Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

2

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

3

Mercury-Related Materials Studies  

E-Print Network [OSTI]

. Pawel, "Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for Mercury of Cavitation Resistant Modifications to Type 316LN Stainless Steel in a Mercury Thermal Convection Loop," OakMercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010

McDonald, Kirk

4

Mercury-Related Materials Studies  

E-Print Network [OSTI]

Mercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 #12 Evaluation of Cavitation Resistance of Type 316LN Stainless Steel in Mercury Using a Vibratory Horn," J. Nucl Pump Impeller Materials for Mercury Service at the Spallation Neutron Source," Oak Ridge National

McDonald, Kirk

5

A study of magnetically annealed ferromagnetic materials  

E-Print Network [OSTI]

A STUDY OF MAGNETICALLY ANNEALED FERROMAGNETIC MATERIALS A Thesis By DOMINGO RAMOS Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1961 Major Subject: Electrical Engineering A STUDY OF MAGNETICALLY ANNEALED FERROMAGNETIC MATERIALS A Thesis By 0 ca o o W C DOMINGO RAMOS App ved as to style and content by: r Ct- Chairman of Co ittee Head of Department...

Ramos, Domingo

1961-01-01T23:59:59.000Z

6

Porous Materials Porous Materials  

E-Print Network [OSTI]

1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

Berlin,Technische Universität

7

Fusion reactor breeder material safety compatibility studies  

SciTech Connect (OSTI)

Tritium breeder material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Breeder material safety compatibility studies are being conducted to identify and characterize breeder-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate the following. 1. Ternary oxides (LiAlO/sub 2/, Li/sub 2/ZrO/sub 3/, Li/sub 2/SiO/sub 3/, Li/sub 4/SiO/sub 4/, and LiTiO/sub 3/) at postulated blanket operating temperatures are chemically compatible with water coolant, while liquid lithium and Li/sub 7/Pb/sub 2/ reactions with water generate heat, aerosol, and hydrogen. 2. Lithium oxide and 17Li-83Pb alloy react mildly with water requiring special precautions to control hydrogen release. 3. Liquid lithium reacts substantially, while 17Li83Pb alloy reacts mildly with concrete to produce hydrogen. 4. Liquid lithium-air reactions may present some major safety concerns. Additional scoping tests are needed, but the ternary oxides, lithium oxide, and 17Li-83Pb have definite safety advantages over liquid lithium and Li/sub 7/Pb/sub 2/. The ternary oxides present minimal safetyrelated problems when used with water as coolant, air or concrete; but they do require neutron multipliers, which may have safety compatibility concerns with surrounding materials. The combined favorable neutronics and minor safety compatibility concerns of lithium oxide and 17Li-83Pb make them prime candidates as breeder materials. Current safety efforts are directed toward assessing the compatibility of lithium oxide and the lithium-lead alloy with coolants and other materials.

Jeppson, D.W.; Cohen, S.; Muhlestein, L.D.

1983-09-01T23:59:59.000Z

8

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

9

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

10

Synchrotron studies of narrow band materials  

SciTech Connect (OSTI)

Since last year, we have had three 3-week blocks of beamtime, in April and November 1991 and February 1992, on the Ames/Montana beamline at the Wisconsin Synchrotron Radiation Center (SRC). These runs continued our program on high temperature superconductors, heavy Fermion and related uranium and rare earth materials, and started some work on transition metal oxides. We have also had beamtime at the Brookhaven NSLS, 5 days of beamtime on the Dragon monochromator, beamline U4B, studying resonant photoemission of transition metal oxides using photon energies around the transition metal 2p edges. Data from past runs has been analyzed, and in some cases combined with photoemission and bremsstrahlung isochromat spectroscopy (BIS) data taken in the home U-M lab. 1 fig.

Not Available

1992-01-01T23:59:59.000Z

11

EXPERIMENTAL STUDIES OF MITIGATION MATERIALS FOR BLAST INDUCED TBI  

E-Print Network [OSTI]

The objective of this experimental study is to compare the effects of various materials obstructing the flow of a blast wave and the ability of the given material to reduce the damage caused by the blast. Several methods ...

Young, Laurence Retman

12

Sandia National Laboratories: plasma materials interactions studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobileparallelplantplasma materials interactions

13

Novel Materials for Cell Studies and Harvesting  

SciTech Connect (OSTI)

The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. For instance: (1) Biomedicine - Biomaterials, biosensors; (2) Tissue engineering - Enhanced ability for cell lines to attach to culture plates (3) Regenerative medicine; and (4) Drug delivery - Multilayered films exhibit very good pH and thermal stability and greater control over dosage and timing. Some results are: (1) PEM thickness varied linearly with the number of layers deposited; (2) Homogenization of the multilayered structure; (3) No cyto-toxicity observed; (4) The PEM substrates proved suitable for 3T3 and HEK-293 growth; and (5) Lipids spread homogeneously.

Barkhudarova, Sophia M. [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

14

Studies of bulk materials for thermoelectric cooling  

SciTech Connect (OSTI)

The authors discuss ongoing work in three areas of thermoelectric materials research: (1) broad band semiconductors featuring anion networks, (2) filled skutterudites, and (3) polycrystalline Bi-Sb alloys. Key results include: a preliminary evaluation of a previously untested ternary semiconductor, KSnSb; the first reported data in which Sn is used as a charge compensator in filled antimonide skutterudites; the finding that Sn doping does not effect polycrystalline Bi{sub 1{minus}x}Sb{sub x} as it does single crystal samples.

Sharp, J.W.; Nolas, G.S.; Volckmann, E.H.

1997-07-01T23:59:59.000Z

15

Complex Materials  

ScienceCinema (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-05-23T23:59:59.000Z

16

Complex Materials  

SciTech Connect (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-04-17T23:59:59.000Z

17

Computational studies of novel thermoelectric materials  

SciTech Connect (OSTI)

The thermoelectric properties of La-filled skutterdites and {beta}-Zn{sub 4}Sb{sub 3} are discussed from the point of view of their electronic structures. These are calculated from first principles within the local density approximation. The electronic structures are in turn used to determine transport related quantities, {beta}-Zn{sub 4}Sb{sub 3} is found to be metallic with a complex Fermi surface topology, which yields a non-trivial dependence of the Hall concentration on the band filling. Calculations of the variation with band filling are used to extract the carrier concentration from the experimental Hall number. At this band filling, which corresponds to 0.1 electrons per 22 atom unit cell, the authors calculate a Seebeck coefficient and temperature dependence in good agreement with the experimental value. The high Seebeck coefficients in a metallic material are remarkable, and arise because of the strong energy dependence of the Fermiology near the experimental band filling. Virtual crystal calculations for La(Fe,Co){sub 4}Sb{sub 12}. The valence band maximum occurs at the {Gamma} point and is due to a singly degenerate dispersive (Fe,Co)-Sb band, which by itself would not be favorable for TE. However, very flat transition metal derived bands occur in close proximity and become active as the doping level is increased, giving a non-trivial dependence of the properties on carrier concentration and explaining the favorable TE properties.

Singh, D.J.; Mazin, I.I.; Kim, S.G.; Nordstrom, L.

1997-07-01T23:59:59.000Z

18

Materials Scientist  

Broader source: Energy.gov [DOE]

Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

19

MATERIAL STUDIES FOR PULSED HIGH-INTENSITY PROTON BEAM TARGETS  

E-Print Network [OSTI]

/mechanical property changes experiment for baseline materials Carbon-Carbon composite This low-Z composite gives;PHASE I: Graphite & Carbon-Carbon Targets #12;E951 Results: ATJ Graphite vs. Carbon-Carbon CompositePLAN MATERIAL STUDIES FOR PULSED HIGH-INTENSITY PROTON BEAM TARGETS Nicholas Simos, Harold Kirk

McDonald, Kirk

20

weapons material  

National Nuclear Security Administration (NNSA)

2%2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE  

SciTech Connect (OSTI)

Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

Greenbaum, Steven G.

2014-03-01T23:59:59.000Z

22

Grain Boundary (GB) Studies in Nano- and Micro- Crystalline Materials  

E-Print Network [OSTI]

boundaries in silicon? Materials research society, Vol.122,bicrystal? Journal of Materials Science, 40(2005)3137- 5.in ZnO? Journal of Materials Science, 40(2005)3067-3074. 6.

Tanju, Mst Sohanazaman

2011-01-01T23:59:59.000Z

23

A Simulation Study of Diffusion in Microporous Materials  

E-Print Network [OSTI]

of new zeolite-like materials. Phys. Chem. Chem. Phys. 13,screening of carbon-capture materials. Nat. Mater. 11, 633Diffusion in nanoporous materials. (Wiley- VCH, 2012). 48.

Abouelnasr, Mahmoud Kamal Forrest

2013-01-01T23:59:59.000Z

24

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

25

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

26

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

27

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

28

Critical Materials:  

Broader source: Energy.gov (indexed) [DOE]

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

29

Cermet materials  

DOE Patents [OSTI]

A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

Kong, Peter C. (Idaho Falls, ID)

2008-12-23T23:59:59.000Z

30

Material Symbols  

E-Print Network [OSTI]

What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

Clark, Andy

2006-01-01T23:59:59.000Z

31

Materializing Energy  

E-Print Network [OSTI]

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

32

Study of building material emissions and indoor air quality  

E-Print Network [OSTI]

Building materials and furnishings emit a wide variety of indoor pollutants, such as volatile organic compounds (VOCs). At present, no accurate models are available to characterize material emissions and sorption under ...

Yang, Xudong, 1966-

1999-01-01T23:59:59.000Z

33

Sputtered silicon oxynitride for microphotonics : a materials study  

E-Print Network [OSTI]

Silicon oxynitride (SiON) is an ideal waveguide material because the SiON materials system provides substantial flexibility in composition and refractive index. SiON can be varied in index from that of silicon dioxide ...

Sandland, Jessica Gene, 1977-

2005-01-01T23:59:59.000Z

34

TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY  

SciTech Connect (OSTI)

This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

HOLM MJ

2009-06-25T23:59:59.000Z

35

Synthesis and study of frustrated oxide and mixed anion materials  

E-Print Network [OSTI]

Mixed anion systems, such as oxynitrides and oxyfluorides, are an emerging class of interesting materials. The lower stability of mixed anion systems in comparison to oxide materials has had the consequence that this ...

Clark, Lucy

2013-11-28T23:59:59.000Z

36

Fast Neutron Radioactivity and Damage Studies on Materials  

E-Print Network [OSTI]

Materials We know that binary Sm x Co y compounds are more radi- ation resistant and have better thermal

Spencer, J.; Anderson, S. D.; Wolf, Z.; Volk, J. T.; Pellett, D.; Boussoufi, M.

2007-01-01T23:59:59.000Z

37

UNDERGRADUATE Materials Science & Engineering  

E-Print Network [OSTI]

UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

Tipple, Brett

38

Materials Science & Engineering  

E-Print Network [OSTI]

Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

Simons, Jack

39

Photovoltaic Materials  

SciTech Connect (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

40

Hardfacing material  

DOE Patents [OSTI]

A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

Branagan, Daniel J. (Iona, ID)

2012-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES  

SciTech Connect (OSTI)

Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

Farquar, G; Leif, R

2009-07-15T23:59:59.000Z

42

Fundamental Studies of Diffusion and Reactions in Hydrogen Storage Materials  

E-Print Network [OSTI]

novel reversible hydrogen storage materials, J. Alloysrelationship to enhanced hydrogen storage properties, J.on the reversi- ble hydrogen storage properties of the

Van de Walle, Chris G; Peles, Amra; Janotti, Anderson; Wilson-Short, Gareth

2008-01-01T23:59:59.000Z

43

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE)...

44

Fusion-reactor blanket-material safety-compatibility studies  

SciTech Connect (OSTI)

Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO/sub 2/, Li/sub 2/ZrO/sub 3/, Li/sub 2/SiO/sub 3/, Li/sub 4/SiO/sub 4/ and LiTiO/sub 3/) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li/sub 7/Pb/sub 2/ alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li/sub 17/Pb/sub 83/ alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li/sub 17/Pb/sub 83/ alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns.

Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

1982-11-01T23:59:59.000Z

45

Use of tracers in materials-holdup study  

SciTech Connect (OSTI)

Holdup measurements of special nuclear materials in large processing facilities offer considerable challenges to conventional nondestructive-assay techniques. The use of judiciously chosen radioactive tracers offer a unique method of overcoming this difficulty. Three examples involving the use of /sup 46/Sc and fission products from activated uranium in large-scale experimental studies of uranium holdup are discussed. A justification for the method and its advantages along with examples of successful applications of this technique for large-sale experimental studies are presented.

Pillay, K.K.S.

1983-01-01T23:59:59.000Z

46

Economic evaluation of closure cap barrier materials study  

SciTech Connect (OSTI)

Volume II of the Economic Evaluation of the Closure Cap Barrier Materials, Revision I contains detailed cost estimates for closure cap barrier materials. The cost estimates incorporate the life cycle costs for a generic hazardous waste seepage basin closure cap under the RCRA Post Closure Period of thirty years. The economic evaluation assessed six barrier material categories. Each of these categories consists of several composite cover system configurations, which were used to develop individual cost estimates. The information contained in this report is not intended to be used as a cost estimating manual. This information provides the decision makers with the ability to screen barrier materials, cover system configurations, and identify cost-effective materials for further consideration.

Serrato, M.G.; Bhutani, J.S.; Mead, S.M.

1993-09-01T23:59:59.000Z

47

Factors of material consumption  

E-Print Network [OSTI]

Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

Silva Daz, Pamela Cristina

2012-01-01T23:59:59.000Z

48

Casting materials  

DOE Patents [OSTI]

A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

2011-06-14T23:59:59.000Z

49

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53Reference Materials There are a variety of

50

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86(NHMFL)X-RayMaterials

51

ANALYTICAL NEUTRONIC STUDIES CORRELATING FAST NEUTRON FLUENCE TO MATERIAL DAMAGE IN CARBON, SILICON, AND SILICON CARBIDE  

SciTech Connect (OSTI)

This study evaluates how fast neutron fluence >0.1 MeV correlates to material damage (i.e., the total fluence spectrum folded with the respective materials displacements-per- atom [dpa] damage response function) for the specific material fluence spectra encountered in Next Generation Nuclear Plant (NGNP) service and the irradiation tests conducted in material test reactors (MTRs) for the fuel materials addressed in the white paper. It also reports how the evaluated correlations of >0.1 MeV fluence to material damage vary between the different spectral conditions encountered in material service versus testing.

Jim Sterbentz

2011-06-01T23:59:59.000Z

52

BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES  

SciTech Connect (OSTI)

Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

farquar, G; Leif, R

2008-09-12T23:59:59.000Z

53

A Simulation Study of Diffusion in Microporous Materials  

E-Print Network [OSTI]

In silico screening of carbon-capture materials. Nat. Mater.12763 (2002). 123. Chu, S. Carbon Capture and Sequestration.their suitability for carbon capture. From this large set of

Abouelnasr, Mahmoud Kamal Forrest

2013-01-01T23:59:59.000Z

54

Ab-initio study of cathode materials for lithium batteries  

E-Print Network [OSTI]

Using first principles calculations the effect of electronic structure on the stability of positive electrode materials for lithium rechargeable batteries is investigated. The investigation focuses upon lithiated ?-NaFeO? ...

Reed, John Stuart, 1968-

2003-01-01T23:59:59.000Z

55

Materials Degradation Studies for High Temperature Steam Electrolysis Systems  

SciTech Connect (OSTI)

Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850C for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

2007-06-01T23:59:59.000Z

56

Thermophysical properties study of micro/nanoscale materials.  

E-Print Network [OSTI]

??Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for (more)

Feng, Xuhui

2012-01-01T23:59:59.000Z

57

10 GOOD REASONS TO STUDY MATERIALS AT SWANSEA 1 INTERESTING AND MULTIDISCIPLINARY SUBJECT  

E-Print Network [OSTI]

Materials is a key member of the IMPRESS project, researching novel intermetallic materials. Swansea10 GOOD REASONS TO STUDY MATERIALS AT SWANSEA 1 INTERESTING AND MULTIDISCIPLINARY SUBJECT The subject of Materials Science and Engineering is at the forefront of many new technologies, despite

Martin, Ralph R.

58

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

59

MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL  

E-Print Network [OSTI]

MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

Oliver, Douglas L.

60

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

62

2nd High-Power Targetry Workshop MATERIAL IRRADIATION STUDIES  

E-Print Network [OSTI]

" materials or new composites may be able to meet some of the desired requirements: - new graphite grades - customized carbon-carbon composites - Super-alloys (gum metal, albemet, super-invar, etc.) While calculations affects bonding) · 3D Carbon-Carbon Composite · Toyota "Gum Metal" · Graphite (IG-43) · Al

McDonald, Kirk

63

Reactor materials study of EBR-II and BN350  

E-Print Network [OSTI]

The objective of this research is to go through the technical review of how the body of information relating to the in-reactor behavior of structural materials of Experimental Breeder Reactor-II (EBR-II) and BN350 are associated. Such an effort...

Yilmaz, Fatma

2002-01-01T23:59:59.000Z

64

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

65

Soft-x-ray spectroscopy study of nanoscale materials  

SciTech Connect (OSTI)

The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

Guo, J.-H.

2005-07-30T23:59:59.000Z

66

Materials Project: A Materials Genome Approach  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

67

Radiation Damage Studies of Materials and Electronic Devices Using Hadrons  

SciTech Connect (OSTI)

We have irradiated NdFeB permanent magnet samples from different manufacturers and with differing values of coercivity and remanence using stepped doses of 1 MeV equivalent neutrons up to a fluence of 0:64 #2; 1015n=cm2 to evaluate effects on magnetization and B field distributions. The samples with high coercivity, irradiated in open circuit configurations, showed no or minimal effects when compared with unirradiated samples, whereas the lower coercivity magnets suffered significant losses of magnetization and changes in the shapes of their field patterns. One such magnet underwent a fractional magnetization loss of 13.1% after a fluence of 0:59 #2; 1015 n=cm2. This demagnetization was not uniform. With increasing fluence, B field scans along the centerlines of the pole faces revealed that the normal component of B decreased more near the midpoint of the scan than near the ends. In addition, a fit to the curve of overall magnetization loss with fluence showed a significant deviation from linearity. The results are discussed in light of other measurements and theory. The high coercivity materials appear suitable for use in accelerator applications subject to irradiation by fast neutrons such as dipoles where the internal demagnetizing field is comparable to or less than that of the open circuit samples tested in this study.

Pellett, David; Baldwin, Andrew; Gallagher, Garratt; Olson, David; Styczinski, Marshall

2014-05-14T23:59:59.000Z

68

Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries  

E-Print Network [OSTI]

Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries of the composite. The composite material has been studied for specific discharge capacity, coulombic efficiency for the Li-ion battery. Of various carbon materials that have been tried, graphite is favored because it (i

Popov, Branko N.

69

Study of a double bubbler for material balance in liquids  

SciTech Connect (OSTI)

The objective of this project was to determine the potential of a double bubbler to measure density and fluid level of the molten salt contained in an electrorefiner. Such in-situ real-time measurements can provide key information for material balances in the pyroprocessing of the nuclear spent fuel. This theoretical study showed this technique has a lot of promise. Four different experiments were designed and performed. The first three experiments studied the influence of a variety of factors such as depth difference between the two tubes, gas flow rate, the radius of the tubes and determining the best operating conditions. The last experiment purpose was to determine the precision and accuracy of the apparatus during specific conditions. The elected operating conditions for the characterization of the system were a difference of depth of 25 cm and a flow rate of 55 ml/min in each tube. The measured densities were between 1,000 g/l and 1,400g/l and the level between 34cm and 40 cm. The depth difference between the tubes is critical, the larger, the better. The experiments showed that the flow rate should be the same in each tube. The concordances with theoretical predictions were very good. The density precision was very satisfying (spread<0.1%) and the accuracy was about 1%. For the level determination, the precision was also very satisfying (spread<0.1%), but the accuracy was about 3%. However, those two biases could be corrected with calibration curves. In addition to the aqueous systems studied in the present work, future work will focus on examining the behavior of the double bubbler instrumentation in molten salt systems. The two main challenges which were identified in this work are the effect of the temperature and the variation of the superficial tension.

Hugues Lambert

2013-09-01T23:59:59.000Z

70

MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL  

E-Print Network [OSTI]

MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

Oliver, Douglas L.

71

Study of the Microstructure of Doped Clathrate and Skutterudite Thermoelectric Materials  

E-Print Network [OSTI]

Study of the Microstructure of Doped Clathrate and Skutterudite Thermoelectric Materials Jihui Yang/problem: Clathrate and Skutterudite are known to be promising thermoelectric materials. The R&D groups at GM and ORNL of dopants. This is probably the key feature to enhancing the thermoelectric properties of this material

Pennycook, Steve

72

Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material  

E-Print Network [OSTI]

Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material O ideally plastic materials was carried out by using precise results of finite elements calculations behaviour is found. Two elastic-plastic regimes and two plastic regimes are observed for materials of very

Paris-Sud XI, Université de

73

Target Material Irradiation Studies for High-Intensity Accelerator Beams , H. Ludewig1  

E-Print Network [OSTI]

, an intensive search has been under way for both "smart" target designs and target materials that exhibit and "smart" materials have recently become available to serve the needs of special industries and someTarget Material Irradiation Studies for High-Intensity Accelerator Beams N. Simos1* , H. Kirk1 , H

McDonald, Kirk

74

Real-time formalism for studying the nonlinear response of "smart" materials to an electric field  

E-Print Network [OSTI]

Real-time formalism for studying the nonlinear response of "smart" materials to an electric field J developed for so-called "smart" materials that are tuned to lie close to the metal- insulator transition (RSFQ) ideas [3]. A "smart" material is a mate- rial that can have its properties altered by changing

Freericks, Jim

75

Photon Interaction Studies with Some Glasses and Building Materials  

SciTech Connect (OSTI)

Mass attenuation coefficients of some shielding materials, namely, Bakelite, black cement, white cement, plaster of paris, and concrete were determined at 356-, 511-, 662-, 1173-, and 1332-keV energies, and those of glasses containing oxides of B, Cd, Pb, and Bi were determined only at 662 keV using a narrow beam transmission method. These coefficients of glasses were then used to determine their interaction cross sections, effective atomic numbers, and electron densities. Good agreement was observed between the experimental and theoretical values. It has been proven that glasses have a potential application as a transparent radiation shielding.

Singh, Harvinder [Guru Nanak Dev University (India); Singh, Kulwant [Guru Nanak Dev University (India); Sharma, Gopi [Guru Nanak Dev University (India); Nathuram, R. [Bhabha Atomic Research Centre (India); Sahota, H.S. [Punjabi University (India)

2002-11-15T23:59:59.000Z

76

Method for forming materials  

DOE Patents [OSTI]

A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

2009-10-06T23:59:59.000Z

77

Transporting particulate material  

DOE Patents [OSTI]

A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

2011-08-30T23:59:59.000Z

78

Microdrilling of Biocompatible Materials  

E-Print Network [OSTI]

This research studies microdrilling of biocompatible materials including commercially pure titanium, 316L stainless steel, polyether ether ketone (PEEK) and aluminum 6061-T6. A microdrilling technique that uses progressive pecking and micromist...

Mohanty, Sankalp

2012-02-14T23:59:59.000Z

79

Piston actuated nastic materials  

E-Print Network [OSTI]

PISTON ACTUATED NASTIC MATERIALS A Thesis by VIRAL SHAH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2008... Major Subject: Mechanical Engineering PISTON ACTUATED NASTIC MATERIALS A Thesis by VIRAL SHAH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Shah, Viral

2009-05-15T23:59:59.000Z

80

Nanostructured magnetic materials  

E-Print Network [OSTI]

Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

Chan, Keith T.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Four recent National Academy studies of materials and manufacturing [1-4] have identified the recently established field of Integrated  

E-Print Network [OSTI]

in a computational materials design team project in MSc390 Materials Design. [1] NRC 2003, Materials Research to MeetFour recent National Academy studies of materials and manufacturing [1-4] have identified the recently established field of Integrated Computational Materials Engineering (ICME) as the greatest

Shull, Kenneth R.

82

MATERIALS TRANSFER AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

83

battery materials | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

84

Energy Materials & Processes | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

85

Coated ceramic breeder materials  

DOE Patents [OSTI]

A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

1987-01-01T23:59:59.000Z

86

HAZARDOUS MATERIALS EMERGENCY RESPONSE  

E-Print Network [OSTI]

ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

87

A Materials Facilities Initiative -  

E-Print Network [OSTI]

A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

88

Computational Chemical Materials Engineering  

E-Print Network [OSTI]

: Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

89

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b  

E-Print Network [OSTI]

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b , Hjalte S than that of other chemical fuels1 . However, hydrogen storage is still a key problem remaining on reversible hydrogen storage in complex metal hydrides, these materials have dominated the research field due

90

Single-Molecule Microscopy Studies of Electric-Field Poling in Chromophore-Polymer Composite Materials  

E-Print Network [OSTI]

Single-Molecule Microscopy Studies of Electric-Field Poling in Chromophore-Polymer Composite electrooptic devices based on chromophore-polymer composite materials is to improve chromophore ordering of susceptibility.16 Chromophore-polymer composite materials lack inherent non- centrosymmetry, which is required

Reid, Philip J.

91

Indoor exposure from building materials: A field study Dafni A. Missia a,*, E. Demetriou b  

E-Print Network [OSTI]

conducted in the frame of BUMA (Prioritization of Building Materials Emissions as indoor pollution sourcesIndoor exposure from building materials: A field study Dafni A. Missia a,*, E. Demetriou b , N. Michael b , E.I. Tolis a , J.G. Bartzis a a University of West Macedonia, Environmental Technology

Short, Daniel

92

Exceptional tools for studying the structure and dynamics of materials at the molecular level  

E-Print Network [OSTI]

Exceptional tools for studying the structure and dynamics of materials at the molecular level, complementary to x-rays, in under- standing the structure and dynamics of materials at the molecular level Soft matter Magnetism and superconductivity Life sciences Structural biology Complex fluids

93

Column Studies of Anaerobic Carbon Tetrachloride Biotransformation with Hanford Aquifer Material  

E-Print Network [OSTI]

Column Studies of Anaerobic Carbon Tetrachloride Biotransformation with Hanford Aquifer Material bioremediation of carbon tetrachloride (CT) at the Hanford site in south- central Washington state. Benzoate in south- central Washington state has been a defense materials pro- duction complex since 1943. Carbon

Semprini, Lewis

94

CRAD, Packaging and Transfer of Hazardous Materials and Materials...  

Office of Environmental Management (EM)

CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

95

Supporting Online Material Materials and Methods  

E-Print Network [OSTI]

1 Supporting Online Material Materials and Methods (15) For all possible earthquake pairs. The parameters chosen for window length, filter bandpass, negative sidelobe identification, and cross-correlation threshold are appropriate for high-frequency earthquakes. In order to remove false positives or poor data

Wolfe, Cecily J.

96

SUPPORTING ONLINE MATERIAL Materials and Methods  

E-Print Network [OSTI]

SUPPORTING ONLINE MATERIAL Materials and Methods Two adult male rhesus monkeys (Macaca mulatta with a head-holding device (S1), scleral search coil for monitoring eye position (S2) and a recording chamber monkeys remain actively engaged in experiments, so precise histological identification of recording sites

Newsome, William

97

Puncture detecting barrier materials  

DOE Patents [OSTI]

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

98

BUILDING MATERIALS RECLAMATION PROGRAM  

SciTech Connect (OSTI)

This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

2010-08-31T23:59:59.000Z

99

Appraisal of a cementitious material for waste disposal: Neutron imaging studies of pore structure and sorptivity  

SciTech Connect (OSTI)

Cementitious materials are conventionally used in conditioning intermediate and low level radioactive waste. In this study a candidate cement-based wasteform has been investigated using neutron imaging to characterise the wasteform for disposal in a repository for radioactive materials. Imaging showed both the pore size distribution and the extent of the cracking that had occurred in the samples. The rate of the water penetration measured both by conventional sorptivity measurements and neutron imaging was greater than in pastes made from Ordinary Portland Cement. The ability of the cracks to distribute the water through the sample in a very short time was also evident. The study highlights the significant potential of neutron imaging in the investigation of cementitious materials. The technique has the advantage of visualising and measuring, non-destructively, material distribution within macroscopic samples and is particularly useful in defining movement of water through the cementitious materials.

McGlinn, Peter J., E-mail: pjm@ansto.gov.a [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Beer, Frikkie C. de [South African Nuclear Energy Corporation (Necsa), Church Street West Extension, Pelindaba, Brits District, Pretoria 0001 (South Africa); Aldridge, Laurence P. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Radebe, Mabuti J.; Nshimirimana, Robert [South African Nuclear Energy Corporation (Necsa), Church Street West Extension, Pelindaba, Brits District, Pretoria 0001 (South Africa); Brew, Daniel R.M.; Payne, Timothy E.; Olufson, Kylie P. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia)

2010-08-15T23:59:59.000Z

100

Studies of material properties under irradiation at BNL Linear Isotope Producer (BLIP)  

SciTech Connect (OSTI)

Effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been under study using the Brookhaven National Laboratory's (BNL) 200 MeV Linac. The primary objectives of the study that includes a wide array of materials and alloys ranging between low and high-Z are to (a) observe changes in physio-mechanical properties which are important in maintaining high-power target functionality, (b) identify possible limits of proton flux or fluence above which certain material seize to maintain integrity, (c) study the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) correlate radiation damage effects of different species such as energetic protons and neutrons on materials by utilizing reactor and particle accelerator experience data. These objectives are specifically being addressed in the latest material irradiation study linked to the Long Baseline Neutrino Experiment (LBNE). Observations on irradiation effects on materials considered for high-power targets and other beam intercepting elements, such as collimators, from past studies and preliminary observations of the ongoing LBNE study are presented in this paper.

Simos, N.; Kirk, H.; Ludewig, H.; /Brookhaven; Mokhov, N.; Hurh, P.; Misek, J.; /Fermilab

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FURTHERING THE RECLAIMED MATERIALS EXPERIENCE  

E-Print Network [OSTI]

A comprehensive study of the reclaimed materials industry and ways it could be improved from a management standpoint by working through a Design Management problem solving approach. Project Objectives: To improve the sourcing of reclaimed materials...

Bartels, Robert A.

2012-08-31T23:59:59.000Z

102

Joining of dissimilar materials  

DOE Patents [OSTI]

A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

2012-10-16T23:59:59.000Z

103

Experimental study to determine basic performance characteristics of recycled glass as beach nourishment material  

E-Print Network [OSTI]

EXPERIMENTAL STUDY TO DFTERMINE BASIC PERI'ORMANCE CHARACTFRISTICS OI RECYCLED GLASS AS BEACH NOLiRISHMENT MATERIAL A Thesis by OSCAR CRUZ CASTRO Submined to the Office of Graduate Studies of Texas AkM University in partial I ulfillment... of the requirements for the degree ot MASTER OF SCIENCF. May 2003 Major Subject: Ocean Engineering EXPERIMENTAL STUDY TO DFTERMINE BASIC PERFORMANCE CHARACTERISTICS OF RECYCLED OLASS AS BEACH NOI JRISHMENT MATERIAL A Thesis by OSCAR CRUZ CASTRO Submitted...

Cruz Castro, Oscar

2003-01-01T23:59:59.000Z

104

Materials for breeding blankets  

SciTech Connect (OSTI)

There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

Mattas, R.F.; Billone, M.C.

1995-09-01T23:59:59.000Z

105

A parametric study of thermomechanical behavior of functionally gradient materials  

E-Print Network [OSTI]

(FSDT) that accounts for the transverse shear strains and the rotations, coupled with a three dimensional heat conduction equation is formulated for a functionally gradient plate. Both problems are studied by varying the volume fraction of a ceramic...

Chin, Che-Doong

1996-01-01T23:59:59.000Z

106

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy Conversion Devices  

E-Print Network [OSTI]

Studies of Perovskite Materials for High-Performance Storage Media, Piezoelectric, and Solar Energy of applications, such as sensing, data storage, and energy conversion. For example, perovskite solid solutions

Rappe, Andrew M.

107

Phylum Arthropods Study Material: Demodex folliculorum. 2 slides: section in situ, whole mount.  

E-Print Network [OSTI]

Phylum Arthropods Study Material: Demodex folliculorum. 2 slides: section in situ, whole mount. Sarcoptes scabei. 1 slide, wholemount. Dermanyssus gallinae. 1 slide, wholenount. Argas persicus. 1 slide, wholemount. Dermacentor andersoni. 1 slide, wholemount. Amblyomma americana. 1 slide, wholemount

Schluter, Dolph

108

Computational studies of hydrogen storage materials and the development of related methods  

E-Print Network [OSTI]

Computational methods, including density functional theory and the cluster expansion formalism, are used to study materials for hydrogen storage. The storage of molecular hydrogen in the metal-organic framework with formula ...

Mueller, Timothy Keith

2007-01-01T23:59:59.000Z

109

NMR imaging of materials  

SciTech Connect (OSTI)

Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

1989-01-01T23:59:59.000Z

110

A study of the validity of early material balance estimates in petroleum reservoirs  

E-Print Network [OSTI]

A STUDY OF THE VALIDITY OF EARLY MATERIAL BALANCE ESTIMATES IN PETROLEUM RESERVOIRS A Thesis by CHRISTIAN ANZE GALINDO Submitted to the Graduate College of the Texas ARM University in partia4 fulfillment of the requirements for the degree... of MASTER OF SCIENCE January 1964 Major Subject: Petroleum Engineering A STUDY OF THE VALIDITY OF EARLY MATERIAL BALANCE ESTIMATES IN PETROLEUM RESERVOIRS A Thesis by CHRISTIAN ANZE GALINDO App o ed as to style nd content by. Chairman of Committee...

Galindo, Christian Anze

1964-01-01T23:59:59.000Z

111

Nanocomposites as thermoelectric materials  

E-Print Network [OSTI]

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

112

Earth-Abundant Materials  

Broader source: Energy.gov [DOE]

DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. Below are a list...

113

Nanostructured composite reinforced material  

DOE Patents [OSTI]

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

114

Institute for Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

115

Materials Science & Engineering  

E-Print Network [OSTI]

and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

116

Geopolymer Sealing Materials  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

117

Instructions and Materials  

Broader source: Energy.gov [DOE]

The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

118

Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils  

SciTech Connect (OSTI)

This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex.

Heiser, J.; Fuhrmann, M. [Brookhaven National Lab., Upton, NY (United States)

1997-09-01T23:59:59.000Z

119

Advanced neutron absorber materials  

DOE Patents [OSTI]

A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

120

Magnetocaloric Materials Stinus Jeppesen  

E-Print Network [OSTI]

Magnetocaloric Materials Stinus Jeppesen Risø-PhD-43(EN) Risø National Laboratory for Sustainable Jeppesen Title: Magnetocaloric Materials Division: Fuel Cells and Solid State Chemistry Division Risø.D. degree at The University of Copenhagen Abstract: New and improved magnetocaloric materials are one

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radioactive Materials License Commitments  

E-Print Network [OSTI]

Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

122

Metallurgical study of duplex stainless steel CD4Mcu Casting Material for Purex type nozzles  

SciTech Connect (OSTI)

The studies presented in this document evaluate the metallurgy of Cast Grade Alloys CD4MCu and CD4MCuN (ASTM A890, Grades 1A and 1B). CD4MCu has been used as a Purex-Type nozzle casting material since the early 1960's, when it was a new and exotic material. The current metallurgical knowledge base shows addition of nitrogen to the alloy is very beneficial (CD4MCuN), and rapid cooling (water quenching) is essential to achieving the sought-after material properties.

LESHIKAR, G.A.

2003-05-08T23:59:59.000Z

123

Material scarcity from the perspective of manufacturing firms : case studies of platinum and cobalt  

E-Print Network [OSTI]

Many agree that materials availability, especially non-renewable materials, is an issue of global concern. However, the implications and strategy options for manufacturing firms are not obvious. Manufacturers select materials ...

Alonso, Elisa (Elisa Yun Han)

2010-01-01T23:59:59.000Z

124

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

as cathode materials for Li-ion battery. Physica B-CondensedHigh Energy High Power Li-ion Battery Cathode Materials AHigh Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

125

Feasibility study on consolidation of Fernald Environmental Management Project depleted uranium materials  

SciTech Connect (OSTI)

In 1991, the DOE made a decision to close the FMPC located in Fernald, Ohio, and end its production mission. The site was renamed FEMP to reflect Fernald`s mission change from uranium production to environmental restoration. As a result of this change, the inventory of strategic uranium materials maintained at Fernald by DOE DP will need to be relocated to other DOE sites. Although considered a liability to the Fernald Plant due to its current D and D mission, the FEMP DU represents a potentially valuable DOE resource. Recognizing its value, it may be important for the DOE to consolidate the material at one site and place it in a safe long-term storage condition until a future DOE programmatic requirement materializes. In August 1995, the DOE Office of Nuclear Weapons Management requested, Lockheed Martin Energy Systems (LMES) to assess the feasibility of consolidating the FEMP DU materials at the Oak Ridge Reservation (ORR). This feasibility study examines various phases associated with the consolidation of the FEMP DU at the ORR. If useful short-term applications for the DU fail to materialize, then long-term storage (up to 50 years) would need to be provided. Phases examined in this report include DU material value; potential uses; sampling; packaging and transportation; material control and accountability; environmental, health and safety issues; storage; project management; noneconomic factors; schedule; and cost.

NONE

1995-11-30T23:59:59.000Z

126

Studies of perovskite materials for high-performance storage media, piezoelectric, and solar energy conversion devices  

E-Print Network [OSTI]

Perovskite materials are crucial in a variety of important technological applications. Using quantum-mechanical simulations and accurate molecular dynamics models, we have computationally investigated ferroelectric materials ...

Nelson, Keith Adam

127

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

of cathode materials for lithium batteries guided by first-facing rechargeable lithium batteries. Nature, 2001. 414(M.S. Whittingham, Lithium batteries and cathode materials.

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

128

Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules  

SciTech Connect (OSTI)

Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

2011-10-01T23:59:59.000Z

129

Study of metal dusting phenomenon and development of materials resistant to metal dusting.  

SciTech Connect (OSTI)

The deposition of carbon from carbonaceous gaseous environments is prevalent in many chemical and petrochemical processes such as reforming systems, syngas production systems, iron reduction plants, and others. One of the major consequences of carbon deposition is the degradation of structural materials by a phenomenon known as metal dusting. There are two major issues of importance in metal dusting. First is formation of carbon and subsequent deposition of carbon on metallic materials. Second is the initiation of metal dusting degradation of the alloy. Details are presented on a research program that is underway at Argonne National Laboratory to study the metal dusting phenomenon from a fundamental scientific base involving laboratory research in simulated process conditions and field testing of materials in actual process environments. The project has participation from the US chemical industry, alloy manufacturers, and the Materials Technology Institute, which serves the chemical process industry.

Natesan, K.

2002-03-13T23:59:59.000Z

130

Materials Science and Materials Chemistry for Large Scale Electrochemi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

131

Montani, Kohn, Smith and Schultz (2006), Supplemental Material Supplemental Material  

E-Print Network [OSTI]

Montani, Kohn, Smith and Schultz (2006), Supplemental Material 1 Supplemental Material A. Entropy, Kohn, Smith and Schultz (2006), Supplemental Material 2 occupied, it is ambiguous whether

Smith, Matthew A.

132

"Developing terahertz spectroscopy to be used for the study of bio-materials."  

E-Print Network [OSTI]

and photonic materials and devices including uncooled photodetectors, photovoltaics and light-emitting diodes

Acton, Scott

133

A study of learning performance of e-learning materials design with knowledge maps  

E-Print Network [OSTI]

Information Security Project ING Information Security Project Microsoft e-learning Materials Project Microsoft e-learning Materials Project Knowledge MapsKnowledge Maps 66 Materials and Methods for Information-based e-learning materials 1616 Conclusion · Research topics elicited from projects. · Extended

Ouhyoung, Ming

134

Study of brittle destruction and erosion mechanisms of carbon-based materials during plasma instabilities  

E-Print Network [OSTI]

-based materials; Disruption; Brittle destruction 1. Introduction Carbon-based materials such as high-thermal. The C±C composites, as materials for high-heat-¯ux components, have demonstrated excellent resistance, and surface modi®cations of the plasma-facing materials. Experimental work is being carried out at the high

Harilal, S. S.

135

SMERDON ET AL.: AUXILIARY MATERIAL Auxiliary Material  

E-Print Network [OSTI]

run [Ammann et al., 2007; hereinafter CCSM] and the GKSS ECHO-g ERIK2 run [González-Rouco et al., 2006; hereinafter ECHO-g]. The annual means of the modeled temperature fields are interpolated to 5° latitude;SMERDON ET AL.: AUXILIARY MATERIAL 2 ECHO-g simulations, respectively. The above conventions

Smerdon, Jason E.

136

Absolute nuclear material assay  

DOE Patents [OSTI]

A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

2012-05-15T23:59:59.000Z

137

Composite of refractory material  

DOE Patents [OSTI]

A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

Holcombe, C.E.; Morrow, M.S.

1994-07-19T23:59:59.000Z

138

Radiation Safety Training Materials  

Broader source: Energy.gov [DOE]

The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

139

Materials Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

generation and detection, this approach naturally lends itself to in situ monitoring of material property evolution. The temporal laser pulse length and the corresponding...

140

Webinar: Materials Genome Initative  

Broader source: Energy.gov [DOE]

Audio recording and text version of the Fuel Cell Technologies Office webinar titled "Materials Genome Initiative," originally presented on December 2, 2014.

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Composite of refractory material  

DOE Patents [OSTI]

A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

1994-01-01T23:59:59.000Z

142

Geopolymer Sealing Materials  

Broader source: Energy.gov (indexed) [DOE]

Geopolymer Sealing Materials PI : Dr. Tomas Butcher Presenter: Dr. Toshi Sugama Brookhaven National Laboratory May 18, 2010 This presentation does not contain any proprietary...

143

Materials for MA 182.  

E-Print Network [OSTI]

Materials for MA 182. INSTRUCTOR: Richard Penney. Office: MATH 822: Telephone: 494-1968: e-mail: rcp@math.purdue.edu: Office Hours: Mon, Tu, Fri,

144

Layered Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

145

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

146

Thermoelectric materials having porosity  

DOE Patents [OSTI]

A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

2014-08-05T23:59:59.000Z

147

Management of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

2009-08-17T23:59:59.000Z

148

Radioactive Material Transportation Practices  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

2002-09-23T23:59:59.000Z

149

Hazardous Material Security (Maryland)  

Broader source: Energy.gov [DOE]

All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

150

Selection and durability of seal materials for a bedded salt repository: preliminary studies  

SciTech Connect (OSTI)

This report details preliminary results of both experimental and theoretical studies of cementitious seal materials for use in a proposed nuclear waste repository in bedded salt. Effects of changes in bulk composition and environment upon phase stability and physical/mechanical properties have been evaluated for more than 25 formulations. Bonding and interfacial characteristics of the region between host rock and seal material or concrete aggregate and cementitious matrix for selected formulations have been studied. Compatibilities of clays and zeolites in brines typical of the SE New Mexico region have been investigated, and their stabilities reviewed. Results of these studies have led to the conclusion that cementitious materials can be formulated which are compatible with the major rock types in a bedded salt repository environment. Strengths are more than adequate, permeabilities are consistently very low, and elastic moduli generally increase only very slightly with time. Seal formulation guidelines and recommendations for present and future work are presented. 73 references, 25 figures, 61 tables.

Roy, D.M.; Grutzeck, M.W.; Wakeley, L.D.

1983-11-01T23:59:59.000Z

151

Durability of Materials in a Stress-Response Framework: Acrylic Materials for Photovoltaic Systems  

E-Print Network [OSTI]

Durability of Materials in a Stress-Response Framework: Acrylic Materials for Photovoltaic Systems materials for enhanced photovoltaic (PV) performance, it is critical to have quantitative knowledge developed for solar radiation durability studies of solar and environmentally exposed photovoltaic materials

Rollins, Andrew M.

152

Vibrational Damping of Composite Materials  

E-Print Network [OSTI]

Smart Structures and Materials, 3989:531- 538. Biggerstaff,2002. Electroviscoelastic Materials As Active Dampers,Smart Structures and Materials, 4695:345-350. Biggerstaff,

Biggerstaff, Janet M.

2006-01-01T23:59:59.000Z

153

Deformation Mechanisms in Nanocrystalline Materials  

E-Print Network [OSTI]

2010 METALLURGICAL AND MATERIALS TRANSACTIONS A 47. F.A.12. METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 41A,of Slip: Progress in Materials Science, Pergamon Press,

Mohamed, Farghalli A.; Yang, Heather

2010-01-01T23:59:59.000Z

154

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

155

ynamic fracture occupies a peculiar niche in the study of materials. One of  

E-Print Network [OSTI]

D ynamic fracture occupies a peculiar niche in the study of materials. One of the first things, scientists and engineers studying fracture mechanics focus on determining the critical con- ditions, created, and picoseconds to microseconds, so as to compare theory and experiment for brittle fracture. Strip fracture One

Texas at Austin. University of

156

Geochemistry and materials studies in support of the Magma Energy Extraction Program  

SciTech Connect (OSTI)

Geochemistry and materials studies are being performed in support of the Magma Energy Extraction Program. The scope of the studies is dictated by the sites under consideration and the designs of the drilling and energy extraction systems. The work has been largely restricted to characterizing magmatic environments at sites of interest and testing engineering materials in laboratory simulated rhyolite magmatic environments. The behavior of 17 commercially available materials has been examined at magmatic conditions. Analysis of reaction products reveal that oxidation, and not sulfidation, is the main corrosion problem for most alloys in rhyolite, and that reaction with other magmatic components is limited. Considerations of corrosion resistance, high-temperature strength, and cost indicate nickel-base superalloys offer the most promise as candidates for use in rhyolitic magma.

Westrich, H.R.; Weirick, L.J.

1986-01-01T23:59:59.000Z

157

MULTISCALE PHENOMENA IN MATERIALS  

SciTech Connect (OSTI)

This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

A. BISHOP

2000-09-01T23:59:59.000Z

158

Impacted material placement plans  

SciTech Connect (OSTI)

Impacted material placement plans (IMPP) are documents identifying the essential elements in placing remediation wastes into disposal facilities. Remediation wastes or impacted material(s) are those components used in the construction of the disposal facility exclusive of the liners and caps. The components might include soils, concrete, rubble, debris, and other regulatory approved materials. The IMPP provides the details necessary for interested parties to understand the management and construction practices at the disposal facility. The IMPP should identify the regulatory requirements from applicable DOE Orders, the ROD(s) (where a part of a CERCLA remedy), closure plans, or any other relevant agreements or regulations. Also, how the impacted material will be tracked should be described. Finally, detailed descriptions of what will be placed and how it will be placed should be included. The placement of impacted material into approved on-site disposal facilities (OSDF) is an integral part of gaining regulatory approval. To obtain this approval, a detailed plan (Impacted Material Placement Plan [IMPP]) was developed for the Fernald OSDF. The IMPP provides detailed information for the DOE, site generators, the stakeholders, regulatory community, and the construction subcontractor placing various types of impacted material within the disposal facility.

Hickey, M.J.

1997-01-29T23:59:59.000Z

159

Nanocrystalline heterojunction materials  

DOE Patents [OSTI]

Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

2003-07-15T23:59:59.000Z

160

Materials for Information Technology  

E-Print Network [OSTI]

on thin-film and nano-scale materials. The papers include content ranging from materials-related aspects for these fascinating and useful mate- rials. /jr Adv. Eng. Mater. 2009, 11, Issue 4 Colloidal Hollow Spheres Colloidal hollow spheres of conduct- ing polymers such as polypyrrole (PPy) or polyaniline (PAni) are produced

Tang, Ben Zhong

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nanocrystalline Heterojunction Materials  

DOE Patents [OSTI]

Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

2004-02-03T23:59:59.000Z

162

Materials Science and Technology Mechanical and Materials Engineering  

E-Print Network [OSTI]

Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

Birmingham, University of

163

Materials of Gasification  

SciTech Connect (OSTI)

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15T23:59:59.000Z

164

An Experimental Study of Deformation and Fracture of a Nanostructured Metallic Material  

E-Print Network [OSTI]

[6]. Moreover, UFG SnO2 has been used in manufacturing gas sensors which are capable to detect carbon monoxide [8]. In addition, UFG of pure titanium has been used in dental implants [9]. Because the majority of the UFG materials are metals... and the fracture mechanisms. The material chosen for this study is Interstitial Free (IF) steel. IF steel is a vacuum decarburized low-carbon steel with extra-low carbon content, nominally 0.005%, in which the residual carbon is combined with niobium, titanium...

Abdel Al, Nisrin Rizek

2011-02-22T23:59:59.000Z

165

Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials  

SciTech Connect (OSTI)

The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

Gruner, Sol

2012-01-20T23:59:59.000Z

166

Catalytic study of SOFC electrode materials in engine exhaust gas Pauline Briaulta  

E-Print Network [OSTI]

1 Catalytic study of SOFC electrode materials in engine exhaust gas atmosphere Pauline Briaulta. An innovative application of this system would be to recover energy from exhaust gas of a thermal engine in a mixture of hydrocarbons (propane, propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water

Paris-Sud XI, Université de

167

Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications q  

E-Print Network [OSTI]

- ments of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bondingExperimental studies of lithium-based surface chemistry for fusion plasma-facing materials.65.y a b s t r a c t Lithium has enhanced the operational performance of fusion devices such as: TFTR

Harilal, S. S.

168

The superconducting properties of two classes of iron-based materials have been studied in  

E-Print Network [OSTI]

The superconducting properties of two classes of iron-based materials have been studied in high Jc define the applications limit of any superconductor. We found that Tc and Hc2 of Ba1-xKxFe2As2 can. 98, 042509 (2011) High field performances in iron-based superconductors Gregory S. Boebinger

Weston, Ken

169

III.C. 2. Plastics and Competing Materials by 1985: A Delphi Forecasting Study  

E-Print Network [OSTI]

189 III.C. 2. Plastics and Competing Materials by 1985: A Delphi Forecasting Study SELWYN ENZER The application of Delphi to the identification and assessment of possible developments in plastics and competing. The ability to tailor-make plastics for various applications, enhanced by growth in understanding of organic

Bieber, Michael

170

Theoretical study of gas heated in a porous material subjected to a concentrated solar radiation (*)  

E-Print Network [OSTI]

W solar furnace of Solar Energy Laboratory in Odeillo (France). Revue Phys. Appl. 15 (1980) 423-426 MARS423 Theoretical study of gas heated in a porous material subjected to a concentrated solar exposed to the solar radiation. These quantities may be expressed in any set consistent units. 1

Paris-Sud XI, Université de

171

Structural Studies of Potential 1 eV Solar Cell Materials  

SciTech Connect (OSTI)

Structural studies using transmission electron microscopy have been made on 1-eV band-gap materials, lattice-matched to GaAs and Ge substrates, grown by metal-organic vapor-phase epitaxy for use in multijunction, high-efficiency solar cells.

Norman, A.; Al-Jassim, M.; Friedman, D.; Geisz, J.; Olson, J.; Kurtz, S.

2000-01-01T23:59:59.000Z

172

Degrees in Metallurgy and Materials  

E-Print Network [OSTI]

Degrees in Metallurgy and Materials Course outline School of Metallurgy and Materials Materials us? Dr Alessandro Mottura Undergraduate Admissions Tutor for Metallurgy and Materials What difference will you make? #12;Degrees in Metallurgy and Materials Understanding the properties of new materials

Birmingham, University of

173

Method for studying a sample of material using a heavy ion induced mass spectrometer source  

DOE Patents [OSTI]

A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

Fries, David P. (St. Petersburg, FL); Browning, James F. (Palm Harbour, FL)

1999-01-01T23:59:59.000Z

174

Characterization Studies of Materials and Devices used for Electrochemical Energy Storage  

E-Print Network [OSTI]

double layer capacitor (EDLC) and the high energy densityelectrolyte. A high performance EDLC is a material with high

Membreno, Daniel Eduardo

2014-01-01T23:59:59.000Z

175

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1989-05-23T23:59:59.000Z

176

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1988-06-20T23:59:59.000Z

177

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

178

Critical Materials Hub  

Broader source: Energy.gov [DOE]

Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metalsdysprosium, neodymium, terbium, europium, and yttriumcould affect clean energy technology deployment in the coming years.1, 2

179

ATS materials/manufacturing  

SciTech Connect (OSTI)

The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

1997-11-01T23:59:59.000Z

180

Fissile material detector  

DOE Patents [OSTI]

A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Rapidly Renewable Materials  

E-Print Network [OSTI]

of renewable resources. Renewable resources, whether it is energy or material, are the ones that can be regenerated within a short period time. Rapidly Renewable Materials (RRMs) are examples of such resources into Rapidly Renewable Materials: Bamboo and Cotton Mohammad Hassan Jafarian Thanet (Vic) Ying-udomrat Xiao

182

Materials at LANL  

SciTech Connect (OSTI)

Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

Taylor, Antoinette J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

183

Case studies of sealing methods and materials used in the salt and potash mining industries  

SciTech Connect (OSTI)

Sealing methods and materials currently used in salt and potash industries were surveyed to determine if systems analogous to the shaft seal design proposed for the Waste Isolation Pilot Plant (WIPP) exist. Emphasis was first given to concrete and then expanded to include other materials. Representative case studies could provide useful design, construction, and performance information for development of the WIPP shaft seal system design. This report contains a summary of engineering and construction details of various sealing methods used by mining industries for bulkheads and shaft liners. Industrial experience, as determined from site visits and literature reviews, provides few examples of bulkheads built in salt and potash mines for control of water. Sealing experiences representing site-specific conditions often have little engineering design to back up the methods employed and even less quantitative evaluation of seal performance. Cases examined include successes and failures, and both contribute to a database of experiences. Mass salt-saturated concrete placement under ground was accomplished under several varied conditions. Information derived from this database has been used to assess the performance of concrete as a seal material. Concrete appears to be a robust material with successes in several case studies. 42 refs.

Eyermann, T.J.; Sambeek, L.L. Van [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.

1995-11-01T23:59:59.000Z

184

The study of material accountancy procedures for uranium in a whole nuclear fuel cycle  

SciTech Connect (OSTI)

Material accountancy procedures for uranium under a whole nuclear fuel cycle were studied by taking into consideration the material accountancy capability associated with realistic measurement uncertainties. The significant quantity used by the International Atomic Energy Agency (IAEA) for low-enriched uranium is 75 kg U-235 contained. A loss of U-235 contained in uranium can be detected by either of the following two procedures: one is a traditional U-235 isotope balance, and the other is a total uranium element balance. Facility types studied in this paper were UF6 conversion, gas centrifuge uranium enrichment, fuel fabrication, reprocessing, plutonium conversion, and MOX fuel production in Japan, where recycled uranium is processed in addition to natural uranium. It was found that the material accountancy capability of a total uranium element balance was almost always higher than that of a U-235 isotope balance under normal accuracy of weight, concentration, and enrichment measurements. Changing from the traditional U-235 isotope balance to the total uranium element balance for these facilities would lead to a gain of U-235 loss detection capability through material accountancy and to a reduction in the required resources of both the IAEA and operators.

Nakano, Hiromasa; Akiba, Mitsunori [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

1995-07-01T23:59:59.000Z

185

Dynamical Study of Guest-Host Orientational Interaction in LiquidCrystalline Materials  

SciTech Connect (OSTI)

Guest-host interaction has long been a subject of interest in many disciplines. Emphasis is often on how a small amount of guest substance could significantly affect the properties of a host material. This thesis describe our work in studying a guest-host effect where dye-doping of liquid crystalline materials greatly enhances the optical Kerr nonlinearity of the material. The dye molecules, upon excitation and via intermolecular interaction, provides an extra torque to reorient the host molecules, leading to the enhanced optical Kerr nonlinearity. We carried out a comprehensive study on the dynamics of the photoexcited dye-doped liquid crystalline medium. Using various experimental techniques, we separately characterized the dynamical responses of the relevant molecular species present in the medium following photo-excitation, and thus were able to follow the transient process in which photo-excitation of the dye molecules exert through guest-host interaction a net torque on the host LC material, leading to the observed enhanced molecular reorientation. We also observed for the first time the enhanced reorientation in a pure liquid crystal system, where the guest population is created through photoexcitation of the host molecules themselves. Experimental results agree quantitatively with the time-dependent theory based on a mean-field model of the guest-host interaction.

Truong, Thai Viet

2005-12-20T23:59:59.000Z

186

Materials Science & Engineering  

E-Print Network [OSTI]

. Aucierllo has edited 19 books, published about 450 articles, holds 14 patents, and has organized, chaired and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry

187

Nuclear Material Packaging Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

2008-03-07T23:59:59.000Z

188

Mesoporous carbon materials  

DOE Patents [OSTI]

The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

Dai, Sheng; Wang, Xiqing

2013-08-20T23:59:59.000Z

189

Critical Materials Workshop  

Broader source: Energy.gov [DOE]

AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

190

Management of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

1994-05-26T23:59:59.000Z

191

CRITICAL MATERIALS INSTITUTE PROJECTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INL Recovery of Critical Materials from Consumer Devices 3 3-2 3.2.6 McCall, Scott LLNL Additive Manufacturing of Permanent Magnets 2 2-1 2.1.2 McGuire, Michael ORNL...

192

CRITICAL MATERIALS INSTITUTE PROJECTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INL National Technology Roadmap for Critical Materials 4 4-3 4.3.3 McCall, Scott LLNL Additive Manufacturing of Permanent Magnets 2 2-1 2.1.2 Payne, Steve LLNL New Efficient...

193

MATERIALS SCIENCE HEALTHCARE POLICY  

E-Print Network [OSTI]

for Polymer Research are paving the way to optimizing organic substances for use in solar cells, light-emitting diodes and memory chips, and are using molecular materials to develop electronic components

Falge, Eva

194

Electrically conductive material  

DOE Patents [OSTI]

An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

1993-01-01T23:59:59.000Z

195

Electrically conductive material  

DOE Patents [OSTI]

An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

1993-09-07T23:59:59.000Z

196

Management of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

2009-08-17T23:59:59.000Z

197

Nuclear material operations manual  

SciTech Connect (OSTI)

This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

Tyler, R.P.

1981-02-01T23:59:59.000Z

198

Reversible hydrogen storage materials  

DOE Patents [OSTI]

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

199

Mesoporous carbon materials  

DOE Patents [OSTI]

The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

2012-02-14T23:59:59.000Z

200

Nano-composite materials  

DOE Patents [OSTI]

Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

2010-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biomimetic hydrogel materials  

DOE Patents [OSTI]

Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

2000-01-01T23:59:59.000Z

202

Biomimetic Hydrogel Materials  

DOE Patents [OSTI]

Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

2003-04-22T23:59:59.000Z

203

Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials  

SciTech Connect (OSTI)

This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials research. Because of the large amount of work accomplished, a diverse class of materials covered and the desire for an easier reporting process, this report will list six categories (A to F) of major accomplishments and findings under the following headings with references to the published papers under DOE support. These six categories obviously have heavy overlaps. A complete list of published papers follows the brief description on each category. Each paper also indicates to which of the six categories the main accomplishment it belongs to. A. Electronic structure of complex and novel crystals B. Impurities, surfaces, interfaces and microstructures in ceramics C. Structures and properties of complex bioceramics D. Soft condensed matters E. Spectroscopic characterizations, XANES and ELNES spectroscopy F. Large-scale simulations

Ching, Wai-Yim

2012-01-14T23:59:59.000Z

204

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

xi Material CharacterizationThermoelectric Materials . . . . . . . . Graphene-Like5 Nanostructured Materials for Electrochemical Energy

Khan, Javed Miller

2012-01-01T23:59:59.000Z

205

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents [OSTI]

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

1993-01-01T23:59:59.000Z

206

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents [OSTI]

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, D.K.; Burrows, R.W.

1993-04-13T23:59:59.000Z

207

Porous material neutron detector  

DOE Patents [OSTI]

A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

2012-04-10T23:59:59.000Z

208

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

2005-07-12T23:59:59.000Z

209

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

2004-11-23T23:59:59.000Z

210

Apparatus for dispensing material  

DOE Patents [OSTI]

An apparatus capable of dispensing drops of material with volumes on the order of zeptoliters is described. In some embodiments of the inventive pipette the size of the droplets so dispensed is determined by the size of a hole, or channel, through a carbon shell encapsulating a reservoir that contains material to be dispensed. The channel may be formed by irradiation with an electron beam or other high-energy beam capable of focusing to a spot size less than about 5 nanometers. In some embodiments, the dispensed droplet remains attached to the pipette by a small thread of material, an atomic scale meniscus, forming a virtually free-standing droplet. In some embodiments the droplet may wet the pipette tip and take on attributes of supported drops. Methods for fabricating and using the pipette are also described.

Sutter, Peter Werner (Beach, NY); Sutter, Eli Anguelova (Beach, NY)

2011-07-05T23:59:59.000Z

211

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

212

Optimized nanoporous materials.  

SciTech Connect (OSTI)

Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

Braun, Paul V. (University of Illinois at Urbana-Champaign, Urbana, IL); Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J. (North Carolina State University, Raleigh, NC); Pierson, Bonnie E. (North Carolina State University, Raleigh, NC); Gittard, Shaun D. (North Carolina State University, Raleigh, NC); Robinson, David B.; Ham, Sung-Kyoung (Korea Basic Science Institute, Gangneung, South Korea); Chae, Weon-Sik (Korea Basic Science Institute, Gangneung, South Korea); Gough, Dara V. (University of Illinois at Urbana-Champaign, Urbana, IL); Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

2009-09-01T23:59:59.000Z

213

Packaging and Transfer of Hazardous Materials and Materials of...  

Broader source: Energy.gov (indexed) [DOE]

PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSANevada Site Office Facility Representative Division Performance...

214

Experimental Study of Multi-type Macromolecule Porosity Moisture-Conditioned Material  

E-Print Network [OSTI]

from figure that humidity relocation process of the porous moisture conditioned materials similar to the principles of humidity absorbing and releasing performance, when outside water vapour pressure less than sub-surface water vapour hours... material pressure, the release of material outward water, and bring a humidity removal because of capillarity in porous layer, porous layer absorb moisture from the wet floor, evaporation continuing (Fig2a). When outside water vapour pressure greater...

Huang, X.; Fan, Y.; Di, Y.

2006-01-01T23:59:59.000Z

215

MATERIAL CONTROL ACCOUNTING INMM  

SciTech Connect (OSTI)

Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

Hasty, T.

2009-06-14T23:59:59.000Z

216

Optical limiting materials  

DOE Patents [OSTI]

Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

1998-01-01T23:59:59.000Z

217

Materials for geothermal production  

SciTech Connect (OSTI)

Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

Kukacka, L.E.

1992-01-01T23:59:59.000Z

218

Materials Under Extremes | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials Porous Materials

219

Materials at the Mesoscale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract ResearchMaterials andMaterials

220

Materials for the Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract ResearchMaterialsMaterials for

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Container for radioactive materials  

DOE Patents [OSTI]

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

222

Theoretical and experimental study of solid state complex borohydride hydrogen storage materials.  

E-Print Network [OSTI]

??Materials that are light weight, low cost and have high hydrogen storage capacity are essential for on-board vehicular applications. Some reversible complex hydrides are alanates (more)

Choudhury, Pabitra

2009-01-01T23:59:59.000Z

223

Materials science and engineering mse.mcmaster.ca graduate studies at the department of  

E-Print Network [OSTI]

· The Steel Research Centre · The Centre for Automotive Materials and Corrosion. With its reputation Inc., NY Nigerian Oil Co. Nors

Thompson, Michael

224

Short courses in Composite Materials  

E-Print Network [OSTI]

Short courses in Composite Materials Overview The ability to tailor the material properties used. Combining the adaptability of composites with clear weight savings, whilst tailoring materials properties Airbus and Glyndr University, the Advanced Composites Training and Development Centre educates current

Davies, John N.

225

Supercapacitors specialities - Materials review  

SciTech Connect (OSTI)

The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.

Obreja, Vasile V. N. [National Research and Development Institute for Microtechnologies (IMT-Bucuresti), Bucharest, 126A Erou Iancu Nicolae Street, 077190 (Romania)

2014-06-16T23:59:59.000Z

226

Vibrational Damping of Composite Materials  

E-Print Network [OSTI]

the damping material and epoxy resin. The surface of theinfiltration of the epoxy resin into the damping materialthe damping material and resin (epoxy) is occurring and is

Biggerstaff, Janet M.

2006-01-01T23:59:59.000Z

227

Materials and Manufacturing  

E-Print Network [OSTI]

Environmental Assurance Anne Meinhold Unprecedented Accomplishments in the Use of Aluminum-Lithium Alloy Preston is the solution. Other times, the design must accommodate the limitations of materials properties. The design requirements, and written procedures. Nondestructive testing depends on incident or input energy that interacts

228

Supplemental Material Supplemental methods  

E-Print Network [OSTI]

Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2009 #12;Computing counter and % ID/g calculated as (counts/weight tissue)/ total counts injected. Mass Spectrometry. To extract ACPPs to obtain electrospray (ESI) mass spectra, a solution of 9M guanidinium chloride (Gu

Tsien, Roger Y.

229

Materials Safety Data Sheets  

E-Print Network [OSTI]

Materials Safety Data Sheets (MSDS) MSDS contain chemical hazard information about substances compounds and solvents. MSDS data can be accessed from the following URLs http://www.ehs.umass.edu/ http://www.chem.umass.edu/Safety the "Important Safety Sites for the University" link to reach a variety of safety related information, including

Schweik, Charles M.

230

Sustainable Materials Course Outline  

E-Print Network [OSTI]

, embodied energy; environmental footprint, waste recycling and pollution minimization, life cycle assessment Science and Engineering (Building E8) Phone: 9385 5025 j.q.zhang@unsw.edu.au Consultation hours: by appointment To be advised School of Materials Science and Engineering (Building E8) Consultation hours

New South Wales, University of

231

Action Plan Materials Science  

E-Print Network [OSTI]

sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

Fitze, Patrick

232

Particle Suspension Mechanisms - Supplemental Material  

SciTech Connect (OSTI)

This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

Dillon, M B

2011-03-03T23:59:59.000Z

233

Doped Graphene as a Material for Oxygen Reduction Reaction in Hydrogen Fuel Cells: A Computational Study  

E-Print Network [OSTI]

Doped Graphene as a Material for Oxygen Reduction Reaction in Hydrogen Fuel Cells: A Computational be used to make an efficient and relatively inexpensive graphene-based material for hydrogen fuel cells fuel cells for oxygen reduction at the cathode. In an attempt to find a cheap yet efficient catalyst

Krasheninnikov, Arkady V.

234

From Smart Materials to Cognitive Materials Requirements and Challenges  

E-Print Network [OSTI]

From Smart Materials to Cognitive Materials ­ Requirements and Challenges Lutz Frommberger (lutz construction, production engineer- ing, or wearable computing. Smart and sensorial materials provide a variety this application than the material itself that can be considered being "smart". In this contribution, we proceed

Bremen, Universität

235

Graphene: Materially Better Carbon  

SciTech Connect (OSTI)

Graphene, a single atomthick plane of carbon atoms arranged in a honeycomb lattice, has captivated the attention of physicists, materials scientists, and engineers alike over the five years following its experimental isolation. Graphene is a fundamentally new type of electronic material whose electrons are strictly confined to a two-dimensional plane and exhibit properties akin to those of ultrarelativistic particles. Graphene's two-dimensional form suggests compatibility with conventional wafer processing technology. Extraordinary physical properties, including exceedingly high charge carrier mobility, current-carrying capacity, mechanical strength, and thermal conductivity, make it an enticing candidate for new electronic technologies both within and beyond complementary metal oxide semiconductors (CMOS). Immediate graphene applications include high-speed analog electronics and highly conductive, flexible, transparent thin films for displays and optoelectronics. Currently, much graphene research is focused on generating and tuning a bandgap and on novel device structures that exploit graphene's extraordinary electrical, optical, and mechanical properties.

Fuhrer, M. S.; Lau, C. N.; MacDonald, A. H.

2010-01-01T23:59:59.000Z

236

Geothermal materials development activities  

SciTech Connect (OSTI)

This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

Kukacka, L.E.

1993-06-01T23:59:59.000Z

237

Webinar: Hydrogen Compatibility of Materials  

Broader source: Energy.gov [DOE]

Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

238

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

239

Materials Department Annual Report 1992  

E-Print Network [OSTI]

Materials Department Annual Report 1992 Published by the Materials Department Risø National and stone by Chr. Dahlgaard Larsen Materials Department Risø National Laboratory, Roskilde, Denmark Tel.: +45 46 77 46 77 Fax: +4542351173 #12;Abstract Selected activities ot the Materials Department at Riso

240

Materials Department Annual Report 1991  

E-Print Network [OSTI]

Materials Department Annual Report 1991 Published by the Materials Department Risø National, iron and stone by Chr. Dahlgaard Larsen Materials Department Risø National Laboratory, Roskilde, Denmark Tel.: +45 42 37 12 12 Fax: + 45 42 35 11 73 #12;Abstract Selected activities of the Materials

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MATERIAL HANDLING, STORAGE, AND DISPOSAL  

E-Print Network [OSTI]

Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

US Army Corps of Engineers

242

George Smith, Department of Materials,  

E-Print Network [OSTI]

George Smith, Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH UK Email: george.smith@materials.ox.ac.uk URL: www.materials.ox.ac.uk The aims of the Department of Materials experienced one of the most successful years in its 46-year history, says head of department George Smith. Top

Paxton, Anthony T.

243

Materials in design  

E-Print Network [OSTI]

the strength, hardness and wear resistance has been increased. S rin Materials Since in many cases equipment requires that springs have to operate properly at conditions of excessive vibration, corrosive environment, extremes temperatures. A great care has...) It is considered a good long wearing bearing metal where good bearing conditions are present once the design has been done very good. (Accurate filling, good oil clearance; good lubrication, non-corrosive oil). It can be used with hardened shafts. B ' g B Tin...

Perata, Alfredo Ferando

1970-01-01T23:59:59.000Z

244

Materials Technical Team Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective: DevelopMaterials

245

Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective:11 DOEMaterials Materials

246

Lead carbonate scintillator materials  

DOE Patents [OSTI]

Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

Derenzo, S.E.; Moses, W.W.

1991-05-14T23:59:59.000Z

247

Advanced Materials Manufacturing | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced Material

248

A feasibility study of solar ponds for Wisconsin industrial process heat applications -- Impact of lining material  

SciTech Connect (OSTI)

An economic feasibility study of a salinity gradient solar pond for providing industrial process heat (IPH) in the state of Wisconsin is presented. A survey of current low temperature energy load demands of several companies within Wisconsin was completed. The data obtained was analyzed using a microcomputer based program to assess feasibility. Economic feasibility and thermal performance depends upon area. The area of the pond would determine the corresponding quantities of excavation, salt and lining material required to establish a salinity gradient solar pond (SGSP). The cost of the lining material also has a large impact upon the economic feasibility of a SGSP. The results of the economic feasibility study of a SGSP based on the selection of four types of liners is presented. These liners are a high density polyethylene (HDPE) liner, two forms of a geosynthetic clay liner (GCL) and a chemical and weather resistant polymer coated polyester fabric liner (XR-5). For a load of 10,000 GJ/month on an annual operating schedule for the most favorable economic performance resulted from a geosynthetic clay liner with a high density polyethylene backing. For a 10,000 m{sup 2} pond a payback of 8.4 years can be obtained with a unit cost of $43.20/m{sup 2}. It was also determined that if a larger load was demanded and the corresponding optimal area was provided the economic feasibility of a SGSP increased greatly. For a load of 100,000 GJ/Month on an annual operating schedule, using the same lining material, the optimal pond area was found to be 35,800 m{sup 2}, with a discounted payback of 3.8 years and a unit cost of $35.40/ms{sup 2}. Similar results were obtained for the other materials. From these findings it appears that a SGSP using a geosynthetic clay liner with HDPE backing will be economically feasible for a load of 10,000 GJ/month. The economic feasibility improves with increased thermal load and the corresponding optimal pond area.

Henning, M.A.; Reid, R.L. [Marquette Univ., Milwaukee, WI (United States). Coll. of Engineering

1995-10-01T23:59:59.000Z

249

In-Situ Neutron Diffraction Studies of Complex Hydrogen Storage Materials  

SciTech Connect (OSTI)

The thrust of this project was to investigate the structures of important materials with potential application to hydrogen storage, in an effort to meet the DOE goals for 2010 and 2015, namely 9% (wt) and 15% (wt) respectively. Unfortunately, no material has been found, despite the efforts of many laboratories, including our own, that achieves these goals in a reversible complex hydride such as ammonia borane (NH{sub 4}BH{sub 4}), and other ammonia based compounds, or with light hydrides such as LiBH{sub 4}, due either to their irreversibility or to the high decomposition temperatures and residual simple hydrides such as LiH from the decomposition of the last named compound. Nevertheless, several important technical goals have been accomplished that could be valuable to other DOE programs and would be available for collaborative research. These include the development of a high quality glove box with controlled (low) oxygen and water content, which we continue to employ for the synthesis of potential new materials (unfunded research) and the development of a high quality neutron diffraction furnace with controlled gas environment for studies of hydrogen uptake and loss as well as for studies with other gasses. This furnace was initially constructed with an alumina (Al{sub 2}O{sub 3}) center tube to contain the sample and the flowing gas. The heaters are located in the vacuum space outside the tube and it was found that, for the low temperatures required for the study of hydrogen storage materials, the heat transfer was too poor to allow good control. At temperatures in excess of about 400C (and up to more than 1200C) the heat transfer and control are excellent. For the lower temperatures, however, the center tube was replaced by stainless steel and temperature control to 1C became possible. The paired heaters, above and below the neutron beam window allowed control of the temperature gradient to a similar precision. The high temperature capability of the furnace should make it a very valuable resource for the study of oxides being considered for application to solid oxide fuel cells (SOFCs), in that materials can be studied at potential operating temperatures in both reducing and oxidizing environments to determine their stoichiometry, and lattice parameters. Our research, which was predicated, in part, on the use of hydrogenous samples (as opposed to deuteration), demonstrated that such studies are feasible and can yield high quality, refinable data. The precision of the refined hydrogen positions appears to be more than adequate for theory calculations (molecular modeling-thermodynamics) and the uncertainty is certainly less than that achieved by attempting to extrapolate the hydrogen positions from refined deuterium positions. In fact the 2008 annual report from the Institute Laue Langevin (ILL), the world's premier neutron scattering laboratory, highlights: Another trend is the increasing interest in hydrogen. This defies the widespread assumption that neutron diffraction experiments need to be done at deuterated samples. In situ experiments on phase transitions involving hydrogen and in particular on the real time behaviour of hydrogen-storage systems increase in number and scope. Our work in this area predates the ILL efforts be several years. Unfortunately, the productivity of our program was significantly curtailed by the unavailability of the MURR powder diffractometer for almost all of the second years of the project. The diffractometer was disassembled to allow partial extraction of the beam tube and replacement of the graphite element that is penetrated by the beam tube. Re-commissioning of the instrument was substantially delayed by errors of the MURR engineering staff, which failed to properly reinstall the sapphire filter that conditions the beam prior to the neutron monochromator, and reduces the radiological background to acceptable levels.

Yelon, William B.

2013-05-13T23:59:59.000Z

250

Photoluminescence and Extended X-ray Absorption Fine Structure Studies on CdTe Material.  

E-Print Network [OSTI]

??The direct-band-gap semiconductor CdTe is an important material for fabricating high efficiency, polycrystalline thin-film solar cells in a heterojunction configuration. The outstanding physical properties of (more)

Liu, Xiangxin

2006-01-01T23:59:59.000Z

251

Computational study of the transport mechanisms of molecules and ions in solid materials  

E-Print Network [OSTI]

electrolytes is a key element in the development of the solid lithium ion batteries. One promising material is dilithium phthalocyanine (Li2Pc), which upon self-assembly may form conducting channels for fast ion transport. Computational chemistry is employed...

Zhang, Yingchun

2009-06-02T23:59:59.000Z

252

Vaporization studies of plasma interactive materials in simulated plasma disruption events  

SciTech Connect (OSTI)

The melting and vaporization that occur when plasma facing materials are subjected to a plasma disruption will severely limit component lifetime and plasma performance. A series of high heat flux experiments was performed on a group of fusion reactor candidate materials to model material erosion which occurs during plasma disruption events. The Electron Beam Test System was used to simulate single disruption and multiple disruption phenomena. Samples of aluminum, nickel, copper, molybdenum, and 304 stainless steel were subjected to a variety of heat loads, ranging from 100 to 400 msec pulses of 8 to 18 kWcm/sup 2/. It was found that the initial surface temperature of a material strongly influences the vaporization process and that multiple disruptions do not scale linearly with respect to single disruption events. 2 refs., 9 figs., 5 tabs.

Stone, C.A. IV; Croessmann, C.D.; Whitley, J.B.

1988-03-01T23:59:59.000Z

253

A study of the Naval Construction Force project material supply chain  

E-Print Network [OSTI]

The Naval Construction Force (NCF) performs construction projects in all areas of the world during both peacetime and war. While some of these projects occur in populated areas where project materials are readily available, ...

Stasick, Steven J. (Steven James), 1970-

2004-01-01T23:59:59.000Z

254

The role of demand uncertainty in materials selection : a case study on aluminum recycling  

E-Print Network [OSTI]

Aluminum is a versatile material that is used frequently in transportation and packaging, two industries with substantial recent growth. The increase in demand for aluminum, however, has outpaced the growth of primary ...

Dabbas, Hashem H

2007-01-01T23:59:59.000Z

255

Study of photon attenuation coefficients of some multielement materials. [123-1250 keV  

SciTech Connect (OSTI)

Total photon mass attenuation of six multielement shielding materials (concrete, plaster of paris, quick lime, black cement, white cement, and silica) is measured in the 123- to 1,250-keV energy range. The experimental results are analyzed in terms of cross sections, effective atomic numbers, and electron densities. Considerable sensitivity of the total mass attenuation coefficients and effective atomic numbers to variations in oxygen content are found in these multielement materials.

Bhandal, G.S. (N.J.S.A. Government Coll., Punjab (India)); Singh, K. (Guru Nanak Dev Univ., Amritsar (India). Dept. of Physics)

1994-03-01T23:59:59.000Z

256

Scalable Routes to Efficient Thermoelectric Materials  

E-Print Network [OSTI]

thermoelectric materials consisting of epitaxially-grownefficient thermoelectric materials," Nature, vol. 451, pp.superlattice thermoelectric materials and devices," Science,

Feser, Joseph Patrick

2010-01-01T23:59:59.000Z

257

Advanced Battery Materials Characterization: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

258

Nuclear forensics of special nuclear material at Los Alamos: three recent studies  

SciTech Connect (OSTI)

Nuclear forensics of special nuclear materials is a highly specialized field because there are few analytical laboratories in the world that can safely handle nuclear materials, perform high accuracy and precision analysis using validated analytical methods. The goal of nuclear forensics is to establish an unambiguous link between illicitly trafficked nuclear material and its origin. The Los Alamos National Laboratory Nuclear Materials Signatures Program has implemented a graded 'conduct of operations' type approach for determining the unique nuclear, chemical, and physical signatures needed to identify the manufacturing process, intended use, and origin of interdicted nuclear material. In our approach an analysis flow path was developed for determining key signatures necessary for attributing unknown materials to a source. This analysis flow path included both destructive (i.e., alpha spectrometry, ICP-MS, ICP-AES, TIMS, particle size distribution, density and particle fractionation) and non-destructive (i.e., gamma-ray spectrometry, optical microscopy, SEM, XRD, and x-ray fluorescence) characterization techniques. Analytical techniques and results from three recent cases characterized by this analysis flow path along with an evaluation of the usefulness of this approach will be discussed in this paper.

Tandon, Lav [Los Alamos National Laboratory; Gallimore, David L [Los Alamos National Laboratory; Garduon, Katherine [Los Alamos National Laboratory; Keller, Russell C [Los Alamos National Laboratory; Kuhn, Kevin J [Los Alamos National Laboratory; Lujan, Elmer J [Los Alamos National Laboratory; Martinez, Alexander [Los Alamos National Laboratory; Myers, Steven C [Los Alamos National Laboratory; Moore, Steve S [Los Alamos National Laboratory; Porterfield, Donivan R [Los Alamos National Laboratory; Schwartz, Daniel S [Los Alamos National Laboratory; Spencer, Khalil J [Los Alamos National Laboratory; Townsend, Lisa E [Los Alamos National Laboratory; Xu, Ning [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

259

A compatibility study of containment materials in FEFO, bis-(2-fluoro-2,2-dinitroethyl) formal  

SciTech Connect (OSTI)

We report on a program to evaluate the compatibility of energetic fluids with candidate containment materials. The energetic fluids are constituents of various extrudable explosives developed by Lawrence Livermore National Laboratory. These paste-like explosives consist of explosive particulates (HMX, TATB for example) suspended in mixtures of energetic liquids and are designed to remain extrudable over a wide temperature range for many years. It is important to preclude or minimize interactions between the constituents of the paste and the containment materials since such interactions could result in decreased reliability or failure of the containment vessel as well as intrinsic changes in the flow or explosive characteristics of the paste. In this report we focus on one specific paste formulation: RX-52-AE (Transferable Insensitive Explosive, TIE), composed principally of the solid explosive TATB and the energetic liquid, FEFO. Compatibility between a number of organic and metallic materials with neat FEFO has been evaluated. The 300 series stainless steels, Al 6061-T6, and Monel 400 showed evidence of surface attack (oxidation or pitting). Polished gold coupons became discolored and XPS analysis revealed the formation gold cyanide. Platinum, iridium, titanium, tantalum and Ta-10% W showed little evidence of reaction. Among the organic materials, the per-fluorinated materials showed only slight interaction with the FEFO while the polyethylene, polyester and Aclar{reg_sign} materials were attacked by the liquid. These interactions were manifested in changes in color, net weight gain and mechanical properties. The changes were exaggerated by higher temperatures.

Shepodd, T.J.; Goods, S.H. [Sandia National Labs., Livermore, CA (United States); Moddeman, W.E.; Foster, P.

1995-02-01T23:59:59.000Z

260

Physical capabilities of experienced manual material handlers  

E-Print Network [OSTI]

This study was conducted on 442 (403 male, 39 female) experienced manual material handlers from various companies that possess a high amount of manual material handlers in order to determine their physical condition. Although all 442 volunteers...

Wingate, Kyle Alan

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fractal Geometric Characterization of Functionally Graded Materials  

E-Print Network [OSTI]

Fractal Geometric Characterization of Functionally Graded Materials A. Saharan1 ; M. Ostoja graded materials (FGM) is studied from the standpoint of fractal geometry. First, upon introducing fractals, and an interfacial fractal dimension is estimated for varying degrees of fineness. Avariation

Ostoja-Starzewski, Martin

262

A nuclear magnetic resonance study of hydrogen in battery and chemically prepared material  

SciTech Connect (OSTI)

Solid-state magic-angle-spinning nuclear magnetic resonance studies have been undertaken on positive plate material from lead-acid batteries and on samples of both pure ..cap alpha..-PbO/sub 2/ and pure ..beta..-PbO/sub 2/ prepared by nonelectrochemical methods. Battery positive plate samples contain protons in two different surface and near surface configurations. One of these proton species is associated with mobile, isolated, adsorbed hydroxyl groups, and/or water molecules that can be removed by outgassing. The other proton species is not removed by outgassing; it probably corresponds to water molecules and/of closely spaced hydroxyl groups trapped on internal crystal surfaces. The proton species present in fresh (uncycled) positive plate material are not significantly different in either configuration or abundance from those in extensively cycled samples. Thus, it is unlikely that decline in battery capacity with cycling service is associated with a change in the hydrogen content of PbO/sub 2/.

Hill, R.J.; Jessel, A.M.

1987-06-01T23:59:59.000Z

263

Materials Research in the Information Age  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 | Tags: Materials...

264

RFI: DOE Materials Strategy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

RFI: DOE Materials Strategy RFI: DOE Materials Strategy DOE Materials Strategy - request for information RFI: DOE Materials Strategy More Documents & Publications Microsoft Word -...

265

Sandia National Laboratories: Light Creation Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TechnologiesLight Creation Materials Light Creation Materials Overview of SSL Light Creation Materials Different families of inorganic semiconductor materials can...

266

Sandia National Laboratories: Light Creation Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRCOverviewLight Creation Materials Light Creation Materials Overview of SSL Light Creation Materials Different families of inorganic semiconductor materials can contribute to...

267

Cathode materials review  

SciTech Connect (OSTI)

The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

2014-06-16T23:59:59.000Z

268

Combinatorial synthesis of novel materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

2001-01-01T23:59:59.000Z

269

Combinatorial synthesis of novel materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-02-12T23:59:59.000Z

270

Combinatorial synthesis of novel materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

1999-12-21T23:59:59.000Z

271

Combinatorial sythesis of organometallic materials  

DOE Patents [OSTI]

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-07-16T23:59:59.000Z

272

Optical limiting materials  

DOE Patents [OSTI]

Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.

McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.

1998-04-21T23:59:59.000Z

273

Synthesis of refractory materials  

DOE Patents [OSTI]

Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogren. For this purpose, a metal azide is employed, preferably NaN.sub.3. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

Holt, Joseph B. (San Jose, CA)

1984-01-01T23:59:59.000Z

274

Synthesis of refractory materials  

DOE Patents [OSTI]

Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

Holt, J.B.

1983-08-16T23:59:59.000Z

275

Construction Material And Method  

DOE Patents [OSTI]

A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

2006-02-21T23:59:59.000Z

276

Careers | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAYCareers The Critical Materials Institute

277

LANL: Materials Science Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2RecoveryBioenergy »0 Los1Materials

278

Work with Biological Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14 Sales of4)Delegations, andARM

279

Work with Biological Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14 Sales of4)Delegations, andARMWork

280

Magnetic Materials (MM)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L.FallU . S .ofFieldMagnetic Materials

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Material Point Methods  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86 4.77of PolarMaterial

282

Material Safety Data Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86 4.77ofMaterial Safety

283

Materials/Condensed Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContractMaterials/Condensed Matter Print

284

Materials/Condensed Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContractMaterials/Condensed Matter

285

Material efficiency in construction  

E-Print Network [OSTI]

, this generation must change its use of energy and materials. 1.1 The need to reduce carbon dioxide emissions The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) states as #16;unequivocal#17; that the Earth's atmosphere and oceans... in order to save energy and carbon. University of Cambridge, Cambridge, UK. ISBN 978-0- 903428-32-3 3. Allwood, J.M., Cullen, J.M., Patel, A.C.H., Cooper, D.R.,Moynihan, M.C., Milford, R.L., Carruth, M.A. and McBrien, M. 2011. Prolonging our metal life #22...

Moynihan, Muiris

2014-10-07T23:59:59.000Z

286

Thermoelectric materials development. Final report  

SciTech Connect (OSTI)

A systematic search for advanced thermoelectric materials was initiated at JPL several years ago to evaluate candidate materials which includes consideration of the following property attributes: (1) semiconducting properties; (2) large Seebeck coefficient; (3) high carrier mobility and high electrical conductivity; (4) low lattice thermal conductivity; and (5) chemical stability and low vapor pressure. Through this candidate screening process, JPL identified several families of materials as promising candidates for improved thermoelectric materials including the skutterudite family. There are several programs supporting various phases of the effort on these materials. As part of an ongoing effort to develop skutterudite materials with lower thermal conductivity values, several solid solutions and filled skutterudite materials were investigated under the effort sponsored by DOE. The efforts have primarily focused on: (1) study of existence and properties of solid solutions between the binary compounds CoSb{sub 3} and IrSb{sub 3}, and RuSb{sub 2}Te, and (2) CeFe{sub 4{minus}x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} filled compositions, the reduction would be caused by the rattling of Ce atoms located in the empty voids of the skutterudite structure and the substitution of Fe for Ru. The details of the sample preparation and characterization of their thermoelectric properties are reported in this report.

Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

1998-09-01T23:59:59.000Z

287

Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III)  

E-Print Network [OSTI]

Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum, Michigan 48202 Received February 6, 2001. Revised Manuscript Received May 16, 2001 Tris(8-hydroxyquinoline)aluminum

Schlegel, H. Bernhard

288

The SNL100-02 blade : advanced core material design studies for the Sandia 100-meter blade.  

SciTech Connect (OSTI)

A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

Griffith, Daniel

2013-11-01T23:59:59.000Z

289

Laser Plasma Material Interactions  

SciTech Connect (OSTI)

Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

Schaaf, Peter; Carpene, Ettore [Universitaet Goettingen, II. Physikalisches Institut, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

2004-12-01T23:59:59.000Z

290

Synchrotron studies of narrow band materials. Progress report, July 1, 1991--June 30, 1992  

SciTech Connect (OSTI)

Since last year, we have had three 3-week blocks of beamtime, in April and November 1991 and February 1992, on the Ames/Montana beamline at the Wisconsin Synchrotron Radiation Center (SRC). These runs continued our program on high temperature superconductors, heavy Fermion and related uranium and rare earth materials, and started some work on transition metal oxides. We have also had beamtime at the Brookhaven NSLS, 5 days of beamtime on the Dragon monochromator, beamline U4B, studying resonant photoemission of transition metal oxides using photon energies around the transition metal 2p edges. Data from past runs has been analyzed, and in some cases combined with photoemission and bremsstrahlung isochromat spectroscopy (BIS) data taken in the home U-M lab. 1 fig.

Not Available

1992-07-01T23:59:59.000Z

291

Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form  

SciTech Connect (OSTI)

Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

Keiser, D.D.

1996-11-01T23:59:59.000Z

292

Additive assembly of digital materials  

E-Print Network [OSTI]

This thesis develops the use of additive assembly of press-fit digital materials as a new rapid-prototyping process. Digital materials consist of a finite set of parts that have discrete connections and occupy discrete ...

Ward, Jonathan (Jonathan Daniel)

2010-01-01T23:59:59.000Z

293

STRUCTURAL ENGINEERING, MECHANICS AND MATERIALS  

E-Print Network [OSTI]

of companies worldwide; cladding effects on, and hybrid control of, the response of tall buildings Buildings Masonry Structures Nano/Microstructure of Cement-based Materials Polymeric Composite Systems Reliable Engineering Computing Risk Analysis Seismic Hazard Mitigation Smart Materials

Wang, Yuhang

294

DPC materials and corrosion environments  

SciTech Connect (OSTI)

This review focuses on the performance of basket materials that could be exposed to ground water over thousands of years, and prospective disposal overpack materials that could possibly be used to protect dual-purpose canisters (DPCs) in disposal environments.

Ilgen, Anastasia G.; Bryan, Charles R.; Stephanie Teich-McGoldrick; Ernest Hardin

2014-10-01T23:59:59.000Z

295

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

SciTech Connect (OSTI)

The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO{sub 4}/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi{sub 1/3}Co{sub 1/3-y}M{sub y}Mn{sub 1/3}O{sub 2} (M=Al, Co, Fe, Ti) and LiNi{sub 0.4}Co{sub 0.2-y}M{sub y}Mn{sub 0.4}O{sub 2} (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO{sub 4} is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO{sub 4}/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO{sub 4} particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of such materials has been related to the underlying structure of the carbon films. The combustion synthesis of LiFePO4 materials allows for the formation of nanoscale active material particles with high-quality carbon coatings in a quick and inexpensive fashion. The carbon coating is formed during the initial combustion process at temperatures that exceed the thermal stability limit of LiFePO{sub 4}. The olivine structure is then formed after a brief calcination at lower temperatures in a controlled environment. The carbon coating produced in this manner has an improved graphitic character and results in superior electrochemical performance. The potential co-synthesis of conductive carbon entities, such as carbon nanotubes and fibers, is also briefly discussed.

Wilcox, James D.

2008-12-18T23:59:59.000Z

296

Management of Transuranic Contaminated Material  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

1982-09-30T23:59:59.000Z

297

Thermoelectric Materials, Devices and Systems:  

Broader source: Energy.gov (indexed) [DOE]

-DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ......

298

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities, Materials Science, News, News & Events, Research & Capabilities, Solid-State Lighting Semiconductor nanowire lasers have attracted intense interest as...

299

Webinar: Hydrogen Storage Materials Requirements  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

300

FY 1984 and FY 1985 geochemistry and materials studies in support of the Magma Energy Extraction Program  

SciTech Connect (OSTI)

Geochemistry and materials studies are being performed in support of the Magma Energy Extraction Program. The work is largely restricted to: (1) characterizing magmatic environments at sites of interest, (2) testing engineering materials in laboratory simulated magmatic environments, (3) investigating chemical mass transport effects inherent in designs for direct contact heat exchangers, and (4) evaluating degassing hazards associated with drilling into and extracting energy from shallow magma. Magma characterization studies have been completed for shallow magma at Long Valley, Coso volcanic field, and Kilauea volcano. The behavior of 17 commercially available materials has been examined in rhyolite magma at 850/sup 0/C and 200 MPa for periods up to seven days. Analysis of reaction products from materials tests to date indicate that oxidation is the main corrosion problem for most alloys in rhyolitic magma. Considerations of corrosion resistance, high-temperature strength, and cost indicate nickel-base superalloys offer the most promise as candidates for use in rhyolitic magma.

Westrich, H.R.; Weirick, L.J.; Cygan, R.T.; Reece, M.; Hlava, P.F.; Stockman, H.W.; Gerlach, T.M.

1986-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Corrosion resistant ceramic materials  

DOE Patents [OSTI]

Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

Kaun, T.D.

1996-07-23T23:59:59.000Z

302

Corrosion resistant ceramic materials  

DOE Patents [OSTI]

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1995-01-01T23:59:59.000Z

303

Corrosion resistant ceramic materials  

DOE Patents [OSTI]

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1996-01-01T23:59:59.000Z

304

A biaxial apparatus for the study of heterogeneous and intermittent strains in granular materials  

E-Print Network [OSTI]

We present an experimental apparatus specifically designed to investigate the precursors of failure in granular materials. A sample of granular material is placed between a latex membrane and a glass plate. A confining effective pressure is applied by applying vacuum to the sample. Displacement-controlled compression is applied in the vertical direction, while the specimen deforms in plane strain. A Diffusing Wave Spectroscopy visualization setup gives access to the measurement of deformations near the glass plate. After describing the different parts of this experimental setup, we present a demonstration experiment where extremely small (of order $10^{-5}$) heterogeneous strains are measured during the loading process.

Antoine Le Bouil; Axelle Amon; Jean-Christophe Sangleboeuf; Herv Orain; Pierre Bsuelle; Gioacchino Viggiani; Patrick Chasle; Jrme Crassous

2013-12-17T23:59:59.000Z

305

Combinatorial synthesis of ceramic materials  

DOE Patents [OSTI]

A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

2006-11-14T23:59:59.000Z

306

Combinatorial synthesis of ceramic materials  

DOE Patents [OSTI]

A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

Lauf, Robert J. (Oak Ridge, TN) [Oak Ridge, TN; Walls, Claudia A. (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn A. (Oak Ridge, TN) [Oak Ridge, TN

2010-02-23T23:59:59.000Z

307

Preparation of asymmetric porous materials  

DOE Patents [OSTI]

A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

Coker, Eric N. (Albuquerque, NM)

2012-08-07T23:59:59.000Z

308

Nanostructured materials for hydrogen storage  

DOE Patents [OSTI]

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

309

Frontiers of Fusion Materials Science  

E-Print Network [OSTI]

migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

310

Department of Advanced Materials Science  

E-Print Network [OSTI]

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

311

Materials Performance in USC Steam  

SciTech Connect (OSTI)

Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

2011-09-07T23:59:59.000Z

312

Thermoelectric study of crossroads material MnTe via sulfur doping  

SciTech Connect (OSTI)

Here, we report thermoelectric study of crossroads material MnTe via iso-electronic doping S on the Te-site. MnTe{sub 1-x}S{sub x} samples with nominal S content of x?=?0.00, 0.05, and 0.10 were prepared using a melt-quench method followed by pulverization and spark plasma sintering. The X-ray powder diffraction, scanning electron microscopy, and ZAF-corrected compositional analysis confirmed that S uniformly substitutes Te up to slightly over 2%. A higher content of S in the starting materials led to the formation of secondary phases. The thermoelectric properties of MnTe{sub 1-x}S{sub x} samples were characterized by means of Seebeck coefficient, electrical conductivity, and thermal conductivity measurements from 300?K to 773?K. Furthermore, Hall coefficient measurements and a single parabolic band model were used to help gain insights on the effects of S-doping on the scattering mechanism and the carrier effective mass. As expected, S doping not only introduced hole charge carriers but also created short-range defects that effectively scatter heat-carrying phonons at elevated temperatures. On the other hand, we found that S doping degraded the effective mass. As a result, the ZT of MnTe{sub 0.9}S{sub 0.1} was substantially enhanced over the pristine sample near 400?K, while the improvement of ZT became marginal at elevated temperatures. A ZT???0.65 at 773?K was obtained in all three samples.

Xie, Wenjie, E-mail: xie@imw.uni-stuttgart.de; Populoh, Sascha; Sagarna, Leyre; Trottmann, Matthias [EmpaSwiss Federal Laboratories for Materials Science and Technology, Solid State Chemistry and Catalysis, Uberlandstrasse 129, CH-8600 Dbendorf (Switzerland); Ga??zka, Krzysztof [EmpaSwiss Federal Laboratories for Materials Science and Technology, Solid State Chemistry and Catalysis, Uberlandstrasse 129, CH-8600 Dbendorf (Switzerland); Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern (Switzerland); Xiao, Xingxing [Institute for Materials Science, University of Stuttgart, DE-70569 Stuttgart (Germany); Liu, Yufei; He, Jian [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634-0978 (United States); Weidenkaff, Anke [EmpaSwiss Federal Laboratories for Materials Science and Technology, Solid State Chemistry and Catalysis, Uberlandstrasse 129, CH-8600 Dbendorf (Switzerland); Institute for Materials Science, University of Stuttgart, DE-70569 Stuttgart (Germany)

2014-03-14T23:59:59.000Z

313

History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies  

SciTech Connect (OSTI)

Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

2012-03-01T23:59:59.000Z

314

Mathematical modelings of smart materials and structures  

E-Print Network [OSTI]

Mathematical modelings of smart materials and structures Christian Licht , Thibaut Weller mathematical models of smart materials and smart structures. Smart materials are materials which present perturbations methods, asymptotic analysis, plates and rods models. 1 Introduction Smart materials present

Paris-Sud XI, Université de

315

A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials  

E-Print Network [OSTI]

the thermal stability of rechargeable lithium batteries, it is important to understand the thermal degradation to be effective in predicting a wide variety of materials properties, including the intercalation voltage,1 Li shown that the self-interaction present in LDA and GGA, which is responsible for the underestimation

Ceder, Gerbrand

316

Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report  

SciTech Connect (OSTI)

A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

2009-09-01T23:59:59.000Z

317

In-Situ Study of Thermal Comfort Enhancement in a Building Equipped with Phase Change Material  

E-Print Network [OSTI]

-00683878,version1-9Jun2014 #12;ing, solar heat or internal loads. Using PCM material in such building walls in the walls storage process. The results show that the PCM wallboards enhance the thermal comfort of occupants buildings. Thermal energy storage can be accomplished either by using sensible heat storage or latent heat

318

Study of Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid  

E-Print Network [OSTI]

at the entrance of the tube. Results were also obtained for the phase change process under hydro dynamically and thermally fully developed conditions. In case of a smooth circular tube with phase change material (PCM) fluid, results of Nusselt number were obtained...

Ravi, Gurunarayana

2010-01-14T23:59:59.000Z

319

Neutron and X-Ray Studies of Advanced Materials V: CENTENNIAL  

SciTech Connect (OSTI)

In 2012 the diffraction community will celebrate 100 years since the prediction of X-ray diffraction by M. Laue, and following his suggestion the first beautiful diffraction experiment by W. Friedrich and P. Knipping. The significance of techniques based on the analysis of the diffraction of X-rays, neutrons, electrons and Mossbauer photons discovered later, has continued to increase in the past 100 years. The aim of this symposium is to provide a forum for discussion of using state-of-the-art neutron and X-ray scattering techniques for probing advanced materials. These techniques have been widely used to characterize materials structures across all length scales, from atomic to nano, meso, and macroscopic scales. With the development of sample environments, in-situ experiments, e.g., at temperatures and applied mechanical load, are becoming routine. The development of ultra-brilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultra-sensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternative probes of crystalline structure, orientation and strain. X-ray microdiffraction is non-destructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Advances in neutron sources and instrumentation also bring new opportunities in neutron scattering research. In addition to characterizing the structures, neutrons are also a great tool for elucidating the dynamics of materials. Because neutrons are highly penetrating, neutrons have been used to map stress in engineering systems. Neutrons have also played a vital role in our understanding of the magnetism and magnetic properties. Specialized instruments have been built to gain physical insights of the fundamental mechanisms governing phase transformation and mechanical behaviors of materials. The application of those techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future that will contribute to the development of materials technology and industrial innovation.

Spanos, George

2012-05-01T23:59:59.000Z

320

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

322

Material Standards for EHS for Engineered Nanoscale Materials Material Standards for  

E-Print Network [OSTI]

#12;#12;Material Standards for EHS for Engineered Nanoscale Materials Material Standards of Standards and Technology, Gaithersburg, MD Workshop Co-Chairs and Principle Report Editors Dianne L. Poster, John A. Small, Michael T. Postek National Institute of Standards and Technology Sponsored by U

Magee, Joseph W.

323

Interaction Studies of Ceramic Vacuum Plasma Spraying for the Melting Crucible Materials  

SciTech Connect (OSTI)

Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, ZrO2, and Y2O3, were plasmasprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and Y2O3 coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and ZrO2 coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and ZrO2 coating layers with niobium was relatively weak compared to the TaC and Y2O3 coatings. The TaC and Y2O3 coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and ZrO2 coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at 1600 degrees C for 15 min., but TaC, TiC, and Y2O3 coatings showed good compatibility with U-Zr melt.

Jong Hwan Kim; Hyung Tae Kim; Yoon Myung Woo; Ki Hwan Kim; Chan Bock Lee; R. S. Fielding

2013-10-01T23:59:59.000Z

324

Thin film preparation and interfacial reaction study of solid oxide fuel cell materials  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFC's) operate at 1000 C and their components are processed at even higher temperatures. It is generally desirable to reduce the operating and processing temperatures of SOFC's to make them competitive with other types of fuel cells and to avoid the interactions and interdiffusion between cell components. This can be achieved by either developing a technology to produce thin film electrolytes, or by developing new electrolyte and electrode materials with reduced interaction, lower interfacial resistance. The synthesis and characterization of (Ce-O2)0.8(Sm01.5)0.2 thin films from polymeric precursors is discussed. The reaction mechanism of the precursors and important parameters for making dense, crack-free films were investigated. The cathode/electrolyte interactions and their expected impact on SOFC performance are addressed. The cathode characteristics and cathode/electrolyte interaction of various perovskites are studied. The impact of interfacial reactions on cell performance is investigated. The electrode characteristics of dense La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) thin film produced by polymeric precursors are presented. The electrode resistance and characteristics of the electrode (dense)/electrolyte interface are studied. The effect of reactions and interdiffusion on interfacial resistance are discussed. A potential method for making dense ZrO2 films at relatively low temperatures by plasma-enhanced chemical vapor deposition is presented. The deposition parameters and characterization of ZrO2 film are reported.

Chen, Chiehcheng.

1992-01-01T23:59:59.000Z

325

Advanced materials: Information and analysis needs  

SciTech Connect (OSTI)

This report presents the findings of a study to identify the types of information and analysis that are needed for advanced materials. The project was sponsored by the US Bureau of Mines (BOM). It includes a conceptual description of information needs for advanced materials and the development and implementation of a questionnaire on the same subject. This report identifies twelve fundamental differences between advanced and traditional materials and discusses the implications of these differences for data and analysis needs. Advanced and traditional materials differ significantly in terms of physical and chemical properties. Advanced material properties can be customized more easily. The production of advanced materials may differ from traditional materials in terms of inputs, the importance of by-products, the importance of different processing steps (especially fabrication), and scale economies. The potential for change in advanced materials characteristics and markets is greater and is derived from the marriage of radically different materials and processes. In addition to the conceptual study, a questionnaire was developed and implemented to assess the opinions of people who are likely users of BOM information on advanced materials. The results of the questionnaire, which was sent to about 1000 people, generally confirm the propositions set forth in the conceptual part of the study. The results also provide data on the categories of advanced materials and the types of information that are of greatest interest to potential users. 32 refs., 1 fig., 12 tabs.

Curlee, T.R.; Das, S.; Lee, R.; Trumble, D.

1990-09-01T23:59:59.000Z

326

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into the Red Listed Material: Pressure Treated Wood  

E-Print Network [OSTI]

into the Red Listed Material: Pressure Treated Wood (Preservative Infused) and Possible Alternatives Abby Yuen of a project/report". #12;APSC 261 An Investigation into the Red Listed Material: Pressure Treated Wood. Pressure treated wood, a commonly used building material in British Columbia, is a red-listed material

327

Fossil energy materials needs assessment  

SciTech Connect (OSTI)

An assessment of needs for materials of construction for fossil energy systems was prepared by ORNL staff members who conducted a literature search and interviewed various individuals and organizations that are active in the area of fossil energy technology. Critical materials problems associated with fossil energy systems are identified. Background information relative to the various technologies is given and materials research needed to enhance the viability and improve the economics of fossil energy processes is discussed. The assessment is presented on the basis of materials-related disciplines that impact fossil energy material development. These disciplines include the design-materials interface, materials fabrication technology, corrosion and materials compatibility, wear phenomena, ceramic materials, and nondestructive testing. The needs of these various disciplines are correlated with the emerging fossil energy technologies that require materials consideration. Greater emphasis is given to coal technology - particularly liquefaction, gasification, and fluidized bed combustion - than to oil and gas technologies because of the perceived inevitability of US dependence on coal conversion and utilization systems as a major part of our total energy production.

King, R.T.; Judkins, R.R. (comps.)

1980-07-01T23:59:59.000Z

328

Preliminary Study for Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons  

E-Print Network [OSTI]

In these days, 3D-printer is on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of the 3D-printer materials which could be used as the compensator or immobilizer in radiation treatment. The cubes which have 5cm length and different densities as 50%, 75% and 100% were printed by 3D-printer. A planning CT scans for cubes were performed using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated when 6MV photon beam passed through cube. The dose response for 3D-printed cube, air and water were measured by using EBT3 film and 2D array detector. When results of air case were normalized to 100, dose calculated by TPS and measured dose of 50% and 75% cube were 96~99. Measured and calculated doses of water and 100% cube were 82~84. HU values of 50%, 75% and 100% were -910, -860 and -10, respectively. From these results, 3D-printer in radiotherapy could be used for medical purpose...

Jeong, Seonghoon; Chung, Weon Kuu; Kim, Dong Wook

2015-01-01T23:59:59.000Z

329

A Study of Selected Properties and Applications of AlMgB14 and Related Composites: Ultra-Hard Materials  

SciTech Connect (OSTI)

This research presents a study of the hardness, electrical, and thermal properties AlMgB{sub 14} containing Al{sub 2}MgO{sub 4} spinel. This research also investigated how much Al{sub 2}MgO{sub 4} spinel consistently forms with AlMgB{sub 14}, if AlMgB{sub 14} materials can be produced by hot isostatic pressing (HIP), what effects TiC and TiB{sub 2} have on this composite material, and the importance of mechanical alloying. Included also is a study of the variation in hardness measurements and how they relate to SI units. Heretofore, all ultra-hard materials (hardness > 40 GPA) have been found to be cubic in structure, electrical insulators, and expensive; the behavior of AlMgB{sub 14}, which in certain specimens and compositions can have hardness values greater than 40 GPa, is therefore quite unusual since it is non-cubic, conductive, and moderate in cost. This offers an opportunity to investigate the relationship between hardness, thermal, and electrical properties from a new perspective. The main purpose of this project was to characterize the different properties of the AlMgB{sub 14} materials and to demonstrate that this material can be made in bulk. The technologies used for this study include microhardness measurement techniques, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction spectroscopy, x-ray diffraction spectroscopy at different temperatures, optical microscopy, thermomechanical analysis, differential thermal analysis, 4-point probe resistivity, density techniques, Seebeck Effect, and Hall Effect. This research may lead to use of this material for applications where high abrasion resistance along with electrical conduction is needed. Also this research gave more information about a material that could have a great impact on industrial applications.

Theron L. Lewis

2002-05-28T23:59:59.000Z

330

Excited State Processes in Solar Energy Materials.  

E-Print Network [OSTI]

??This dissertation covers studies of excited state processes in two types of solar energy materials: alternating polyfluorene polymers and their blends with fullerenes in the (more)

sterman, Tomas

2013-01-01T23:59:59.000Z

331

Catalyzed Ceramic Burner Material  

SciTech Connect (OSTI)

Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

Barnes, Amy S., Dr.

2012-06-29T23:59:59.000Z

332

Simulation Study of Internal and Surface waves of Vertically Vibrated Granular Materials  

E-Print Network [OSTI]

Molecular dynamical (MD) simulations are performed to simulate two dimensional vibrofluidized granular materials in this work. Statistics on simulation results indicate that there exist shocks propagating upward in each vibrating cycle. Under certain driving parameters surface waves similar to Faraday instability in normal fluid coexist with internal waves. Relationship between the two kinds of waves is explored. Moreover simulation results indicate that periodically structured bottom can change the dispersion relationship and amplitude of surface waves.

Kai Huang; Guoqing Miao; Peng Zhang; Yifei Zhu; Rongjue Wei

2005-11-29T23:59:59.000Z

333

Multidiscipline Modeling in Materials and Structures Emerald Article: A study of the blast-induced brain white-matter damage  

E-Print Network [OSTI]

Multidiscipline Modeling in Materials and Structures Emerald Article: A study of the blast, (2012),"A study of the blast-induced brain white-matter damage and the associated diffuse axonal injury Abstract Purpose ­ Blast-induced traumatic brain injury (TBI) is a signature injury of the current military

Grujicic, Mica

334

1Materials Research Society Symposium Proceedings 364, 59 (1995) A NEW APPROACH TO STUDY VACANCY DEFECTS IN HIGH-  

E-Print Network [OSTI]

1Materials Research Society Symposium Proceedings 364, 59 (1995) A NEW APPROACH TO STUDY VACANCY (PAC) is being applied to study defects in ordered intermetallic alloys. Vacancies on both Pd.15 at.% Pd, nearly equal site fractions were observed for Pd and In vacancies, indicating

Collins, Gary S.

335

CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS  

SciTech Connect (OSTI)

The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

2009-11-10T23:59:59.000Z

336

Material-based design computation  

E-Print Network [OSTI]

The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in ...

Oxman, Neri

2010-01-01T23:59:59.000Z

337

MULTIDISCIPLINARY FREE MATERIAL OPTIMIZATION 1 ...  

E-Print Network [OSTI]

Nonlinear Anal. and Mech., Pitman, London, pages 136212, 1979. [22] R. Werner. Free Material Optimization. PhD thesis, Institute of Applied Mathematics II,...

2009-10-18T23:59:59.000Z

338

Vibrational Damping of Composite Materials  

E-Print Network [OSTI]

on the Damping of Composite Laminates, SPIE Proceedings onpublication to Journal of Composite Materials Biggerstaff,submitted for publication to Composites, Part A Biggerstaff,

Biggerstaff, Janet M.

2006-01-01T23:59:59.000Z

339

Toda Cathode Materials Production Facility  

Broader source: Energy.gov (indexed) [DOE]

Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...

340

Nanostructured Electrode Materials for Supercapacitors  

E-Print Network [OSTI]

and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical of polymethine dyes electronic spectra is crucial for successful design of the new molecules with optimized

Wu, Shin-Tson

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lightweighting Materials | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with lightweight materials can directly reduce fuel consump-tion. It also allows cars to carry advanced emissions control equipment, safety devices, and integrated...

342

Interim Management of Nuclear Materials  

Broader source: Energy.gov (indexed) [DOE]

containing dissolved nuclear materials and recovered isotopes in stainless-steel tanks; and product and scrap forms of metals or oxides in containers (cans, drums, etc.)...

343

NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS  

E-Print Network [OSTI]

NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS PRESENT FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS PRESENT Graphene Colloquium

Farritor, Shane

344

Materials and Methods Strain construction, materials, and Net1 mutagenesis  

E-Print Network [OSTI]

Materials and Methods Strain construction, materials, and Net1 mutagenesis All strains used and destruction boxes (Clb2C2DK100)HA3 was used in over-expression experiments with Clb2 (1). Net1 mutant constructs were created as previously described (2). Briefly, a wild type NET1-myc9 epitope tagged construct

Shou, Wenying

345

Material Safety Data Sheets | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Material Safety Data Sheets Material Safety Data Sheets Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a...

346

Materials Sciences and Engineering Program | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

347

NUCLEAR MATERIALS PROGRESS REPORTS FOR 1980  

E-Print Network [OSTI]

Ceramics", Progress in Material Science 21, 307 (1976}. S. -heating techniques in material processing. Thermal analysisIrreversible Thermodynamics in Materials Problems", in Mass

Olander, D.R.

2010-01-01T23:59:59.000Z

348

On the fracture toughness of advanced materials  

E-Print Network [OSTI]

toughness of advanced materials ?? By Maximilien E. LauneyAbstract: Few engineering materials are limited by theirare manufactured from materials that are comparatively low

Launey, Maximilien E.

2009-01-01T23:59:59.000Z

349

Cybersecurity Awareness Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cybersecurity Awareness Materials Cybersecurity Awareness Materials The OCIO develops and distributes a variety of awareness material to be used during cyber awareness campaigns or...

350

Materials Theory, Modeling and Simulation | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Characterization Materials Theory and Simulation Quantum Monte Carlo Density Functional Theory Monte Carlo Ab Initio Molecular Dynamics Chemical and Materials Theory...

351

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

352

Chemistry of Organic Electronic Materials 6483-Fall  

E-Print Network [OSTI]

Chemistry of Organic Electronic Materials 6483- Fall Tuesdays organic materials. The discussion will include aspects of synthesis General introduction to the electronic structure of organic materials with connection

Sherrill, David

353

Computational materials: Embedding Computation into the Everyday  

E-Print Network [OSTI]

Computational materials: Embedding Computation into thepaper presents research into material design merging thean integrated part of our material surroundings. Rather than

Thomsen, Mette Ramsgard; Karmon, Ayelet

2009-01-01T23:59:59.000Z

354

Chemical & Engineering Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

355

Sandia National Laboratories: Wavelength Conversion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TechnologiesWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

356

Scientists produce transparent, light-harvesting material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

357

Helpful links for materials transport, safety, etc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Helpful links for materials transport, safety, etc. relating to experiment safety at the APS. Internal Reference Material: Transporting Hazardous Materials "Natural" radioactivity...

358

Sandia National Laboratories: understanding of composite material...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of composite material behavior in realistic wind applications Composite-Materials Fatigue Database Updated On January 22, 2014, in Energy, Materials Science, News, News & Events,...

359

PHASE TRANSFORMATIONS, STABILITY AND MATERIALS INTERACTIONS  

E-Print Network [OSTI]

mechanisms of turbine materials in this environment, whichTurbines Research Opportunities: Thermodynamics and kinetics of material-for designing improved materials. Gas turbines of the closed

Morris, Jr., J.W.

2010-01-01T23:59:59.000Z

360

Computational materials: Embedding Computation into the Everyday  

E-Print Network [OSTI]

building forces, smart materials are dynamic in that theymaterial With a smart material, we should be clearly1] Addington, M. 2001 Smart Materials and Technologies. In A

Thomsen, Mette Ramsgard; Karmon, Ayelet

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sandia National Laboratories: Wavelength Conversion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRCOverviewWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

362

DWPF MATERIALS EVALUATION SUMMARY REPORT  

SciTech Connect (OSTI)

To better ensure the reliability of the Defense Waste Processing Facility (DWPF) remote canyon process equipment, a materials evaluation program was performed as part of the overall startup test program. Specific test programs included FA-04 ('Process Vessels Erosion/Corrosion Studies') and FA-05 (melter inspection). At the conclusion of field testing, Test Results Reports were issued to cover the various test phases. While these reports completed the startup test requirements, DWPF-Engineering agreed to compile a more detailed report which would include essentially all of the materials testing programs performed at DWPF. The scope of the materials evaouation programs included selected equipment from the Salt Process Cell (SPC), Chemical Process Cell (CPC), Melt Cell, Canister Decon Cell (CDC), and supporting facilities. The program consisted of performing pre-service baseline inspections (work completed in 1992) and follow-up inspections after completion of the DWPF cold chemical runs. Process equipment inspected included: process vessels, pumps, agitators, coils, jumpers, and melter top head components. Various NDE (non-destructive examination) techniques were used during the inspection program, including: ultrasonic testing (UT), visual (direct or video probe), radiography, penetrant testing (PT), and dimensional analyses. Finally, coupon racks were placed in selected tanks in 1992 for subsequent removal and corrosion evaluation after chemical runs.

Gee, T.; Chandler, G.; Daugherty, W.; Imrich, K.; Jankins, C.

1996-09-12T23:59:59.000Z

363

Studies of solution-processed organic light-emitting diodes and their materials  

SciTech Connect (OSTI)

A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are based on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin-coated mixed emitting layer (EML) is used, consisting of a polymer and a small molecule that both emit in the near UV and blue. The resulting combined spectra gives a wide band that can be used to create narrow microcavity emission peaks of 373 to 469 nm, depending on the device thickness (i.e. the cavitys optical length). In the process of this effort, the mixed EML presented interesting complexities that we attempt to explain via simulation and morphology study.

Hellerich, Emily [Ames Laboratory] [Ames Laboratory

2013-05-15T23:59:59.000Z

364

Examples of reference material data needed for LBB analysis derived from WGCS-EC-DGXI studies  

SciTech Connect (OSTI)

Mechanical data collected through the sponsorship of the Activity Group 3 <<Materials>> of the Working Group Codes and Standards of DG XI European Commission are pointed out to illustrate their potential use for Leak Before Break analyses. Most of the tensile, fatigue, creep and fracture toughness data have been generated for stainless steels, mainly on modified type 316 L (N), selected for the Super Phoenix LMFBR. Trends for ongoing programs and future works on C-Mn and MnNiMo low alloy steels are provided.

Petrequin, P.; Houssin, B.; Guinovart, J.

1997-04-01T23:59:59.000Z

365

Material selection for electrooptic deflectors  

SciTech Connect (OSTI)

The selection of a material for a practical device is generally guided by a number of criteria, including cost, size, difficulty of fabrication, durability, driver requirements, and system constraints. A quantitative analysis can usually be made for comparison, or a figure of merit can be computed. In the case of materials for electrooptical (EO) devices the choice is often made based on the availability of materials meeting some minimum system requirement. For fast EO deflectors, where a large number of resolvable spots is required, the choice of materials is quite limited. A model of just such a device is proposed; it is based on the resolution of 400 spots and reasonable boundary conditions. The model predicts that to be successful, an EO material must be chosen that has a linear EO coefficient (r/sub 33/) of at least 336 pm/V. A survey was conducted of the EO materials which are generally available. Based on the model and the survey, Czochralski crystal growth of strontium barium niobate (SBN:60) is recommended. Although SBN:60 does not have the largest EO coefficient, it may be the easiest to grow in the required size and optical quality, thus satisfying the availability criterion. It should be borne in mind that many materials may be grown by this technique and there are many new and potential applications for EO materials. 92 refs., 18 figs., 14 tabs.

Not Available

1988-09-01T23:59:59.000Z

366

Materials science Nanotubes get hard  

E-Print Network [OSTI]

Materials science Nanotubes get hard under pressure Proc. Natl Acad. Sci. USA doi:10.1073/pnas.0405877101 (2004) When Zhongwu Wang et al. squeezed carbon nanotubes in a diamond anvil cell, they made nanotubes into diamond itself: the carbon material formed under compression at room temperature seems

Downs, Robert T.

367

Creating Wave-Focusing Materials  

E-Print Network [OSTI]

Basic ideas for creating wave-focusing materials by injecting small particles in a given material are described. The number of small particles to be injected around any point is calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction of the plane acoustic wave is formulated and solved.

A. G. Ramm

2008-05-16T23:59:59.000Z

368

Field of Expertise Materials Science  

E-Print Network [OSTI]

structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

369

Material stabilization characterization management plan  

SciTech Connect (OSTI)

This document presents overall direction for characterization needs during stabilization of SNM at the Plutonium Finishing Plant (PFP). Technical issues for needed data and equipment are identified. Information on material categories and links to vulnerabilities are given. Comparison data on the material categories is discussed to assist in assessing the relative risks and desired processing priority.

GIBSON, M.W.

1999-08-31T23:59:59.000Z

370

Superconductivity and Magnetism: Materials Properties  

E-Print Network [OSTI]

.g. within high-Tc superconductivity, magnetic superconductors, MgB2, CMR materials, nanomagnetism and spin#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 Risø National Laboratory Roskilde, Denmark ISBN 87-550-3244-3 ISSN 0907-0079 #12;Superconductivity

371

Nuclear Material Control and Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

2011-06-27T23:59:59.000Z

372

Radioactive Material Transportation Practices Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

2008-06-04T23:59:59.000Z

373

Solar Thermal Reactor Materials Characterization  

SciTech Connect (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

374

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

375

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

Newman, D.F.; Ross, W.A.

1990-04-24T23:59:59.000Z

376

Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials, and Aerospace Engineering  

E-Print Network [OSTI]

Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials, and Aerospace.mmae.iit.edu Chair: Keith Bowman The Department of Mechanical, Materials, and Aerospace Engineering offers several flexible programs in mechanical and aerospace engineering, with five major areas of study: computer

Heller, Barbara

377

A materials compatibility study in FM-1, a liquid component of a paste extrudable explosive  

SciTech Connect (OSTI)

The chemical compatibility of various metallic and organic containment materials with a constituent of a paste extrudable explosive (PEX) has been examined through a series of long-term exposures. Corrosion coupons and mechanical test specimens (polymers only) were exposed to FM-1, a principal liquid component of PEX, at 74{degree}C. RX-08-FK is the LLNL designator for this formulation. Compatibility was determined by measuring changes in weight, physical dimensions, and mechanical properties, by examining the coupons for discoloration, surface attack, and corrosion products, and by analyzing for dissolved metals in the FM-1. Of the metals and alloys examined, none of the 300 series stainless steels exhibited adequate corrosion resistance after 74 days of exposure. Copper showed evidence of severe uniform surface attack. Monel 400 also exhibited signs of chemical attack. Nickel and tantalum showed less evidence of attack, although neither, was immune to the liquid. Gold coupons developed a ``tarnish`` film. The gold along with an aluminum alloy, 6061 (in the T6 condition) performed the most satisfactorily. A wide range of polymers were tested for 61 days at 74{degree}C. The materials that exhibited the most favorable response in terms of weight change, dimensional stability, and mechanical properties were Kalrez, PTFE Teflon, and polyethylene.

Goods, S.H.; Shepodd, T.J.; Mills, B.E. [Sandia National Labs., Livermore, CA (United States); Foster, P. [Mason and Hanger-Silas Mason Co., Inc., Amarillo, TX (United States). Pantex Plant

1993-09-01T23:59:59.000Z

378

Materials 1 Faculty of Engineering, Department of  

E-Print Network [OSTI]

Materials 1 Faculty of Engineering, Department of --Materials This publication refers syllabuses Materials The Department occupies newly refurbished premises over four floors of the Royal School and research in materials science and engineering, in particular nanomaterials, structural ceramics, theory

379

Reflectance Function Approximation for Material Classification  

E-Print Network [OSTI]

Reflectance Function Approximation for Material Classification Edward Wild CS 766 Final Project This report summarizes the results of a project to approximate reflectance functions and classify materials to classify materials. Classification algorithms are proposed to deal with unseen materials. Experimental

Dyer, Charles R.

380

Study of Interfacial Interactions Using Thing Film Surface Modification: Radiation and Oxidation Effects in Materials  

SciTech Connect (OSTI)

Interfaces play a key role in dictating the long-term stability of materials under the influence of radiation and high temperatures. For example, grain boundaries affect corrosion by way of providing kinetically favorable paths for elemental diffusion, but they can also act as sinks for defects and helium generated during irradiation. Likewise, the retention of high-temperature strength in nanostructured, oxide-dispersion strengthened steels depends strongly on the stoichiometric and physical stability of the (Y, Ti)-oxide particles/matrix interface under radiation and high temperatures. An understanding of these interfacial effects at a fundamental level is important for the development of materials for extreme environments of nuclear reactors. The goal of this project is to develop an understanding stability of interfaces by depositing thin films of materials on substrates followed by ion irradiation of the film-substrate system at elevated temperatures followed by post-irradiation oxidation treatments. Specifically, the research will be performed by depositing thin films of yttrium and titanium (~500 nm) on Fe-12%Cr binary alloy substrate. Y and Ti have been selected as thin-film materials because they form highly stable protective oxides layers. The Fe-12%Cr binary alloy has been selected because it is representative of ferritic steels that are widely used in nuclear systems. The absence of other alloying elements in this binary alloy would allow for a clearer examination of structures and compositions that evolve during high-temperature irradiations and oxidation treatments. The research is divided into four specific tasks: (1) sputter deposition of 500 nm thick films of Y and Ti on Fe-12%Cr alloy substrates, (2) ion irradiation of the film-substrate system with 2MeV protons to a dose of 2 dpa at temperatures of 300C, 500C, and 700C, (3) oxidation of as-deposited and ion-irradiated samples in a controlled oxygen environment at 500C and 700C, (4) multi-scale computational modeling involving first- principle molecular dynamics (FPMD) and coarse-grained dissipative particle dynamics (DPD) approaches to develop theories underlying the evolution and stability of structures and phases. Samples from Tasks 1 to 3 (above) will be rigorously characterized and analyzed using scanning electron microscopy, Auger electron microscopy, x-ray diffraction, Rutherford back scatter spectroscopy, and transmission electron microscopy. Expected outcomes of the experimental work include a quantitative understanding film-substrate interface mixing, evolution of defects and other phases at the interface, interaction of interfaces with defects, and the ability of the Y and Ti films to mitigate irradiation-assisted oxidation. The aforementioned experimental work will be closely coupled with multi-scale molecular dynamics (MD) modeling to understand the reactions at the surface, the transport of oxidant through the thin film, and the stabilities of the deposited thin films under radiation and oxidation. Simulations of materials property changes under conditions of radiation and oxidation require multiple size domains and a different simulation scheme for each of these domains. This will be achieved by coupling the FPMD and coarse-grained kinetic Monte Carlo (KMC). This will enable the comparison of the results of each simulation approach with the experimental results.

Sridharan, Kumar; Zhang, Jinsuo

2014-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

382

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Broader source: Energy.gov (indexed) [DOE]

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

383

CHARACTERIZATION OF SIALON-TYPE MATERIALS  

E-Print Network [OSTI]

testing of ceramic materials. crucihle Thermal Shock Tests.and thermal shock. Among the various ceramic materials being

Spencer, P.N.

2010-01-01T23:59:59.000Z

384

Materials Technologies: Goals, Strategies, and Top Accomplishments...  

Energy Savers [EERE]

Materials Technologies: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP) Materials Technologies: Goals, Strategies, and Top Accomplishments...

385

ITP Industrial Materials: Development and Commercialization of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

386

Evaluation and Characterization of Lightweight Materials: Success...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characterization of Lightweight Materials: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Evaluation and Characterization of Lightweight...

387

Materials Synthesis from Atoms to Systems | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Porous Materials Thin Film Deposition Single Crystal Growth Texture Control Additive Manufacturing Nanomaterials Synthesis Designer Organic Molecules Related Research Materials...

388

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

389

Engineering and Materials for Automotive Thermoelectric Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator,...

390

Catalyst material and method of making  

DOE Patents [OSTI]

The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation.

Matson, Dean W. (Kennewick, WA); Fulton, John L. (Richland, WA); Linehan, John C. (Richland, WA); Bean, Roger M. (Richland, WA); Brewer, Thomas D. (Richland, WA); Werpy, Todd A. (Richland, WA); Darab, John G. (Richland, WA)

1997-01-01T23:59:59.000Z

391

Recent Theoretical Results for Advanced Thermoelectric Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and...

392

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation...

393

High Pressure Hydrogen Materials Compatibility of Piezoelectric...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Hydrogen Materials Compatibility of Piezoelectric Films. High Pressure Hydrogen Materials Compatibility of Piezoelectric Films. Abstract: Abstract: Hydrogen is being...

394

Proliferation resistance criteria for fissile material disposition  

SciTech Connect (OSTI)

The 1994 National Academy of Sciences study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This report proposes criteria for assessing the proliferation resistance of these options. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

Close, D.A.; Fearey, B.L.; Markin, J.T.; Rutherford, D.A. [Los Alamos National Lab., NM (United States); Duggan, R.A.; Jaeger, C.D.; Mangan, D.L.; Moya, R.W.; Moore, L.R. [Sandia National Labs., Albuquerque, NM (United States); Strait, R.S. [Lawrence Livermore National Lab., CA (United States)

1995-04-01T23:59:59.000Z

395

Important material considerations in INTOR  

SciTech Connect (OSTI)

A number of important material-related problems were identified and analyzed during the Phase-I study for INTOR. The first wall and divertor collector plate are subjected to severe normal and off-normal conditions. A melt layer is predicted to develop in a bare stainless steel wall under plasma disruptions. Graphite tiles will not melt but they introduce other serious uncertainties into the design. The design strategy for the divertor collector plate focused on separating the surface and high heat flux problems and on utilizing a novel mechanical design concept for attaching tungsten tiles to a stainless steel (or copper) heat sink.

Abdou, M.A.; Mattas, R.F.; Smith, D.L.

1981-01-01T23:59:59.000Z

396

Investigation of Extractable Materials from  

E-Print Network [OSTI]

The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the authors right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the authors permission before publishing any material from the thesis.

unknown authors

2012-01-01T23:59:59.000Z

397

Transformed materials : a material research center in Milan, Italy  

E-Print Network [OSTI]

[Transformed Materials] is an exploration into today's design methodologies of architecture production. The emergence of architectural form is questioned in relation to the temporal state of design intent and the physical ...

Skerry, Nathaniel S. (Nathaniel Standish), 1971-

2002-01-01T23:59:59.000Z

398

Thermoelasticity of SSP Materials: An Integrated Ultrasonic and X-radiation Study  

SciTech Connect (OSTI)

It has been a very productive year for accomplishing the tasks outlined in the original proposal. Quite a few crystalline materials [tantalum (Ta), molybdenum (Mo), cerium (Ce) beryllium (Be)] and amorphous materials [zirconium tungstate (ZrW2O8), SiO2, and germanium diselenide (GeSe2) glasses] have been assessed at high pressures up to 12 GPa and acoustic velocities and densities have been obtained simultaneously using our unique technique. Major activities include sample preparation, high pressure cell assembly testing, and conducting ultrasonic and X-ray diffraction measurements at BNL as well as resonance ultrasonic spectroscopy (RUS) measurements at UCLA on appropriate samples. Sample preparations for Ce and Be were made at Los Alamos National Lab for which special grades and specialized machining of the sample are required. Pilot experiments for optimizing high pressure cell assemblies were conducted using the 1000-ton multi-anvil press (USCA-1000) in the High Pressure Lab at Stony Brook, and simultaneous ultrasonic and X-ray diffraction experiments were conducted using the DDIA apparatus installed at X17B2 of NSLS at BNL. New data analysis protocols have been developed for deriving density of amorphous materials at high pressure and therefore its equation of state. Following on previous years effort, attempts have been made to derive single crystal elastic constants based on the current measurements on polycrystalline samples at high pressure in conjunction with previous data as well as the current RUS measurements at ambient conditions. Single crystal elastic constants of Tantalum have been measured using RUS techniques at room pressure and high temperature. Educational and training opportunities have been provided for postdoctoral associate researchers, Drs. Wei Liu (project leader for Mo, and ZrW2O8 and SiO2 glass) and Qiong Liu (Ta project leader) and graduate students Mr. Matthew Whitaker (Project Ce and FeSi) and Sytle Antao (GeSe2 glass project). A total of 6 undergraduate students (2 summer students at Stony Brook University, and 4 undergraduates from Azusa Pacific University) participated in the experiments at various stages and benefited from the discussions about the science and research work conducted by our collaborators of the current project at DoE national labs.

Baosheng Li

2008-07-29T23:59:59.000Z

399

Storage depot for radioactive material  

DOE Patents [OSTI]

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

400

Materials for solid state lighting  

SciTech Connect (OSTI)

Dramatic improvement in the efficiency of inorganic and organic light emitting diodes (LEDs and OLEDs) within the last decade has made these devices viable future energy efficient replacements for current light sources. However, both technologies must overcome major technical barriers, requiring significant advances in material science, before this goal can be achieved. Attention will be given to each technology associated with the following major areas of material research: (1) material synthesis, (2) process development, (3) device and defect physics, and (4) packaging. The discussion on material synthesis will emphasize the need for further development of component materials, including substrates and electrodes, necessary for improving device performance. The process technology associated with the LEDs and OLEDs is very different, but in both cases it is one factor limiting device performance. Improvements in process control and methodology are expected to lead to additional benefits of higher yield, greater reliability and lower costs. Since reliability and performance are critical to these devices, an understanding of the basic physics of the devices and device failure mechanisms is necessary to effectively improve the product. The discussion will highlight some of the more basic material science problems remaining to be solved. In addition, consideration will be given to packaging technology and the need for the development of novel materials and geometries to increase the efficiencies and reliability of the devices. The discussion will emphasize the performance criteria necessary to meet lighting applications, in order to illustrate the gap between current status and market expectations for future product.

Johnson, S.G.; Simmons, J.A.

2002-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Material compatibility and thermal aging of thermoelectric materials.  

SciTech Connect (OSTI)

In order to design a thermoelectric (TE) module suitable for long-term elevated temperature use, the Department 8651 has conducted parametric experiments to study material compatibility and thermal aging of TE materials. In addition, a comprehensive material characterization has been preformed to examine thermal stability of P- and N-based alloys and their interaction with interconnect diffusion barrier(s) and solder. At present, we have completed the 7-days aging experiments for 36 tiles, from ambient to 250 C. The thermal behavior of P- and N-based alloys and their thermal interaction with both Ni and Co diffusion barriers and Au-Sn solder were examined. The preliminary results show the microstructure, texture, alloy composition, and hardness of P-(Bi,Sb){sub 2}Te{sub 3} and N-Bi{sub 2}(Te,Se){sub 3} alloys are thermally stable up to 7 days annealing at 250 C. However, metallurgical reactions between the Ni-phosphor barriers and P-type base alloy were evident at temperatures {ge} 175 C. At 250 C, the depth (or distance) of the metallurgical reaction and/or Ni diffusion into P-(Bi,Sb){sub 2}Te{sub 3} is approximately 10-15 {micro}m. This thermal instability makes the Ni-phosphor barrier unsuitable for use at temperatures {ge} 175 C. The Co barrier appeared to be thermally stable and compatible with P(Bi,Sb){sub 2}Te{sub 3} at all annealing temperatures, with the exception of a minor Co diffusion into Au-Sn solder at {ge} 175 C. The effects of Co diffusion on long-term system reliability and/or the thermal stability of the Co barrier are yet to be determined. Te evaporation and its subsequent reaction with Au-Sn solder and Ni and Co barriers on the ends of the tiles at temperatures {ge} 175 C were evident. The Te loss and its effect on the long-term required stoichiometry of P-(Bi, Sb){sub 2}Te{sub 3} are yet to be understood. The aging experiments of 90 days and 180 days are ongoing and scheduled to be completed in 30 days and 150 days, respectively. Material characterization activities are continuing for the remaining tiles.

Gardea, Andrew D.; Nishimoto, Ryan; Yang, Nancy Y. C.; Morales, Alfredo Martin; Whalen, Scott A.; Chames, Jeffrey M.; Clift, W. Miles

2009-09-01T23:59:59.000Z

402

Materials Challenges in Nuclear Energy  

SciTech Connect (OSTI)

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

2013-01-01T23:59:59.000Z

403

Metal recovery from porous materials  

DOE Patents [OSTI]

A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

1992-01-01T23:59:59.000Z

404

Fundamental Properties and Processes of Energetic Materials  

E-Print Network [OSTI]

FUNDAMENTAL PROPERTIES AND PROCESSES OF ENERGETIC MATERIALS A Dissertation by OSCAR ULISES OJEDA MOTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY August 2011 Major Subject: Chemical Engineering Fundamental Properties and Processes of Energetic Materials Copyright 2011 Oscar Ulises Ojeda Mota FUNDAMENTAL...

Ojeda Mota, Oscar Ulises

2012-10-19T23:59:59.000Z

405

MSE 410: Materials Foundations for Energy Applications MSE 810: Materials for Energy Applications  

E-Print Network [OSTI]

; materials for future wind energy needs; thermoelectric materials for solid state energy conversion II: thermoelectric materials Introduction; the design of thermoelectric materials Morelli Jan 31, Feb 2 Module II: thermoelectric materials Thermal and electrical transport properties; model systems

406

2014 Annual Merit Review Results Report - Materials Technologies...  

Energy Savers [EERE]

Materials Technologies: Propulsion Materials 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies...

407

ATOMISTIC MODELING OF ELECTRODE MATERIALS  

Broader source: Energy.gov (indexed) [DOE]

life and rate * High cost of electrode materials * Project lead: Venkat Srinivasan (LBNL) * Marca Doeff (LBNL): Al-substituted layered Li-TM-O 2 * Phil Ross (LBNL) and Gerbrand...

408

Atomistic Modeling of Electrode Materials  

Broader source: Energy.gov (indexed) [DOE]

and rate * High cost of electrode materials * Project lead: John Newman * Marca Doeff (LBNL) on layered Li-TM-O 2 for effects of Al substitution * Phil Ross (LBNL) on nano-LiFePO...

409

Filter casting nanoscale porous materials  

DOE Patents [OSTI]

A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing monolith.

Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Jushua David

2013-12-10T23:59:59.000Z

410

Energetic materials at extreme conditions  

E-Print Network [OSTI]

In order to effectively model the behaviour of energetic materials under operational conditions it is essential to obtain detailed structural information for these compounds at elevated temperature and/or pressures. The ...

Millar, David Iain Archibald

2011-06-27T23:59:59.000Z

411

Herty Advanced Materials Development Center  

Broader source: Energy.gov [DOE]

Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

412

SIDEWALL MATERIALS FOR ALUMINIUM SMELTER  

E-Print Network [OSTI]

SIDEWALL MATERIALS FOR ALUMINIUM SMELTER Reiza Zakia Mukhlis Supervisors: Dr. M. Akbar Rhamdhani heat losses *Grjotheim et al., 1988, Aluminium smelter technology #12;Reducing energy consumption anode cell* *Mukhlis, Rhamdhani and Brooks, TMS 2010 **Grjotheim et al., 1988, Aluminium smelter

Liley, David

413

Optimal Design of Heterogeneous Materials  

E-Print Network [OSTI]

are granular media, soils, polycrystals, sandstone, wood, bone, lungs, blood, animal and plant tissue, cell, electromagnetic, and mechanical properties of heterogeneous materials has a long and venerable history, attracting

Torquato, Salvatore

414

SHORT PROGRAMS Materials By Design  

E-Print Network [OSTI]

techniques including 3D printing, self-assembly, microfluidics and other technologies. We will distribute and analyze material samples designed based on multiscale simulations and manufactured using 3D printing

Entekhabi, Dara

415

Nuclear Material Control and Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Cancels: DOE M 474.1-1B DOE M 474.1-2A

2005-08-26T23:59:59.000Z

416

Nuclear Material Control and Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Chg 1, dated 8-14-06. Canceled by DOE O 474.2.

2005-08-26T23:59:59.000Z

417

Strategic raw material inventory optimization  

E-Print Network [OSTI]

The production of aerospace grade titanium alloys is concentrated in a relatively small number of producers. The market for these materials has always been cyclical in nature. During periods of high demand, metal producers ...

Vacha, Robin L. (Robin Lee)

2007-01-01T23:59:59.000Z

418

Momentive Performance Materials Distillation Intercharger  

E-Print Network [OSTI]

Presenter: Nicki (Collins) Boucher Project Team: T. Baisley, C. Beers, R. Cameron, K. Holman, T. Kotkoskie, K. Norris Momentive Performance Materials Inc. Waterford, NY May 23, 2013 Industrial Energy Technology Conference ACC Responsible... Care? Energy Efficiency Program Momentive Performance Materials Distillation Interchanger ESL-IE-13-05-20 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Copyright 2013 Momentive Performance...

Boucher, N.; Baisley, T.; Beers, C.; Cameron, R.; Holman, K.; Kotkoskie, T.; Norris, K.

2013-01-01T23:59:59.000Z

419

Nondestructive ultrasonic testing of materials  

DOE Patents [OSTI]

Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

Hildebrand, Bernard P. (Richland, WA)

1994-01-01T23:59:59.000Z

420

Nuclear Material Control and Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1.

2011-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nanostructure material for supercapacitor application  

SciTech Connect (OSTI)

Transition metal nitrides and carbonitride materials were fabricated via sol-gel technology. The transition metal amides were synthesized by two methods: chemical route and electrolysis. The transition metal amides were then further polymerized, sintering to high temperature in an inert or reduced atmosphere. Transition metal nitrides and carbonitrides powders with surface area up to 160 m{sup 2}/g were obtained. The resultant electrode material showed high specific capacitance as crystalline ruthenium oxide.

Huang, Y.; Chu, C.T.; Wei, Q.; Zheng, H.

2000-07-01T23:59:59.000Z

422

Nondestructive ultrasonic testing of materials  

DOE Patents [OSTI]

Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

Hildebrand, B.P.

1994-08-02T23:59:59.000Z

423

Methods for degrading lignocellulosic materials  

SciTech Connect (OSTI)

The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.

Vlasenko, Elena (Davis, CA); Cherry, Joel (Davis, CA); Xu, Feng (Davis, CA)

2011-05-17T23:59:59.000Z

424

Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed- and Columnar-Grain Material An Interim Study  

SciTech Connect (OSTI)

Ultrasonic nondestructive evaluation (NDE) and inspection of cast austenitic stainless steel (CASS) components used in the nuclear power industry is neither as effective nor reliable as is needed due to detrimental effects upon the interrogating ultrasonic beam and interference from ultrasonic backscatter. The root cause is the coarse-grain microstructure inherent to this class of materials. Some ultrasonic techniques perform better for particular microstructural classifications and this has led to the hypothesis that an ultrasonic inspection can be optimized for a particular microstructural class, if a technique exists to reliably classify the microstructure for feedback to the inspection. This document summarizes scoping experiments of in-situ ultrasonic methods for classification and/or characterization of the material microstructures in CASS components from the outside surface of a pipe. The focus of this study was to evaluate ultrasonic methods and provide an interim report that documents results and technical progress. An initial set of experiments were performed to test the hypothesis that in-service characterization of cast austenitic stainless steel (CASS) is feasible, and that, if reliably performed, such data would provide real-time feedback to optimize in-service inspections in the field. With this objective in mind, measurements for the experiment were restricted to techniques that should be robust if carried forward to eventual field implementation. Two parameters were investigated for their ability to discriminate between different microstructures in CASS components. The first parameter was a time-of-flight ratio of a normal incidence shear wave to that of a normal incidence longitudinal wave (TOFRSL). The ratio removed dependency on component thickness which may not be accurately reported in the field. The second parameter was longitudinal wave attenuation. The selected CASS specimens provided five equiaxed-grain material samples and five columnar-grain material samples for a two-class discrimination problem. Qualitative TOFRSL estimates and a threshold algorithm classified all 10 material samples correctly and indicated a reliable and robust technique. Qualitative longitudinal wave attenuation estimates and a threshold algorithm also classified all 10 materials samples correctly; however, the technique was not as robust as TOFRSL. The experiments provided promising results and demonstrated that good potential exists for future development of techniques to implement real-time classification of CASS material. However, the reported measurements need to be substantiated with measurements on additional specimens.

Ramuhalli, Pradeep; Good, Morris S.; Diaz, Aaron A.; Anderson, Michael T.; Watson, Bruce E.; Peters, Timothy J.; Dixit, Mukul; Bond, Leonard J.

2009-10-27T23:59:59.000Z

425

A study of the material balance techniques for estimating the initial oil in place in an undersaturated water drive reservoir  

E-Print Network [OSTI]

A STUDY OF THE MATERIAL BALANCE TECHNIQUES FOR ESTIMATING THE INITIAL OIL IN PLACE IN AN UNDERSATURATED WATER DRIVE RESERVOIR A Thesis By SERGIO LUIZ DE MORAES PATO Submitted to the Graduate College of the Texas A&M University in partial... By SERGIO LUIZ DE MORAES PATO Approved as to style and content by: Chairma of Committee Head of Department Member Member August 1967 ACKNOWLEDGEMENTS The author wishes to thank the Petroleo Brasileiro S/A-PETROBRAS for providing the financial...

Pato, Sergio Luiz de Moraes

2012-06-07T23:59:59.000Z

426

Studies on Ca2+-Doped CeBr3 Scintillating Materials  

SciTech Connect (OSTI)

Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide (LaBr3:Ce), their commercial availability and application is limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. The objective of this investigation was to employ aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was investigated as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were investigated using the density functional theory within generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.

Guss, P. [NSTec; Foster, M. E. [SNL; Wong, B. M. [SNL; Doty, F. P. [SNL; Shah, K. [RMD; Squillante, M. [RMD; Glodo, J. [RMD; Yuan, D. [NSTec

2013-07-03T23:59:59.000Z

427

Studies on Ca2+-Doped CeBr3 Scintillating Materials  

SciTech Connect (OSTI)

Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide (LaBr3:Ce), their commercial availability and application is limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. The objective of this investigation was to employ aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was investigated as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were investigated using the density functional theory within generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.

Guss, P. [NSTec; Foster, M. E. [SNL; Wong, B. M. [SNL; Doty, F. P. [SNL; Shah, K. [RMD; Squillante, M. R. [RMD; Shirwadkar, U. [RMD; Hawrami, R. [RMD; Tower, J. [RMD; Yuan, D. [NSTec

2013-09-01T23:59:59.000Z

428

Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon  

SciTech Connect (OSTI)

We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

Saha, Dipendu [ORNL] [ORNL; Li, Yunchao [ORNL] [ORNL; Bi, Zhonghe [ORNL] [ORNL; Chen, Jihua [ORNL] [ORNL; Keum, Jong Kahk [ORNL] [ORNL; Hensley, Dale K [ORNL] [ORNL; Grappe, Hippolyte A. [Oak Ridge Institute for Science and Education (ORISE)] [Oak Ridge Institute for Science and Education (ORISE); Meyer III, Harry M [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Naskar, Amit K [ORNL] [ORNL

2014-01-01T23:59:59.000Z

429

Scanning mid-IR-laser microscopy: an efficient tool for materials studies in silicon-based photonics and photovoltaics  

E-Print Network [OSTI]

A method of scanning mid-IR-laser microscopy has recently been proposed for the investigation of large-scale electrically and recombination-active defects in semiconductors and non-destructive inspection of semiconductor materials and structures in the industries of microelectronics and photovoltaics. The basis for this development was laid with a wide cycle of investigations on low-angle mid-IR-light scattering in semiconductors. The essence of the technical idea was to apply the dark-field method for spatial filtering of the scattered light in the scanning mid-IR-laser microscope together with the local photoexcitation of excess carriers within a small domain in a studied sample, thus forming an artificial source of scattering of the probe IR light for the recombination contrast imaging of defects. The current paper presents three contrasting examples of application of the above technique for defect visualization in silicon-based materials designed for photovoltaics and photonics which demonstrate that this...

Astafiev, O V; Yuryev, V A; 10.1016/S0022-0248(99)00711-3

2011-01-01T23:59:59.000Z

430

Electronic transport in atomically thin layered materials  

E-Print Network [OSTI]

Electronic transport in atomically thin layered materials has been a burgeoning field of study since the discovery of isolated single layer graphene in 2004. Graphene, a semi-metal, has a unique gapless Dirac-like band ...

Baugher, Britton William Herbert

2014-01-01T23:59:59.000Z

431

A Lightweight Material for Heat Exchange Applications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(UHMW-PE) fiber and sheet production that will result in a thermally conductive plastic material. A number of lab-scale studies have shown that thermal conductivity is im-...

432

Evaluation of alternative leachate liner materials  

E-Print Network [OSTI]

The purpose of this study is to evaluate alternative landfill liner materials that could be utilized in conjunction with current liners in order to improve the liner's performance by preventing the release of hazardous chemicals into the subsurface...

Biles, Daniel Franklin

1994-01-01T23:59:59.000Z

433

Radioactive material package seal tests  

SciTech Connect (OSTI)

General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

1990-01-01T23:59:59.000Z

434

Quantitative Characterization of Nanostructured Materials  

SciTech Connect (OSTI)

The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to ??real-world? materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

Dr. Frank (Bud) Bridges, University of California-Santa Cruz

2010-08-05T23:59:59.000Z

435

Level 3 2013/14 Materials Engineering  

E-Print Network [OSTI]

Worsley EGA301 Composite Materials 10 Credits Dr. JC Arnold EG-353 Research Project 30 Credits Dr. CPLevel 3 2013/14 Materials Engineering BEng Materials Science and Engineering[J500,J502,J505] BEng Materials Science and Engineering with a year abroad[J510] MEng Materials Science and Engineering[J504] MEng

Harman, Neal.A.

436

Dielectric characterization of unstabilized aggregate base materials  

E-Print Network [OSTI]

of the material, water ingress, and ambient temperature (1 0, 11). Moisture Susceptibility Research studies in Texas and Finland have demonstrated that moisture susceptibility is related to the suction properties of soils and aggregates (12, 13). Soil suction.... Research studies in Finland have reported reductions in resilient modulus of up to 75 percent from the dry to the wet states for some poorly performing aggregates (12). For these materials, the extent to which water ingress causes damage is dependent...

Guthrie, William Spencer

1999-01-01T23:59:59.000Z

437

Characterizing artificial electromagnetic materials and their hybridization with fundamentally resonant magnetic materials  

E-Print Network [OSTI]

4 Ferromagnetic Materials in Microstrip Structures . . . 4.1Ferromagnetic Materials . . . . . . . . . . . . . . 4.3 The1: positive material 1 , 1 > 0 . . . . . . . . . . . . . .

Gollub, Jonah Nathan

2008-01-01T23:59:59.000Z

438

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis  

E-Print Network [OSTI]

Interface (API). As an example, using pymatgen's interface to the Materials Project's RESTful API materials data via the Materials Pro- ject's REpresentational State Transfer (REST) Application Programming

Southern California, University of

439

Displacement cascades in diatomic materials  

SciTech Connect (OSTI)

A new function, the specified-projectile displacement function p/sub ijk/ (E), is introduced to describe displacement cascades in polyatomic materials. This function describes the specific collision events that produce displacements and hence adds new information not previously available. Calculations of p/sub ijk/ (E) for MgO, Al/sub 2/O/sub 3/ and TaO are presented and discussed. Results show that the parameters that have the largest effect on displacement collision events are the PKA energy and the mass ratio of the atom types in the material. It is further shown that the microscopic nature of the displacement events changes over the entire recoil energy range relevant to fusion neutron spectra and that these changes are different in materials whose mass ratio is near one than in those where it is far from one.

Parkin, D.M.; Coulter, C.A.

1981-01-01T23:59:59.000Z

440

Metal recovery from porous materials  

DOE Patents [OSTI]

A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

Sturcken, E.F.

1992-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Space Reflector Materials for Prometheus Application  

SciTech Connect (OSTI)

The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be-bearing materials require significant controls, handling of clean, finished products requires only modest controls. Neither material was initially considered to be viable as a structural material, however, based on improved understanding of its unirradiated properties, Be should be evaluated due to having potentially acceptable structural properties in the unirradiated condition, i. e., during launch, when loads might be most limiting. All three of the alternative materials are non-hazardous, and thus do not engender the ES&H concerns associated with use of Be or BeO. Aluminum oxide is a widely available ceramic material with well characterized physical properties and well developed processing practices. Although the densest (3.97 g/cm{sup 3} versus Be: 1.85, BeO: 3.01, MgO: 3.58, and MgAl{sub 2}O{sub 4}: 3.60, all theoretical density), and therefore the heaviest, of all the materials considered for this application, its ease of fabrication, mechanical properties, availability and neutronic characteristics warrant its evaluation. Similarly, MgO is widely used in the refractory materials industry and has a large established manufacturing base while being lighter than Al{sub 2}O{sub 3}. Most of the commercially available MgO products incorporate additives or a second phase to avoid the formation of Mg(OH){sub 2} due to spontaneous reaction with ambient humidity. The hygroscopicity of MgO makes it a more difficult material to work with than Al{sub 2}O{sub 3} or MgAl{sub 2}O{sub 4}. Magnesium aluminate spinel, although not as widely available as either Al{sub 2}O{sub 3} or MgO, has the advantage of a density almost as low as MgO without being hygroscopic, and shares comparable neutronic performance characteristics in the reflector application.

J. Nash; V. Munne; LL Stimely

2006-01-31T23:59:59.000Z

442

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

Groh, Edward F. (Naperville, IL); Cassidy, Dale A. (Valparaiso, IN); Dates, Leon R. (Elmwood Park, IL)

1981-01-01T23:59:59.000Z

443

Microrheological Characterisation of Anisotropic Materials  

E-Print Network [OSTI]

We describe the measurement of anisotropic viscoelastic moduli in complex soft materials, such as biopolymer gels, via video particle tracking microrheology of colloid tracer particles. The use of a correlation tensor to find the axes of maximum anisotropy, and hence the mechanical director, is described. The moduli of an aligned DNA gel are reported, as a test of the technique; this may have implications for high DNA concentrations in vivo. We also discuss the errors in microrheological measurement, and describe the use of frequency space filtering to improve displacement resolution, and hence probe these typically high modulus materials.

I A Hasnain; A M Donald

2006-03-03T23:59:59.000Z

444

Porcelain enamel neutron absorbing material  

DOE Patents [OSTI]

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

Iverson, Daniel C. (Aiken, SC)

1990-01-01T23:59:59.000Z

445

Scintillator materials containing lanthanum fluorides  

DOE Patents [OSTI]

An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

Moses, William W. (Berkeley, CA)

1991-01-01T23:59:59.000Z

446

Scintillator materials containing lanthanum fluorides  

DOE Patents [OSTI]

An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

Moses, W.W.

1991-05-14T23:59:59.000Z

447

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

448

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced MaterialMaterialsAdvanced

449

Porcelain enamel neutron absorbing material  

DOE Patents [OSTI]

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

Iverson, D.C.

1987-11-20T23:59:59.000Z

450

Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)  

SciTech Connect (OSTI)

The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, calcium ions, and galvanic coupling to less noble metals are further considered. It is concluded that, as far as materials degradation is concerned, the materials and design adopted in the U.S. Yucca Mountain Project will provide sufficient safety margins within the 10,000-years regulatory period.

F. Hua; P. Pasupathi; N. Brown; K. Mon

2005-09-19T23:59:59.000Z

451

The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study  

SciTech Connect (OSTI)

An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

Liu, Ming; Moxom, Jeremy; Hawari, Ayman I. [Nuclear Reactor Program, Department of Nuclear Engineering, North Carolina State University, P.O. Box 7909, Raleigh, NC 27695 (United States); Gidley, David W. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor MI 48109 (United States)

2013-04-19T23:59:59.000Z

452

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect (OSTI)

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

453

Quantifying uncertainty from material inhomogeneity.  

SciTech Connect (OSTI)

Most engineering materials are inherently inhomogeneous in their processing, internal structure, properties, and performance. Their properties are therefore statistical rather than deterministic. These inhomogeneities manifest across multiple length and time scales, leading to variabilities, i.e. statistical distributions, that are necessary to accurately describe each stage in the process-structure-properties hierarchy, and are ultimately the primary source of uncertainty in performance of the material and component. When localized events are responsible for component failure, or when component dimensions are on the order of microstructural features, this uncertainty is particularly important. For ultra-high reliability applications, the uncertainty is compounded by a lack of data describing the extremely rare events. Hands-on testing alone cannot supply sufficient data for this purpose. To date, there is no robust or coherent method to quantify this uncertainty so that it can be used in a predictive manner at the component length scale. The research presented in this report begins to address this lack of capability through a systematic study of the effects of microstructure on the strain concentration at a hole. To achieve the strain concentration, small circular holes (approximately 100 {micro}m in diameter) were machined into brass tensile specimens using a femto-second laser. The brass was annealed at 450 C, 600 C, and 800 C to produce three hole-to-grain size ratios of approximately 7, 1, and 1/7. Electron backscatter diffraction experiments were used to guide the construction of digital microstructures for finite element simulations of uniaxial tension. Digital image correlation experiments were used to qualitatively validate the numerical simulations. The simulations were performed iteratively to generate statistics describing the distribution of plastic strain at the hole in varying microstructural environments. In both the experiments and simulations, the deformation behavior was found to depend strongly on the character of the nearby microstructure.

Battaile, Corbett Chandler; Emery, John M.; Brewer, Luke N.; Boyce, Brad Lee

2009-09-01T23:59:59.000Z

454

New Materials for NGNP/Gen IV  

SciTech Connect (OSTI)

The bounding conditions were briefly summarized for the Next Generation Nuclear Plant (NGNP) that is the leading candidate in the Department of Energy Generation IV reactor program. Metallic materials essential to the successful development and proof of concept for the NGNP were identified. The literature bearing on the materials technology for high-temperature gas-cooled reactors was reviewed with emphasis on the needs identified for the NGNP. Several materials were identified for a more thorough study of their databases and behavioral features relative to the requirements ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NH.

Robert W. Swindeman; Douglas L. Marriott

2009-12-18T23:59:59.000Z

455

Towards an integrated materials characterization toolbox  

E-Print Network [OSTI]

The material characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when material scientists can quantify material structure evolution across ...

Robertson, Ian M.

456

Magnetic spectroscopy and microscopy of functional materials  

E-Print Network [OSTI]

in the classical Heusler material Co 2 FeSi (Appendix B).plated self-assembly. Nature Materials, 3:823828, 2004.1 Concepts Functional materials are those with an industrial

Jenkins, C.A.

2012-01-01T23:59:59.000Z

457

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS  

E-Print Network [OSTI]

MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

Magee, Joseph W.

458

Tough, bio-inspired hybrid materials  

E-Print Network [OSTI]

S. Magonov, B. Ozturk, Nature Materials 2, 413 (Jun, L. J.Ager, R. O. Ritchie, Nature Materials 7, 672 (Aug, 2008). A.Guiden, Journal of Composite Materials D. R. Johnson, X. F.

Munch, Etienne

2009-01-01T23:59:59.000Z

459

Carbon-based Materials for Energy Storage  

E-Print Network [OSTI]

K. and Beguin, F. et. al Materials Science and Engineering BF. Advanced Functional Materials 17, 11, 1828-1836 (2007)and Silicone- Modified Materials ch7, 82-99 (2007) 3. Gdda,

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

460

CHARACTERIZATION OF SIALON-TYPE MATERIALS  

E-Print Network [OSTI]

an Economical Refractory Material", Industrial Heating, 50-of Sialon-Type Materials Newman Spencer Lawrence BerkeleyEXPERIHENTAL PROCEDURES A. The Material L Ml H2 M3 and M4 B.

Spencer, P.N.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Systems and methods for treating material  

DOE Patents [OSTI]

Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portion from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.

Scheele, Randall D; McNamara, Bruce K

2014-10-21T23:59:59.000Z

462

Managing Research Materials and Data: Recordkeeping Guidelines  

E-Print Network [OSTI]

Managing Research Materials and Data: Recordkeeping Guidelines 1. Introduction Research Council and Universities Australia Managing Research Materials and Data: Recordkeeping Guidelines the management and disposal of research materials and data in accordance with the requirements

463

Mehrdad Negahban, Associate Chair for Graduate Studies and Research Mechanical Engineering, Engineering Mechanics, Materials Engineering, Biomedical Engineering  

E-Print Network [OSTI]

, Engineering Mechanics, Materials Engineering, Biomedical Engineering The graduate program in Mechanical and Materials Engineering: · 32 research faculty working in: ­ Biomedical Engineering ­ Computational Methods; with France) · Ph.D. of Engineering in: ­ Mechanical Engineering and Applied Mechanics (MEAM) ­ Biomedical

Farritor, Shane

464

Numerical Study of the Influence of the Convective Heat Transfer on the Dynamical Behaviour of a Phase Change Material Wall  

E-Print Network [OSTI]

. It is then a potential method for reducing energy consumption in passively designed buildings. This tendency is confirmed, the use of Phase Change Materials (PCM) allows the storage/release of energy from solar radiation and internal loads. The application of such materials for lightweight construction (e.g., a wood house) makes

465

Mehrdad Negahban, Associate Chair for Graduate Studies and Research Mechanical Engineering, Engineering Mechanics, Materials Engineering, Biomedical Engineering  

E-Print Network [OSTI]

­ Dynamics and Vibrations ­ Fluid Mechanics ­ Manufacturing ­ Materials Engineering ­ Solid Mechanics Wave Propagation · Solar Engineering · Thermal-Fluids Engineering 3 John P. Barton #12;Mechanical Mechanics, Materials Engineering, Biomedical Engineering RECENT PROJECTS · Catheter deployable fluid diode

Farritor, Shane

466

Space Shielding Materials for Prometheus Application  

SciTech Connect (OSTI)

At the time of Prometheus program restructuring, shield material and design screening efforts had progressed to the point where a down-selection from approximately eighty-eight materials to a set of five ''primary'' materials was in process. The primary materials were beryllium (Be), boron carbide (B{sub 4}C), tungsten (W), lithium hydride (LiH), and water (H{sub 2}O). The primary materials were judged to be sufficient to design a Prometheus shield--excluding structural and insulating materials, that had not been studied in detail. The foremost preconceptual shield concepts included: (1) a Be/B{sub 4}C/W/LiH shield; (2) a Be/B{sub 4}C/W shield; (3) and a Be/B{sub 4}C/H{sub 2}O shield. Since the shield design and materials studies were still preliminary, alternative materials (e.g., {sup nal}B or {sup 10}B metal) were still being screened, but at a low level of effort. Two competing low mass neutron shielding materials are included in the primary materials due to significant materials uncertainties in both. For LiH, irradiation-induced swelling was the key issue, whereas for H{sub 2}O, containment corrosion without active chemistry control was key, Although detailed design studies are required to accurately estimate the mass of shields based on either hydrogenous material, both are expected to be similar in mass, and lower mass than virtually any alternative. Unlike Be, W, and B{sub 4}C, which are not expected to have restrictive temperature limits, shield temperature limits and design accommodations are likely to be needed for either LiH or H{sub 2}O. The NRPCT focused efforts on understanding swelting of LiH, and observed, from approximately fifty prior irradiation tests, that either casting ar thorough out-gassing should reduce swelling. A potential contributor to LiH swelling appears to be LiOH contamination due to exposure to humid air, that can be eliminated by careful processing. To better understand LiH irradiation performance and mitigate the risks in LiH development for a project with an aggressive schedule like JIMO, some background or advanced development effort for LiH should be considered for future space reactor projects.

R. Lewis

2006-01-20T23:59:59.000Z

467

Crystallization and functionality of inorganic materials  

SciTech Connect (OSTI)

In this article, we briefly summarized our recent work on the studies of crystallization and functionality of inorganic materials. On the basis of the chemical bonding theory of single crystal growth, we can quantitatively simulate Cu{sub 2}O crystallization processes in solution system. We also kinetically controlled Cu{sub 2}O crystallization process in the reduction solution route. Lithium ion battery and supercapacitor performances of some oxides such as Co{sub 3}O{sub 4} and MnO{sub 2} were shown to elucidate the important effect of crystallization on functionality of inorganic materials. This work encourages us to create novel functionalities through the study of crystallization of inorganic materials, which warrants more chances in the field of functional materials.

Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China) [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Li, Keyan [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Jun [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, 411105 (China)] [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, 411105 (China); Sun, Congting; Chen, Kunfeng [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China) [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

2012-10-15T23:59:59.000Z

468

Nondestructive evaluation of advanced ceramic composite materials  

SciTech Connect (OSTI)

Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

Lott, L.A.; Kunerth, D.C.; Walter, J.B.

1991-09-01T23:59:59.000Z

469

Combinatorial Approach for Hydrogen Storage Materials (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen...

470

Center for Lightweighting Automotive Materials and Processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ti010mallick2011o.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

471

Center for Lightweighting Automotive Materials and Processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ti06mallick.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

472

Sandia National Laboratories: Combining 'Tinkertoy' Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

473

Composite materials with integrated embedded sensing networks  

E-Print Network [OSTI]

Interlaminar Response of Composite Materials , ed. N. J.in fibre-reinforced composite structures with embedded fibreDutton, and D. Kelly. 2004. Composite Materials for Aircraft

Schaaf, Kristin Leigh

2008-01-01T23:59:59.000Z

474

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 -- Washington D.C. lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

475

Advanced Battery Materials Characterization: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Dr. E. Andrew Payzant, ORNL Project ID lmp02payzant This...

476

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation lm028laracurzio2011o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

477

Materials Characterization Capabilities at the High Temperature...  

Broader source: Energy.gov (indexed) [DOE]

and Peer Evaluation Meeting lm028laracurzio2012o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

478

Advanced Thermoelectric Materials and Generator Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

479

Materials Selection Considerations for Thermal Process Equipment...  

Broader source: Energy.gov (indexed) [DOE]

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

480

Advanced Materials for Proton Exchange Membranes | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Materials for Proton Exchange Membranes Advanced Materials for Proton Exchange Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19,...

Note: This page contains sample records for the topic "materials materials studied" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Lightweighting and Propulsion Materials Roadmapping Workshop...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief 2012 DOE Hydrogen and Fuel Cells Program...

482

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 18-22, 2009 -- Washington D.C. lm01laracurzio.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

483

High-Temperature Thermoelectric Materials Characterization for...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

484

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

485

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites 2011 DOE...

486

Thermoelectric Bulk Materials from the Explosive Consolidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

487

High Temperature Thermoelectric Materials Characterization for...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

488

Develop & evaluate materials & additives that enhance thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

evaluate materials & additives that enhance thermal & overcharge abuse Develop & evaluate materials & additives that enhance thermal & overcharge abuse 2009 DOE Hydrogen Program...

489

Develop & Evaluate Materials & Additives that Enhance Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel...

490

Critical Materials Workshop Plenary Session Videos | Department...  

Broader source: Energy.gov (indexed) [DOE]

Critical Materials Workshop Plenary Session Videos Critical Materials Workshop Plenary Session Videos Welcome and Overview of Workshop and Energy Innovation Hubs Speakers * Dr. Leo...

491

Collaboration Shines in Materials Project Success  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collaboration Shines in Materials Project Success Collaboration Shines in Materials Project Success Many Hands at Lab Lift 'World-Changing Idea' to New Heights December 12, 2013 |...

492

Waste Package Materials Performance Peer Review | Department...  

Broader source: Energy.gov (indexed) [DOE]

Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review A consensus peer review of the current technical basis and the planned experimental...

493

Incorporating Copyrighted Material into STI Products | Scientific...  

Office of Scientific and Technical Information (OSTI)

Material into STI Products Print page Print page Most contractors have standard procedures that their researchers are not to include third-party copyrighted material within...

494

Free Material Optimization with Fundamental Eigenfrequency ...  

E-Print Network [OSTI]

The goal of this paper is to formulate and solve free material optimization ... Free material optimization (FMO) is a branch of structural optimization that gains in-.

2008-10-28T23:59:59.000Z

495

LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS  

SciTech Connect (OSTI)

LSGM electrolyte and LSCF cathode materials were synthesized via solid state reaction and wet-chemical method. From these materials, symmetrical cells were fabricated for electrochemical characterizations.

Keqin Huang

2002-04-30T23:59:59.000Z

496

An Inexpensive Brazable Material for Magnetostrictive Sensors...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

More Like This Return to Search An Inexpensive Brazable Material for Magnetostrictive Sensors and Other Applications Based on Ferrite Materials Ames Laboratory Contact AMES About...

497

A MECHANICAL STRAIN SENSOR FOR POLYMERIC MATERIALS  

E-Print Network [OSTI]

A MECHANICAL STRAIN SENSOR FOR POLYMERIC MATERIALS AND PHOTOPHYSICAL INVESTIGATIONS OF LARGE ...................................................................................................... 17 A MECHANICAL STRAIN SENSOR FOR POLYMERIC MATERIALS ....... 21 3.1 Introduction

498

Scoping Materials | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Environmental Policy Act (NEPA) NEPA Reading Room SEIS for the Production of Tritium in a Commercial Light Water Reactor Scoping Materials Scoping Materials Scoping...

499

Magnesium Research in the Automotive Lightweighting Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Automotive Lightweighting Materials Program Magnesium Research in the Automotive Lightweighting Materials Program Presentation from the U.S. DOE Office of Vehicle...

500

Life Cycle Modeling of Propulsion Materials  

Broader source: Energy.gov (indexed) [DOE]

propulsion materials manufacturing technologies with an emphasis on aluminum, magnesium, titanium, and ceramics * Advanced propulsion materials' potential in heavy-duty...