Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MATERIAL HANDLING, STORAGE, AND DISPOSAL  

E-Print Network [OSTI]

Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

US Army Corps of Engineers

2

Guidance for use of Radiology Devices and Radioactive Materials in Research Protocols  

E-Print Network [OSTI]

Guidance for use of Radiology Devices and Radioactive Materials in Research Protocols Definition preparation, handling, storage, administration, and waste disposal in sufficient detail to permit a radiological hazards evaluation of the proposal, including potential for radiation dose to other health care

Puglisi, Joseph

3

Calculations of the radiological environment for handling of ISOLDE targets  

E-Print Network [OSTI]

Vehicle (AGV): Fully autonomous vehicle Integrated robot arm Robot mounted vision system for precise robot control Control + battery Shielded transport box Robot arm Vision system 4th High Power Targetry Workshop, May 2-6 2011 #12;Current target handling system J. Vollaire5 Two robots mounted on rails (located

McDonald, Kirk

4

MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION  

E-Print Network [OSTI]

MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

5

GTRI's Nuclear and Radiological Material Removal | National Nuclear...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and permanently disposing of excess, disused, unwanted, or abandoned radiological material overseas. This includes the recovery of Russian radioisotope thermoelectric...

6

Method and apparatus for in-cell vacuuming of radiologically contaminated materials  

DOE Patents [OSTI]

A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.

Spadaro, Peter R. (Pittsburgh, PA); Smith, Jay E. (Pittsburgh, PA); Speer, Elmer L. (Ruffsdale, PA); Cecconi, Arnold L. (Clairton, PA)

1987-01-01T23:59:59.000Z

7

Operating Experience Level 3, Losing Control: Material Handling Dangers  

Broader source: Energy.gov [DOE]

This Operating Experience Level 3 (OE-3) document provides information about the dangers inherent in material handling and the role hazard analysis, work planning, and walkdowns can play in preventing injuries during heavy equipment moves. More than 200 material handling events reported to the Occurrence Reporting and Processing System (ORPS) from January 1, 2010, through August 31, 2014.

8

Method of preparing and handling chopped plant materials  

DOE Patents [OSTI]

The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

Bransby, David I. (2668 Wire Rd., Auburn, AL 36832)

2002-11-26T23:59:59.000Z

9

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect (OSTI)

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

10

CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installing the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The Carrier Preparation Building Materials Handling System interfaces with the Cask/Carrier Transport System to move the carriers to and from the system. The Carrier Preparation Building System houses the equipment and provides the facility, utility, safety, communications, and auxiliary systems supporting operations and protecting personnel.

E.F. Loros

2000-06-28T23:59:59.000Z

11

Human error contribution to nuclear materials-handling events  

E-Print Network [OSTI]

This thesis analyzes a sample of 15 fuel-handling events from the past ten years at commercial nuclear reactors with significant human error contributions in order to detail the contribution of human error to fuel-handling ...

Sutton, Bradley (Bradley Jordan)

2007-01-01T23:59:59.000Z

12

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use. Rigging Equipment for Material Handling Safety Tip #19 At your job or at the plate, you can't get home on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

Minnesota, University of

13

Ross Hazardous and Toxic Materials Handling Facility: Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) owns a 200-acre facility in Washington State known as the Ross Complex. Activities at the Ross Complex routinely involve handling toxic substances such as oil-filled electrical equipment containing polychlorinated biphenyls (PCBs), organic and inorganic compounds for preserving wood transmission poles, and paints, solvents, waste oils, and pesticides and herbicides. Hazardous waste management is a common activity on-site, and hazardous and toxic substances are often generated from these and off-site activities. The subject of this environmental assessment (EA) concerns the consolidation of hazardous and toxic substances handling at the Complex. This environmental assessment has been developed to identify the potential environmental impacts of the construction and operation of the proposal. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) to determine if the proposed action is likely to have a significant impact on the environment. In addition to the design elements included within the project, mitigation measures have been identified within various sections that are now incorporated within the project. This facility would be designed to improve the current waste handling practices and to assist BPA in meeting Federal and state regulations.

URS Consultants, Inc.

1992-06-01T23:59:59.000Z

14

ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2013  

SciTech Connect (OSTI)

This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the fourth quarter of 2013.

Kurtz, J.; Sprik, S.; Peters, M.

2014-06-01T23:59:59.000Z

15

Webinar February 17: Material Handling Fuel Cells for Building Electric Peak Shaving Applications  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications" on Tuesday, February 17, from 12 to 1 p.m. Eastern Standard Time.

16

ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2012  

SciTech Connect (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the second quarter of 2012.

Kurtz, J.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-10-01T23:59:59.000Z

17

ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012  

SciTech Connect (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

2013-05-01T23:59:59.000Z

18

ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2013  

SciTech Connect (OSTI)

This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the second quarter of 2013.

Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

19

Early Markets: Fuel Cells for Material Handling Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM Included NotFederal4 - InMaterial

20

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Applying radiological emergency planning experience to hazardous materials emergency planning within the nuclear industry  

SciTech Connect (OSTI)

The nuclear industry has extensive radiological emergency planning (REP) experience that is directly applicable to hazardous materials emergency planning. Recently, the Feed Materials Production Center near Cincinnati, Ohio, successfully demonstrated such application. The REP experience includes conceptual bases and standards for developing plans that have been tested in hundreds of full-scale exercises. The exercise program itself is also well developed. Systematic consideration of the differences between chemical and radiological hazards shows that relatively minor changes to the REP bases and standards are necessary. Conduct of full-scale, REP-type exercises serves to test the plans, provide training, and engender confidence and credibility.

Foltman, A.; Newsom, D.; Lerner, K.

1988-01-01T23:59:59.000Z

22

TITLE III EVALUATION REPORT FOR THE MATERIAL AND PERSONNEL HANDLING SYSTEM  

SciTech Connect (OSTI)

This Title III Evaluation Report (TER) provides the results of an evaluation that was conducted on the Material and Personnel Handling System. This TER has been written in accordance with the ''Technical Document Preparation Plan for the Mined Geologic Disposal System Title III Evaluation Reports'' (BA0000000-01717-4600-00005 REV 03). The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Material and Personnel Handling System. Recommendations for resolving discrepancies between the as-constructed system, the technical baseline requirements, and the baseline design are included in this report. Cost and Schedule estimates are provided for all recommended modifications.

T. A. Misiak

1998-05-21T23:59:59.000Z

23

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

24

Algorithms and Automated Material Handling Systems Design for Stacking 3D Irregular Stone Pieces  

E-Print Network [OSTI]

ALGORITHMS AND AUTOMATED MATERIAL HANDLING SYSTEMS DESIGN FOR STACKING 3D IRREGULAR STONE PIECES A Thesis by MING-CHENG KO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Sheng-Jen (?Tony?) Hsieh Committee Members, Sai C...

Ko, Ming-Cheng

2011-10-21T23:59:59.000Z

25

Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement  

SciTech Connect (OSTI)

Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

Seguin, Nicole R. [Los Alamos National Laboratory

2012-07-18T23:59:59.000Z

26

Testing for characterization of the materials from radiological point of view  

SciTech Connect (OSTI)

The nuclear techniques and materials are now used in a large number of applications, both in medicine and industry. Due to this fact, new materials are needed in order to assure the radiological protection of the personnel involved in these activities. But, finally, all these materials have to be tested for some specific parameters, in order to prove that they are adequate for the purposed for which they were created. One of the important parameters of the materials used for the radiological protection is the attenuation coefficient. The attenuation coefficient of the ionizing radiation composed by particles without electrical charge (X,?-ray and neutron) is the most important parameter for the materials used for the shielding of these ionizing radiation. This paper deals with the experimental methods developed for the determination of the attenuation of fast and thermal neutrons. These experimental methods, involved the use of Am-Be source and U-120 Cyclotron of IFIN-HH. For the tests which were done at the U-120 Cyclotron, a number of experiments had to be performed, in order to establish the irradiation geometry and the dose equivalent rates in front of and behind the material samples. The experimental results obtained for samples of several materials, confirmed the methods as adequate for the aim of the test.

Bercea, Sorin; Iliescu, Elena; Dudu, Dorin; Iancso, Georgeta [National Institute of R and D for Physics and Nuclear Engineering-Horia Hulubei , Reactorului 30 St, P.O.BOX MG-6,Magurele, cod 077125 (Romania)

2013-12-16T23:59:59.000Z

27

Radiological Modeling for Determination of Derived Concentration Levels of an Area with Uranium Residual Material - 13533  

SciTech Connect (OSTI)

As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remain in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)

Perez-Sanchez, Danyl [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)] [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)

2013-07-01T23:59:59.000Z

28

U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)  

SciTech Connect (OSTI)

This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

29

Estimated energy expenditure during a manual material handling task: the prolonged effect of wearing the Oxylog System  

E-Print Network [OSTI]

This purpose of this study was to evaluate the prolonged effect of wearing the Oxylog System from Morgan Scientific, Inc. during a series of four manual material handling tests. The lift tests were performed by 12 males (average age of 23 years...

Mudd, Michelle Leigh

1998-01-01T23:59:59.000Z

30

Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals  

SciTech Connect (OSTI)

The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project are due to: i) a reduced number of process shutdowns to change hardware or lining material, ii) reduced need to produce new hardware or lining material, iii) improved product quality leads to reduced need to remake product or manufacturing of new product, iv) reduction in contamination of melt from degradation of refractory and metallic components, v) elimination of worn hardware will increase efficiency of process, vi) reduced refractory lining deterioration or formation of a less insulating phase, would result in decreased heat loss through the walls. Projected 2015 benefits for the U.S. aluminum industry, assuming 21% market penetration of improved refractory materials, are energy savings of approximately 0.2 trillion BTU/year, cost savings of $2.3 billion/year and carbon reductions of approximately 1.4 billion tons/year. The carbon reduction benefit of the project for the hot-dip galvanize and aluminum industries combined is projected to be approximately 2.2 billion tons/year in 2015. Pathways from research to commercialization were based on structure of the project’s industrial partnerships. These partnerships included suppliers, industrial associations, and end users. All parties were involved in conducting the project including planning and critiquing the trials. Supplier companies such as Pyrotech Metaullics, Stoody, and Duraloy have commercialized products and processes developed on the project.

Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

2009-02-06T23:59:59.000Z

31

Proposal for Construction/Demonstration/Implementation of A Material Handling System  

SciTech Connect (OSTI)

Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the assumptions and conditions identified in Section 6 of this proposal.

Jim Jnatt

2001-08-24T23:59:59.000Z

32

Radiological Control Manual  

SciTech Connect (OSTI)

This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

Not Available

1993-04-01T23:59:59.000Z

33

Power-law distributions in events involving nuclear and radiological materials  

E-Print Network [OSTI]

Nuclear and radiological events are large-impact, hard-to-predict rare events, whose associated probability is exceedingly low. They can exert monumental impacts and lead to grave environmental and economic consequences. ...

Chow, Jijun

2009-01-01T23:59:59.000Z

34

Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment  

SciTech Connect (OSTI)

Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

35

Health care facility-based decontamination of victims exposed to chemical, biological, and radiological materials  

E-Print Network [OSTI]

contaminants, and management of contaminated materials andmanagement, triage, surveillance, decontamination procedures and materials,from the body, and management of contaminated materials and

Koenig, Kristi L MD

2008-01-01T23:59:59.000Z

36

Commercial Environmental Cleanup -- The products and services directory. Treatment, characterization and extraction/delivery/materials handling technologies  

SciTech Connect (OSTI)

This directory is patterned after the telephone Yellow Pages and is designed as a reference tool to those who may seek commercial remedies for their environmental cleanup problems. It offers the user the opportunity to survey 325 environmental cleanup businesses that currently market their products and services through 1,134 applications of commercially available technologies. Like the Yellow Pages, the Directory furnishes the user with points-of-contact to investigate the capabilities of the listed companies to perform within acceptable standards, practices, and costs and to meet a user`s specific needs. The three major sections of the Directory are organized under the broad headings of Treatment, Characterization, and Extraction/Delivery/Materials Handling. Within each section, information is grouped according to the applicable contaminant medium and companies are listed alphabetically under each medium heading. Not all vendors in the environmental cleanup business are included in this first edition of the Directory. Future editions will more completely reflect the status of the industry. The database of the commercial cleanup products and services Directory will be offered on the Internet in the future and will be available on the Homepage www.doe.gjpo.com.

NONE

1995-11-01T23:59:59.000Z

37

Correlation of injury occurrence data with estimated maximal aerobic capacity and body composition in a high frequency manual materials handling task  

E-Print Network [OSTI]

knowledge in the area of exercise physiology. I would also like to express my appreciation to the management of the manual materials handling company for their untiring assistance and organization. Credit must also be given to the manual materials..., Bicycle, and Step Tests Based on Oxygen Uptake Responses, Medicine and Science in Sports, 3, 149-154. National Institute of Occupational Safety and Health. (1981). A Work Practices Guide for Manual Lifting, Cincinnati, OH: US Department of Health...

Craig, Brian Nichols

1995-01-01T23:59:59.000Z

38

radiological | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

radiological radiological Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate...

39

EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York  

Broader source: Energy.gov [DOE]

The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors.

40

Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436  

SciTech Connect (OSTI)

Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)] [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)] [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David Frederick

2012-02-01T23:59:59.000Z

42

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike Lewis

2014-02-01T23:59:59.000Z

43

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David B. Frederick

2011-02-01T23:59:59.000Z

44

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike lewis

2013-02-01T23:59:59.000Z

45

Radiological Assistance Program, DOE Region 6 response plan  

SciTech Connect (OSTI)

This program plan meets all the requirements identified in DOE Order 5530.3, Radiological Assistance Program and supports those requirements leading to the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC) as required by DOE 5530-5. Requests for radiological assistance may come from other DOE facilities, Federal or state agencies, tribal officials, or from any private corporation or individual. Many of the requests will be handled by a telephone call, a conference or a letter, teletype or memorandum. Other requests for assistance may involve radioactive material in serious accidents, fire, personal injuries, contamination or possible hazards to the general public. Some occurrences may require the dispatch of trained personnel equipped with radiation monitoring instruments and related equipment necessary to evaluate, control and neutralize the hazard. The primary responsibility for incidents involving radioactive material always remains with the party having custody of the radioactive materials. In addition, the DOE recognizes that the assistance provided shall not in any way preempt state, tribal, or local authority and/or responsibility on state or tribal properties. Toward this end, DOE assistance for non-DOE radioactive materials, is limited to technical assistance, advice, measurement and other resources as deemed necessary by the local authorities but excludes DOE interface with the public media. This is a function handled by the local or state Incident Commander.

Jakubowski, F.M.

1993-02-01T23:59:59.000Z

46

Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report  

SciTech Connect (OSTI)

Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

Hancock, David, W.

2012-02-14T23:59:59.000Z

47

Nevada National Security Site Radiological Control Manual  

SciTech Connect (OSTI)

This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

Radiological Control Managers’ Council

2012-03-26T23:59:59.000Z

48

Radiological Control Manual. Revision 0, January 1993  

SciTech Connect (OSTI)

This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

Not Available

1993-04-01T23:59:59.000Z

49

EMSL - radiological  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

radiological en Diffusional Motion of Redox Centers in Carbonate Electrolytes . http:www.emsl.pnl.govemslwebpublicationsdiffusional-motion-redox-centers-carbonate-electrolytes...

50

Radiological safety training for uranium facilities  

SciTech Connect (OSTI)

This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

NONE

1998-02-01T23:59:59.000Z

51

Bulk materials handling equipment roundup  

SciTech Connect (OSTI)

The article reports recent product developments in belt conveyors. Flexco Steel Lancing Co. (Flexco) has a range of light, portable maintenance tools and offers training modules on procedures for belt conveyor maintenance on its website www.flexcosafe.com. Siemens recently fitted a 19 km long conveyor belt drive system at a Texan aluminium plant with five 556-kW Simovent Masterdrive VC drives. Voith recently launched the TPKL-T turbo coupling for users who want an alignment-free drive solution. Belt cleaners newly on the market include the RemaClean SGB brush and ASGCO Manufacturing's Razor-Back with Spray bar. Continental Conveyor has introduced a new line of dead-shaft pulleys offering increased bearing protection. 6 photos.

Fiscor, S.

2007-07-15T23:59:59.000Z

52

Hydrogen Fuel for Material Handling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel CellFuelp

53

Toolbox Safety Talk Material Handling  

E-Print Network [OSTI]

hazards. Know your limit and don't try to exceed it. Ask for help if needed, or divide the load to make can be useful for light, awkward loads, while hand trucks and fork-lifts can help move heavier: ____________________ Location:______

Pawlowski, Wojtek

54

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets  

SciTech Connect (OSTI)

In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

Wheeler, D.; Ulsh, M.

2012-08-01T23:59:59.000Z

55

Paint for detection of radiological or chemical agents  

DOE Patents [OSTI]

A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

Farmer, Joseph C. (Tracy, CA); Brunk, James L. (Martinez, CA); Day, Sumner Daniel (Danville, CA)

2010-08-24T23:59:59.000Z

56

Women in pediatric radiology  

E-Print Network [OSTI]

AM et al. (2001) Pediatric radiology at the millennium.a case study of pediatric radiology. J Am Coll Radiol 6:635–WORKPLACE Women in pediatric radiology M. Ines Boechat # The

Boechat, M. Ines

2010-01-01T23:59:59.000Z

57

DOE handbook: Tritium handling and safe storage  

SciTech Connect (OSTI)

The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

NONE

1999-03-01T23:59:59.000Z

58

INL@Work Radiological Search & Response Training  

ScienceCinema (OSTI)

Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

Turnage, Jennifer

2013-05-28T23:59:59.000Z

59

Estimating radiological background using imaging spectroscopy  

SciTech Connect (OSTI)

Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

2014-06-13T23:59:59.000Z

60

NV/YMP radiological control manual, Revision 2  

SciTech Connect (OSTI)

The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

Gile, A.L. [comp.] [comp.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Radiological and Nuclear Security in A Global Context  

E-Print Network [OSTI]

This paper considers the state of nuclear and radiological security in the UK and abroad and reports on the methods that could be employed by terrorists with radiological or nuclear material to cause destruction. It is shown that despite current safeguards that problems arise due to materials that are unaccounted for and poor implementation of detection regimes in some geographical regions. The prospect of a future terrorist event that involves nuclear or radiological materials seems likely despite best efforts of prevention.

Jones, Nick

2010-01-01T23:59:59.000Z

62

International Data on Radiological Sources  

SciTech Connect (OSTI)

ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

Martha Finck; Margaret Goldberg

2010-07-01T23:59:59.000Z

63

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable Projects FactHandbook onDepartment

64

Pre-Hospital Practices for Handling a Radiologically Contaminated Patient |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactorBatteriesDiseaseDOE SmallQuadrennialN E RDepartment of

65

Vacuum Vessel Remote Handling  

E-Print Network [OSTI]

and Remote Handling 4 Vacuum vessel functions · Plasma vacuum environment · Primary tritium confinement, incl ports 65 tonnes - Weight of torus shielding 100 tonnes · Coolant - Normal Operation Water, Handling 12 Vessel octant subassembly fab. (3) · Octant-to-octant splice joint requires double wall weld

66

Verification Survey of the Building 4059 Site (Phase B); Post Historical Site Assessment Sites, Block 1; and Radioactive Materials Handling Facility HOldup Pond (Site 4614), Santa Susana Field Laboratory, The Boeing Company, Ventura County, California  

SciTech Connect (OSTI)

Confirm that the final radiological conditions were accurately and adequately described in the FSS documentation, relative to the established release criteria.

T.J. Vitkus

2008-06-06T23:59:59.000Z

67

Preconceptual design of a Long-Pulse Spallation Source (LPSS) at the LANSCE Facility: Target system, facility, and material handling considerations  

SciTech Connect (OSTI)

This report provides a summary of a preconceptual design study for the proposed Long-Pulse Spallation. Source (LPSS) at the Los Alamos Neutron Science Center (LANSCE). The LPSS will use a 0.8-MW proton beam to produce neutrons from a tungsten target. This study focuses on the design of the target station and changes to the existing building that would be made to accommodate the LPSS. The LPSS will provide fifteen flight paths to neutron scattering instruments. In addition, options for generating ultracold neutrons, pions, and muons will be available. Flight-energy, forward-scattered neutrons on the downstream side of the target will also be available for autoradiography studies. A Target Test Bed (TTB) is also proposed for full-beam tests of component materials and advanced spallation neutron sources. The design allows for separation of the experiment hall from the beam line, target, and flight paths. The target and moderator systems and the systems/components to be tested in the TTB will be emplaced and removed separately by remotely operated, shielded equipment. Irradiated materials will be transported to a hot cell adjacent to the target chamber for testing by remotely operated instruments. These tests will provide information about how materials properties are affected by proton and neutron beams.

Sommer, W.F. [comp.

1995-12-01T23:59:59.000Z

68

Current Trends in Gamma Ray Detection for Radiological Emergency Response  

SciTech Connect (OSTI)

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

Mukhopadhyay, S., Guss, P., Maurer, R.

2011-08-18T23:59:59.000Z

69

DOE-STD-1071-94; DOE Standard Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage, Retrieval, and Issuance at DOE Nuclear Facilities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 DOE-STD-1070-94 June 1994 DOE71-94

70

Radiological Assistance Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy, procedures, authorities, and responsibilities for its Radiological Assistance Program. Canceled by DOE O 153.1.

1992-04-10T23:59:59.000Z

71

Seed Cotton Handling & Storage  

E-Print Network [OSTI]

Seed Cotton Handling & Storage #12;S.W. Searcy Texas A&M University College Station, Texas M) Lubbock, Texas E.M. Barnes Cotton Incorporated Cary, North Carolina Acknowledgements: Special thanks for the production of this document has been provided by Cotton Incorporated, America's Cotton Producers

Mukhtar, Saqib

72

Method for warning of radiological and chemical substances using detection paints on a vehicle surface  

DOE Patents [OSTI]

A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

Farmer, Joseph C. (Tracy, CA)

2012-03-13T23:59:59.000Z

73

Surface with two paint strips for detection and warning of chemical warfare and radiological agents  

DOE Patents [OSTI]

A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

Farmer, Joseph C.

2013-04-02T23:59:59.000Z

74

Paint for detection of corrosion and warning of chemical and radiological attack  

DOE Patents [OSTI]

A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

Farmer, Joseph C. (Tracy, CA)

2010-08-24T23:59:59.000Z

75

Aerial vehicle with paint for detection of radiological and chemical warfare agents  

DOE Patents [OSTI]

A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

Farmer, Joseph C.; Brunk, James L.; Day, S. Daniel

2013-04-02T23:59:59.000Z

76

Method for warning of radiological and chemical agents using detection paints on a vehicle surface  

DOE Patents [OSTI]

A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

Farmer, Joseph C. (Tracy, CA); Brunk, James L. (Martinez, CA); Day, S. Daniel (Danville, CA)

2012-03-27T23:59:59.000Z

77

How to deal with radiologically contaminated vegetation  

SciTech Connect (OSTI)

This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs.

Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

1996-12-31T23:59:59.000Z

78

Waste Handling and Disposal Biological Safety  

E-Print Network [OSTI]

plumbing services, EHS personnel wastewater treatment plant personnel, and the general public canWaste Handling and Disposal Biological Safety General Biosafety Practices (GBP) Why You Should Care on the next experiment. Are you working with r/sNA, biological toxins, human materials, needles, plasticware

Pawlowski, Wojtek

79

Uranium hexafluoride handling. Proceedings  

SciTech Connect (OSTI)

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

80

NREL: Buildings Research - Webinar Rescheduled: Material Handling...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

attend this webinar. Printable Version Buildings Research Home Commercial Buildings Residential Buildings Facilities Working with Us Publications News Did you find what you...

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ETEC - Radioactive Handling Materials Facility (RMHF) Leachfield |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergyDepartment0:Energy 2: ActionsEPActDepartment of

82

Specialty Vehicles and Material Handling Equipment  

Broader source: Energy.gov (indexed) [DOE]

and hydrophobic treated versions. In addition, we provide all our styles with or without micro porous layers (MPL). As a customer focused company, we invite you to explore with us...

83

Status of ITER neutral beam cell remote handling system  

E-Print Network [OSTI]

The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

2013-01-01T23:59:59.000Z

84

Radiation Safety Training Materials  

Broader source: Energy.gov [DOE]

The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

85

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-05-01T23:59:59.000Z

86

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-08-01T23:59:59.000Z

87

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-10-01T23:59:59.000Z

88

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-04-01T23:59:59.000Z

89

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2009-10-01T23:59:59.000Z

90

DOE standard: Radiological control  

SciTech Connect (OSTI)

The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

Not Available

1999-07-01T23:59:59.000Z

91

Radiological worker training  

SciTech Connect (OSTI)

This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

NONE

1998-10-01T23:59:59.000Z

92

324 Building Baseline Radiological Characterization  

SciTech Connect (OSTI)

This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

R.J. Reeder, J.C. Cooper

2010-06-24T23:59:59.000Z

93

ORISE: Radiological program assessment services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental monitoring programs Operational environments Decontamination and decommissioning projects Compliance assessments Radiological release programs ORISE is actively...

94

Radiology of thoracic diseases  

SciTech Connect (OSTI)

This book presents the essential clinical and radiologic findings of a wide variety of thoracic diseases. The authors include conventional, CT and MR images of each disease discussed. In addition, they present practical differential diagnostic considerations for most of the radiographic findings or patterns portrayed.

Swensen, S.J.; Pugatch, R.D.

1989-01-01T23:59:59.000Z

95

Contact-Handled and Remote-Handled Transuranic Waste Packaging  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel other directives.

2011-08-09T23:59:59.000Z

96

Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste  

SciTech Connect (OSTI)

The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

1986-02-01T23:59:59.000Z

97

GTRI's Nuclear and Radiological Material Protection | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at civilian sites worldwide; Provide specialized alarm response training for on-site security and local law enforcement agencies responsible for monitoring and responding to...

98

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

99

Material Safety Data Sheets | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Material Safety Data Sheets Material Safety Data Sheets Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a...

100

Nuclear & Radiological Activity Center (NRAC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear & Radiological Activity Center (NRAC) Where nuclear research and deployment capabilities come together to solve nuclear nonproliferation challenges. Skip Navigation Links...

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Smart Radiological Dosimeter  

DOE Patents [OSTI]

A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

Kosslow, William J.; Bandzuch, Gregory S.

2004-07-20T23:59:59.000Z

102

Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.F 1325.8 (08-93) Radiological

103

Radiological Work Planning and Procedures  

E-Print Network [OSTI]

Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In add...

Kurtz, J E

2000-01-01T23:59:59.000Z

104

Radiological Release Accident Investigation Report - Phase 1...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Radiological Release Accident Investigation Report - Phase 1 Radiation Report Radiological Release Accident Investigation Report - Phase 1 Radiation Report Phase 1 of this accident...

105

Uranium hexafluoride: A manual of good handling practices. Revision 7  

SciTech Connect (OSTI)

The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

NONE

1995-01-01T23:59:59.000Z

106

Standardized radiological dose evaluations  

SciTech Connect (OSTI)

Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

Peterson, V.L.; Stahlnecker, E.

1996-05-01T23:59:59.000Z

107

Contained radiological analytical chemistry module  

DOE Patents [OSTI]

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

108

Contained radiological analytical chemistry module  

DOE Patents [OSTI]

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

109

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Material

110

GIS Symbology for FRMAC/CMHT Radiological/Nuclear Products  

SciTech Connect (OSTI)

This document is intended to codify, to the extent currently possible, the representation of map products produced for and by the Federal Radiological Monitoring and Assessment Center (FRMAC) and the Consequence Management Home Team (CHMT), particularly those that include model products from the National Atmospheric Release Advisory Capability (NARAC). This is to facilitate consistency between GIS products produced by different members of these teams, which should ease the task of interpreting these products by both team members and those outside the team who may need to use these products during a response. The aspects of symbology being considered are primarily isopleths levels (breakpoints) and colors used to plot NARAC modeled dose or deposition fields on mpas, although some comments will be made about the handling of legend and supporting textual information. Other aspects of symbolizing such products (e.g., transparency) are being left to the individual team members to allow them to adapt to particular organizational needs or requirements that develop during a particular a response or exercise. This document has been written in coordination with the creation of training material in Baskett, et al., 2008. It is not intended as an aid to NARAC product interpretation but to facilitate the work of GIS specialists who deal with these products in map design and in the development of supporting scripts and software that partially or completely automate the integration of NARAC model products with other GIS data. This work was completed as part of the NA-42 Technical Integration Project on GIS Automated Data Processing and Map Production in FY 2008. Other efforts that are part of this work include (a) updating the NARAC shapefile product representation to facilitate the automation work proceed at RSL as part of the same TI effort and (b) to ensure that the NARAC shapefile construct includes all of the necessary legend and other textual data to interpret dispersion and deposition patterns and related products correctly. This document is focusing on the products produced by the GIS Division of the Remove Sensing Laboratory (RSL) and by the National Atmospheric Release Advisory Center (NARAC), both separately and in combination. The expectation is that standard products produced by either group independently or in combination should use the same key attributes in displaying the same kinds of data so that products of a given type generally look similar in key aspects of the presentation, thereby minimizing any confusion of users when a variety of products from these groups may be needed. This document is dealing with the set of common standard products used in responding to radiological/nuclear releases. There are a number of less standard products that are used occasionally or in certain specific situations that are not addressed here. This includes special products that are occasionally produced by both NARAC and RSL in responses and major exercises to meet immediate and unanticipated requirements. At some future time, it may be appropriate to review the handling of such special products by both organizations to determine if there are any areas that would benefit from being integrated with the conventions described here. A particular area that should be addressed in the near-term is that of Derived Response Levels (DRLs) calculated by the Consequence Management Home Team (CMHT) or FRMAC Assessment Scientists. A new calculation is done for every event assigning contour levels, or break-points, based upon field measurements. These contour levels can be applied to deposition or dose rate NARAC calculations. Because these calculations are different every time, they can not be stored in a database.

Walker, H; Aluzzi, F; Foster, K; Pobanz, B; Sher, B

2008-10-06T23:59:59.000Z

111

Stanford Radiology LPCH Fast Pediatric MRI  

E-Print Network [OSTI]

Stanford Radiology LPCH Fast Pediatric MRI Shreyas Vasanawala, MD/PhD Stanford University Lucile Radiology LPCH Thank you Par Lab Briefer, lighter, safer anesthesia for pediatric MRI #12; practice #12;Stanford Radiology LPCH #12;Stanford Radiology LPCH Current Solution INVASIVE LIMITS ACCESS

California at Berkeley, University of

112

Radiological assessment. A textbook on environmental dose analysis  

SciTech Connect (OSTI)

Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

Till, J.E.; Meyer, H.R. (eds.)

1983-09-01T23:59:59.000Z

113

Radiation Shielding and Radiological Protection  

E-Print Network [OSTI]

Radiation Shielding and Radiological Protection J. Kenneth Shultis Richard E. Faw Department@triad.rr.com Radiation Fields and Sources ................................................ . Radiation Field Variables........................................................... .. Direction and Solid Angle Conventions ......................................... .. Radiation Fluence

Shultis, J. Kenneth

114

Radiological Emergency Response Plan (Vermont)  

Broader source: Energy.gov [DOE]

This legislation establishes a radiological emergency response plan fund, into which any entity operating a nuclear reactor or storing nuclear fuel and radioactive waste in this state (referred to...

115

Preliminary assessment of radiological doses in alternative waste management systems without an MRS facility  

SciTech Connect (OSTI)

This report presents generic analyses of radiological dose impacts of nine hypothetical changes in the operation of a waste management system without a monitored retrievable storage (MRS) facility. The waste management activities examined in this study include those for handling commercial spent fuel at nuclear power reactors and at the surface facilities of a deep geologic repository, and the transportation of spent fuel by rail and truck between the reactors and the repository. In the reference study system, the radiological doses to the public and to the occupational workers are low, about 170 person-rem/1000 metric ton of uranium (MTU) handled with 70% of the fuel transported by rail and 30% by truck. The radiological doses to the public are almost entirely from transportation, whereas the doses to the occupational workers are highest at the reactors and the repository. Operating alternatives examined included using larger transportation casks, marshaling rail cars into multicar dedicated trains, consolidating spent fuel at the reactors, and wet or dry transfer options of spent fuel from dry storage casks. The largest contribution to radiological doses per unit of spent fuel for both the public and occupational workers would result from use of truck transportation casks, which are smaller than rail casks. Thus, reducing the number of shipments by increasing cask sizes and capacities (which also would reduce the number of casks to be handled at the terminals) would reduce the radiological doses in all cases. Consolidating spent fuel at the reactors would reduce the radiological doses to the public but would increase the doses to the occupational workers at the reactors.

Schneider, K.J.; Pelto, P.J.; Daling, P.M.; Lavender, J.C.; Fecht, B.A.

1986-06-01T23:59:59.000Z

116

Radiological Protection for DOE Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

1995-09-29T23:59:59.000Z

117

Recent Developments in Field Response for Mitigation of Radiological...  

Energy Savers [EERE]

of technologies and methods to detect, prepare, or manage radiological incidents or accidents . With any radiological accident, radiological dispersal device (RDD), or improvised...

118

Radiological Work Planning and Procedure  

SciTech Connect (OSTI)

Each facility is tasked with maintaining personnel radiation exposure as low as reasonably achievable (ALARA). A continued effort is required to meet this goal by developing and implementing improvements to technical work documents (TWDs) and work performance. A review of selected TWDs from most facilities shows there is a need to incorporate more radiological control requirements into the TWD. The Radioactive Work Permit (RWP) provides a mechanism to place some of the requirements but does not provide all the information needed by the worker as he/she is accomplishing the steps of the TWD. Requiring the engineers, planners and procedure writers to put the radiological control requirements in the work steps would be very easy if all personnel had a strong background in radiological work planning and radiological controls. Unfortunately, many of these personnel do not have the background necessary to include these requirements without assistance by the Radiological Control organization at each facility. In addition, there seems to be confusion as to what should be and what should not be included in the TWD.

KURTZ, J.E.

2000-01-01T23:59:59.000Z

119

Safety Enhancements for TRU Waste Handling - 12258  

SciTech Connect (OSTI)

For years, proper Health Physics practices and 'As Low As Reasonably Achievable' (ALARA) principles have fostered the use of glove boxes or other methods of handling (without direct contact) high activities of radioactive material. The physical limitations of using glove boxes on certain containers have resulted in high-activity wastes being held in storage awaiting a path forward. Highly contaminated glove boxes and other remote handling equipment no longer in use have also been added to the growing list of items held for storage with no efficient method of preparation for proper disposal without creating exposure risks to personnel. This is especially true for wastes containing alpha-emitting radionuclides such as Plutonium and Americium that pose significant health risks to personnel if these Transuranic (TRU) wastes are not controlled effectively. Like any good safety program or root cause investigation PFNW has found that the identification of the cause of a negative change, if stopped, can result in a near miss and lessons learned. If this is done in the world of safety, it is considered a success story and is to be shared with others to protect the workers. PFNW believes that the tools, equipment and resources have improved over the past number of years but that the use of them has not progressed at the same rate. If we use our tools to timely identify the effect on the work environment and immediately following or possibly even simultaneously identify the cause or some of the causal factors, we may have the ability to continue to work rather than succumb to the start and stop-work mentality trap that is not beneficial in waste minimization, production efficiency or ALARA. (authors)

Cannon, Curt N. [Perma-Fix Northwest Richland, Inc., Richland, WA 99354 (United States)

2012-07-01T23:59:59.000Z

120

Cask system design guidance for robotic handling  

SciTech Connect (OSTI)

Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs.

Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

J.F. Beesley

2005-04-21T23:59:59.000Z

122

Radiological control manual. Revision 1  

SciTech Connect (OSTI)

This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

Kloepping, R.

1996-05-01T23:59:59.000Z

123

CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building structures and space allocations. The Carrier/Cask Handling System interfaces with the Waste Handling Building Electrical System for electrical power.

E.F. Loros

2000-06-23T23:59:59.000Z

124

DOE, Westinghouse to Partner with NMJC To Train Radiological and Waste Handling Technicians  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto Partner

125

Current Trends in Gamma Radiation Detection for Radiological Emergency Response  

SciTech Connect (OSTI)

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

Mukhopadhyay, S., Guss, P., Maurer, R.

2011-09-01T23:59:59.000Z

126

U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2  

SciTech Connect (OSTI)

Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

Jakubowski, F.M.

1998-02-01T23:59:59.000Z

127

Nuclear and Radiological Forensics and Attribution Overview  

SciTech Connect (OSTI)

The goal of the U.S. Department of Homeland Security (DHS) Nuclear and Radiological Forensics and Attribution Program is to develop the technical capability for the nation to rapidly, accurately, and credibly attribute the origins and pathways of interdicted or collected materials, intact nuclear devices, and radiological dispersal devices. A robust attribution capability contributes to threat assessment, prevention, and deterrence of nuclear terrorism; it also supports the Federal Bureau of Investigation (FBI) in its investigative mission to prevent and respond to nuclear terrorism. Development of the capability involves two major elements: (1) the ability to collect evidence and make forensic measurements, and (2) the ability to interpret the forensic data. The Program leverages the existing capability throughout the U.S. Department of Energy (DOE) national laboratory complex in a way that meets the requirements of the FBI and other government users. At the same time the capability is being developed, the Program also conducts investigations for a variety of sponsors using the current capability. The combination of operations and R&D in one program helps to ensure a strong linkage between the needs of the user community and the scientific development.

Smith, D K; Niemeyer, S

2005-11-04T23:59:59.000Z

128

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Radiological Threat Task Force Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

129

Radiological Assistance Program | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Federal Radiological Monitoring and Assessment Center Emergency Response Accident Response Group Radiation Emergency Assistance Center Training Site National Atmospheric Release...

130

Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029  

SciTech Connect (OSTI)

This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

2013-09-01T23:59:59.000Z

131

Rice University Environmental Health and Safety Laboratory-Specific Radiological Safety Training Attendance Record  

E-Print Network [OSTI]

. [ ] Radioactive material waste segregation and disposal forms and inventory forms properly signed and dated. [ ] Review of written protocols involving radioactive material. [ ] Radiological safety considerations with the material. Such training shall include: 1. A brief discussion of the hazards of radiation and radioactive

Natelson, Douglas

132

Best practice techniques for environmental radiological monitoring  

E-Print Network [OSTI]

Best practice techniques for environmental radiological monitoring Science Report ­ SC030308/SR SCHO0407BMNL-E-P #12;ii Science Report Best Practice Techniques for Environmental Radiological #12;iv Science Report Best Practice Techniques for Environmental Radiological Monitoring Executive

133

RADIOLOGICAL & ENVIRONMENTAL MANAGEMENT GUIDANCE DOCUMENT  

E-Print Network [OSTI]

RADIOLOGICAL & ENVIRONMENTAL MANAGEMENT GUIDANCE DOCUMENT: Minors in Research Laboratories or Animal Facilities Page 1 of 4 PURPOSE: The purpose of this document is to provide guidance for Purdue sponsored programs which are designed for youth under the age of 15 and which have documented

Holland, Jeffrey

134

Departmental Radiological Emergency Response Assets  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency Support Team assets. Cancels DOE O 5530.1A, DOE O 5530.2, DOE O 5530.3, DOE O 5530.4, and DOE O 5530.5.

2007-06-27T23:59:59.000Z

135

DOE - Office of Legacy Management -- Sandia National Laboratories...  

Office of Legacy Management (LM)

Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status:...

136

DOE - Office of Legacy Management -- Fernald Environmental Management...  

Office of Legacy Management (LM)

Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status:...

137

DOE - Office of Legacy Management -- Battelle Columbus Laboratories...  

Office of Legacy Management (LM)

Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status:...

138

DOE - Office of Legacy Management -- Commercial (Burial) Disposal...  

Office of Legacy Management (LM)

Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status:...

139

DOE - Office of Legacy Management -- Battelle Memorial Institute...  

Office of Legacy Management (LM)

Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status:...

140

EHS-Net Tomato Handling Study EHS-Net Tomato Handling Study Protocol  

E-Print Network [OSTI]

EHS-Net Tomato Handling Study 1 EHS-Net Tomato Handling Study Protocol I. Project Overview Title EHS-Net Tomato Handling Study Protocol Summary Few studies have examined in detail the nature Health Specialists Network (EHS-Net) special study. EHS- Net is a collaboration involving the Centers

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants  

SciTech Connect (OSTI)

Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

Manohar S. Sohal; J. Stephen Herring

2008-07-01T23:59:59.000Z

142

Nuclear Materials: Reconsidering Wastes and Assets - 13193  

SciTech Connect (OSTI)

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

Michalske, T.A. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

2013-07-01T23:59:59.000Z

143

Early Markets: Fuel Cells for Material Handling Equipment | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, Septemberof EnergyM A NEnergy

144

Specialty Vehicles and Material Handling Equipment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview * Analyzer I nstrument a t p oint o

145

Hydrogen Fuel for Material Handling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy Embrittlement Fundamentals,

146

RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList? | DepartmentEnergy RECOVERYnote:RequestPeak

147

Understanding Mechanisms of Radiological Contamination  

SciTech Connect (OSTI)

Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

Rick Demmer; John Drake; Ryan James, PhD

2014-03-01T23:59:59.000Z

148

RadSTraM: Radiological Source Tracking and Monitoring, Phase II Final Report  

SciTech Connect (OSTI)

This report focuses on the technical information gained from the Radiological Source Tracking and Monitoring (RadSTraM) Phase II investigation and its implications. The intent of the RadSTraM project was to determine the feasibility of tracking radioactive materials in commerce, particularly International Atomic Energy Agency (IAEA) Category 3 and 4 materials. Specifically, Phase II of the project addressed tracking radiological medical isotopes in commerce. These categories of materials are susceptible to loss or theft but the problem is not being addressed by other agencies.

Warren, Tracy A [ORNL; Walker, Randy M [ORNL; Hill, David E [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Abercrombie, Robert K [ORNL

2008-12-01T23:59:59.000Z

149

User interface handles for web objects  

E-Print Network [OSTI]

On the desktop, users are accustomed to having visible handles to objects that they can organize, share, and manipulate. Web applications today feature many loosely defined classes of such objects, like flight itineraries, ...

Pham, Hubert

2013-01-01T23:59:59.000Z

150

Compressed Gas Cylinder Safe Handling, Use and  

E-Print Network [OSTI]

Compressed Gas Cylinder Safe Handling, Use and Storage 2012 Workplace Safety and Environmental Protection #12;i College/Unit: Workplace Safety and Environmental Protection Procedure Title: Compressed Gas................................................ 4 7 General Gas Cylinder Information

Saskatchewan, University of

151

2004 Biodiesel Handling and Use Guidelines (Revised)  

SciTech Connect (OSTI)

This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It is intended to fleets and individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel.

Not Available

2004-11-01T23:59:59.000Z

152

Dairy Manure Handling Systems and Equipment.  

E-Print Network [OSTI]

The Texas A&M University System ? Texas Agricultural Extension Service Zerle L. Carpenter, Director College Station 8?1446 DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT John M. Sweeten, Ph....D., P.E.* A manure management system for a modern dairy should be capable of controlling solid or liquid manure and wastewater from the open corrals (manure and rainfall runoff), free stall barn , feeding barn , holding lot or holding shed , milking...

Sweeten, John M.

1983-01-01T23:59:59.000Z

153

Roadmap: Radiologic Technology Radiology Department Management Technology Associate of Technical Study  

E-Print Network [OSTI]

Roadmap: Radiologic Technology ­ Radiology Department Management Technology ­ Associate-Nov-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However

Sheridan, Scott

154

Radiation Sources and Radioactive Materials (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

155

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

156

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Data results provided back to the field within 30-60 minutes. All NNSA teams that conduct search, detection and identification operations, to include the Radiological...

157

ORISE Resources: Radiological and Nuclear Terrorism: Medical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training Clinicians for Response to a Radiological or Nuclear Terrorism Attack The Centers for Disease Control and Prevention and its Radiation Studies Branch in the National...

158

Radiological Assistance Program | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

(trained personnel and equipment) to evaluate, assess, advise, isotopically identify, search for, and assist in the mitigation of actual or perceived nuclear or radiological...

159

Remote-Handled Transuranic Content Codes  

SciTech Connect (OSTI)

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatindicates the shipper of the RH-TRU waste. The site-specific letter designations for each of the|DOE sites are provided in Table 1. Not all of the sites listed in Table 1 have generated/stored RH-|TRU waste.

Washington TRU Solutions

2001-08-01T23:59:59.000Z

160

Exception Handling i C: Evaluering og videreudvikling af makrobaseret 'Exception Handling'-funktionalitet i ANSI C.  

E-Print Network [OSTI]

??I dette projekt dokumenteres og evalueres det makrobaserede exception handling bibliotek "Cexcept" - udviklet i C - og funktionaliteten beskrives indga?ende. Derudover udvides implementationen med… (more)

Jermiin Ravn Moll, Jonas

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

LM Records Handling System-Fernald Historical Records System...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fernald Historical Records System, Office of Legacy Management LM Records Handling System-Fernald Historical Records System, Office of Legacy Management LM Records Handling...

162

LM Records Handling System (LMRHS01) - Rocky Flats Environmental...  

Office of Environmental Management (EM)

LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

163

Plutonium stabilization and handling quality assurance program plan  

SciTech Connect (OSTI)

This Quality Assurance Program Plan (QAPP) identifies project quality assurance requirements for all contractors involved in the planning and execution of Hanford Site activities for design, procurement, construction, testing and inspection for Project W-460, Plutonium Stabilization and Handling. The project encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM.

Weiss, E.V.

1998-04-22T23:59:59.000Z

164

Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant  

SciTech Connect (OSTI)

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

Hickey, Eva E.; Strom, Daniel J.

2005-08-01T23:59:59.000Z

165

2012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging  

E-Print Network [OSTI]

dbweinreb@ Pediatric Radiology Body Imaging 1st yr. Neuroradiology NCI Body Mammography Sonya Edwards 149042012-2013 Diagnostic Radiology Fellows Cardiovascular Imaging Nuclear Medicine David Weinreb 14895 14909 laxpati@ Michael Kim 14961 mjjkim@ Vascular and Interventional Radiology Charles Kosydar 14908

Sonnenburg, Justin L.

166

Federal Radiological Monitoring and Assessment Center  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy, procedures, authorities, and requirements for the establishment of a Federal Radiological Monitoring and Assessment Center (FRMAC), as set forth in the Federal Radiological Emergency Response Plan (FRERP). This directive does not cancel another directive. Canceled by DOE O 153.1.

1992-12-02T23:59:59.000Z

167

Memorandum, Reporting of Radiological Sealed Sources Transactions  

Broader source: Energy.gov [DOE]

The requirements for reporting transactions involving radiological sealed sources are identified in Department of Energy (DOE) Notice (N) 234.1, Reporting of Radioactive Sealed Sources. The data reported in accordance with DOE N 234.1 are maintained in the DOE Radiological Source Registry and Tracking (RSRT) database by the Office of Information Management, within the Office of Environment, Health, Safety and Security.

168

Radiological health aspects of uranium milling  

SciTech Connect (OSTI)

This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

Fisher, D.R.; Stoetzel, G.A.

1983-05-01T23:59:59.000Z

169

Nevada Test Site Radiological Control Manual  

SciTech Connect (OSTI)

This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council Nevada Test Site

2010-02-09T23:59:59.000Z

170

Nevada Test Site Radiological Control Manual  

SciTech Connect (OSTI)

This document supersedes DOE/NV/11718--079, “NV/YMP Radiological Control Manual,” Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council - Nevada Test Site

2009-10-01T23:59:59.000Z

171

CRAD, Radiological Controls - Oak Ridge National Laboratory TRU...  

Broader source: Energy.gov (indexed) [DOE]

Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A...

172

Unified Resolve 2014: A Proof of Concept for Radiological Support...  

Office of Environmental Management (EM)

Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders Unified Resolve 2014: A Proof of Concept for Radiological Support to Incident Commanders...

173

Remote-handled transuranic system assessment appendices. Volume 2  

SciTech Connect (OSTI)

Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives.

NONE

1995-11-01T23:59:59.000Z

174

Radiological re-survey results at 130 West Central Avenue, Maywood, New Jersey (MJ029)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from 1916 to 1959. During the early years of operation, MCW stored wastes and residues in low-lying areas west of the processing facilities and consequently some of the residuals containing radioactive materials migrated offsite to the surrounding area. Subsequently, the U.S. Department of Energy (DOE), designated for remedial action the old MCW property and several vicinity properties. Additionally, in 1984, the property at 130 West Central Ave., Maywood, New Jersey and properties in its vicinity were included as a decontamination research and development project under the DOE Formerly Utilized Sites Remedial Action Program. In 1987 and 1988, at the request of DOE, ORNL conducted a radiological survey on this property. A second radiological survey by ORNL was conducted on this property in May, 1993 at the request of DOE after an ad hoc radiological survey, requested by a new property owner and conducted by Bechtel National, Inc. (BNI), identified some contamination not previously found by ORNL. The purpose of the survey was to determine if residuals from the old MCW were present on the property, and if so, if any radiological elements present were above guidelines. A certified civil survey was requisitioned by ORNL to determine actual property boundaries before beginning the radiological survey. The radiological re-survey included a surface gamma scan and the collection of a large number of soil samples for radionuclide analyses.

Murray, M.E.; Johnson, C.A.

1994-01-01T23:59:59.000Z

175

340 waste handling facility interim safety basis  

SciTech Connect (OSTI)

This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

VAIL, T.S.

1999-04-01T23:59:59.000Z

176

340 Waste handling facility interim safety basis  

SciTech Connect (OSTI)

This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

Stordeur, R.T.

1996-10-04T23:59:59.000Z

177

Easy Gardening.....Harvesting and Handling Vegetables  

E-Print Network [OSTI]

Easy Gardening Joseph Masabni, Assistant Professor and Extension Horticulturist, The Texas A&M University System HARVESTING ? HANDLING ? STORING VEGETABLES -1- T ohelpensurethatthevegetables yougrowandprepareareofhigh quality.... Acknowledgments Thispublicationwasrevisedfromearlierversionswrittenby SamCotner,ProfessorEmeritusandformerExtension Horticulturist,andAlWagner,formerProfessorand ExtensionHorticulturist. -6- Produced by AgriLife Communications, The Texas A&M System Extension...

Cotner, Sam; Masabni, Joseph; Wagner, Al

2009-05-29T23:59:59.000Z

178

Architecturing Conflict Handling of Pervasive Computing Resources  

E-Print Network [OSTI]

Architecturing Conflict Handling of Pervasive Computing Resources Henner Jakob1 , Charles Consel1 to conflict in their usage of shared resources, e.g., controlling doors for security and fire evacuation computing resources. This approach covers the software devel- opment lifecycle and consists of enriching

Paris-Sud XI, Université de

179

Understanding Contamination; Twenty Years of Simulating Radiological Contamination  

SciTech Connect (OSTI)

A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

Emily Snyder; John Drake; Ryan James

2012-02-01T23:59:59.000Z

180

Integrating pathology and radiology disciplines: an emerging opportunity?  

E-Print Network [OSTI]

Pediatric vascular malformations: pathophysiology, diagnosis, and the role of interventional radiology.

Sorace, James; Aberle, Denise R; Elimam, Dena; Lawvere, Silvana; Tawfik, Ossama; Wallace, W Dean

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Viability of Existing INL Facilities for Dry Storage Cask Handling  

SciTech Connect (OSTI)

This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

2013-04-01T23:59:59.000Z

182

USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?  

SciTech Connect (OSTI)

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

Magoulas, V.

2013-06-03T23:59:59.000Z

183

The Health Physics and Radiological Health  

E-Print Network [OSTI]

of the nuclear data required to compute this constant is available (Kocher 1981) for approximately 500 nuclides important to dosimetry and radiological assessment applications, and it has been used to compute a table

184

Apparatus for safeguarding a radiological source  

DOE Patents [OSTI]

A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

Bzorgi, Fariborz M

2014-10-07T23:59:59.000Z

185

CRAD, Radiological Controls - Idaho Accelerated Retrieval Project...  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Retrieval Project Phase II CRAD, Radiological Controls - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal...

186

November 28, 2006 Seismologists get handle on heat flow deep in earth  

E-Print Network [OSTI]

November 28, 2006 Seismologists get handle on heat flow deep in earth Earth's interior placid inner Earth as a dynamic environment filled with exotic materials and substances roiling under that has an impact on what happens on our planet's surface. The latest evidence of this dynamic inner Earth

Garnero, Ed

187

US Department of Energy Radiological Control Manual  

SciTech Connect (OSTI)

This manual establishes practices for the conduct of radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. (VC)

Not Available

1992-06-01T23:59:59.000Z

188

US Department of Energy Radiological Control Manual  

SciTech Connect (OSTI)

This manual establishes practices for the conduct of radiological control activities. The Manual states DOE's positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. (VC)

Not Available

1992-06-01T23:59:59.000Z

189

Radiological Instrumentation Assessment for King County Wastewater Treatment Division  

SciTech Connect (OSTI)

The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

2005-05-19T23:59:59.000Z

190

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:ComputingFusionSanGE

191

CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect (OSTI)

This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-07T23:59:59.000Z

192

Letter Report - Verification Results for the Non-Real Property Radiological Release Program at the West Valley Demonstration Project, Ashford, New York  

SciTech Connect (OSTI)

The objective of the verification activities is to provide an independent review of the design, implementation, and performance of the radiological unrestricted release program for personal property, materials, and equipment (non-real property).

M.A. Buchholz

2009-04-29T23:59:59.000Z

193

Radiological survey results at 4400 Piehl Road, Ottawa Lake, Michigan  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 4400 Piehl Road in Ottawa Lake, Michigan. The survey was performed in September, 1992. The purpose of the survey was to determine if materials containing uranium from work performed under government contract at the former Baker Brothers facility in Toledo, Ohio had been transported off-site to this neighboring area. The radiological survey included surface gamma scans indoors and outdoors, alpha and beta scans inside the house and attached garage, beta-gamma scans of the hard surfaces outside, and the collection of soil, water, and dust samples for radionuclide analyses. Results of the survey demonstrated that the majority of the measurements on the property were within DOE guidelines. However, the presence of isolated spots of uranium contamination were found in two areas where materials were allegedly transported to the property from the former Baker Brothers site. Uranium uptake by persons on the property by ingestion is fairly unlikely, but inhalation is a possibility. Based on these findings, it is recommended that the residential property at 4400 Piehl Road in Ottawa Lake, Michigan be considered for inclusion under FUSRAP.

Foley, R.D.; Johnson, C.A.

1993-04-01T23:59:59.000Z

194

Radiological Risk Assessment for King County Wastewater Treatment Division  

SciTech Connect (OSTI)

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

Strom, Daniel J.

2005-08-05T23:59:59.000Z

195

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

196

System for handling and storing radioactive waste  

DOE Patents [OSTI]

A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

1984-01-01T23:59:59.000Z

197

System for handling and storing radioactive waste  

DOE Patents [OSTI]

A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, J.K.; Lindemann, P.E.

1982-07-19T23:59:59.000Z

198

Qualitative human reliability analysis for spent fuel handling  

SciTech Connect (OSTI)

Human reliability analysis (HRA) methods have been developed primarily to provide information for use in probabilistic risk assessments (PRAs) that analyze nuclear power plant (NPP) operations. Given the original emphasis of these methods, it is understandable that many HRAs have not ventured far from NPP control room applications. Despite this historical focus on the control room, there has been growing interest and discussion regarding the application of HRA methods to other NPP activities such as spent fuel handling (SFH) or operations in different types of facilities. One recently developed HRA method, 'A Technique for Human Event Analysis' (ATHEANA) has been proposed as a promising candidate for diverse applications due to its particular approach for systematically uncovering the dynamic, contextual conditions influencing human performance. This paper describes one successful test of this proposition by presenting portions of a recently completed project in which a scoping study was performed to accomplish the following goals: (1) investigate what should be included in a qualitative HRA for spent fuel and cask handling operations; and (2) demonstrate that the ATHEANA HRA technique can be usefully applied to these operations. The preliminary, scoping qualitative HRA examined, in a generic manner, how human performance of SFH and dry cask storage operations (DCSOs) can plausibly lead to radiological consequences that impact the public and the environment. The study involved the performance of typical, qualitative HRA tasks such as collecting relevant information and the preliminary identification of human failure events or unsafe actions, relevant influences (e.g., performance shaping factors, other contextual factors), event scenario development and categorization of human failure event (HFE) scenario groupings. Information from relevant literature sources was augmented with subject matter expert interviews and analysis of an edited video of selected operations. Elements of NUREG-1792, Good Practices for Implementing Human Reliability Analyses (HRA) and NUREG-1624, Rev. 1, Technical Basis and Implementation Guidelines for A Technique for Human Event Analysis (ATHEANA) formed critical parts of the technical basis for the preliminary analysis. Mis-loading of spent fuel into a cask and dropping of a loaded cask were the two human failure event groupings of primary interest, although all human performance aspects of DCSOs were considered to some extent. Of important note is that HRA is typically performed in the context of a plant-specific PRA study. This analysis was performed without the benefit of the context provided by a larger PRA study, nor was it plant specific, and so it investigated only generic HRA issues relevant to SFH. However, the improved understanding of human performance issues provided by the study will likely enhance the ability to carry out a detailed qualitative HRA for a specific NPP at some point in the future. Furthermore, support was obtained regarding the potential for applying ATHEANA beyond NPP settings. This paper provides a description of the process followed during the analysis, a description of the HFE scenario groupings, discussion regarding general human performance vulnerabilities, and a detailed examination of one HFE scenario developed in the study. (authors)

Brewer, J. D. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0748 (United States); Amico, P. [Science Applications International Corporation (United States); Cooper, S. E. [United Stated Nuclear Regulatory Commission (United States)

2006-07-01T23:59:59.000Z

199

Radiological Characterization and Final Facility Status Report Tritium Research Laboratory  

SciTech Connect (OSTI)

This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

Garcia, T.B.; Gorman, T.P.

1996-08-01T23:59:59.000Z

200

Radiological Scoping Survey of the Scotia Depot, Scotia, NY  

SciTech Connect (OSTI)

The objectives of the radiological scoping survey were to collect adequate field data for use in evaluating the radiological condition of Scotia Depot land areas, warehouses, and support buildings.

Bailey, E. N.

2008-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

Equipment: Wear self-contained breathing apparatus and protective clothing to prevent contact with skin material pickup is complete. Section 7 - Handling and Storage HANDLING User Exposure: Do not breathe dust Tension N/A Partition Coefficient N/A Decomposition Temp. N/A Flash Point N/A Explosion Limits N

Choi, Kyu Yong

202

E-Print Network 3.0 - arms aerial radiological Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Diagnostic Radiology * Clinical Rotation Breast Imaging... * Clinical Rotation Pediatric Radiology * Clinical Rotation Nuclear Medicine Semester ... Source: VandeVord,...

203

E-Print Network 3.0 - anticipated radiological dose Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- thropomorphic models. II. Organ doses from computed tomographic examinations in pediatric radiology. Neuherberg... dose at CT in pediatric patients. Radiology...

204

Primer on tritium safe handling practices  

SciTech Connect (OSTI)

This Primer is designed for use by operations and maintenance personnel to improve their knowledge of tritium safe handling practices. It is applicable to many job classifications and can be used as a reference for classroom work or for self-study. It is presented in general terms for use throughout the DOE Complex. After reading it, one should be able to: describe methods of measuring airborne tritium concentration; list types of protective clothing effective against tritium uptake from surface and airborne contamination; name two methods of reducing the body dose after a tritium uptake; describe the most common method for determining amount of tritium uptake in the body; describe steps to take following an accidental release of airborne tritium; describe the damage to metals that results from absorption of tritium; explain how washing hands or showering in cold water helps reduce tritium uptake; and describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

Not Available

1994-12-01T23:59:59.000Z

205

Overview on Hydrate Coring, Handling and Analysis  

SciTech Connect (OSTI)

Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

2003-06-30T23:59:59.000Z

206

Remote-handled transuranic waste study  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation`s defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs.

NONE

1995-10-01T23:59:59.000Z

207

Environmental Health & Safety Office of Radiological Safety  

E-Print Network [OSTI]

Environmental Health & Safety Office of Radiological Safety Page 1 of 2 FORM LU-1 Revision 01 1 safety training and submit this registration to the LSO prior to use of Class 3B or 4 lasers. A copy will be returned to the Laser Supervisor to be filed in the Laboratory Laser Safety Notebook. Both the Laser

Houston, Paul L.

208

Nuclear Engineering Catalog 2013 Radiological Concentration  

E-Print Network [OSTI]

Nuclear Engineering Catalog 2013 Radiological Concentration Fall Math 141 or 147 (4) FA, SP, SU-approved by the department. Courses in Nuclear Engineering other than 500, 502 or 598 may also be used as technical electives on academic performance. Factors considered include overall grade point average, performance in selescted

Tennessee, University of

209

Nuclear Engineering Catalog 2014 Radiological Concentration  

E-Print Network [OSTI]

Nuclear Engineering Catalog 2014 Radiological Concentration Fall Math 141 or 147 (4) FA, SP, SU-approved by the department. Courses in Nuclear Engineering other than 500, 502 or 598 may also be used as technical electives. No more than four (4) credit hours of nuclear engineering courses in which a C- or lower is the highest

Grissino-Mayer, Henri D.

210

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

211

HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE  

SciTech Connect (OSTI)

Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

Donna Post Guillen

2013-05-01T23:59:59.000Z

212

Remote Handling Equipment for a High-Level Waste Waste Package Closure System  

SciTech Connect (OSTI)

High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

Kevin M. Croft; Scott M. Allen; Mark W. Borland

2006-04-01T23:59:59.000Z

213

Handbook for Handling, Storing, and Dispensing E85  

SciTech Connect (OSTI)

Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

Not Available

2008-04-01T23:59:59.000Z

214

LM Records Handling System (LMRHS01) - Electronic Records Keeping...  

Energy Savers [EERE]

System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy...

215

LM Records Handling System (LMRHS01) - Energy Employees Occupational...  

Broader source: Energy.gov (indexed) [DOE]

Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation...

216

Impacts of capture and handling on wild birds.  

E-Print Network [OSTI]

??Bird ringing is a key ecological research technique that involves the capture and handling of birds. It is used extensively to obtain information on population… (more)

Duarte, Leila

2013-01-01T23:59:59.000Z

217

Biodiesel Handling and Use Guide: Fourth Edition (Revised)  

SciTech Connect (OSTI)

Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

Not Available

2009-01-01T23:59:59.000Z

218

Remote-Handled Transuranic Content Codes  

SciTech Connect (OSTI)

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

Washington TRU Solutions

2006-12-01T23:59:59.000Z

219

RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT  

SciTech Connect (OSTI)

This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

KOZLOWSKI, S.D.

2007-05-30T23:59:59.000Z

220

Radiological Monitoring of Waste Treatment Plant  

SciTech Connect (OSTI)

Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

Amin, Y. M. [Physics Dept, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nik, H. W. [Asialab (Malaysia) Sdn Bhd, 14 Jalan Industri USJ 1, 47600 Subang Jaya (Malaysia)

2011-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NV/YMP RADIOLOGICAL CONTROL MANUAL  

SciTech Connect (OSTI)

This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

2004-11-01T23:59:59.000Z

222

Fixation of Radiological Contamination; International Collaborative Development  

SciTech Connect (OSTI)

A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdom’s National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.

Rick Demmer

2013-03-01T23:59:59.000Z

223

ORISE: Radiological Assessment and Monitoring System (RAMS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK MappingHistoryMedicalInternationalRadiological

224

Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995  

SciTech Connect (OSTI)

Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

Smyre, J.L.; Moll, B.W.; King, A.L.

1996-06-01T23:59:59.000Z

225

H dli dHandling and Safety Training  

E-Print Network [OSTI]

HendershotPam Hendershot Praxair Distribution Inc. Praxair Distribution Inc., Quality Department .Copyright © 2000, Praxair Technology, Inc. All rights reserved. .Rev. Date 04/24/2006-A 1 #12;Safe Handling Dangers Proper PPEp Proper Handling and Transporting of cryogen liquidscryogen liquids Praxair

Farritor, Shane

226

NIH POLICY MANUAL 1345 -HANDLING AND SAFEGUARDING OF CONTROLLED SUBSTANCES  

E-Print Network [OSTI]

NIH POLICY MANUAL 1345 - HANDLING AND SAFEGUARDING OF CONTROLLED SUBSTANCES FOR NONHUMAN USE: This Chapter describes NIH policies and procedures for handling and safeguarding controlled substances the chapter in compliance with the NIH Office of Management Assessment standardized format. The revised

Bandettini, Peter A.

227

Guidance Document Safe Handling of Sulfides and Hydrogen Sulfide  

E-Print Network [OSTI]

Guidance Document Safe Handling of Sulfides and Hydrogen Sulfide [This is a brief summary. Read concern would be hydrogen sulfide, whether handling in the pure gaseous form or by generation from various threshold level, the oxidative enzymes would be overwhelmed. Uses: Sulfides and hydrogen sulfide are used

228

Radiological standards and calibration laboratory capabilities  

SciTech Connect (OSTI)

The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest Laboratory (PNL), performs calibrations and upholds reference standards necessary to maintain traceability to national radiological standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE sites, and research programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site`s 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, and thermoluminescent and radiochromic dosimetry. The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, and a beta standards laboratory used for beta energy response studies and beta reference calibrations. Calibrations are routinely performed for personnel dosimeters, health physics instrumentations, photon transfer standards and alpha, beta and gamma field sources used throughout the Hanford Site. This report describes the standards and calibrations laboratory. Photographs that accompany the text appear in the Appendix and are designated Figure A.1 through A.29.

Goles, R.W.

1995-01-01T23:59:59.000Z

229

Commercial Storage and Handling of Sorghum Grain.  

E-Print Network [OSTI]

percent divided-among storage operators attempt to keep merchandising space TABLE 6. STORAGE SPACE BY SPECIFIED MATERIAL AND TYPE OF STRUCTURE1 Area and con- Storage built prior to 1956 Storage built 1956-60 inclusive 'ruttion material Flat structures...,000 bushels Percent 17.1 81.3 1.6 90.5 9.5 100.0 40.7 58.2 1.1 iomple proportions were applied to total storage capacities by areas to obtain estimates of quantities in the table. ntludes wood, steel and concrete and steel and wood structures...

Brown, Charles W.; Moore, Clarence A.

1963-01-01T23:59:59.000Z

230

Gas Cylinder Storage and Handling Serious accidents can result from the misuse, abuse, or mishandling of compressed gas  

E-Print Network [OSTI]

Gas Cylinder Storage and Handling Serious accidents can result from the misuse, abuse, or mishandling of compressed gas cylinders. Safe procedures for their use are as follows: · All compressed gas combustible material. · Keep cylinders out of the direct sun and do not allow them to be overheated. · Gas

de Lijser, Peter

231

Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320  

SciTech Connect (OSTI)

The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials, and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)

Mueth, Joachim [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)] [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

2013-07-01T23:59:59.000Z

232

Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials  

SciTech Connect (OSTI)

Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. One of the first instruments to be acquired was a Dual Beam focused ion beam (FIB)-scanning electron microscope (SEM) to support preparation of transmission electron microscopy and atom probe tomography samples. Over the ensuing years, techniques have been developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not obtainable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting Dual Beam FIB technology to nuclear fuels characterization.

A. Aitkaliyeva; J. W. Madden; B. D. Miller; J I Cole; T A Hyde

2014-10-01T23:59:59.000Z

233

Radiological re-survey results at 146 West Central Avenue, Maywood, New Jersey (MJ034)  

SciTech Connect (OSTI)

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from 1916 to 1959. During the early years of operation, MCW stored wastes and residues in low-lying areas west of the processing facilities and consequently some of the residuals containing radioactive materials migrated offsite to the surrounding area. Subsequently, the U.S. Department of Energy (DOE) designated for remedial action the old MCW property and several vicinity properties. Additionally, in 1984, the property at 146 West Central Ave., Maywood, New Jersey and properties in its vicinity were included as a decontamination research and development project under the DOE Formerly Utilized Sites Remedial Action Program. In 1987 and 1988, at the request of DOE, Oak Ridge National Laboratory (ORNL) conducted a radiological survey on this property. A report describing this survey was published in 1989. A second radiological survey by ORNL was conducted on this property in May 1993 at the request of DOE after an ad hoc radiological survey, requested by the property owner and conducted by Bechtel National, Inc. (BNI), identified some contamination not previously found by ORNL. The purpose of the second ORNL survey was to determine whether radioactive materials from the old MCW were present on the property, and if so, if radioactive materials present were above guidelines. A certified civil survey was requisitioned by ORNL to determine actual property boundaries before beginning the radiological re-survey. The re-survey included a surface gamma scan and the collection of a large number of soil samples for radionuclide analyses. Results of this survey demonstrated that although elevated residual thorium-232 contamination was present in a few isolated spots on the southern end of the backyard, it did not exceed DOE guidelines.

Murray, M.E.; Johnson, C.A.

1994-05-01T23:59:59.000Z

234

An aerial radiological survey of the Nevada Test Site  

SciTech Connect (OSTI)

A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

Hendricks, T J; Riedhauser, S R

1999-12-01T23:59:59.000Z

235

Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits  

SciTech Connect (OSTI)

A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository.

Wick, O.J.; Cloninger, M.O.

1980-09-01T23:59:59.000Z

236

Radioactive material (RAM) transportation accident and incident experience in the U.S.A. (1971--1997)  

SciTech Connect (OSTI)

The Radioactive Materials Incident Report (RMIR) database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the National Transportation Program (EM-70) of the US Department of Energy. Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident incident events in the US for the period 1971--1997. Among the areas to be examined are: transportation accidents by mode, package response during accidents and an examination of accidents where release of contents has occurred.

McClure, J.D.; Yoshimura, H.R.; Fagan, H.F. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.; Thomas, T. [Dept. of Energy National Transportation Program (United States)

1997-11-01T23:59:59.000Z

237

Studies and research concerning BNFP: cask handling equipment standardization  

SciTech Connect (OSTI)

This report covers the activities of one of the sub-tasks within the Spent LWR Fuel Transportation Receiving, Handling, and Storage program. The sub-task is identified as Cask Handling Equipment Standardization. The objective of the sub-task specifies: investigate and identify opportunities for standardization of cask interface equipment. This study will examine the potential benefits of standardized yokes, decontamination barriers and special tools, and, to the extent feasible, standardized methods and software for handling the variety of casks presently available in the US fleet. The result of the investigations is a compilation of reports that are related by their common goal of reducing cask turnaround time.

McCreery, Paul N.

1980-10-01T23:59:59.000Z

238

Rev. 04/2014: JAB Environmental and Radiological Health Sciences  

E-Print Network [OSTI]

Rev. 04/2014: JAB Environmental and Radiological Health Sciences Academic Policies, Guidelines....................................................................................................................... 3 Plan A Master of Science Program......................................................................................... 3 Plan B Master of Science Program

239

CRAD, Radiological Controls - Oak Ridge National Laboratory High...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C...

240

Model Annex for Preparedness and Response to Radiological Transportati...  

Office of Environmental Management (EM)

Response to Radiological Transportation Incidents.docx More Documents & Publications TEPP Model Needs Assessment Document First Responder Initial Response Procedure Hazardous...

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Radiological hazards of alpha-contaminated waste  

SciTech Connect (OSTI)

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

242

Radiological Threat Reduction | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323Program AccomplishmentsScienceRadiological

243

Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site  

SciTech Connect (OSTI)

This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs. Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. Radiological emissions at the PNNL Site result from Physical Sciences Facility (PSF) major emissions units. A team was established to determine how the PNNL Site would meet federal regulations and address guidelines developed to monitor and estimate offsite air emissions of radioactive materials. The result is a program that monitors the impact to the public from the PNNL Site.

Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Ted M.; Rhoads, Kathleen

2010-05-25T23:59:59.000Z

244

Nondestructive assay and nondestructive examination of remote-handled transuranic waste at the ORNL waste handling and packaging plant  

SciTech Connect (OSTI)

The purpose of this investigation is to examine the use of an electron linear accelerator (LINAC) in the performance of nondestructive assay (NDA) and nondestructive examination (NDE) measurements of remote-handled transuranic wastes. The system will be used to perform waste characterization and certification activities at the Oak Ridge National Laboratory's proposed Waste Handling and Packaging Plant. The NDA and NDE technologies which were developed for contact-handled wastes are inadequate to perform such measurements on high gamma and neutron dose-rate wastes. A single LINAC will provide the interrogating fluxes required for both NDA and NDE measurements of the wastes. 11 refs., 6 figs.

Schultz, F.J.; Caldwell, J.T. (Oak Ridge National Lab., TN (USA); Pajarito Scientific Corp. (USA))

1989-01-01T23:59:59.000Z

245

air handling unit: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

case of fans, or indirectly, in the case of heat exchangers, which impose loads on the chiller and boiler plant. Air-handling units can comprise a myriad of subsystems (fans,...

246

air handling units: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

case of fans, or indirectly, in the case of heat exchangers, which impose loads on the chiller and boiler plant. Air-handling units can comprise a myriad of subsystems (fans,...

247

Centralized processing of contact-handled TRU waste feasibility analysis  

SciTech Connect (OSTI)

This report presents work for the feasibility study of central processing of contact-handled TRU waste. Discussion of scenarios, transportation options, summary of cost estimates, and institutional issues are a few of the subjects discussed. (JDL)

Not Available

1986-12-01T23:59:59.000Z

248

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect (OSTI)

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

249

Plutonium stabilization and handling (PuSH)  

SciTech Connect (OSTI)

This Functional Design Criteria (FDC) addresses construction of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. The major sections of the project are: site preparation; SPS Procurement, Installation, and Testing; storage vault modification; and characterization equipment additions. The SPS will be procured as part of a Department of Energy nationwide common procurement. Specific design crit1460eria for the SPS have been extracted from that contract and are contained in an appendix to this document.

Weiss, E.V.

1997-01-23T23:59:59.000Z

250

THE RABIT: A RAPID AUTOMATED BIODOSIMETRY TOOL FOR RADIOLOGICAL TRIAGE  

E-Print Network [OSTI]

. Health Phys. 98(2):209­217; 2010 Key words: biological indicators; dosimetry; blood; cytogenetics-priority need in an environment of heightened concern over possible radiological or nuclear terrorist attacks of radiological injuries. A small improvised nuclear device (IND) would produce a major health emergency

251

FRMAC Interactions During a Radiological or Nuclear Event  

SciTech Connect (OSTI)

During a radiological or nuclear event of national significance the Federal Radiological Emergency Monitoring and Assessment Center (FRMAC) assists federal, state, tribal, and local authorities by providing timely, high-quality predictions, measurements, analyses and assessments to promote efficient and effective emergency response for protection of the public and the environment from the consequences of such an event.

Wong, C T

2011-01-27T23:59:59.000Z

252

Professor (Open Rank) Department of Nuclear, Plasma, and Radiological Engineering  

E-Print Network [OSTI]

Professor (Open Rank) Department of Nuclear, Plasma, and Radiological Engineering University of Illinois at Urbana-Champaign The Department of Nuclear, Plasma, and Radiological Engineering-qualified candidates with background in areas related to reactor power engineering and other nuclear applications

Ma, Yi

253

healthcare.utah.edu/radiology What is Nuclear Medicine?  

E-Print Network [OSTI]

expensive diagnostic tests or surgery. Tissues such as intestines, muscles, and blood vessels are difficulthealthcare.utah.edu/radiology Radiology What is Nuclear Medicine? Nuclear Medicine is a specialized to visualize on a standard X-ray. In Nuclear Medicine, a radioactive tracer is used so the tissue is seen more

Feschotte, Cedric

254

Porous Materials Porous Materials  

E-Print Network [OSTI]

1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

Berlin,Technische Universität

255

LM Records Handling System-Freedom of Information/Privacy Act...  

Energy Savers [EERE]

Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling System-Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling...

256

Conceptual design report, plutonium stabilization and handling,project W-460  

SciTech Connect (OSTI)

Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

Weiss, E.V.

1997-03-06T23:59:59.000Z

257

Recovery from chemical, biological, and radiological incidents :  

SciTech Connect (OSTI)

To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

2012-06-01T23:59:59.000Z

258

Arrival condition of spent fuel after storage, handling, and transportation  

SciTech Connect (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

259

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

260

Uncertainty analyses for radiological assessments of St. Louis FUSRAP Sites  

SciTech Connect (OSTI)

Uncertainty analyses were performed in conjunction with radiological assessments of the Formerly Utilized Site Remedial Action Program (FUSRAP) St. Louis Downtown Site (SLDS), the Airport Site (SLAPS), and the Ball Field Site (SLBFS). Contaminants of concern at each location are natural uranium, radium, {sup 232}Th, and {sup 230}Th. The SLDS was used for uranium and thorium ore processing and includes an area of 45 acres. The SLAPS covers 22 acres and was used as a staging area for materials from the SLDS. Contaminants on the SLEFS were dispersed from the SLAPS, which involves an area of 80 acres. Significant levels of uranium contamination range from near zero to several thousand pCi/g and extend to about 20 feet in depth in a few locations at SLAPS and SLDS. Significant areas of peak radium and thorium concentrations are several hundred pCi/g with similar ranges in depth. Peak concentrations correspond to high grade ore. Radium and thorium constitute a greater radiological hazard than does uranium at all three locations. In order to satisfy the Environmental Protection Agency guideline for a lifetime risk of less than 10{sup -4}, the maximally exposed individual must receive less than about 4 mrem y{sup -1} if one assumes a risk of 5% per Sv. Based on the plant ingestion pathway, residual {sup 238}U, {sup 226}Ra, {sup 232}Th, and {sup 230}Th, concentrations of 400, 2, 4, and 40 pCi g{sup -1} at SLDS result in a 10{sup -4} lifetime risk with a 95% confidence level. Slightly different results were obtained for SLAPS and SLBFS. If more pathways are considered, such as radon, these values are even lower. Residual contamination levels could be increased by a factor of 25 if the historical Department of Energy limit of 100 mrem y{sup -1} is acceptable. The volume of contaminated soil that presents a 10{sup -4} lifetime risk is about 500,000 yd{sup 3}. The volume of soil contaminated to greater than 15 pCi g{sup -1} of each radionuclide is about a factor of ten less.

Miller, L.F.; Spencer, K.M.; White, D.E. [Univ. of Tennessee, Knoxville, TN (United States)

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Radiological dose assessment of Department of Energy Pinellas Plant waste proposed for disposal at Laidlaw Environmental Services of South Carolina, Inc.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Pinellas Plant in Largo, FL is proposing to ship and dispose of hazardous sludge, listed as F006 waste, to the Laidlaw Environmental Services of South Carolina, Inc. (Laidlaw) treatment, storage, and disposal facility in Pinewood, South Carolina. This sludge contains radioactive tritium in concentrations of about 28 pCi/g. The objective of this study is to assess the possible radiological impact to workers at the Laidlaw facility and members of the public due to the handling, processing, and burial of the DOE waste containing tritium.

Socolof, M.L.; Lee, D.W.

1996-05-01T23:59:59.000Z

262

Certification document for newly generated contact-handled transuranic waste  

SciTech Connect (OSTI)

The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

Box, W.D.; Setaro, J.

1984-01-01T23:59:59.000Z

263

Bulk Handling of Milk on Texas Dairy Farms.  

E-Print Network [OSTI]

areas dur- tem of handling milk. ing the spring and summer of 1957 on dairy - farms which have converted their operations to Dairymen interviewed in North Texas had tanks ranging from 150 gallons to 1,000 gallons, , the bulk system of producing... and handling milk. while tanks in the Corous Christi area raneDd Texas dairy farmers are operating larger from 200 gallons to 1,000 gallons. The average units, milking more cows, selling more milk and tank in North Texas had a capacity of 400 gal. generally...

Parker, Cecil A.; Stelly, Randall, Moore, Donald S.

1958-01-01T23:59:59.000Z

264

Technical Evaluations of Proposed Remote-Handled Transuranic Waste Characterization Requirements at WIPP  

SciTech Connect (OSTI)

Characterization, packaging, transport, handling and disposal of remotely handled transuranic (RH TRU) waste at WIPP will be different than similar operations with contact handled transuranic (CH TRU) waste. This paper presents results of technical evaluations associated with the planned disposal of remotely handled transuranic waste at the Waste Isolation Pilot Plant (WIPP).

Anastas, G.; Channell, J. K.

2002-02-26T23:59:59.000Z

265

Atmospheric dispersion and the radiological consequences of normal airborne effluents from a nuclear power plant  

SciTech Connect (OSTI)

The relationship between the consequences of the normal exhaust of radioactive materials in air from nuclear power plants and atmospheric dispersion is studied. Because the source terms of the exhaust from a nuclear power plant are relatively low and their radiological consequences are far less than the corresponding authoritative limits, the atmospheric dispersion models, their various modifications, and selections of relevant parameters have few effects on those consequences. In the environmental assessment and siting, the emphasis should not be placed on the consequence evaluation of routine exhaust of nuclear power plants, and the calculation of consequences of the exhaust and atmospheric field measurements should be appropriately, simplified. 12 refs., 5 figs., 7 tabs.

Fang, D.; Yang, L. [Tsinghua Univ., Beijing (China); Sun, C.Z. [Suhou Nuclear Research Inst., Suzhou (China)

1995-01-01T23:59:59.000Z

266

METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY  

SciTech Connect (OSTI)

Pyrophoric reagents represent an important class of reactants because they can participate in many different types of reactions. They are very useful in organic synthesis and in industrial applications. The Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) define Pyrophorics as substances that will self-ignite in air at temperatures of 130 F (54.4 C) or less. However, the U.S. Department of Transportation (DOT) uses criteria different from the auto-ignition temperature criterion. The DOT defines a pyrophoric material as a liquid or solid that, even in small quantities and without an external ignition source, can ignite within five minutes after coming in contact with air when tested according to the United Nations Manual of Tests and Criteria. The Environmental Protection Agency has adopted the DOT definition. Regardless of which definition is used, oxidation of the pyrophoric reagents by oxygen or exothermic reactions with moisture in the air (resulting in the generation of a flammable gas such as hydrogen) is so rapid that ignition occurs spontaneously. Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel. Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior to performing the experimental task. The purpose of this article is three fold: (1) to provide guidelines and general safety precautions to avoid accidents, (2) describe proper techniques on how to successfully handle, store, and dispose of pyrophoric liquids and solids, and (3) illustrate best practices for working with this class of reactants in a laboratory environment.

Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

2010-02-02T23:59:59.000Z

267

Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

1997-08-01T23:59:59.000Z

268

Bayesian Network Analysis of Radiological Dispersal Device Acquisitions  

E-Print Network [OSTI]

It remains unlikely that a terrorist organization could produce or procure an actual nuclear weapon. However, the construction of a radiological dispersal device (RDD) from commercially produced radioactive sources and conventional explosives could...

Hundley, Grant Richard

2012-02-14T23:59:59.000Z

269

Challenges of Handling Storm Water Runoff Through Municipal Sewer Systems  

E-Print Network [OSTI]

cleaned and retained as a Best Management Practice (BMP). Receives only non-industrial storm water on storm water are leading municipalities to change permitting practices. As a result, facilitiesChallenges of Handling Storm Water Runoff Through Municipal Sewer Systems A South Carolina Case

Illinois at Urbana-Champaign, University of

270

A Modal Calculus for Exception Handling Aleksandar Nanevski 1  

E-Print Network [OSTI]

= inl e let comp x = e1 in e2 def = case e1 of inl x e2 | inr y inr y The typing rules . raise : E A = e. inr e handle : A (E A) A = e. h. case e of inl v v | inr exn h (exn

Nanevski, Aleksandar

271

Breeder Spent Fuel Handling Program multipurpose cask design basis document  

SciTech Connect (OSTI)

The Breeder Spent Fuel Handling (BSFH) Program multipurpose cask Design Basis Document defines the performance requirements essential to the development of a legal weight truck cask to transport FFTF spent fuel from reactor to a reprocessing facility and the resultant High Level Waste (HLW) to a repository. 1 ref.

Duckett, A.J.; Sorenson, K.B.

1985-09-01T23:59:59.000Z

272

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses  

E-Print Network [OSTI]

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses Bertrand Le pipelined memory access controllers can be generated improving the pipeline access mode to RAM. We focus as unpredictable ones (dynamic address computations) in a pipeline way. 1 Introduction Actual researches

Paris-Sud XI, Université de

273

SOLIS Data Handling Christoph Keller, Steve Wampler, Carl Henney  

E-Print Network [OSTI]

SOLIS Data Handling Christoph Keller, Steve Wampler, Carl Henney National Solar Observatory #12;May, 2003 FASR Data System Workshop 3 Science What causes the solar cycle? How is energy stored and released in the solar atmosphere? How does the solar radiative and non- radiative output vary? Vector

274

Sample handling for kinetics and molecular assembly in flow cytometry  

SciTech Connect (OSTI)

Flow cytometry discriminates particle associated fluorescence from the fluorescence of the surrounding medium. It permits assemblies of macromolecular complexes on beads or cells to be detected in real-time with precision and specificity. The authors have investigated two types of robust sample handling systems which provide sub-second resolution and high throughput: (1) mixers which use stepper-motor driven syringes to initiate chemical reactions in msec time frames; and (2) flow injection controllers with valves and automated syringes used in chemical process control. In the former system, the authors used fast valves to overcome the disparity between mixing 100 {micro}ls of sample in 100 msecs and delivering sample to a flow cytometer at 1 {micro}l/sec. Particles were detected within 100 msec after mixing, but turbulence was created which lasted for 1 sec after injection of the sample into the flow cytometer. They used optical criteria to discriminate particles which were out of alignment due to the turbulent flow. Complex sample handling protocols involving multiple mixing steps and sample dilution have also been achieved. With the latter system they were able to automate sample handling and delivery with intervals of a few seconds. The authors used a fluidic approach to defeat turbulence caused by sample introduction. By controlling both sheath and sample with individual syringes, the period of turbulence was reduced to {approximately} 200 msecs. Automated sample handling and sub-second resolution should permit broad analytical and diagnostic applications of flow cytometry.

Sklar, L.A. [Los Alamos National Lab., NM (United States). National Flow Cytometry Resource]|[Univ. of New Mexico, Albuquerque, NM (United States). School of Medicine; Seamer, L.C.; Kuckuck, F.; Prossnitz, E.; Edwards, B. [Univ. of New Mexico, Albuquerque, NM (United States). School of Medicine; Posner, G. [Northern Arizona Univ., Flagstaff, AZ (United States). Dept. of Chemistry

1998-07-01T23:59:59.000Z

275

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER (IPAC12, WEPPD038) The target station a 15-20 T superconducting magnet. The target itself is a free mercury jet, moving at 20 m/s at an small angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable

McDonald, Kirk

276

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 Factory is a free-stream mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton

McDonald, Kirk

277

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

278

STABILIZING LINEAR MPC WITH EFFICIENT PRIORITIZED INFEASIBILITY HANDLING  

E-Print Network [OSTI]

is illustrated on a simulated distillation column, and we present a novel stability result for this infeasibilitySTABILIZING LINEAR MPC WITH EFFICIENT PRIORITIZED INFEASIBILITY HANDLING Jostein Vada Olav predictive controller fails to compute a control input, all practical MPC implementations should havea means

Foss, Bjarne A.

279

Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING  

E-Print Network [OSTI]

Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING HMS microfluidics/microfabrication facility has one high pressure liquid nitrogen tank which supplies the nitrogen for some equipment normal operation. In case the liquid nitrogen tank is malfunctioning and requires to be shut down or replaced make

Paulsson, Johan

280

Results of radiological measurements taken in the Niagara Falls, New York, area (NF002)  

SciTech Connect (OSTI)

The results of a radiological survey of 100 elevated gamma radiation anomalies in the Niagara Falls, New York, area are presented. These radiation anomalies were identified by a mobile gamma scanning survey during the period October 3-16, 1984, and were recommended for an onsite survey to determine if the elevated levels of radiation may be related to the transportation of radioactive waste material to the Lake Ontario Ordnance Works for storage. In this survey, radiological measurements included outdoor gamma exposure rates at 1 m above the surface; outdoor gamma exposure rates at the surface, range of gamma exposure rates during scan; and uranium, radium, and thorium concentrations in biased surface soil samples. The results show 38 anomalies (35 located along Pletcher Road and 3 associated with other unreleated locations) were found to exceed Formerly Utilized Sites Remedial Action Program (FUSRAP) remedial action guidelines and were recommended for formal characterization surveys. (Since the time of this survey, remedial actions have been conducted on the 38 anomalies identified as exceeding FUSRAP guidelines, and the radioactive material above guidelines has been removed.) The remaining 62 anomalies are associated with asphalt driveways and parking lots, which used a phosphate slag material (previously identified as cyclowollastonite, synthetic CaSiO/sub 3/). This rocky-slag waste material was used for bedding under asphalt surfaces and in general gravel applications. Most of the contaminated soil and rock samples collected at the latter anomalies had approximately equal concentrations of /sup 226/Ra and /sup 238/U and, therefore, are not related to materials connected with the Niagara Falls Storage Site (NFSS), including material that was transported to the NFSS. 13 refs., 7 figs., 14 tabs.

Williams, J.K.; Berven, B.A.

1986-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mobile autonomous robotic apparatus for radiologic characterization  

DOE Patents [OSTI]

A mobile robotic system that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console.

Dudar, Aed M. (Dearborn, MI); Ward, Clyde R. (Aiken, SC); Jones, Joel D. (Aiken, SC); Mallet, William R. (Cowichan Bay, CA); Harpring, Larry J. (North Augusta, SC); Collins, Montenius X. (Blackville, SC); Anderson, Erin K. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

282

Autonomous mobile robot for radiologic surveys  

DOE Patents [OSTI]

An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

Dudar, Aed M. (Augusta, GA); Wagner, David G. (Augusta, GA); Teese, Gregory D. (Aiken, SC)

1994-01-01T23:59:59.000Z

283

Autonomous mobile robot for radiologic surveys  

DOE Patents [OSTI]

An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.

Dudar, A.M.; Wagner, D.G.; Teese, G.D.

1994-06-28T23:59:59.000Z

284

A review of the radiological treatment  

SciTech Connect (OSTI)

The Draft Waste Management Programmatic Environmental Impact Statement (WM PEIS) was released by the U.S. Department of Energy (DOE) for public comment on September 22, 1995. Prepared in accordance with the National Environmental Policy Act (NEPA), the Final WM PEIS is currently scheduled for release in late summer 1996. The Draft WM PEIS was published after about 3 years of effort to select and evaluated the best alternatives for treating, storing, and disposing of the 50-year legacy of radioactive and chemically hazardous wastes existing within the DOE complex. The evaluation examined the potential health and environmental impacts of integrated waste management alternatives for five categories of waste types at 54 DOE sites. A primary consideration as a potential source of human health impacts at all sites is that of radiological releases resulting from postulated accidents involving facilities used to treat radioactive wastes. This paper first provides a brief, updated summary of the approach used to define and perform treatment facility accident analyses in the Draft WM PEIS. It reviews the selection of dominant sequences for the major sites most affected by the preferred waste management alternatives and highlights the salient accident analysis results. Finally, it summarizes and addresses key public and state and federal agency comments relating to accident analysis that were received in the public comment process.

Mueller, C.J.; Folga, S.; Nabelssi, B.; Kohout, E.

1996-07-01T23:59:59.000Z

285

Mobile autonomous robotic apparatus for radiologic characterization  

DOE Patents [OSTI]

A mobile robotic system is described that conducts radiological surveys to map alpha, beta, and gamma radiation on surfaces in relatively level open areas or areas containing obstacles such as stored containers or hallways, equipment, walls and support columns. The invention incorporates improved radiation monitoring methods using multiple scintillation detectors, the use of laser scanners for maneuvering in open areas, ultrasound pulse generators and receptors for collision avoidance in limited space areas or hallways, methods to trigger visible alarms when radiation is detected, and methods to transmit location data for real-time reporting and mapping of radiation locations on computer monitors at a host station. A multitude of high performance scintillation detectors detect radiation while the on-board system controls the direction and speed of the robot due to pre-programmed paths. The operators may revise the preselected movements of the robotic system by ethernet communications to remonitor areas of radiation or to avoid walls, columns, equipment, or containers. The robotic system is capable of floor survey speeds of from 1/2-inch per second up to about 30 inches per second, while the on-board processor collects, stores, and transmits information for real-time mapping of radiation intensity and the locations of the radiation for real-time display on computer monitors at a central command console. 4 figs.

Dudar, A.M.; Ward, C.R.; Jones, J.D.; Mallet, W.R.; Harpring, L.J.; Collins, M.X.; Anderson, E.K.

1999-08-10T23:59:59.000Z

286

Improvement of Photon Buildup Factors for Radiological Assessment  

SciTech Connect (OSTI)

Slant-path buildup factors for photons between 1 keV and 10 MeV for nine radiation shielding materials (air, aluminum, concrete, iron, lead, leaded glass, polyethylene, stainless steel, and water) are calculated with the most recent cross-section data available using Monte Carlo and discrete ordinates methods. Discrete ordinates calculations use a 244-group energy structure that is based on previous research at Los Alamos National Laboratory (LANL), but extended with the results of this thesis, and its focused studies on low-energy photon transport and the effects of group widths in multigroup calculations. Buildup factor calculations in discrete ordinates benefit from coupled photon/electron cross sections to account for secondary photon effects. Also, ambient dose equivalent (herein referred to as dose) buildup factors were analyzed at lower energies where corresponding response functions do not exist in literature. The results of these studies are directly applicable to radiation safety at LANL, where the dose modeling tool Pandemonium is used to estimate worker dose in plutonium handling facilities. Buildup factors determined in this thesis will be used to enhance the code's modeling capabilities, but should be of interest to the radiation shielding community.

F.G. Schirmers

2006-07-01T23:59:59.000Z

287

Unwanted Materials and Equipment All unwanted materials and equipment must go through Salvage (x2329) for disposal or reuse.  

E-Print Network [OSTI]

Unwanted Materials and Equipment All unwanted materials and equipment must go through Salvage (x.stanford.edu/main/propertyforms.asp) Some items may require a Radiation Survey or handling by Waste Management. Follow the directions with collecting empty moving boxes, and taking materials to trash or recycling containers. Submit a Service

Wechsler, Risa H.

288

RCUT: A Non-Invasive Method for Detection, Location, and Quantification of Radiological Contaminants in Pipes and Ducts - 12514  

SciTech Connect (OSTI)

Radiological Characterization Using Tracers (RCUT) is a minimally invasive method for detection and location of residual radiological contamination in pipes and ducts. The RCUT technology utilizes reactive gaseous tracers that dissociate when exposed to gamma and/or beta radiation emitting from a radiological contaminant in a pipe or duct. Sulfur hexafluoride (SF{sub 6}) was selected as a tracer for this radiological application, because it is a chemically inert gas that is both nonflammable, nontoxic, and breaks down when exposed to gamma radiation. Laboratory tests demonstrated that the tracer pair of SF{sub 6} and O{sub 2} formed SO{sub 2}F{sub 2} when exposed to a gamma or beta radioactive field, which indicated the presence of radiological contamination. Field application of RCUT involves first injecting the reactive tracers into the pipe to fill the pipe being inspected and allowing sufficient time for the tracer to interact with any contaminants present. This is followed by the injection of an inert gas at one end of the pipe to push the reactive tracer at a known or constant flow velocity along the pipe and then out the exit and sampling port at the end of the pipeline where its concentration is measured by a gas chromatograph. If a radiological contaminant is present in the pipe being tested, the presence of SO{sub 2}F{sub 2} will be detected. The time of arrival of the SO{sub 2}F{sub 2} can be used to locate the contaminant. If the pipe is free of radiological contamination, no SO{sub 2}F{sub 2} will be detected. RCUT and PCUT are both effective technologies that can be used to detect contamination within pipelines without the need for mechanical or human inspection. These methods can be used to detect, locate, and/or estimate the volume of a variety of radioactive materials and hazardous chemicals such as chlorinated solvents, petroleum products, and heavy metals. While further optimization is needed for RCUT, the key first step of identification of a tracer compound appropriate for the application of detecting radioactive pipeline contamination through the detection of decomposition products of SF{sub 6} has been demonstrated. Other tracer gases that will also undergo radiolysis will be considered in the future. The next step for the RCUT development process is conducting laboratory scale tests using short pipelines to define analytical requirements, establish performance boundaries, and develop strategies for lower exposure levels. Studies to identify additional analytical techniques using equipment that is more field rugged than a GC/MS would also be beneficial. (authors)

Bratton, Wesley L.; Maresca, Joseph W. Jr.; Beck, Deborah A. [Vista Engineering Technologies, L.L.C., Richland, WA, 99352 (United States)

2012-07-01T23:59:59.000Z

289

Test plan for K-Basin fuel handling tools  

SciTech Connect (OSTI)

The purpose of this document is to provide the test plan and procedures for the acceptance testing of the handling tools enveloped for the removal of an N-Reactor fuel element from its storage canister in the K-Basins storage pool and insertion into the Single fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools were required since previous fuel movement has involved grasping the fuel in a horizontal position. The 305 Building Cold Test Facility will be used to conduct the acceptance testing of the Fuel Handling Tools. Upon completion of this acceptance testing and any subsequent training of operators, the tools will be transferred to the 105 KW Basin for installation and use.

Bridges, A.E.

1995-02-08T23:59:59.000Z

290

Health physics considerations in UF{sub 6} handling  

SciTech Connect (OSTI)

Uranium is a radioactive substance that emits alpha particles and very small amounts of gamma radiation. Its daughter products emit beta and gamma radiation. In uranium handling operations these are the radiations one must consider. This presentation will review the characteristics of the radiations, the isotopes from which they originate, the growth and decay of the uranium daughter products, and some specific health physics practices dictated by these factors.

Bailey, J.C. [Norway Assoicates, Inc., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

291

Implementation of the Laboratory Air Handling Unit Systems (LAHU)  

E-Print Network [OSTI]

Implementation of the Laboratory Air Handling Unit Systems (LAHU) Y. Cui Graduate Student Energy Systems Laboratory University of Nebraska-Lincoln Omaha, NE, USA M. Liu, Ph.D., P.E. Associate Professor Energy Systems Laboratory...-around coils [18, 19], the variable air volume (VAV) fume hoods [8-16] and the usage-based control devices (UBC) [17]. These measures have effectively reduced the cooling energy, preheat energy and fan power consumption, and sometime, improved indoor...

Cui, Y.; Liu, M.; Conger, K.

2003-01-01T23:59:59.000Z

292

Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor  

SciTech Connect (OSTI)

A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

1980-01-01T23:59:59.000Z

293

West Valley facility spent fuel handling, storage, and shipping experience  

SciTech Connect (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

294

An analysis of repository waste-handling operations  

SciTech Connect (OSTI)

This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs.

Dennis, A.W.

1990-09-01T23:59:59.000Z

295

Webinar: Material Handling Fuel Cells for Building Electric Peak Shaving Applications  

Broader source: Energy.gov [DOE]

This webinar, presented by the National Renewable Energy Laboratory, will explore the synergy between a facility's use of hydrogen fuel cell forklifts and its reduction of electric grid time of use energy charges.

296

Materials Handling for Electrical Modification of a Complex Target Surface: Analysis and Feasibility  

SciTech Connect (OSTI)

This project effort, conducted as feasibility investigations addresses the transport and deposition of particulates using traveling field, electrohydrodynamic atomization and gas carrier methods. The method of investigation was experimental, using existing experimental and pre-commercial apparatus. All methods were found to be successful to varying degrees. Preliminary results were presented at LLNL in a project review meeting. The most promising methods for particle delivery were electrodynamic atomization/spraying and gas-carrier propulsion. Traveling field delivery is limited by scale up considerations and the requirement for transport through close tolerances. Electrodynamic atomization requires use of low electrical conductivity liquid carrier phases but is scalable by ganging multiple orifices and atomizing tips. Gas carrier delivery is attractive because no liquid carrier is needed and momentum can higher than the other traveling field or electrodynamic processes. Subsequent phases of the project will address electrodynamic and gas-carrier delivery.

Giles, D K; Law, S E; Tringe, J W

2009-01-06T23:59:59.000Z

297

E-Print Network 3.0 - automated material handling Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Computer Technologies and Information Sciences 4 Human Factors and Ergonomics in Manufacturing, Vol. 19 (6) 601621 (2009) C 2009 Wiley Periodicals, Inc. Summary:...

298

Radiological assessment of residues from uranium and other ore mining and processing - A precondition for decisions on remedial measures  

SciTech Connect (OSTI)

In certain parts of Eastern Germany relics of uranium mining and milling as well as of traditional ore mining and processing may contribute to the environmental contamination and the radiation exposure of the public. Systematic investigations of the situation are the indispensable prerequisite for decisions upon the radiological relevance and remedial actions. In view of the large number and scattering of relics under consideration, a stepwise procedure with increasing intensity of investigation was developed to solve the task effectively and in an appropriate time. For the radiological evaluation following the steps of investigation generic criteria were derived. They are based on a primary reference dose of level (1 mSv/year) and on measureable radioactivity quantities recommend by the German Commission on Radiological Protection for unrestricted/restricted release of contaminated grounds. Applying the criteria established for the verification (gamma dose rate, volume of disposed material, area affected by waste materials) the investigations led to the result that no more than 30% of the objects of former mining have to be classified as {open_quotes}possibly relevant{close_quotes} and have to be investigated further on.

Ettenhuber, E; Roehnsch, W. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Biesold, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Colonge (Germany)

1994-12-31T23:59:59.000Z

299

Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141  

SciTech Connect (OSTI)

The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementation of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design of manipulator, their operation and control systems as well as tools of manipulators. Precise planning of decontamination and dismantling tasks is necessary for its successful performance by remotely controlled manipulator. The example of the heavy water evaporator demonstrates typical procedure for decommissioning of contaminated technological equipment by remotely controlled manipulators - planning of decommissioning tasks, preparatory tasks, modification of applied tools and design of specific supporting constructions for manipulator and finally decontamination and dismantling themselves. Due to the particularly demanding conditions in highly contaminated A1 NPP, a team of experts with special know-how in the field of decommissioning has grown up, and unique technological equipment enabling effective and safe work in environment with a high radiation level has been developed. (authors)

Kravarik, K.; Medved, J.; Pekar, A.; Stubna, M. [VUJE, Inc., Okruzna 5, 918 64 Trnava (Slovakia); Michal, V. [IAEA, Wagramer Strasse 5, P.O.Box 100, A-1400 Vienna (Austria); Vargovcik, L. [ZTS VVU Kosice, Inc., Juzna Trieda 95, 041 24 Kosice (Slovakia)

2012-07-01T23:59:59.000Z

300

Closure Report for Corrective Action Unit 392: Spill Sites and Construction Materials, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Closure Report documents the closure activities that were conducted to close Corrective Action Unit (CAU) 392--Spill Sites and Construction Materials located on the Nevada Test Site (NTS). CAU 392 is listed on in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996) and consists of the following six Corrective Action Sites (CASs) located in Areas 5 and 6 of the NTS: CAS 05-17-02 Construction Materials/Lead Bricks; CAS 06-17-03 Cement Mud Pit; CAS 06-1 9-01 Cable Pile; Powder Piles (3); CAS 06-44-02 Paint Spill; CAS 06-44-03 Plaster Spill; CAS 06-44-04 Cutting Fluid Discharge Ditch. Closure activities were performed in two phases. Phase 1 activities consisted of collecting waste characterization samples of soil and material present on-site, and where appropriate, performing radiological screening of debris at the six CASs. Results were used to determine how waste generated during closure activities would be handled and disposed of, i.e., as nonhazardous sanitary or hazardous waste, etc. Phase 2 activities consisted of closing each CAS by removing debris and/or soil, disposing of the generated waste, and verifying that each CAS was clean closed by visual inspection and/or by the collecting soil verification samples for laboratory analysis. Copies of the analytical results for the site verification samples are included in Appendix A. Copies of the Sectored Housekeeping Site Closure Verification Form for each of the six CASs are included in Appendix 8. Appendix C contains a copy of the Bechtel Nevada (BN) On-site Waste Transport Manifest for the hazardous waste generated during closure of CAS 06-44-02.

R. B. Jackson

2002-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site  

SciTech Connect (OSTI)

The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site.

Not Available

1993-10-01T23:59:59.000Z

302

ASPECT Emergency Response Chemical and Radiological Mapping  

ScienceCinema (OSTI)

A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.

LANL

2009-09-01T23:59:59.000Z

303

DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES  

SciTech Connect (OSTI)

Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).

Sexton, L.

2012-06-06T23:59:59.000Z

304

Anticipated dose to workers for Plutonium Stabilization and Handling at PFP Project W-460  

SciTech Connect (OSTI)

Report provides estimates of expected whole body and extremity radiological dose to workers conducting planned Pu stabilization and packaging operations at PFP.

LILLY, J.T.

1999-11-30T23:59:59.000Z

305

The WARRP Core: Optoelectronic Implementation of Network Router Deadlock Handling Mechanisms  

E-Print Network [OSTI]

1 The WARRP Core: Optoelectronic Implementation of Network Router Deadlock Handling Mechanisms. Keywords: adaptive routing, deadlock handling, multiprocessor network router, optoelectronic smart pixel. #12;2 1. Introduction Emerging optoelectronic smart-pixel technology is of increasing interest

Pinkston, Timothy M.

306

NFS File Handle Security Avishay Traeger, Abhishek Rai, Charles P. Wright, and Erez Zadok  

E-Print Network [OSTI]

a file han- dle. When an NFS client performs an operation, it passes the file handle to the server, which decodes the file han- dle to determine what object the file handle refers to. Since NFS is a stateless

Zadok, Erez

307

Department of Industrial & Manufacturing Engineering Fall 2011 Mining Media Handling Project  

E-Print Network [OSTI]

Project Overview Metso wants to develop a media handling solution (machinery and/or process) to enhance that optimizes media discharge, recharge and liner maintenance procedures in accordance with the handling system

Demirel, Melik C.

308

Evaluation and improvement on external-hazard proof of JSFR fuel handling system  

SciTech Connect (OSTI)

Responding to the the Fukushima Dai-ichi nuclear power plant (1F-NPP) accident, the earthquake and the tsunami proof of the fuel handling system (FHS) in Japan sodium-cooled fast reactor (JSFR) is studied. In the earthquake proof estimation, the margin of seismic resistance against the earthquake of the 1F-envelop condition and the sloshing behavior in the EVST is estimated. In terms of the tsunami proof, the scenario to lead fuel subassemblies into the stable cooling state and the potential of the cooling system is introduced in case of loss of the emergency power supply. As a result, it is clear that JSFR FHS originally could already be prepared to have the potential to prevent the release of radioactive material. (authors)

Katoh, A.; Chikazawa, Y. [Japan Atomic Energy Agency, 4002 Narita, O-arai-machi, Ibaraki-ken, 311-1393 (Japan); Uzawa, M. [Mitsubishi FBR Systems Inc. MFBR, 34-17, Jingumae 2-chome, Shibuya-ku, Tokyo 150-0001 (Japan)

2012-07-01T23:59:59.000Z

309

Hanford Radiological Protection Support Services Annual Report for 2000  

SciTech Connect (OSTI)

During calendar year 2000, the Pacific Northwest National Laboratory performed its customary radiological protection support services in support of the U.S. Department of Energy Richland Operations Office and the Hanford contractors. These services included: 1) external dosimetry, 2) internal dosimetry, 3) in vivo monitoring, 4) radiological records, 5) instrument calibration and evaluation, and 6) calibration of radiation sources traceable to the National Institute of Standards and Technology. Each program summary describes the routine operations, program changes and improvements, program assessments, supporting technical studies, and professional activities.

Lynch, Timothy P.; Bihl, Donald E.; Johnson, Michelle L.; Maclellan, Jay A.; Piper, Roman K.

2001-05-07T23:59:59.000Z

310

Reducing Blood-borne Exposure in Interventional Radiology: What the IR Should Know  

SciTech Connect (OSTI)

Interventional radiologists are at risk of exposure to blood-borne pathogens in their day-to-day practice. Percutaneous exposure from unsafe sharps handling, mucocutaneous exposure from body fluid splashes, and glove perforation from excessive wear can expose the radiologist to potentially infectious material. The increasing prevalence of blood-borne pathogens, including hepatitis B and C, and human immunodeficiency virus, puts nurses, residents, fellows, and interventional radiologists at risk for occupational exposure. This review outlines suggestions to establish a culture of safety in the interventional suite.

Tso, David K. [University of British Columbia, Department of Radiology (Canada); Athreya, Sriharsha, E-mail: sathreya@stjoes.ca [St. Joseph's Healthcare Hamilton, Department of Diagnostic Imaging (Canada)

2013-08-01T23:59:59.000Z

311

Remote-handled transuranic system assessment. Volume 1  

SciTech Connect (OSTI)

This document identifies the necessary actions for addressing current questions concerning the safe and efficient disposal of remote-handled transuranic wastes that have been generated through Department of Energy activities. In addition, this document presents summaries of existing information and analyses regarding the potential alternatives for disposing of remote-handled (RH) transuranic (TRU) waste at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP). A further discussion of DOE`s approach for addressing RH-TRU issues is contained in the document, Waste Isolation Pilot Plant Remote-Handled Transuranic Waste Disposal Strategy, DOE/WIPP-95-1090 (DOE, 1995a). Of this stored and projected inventory, approximately 30% can be characterized with current technology and subsequently certified to meet the waste acceptance criteria for disposal at WIPP; characterization of the remaining 70% will require the use of alternative techniques. At most of the generator sites, characterization equipment and facilities need to be procured in order for the sites to certify waste for shipment either to WIPP or to an interim site. If surface dose rates are too high, the use of non-invasive techniques such as non-destructive examination (NDE) and non-destructive assay (NDA) may be precluded. Characterization methods using NDA can be effectively used on RH-TRU wastes with surface dose rates of less than 1.0 rem/hr (neutron); NDE methods are effective on waste with surface dose rates of less than 10 rem/hr (gamma). The ability to use current NDE technology on waste with surface dose rates above 10 rem/hr will need to be demonstrated. Alternate characterization techniques, such as examination within a hot cell, could be used for the remaining waste; however, such techniques are labor intensive and would require additional effort to gather assay data. Improvements in characterization capabilities are being pursued through future technology development initiatives.

NONE

1995-11-01T23:59:59.000Z

312

Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations  

SciTech Connect (OSTI)

In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

2013-07-01T23:59:59.000Z

313

Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud  

SciTech Connect (OSTI)

Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

Hazelton, R.F.

1987-09-01T23:59:59.000Z

314

Fusion Potentials for G_k and Handle Squashing  

E-Print Network [OSTI]

Using Chern-Simons gauge theory, we show that the fusion ring of the conformal field theory G_k is isomorphic to P(u)/(\\del V), where V is a polynomial in u and (\\del V) is the ideal generated by the conditions \\del V=0. We also derive a residue-like formula for the correlation functions in the Chern-Simons theory thus providing a RCFT version of the residue formula for the TLG models. An operator that acts like the measure in the residue formula has the ionterpretation of a handle squashing operator and an explicit formula for this operator is given.

Michael Crescimanno

1991-10-22T23:59:59.000Z

315

Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings  

SciTech Connect (OSTI)

This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

Strunk, W.D.; Thornton, S.G. (eds.)

1988-01-01T23:59:59.000Z

316

Methods and Cost of Handling Texas Citrus, 1946-51.  

E-Print Network [OSTI]

Methods and Costs of Handling Texas Citrus TEXAS AGRICULTURAL EXPERIMENT STAT10 R. D. LEWIS. DIRECTOR, COLLEGE STATION. TEXAS DIGEST The citrus industry in Texas underwent considerable change during the 1946-51 period. 7 of production dropped... changes during this period although trends in the use of containers for fresh citrus showed the rise in popularity of consumer-size mesh bags. The increase in proportion of these bags was from 2 percent of the total to 13 percent for grapefruit and from...

Sorensen, H. B.; Baker, C. K.

1953-01-01T23:59:59.000Z

317

Radiological verification survey results at 14 Peck Ave., Pequannock, New Jersey (PJ001V)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) conducted remedial action during 1993 at the Pompton Plains Railroad Spur and eight vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W. R. Grace facility. The property at 14 Peck Ave., Pequannock, New Jersey is one of these vicinity properties. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at this property. The purpose of the survey, conducted between September and December 1993, was to confirm the success of the remedial actions performed to remove any radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter, beta-gamma scans, and the collection of soil and debris samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at 14 Peck Ave. were within applicable DOE guidelines. Based on the results of the remedial action data and confirmed by the verification survey data, the portions of the site that had been remediated during this action successfully meet the DOE remedial action objectives.

Rodriguez, R.E.; Johnson, C.A.

1995-05-01T23:59:59.000Z

318

Radiological verification survey results at 7 Peck Ave., Pequannock, New Jersey (PJ003V)  

SciTech Connect (OSTI)

The US Department of Energy (DOE) conducted remedial action during 1993 at the Pompton Plains Railroad Spur and eight vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W.R. Grace facility. The property at 7 Peck Ave., Pequannock, New Jersey is one of these vicinity properties. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at this property. The purpose of the survey, conducted between September and December 1993, was to confirm the success of the remedial actions performed to remove any radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter, beta-gamma scans, and the collection of soil samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at 7 Peck Ave. were within applicable DOE guidelines. Based on the results of the remedial action data and confirmed by the verification survey data, the portions of the site that had been remediated during this action successfully meet the DOE remedial action objectives.

Rodriguez, R.E.; Johnson, C.A.

1995-05-01T23:59:59.000Z

319

Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

320

Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Final report of the radiological release survey of Building 54 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 54 and the underlying soil were found not to be radiologically contaminated, and can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

322

Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

323

Radiological characterization survey results for Gaskill Hall, Miami University, Oxford, Ohio (OXO015)  

SciTech Connect (OSTI)

Between October 1952 and February 1957, National Lead of Ohio (NLO), a primary contractor for the Atomic Energy Commission (AEC), subcontracted certain uranium machining operations to Alba Craft Laboratory, Incorporated, located at 10-14 West Rose Avenue, Oxford, Ohio. In 1992, personnel from Oak Ridge National Laboratory (ORNL) confirmed the presence of residual radioactive materials from the AEC-related operations in and around the facility in amounts exceeding the applicable Department of Energy (DOE) guidelines. Although the amount of uranium found on the property posed little health hazard if left undisturbed, the levels were sufficient to require remediation to bring radiological conditions into compliance with current guidelines, thus ensuring that the public and the environment are protected. Because it was suspected that uranium may have been used in the past in the immediate vicinity of Alba Craft in a Miami University building a team from ORNL, performed a radiological characterization survey of that structure in January 1994. The survey was conducted at the request of DOE as a precautionary measure to ensure that no radioactive residuals were present at levels exceeding guidelines. The survey included the determination of directly measured radiation levels and the collection of smear samples to detect possible removable alpha and beta-gamma activity levels, and comparison of these data to the guidelines. Results of the survey showed that all measurements were below the applicable guideline limits set by DOE.

Kleinhans, K.R.; Murray, M.E.; Carrier, R.F.

1996-04-01T23:59:59.000Z

324

E-Print Network 3.0 - aspects radiological aspects Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Radiological Health Sciences (1994) from Colorado State University. Her fields... , dosimetry, radiation protection, radiochemistry, societal aspects of nuclear technology,...

325

24.01.01.M5 Radiological Safety Page 1 of 3 UNIVERSITY RULE  

E-Print Network [OSTI]

Radiological Safety Page 3 of 3 1.5 Employees, visitors and students shall only work with radiation sources24.01.01.M5 Radiological Safety Page 1 of 3 UNIVERSITY RULE 24.01.01.M5 Radiological Safety 25, 2011 Next scheduled review: March 25, 2014 Rule Statement Environmental Health and Safety (EHS

326

Process development for remote-handled mixed-waste treatment  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) is developing a treatment process for remote-handled (RH) liquid transuranic mixed waste governed by the concept of minimizing the volume of waste requiring disposal. This task is to be accomplished by decontaminating the bulk components so the process effluent can be disposed with less risk and expense. Practical processes have been demonstrated on the laboratory scale for removing cesium 137 and strontium 90 isotopes from the waste, generating a concentrated waste volume, and rendering the bulk of the waste nearly radiation free for downstream processing. The process is projected to give decontamination factors of 10{sup 4} for cesium and 10{sup 3} for strontium. Because of the extent of decontamination, downstream processing will be contact handled. The transuranic, radioactive fraction of the mixed waste stream will be solidified using a thin-film evaporator and/or microwave solidification system. Resultant solidified waste will be disposed at the Waste Isolation Pilot Plant (WIPP). 8 refs., 2 figs., 3 tabs.

Berry, J.B.; Campbell, D.O.; Lee, D.D.; White, T.L.

1990-01-01T23:59:59.000Z

327

Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033  

SciTech Connect (OSTI)

Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

2012-07-01T23:59:59.000Z

328

COMMENTARY/COMMENTAIRE The radiological consequences of the Chernobyl  

E-Print Network [OSTI]

COMMENTARY/COMMENTAIRE The radiological consequences of the Chernobyl accident The First­22 March 1996 Eric Voice Abstract: The human health consequences of the Chernobyl accident in 1986 have are discussed with particular focus on thyroid cancers and exposures to iodine-131. Key words: Chernobyl

Shlyakhter, Ilya

329

Radiology utilizing a gas multiwire detector with resolution enhancement  

DOE Patents [OSTI]

This invention relates to a process and apparatus for obtaining filmless, radiological, digital images utilizing a gas multiwire detector. Resolution is enhanced through projection geometry. This invention further relates to imaging systems for X-ray examination of patients or objects, and is particularly suited for mammography.

Majewski, Stanislaw (Grafton, VA); Majewski, Lucasz A. (Grafton, VA)

1999-09-28T23:59:59.000Z

330

DOE Radiological Calibrations Intercomparison Program: Results of fiscal year 1987  

SciTech Connect (OSTI)

This report presents the FY 1987 results of the radiological calibrations intercomparison program. The intercomparison operation is discussed, and the equipment is described, particularly the instrument set, the beta source set, and relevant calculations. Solutions to problems and improvements in the program are suggested, and conclusions are then introduced. 9 refs., 3 figs., 8 tabs.

Cummings, F.M.; McDonald, J.C.

1988-06-01T23:59:59.000Z

331

EM-Led Radiological Incident Response Program Receives Honors  

Broader source: Energy.gov [DOE]

A program led by EM’s Carlsbad Field Office (CBFO) that coordinates analytical capabilities throughout DOE for response to potential national radiological incidents recently received recognition for the best-in-track poster at a waste management conference earlier this year.

332

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002  

E-Print Network [OSTI]

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002 Science commissioned Pipeline, 2002 The Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory Pakefield OF SURVEY 5 2.1 Pipeline description 5 2.2 Occupancy 6 2.3 Gamma dose rate measurements 7 3 SURVEY FINDINGS

333

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas  

Broader source: Energy.gov [DOE]

This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.)

334

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network [OSTI]

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants one of the highest among all engineers #12;Westinghouse AP1000 Areva EPR GE Nuclear ESBWR B&W m

Weber, Rodney

335

Results of the radiological and beryllium verification survey at the Sacandaga Site, Glenville, New York (SY002V)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an independent verification radiological and non-radioactive beryllium survey at the Sacandaga Site, located on Sacandaga Road, Glenville, New York following limited remediation of the site by Allwash of Syracuse, Inc. At the time of this survey, only building P was still standing. A small concrete structure at the east of the property had been demolished and the debris hauled away, leaving only a pit. The purpose of the survey, conducted between April and August 1993, was to confirm the success of the remedial actions performed to remove any beryllium concentrations or radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter indoors and outdoors, alpha and beta scans inside building P, and the collection of soil, dust and debris samples and smears for radionuclide and beryllium analyses. Results of the survey demonstrated that all radiological and beryllium measurements on the property were within applicable DOE guidelines. Based on all data collected. the Sacandaga Site, Glenville, New York, conforms to all applicable radiological and non-radioactive beryllium guidelines established for this site by DOE and approved by the State of New York.

Foley, R.D.; Cottrell, W.D.; Johnson, C.A.

1994-09-01T23:59:59.000Z

336

Results of the radiological and beryllium verification survey at the Peek Street Site, Schenectady, New York (SY001V)  

SciTech Connect (OSTI)

At the request of the U.S. Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an independent verification radiological and non-radioactive beryllium survey at the Peek Street site, located at 425 Peek Street, Schenectady, New York. The purpose of the survey, conducted during 1993 and continuing through January 1994, was to confirm the success of the remedial actions performed to remove any beryllium concentrations or radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at one meter indoors and outdoors, alpha and beta scans inside the structure, and the collection of soil, dust and debris samples and smears for radionuclide and beryllium analyses. Results of the survey demonstrated that all radiological and beryllium measurements on the property were within applicable DOE guidelines. Based on all data collected, the industrial property at 425 Peek Street and the adjacent state-owned bike path in Schenectady, New York, conforms to all applicable radiological and non-radioactive beryllium guidelines established for this site by DOE and approved by the State of New York.

Foley, R.D.; Johnson, C.A.; Carrier, R.F.; Allred, J.F.

1994-10-01T23:59:59.000Z

337

Results of the radiological verification survey of the partial remediation at 90 Avenue C, Lodi, New Jersey (LJ079V)  

SciTech Connect (OSTI)

The property at 90 Avenue C, Lodi, New Jersey is one of the vicinity properties of the former Maywood Chemical Works, Maywood, New Jersey designated for remedial action by the US Department of Energy (DOE). In July 1991, Bechtel National, Inc. performed a partial remedial action on this property. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey in July, 1991 at this site. The purpose of the verification survey was to ensure the effectiveness of remedial actions performed within FUSRAP and to confirm the site`s compliance with DOE guidelines. The radiological survey included surface gamma scans indoors and outdoors, ground-level beta-gamma measurements, and systematic and biased soil and material sampling. Results of the verification survey demonstrated that all radiological measurements on the portions of the property that had been remediated were within DOE guidelines. However, there still remains a portion of the property to be remediated that is not covered by this verification survey.

Foley, R.D.; Johnson, C.A.

1994-02-01T23:59:59.000Z

338

Laboratory to demolish excavation enclosures at Material Disposal Area B  

E-Print Network [OSTI]

to hazardous and radiological contamination while excavating and packaging contaminated debris and soil from of a highly successful environmental cleanup project at Material Disposal Area B," said Ed Worth, federal project manager #12;- 2 - with the National Nuclear Security Administration's Los Alamos Site Office. "We

339

Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

Washington TRU Solutions LLC

2005-12-29T23:59:59.000Z

340

ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES  

SciTech Connect (OSTI)

Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

2011-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Loop Material Flow System Design for Automated Guided Vehicles  

E-Print Network [OSTI]

A Loop Material Flow System Design for Automated Guided Vehicles Ardavan Asef-Vaziri 1 Maged load automated guided vehicles. The model simultaneously determines both the design are attributed to material handling (Tompkins et al., 1996). Automated guided vehicles (AGVs) are among

Dessouky, Maged

342

Broken Arrows: Radiological hazards from nuclear warhead accidents (the Minot USAF base nuclear weapons incident)  

E-Print Network [OSTI]

According to numerous press reports, in 2007 at Minot US Air Force Base six AGM-129 Advanced Cruise Missiles mistakenly armed with W80-1 thermonuclear warheads were loaded on a B-52H heavy bomber in place of six unarmed AGM-129 missiles that were awaiting transport to Barksdale US Air Force Base for disposal. The live nuclear missiles were not reported missing, and stood unsecured and unguarded while mounted to the aircraft for a period of 36 hours. The present work investigates the radiological hazards associated with a worst-case postulated accident that would disperse the nuclear material of the six warheads in large metropolitan cities. Using computer simulations approximate estimates are derived for the ensuing cancer mortality and land contamination after the accident. Health, decontamination and evacuation costs are also estimated in the framework of the linear risk model.

Liolios, Theodore

2009-01-01T23:59:59.000Z

343

Supplementary radiological and beryllium characterization of the facility at 425 Peek Street, Schenectady, New York  

SciTech Connect (OSTI)

At the request of the Office of Naval Reactors through the Office of Remedial Action and Waste Technology, a radiological survey of the Peek Street industrial facility, the adjacent state-owned bike path, and two nearby residential properties was conducted by Oak Ridge National Laboratory (ORNL) in November 1989. The results indicated small isolated areas that exceeded DOE guidelines. These areas totaled approximately 0.2 m{sup 2} of floor area and approximately 3 m{sup 2} of wall area inside the building, and two small areas totaling approximately 5 m{sup 2} outside the building. A small section of one of these areas extended beyond the fence on the east side of the industrial property onto the state-owned property. No residual radioactive material or elevated radiation levels were detected on any portion of the paved section of the bike path or the residential properties adjacent to the site. Because the elevated radiation levels were localized and limited in extent, any credible use scenario, including current use conditions, indicated that no significant radiation exposures would accrue to individuals frequenting the area. Samples were also analyzed for elemental beryllium since that material had formerly been used at the site. In conjunction with the planned remediation at the facility, a supplementary characterization survey was performed to further define the areas containing beryllium in excess of the identified guidelines. Additional radiological characterization of Ra-226, Th-232, and U-238 was also performed in areas that were largely inaccessible prior to the remediation efforts.

Foley, R.D.; Allred, J.F.; Carrier, R.F.

1994-10-01T23:59:59.000Z

344

Test reports for K Basins vertical fuel handling tools  

SciTech Connect (OSTI)

The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

Meling, T.A.

1995-02-01T23:59:59.000Z

345

The combustion and handling properties of several heavy bitumen emulsions  

SciTech Connect (OSTI)

A research program was undertaken by ACT/CANMET to compare the combustion and heat transfer characteristics of a number of bitumen-based water emulsions with those of heavy fuel oil. The addition of water gives some advantage in the areas of fuel handling, atomization and emissions. These studies showed that the emulsions burn and transfer heat in a manner similar to commercial heavy fuel oils and make excellent fuels for boiler and process combustors. However, if the heavy bitumen is partially upgraded, the emulsion made from these residues can sometimes give rise to combustion and emissions related concerns. Particular attention must be paid to the burner/atomization system in order to avoid combustion problems resulting in unacceptably high levels of soot deposition and emissions.

Whaley, H.; Wong, J.K.L.; Banks, G.N.; Lee, S.W.

1995-12-31T23:59:59.000Z

346

Automated cassette-to-cassette substrate handling system  

DOE Patents [OSTI]

An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

2014-03-18T23:59:59.000Z

347

DOE assay methods used for characterization of contact-handled transuranic waste  

SciTech Connect (OSTI)

US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

Schultz, F.J. (Oak Ridge National Lab., TN (United States)); Caldwell, J.T. (Pajarito Scientific Corp., Los Alamos, NM (United States))

1991-08-01T23:59:59.000Z

348

Materials Scientist  

Broader source: Energy.gov [DOE]

Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

349

US Department of Energy radiological control manual. Revision 1  

SciTech Connect (OSTI)

This manual establishes practices for the conduct of Department of Energy radiological control activities. The Manual states DOE`s positions and views on the best courses of action currently available in the area of radiological controls. Accordingly, the provisions in the Manual should be viewed by contractors as an acceptable technique, method or solution for fulfilling their duties and responsibilities. This Manual shall be used by DOE in evaluating the performance of its contractors. This Manual is not a substitute for Regulations; it is intended to be consistent with all relevant statutory and regulatory requirements and shall be revised whenever necessary to ensure such consistency. Some of the Manual provisions, however, challenge the user to go well beyond minimum requirements. Following the course of action delineated in the Manual will result in achieving and surpassing related statutory or regulatory requirements.

Not Available

1994-04-01T23:59:59.000Z

350

The Role of Interventional Radiology in Obstetric Hemorrhage  

SciTech Connect (OSTI)

Obstetric hemorrhage remains a major cause of maternal morbidity and mortality worldwide. Traditionally, in cases of obstetric hemorrhage refractory to conservative treatment, obstetricians have resorted to major surgery with the associated risks of general anesthesia, laparotomy, and, in the case of hysterectomy, loss of fertility. Over the past two decades, the role of pelvic arterial embolization has evolved from a novel treatment option to playing a key role in the management of obstetric hemorrhage. To date, interventional radiology offers a minimally invasive, fertility-preserving alternative to conventional surgical treatment. We review current literature regarding the role of interventional radiology in postpartum hemorrhage, abnormal placentation, abortion, and cervical ectopic pregnancy. We discuss techniques, success rates, and complications.

Gonsalves, M., E-mail: michael.gonsalves@stgeorges.nhs.uk; Belli, A., E-mail: Anna.Belli@stgeorges.nhs.u [St. Georges Hospital, Radiology Department (United Kingdom)

2010-10-15T23:59:59.000Z

351

Hanford radiological protection support services annual report for 1988  

SciTech Connect (OSTI)

The report documents the performance of certain radiological protection sitewide services during calendar year (CY) 1988 by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy-Richland Operations Office (DOE-RL) and contractor activities on the Hanford Site. The routine program for each service is discussed along with any significant program changes and tasks, investigations, and studies performed in support of each program. Other related activities such as publications, presentations, and memberships on standard or industry committees are also listed. The programs covered provide services in the areas of (1) internal dosimetry, (2) in vivo measurements, (3) external dosimetry, (4) instrument calibration and evaluation, (5) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards), and (6) radiological records. 23 refs., 15 figs., 15 tabs.

Lyon, M.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.; Sula, M.J.

1989-06-01T23:59:59.000Z

352

Radiological survey results at Beverly Harbor, Beverly, Massachusetts (VB025)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Beverly Harbor, Beverly, Massachusetts. The survey was performed in may 1991. The purpose of the survey was to determine if uranium from work performed under government contract at the former Ventron facility had migrated off-site to the harbor and neighboring areas. The survey included a surface gamma scan and the collection of soil and biological samples for radionuclide analyses.

Foley, R.D.; Johnson, C.A.

1992-08-01T23:59:59.000Z

353

Radiological survey results for the Peek Street site properties, Schenectady, New York  

SciTech Connect (OSTI)

The Peek Street Industrial Facility, located at 425 Peek Street, Schenectady, New York, was operated by the General Electric Company for the Atomic Energy Commission (AEC) between 1947 and 1955. A variety of operations using radioactive materials were conducted at the site, but the main activities were to design an intermediate breeder reactor and to develop a chemical process for the recovery of uranium and plutonium from spent reactor fuel. Nonradioactive beryllium metal was machined on the site for breeder reactor application. The 4.5-acre site was decommissioned and released in October 1955. A radiological survey was conducted by Oak Ridge National Laboratory in November 1989. The survey included scan and grid point measurements of direct radiation levels outdoors on the five properties and inside the factory building, and radionuclide analysis of samples collected from each property. Radionuclide concentrations were determined in outdoor surface and subsurface soil samples from each property and in dust, debris, and structural materials from inside the factory building. Auger holes were logged to assess location and extent of possible subsurface residual soil radioactivity. Radionuclide concentrations were deter-mined in both indoor and outdoor water samples and in selected samples of vegetation. The presence of fixed and transferable surface residual radioactivity was investigated inside the factory building and on discarded materials outdoors on the property. High-volume air samples as well as additional selected indoor and outdoor soil samples were analyzed to determine levels of elemental beryllium.

Foley, R.D.; Cottrell, W.D.; Carrier, R.F.

1992-08-01T23:59:59.000Z

354

U-226: Linux Kernel SFC Driver TCP MSS Option Handling Denial...  

Broader source: Energy.gov (indexed) [DOE]

The vulnerability is caused due to an error in the Solarflare network driver (driversnetethernetsfctx.c) when handling TCP segments and can be exploited via a...

355

Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2010-10-01T23:59:59.000Z

356

Urenco`s experience of UF{sub 6} handling  

SciTech Connect (OSTI)

Urenco operates enrichment plants at three sites, Almelo (Netherlands), Capenhurst (United Kingdom) and Gronau (Germany). Current installed separative work capacity is 2,500 tSWpa. Since 1971, when the first pilot plants were built, enrichment production has totalled 18,000 tSW. During this last 20 years over 3,500 48 containers of UF{sub 6} have been fed to the plants, over 3,700 30 containers have been filled with product and delivered successfully to Urenco`s customers worldwide and over 3,000 48 containers of depleted tails have been filled and have either been returned to customers or retained for long term storage on site. The paper gives a brief outline of Urenco`s experience in handling UF{sub 6}: the equipment and methods used in receiving, feeding, filling, blending, liquid sampling, storing, moving on site and despatching of UF{sub 6} containers. Some of the difficulties experienced with UF{sub 6} containers are appended.

Saelmans, F. [Urenco Almelo (Netherlands); Scane, C. [Urenco Capenhurst (United Kingdom); Christofzik, J. [Urenco Gronau (Germany)

1991-12-31T23:59:59.000Z

357

B cell remote-handled waste shipment cask alternatives study  

SciTech Connect (OSTI)

The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria.

RIDDELLE, J.G.

1999-05-26T23:59:59.000Z

358

Removable pellicle for lithographic mask protection and handling  

DOE Patents [OSTI]

A removable pellicle for a lithographic mask that provides active and robust particle protection, and which utilizes a traditional pellicle and two deployments of thermophoretic protection to keep particles off the mask. The removable pellicle is removably attached via a retaining structure to the mask substrate by magnetic attraction with either contacting or non-contacting magnetic capture mechanisms. The pellicle retaining structural is composed of an anchor piece secured to the mask substrate and a frame member containing a pellicle. The anchor piece and the frame member are in removable contact or non-contact by the magnetic capture or latching mechanism. In one embodiment, the frame member is retained in a floating (non-contact) relation to the anchor piece by magnetic levitation. The frame member and the anchor piece are provided with thermophoretic fins which are interdigitated to prevent particles from reaching the patterned area of the mask. Also, the anchor piece and mask are maintained at a higher temperature than the frame member and pellicle which also prevents particles from reaching the patterned mask area by thermophoresis. The pellicle can be positioned over the mask to provide particle protection during mask handling, inspection, and pumpdown, but which can be removed manually or robotically for lithographic use of the mask.

Klebanoff, Leonard E. (Dublin, CA); Rader, Daniel J. (Albuquerque, NM); Hector, Scott D. (Oakland, CA); Nguyen, Khanh B. (Sunnyvale, CA); Stulen, Richard H. (Livermore, CA)

2002-01-01T23:59:59.000Z

359

Preliminary results of the radiological survey at the former Dow Chemical Company site, Madison, Illinois  

SciTech Connect (OSTI)

During the late 1950s and early 1960s, the former Dow Chemical Company plant, now owned and operated by Spectrulite Consortium Inc., supplied materials and provided services for the Atomic Energy Commission (AEC) under purchase orders issued by the Mallinckrodt Chemical Company, a primary AEC contractor. Information indicates that research and development work involving gamma-phase extrusion of uranium metal was conducted at the Dow Chemical plant. Because documentation establishing the current radiological condition of the property was unavailable, a radiological survey was conducted by members of the Measurement Applications and Development Group of the Oak Ridge National Laboratory in March 1989. The survey included: measurement of indoor gamma exposure rates; collection and radionuclide analysis of dust and debris samples; and measurements to determine alpha and beta-gamma surface contamination. The results of the survey demonstrate that Building 6, the area uranium extrusion and rod-straightening work occurred, is generally free of radioactive residuals originating from former DOE-sponsored activities. However, {sup 238}U- and {sup 232}Th-contaminated dust was found on overhead beams at the south end of Building 6. These findings suggest that past DOE-supported operations were responsible for uranium-contaminated beam dust in excess of guidelines in Building 6. However, the contamination is localized and limited in extent, rendering it highly unlikely that under present use an individual working in or frequenting these remote areas would receive a significant radiation exposure. We recommend that additional scoping survey measurements and sampling be performed to further define the extent of indoor uranium contamination southward to include Building 4 and northward throughout Building 6. 5 refs., 11 figs., 4 tabs.

Cottrell, W.D.; Williams, J.K.

1990-12-01T23:59:59.000Z

360

Nuclear, Plasma, and Radiological Engineering Center for Plasma-Material Interactions  

E-Print Network [OSTI]

16, 2011 VLT Conference Call No cold hydrogen returns from wall: Plasma stays hot Courtesy: PPPL What Very-Low Recycling Does for Fusion Standard Case Lithium Case ­ Cost of Fusion Power is Reduced metal and therefore subject to MHD effects. After all, fusion devices have large circulating currents

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Forward model calculations for determining isotopic compositions of materials used in a radiological dispersal device  

E-Print Network [OSTI]

for the multiple radial-region pin cell was 7 times that of the 2D pin cell. For this reason, the 2D pin cell was used to benchmark the isotopics with data from other reactors. The reactors from which the methodology was benchmarked were Calvert Cliffs Unit #1...

Burk, David Edward

2005-08-29T23:59:59.000Z

362

weapons material  

National Nuclear Security Administration (NNSA)

2%2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

363

A New Aerodynamic Traction Principle for Handling Products on an Air Cushion  

E-Print Network [OSTI]

1 A New Aerodynamic Traction Principle for Handling Products on an Air Cushion Guillaume J. Laurent. The product is carried on a thin air cushion and transported along the system by induced air flows principle for handling delicate and clean products, such as silicon wafers, glass sheets or flat foodstuff

Paris-Sud XI, Université de

364

Extending a Deductive ObjectOriented Database System with Spatial Data Handling Facilities  

E-Print Network [OSTI]

Extending a Deductive Object­Oriented Database System with Spatial Data Handling Facilities Alvaro, 1998 Abstract This paper describes the integration of a spatial data handling component with the ROCK collection of spatial data types as primitive types whose operations have state­of­the­art computational

Fernandes, Alvaro A. A.

365

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-05-01T23:59:59.000Z

366

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-10-01T23:59:59.000Z

367

GUIDELINES FOR DESIGN AND SAFE HANDLING OF CURVED I-SHAPED STEEL GIRDERS  

E-Print Network [OSTI]

0-5574-P1 GUIDELINES FOR DESIGN AND SAFE HANDLING OF CURVED I-SHAPED STEEL GIRDERS Authors: Jason FOR DESIGN AND SAFE HANDLING OF CURVED I-SHAPED STEEL GIRDERS PURPOSE: The purpose of this set of guidelines-sixth #12;2 (Eq. 6.10.2.2-2). However, TxDOT's Preferred Practices for Steel Bridge Design, Fabrication

Texas at Austin, University of

368

SPE SPE 160638 A Novel Approach to Handle Continuous Wettability Alteration during  

E-Print Network [OSTI]

SPE SPE 160638 A Novel Approach to Handle Continuous Wettability Alteration during Immiscible CO2 to investigate wettability alteration during CO2 flooding process. However, limited research on numerical and, a novel approach was developed to handle wettability alteration on continuous basis during immiscible CO2

Hossain, M. Enamul

369

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-02-01T23:59:59.000Z

370

From Modelica Models to Fault Diagnosis in Air Handling Units Raymond Sterling1  

E-Print Network [OSTI]

From Modelica Models to Fault Diagnosis in Air Handling Units Raymond Sterling1 , Peter Struss2 Handling Unit (AHU). This solution is derived from a general first-principle Modelica model and exploits 4 presents the modelica models and its calibration. In section 5 an example of the complete tool

Cengarle, María Victoria

371

Safe handling of potential peroxide forming compounds and their corresponding peroxide yielded derivatives.  

SciTech Connect (OSTI)

This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.

Sears, Jeremiah Matthew; Boyle, Timothy J.; Dean, Christopher J.

2013-06-01T23:59:59.000Z

372

Extension of DOE N 441.1, Radiological Protection for DOE Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice extends DOE N 441.1, Radiological Protection for DOE Activities, dated 9-30-95 until 6-30-00.

1998-11-20T23:59:59.000Z

373

E-Print Network 3.0 - academic pediatric radiology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The residents all appreciate the work... . Scott McKillop, Pediatric Radiology Dr. Keng Tay, Neuroradiology New Dr. Daniele Wiseman, Angio IR New... to the conference. Dr. David...

374

Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary Assessment and Recommendations for Further Study  

SciTech Connect (OSTI)

This is a review of the book ''Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary Assessment and Recommendations for Further Study.''

Napier, Bruce A. (BATTELLE (PACIFIC NW LAB))

1999-01-01T23:59:59.000Z

375

Rev. 10/24/2014 -JAB Environmental and Radiological Health Sciences  

E-Print Network [OSTI]

Rev. 10/24/2014 - JAB Environmental and Radiological Health Sciences Academic Policies, Guidelines....................................................................................................................... 3 Plan A Master of Science Program......................................................................................... 3 Plan B Master of Science Program

376

E-Print Network 3.0 - assisted radiology proceedings Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

staffing is maintained in CT, MR, Vascular... and outpatient populations are served from pediatric to adult. Within their role, the Radiology nurses Source: Duke University,...

377

E-Print Network 3.0 - aerial radiological monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

staffing is maintained in CT, MR, Vascular... and outpatient populations are served from pediatric to adult. Within their role, the Radiology nurses Source: Duke University,...

378

E-Print Network 3.0 - automated radiological monitoring Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

staffing is maintained in CT, MR, Vascular... and outpatient populations are served from pediatric to adult. Within their role, the Radiology nurses Source: Duke University,...

379

Guide of good practices for occupational radiological protection in plutonium facilities  

SciTech Connect (OSTI)

This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TS replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.

NONE

1998-06-01T23:59:59.000Z

380

Results of the independent radiological verification survey of the lower Sheffield Brook floodplain, Wayne, New Jersey  

SciTech Connect (OSTI)

Prior to 1971, the W.R. Grace Company processed and stored radioactive materials at Wayne, New Jersey, under license to the Atomic Energy Commission. Decontamination of structures and storage of waste materials on the property at the Wayne Interim Storage Site (WISS) took place in 1974. Surveys by the State of New Jersey Department of Environmental Protection and by Oak Ridge Associated Universities for the NRC in 1982 indicated that properties adjacent to the WISS contained surface contamination by radioactive residuals in amounts exceeding those acceptable under US Department of Energy (DOE) remedial action guidelines. At the request of DOE, remedial actions have been conducted by Bechtel National, Inc., to remove radioactive residuals from properties adjacent to the site. It is the policy of DOE to assign an independent verification contractor to ensure the effectiveness of remedial actions performed within the Formerly Utilized Sites Remedial Action Program. This report describes the methods and results of those studies that were conducted by the Measurement Applications and Development Group of the Oak Ridge National Laboratory for the lower Sheffield Brook floodplain west of the WISS. Based upon post-remedial action and verification survey data, it was concluded that residual soil concentrations and gamma levels following excavation and backfilling of the area are within the limits prescribed by DOE radiological guidelines. 12 refs., 6 figs., 8 tabs.

Yalcintas, M.G.; Carrier, R.F.

1989-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of [sup 238]U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of [sup 226]Ra and [sup 230]Th with much lower concentrations of [sup 238]U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for [sup 238]U, [sup 226]Ra, and/or [sup 230]Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

382

Results of the radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York (TNY001)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the Town of Tonawanda Landfill, Tonawanda, New York. The survey was performed in September 1991. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been deposited in the landfill. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses. Results of the survey suggest that material originating at the Linde plant may have been deposited in the landfill. Soil samples S54 and B12 contained technologically enhanced levels of {sup 238}U not unlike the product formerly produced by the Linde plant. In contrast, samples B4A, B5A and B7B, containing elevated concentrations of {sup 226}Ra and {sup 230}Th with much lower concentrations of {sup 238}U, were similar to the residue or byproduct of the refinery operation conducted at the Linde plant. In 24 instances, soil samples from the Town of Tonawanda Landfill exceeded DOE guideline values for {sup 238}U, {sup 226}Ra, and/or {sup 230}Th in surface or subsurface soil. Nine of these samples contained radionuclide concentrations more than 30 times the guideline value.

Rodriguez, R.E.; Murray, M.E.; Uziel, M.S.

1992-10-01T23:59:59.000Z

383

A radiological assessment of nuclear power and propulsion operations near Space Station Freedom. Contract report, January 1988-January 1990  

SciTech Connect (OSTI)

Scenarios were identified which involve the use of nuclear power systems in the vicinity of Space Station Freedom (SSF) and their radiological impact on the SSF crew was quantified. Several of the developed scenarios relate to the use of SSF as an evolutionary transportation node for lunar and Mars missions. In particular, radiation doses delivered to SSF crew were calculated for both the launch and subsequent return of a Nuclear Electric Propulsion (NEP) cargo vehicle and a Nuclear Thermal Rocket (NTR) personnel vehicle to low earth orbit. The use of nuclear power on co-orbiting platforms and the storage and handling issues associated with radioisotope power systems were also explored as they relate to SSF. A central philosophy in these analyses was the utilization of a radiation dose budget, defined as the difference between recommended dose limits from all radiation sources and estimated doses received by crew members from natural space radiations. Consequently, for each scenario examined, the dose budget concept was used to identify and quantify constraints on operational parameters such as launch separation distances, returned vehicle parking distances, and reactor shutdown times prior to vehicle approach. The results indicate that realistic scenarios do not exist which would preclude the use of nuclear power sources in the vicinity of SSF. The radiation dose to the SSF crew can be maintained at safe levels solely by implementing proper and reasonable operating procedures.

Bolch, W.E.; Thomas, J.K.; Peddicord, K.L.; Nelson, P.; Marshall, D.T.; Busche, D.M.

1990-03-01T23:59:59.000Z

384

Federal Radiological Monitoring and Assessment Center Health and Safety Manual  

SciTech Connect (OSTI)

This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

FRMAC Health and Safety Working Group

2012-03-20T23:59:59.000Z

385

Hanford radiological protection support services annual report for 1990  

SciTech Connect (OSTI)

Various Hanford site-wide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy-Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1990. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable. 22 refs., 10 figs., 19 tabs.

Lyon, M; Bihl, D E; Fix, J J; Piper, R K; Freolich, T J; Leonowich, J A; Lynch, T P

1991-07-01T23:59:59.000Z

386

Hanford Radiological Protection Support Services annual report for 1993  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1993. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Olsen, P.C.

1994-07-01T23:59:59.000Z

387

Hanford Radiological Protection Support Services annual report for 1992  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Field Office and Hanford contractors are described in this annual report of calendar year 1992. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M; Bihl, D E; Fix, J J; Piper, R K; Froelich, T J; Lynch, T P

1993-07-01T23:59:59.000Z

388

Hanford radiological protection support services annual report for 1997  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

1998-06-01T23:59:59.000Z

389

Hanford radiological protection support services. Annual report for 1995  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Carbaugh, E.H. [and others

1996-05-01T23:59:59.000Z

390

Hanford radiological protection support services annual report for 1996  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1996. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Schulze, S.A.

1997-06-01T23:59:59.000Z

391

Hanford radiological protection support services annual report for 1994  

SciTech Connect (OSTI)

Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for the calendar year 1994. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program- related publications, presentations, and other staff professional activities are also described.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Olsen, P.C.

1995-06-01T23:59:59.000Z

392

Hanford radiological protection support services annual report for 1989  

SciTech Connect (OSTI)

Certain sitewide radiation protection services operated by Pacific Northwest Laboratory for the US Department of Energy-Richland Operations office and Hanford contractor are documented in this annual report on these services provided during calendar year 1989. These activities include internal dosimetry, in vivo measurements, external dosimetry, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. In each case the routine program, program changes, associated tasks, investigations, and studies, as well as related publications, presentations, and other professional activities are discussed as applicable. 26 refs., 19 figs., 18 tabs.

Lyon, M.; Bihl, D.E.; Fix, J.J.; Kenoyer, J.L.; Leonowich, J.A.; Palmer, H.E.

1990-07-01T23:59:59.000Z

393

DOE-HDBK-1122-99; Radiological Control Technical Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO EH-52:Judith D. Radiological10 Access

394

DOE-HDBK-1122-99; Radiological Control Technican Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO EH-52:Judith D. Radiological10 Access

395

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO EH-52:Judith D. Radiological10 Access

396

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO EH-52:Judith D. Radiological10 Access9

397

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO EH-52:Judith D. Radiological10

398

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO EH-52:Judith D. Radiological10Unit

399

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO EH-52:Judith3AirAccessRadiological

400

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 Radiological Considerations for First

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 Radiological Considerations for

402

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 Radiological Considerations

403

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 Radiological

404

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide 2.19-1

405

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide

406

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide Unit

407

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide Unit

408

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide Unit4

409

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide Unit4-

410

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide

411

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide8

412

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide8

413

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide8 ALARA

414

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide8 ALARA

415

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide8 ALARA

416

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide8

417

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of 9

418

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of 9

419

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of 9

420

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of 9

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of 9

422

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of 9

423

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of 9

424

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of 9

425

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of 9

426

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86 of

427

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86

428

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's Guide86

429

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor's

430

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor'sStudy Guide

431

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor'sStudy

432

DOE-HDBK-1122-99; Radiological Control Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor'sStudyStudy

433

DOE-HDBK-1122-99; Radiological Technician Training  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSofDATE M a y 9, 2005 REPLY TO5 RadiologicalInstructor'sStudyStudy5

434

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents [OSTI]

A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

Bench, Thomas R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

435

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents [OSTI]

A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

Bench, T.R.

1998-04-28T23:59:59.000Z

436

Radiological review of conditions created during & after a fire on the Hanford Site in the BC Crib controlled area & areas of radiological concern  

SciTech Connect (OSTI)

The radiological implications of fighting a wildland fire in the BC Crib controlled area with the surrounding Soil Contamination Area (SCA) and for fighting a wildland fire in the genera1 600 Area are addressed in this document. The primary focus is on the BC Crib controlled area; however, the 600 Area radiological concerns are much lower and generally have the same constraints as the BC Crib controlled area. This analysis addresses only radiological hazards and does not address any physical hazards or industrial hygiene hazards.

EVANS, C.L.

2003-04-01T23:59:59.000Z

437

Nearest Neighbor Averaging and its Effect on the Critical Level and Minimum Detectable Concentration for Scanning Radiological Survey Instruments that Perform Facility Release Surveys.  

SciTech Connect (OSTI)

Through the SNL New Mexico Small Business Assistance (NMSBA) program, several Sandia engineers worked with the Environmental Restoration Group (ERG) Inc. to verify and validate a novel algorithm used to determine the scanning Critical Level (L c ) and Minimum Detectable Concentration (MDC) (or Minimum Detectable Areal Activity) for the 102F scanning system. Through the use of Monte Carlo statistical simulations the algorithm mathematically demonstrates accuracy in determining the L c and MDC when a nearest-neighbor averaging (NNA) technique was used. To empirically validate this approach, SNL prepared several spiked sources and ran a test with the ERG 102F instrument on a bare concrete floor known to have no radiological contamination other than background naturally occurring radioactive material (NORM). The tests conclude that the NNA technique increases the sensitivity (decreases the L c and MDC) for high-density data maps that are obtained by scanning radiological survey instruments.

Fournier, Sean Donovan; Beall, Patrick S [Sandia National Laboratories, Livermore, CA; Miller, Mark L.

2014-08-01T23:59:59.000Z

438

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect (OSTI)

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

439

DRAFT - Design of Radiological Survey and Sampling to Support Title Transfer or Lease of Property on the Department of Energy Oak Ridge Reservation  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) owns, operates, and manages the buildings and land areas on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. As land and buildings are declared excess or underutilized, it is the intent of DOE to either transfer the title of or lease suitable property to the Community Reuse Organization of East Tennessee (CROET) or other entities for public use. It is DOE's responsibility, in coordination with the U.S. Environmental Protection Agency (EPA), Region 4, and the Tennessee Department of Environment and Conservation (TDEC), to ensure that the land, facilities, and personal property that are to have the title transferred or are to be leased are suitable for public use. Release of personal property must also meet site requirements and be approved by the DOE contractor responsible for site radiological control. The terms title transfer and lease in this document have unique meanings. Title transfer will result in release of ownership without any restriction or further control by DOE. Under lease conditions, the government retains ownership of the property along with the responsibility to oversee property utilization. This includes involvement in the lessee's health, safety, and radiological control plans and conduct of site inspections. It may also entail lease restrictions, such as limiting access to certain areas or prohibiting digging, drilling, or disturbing material under surface coatings. Survey and sampling requirements are generally more rigorous for title transfer than for lease. Because of the accelerated clean up process, there is an increasing emphasis on title transfers of facilities and land. The purpose of this document is to describe the radiological survey and sampling protocols that are being used for assessing the radiological conditions and characteristics of building and land areas on the Oak Ridge Reservation that contain space potentially available for title transfer or lease. After necessary surveys and sampling and laboratory analyses are completed, the data are analyzed and included in an Environmental Baseline Summary (EBS) report for title transfer or in a Baseline Environmental Analysis Report (BEAR) for lease. The data from the BEAR is then used in a Screening-Level Human Health Risk Assessment (SHHRA) or a risk calculation (RC) to assess the potential risks to future owners/occupants. If title is to be transferred, release criteria in the form of specific activity concentrations called Derived Concentration Guideline Levels (DCGLs) will be developed for the each property. The DCGLs are based on the risk model and are used with the data in the EBS to determine, with statistical confidence, that the release criteria for the property have been met. The goal of the survey and sampling efforts is to (1) document the baseline conditions of the property (real or personal) prior to title transfer or lease, (2) obtain enough information that an evaluation of radiological risks can be made, and (3) collect sufftcient data so that areas that contain minimal residual levels of radioactivity can be identified and, following radiological control procedures, be released from radiological control. (It should be noted that release from radiological control does not necessarily mean free release because DOE may maintain institutional control of the site after it is released from radiological control). To meet the goals of this document, a Data Quality Objective (DQO) process will be used to enhance data collection efficiency and assist with decision-making. The steps of the DQO process involve stating the problem, identifying the decision, identifying inputs to the decision, developing study boundaries, developing the decision rule, and optimizing the design. This document describes the DQOs chosen for surveys and sampling efforts performed for the purposes listed above. The previous version to this document focused on the requirements for radiological survey and sampling protocols that are be used for leasing. Because the primary focus at this time is on title transfer, th

Cusick L.T.

2002-09-25T23:59:59.000Z

440

A topological approach to materials characterization  

SciTech Connect (OSTI)

This paper reports that a principal aim of materials science is the correlation of microstructure with properties. An example of such a relationship is the dependence of yield strength on the pinning of dislocations. The theories which describe these processes are well established and generally successful for secondary phases which exist as discrete particles. In engineering materials, second phases do not necessarily exist as discrete particles, but they can also form a sponge-like interconnected (percolated) structures. Some suggestions on the quantification of these interconnected microstructures were made by Camus et al. Extending the theories of structure/property relationships to these materials requires a method of characterization which is the equivalent of counting the number of particles for unconnected structures. In topological characterization, two structures are considered identical if they can be transformed into one another without requiring any cuts. The coffee mug and doughnut are therefore topologically identical since they both have only one hole or handle. Moving a dislocation through a connected microstructure, such as a sponge, will require cutting through the handles of the structure, and therefore the handle density of a percolated structure is the analogue of the particle density for separate particles.

Cerezo, A.; Hetherington, M.G.; Hyde, J.M. (Dept. of Materials, Univ. of Oxford, Parks Road, Oxford OX1 3PH (GB)); Miller, M.K. (Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.)

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

442

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

443

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

444

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

445

Critical Materials:  

Broader source: Energy.gov (indexed) [DOE]

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

446

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-02-01T23:59:59.000Z

447

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-05-01T23:59:59.000Z

448

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

449

Palliative Airway Stenting Performed Under Radiological Guidance and Local Anesthesia  

SciTech Connect (OSTI)

Purpose. To assess the effectiveness of airway stenting performed exclusively under radiological guidance for the palliation of malignant tracheobronchial strictures. Methods. We report our experience in 16 patients with malignant tracheobronchial stricture treated by insertion of 20 Ultraflex self-expandable metal stents performed under fluoroscopic guidance only. Three patients presented dysphagia grade IV due to esophageal malignant infiltration; they therefore underwent combined airway and esophageal stenting. All the procedures were performed under conscious sedation in the radiological room; average procedure time was around 10 min, but the airway impediment never lasted more than 40 sec. Results. We obtained an overall technical success in 16 cases (100%) and clinical success in 14 patients (88%). All prostheses were successfully placed without procedural complications. Rapid clinical improvement with symptom relief and normalization of respiratory function was obtained in 14 cases. Two patients died within 48 hr from causes unrelated to stent placement. Two cases (13%) of migration were observed; they were successfully treated with another stent. Tumor overgrowth developed in other 2 patients (13%); however, no further treatment was possible because of extensive laryngeal infiltration. Conclusions. Tracheobronchial recanalization with self-expandable metal stents is a safe and effective palliative treatment for malignant strictures. Airway stenting performed exclusively under fluoroscopic view was rapid and well tolerated.

Profili, Stefano; Manca, Antonio [University of Sassari, Department of Radiology (Italy); Feo, Claudio F. [Istituto di Clinica Chirurgica, University of Sassari, Department of Surgery (Italy)], E-mail: cffeo@uniss.it; Padua, Guglielmo [University of Sassari, Department of Anesthesiology (Italy); Ortu, Riccardo [SS Annunziata Hospital, Service of Pneumology (Italy); Canalis, Giulio C.; Meloni, Giovanni B. [University of Sassari, Department of Radiology (Italy)

2007-02-15T23:59:59.000Z

450

Northern Marshall Islands radiological survey: sampling and analysis summary  

SciTech Connect (OSTI)

A radiological survey was conducted in the Northern Marshall Islands to document reamining external gamma exposures from nuclear tests conducted at Enewetak and Bikini Atolls. An additional program was later included to obtain terrestrial and marine samples for radiological dose assessment for current or potential atoll inhabitants. This report is the first of a series summarizing the results from the terrestrial and marine surveys. The sample collection and processing procedures and the general survey methodology are discussed; a summary of the collected samples and radionuclide analyses is presented. Over 5400 samples were collected from the 12 atolls and 2 islands and prepared for analysis including 3093 soil, 961 vegetation, 153 animal, 965 fish composite samples (average of 30 fish per sample), 101 clam, 50 lagoon water, 15 cistern water, 17 groundwater, and 85 lagoon sediment samples. A complete breakdown by sample type, atoll, and island is given here. The total number of analyses by radionuclide are 8840 for /sup 241/Am, 6569 for /sup 137/Cs, 4535 for /sup 239 +240/Pu, 4431 for /sup 90/Sr, 1146 for /sup 238/Pu, 269 for /sup 241/Pu, and 114 each for /sup 239/Pu and /sup 240/Pu. A complete breakdown by sample category, atoll or island, and radionuclide is also included.

Robison, W.L.; Conrado, C.L.; Eagle, R.J.; Stuart, M.L.

1981-07-23T23:59:59.000Z

451

Cermet materials  

DOE Patents [OSTI]

A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

Kong, Peter C. (Idaho Falls, ID)

2008-12-23T23:59:59.000Z

452

MODIFICATION OF SHIRT BUTTONS FOR RETROSPECTIVE RADIATION DOSIMETRY AFTER A RADIOLOGICAL EVENT  

E-Print Network [OSTI]

Note MODIFICATION OF SHIRT BUTTONS FOR RETROSPECTIVE RADIATION DOSIMETRY AFTER A RADIOLOGICAL EVENT. Health Phys. 100(5):542­547; 2011 Key words: detector, thermoluminescent; dosimetry, person- nel, such as use of a radiological dispersal device (RDD or "dirty bomb"), an improvised nuclear device (IND

Brenner, David Jonathan

453

2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

mike lewis

2011-02-01T23:59:59.000Z

454

2013 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike Lewis

2014-02-01T23:59:59.000Z

455

2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike Lewis

2013-02-01T23:59:59.000Z

456

Quantifying improvements in the Engineering-Procurement-Construction (EPC) process from the implementation of information management strategies within materials management  

E-Print Network [OSTI]

Throughout all industries where material flow or handling is involved, employers have implemented various information management technologies with the following goals: 1) to reduce cost, time, and effort, 2) to improve productivity, 3) to streamline...

Toon, Jeffrey Lee

1997-01-01T23:59:59.000Z

457

Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model  

E-Print Network [OSTI]

Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model

458

Development of an Outdoor Concentrating Photovoltaic Module Testbed, Module Handling and Testing Procedures, and Initial Energy Production Results  

SciTech Connect (OSTI)

This report addresses the various aspects of setting up a CPV testbed and procedures for handling and testing CPV modules.

Muller, M.

2009-09-01T23:59:59.000Z

459

Radiological Assessment System for Consequence Analysis (RASCAL) Version 3.0  

SciTech Connect (OSTI)

The Radiological Assessment System for Consequence AnaLysis, Version 3.0 (RASCAL 3.0) is the U.S. Nuclear Regulatory Commission?s (NRC) main computational tool for use during radiological emergencies. RASCAL estimates doses from radiological accidents for comparison with Protective Action Guides and acute health effects thresholds. It includes six computational tools: ST-Dose, FM-Dose, Decay, BackCalc, UF6Plume, and MetProc. ST-Dose computes time-dependent nuclide release rates, atmospheric transport, radiological decay, and doses. FM-Dose computes doses from environmental concentrations of nuclides. Decay computes radiological decay and daughter in-growth. BackCalc estimates a distribution of possible release rates from field measurements. UF6Plume computes uranium exposures and HF concentrations from a UF6 release. MetProc prepares meteorological data for use by ST-Dose and UF6Plume.

Athey, G.F.; Fosmire, C.; Mohseni, A.; Ramsdell, J.V., Jr.; Sjoreen, A.

1999-09-13T23:59:59.000Z

460

Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Krauland, P.A.; Corle, S.G.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2014-06-01T23:59:59.000Z

462

A MICROFLUIDIC MAGNETIC HYBRID ACTUATOR FOR ADVANCED HANDLING FUNCTIONS AT CELL RESOLUTION  

E-Print Network [OSTI]

A MICROFLUIDIC MAGNETIC HYBRID ACTUATOR FOR ADVANCED HANDLING FUNCTIONS-CNRS, Toulouse, FRANCE 2 Université de Toulouse, Toulouse, FRANCE *email : mfouet@laas.fr In microfluidics are usually integrated. Coils were thus integrated to microfluidic chips

Paris-Sud XI, Université de

463

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-04-01T23:59:59.000Z

464

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-01-01T23:59:59.000Z

465

Using Product Specific Simulation Models in a Tool for Manual Commissioning of Air Handling Units  

E-Print Network [OSTI]

This short paper describes an outline of a tool for manual commissioning of air handling units. The prototype tool is implemented EES professional version that can generate standalone programs. The idea is to use the benefit of simulation models...

Eriksson, J.

2003-01-01T23:59:59.000Z

466

Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

Not Available

1992-09-01T23:59:59.000Z

467

Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System  

SciTech Connect (OSTI)

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

KESSLER, S.F.

2000-08-10T23:59:59.000Z

468

Handling Coordination in a Tree Adjoining Anoop Sarkar and Aravind Joshi  

E-Print Network [OSTI]

Handling Coordination in a Tree Adjoining Grammar Anoop Sarkar and Aravind Joshi Department,joshig@linc.cis.upenn.edu Draft of August 19, 1997 Longer version of (Sarkar and Joshi, 1996) Abstract In this paper we show

Sarkar, Anoop

469

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-04-01T23:59:59.000Z

470

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-06-01T23:59:59.000Z

471

Complex Materials  

ScienceCinema (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-05-23T23:59:59.000Z

472

Complex Materials  

SciTech Connect (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-04-17T23:59:59.000Z

473

Material Symbols   

E-Print Network [OSTI]

What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

Clark, Andy

2006-01-01T23:59:59.000Z

474

Safe handling of TBP and nitrates in the nuclear process industry  

SciTech Connect (OSTI)

A laboratory and literature study was made of the reactions of tri-n-butyl phosphate (TBP) with nitric acid and nitrates. Its goal was to establish safe conditions for solvent extraction processes involving these chemicals. The damaging explosions at the Tomsk-7 PUREX plant in Russia graphically illustrated the potential hazard involved in such operations. The study has involved a review of prior and contemporary experiments, and new experiments to answer particular questions about these reactions. TBP extracts nitric acid and some metal nitrates from aqueous solutions. The resulting liquid contains both oxidant and reductant, and can react exothermically if heated sufficiently. Safe handling of these potentially reactive materials involves not only limiting the heat generated by the chemical reaction, but also providing adequate heat removal and venting. Specifically, the following recommendations are made to ensure safety: (1) tanks in which TBP-nitrate complexes are or may be present should be adequately vented to avoid pressurization. Data are supplied as a basis for adequacy; (2) chemically degraded TBP, or TBP that has sat a long time in the presence of acids or radiation, should be purified before use in solvent extraction; (3) evaporators in which TBP might be introduced should be operated at a controlled temperature, and their TBP content should be limited; (4) evaporator bottoms that may contain TBP should be cooled under conditions that ensure heat removal. Finally, process design should consider the potential for such reactions, and operators should be made aware of this potential, so that it is considered during training and process operation.

Hyder, M.L.

1994-07-01T23:59:59.000Z

475

Materializing Energy  

E-Print Network [OSTI]

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

476

Radiological survey of the Shpack Landfill, Norton, Massachusetts  

SciTech Connect (OSTI)

The results of a radiological survey of the Shpack Landfill, Norton, Massachusetts, are given in this report. The survey was conducted over approximately eight acres which had received radioactive wastes from 1946 to 1965. The survey included measurement of the following: external gamma radiation at the surface and at 1 m (3 ft) above the surface throughout the site; beta-gamma exposure rates at 1 cm (0.4 in.) from the surface throughout the site; concentrations of /sup 226/Ra, /sup 238/U, and /sup 235/U in surface and subsurface soil on the site; and concentrations of /sup 226/Ra, /sup 238/U, /sup 235/U, /sup 230/Th, and /sup 210/Pb in groundwater on the site and in surface water on and near the site. Results indicate that the radioactive contamination is confined to the site and to the swamp immediately adjacent to the site.

Cottrell, W.D.; Haywood, F.F.; Witt, D.A.; Myrick, T.E.; Goldsmith, W.A.; Shinpaugh, W.H.; Loy, E.T.

1981-12-01T23:59:59.000Z

477

The Northern Marshall Islands radiological survey: Data and dose assessments  

SciTech Connect (OSTI)

Fallout from atmospheric nuclear tests, especially from those conducted at the Pacific Proving Grounds between 1946 and 1958, contaminated areas of the Northern Marshall Islands. A radiological survey at some Northern Marshall Islands was conducted from September through November 1978 to evaluate the extent of residual radioactive contamination. The atolls included in the Northern Marshall Islands Radiological Survey (NMIRS) were Likiep, Ailuk, Utirik, Wotho, Ujelang, Taka, Rongelap, Rongerik, Bikar, Ailinginae, and Mejit and Jemo Islands. The original test sites, Bikini and Enewetak Atolls, were also visited on the survey. An aerial survey was conducted to determine the external gamma exposure rate. Terrestrial (soil, food crops, animals, and native vegetation), cistern and well water samples, and marine (sediment, seawater, fish and clams) samples were collected to evaluate radionuclide concentrations in the atoll environment. Samples were processed and analyzed for {sup 137}Cs, {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am. The dose from the ingestion pathway was calculated using the radionuclide concentration data and a diet model for local food, marine, and water consumption. The ingestion pathway contributes 70% to 90% of the estimated dose. Approximately 95% of the dose is from {sup 137}Cs accounts for about 10% to 30% of the dose. {sup 239+240}Pu and {sup 241}Am are the major contributors to dose via the inhalation pathway; however, inhalation accounts for only about 1% of the total estimated dose, based on surface soil levels and resuspension studies. All doses are computed for concentrations decay corrected to 1996. The maximum annual effective dose from manmade radionuclides at these atolls ranges from .02 mSv y{sup -1}. The background dose in the Marshall Islands is estimated to be 2.4 mSv y{sup -1} to 4.5 mSv y{sup -1}. The 50-y integral dose ranges from 0.5 to 65 mSv. 35 refs., 2 figs., 9 tabs.

Robison, W.L.; Noshkin, V.E.; Conrado, C.L. [Lawrence Livermore National Lab., CA (United States)] [and others

1997-07-01T23:59:59.000Z

478

Uncertainty analysis of densities and isotopics: Handling correlations  

SciTech Connect (OSTI)

This paper discusses two cases of correlated parameters in uncertainty analyses: (1) the case of measured mass, density, and volume or spatial dimension correlations; and (2) the case of measured material isotopics, where increasing one atom fraction must cause the others to decrease. In the first case, an equation is derived that has a term due to uncertain density, a term due to uncertain dimensions, and a term due to the correlation between density and dimensions. In a numerical test problem, this equation gives the same result as the standard equation that treats mass and dimensions independently. In the case of isotopics, an equation is derived relating the uncertainty due to uncertain isotopic fractions to the sensitivities to isotopic densities, which are easier to calculate. The equation is verified in a test problem. (authors)

Favorite, J. A.; Armstrong, J. C. [X-Computational Physics Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Burr, T. [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

2013-07-01T23:59:59.000Z

479

Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189  

SciTech Connect (OSTI)

The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

Simpson, A.; Pitts, M. [Pajarito Scientific Corporation, 2976 Rodeo Park Drive East, Santa Fe, NM 87505 (United States)] [Pajarito Scientific Corporation, 2976 Rodeo Park Drive East, Santa Fe, NM 87505 (United States); Ludowise, J.D.; Valentinelli, P. [Washington Closure Hanford, 2620 Fermi Ave., Richland, WA 99354 (United States)] [Washington Closure Hanford, 2620 Fermi Ave., Richland, WA 99354 (United States); Grando, C.J. [ELR Consulting, Inc., 15247 Wilbur Rd., La Conner, WA 98257 (United States)] [ELR Consulting, Inc., 15247 Wilbur Rd., La Conner, WA 98257 (United States); Haggard, D.L. [WorleyParsons Polestar, 601 Williams Blvd., Richland, WA 99354 (United States)] [WorleyParsons Polestar, 601 Williams Blvd., Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

480

Results of the radiological survey at the Sacandaga site Glenville, New York  

SciTech Connect (OSTI)

The Sacandaga site, located on Sacandaga Road, Glenville, New York, was operated by the General Electric Company for the Atomic Energy Commission (AEC) between 1947 and 1951. Originally used for the study and development of radar during World War II, the facilities housed later operations involving physics studies and sodium technology development in support of breeder reactor design and other AEC programs. Though not in use since the original equipment was dismantled and removed in the early 1950s, portions of the 51-acre site are known to contain buried rubble from demolished structures used in former operations. At the request of the Office of Naval Reactors through the Office of Remedial Action and Waste Technology, a characterization of current radiological conditions over the site was performed between August and October 1989. The survey included the measurement of direct radiation levels (gamma, alpha, and beta-gamma) over all surfaces both inside and outside the building and tunnel, radionuclide analysis of systematic, biased, and auger hole soil samples, and analysis of sediments from underground structures. Gamma logging of auger holes was conducted and removable contamination levels inside the tunnel were determined. Samples of soil and structural materials from within and around an excavated concrete bunker were analyzed to determine concentrations of radionuclides and nonradioactive elemental beryllium.

Foley, R.D.; Cottrell, W.D.; Carrier, R.F.

1992-08-01T23:59:59.000Z