helping us characterize protein-antibody interactions. By probing proteins and nucleic acids, we may gain an understanding of Alzheimer's, Mad Cow, and other neurodegenerative diseases. (4) Applied Nuclear Science for Human Health and National Security--Our work with cyanobacteria is leading to a fuller understanding of how these microorganisms affect the global carbon cycle. We are also developing new ways to reduce nuclear threats with better radiation detectors. Dynamic Teams: The dynamic teams section illustrates the directorate's organizational structure that supports a team environment across disciplinary and institutional boundaries. Our three divisions maintain a close relationship with Laboratory programs, working with directorate and program leaders to ensure an effective response to programmatic needs. CMS's divisions are responsible for line management and leadership, and together, provide us with the flexibility and agility to respond to change and meet program milestones. The three divisions are: Materials Science and Technology Division; Chemistry and Chemical Engineering Division; and Chemical Biology and Nuclear Science Division. By maintaining an organizational structure that offers an environment of collaborative problem-solving opportunities, we are able to nurture the discoveries and breakthroughs required for future successes. The dynamic teams section also presents the work of CMS's postdoctoral fellows, who bring to the Laboratory many of the most recent advances taking place in academic departments and provide a research stimulus to established research teams. Postdo

Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

2006-08-08T23:59:59.000Z

447

WAFER TEST CAVITY -Linking Surface Microstructure to RF Performance: a ‘Short-­?Sample Test Facility’ for characterizing superconducting materials for SRF cavities.  

SciTech Connect (OSTI)

The Wafer Test cavity was designed to create a short sample test system to determine the properties of the superconducting materials and S?I?S hetero?structures. The project, funded by ARRA, was successful in accomplishing several goals to achieving a high gradient test system for SRF research and development. The project led to the design and construction of the two unique cavities that each severed unique purposes: the Wafer test Cavity and the Sapphire Test cavity. The Sapphire Cavity was constructed first to determine the properties of large single crystal sapphires in an SRF environment. The data obtained from the cavity greatly altered the design of the Wafer Cavity and provided the necessary information to ascertain the Wafer Test cavity’s performance.

Pogue, Nathaniel; Comeaux, Justin; McIntyre, Peter

2014-05-30T23:59:59.000Z

448

Section III, Division 5 - Development And Future Directions  

SciTech Connect (OSTI)

This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development.

Morton, Dana K. [Idaho National Laboratory (INL)] [Idaho National Laboratory (INL); Jetter, Robert I [Consultant] [Consultant; Nestell, James E. [MPR Associates Inc.] [MPR Associates Inc.; Burchell, Timothy D [ORNL] [ORNL; Sham, Sam [ORNL] [ORNL

2012-01-01T23:59:59.000Z

449

Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988  

SciTech Connect (OSTI)

The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNL by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.

Klobe, L.E. (ed.)

1988-12-01T23:59:59.000Z

450

Performance Metrics and Budget Division (HC-51) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera STAT.Paul L.3 Agency FinancialGuide to

451

Environmental Sciences Division annual progress report for period ending September 30, 1991  

SciTech Connect (OSTI)

This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

Not Available

1992-04-01T23:59:59.000Z

452

Analytical Chemistry Division annual progress report for period ending December 31, 1988  

SciTech Connect (OSTI)

The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

Not Available

1988-05-01T23:59:59.000Z

453

Lightweight high performance ceramic material  

DOE Patents [OSTI]

A sintered ceramic composition includes at least 50 wt. % boron carbide and at least 0.01 wt. % of at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb, and Lu, the sintered ceramic composition being characterized by a density of at least 90% of theoretical density.

Nunn, Stephen D [Knoxville, TN

2008-09-02T23:59:59.000Z

454

Chemical Sciences and Engineering Division  

E-Print Network [OSTI]

· Heterogeneous and Homogenous Catalysis · Fuel Cell and Electrocatalysis Electrochemical Energy Storage Anthony Burrell · Materials Research · Technology Develop- ment · Engineering Research · Electrochemical Analysis Frontier Research Centers M. Thackeray C. Marshall Approved: ____________________________2/24/14 Mark

Kemner, Ken

455

Biology Division progress report, October 1, 1991--September 30, 1993  

SciTech Connect (OSTI)

This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

Hartman, F.C.; Cook, J.S.

1993-10-01T23:59:59.000Z

456

Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans - Implementing Sustainability: The Institutional-Behavioral Dimension  

SciTech Connect (OSTI)

This document is part of a larger, programmatic effort to assist federal agencies in taking action and changing their institutions to achieve and maintain federal sustainability goals, while meeting their mission goals. FEMP is developing guidance for federal agency efforts to enable institutional behavior change for sustainability, and for making sustainability “business as usual.” The driving requirement for this change is Executive Order (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance. FEMP emphasizes strategies for increasing energy efficiency and renewable energy utilization as critical components of attaining sustainability, and promotes additional non-energy action pathways contained in EO 13514. This report contributes to the larger goal by laying out the conceptual and evidentiary underpinnings of guidance to federal agencies. Conceptual frameworks focus and organize the development of guidance. We outline a series of progressively refined conceptual frameworks, including a multi-layer approach, key steps in sustainability implementation, a process view of specific approaches to institutional change, the agency Strategic Sustainability Performance Plans (SSPPs), and concepts related to context-specific rules, roles and tools for sustainability. Additionally, we tap pertinent bodies of literature in drawing eight evidence-based principles for behavior change. These principles are important foundations upon which to build in selecting strategies to effect change in organizations. Taken together, this report presents a suite of components that inform the training materials, presentations, web site, and other products that provide guidance to federal agencies.

Malone, Elizabeth L. [Pacific Northwest National Laboratory (PNNL); Sanquist, Tom [Pacific Northwest National Laboratory (PNNL); Wolfe, Amy K. [ORNL; Diamond, Rick [Lawrence Berkeley National Laboratory (LBNL); Payne, Christopher [Lawrence Berkeley National Laboratory (LBNL); Dion, Jerry [ORNL

2013-06-01T23:59:59.000Z

457

Division of Student Life 20122013 ANNUAL REPORT Division of Student Life  

E-Print Network [OSTI]

1 Division of Student Life 2012­2013 ANNUAL REPORT Division of Student Life #12;2 The Power to Transform: Expectations of Our Students At UW­Madison, we know that the Wisconsin Experience has learning inside and outside the classroom to make the world a better place?" In the eight departments

458

Chemomechanics of calcium leaching of cement-based materials at different scales : the role of CH-dissolution and C-S-H degradation on strength and durability performance of materials and structures  

E-Print Network [OSTI]

Calcium leaching is a durability threat for cement-based materials employed in critical infrastructures, such as Nuclear Waste Storage Systems. This thesis presents a comprehensive study of the material and structural ...

Heukamp, Franz H. (Franz Hoyte), 1973-

2003-01-01T23:59:59.000Z

459

Nuclear Chemistry Division annual report FY83  

SciTech Connect (OSTI)

The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

Struble, G. (ed.)

1983-01-01T23:59:59.000Z

460

Porous Materials Porous Materials  

E-Print Network [OSTI]

1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

Berlin,Technische Universität

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Environmental Public Health Performance Standards  

E-Print Network [OSTI]

Environmental Public Health Performance Standards (Version 2.0) Updated May 2014 National Center for Environmental Health Division of Emergency and Environmental Health Services #12;#12;Environmental Public Health Performance Standards (Version 2.0) Updated May 2014 #12;Environmental Public Health Performance Standards

462

Divisions & Departments | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirectionsWorkplace » Diversity,Materials

463

Materials for breeding blankets  

SciTech Connect (OSTI)

There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

Mattas, R.F.; Billone, M.C.

1995-09-01T23:59:59.000Z

464

Energy Division annual progress report for period ending September 30, 1990  

SciTech Connect (OSTI)

The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

Selden, R.H. (ed.)

1991-06-01T23:59:59.000Z

465

Life Sciences Division annual report, 1988  

SciTech Connect (OSTI)

This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

Marrone, B.L.; Cram, L.S. (comps.)

1989-04-01T23:59:59.000Z

466

Energy and Environmental Systems Division 1981 research review  

SciTech Connect (OSTI)

To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems.

Not Available

1982-04-01T23:59:59.000Z

467

Engineering Physics and Mathematics Division progress report for period ending August 31, 1989  

SciTech Connect (OSTI)

This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center. (LSP)

Not Available

1989-12-01T23:59:59.000Z

468

Functional Materials Letters Vol. 3, No. 2 (2010) 101105  

E-Print Network [OSTI]

Division, LG Innotek Co., Ltd Osan-City 447-705, Korea CHOON-GI CHOI and SUNG-YOOL CHOI Convergence and Components & Materials Research Laboratory (CCMRL) Electronics and Telecommunications Research Institute

Boo, Jin-Hyo

469

Chemical Technology Division progress report, July 1, 1991--December 31, 1992  

SciTech Connect (OSTI)

This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

Genung, R.K.; Hightower, J.R.; Bell, J.T.

1993-05-01T23:59:59.000Z

470

Physics Division activities report, 1986--1987  

SciTech Connect (OSTI)

This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

Not Available

1987-01-01T23:59:59.000Z

471

Division of Human Resources Termination Of  

E-Print Network [OSTI]

Division of Human Resources Termination Of Domestic Partnership Health Stipend Questions (813) 974 Insurance Stipend will terminate as of the Effective Date on this Termination of Domestic Partnership Health. ______ The Domestic Partnership Declaration attested to and filed by me with USF shall be and is terminated

Meyers, Steven D.

472

ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION  

E-Print Network [OSTI]

for its scope of work (the prime prepares a site-specific safety plan content and approval form for each Subcontractor Safety: Non-green Work Procedure [SLAC-I-730-0A21C-024].) Project Name PR # SLAC Project ContactsENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety Site

Wechsler, Risa H.

473

Division of Human Resources Nonresident Alien Federal  

E-Print Network [OSTI]

Division of Human Resources Nonresident Alien Federal Withholding Requirements Questions (813) 974 classified as nonresident aliens for tax purposes with regard to their federal withholding taxes.gov. In brief, the Form W-4 requirements for individuals who are nonresident aliens (NRA) for tax purposes

Meyers, Steven D.

474

Earth Sciences Division annual report 1990  

SciTech Connect (OSTI)

This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

NONE

1991-06-01T23:59:59.000Z

475

DIVISION OF RECREATIONAL SPORTS Personal Training  

E-Print Network [OSTI]

Information Personal Training Policies Waiver Client Data Questionnaire Health Status Questionnaire PersonalDIVISION OF RECREATIONAL SPORTS Personal Training New Client Packet Personal Training Package to Purdue Rec Sports Personal Training Getting Started The information included in this packet is everything

Pittendrigh, Barry

476

Political Science Division Hatfield School of Government  

E-Print Network [OSTI]

Political Science Division Hatfield School of Government Minor in Law & Legal Studies Program, emphasizing the political, social, cultural, and philosophical foundations and impacts of law and legal campus who are interested in the relationship of law to politics, society, and culture. While the core

Bertini, Robert L.

477

Lectures on Linear Algebra over Division Ring  

E-Print Network [OSTI]

In this book i treat linear algebra over division ring. A system of linear equations over a division ring has properties similar to properties of a system of linear equations over a field. However, noncommutativity of a product creates a new picture. Matrices allow two products linked by transpose. Biring is algebra which defines on the set two correlated structures of the ring. As in the commutative case, solutions of a system of linear equations build up right or left vector space depending on type of system. We study vector spaces together with the system of linear equations because their properties have a close relationship. As in a commutative case, the group of automorphisms of a vector space has a single transitive representation on a frame manifold. This gives us an opportunity to introduce passive and active representations. Studying a vector space over a division ring uncovers new details in the relationship between passive and active transformations, makes this picture clearer. Considering of twin representations of division ring in Abelian group leads to the concept of D vector space and their linear map. Based on polyadditive map I considered definition of tensor product of rings and tensor product of D vector spaces.

Aleks Kleyn

2014-10-11T23:59:59.000Z

478

Division of Student Affairs 107 Conklin North  

E-Print Network [OSTI]

A. Herman graduated from Bowling Green State University's College Student Personnel program in 1990, August 31st to the Office of the Division of Student Affairs, Bowling Green State University, Attn: Beth Bowling Green State University Shelli A. Herman graduated from Bowling Green State University's College

Moore, Paul A.

479

PHYSICS DIVISION ESH BULLETIN 2005-06  

E-Print Network [OSTI]

conducted by the operations staff. Maintenance is work done by the crafts. Work done by Users is considered, and Guests were allowed to conduct hands-on experimental work under the direct supervision of a trained: Work in the Physics Division is broadly categorized as operations, maintenance, and experimental work

480

Student Regulations and Procedures Academic Division  

E-Print Network [OSTI]

Student Regulations and Procedures Academic Division 2007/2008 11 Students Union Code information regarding their course, tuition fees, award ceremonies and other matters www.mmu.ac.uk/academic's Articles of Government (Article 1.1). As prescribed in the Articles of Government (Article 12

Note: This page contains sample records for the topic "materials performance division" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Student Regulations and Procedures Academic Division  

E-Print Network [OSTI]

Student Regulations and Procedures Academic Division 2007/2008 3 RULES FOR STUDENT CONDUCT fees, award ceremonies and other matters www.mmu.ac.uk/academic/student_regulations.php #12;RULES of Governors in accordance with the following Articles of Government: 7.1.6 Subject to the responsibilities

482

DIVISION S-6--SOIL & WATER MANAGEMENT & CONSERVATION  

E-Print Network [OSTI]

DIVISION S-6--SOIL & WATER MANAGEMENT & CONSERVATION Soil Organic Carbon Sequestration Rates soil column within 20 yr following culti- Carbon sequestration rates, with a change from CT to NT, can in approximately 40 to and returning to the original land cover or other peren- 60 yr. Carbon sequestration rates

483

ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 24: Training  

E-Print Network [OSTI]

ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 24: Training Quick Start Summary Product ID: 520-group.slac.stanford.edu/esh/eshmanual/references/trainingQuickstart.pdf 1 Who needs to know about these requirements The requirements of Training apply to all persons on-site, employees and non-employees, their SLAC

Wechsler, Risa H.

484

Division of Human Resources University Grievance Procedures  

E-Print Network [OSTI]

Division of Human Resources University Grievance Procedures Employee Relations/ USF System Grievance Procedure Questions: (813) 974-2970 Rev. 12/2012 This procedure applies to Administration, Staff in this procedure are expressed in calendar days. If a deadline falls on a Saturday, Sunday or holiday, an action

Meyers, Steven D.

485

UNIVERSITY OF SASKATCHEWAN FACILITIES MANAGEMENT DIVISION  

E-Print Network [OSTI]

UNIVERSITY OF SASKATCHEWAN FACILITIES MANAGEMENT DIVISION POLICY Policy Number: 310.1 Approvals at the University of Saskatchewan. In addition, it will provide other administrative and academic units at the University of Saskatchewan with a model for sustainability in their respective workplaces. Policy Statement

Peak, Derek

486

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 9 Family Medical Leave Act Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted

Mohaghegh, Shahab

487

Earth Science Division Overview Unidata Policy Committee  

E-Print Network [OSTI]

Science Division Focus Areas Shanghai Beijing #12;USGCRP NACP: North American Carbon Program http on Earth's climate, the ozone layer and how much solar energy the Earth retains. To improve our and Ecosystems Climate Variability and Change Weather Water and Energy Cycle Earth Surface and Interior Earth

488

Building an R package Division of Biostatistics  

E-Print Network [OSTI]

Building an R package Yen-Yi Ho Division of Biostatistics School of Public Health, University of Minnesota Yen-Yi Ho Building an R package #12;Steps Prepare your functions, example data sets Build package in man subdirectory) Write a package vignette Build and install the R package (R CMD build) Check the R

Carlin, Bradley P.

489

SHORT-TUBE SUBCRITICAL FLOW Enerag Division  

E-Print Network [OSTI]

#12;SHORT-TUBE SUBCRITICAL FLOW Y. C. Mei Enerag Division Oak Ridge National Laboratory Oak Ridge-tube subcritical flow. For short tubes used as refrigerant expansion devices, the orifice model is found inadequate-TUBE SUBCRITICAL FLOW INTRODUCTION Much theoretical and experimental work regarding short tube fluid flow has

Oak Ridge National Laboratory

490

Division of Human Resources Payroll Certification Process  

E-Print Network [OSTI]

Division of Human Resources Payroll Certification Process Questions (813) 974-7955 Payroll/Payroll Processing Rev. 04/2010 Payroll Certification is the process by which departments submit to Payroll the hours to be paid for each employee within each department. This process utilizes the online Certification System

Meyers, Steven D.

491

Nanocomposites as thermoelectric materials  

E-Print Network [OSTI]

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

492

ACCELERATOR DIVISION ANNUAL REPORT, JAN-DEC. 1975  

E-Print Network [OSTI]

F. Voelker H. W. Vogel ACCELERATOR THEORY A. A. Garren L. J.marked a turning point for the Accelerator Division. A majorbright indeed. VII ACCELERATOR DIVISION Contents ACCELERATOR

Lofgren, E.J.

2008-01-01T23:59:59.000Z

493

Department of Natural Resources and Water Divisions (Nebraska)  

Broader source: Energy.gov [DOE]

This chapter describes the duties of the Department of Natural Resources and divides the state into two water divisions for administrative purposes. Water Division 1 consists of all the lands of...

494

Nuclear Science Division Annual Report 1995-1996  

E-Print Network [OSTI]

Saladin5, and C.H. Yu6 Nuclear Science Division, LawrenceMoretto, G.J. Wozniak, Nuclear Science Division, LawrenceComment on “Probing the Nuclear Liquid-Gas Phase Transition”

Authors, Various

2010-01-01T23:59:59.000Z

495

Linking Sulfur Metabolism to the Cell Division Machinery in Yeast  

E-Print Network [OSTI]

The longstanding view has been that metabolism allows for cell division to take place, but that metabolic processes do not actively promote cell division. I have recently challenged this notion by identifying a unique gain-of-function metabolic...

Blank, Heidi M.

2010-07-14T23:59:59.000Z

496

The mechanism of chloroplast division in higher plants  

E-Print Network [OSTI]

of chloroplasts found in a normal mesophyll cell. The process of chloroplast biogenesis has been well characterized at the cellular level, but the molecular basis of chloroplast division and the role of nuclear genes in the control of plastid division...

Proctor, John Michael

2013-02-22T23:59:59.000Z

497

Combinational pixel-by-pixel and object-level classifying, segmenting, and agglomerating in performing quantitative image analysis that distinguishes between healthy non-cancerous and cancerous cell nuclei and delineates nuclear, cytoplasm, and stromal material objects from stained biological tissue materials  

DOE Patents [OSTI]

Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.

Boucheron, Laura E

2013-07-16T23:59:59.000Z

498

ANL Physics DivisionANL Physics Division ELECTRICAL SAFETY POLICY AND MANUAL  

E-Print Network [OSTI]

ON ENERGIZED CIRCUITS XV. LOCKOUT/TAGOUT XVI. TABLES The official version of this Physics Division manual annually. Ensures or oversees completion of the annual review of Lockout/Tagout procedures and authorized

Kemner, Ken

499

Assessing student reasoning in upper-division electricity and magnetism at Oregon State University  

E-Print Network [OSTI]

Standardized assessment tests that allow researchers to compare the performance of students under various curricula are highly desirable. There are several research-based conceptual tests that serve as instruments to assess and identify students' difficulties in lower-division courses. At the upper-division level, however, assessing students' difficulties is a more challenging task. Although several research groups are currently working on such tests, their reliability and validity are still under investigation. We analyze the results of the Colorado Upper-Division Electrostatics diagnostic from Oregon State University and compare it with data from University of Colorado. In particular, we show potential shortcomings in the Oregon State University curriculum regarding separation of variables and boundary conditions, as well as uncover weaknesses of the rubric to the free response version of the diagnostic. We also demonstrate that the diagnostic can be used to obtain information about student learning during ...

Zwolak, Justyna P

2015-01-01T23:59:59.000Z

500

INTRAMURAL GOLF TOURAMENT ALL DIVISIONS Fall 2011 Division Sunday Sept. 18  

E-Print Network [OSTI]

INTRAMURAL GOLF TOURAMENT ALL DIVISIONS Fall 2011 Division Sunday Sept. 18 GOLF M W Team Member ?? EMAIL Tee-Time FIRST NAME LAST NAME or F TEAM NAME @psu.edu 9:00 AM Matt McTague M last round mim5187 Frankie Kehs M last round fjk5012 Chase Roman M Tiger Wood cer197 Dustin Hartzel M Tiger Wood dnh124 9

Omiecinski, Curtis