Powered by Deep Web Technologies
Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

2

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Emergency Response to a Transportation Accident Involving Radioactive Material Radioactive Materials Transportation and Incident Response

3

PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional specific areas of competency or more hours of training

4

Pre-Hospital Practices for Handling a Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Hospital Practices for Handling a Radiologically Contaminated Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Pre-Hospital Practices for Handling a Radiologically Contaminated Patient The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on key activities and duties at the scene. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT More Documents & Publications Emergency Response to a Transportation Accident Involving Radioactive Material Handling and Packaging a Potentially Radiologically Contaminated Patient

5

Bulk materials storage handling and transportation  

Science Conference Proceedings (OSTI)

This book contains papers on bulk materials storage, handling, and transportation. Topic areas covered include: mechanical handling; pneumatic conveying; transportation; freight pipeliners; storage and discharge systems; integrated handling systems; automation; environment and sampling; feeders and flow control; structural design; large mobile machines; and grain handling.

Not Available

1983-01-01T23:59:59.000Z

6

Photon Sciences Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Y Y Rhein Craig 20622 PSBC Active Y Y Page 3 of 80 List of Photon Sciences Mat'l Handling Equip 5242013 4:09:58 PM 725 UV East GE-56 PS-C01 Yale A-422-3749 2 ton...

7

Nuclear Maintenance Applications Center: Material Handling Application Guide  

Science Conference Proceedings (OSTI)

Although the majority of the material handling activities at nuclear power plant sites are similar to the material handling activities in many other industries, there are several differences unique to the nuclear power industry. This guide to material handling equipment and its safe and effective operation at nuclear plants covers basic common practices while taking into account those unique differences. Recent industry experiences provide context for the guidance in the report.

2007-11-30T23:59:59.000Z

8

Nuclear Maintenance Applications Center: Material Handling Application Guide  

Science Conference Proceedings (OSTI)

BackgroundDuring 2005 and 2006, there were nine Institute of Nuclear Power Operations (INPO) operating events (OEs) from material handling incidents. A fatality occurred at Browns Ferry on Oct. 1, 2005, when a small article radiation monitor overturned while being moved on a material handling cart (INPO OE21844).More than 50 serious OEs concerning material handling activities have occurred in the past 10 years. The majority of these incidents involved the ...

2012-09-28T23:59:59.000Z

9

Unit load and material handling considerations in facility layout design  

E-Print Network (OSTI)

Dec 1, 2002 ... In this paper, the integration of unit load and material handling considerations in facility layout design is presented. This integration is based on ...

10

US, Netherlands Expand Partnership to Secure Radiological Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Expand Partnership to Secure Radiological Materials Worldwide | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering...

11

Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460  

E-Print Network (OSTI)

This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP.

Weiss, E V

2000-01-01T23:59:59.000Z

12

Material handling resource utilization simulation study for stamping plant  

Science Conference Proceedings (OSTI)

This paper describes the application of dynamic simulation to evaluate material handling resource utilization for a stamping plant in the automotive industry. The other objective of this study was evaluation of throughput relative to press schedules, ...

Edward J. Williams; Onur M. Ulgen; Sheldon Bailiff; Ravindra Lote

2006-12-01T23:59:59.000Z

13

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

NLE Websites -- All DOE Office Websites (Extended Search)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

14

GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material |  

National Nuclear Security Administration (NNSA)

Removing Vulnerable Civilian Nuclear and Radiological Material | Removing Vulnerable Civilian Nuclear and Radiological Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material Fact Sheet GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material

15

Insider Threat to Nuclear and Radiological Materials: Fact Sheet...  

NLE Websites -- All DOE Office Websites (Extended Search)

Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

16

Method of preparing and handling chopped plant materials  

DOE Patents (OSTI)

The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

Bransby, David I. (2668 Wire Rd., Auburn, AL 36832)

2002-11-26T23:59:59.000Z

17

Nuclear and Radiological Material Security | National Nuclear...  

National Nuclear Security Administration (NNSA)

to intensive site security efforts, NNSA is also working to build international standards and criteria for nuclear and radiological security. This includes NNSA's work to...

18

Development and implementation of automated radioactive materials handling systems  

SciTech Connect

Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation.

Jacoboski, D.L.

1992-12-01T23:59:59.000Z

19

GTRI's Nuclear and Radiological Material Protection | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection | National Nuclear Protection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog GTRI's Nuclear and Radiological Material Protection Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative > GTRI's Nuclear and Radiological Material Protection GTRI's Nuclear and Radiological Material Protection

20

Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National  

National Nuclear Security Administration (NNSA)

Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Insider Threat to Nuclear and Radiological Materials: ... Fact Sheet Insider Threat to Nuclear and Radiological Materials: Fact Sheet

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Material handling for the Los Alamos National Laboratory Nuclear Material Storage Facility  

SciTech Connect

This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels.

Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

1999-04-01T23:59:59.000Z

22

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

23

Human error contribution to nuclear materials-handling events  

E-Print Network (OSTI)

This thesis analyzes a sample of 15 fuel-handling events from the past ten years at commercial nuclear reactors with significant human error contributions in order to detail the contribution of human error to fuel-handling ...

Sutton, Bradley (Bradley Jordan)

2007-01-01T23:59:59.000Z

24

A sensor-based automation system for handling nuclear materials  

Science Conference Proceedings (OSTI)

An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool.

Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D. [and others

1997-03-01T23:59:59.000Z

25

Operational simulation model of the raw material handling in an integrated steel making plant  

Science Conference Proceedings (OSTI)

This article is focused on the design and implementation of an operational simulation model (OSM) of the handling of raw material in an integrated steel making plant, considering operations of receiving, unloading, stocking, handling and supplying the ...

Robson Jacinto Coelho; Paula Fernandes Lana; Adriano César Silva; Takeo Fugiwara Santos; ArcelorMittal Tubarão; Marcelo Moretti Fioroni; Luiz Augusto G. Franzese; Daniel de Oliveira Mota; Paragon Tecnologia; Luiz Bueno da Silva

2009-12-01T23:59:59.000Z

26

Field Test of Manufactured Gas Plant Remediation Technologies: Material Removal and Handling  

Science Conference Proceedings (OSTI)

Common manufactured gas plant (MGP) site structures are often sources of contamination and present a number of unique material removal and handling challenges. This report provides results from a field-scale study involving the excavation of the contents of a subgrade gas holder tank. Specifically discussed are the material handling activities needed to prepare MGP impacted soils and debris for remediation processes.

1996-02-02T23:59:59.000Z

27

Data-driven modeling and simulation framework for material handling systems in coal mines  

Science Conference Proceedings (OSTI)

In coal mining industry, discrete-event simulation has been widely used to support decisions in material handling system (MHS) to achieve premiums on revenues. However, the conventional simulation modeling approach requires extensive expertise of simulation ... Keywords: Coal mining, Data-driven modeling, Decision making, Material handling system

Chao Meng; Sai Srinivas Nageshwaraniyer; Amir Maghsoudi; Young-Jun Son; Sean Dessureault

2013-03-01T23:59:59.000Z

28

Soap Manufacturing TechnologyChapter 13 Soap Making Raw Materials: Their Sources, Specifications, Markets, and Handling  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 13 Soap Making Raw Materials: Their Sources, Specifications, Markets, and Handling Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tCha

29

ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

2013-05-01T23:59:59.000Z

30

ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2012  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the second quarter of 2012.

Kurtz, J.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-10-01T23:59:59.000Z

31

Radiological control criteria for materials considered for recycle and reuse  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. Preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping.

Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L. [Pacific Northwest Lab., Richland, WA (United States); Wallo, A. III [USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance

1994-11-01T23:59:59.000Z

32

Robotics for Nuclear Material Handling at LANL:Capabilities and Needs  

SciTech Connect

Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory for nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.

Harden, Troy A [Los Alamos National Laboratory; Lloyd, Jane A [Los Alamos National Laboratory; Turner, Cameron J [CO SCHOOL OF MINES/PMT-4

2009-01-01T23:59:59.000Z

33

MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION  

E-Print Network (OSTI)

characteristic leaching procedure (TCLP) limits, but on average the material would not be classified as hazardous concentrations of metals (but below TCLP limits) and potential areas with limited radionuclide activity that are in excess of the TCLP limits for lead (40CFR261.24, table 1, EPA hazardous waste number - D008). The Class 1

34

Radiological Assessment of Target Materials for Accelerator Transmutation of Waste (ATW) Applications  

Science Conference Proceedings (OSTI)

This paper issues the first published research of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in target materials of Ta, W, Pb, Bi, and LBE which are used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this paper are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications. In addition, this paper provides the characterization of target materials of high-energy particle accelerators for the parameters of: 1) spallation neutron yield (neutrons/proton), 2) spallation products yield (nuclides/proton), 3) energy-dependent spallation neutron fluence distribution, 4) spallation neutron flux, 5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and 6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h-1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future research should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this paper may be applied to any target material of a high-energy particle accelerator. (author)

Vickers, Linda D. [BWXT, U.S. Department of Energy, Pantex Plant, P.O. Box 30020, Hwy60/FM2373, Amarillo, TX 79120-0020 (United States)

2002-07-01T23:59:59.000Z

35

Design and control of a heavy material handling manipulator for agricultural robots  

Science Conference Proceedings (OSTI)

In this paper, we propose a manipulation system for agricultural robots that handle heavy materials. The structural systems of a mobile platform and a manipulator are selected and designed after proposing new knowledge about agricultural robots. Also, ... Keywords: Agricultural robots, Evaluation index, Manipulator, Robust control

Satoru Sakai; Michihisa Iida; Koichi Osuka; Mikio Umeda

2008-10-01T23:59:59.000Z

36

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

37

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

38

TITLE III EVALUATION REPORT FOR THE MATERIAL AND PERSONNEL HANDLING SYSTEM  

Science Conference Proceedings (OSTI)

This Title III Evaluation Report (TER) provides the results of an evaluation that was conducted on the Material and Personnel Handling System. This TER has been written in accordance with the ''Technical Document Preparation Plan for the Mined Geologic Disposal System Title III Evaluation Reports'' (BA0000000-01717-4600-00005 REV 03). The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Material and Personnel Handling System. Recommendations for resolving discrepancies between the as-constructed system, the technical baseline requirements, and the baseline design are included in this report. Cost and Schedule estimates are provided for all recommended modifications.

T. A. Misiak

1998-05-21T23:59:59.000Z

39

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

DOE Green Energy (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

40

Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this Model Procedure is to identify precautions and provide guidance to Medical Examiners/Coroners on the handling of a body or human remains that are potentially contaminated with...

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Active Neutron Interrogation of Non-Radiological Materials with NMIS  

Science Conference Proceedings (OSTI)

The Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory (ORNL), although primarily designed for analyzing special nuclear material, is capable of identifying nonradiological materials with a wide range of measurement techniques. This report demonstrates four different measurement methods, complementary to fast-neutron imaging, which can be used for material identification: DT transmission, DT scattering, californium transmission, and active time-tagged gamma spectroscopy. Each of the four techniques was used to evaluate how these methods can be used to identify four materials: aluminum, polyethylene, graphite, and G-10 epoxy. While such measurements have been performed individually in the past, in this project, all four measurements were performed on the same set of materials. The results of these measurements agree well with predicted results. In particular, the results of the active gamma spectroscopy measurements demonstrate the technique's applicability in a future version of NMIS which will incorporate passive and active gamma-ray spectroscopy. This system, designated as a fieldable NMIS (FNMIS), is under development by the US Department of Energy Office of Nuclear Verification.

Walker, Mark E [ORNL; Mihalczo, John T [ORNL

2012-02-01T23:59:59.000Z

42

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

43

Radiological dose assessment related to management of naturally occurring radioactive materials generated by the petroleum industry  

Science Conference Proceedings (OSTI)

A preliminary radiological dose assessment related to equipment decontamination, subsurface disposal, landspreading, equipment smelting, and equipment burial was conducted to address concerns regarding the presence of naturally occurring radioactive materials in production waste streams. The assessment evaluated the relative dose of these activities and included a sensitivity analysis of certain input parameters. Future studies and potential policy actions are recommended.

Smith, K.P.; Blunt, D.L.; Williams, G.P.; Tebes, C.L. [Argonne National Lab., IL (United States). Environmental Assessment Div.

1995-05-01T23:59:59.000Z

44

Standard practice for radiologic examination of flat panel composites and sandwich core materials used in aerospace applications  

E-Print Network (OSTI)

1.1 This practice is intended to be used as a supplement to Practices E 1742, E 1255, and E 2033. 1.2 This practice describes procedures for radiologic examination of flat panel composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. Radiologic examination is: a) radiographic (RT) with film, b) Computed Radiography (CR) with Imaging Plate, c) Digital Radiology (DR) with Digital Detector Array’s (DDA), and d) Radioscopic (RTR) Real Time Radiology with a detection system such as an Image Intensifier. The composite materials under consideration typically contain continuous high modulus fibers (> 20 GPa), such as those listed in 1.4. 1.3 This practice describes established radiological examination methods that are currently used by industry that have demonstrated utility in quality assurance of flat panel composites and sandwich core materials during product process design and optimization, process control, after manufacture inspection, in service exami...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

45

Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement  

SciTech Connect

Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

Seguin, Nicole R. [Los Alamos National Laboratory

2012-07-18T23:59:59.000Z

46

U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)  

DOE Green Energy (OSTI)

This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

47

Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals  

SciTech Connect

The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project are due to: i) a reduced number of process shutdowns to change hardware or lining material, ii) reduced need to produce new hardware or lining material, iii) improved product quality leads to reduced need to remake product or manufacturing of new product, iv) reduction in contamination of melt from degradation of refractory and metallic components, v) elimination of worn hardware will increase efficiency of process, vi) reduced refractory lining deterioration or formation of a less insulating phase, would result in decreased heat loss through the walls. Projected 2015 benefits for the U.S. aluminum industry, assuming 21% market penetration of improved refractory materials, are energy savings of approximately 0.2 trillion BTU/year, cost savings of $2.3 billion/year and carbon reductions of approximately 1.4 billion tons/year. The carbon reduction benefit of the project for the hot-dip galvanize and aluminum industries combined is projected to be approximately 2.2 billion tons/year in 2015. Pathways from research to commercialization were based on structure of the project’s industrial partnerships. These partnerships included suppliers, industrial associations, and end users. All parties were involved in conducting the project including planning and critiquing the trials. Supplier companies such as Pyrotech Metaullics, Stoody, and Duraloy have commercialized products and processes developed on the project.

Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

2009-02-06T23:59:59.000Z

48

Dynamical Control in Large-Scale Material Handling Systems through Agent Technology  

Science Conference Proceedings (OSTI)

Delayed arrivals, missing tag codes, flight changes, break-downs, etc. are some of the factors, which make the environment of airport baggage handling systems (BHS) extremely dynamic. Pre-scheduling and optimization is not an option, as identity, destination, ...

Kasper Hallenborg; Yves Demazeau

2006-12-01T23:59:59.000Z

49

Proposal for Construction/Demonstration/Implementation of A Material Handling System  

SciTech Connect

Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the assumptions and conditions identified in Section 6 of this proposal.

Jim Jnatt

2001-08-24T23:59:59.000Z

50

Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Tebes is affiliated with the University of Illinois. Tebes is affiliated with the University of Illinois. ANL/EAD-2 Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry by K.P. Smith, D.L. Blunt, G.P. Williams, and C.L. Tebes * Environmental Assessment Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 September 1996 Work sponsored by the United States Department of Energy, Office of Policy iii CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

ASSET RECOVERY OF HAZARDOUS MATERIALS BENEFICIAL REUSE OF RADIOLOGICALLY ENCUMBERED LEAD STOCKS  

Science Conference Proceedings (OSTI)

Underutilized and surplus lead stocks and leaded components are a common legacy environmental problem across much of the Department of Energy (DOE) Complex. While seeking to dispose of these items through its Environmental Management Program, DOE operational programs continue to pursue contemporary mission requirements such as managing and/or storing radioactive isotopes that require lead materials for shielding. This paradox was identified in late 1999 when DOE's policies for managing scrap metal were assessed. In January 2000, the Secretary of Energy directed the National Center of Excellence for Materials Recycle (NMR) to develop and implement a comprehensive lead reuse program for all of DOE. Fluor Hanford, contractor for DOE Richland Operations, subsequently contacted NMR to pilot lead reclamation and reuse at the Hanford Site. This relationship resulted in the development of a beneficial reuse pathway for lead reclaimed from spent fuel transport railcars being stored at Hanford. The 1.3 million pounds of lead in the railcars is considered radiologically encumbered due to its prior use. Further, the material was considered a mixed Resource Conservation and Recovery Act (RCRA) low-level radioactive waste that would require expensive storage or macro encapsulation to meet land disposal restrictions prior to burial. Working closely with Flour Hanford and the Office of Air, Water, and Radiation (EH-412), NMR developed a directed reuse pathway for this and other radiologically encumbered lead. When derived supplemental release limits were used, the lead recovered from these railcars became eligible for reuse in shielding products to support DOE and commercial nuclear industry operations. Using this disposition pathway has saved Hanford one third of the cost of disposing of the lead and the cost of acquiring additional lead for nuclear shielding applications. Furthermore, the environmental costs associated with mining and producing new lead for shielding products a nd stewardship of the waste was eliminated. Methods and processes developed in cooperation with Fluor Hanford are applicable to, and have been successfully applied to, lead stocks at DOE sites such as Savannah River, Mound, Los Alamos, and Idaho.

Lloyd, E.R.; Meehan, R.W.

2003-02-27T23:59:59.000Z

52

Radiological Assessment of Target Materials for Accelerator Transmutation of Waste Applications  

SciTech Connect

This paper provides the radiation absorbed dose rates (rad-h{sup -1}) to a tissue-equivalent torus ring at 1 meter from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rates (rad-h{sup -1}) to tissue from activated targets for ATW applications. In addition, this paper provides the characterization of target materials of high-energy particle accelerators for the parameters of (a) spallation neutron yield (neutrons/proton), (b) spallation products yield (nuclides/proton), (c) energy-dependent spallation neutron fluence distribution (n-cm{sup -2} MeV{sup -1}), and (d) identification of the optimal target dimensions to yield the maximum radial spallation neutron leakage from the target. A beneficial characteristic of these target materials (Ta, W, Pb, Bi, and LBE) is they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition controls. In addition, these activated, spent targets are not considered high-level radioactive waste for disposal purposes such as spent fuel from a nuclear power reactor.

Vickers, Linda D

2003-11-15T23:59:59.000Z

53

Using Single-Camera 3-D Imaging to Guide Material Handling Robots in a Nuclear Waste Package Closure System  

SciTech Connect

Nuclear reactors for generating energy and conducting research have been in operation for more than 50 years, and spent nuclear fuel and associated high-level waste have accumulated in temporary storage. Preparing this spent fuel and nuclear waste for safe and permanent storage in a geological repository involves developing a robotic packaging system—a system that can accommodate waste packages of various sizes and high levels of nuclear radiation. During repository operation, commercial and government-owned spent nuclear fuel and high-level waste will be loaded into casks and shipped to the repository, where these materials will be transferred from the casks into a waste package, sealed, and placed into an underground facility. The waste packages range from 12 to 20 feet in height and four and a half to seven feet in diameter. Closure operations include sealing the waste package and all its associated functions, such as welding lids onto the container, filling the inner container with an inert gas, performing nondestructive examinations on welds, and conducting stress mitigation. The Idaho National Laboratory is designing and constructing a prototype Waste Package Closure System (WPCS). Control of the automated material handling is an important part of the overall design. Waste package lids, welding equipment, and other tools must be moved in and around the closure cell during the closure process. These objects are typically moved from tool racks to a specific position on the waste package to perform a specific function. Periodically, these objects are moved from a tool rack or the waste package to the adjacent glovebox for repair or maintenance. Locating and attaching to these objects with the remote handling system, a gantry robot, in a loosely fixtured environment is necessary for the operation of the closure cell. Reliably directing the remote handling system to pick and place the closure cell equipment within the cell is the major challenge.

Rodney M. Shurtliff

2005-09-01T23:59:59.000Z

54

Power-law distributions in events involving nuclear and radiological materials  

E-Print Network (OSTI)

Nuclear and radiological events are large-impact, hard-to-predict rare events, whose associated probability is exceedingly low. They can exert monumental impacts and lead to grave environmental and economic consequences. ...

Chow, Jijun

2009-01-01T23:59:59.000Z

55

Direct Methanol Fuel Cell Material Handling Equipment Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Todd Ramsden National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3704 Email: todd.ramsden@nrel.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Subcontractor: Oorja Protonics, Inc., Fremont, CA Project Start Date: June 1, 2010 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Operate and maintain fuel-cell-powered material * handling equipment (MHE) using direct methanol fuel cell (DMFC) technology. Compile operational data of DMFCs and validate their * performance under real-world operating conditions. Provide an independent technology assessment that * focuses on DMFC system performance, operation, and

56

Radiological Control Manual  

Science Conference Proceedings (OSTI)

This manual has been prepared by Lawrence Berkeley Laboratory to provide guidance for site-specific additions, supplements, and clarifications to the DOE Radiological Control Manual. The guidance provided in this manual is based on the requirements given in Title 10 Code of Federal Regulations Part 835, Radiation Protection for Occupational Workers, DOE Order 5480.11, Radiation Protection for Occupational Workers, and the DOE Radiological Control Manual. The topics covered are (1) excellence in radiological control, (2) radiological standards, (3) conduct of radiological work, (4) radioactive materials, (5) radiological health support operations, (6) training and qualification, and (7) radiological records.

Not Available

1993-04-01T23:59:59.000Z

57

The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health related research. Volume 4: Production and materials handling  

Science Conference Proceedings (OSTI)

This is the fourth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume 4 is to describe record series pertaining to production and materials handling activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of production and materials handling practices at Rocky Flats, and identifies organizations contributing to production and materials handling policies and activities. Other topics include the scope and arrangement of the guide and the organization to contact for access to these records.

NONE

1995-08-01T23:59:59.000Z

58

Guideline to good practices for material receipt, inspection, handling, storage, retrieval, and issuance at DOE nuclear facilities  

Science Conference Proceedings (OSTI)

This guide is intended to assist facility maintenance organization in the review of existing methods and in the development of new methods for establishing a material receipt, inspection, handling, storage, retrieval, and issuance process/system which ensures timely delivery of the proper parts and materials, in the condition required for effective maintenance activities, and periodic services which provide unique and/or supplemental maintenance support. It is expected that each DOE facility may use approaches or methods different from those defined in this guide. The specific guidelines that follow reflect generally accepted industry practices. Therefore, deviation from any particular guideline would not, in itself, indicate a problem. If substantive differences exist between the intent of this guideline and actual practice, management should evaluate current practice to determine the meed to include/exclude proposed features. A change in maintenance practice would be appropriate if a performance weakness were determined to exist. The development, documentation, and implementation of other features that further enhance these guidelines for specific applications are encouraged.

Not Available

1994-06-01T23:59:59.000Z

59

Forward model calculations for determining isotopic compositions of materials used in a radiological dispersal device  

E-Print Network (OSTI)

In the event that a radiological dispersal device (RDD) is detonated in the U.S. or near U.S. interests overseas, it will be crucial that the actors involved in the event can be identified quickly. If irradiated nuclear fuel is used as the dispersion material for the RDD, it will be beneficial for law enforcement officials to quickly identify where the irradiated nuclear fuel originated. One signature which may lead to the identification of the spent fuel origin is the isotopic composition of the RDD debris. The objective of this research was to benchmark a forward model methodology for predicting isotopic composition of spent nuclear fuel used in an RDD while at the same time optimizing the fidelity of the model to reduce computational time. The code used in this study was Monteburns-2.0. Monteburns is a Monte Carlo based neutronic code utilizing both MCNP and ORIGEN. The size of the burnup step used in Monteburns was tested and found to converge at a value of 3,000 MWd/MTU per step. To ensure a conservative answer, 2,500 MWd/MTU per step was used for the benchmarking process. The model fidelity ranged from the following: 2-dimensional pin cell, multiple radial-region pin cell, modified pin cell, 2D assembly, and 3D assembly. The results showed that while the multi-region pin cell gave the highest level of accuracy, the difference in uncertainty between it and the 2D pin cell (0.07% for 235U) did not warrant the additional computational time required. The computational time for the multiple radial-region pin cell was 7 times that of the 2D pin cell. For this reason, the 2D pin cell was used to benchmark the isotopics with data from other reactors. The reactors from which the methodology was benchmarked were Calvert Cliffs Unit #1, Takahama Unit #3, and Trino Vercelles. Calvert Cliffs is a pressurized water reactor (PWR) using Combustion Engineering 14??14 assemblies. Takahama is a PWR using Mitsubishi Heavy Industries 17??17 assemblies. Trino Vercelles is a PWR using non-standard lattice assemblies. The measured isotopic concentrations from all three of the reactors showed good agreement with the calculated values.

Burk, David Edward

2005-05-01T23:59:59.000Z

60

Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hazardous Materials Incident Response Procedure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure Hazardous Materials Incident Response Procedure The purpose of this procedure is to provide guidance for developing an emergency response plan, as outlined in OSHA's 29 CFR 1910.120(q), for facility response. This model has been adopted and applied to work for response to transportation accidents involving radioactive material or other hazardous materials incidents Hazardous Materials Incident Response Procedure.docx More Documents & Publications Handling and Packaging a Potentially Radiologically Contaminated Patient Decontamination Dressdown at a Transportation Accident Involving Radioactive Material Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

62

Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex  

SciTech Connect

The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H{sub 2}, CO, NH{sub 3}, CH{sub 4}, and to changes in the composition of the organic and inorganic components brought about by ``Aging`` processes.

Samuels, W.D.; Camaioni, D.M. [Pacific Northwest Lab., Richland, WA (United States); Babad, H. [Westinghouse Hanford Co., Richland, WA (United States)

1994-03-01T23:59:59.000Z

63

DOE-STD-1071-94; DOE Standard Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage, Retrieval, and Issuance at DOE Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71-94 71-94 June 1994 DOE STANDARD GUIDELINE TO GOOD PRACTICES FOR MATERIAL RECEIPT, INSPECTION, HANDLING, STORAGE, RETRIEVAL, AND ISSUANCE AT DOE NUCLEAR FACILITIES U.S. Department of Energy AREA MNTY Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE94014949 DOE-STD-1071-94 FOREWORD The Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage,

64

Radiological Areas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

65

Radiological surveys of properties contaminated by residual radioactive materials from uranium processing sites  

Science Conference Proceedings (OSTI)

This report examines methods for determining the extent and nature of contamination on properties contaminated by residual radioactive materials from uranium processing sites. Methods are also examined for verifying the success of remedial actions in removing the residual radioactive materials. Using literature review and practical experiences from the Edgemont, South Dakota survey program a critical review is made of sampling programs, instrumentation, analytical procedures, data reporting format, and statistical analyses of data. Protocols are recommended for measuring indoor and outdoor gamma-ray exposure rates, surface and subsurface Radium-226 concentrations in soil, and radon daughter concentrations.

Young, J.A.; Jackson, P.O.; Thomas, V.W.

1983-06-01T23:59:59.000Z

66

WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.

P.A. Kumar

2000-06-21T23:59:59.000Z

67

Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report  

Science Conference Proceedings (OSTI)

Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

Hancock, David, W.

2012-02-14T23:59:59.000Z

68

DOE, Westinghouse to Partner with NMJC To Train Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Partner with NMJC To Train Radiological and Waste Handling Technicians Hobbs, NM, December 5, 2001 -- Representatives of the Waste Isolation Pilot Plant (WIPP) yesterday...

69

Radiological design guide  

SciTech Connect

The purpose of this design guide is to provide radiological safety requirements, standards, and information necessary for designing facilities that will operate without unacceptable risk to personnel, the public, or the environment as required by the US Department of Energy (DOE). This design guide, together with WHC-CM-4-29, Nuclear Criticality Safety, WHC-CM-4-46, Nonreactor Facility Safety Analysis, and WHC-CM-7-5, Environmental Compliance, covers the radiation safety design requirements at Westinghouse Hanford Company (WHC). This design guide applies to the design of all new facilities. The WHC organization with line responsibility for design shall determine to what extent this design guide shall apply to the modifications to existing facilities. In making this determination, consideration shall include a cost versus benefit study. Specifically, facilities that store, handle, or process radioactive materials will be covered. This design guide replaces WHC-CM-4-9 and is designated a living document. This design guide is intended for design purposes only. Design criteria are different from operational criteria and often more stringent. Criteria that might be acceptable for operations might not be adequate for design.

Evans, R.A.

1994-08-16T23:59:59.000Z

70

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike lewis

2013-02-01T23:59:59.000Z

71

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David B. Frederick

2011-02-01T23:59:59.000Z

72

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David Frederick

2012-02-01T23:59:59.000Z

73

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Readiness Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets Doug Wheeler DJW Technology Michael Ulsh National Renewable Energy Laboratory Technical Report NREL/TP-5600-53046 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power

74

Medical Examiner/Coroner on the Handling of a Body/Human Remains...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medical ExaminerCoroner on the Handling of a BodyHuman Remains that are Potentially Radiologically Contaminated Medical ExaminerCoroner on the Handling of a BodyHuman Remains...

75

Nevada National Security Site Radiological Control Manual  

SciTech Connect

This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.

Radiological Control Managers’ Council

2012-03-26T23:59:59.000Z

76

EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Radiological Work and Storage Building at the Knolls 0: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York Summary The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors. Public Comment Opportunities None available at this time. Documents Available for Download July 16, 2012

77

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets  

DOE Green Energy (OSTI)

In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

Wheeler, D.; Ulsh, M.

2012-08-01T23:59:59.000Z

78

Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range  

SciTech Connect

A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

NONE

1997-06-01T23:59:59.000Z

79

Radiological Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1098-2008 October 2008 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii DOE-STD-1098-2008 This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ DOE-STD-1098-2008 Radiological Control DOE Policy October 2008 iii Foreword The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal

80

Radiological Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1098-2008 October 2008 ------------------------------------- Change Notice 1 May 2009 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1098-2008 ii This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ iii DOE-STD-1098-2008 Change Notice 1: DOE-STD-1098-2008, Radiological Control Standard Section/page/paragraph Change Section 211, page 2-3, paragraph 1 Add new paragraph 1: "Approval by the appropriate Secretarial Officer or designee should be required

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Radiological safety training for uranium facilities  

SciTech Connect

This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

NONE

1998-02-01T23:59:59.000Z

82

Incident Handling Activities  

Science Conference Proceedings (OSTI)

[an error occurred while processing this directive] Incident Handling Activities. Since 1989 the National Institute of Standards ...

83

Vacuum Vessel Remote Handling  

E-Print Network (OSTI)

FIRE Vacuum Vessel and Remote Handling Overview B. Nelson, T. Burgess, T. Brown, H-M Fan, G. Jones #12;13 July 2002 Snowmass Review: FIRE Vacuum Vessel and Remote Handling 2 Presentation Outline · Remote Handling - Maintenance Approach & Component Classification - In-Vessel Transporter - Component

84

Radiological Worker Training - Radiological Contamination Control...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B December 2008 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C....

85

Radiological Worker Training - Radiological Control Training...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A December 2008 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION...

86

DOE handbook: Tritium handling and safe storage  

SciTech Connect

The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

NONE

1999-03-01T23:59:59.000Z

87

Material and Power-Handling Properties of Tungsten PFCs After Steady-State Melting and Additional Transient High-Heat-Flux Exposure  

Science Conference Proceedings (OSTI)

Technical Paper / First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies

J. W. Coenen; B. Bazylev; S. Brezinsek; V. Philipps; T. Hirai; A. Kreter; J. Linke; G. Pintsuk; G. Sergienko; A. Pospieszczyk; T. Tanabe; Y. Ueda; U. Samm; The TEXTOR Team

88

RADIOLOGICAL SURWY  

Office of Legacy Management (LM)

111 111 j -,~ ' - et- -*\. _(a v - r\lfs+8 plY 45+ c iill I r\l&; p) :;!I..; .: .. :,, ,m -,< :' - ' ec-. :-*% ". _(.*- ~ . . : : : ' .. : : : .. ..:, . . . :. : : ,, :;I;:~~:; :.:.!,;;y ' 1;: .: 1. .., ; ' . :. : c :...: .;: .: RADIOLOGICAL SURWY - RADIoL~BI~L.::.~~~y:- : ::: 1 ,: . . : : :: :. :..." - OFi~:,~~~~:poRTI~~~ 0J-g ,m_ ,. :. y.;,:. ,.:I; .:. F~~~~~~as~~~ ~~~~~~~:~~~~ :co~~~:~~~~~; ;, .. ; I : : ::.. :.. :. - ,B~~Lo,.~-~~~. ..; .:I ,,,, :--:.;:I:: ;' #I Y' i ' 11". .. .. ; :;: ;I, ' . 1::. J;,;. ~;_:y,;:::::; - T.J..:+~uS~~ .' .:' : : . . .. ...: .:.. : OFTHE EXCERIORPORTIONS O F THE FORIMER BLISS ANT3 LAUGHLIN STEEL COMPANY FAC' KJTy - BUFFALO,NEw YORK - T. J.VITKUS I : . . : : ' . .:. : I : : .. :. Prepaied for.:the:' 6ffice.iibfiEnvir~nmenfal Re$o&idn z . . :

89

TEPP Training - Modular Emergency Response Radiological Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » Transportation Emergency Preparedness Program » TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) TEPP Training - Modular Emergency Response Radiological Transportation Training (MERRTT) Once the jurisdiction has completed an evaluation of their plans and procedures, they will need to address any gaps in training. To assist, TEPP has developed the Modular Emergency Response Radiological Transportation Training (MERRTT) program. MERRTT provides fundamental knowledge for responding to transportation incidents involving radiological material and builds on training in existing hazardous materials curricula. MERRTT satisfies the training requirements outlined in the Waste Isolation Pilot

90

Health and Safety Research Division RESULTS OF THE RADIOLOGICAL...  

Office of Legacy Management (LM)

Contaninated material was discovered in the area during an EG&G aerial radiological survey,l and confirmed by a ground-level radiological survey by the Nuclear Regulatory...

91

Health and Safety Research Divlsion RESULTS OF THE RADIOLOGICAL...  

Office of Legacy Management (LM)

Contaminated material was discovered in the area during an. EG&G aerial radiological survey,l and confirmed by a ground-level radiological survey by the Nuclear Regulatory...

92

WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will be designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.

S.C. Khamamkar

2000-06-23T23:59:59.000Z

93

Handling Pyrophoric Reagents  

SciTech Connect

Pyrophoric reagents are extremely hazardous. Special handling techniques are required to prevent contact with air and the resulting fire. This document provides several methods for working with pyrophoric reagents outside of an inert atmosphere.

Alnajjar, Mikhail S.; Haynie, Todd O.

2009-08-14T23:59:59.000Z

94

Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes  

SciTech Connect

The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratory’s nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INL’s remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and repackaging of INL remote-handled wastes. Based on review of the responses and the potential viability of a mobile hot cell technology, INL subsequently conducted a technology evaluation, including proof-of-process validation, to assess the feasibility of utilizing such a technology for processing INL’s remote-handled wastes to meet established regulatory milestones. The technology evaluation focused on specific application of a mobile hot cell technology to the conditions to be encountered at the INL and addressed details of previous technology deployment, required modifications to accommodate INL’s remote-handled waste, ability to meet DOE safety requirements, requirements for fabrication/construction/decontamination and dismantling, and risks and uncertainties associated with application of the technology to INL’s remote-handled waste. The large capital costs associated with establishing a fixed asset to process INL’s remote-handled waste, the relatively small total volume of waste to be processed when compared to other waste streams through the complex, and competing mission-related needs has made it extremely difficult to secure the necessary support to advance the project. Because of this constraint, alternative contract structures were also explored as part of the technology evaluation wherein the impact of a large capital investment could be lessened.

B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

2009-03-01T23:59:59.000Z

95

Good Practices for Ocupational Radiological Protection in Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Measurement Not Measurement Sensitive DOE- STD-1128-2013 April 2013 DOE STANDARD GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1128-2013 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii DOE-STD-1128-2013 Foreword This Technical Standard does not contain any new requirements. Its purpose is to provide information on good practices, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. U.S. Department of Energy (DOE) health

96

NV/YMP radiological control manual, Revision 2  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste and the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.

Gile, A.L. [comp.] [comp.

1996-11-01T23:59:59.000Z

97

Transportation and handling environment  

SciTech Connect

The elements of the environment relating to transportation and handling include temperature, solar radiation, precipitation, humidity, pressure, shock, and vibration. While each of these deserves consideration, the latter two, shock and vibration, are perhaps the least understood. The report discusses all of these elements, but concentrates largely on shock and vibration. Emphasis is upon the necessity of understanding both the product and the environment. To that end, descriptions of the environment which have been derived statistically are discussed. Land, sea, and air transport are considered. Current knowledge of the handling environment is indicated.

Gens, M.B.

1972-09-01T23:59:59.000Z

98

FUEL HANDLING MECHANISM  

DOE Patents (OSTI)

A remotely operable handling device specifically adapted for the handling of vertically disposed fuel rods in a nuclear reactor was developed. The device consists essentially of an elongated tubular member having a gripping device at the lower end of the pivoted jaw type adapted to grip an enlarged head on the upper end of the workpiece. The device includes a sensing element which engages the enlarged head and is displaced to remotely indicate when the workpiece is in the proper position to be engaged by the jaws.

Koch, L.J.; Hutter, E.

1960-02-01T23:59:59.000Z

99

SLUG HANDLING DEVICES  

DOE Patents (OSTI)

A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.

Gentry, J.R.

1958-09-16T23:59:59.000Z

100

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 December 2008 Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 2 DOE-HDBK-1130-2008 Original Change Throughout Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement document.

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 December 2008 Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 2 DOE-HDBK-1130-2008 Original Change Throughout Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement document.

102

International Data on Radiological Sources  

SciTech Connect

ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.

Martha Finck; Margaret Goldberg

2010-07-01T23:59:59.000Z

103

General Employee Radiological Training (GERT)  

NLE Websites -- All DOE Office Websites (Extended Search)

General Employee Radiological Training (GERT) Radiological Training for NSLS Access has been replaced with BNL General Employee Radiological Training (GERT). Please read the...

104

Radiological and Nuclear Security in A Global Context  

E-Print Network (OSTI)

This paper considers the state of nuclear and radiological security in the UK and abroad and reports on the methods that could be employed by terrorists with radiological or nuclear material to cause destruction. It is shown that despite current safeguards that problems arise due to materials that are unaccounted for and poor implementation of detection regimes in some geographical regions. The prospect of a future terrorist event that involves nuclear or radiological materials seems likely despite best efforts of prevention.

Jones, Nick

2010-01-01T23:59:59.000Z

105

Radiological Control Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Support personnel, an accredited Personnel Monitoring service, a fully functional Instrumentation & Calibration facility, expertise in Radiological Engineering and the...

106

Uranium hexafluoride handling. Proceedings  

SciTech Connect

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

107

Specialty Vehicles and Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Kilowatts * Battery replacement or charging, defense (platoon power), telecom backup, remote, auxiliary power Buildings & Facilities * 100 Kilowatts to Megawatts * Consumer...

108

Ash Handling System Maintenance Guide  

Science Conference Proceedings (OSTI)

This Ash Handling System Maintenance Guide provides fossil plant maintenance personnel with current maintenance information on this system. This guide will assist plant maintenance personnel in improving the reliability and reducing the maintenance costs for the ash handling system.

2005-12-23T23:59:59.000Z

109

December 2005 PREVENTING AND HANDLING  

E-Print Network (OSTI)

, and remote access servers. NIST SP 800-61, Computer Security Incident Handling Guide, describes the fourDecember 2005 PREVENTING AND HANDLING MALWARE INCIDENTS: HOW TO PROTECT INFORMATION TECHNOLOGY SYSTEMS FROM MALICIOUS CODE AND SOFTWARE PREVENTING AND HANDLING MALWARE INCIDENTS: HOW TO PROTECT

110

Solid handling valve  

DOE Patents (OSTI)

The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

Williams, William R. (Morgantown, WV)

1979-01-01T23:59:59.000Z

111

Sectional device handling tool  

DOE Patents (OSTI)

Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

Candee, Clark B. (Monroeville, PA)

1988-07-12T23:59:59.000Z

112

A non-contact end-effector for the handling of garments  

Science Conference Proceedings (OSTI)

In order to handle a material with either a delicate surface or an air permeable structure, a novel nozzle was designed and developed. This nozzle utilises the phenomena of the radial air outflow. It is envisaged that this new nozzle will handle materials ... Keywords: End-effector, Fabric, Garment, Gripper, Handling

Babur Ozcelik; Fehmi Erzincanli

2002-07-01T23:59:59.000Z

113

Current Trends in Gamma Ray Detection for Radiological Emergency Response  

SciTech Connect

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies.

Mukhopadhyay, S., Guss, P., Maurer, R.

2011-08-18T23:59:59.000Z

114

Argonne Chemical Sciences & Engineering - Facilities - Remote Handling  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities * Actinide * Analytical Chemistry * Premium Coal Samples * Electrochemical Analysis * Glovebox * Glassblowing Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Contact Us CSE Intranet Remote Handling Mockup Facility Remote Handling Mockup Facility Radiochemist Art Guelis observes technician Kevin Quigley preparing to cut open a surrogate uranium target. Argonne designed and built a Remote Handling Mockup Facility to let engineers simulate the handling of radioactive materials in a non-radioactive environment. The ability to carry out the details of an

115

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix C December 2008 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008

116

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEASUREMENT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix B December 2008 Reaffirmed 2013 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ . ii Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 Foreword This Handbook describes a recommended implementation process for core training as outlined in

117

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix A Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 Foreword This Handbook describes an implementation process for training as recommended in

118

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix A Change Notice 2 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 Foreword This Handbook describes an implementation process for training as recommended in

119

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 Appendix C December 2008 Reaffirmed 2013 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008

120

Status of ITER neutral beam cell remote handling system  

E-Print Network (OSTI)

The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution...

122

EA-1900: Radiological Work and Storage Building at the Knolls...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors. Public...

123

DOE-HDBK-1143-2001; Radiological Control Training for Supervisors - Course Introduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

143-2001 143-2001 Instructor's Guide DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Administrative Policies and Procedures Objectives: Upon completion of this training, the student will be able to: 1. Identify the radiological controlled areas a person should be allowed to enter after successfully completing General Employee Radiological Training, Radiological Worker I training, and Radiological Worker II training. 2. List five actions used to increase the awareness level of workers relating to proper radiological work practices. 3. Identify three conditions when a "Stop Radiological Work" should be initiated. 4. Identify the actions that should be performed, prior to recommencement of work, after a "Stop Radiological Work" order has been initiated.

124

Method for warning of radiological and chemical substances using detection paints on a vehicle surface  

SciTech Connect

A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

Farmer, Joseph C. (Tracy, CA)

2012-03-13T23:59:59.000Z

125

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-08-01T23:59:59.000Z

126

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-04-01T23:59:59.000Z

127

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-10-01T23:59:59.000Z

128

REMOTE HANDLING ARRANGEMENTS  

DOE Patents (OSTI)

A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

Ginns, D.W.

1958-04-01T23:59:59.000Z

129

Sensors & Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical and biological agents and explosives. Argonne...

130

A HUMAN RELIABILITY-CENTERED APPROACH TO THE DEVELOPMENT OF JOB AIDS FOR REVIEWERS OF MEDICAL DEVICES THAT USE RADIOLOGICAL BYPRODUCT MATERIALS.  

SciTech Connect

The U.S. Nuclear Regulatory Commission (NRC) is engaged in an initiative to risk-inform the regulation of byproduct materials. Operating experience indicates that human actions play a dominant role in most of the activities involving byproduct materials, which are radioactive materials other than those used in nuclear power plants or in weapons production, primarily for medical or industrial purposes. The overall risk of these activities is strongly influenced by human performance. Hence, an improved understanding of human error, its causes and contexts, and human reliability analysis (HRA) is important in risk-informing the regulation of these activities. The development of the human performance job aids was undertaken by stages, with frequent interaction with the prospective users. First, potentially risk significant human actions were identified based on reviews of available risk studies for byproduct material applications and of descriptions of events for byproduct materials applications that involved potentially significant human actions. Applications from the medical and the industrial domains were sampled. Next, the specific needs of the expected users of the human performance-related capabilities were determined. To do this, NRC headquarters and region staff were interviewed to identify the types of activities (e.g., license reviews, inspections, event assessments) that need HRA support and the form in which such support might best be offered. Because the range of byproduct uses regulated by NRC is so broad, it was decided that initial development of knowledge and tools would be undertaken in the context of a specific use of byproduct material, which was selected in consultation with NRC staff. Based on needs of NRC staff and the human performance related characteristics of the context chosen, knowledge resources were then compiled to support consideration of human performance issues related to the regulation of byproduct materials. Finally, with information sources and an application context identified, a set of strawman job aids was developed, which was then presented to prospective users for critique and comment. Work is currently under way to develop training materials and refine the job aids in preparation for a pilot evaluation.

COOPER, S.E.; BROWN, W.S.; WREATHALL, J.

2005-02-02T23:59:59.000Z

131

Materials and Processes for Nuclear Materials Storage and Handling  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... This presentation will address research on separation of TENORM-laden drill cuttings (solids) from mineral oils present in drilling muds using a ...

132

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 December 2008 Change Notice 1 June 2009 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved...

133

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7of 9 7of 9 Radiological Control Technician Training Practical Training Phase II Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii Table of Contents Page Introduction.............................................................................. ......1 Development of Job Performance Measures (JPMs)............................ .....1 Conduct Job Performance Evaluation...................................................3 Qualification Area: Radiological Instrumentation.......................................5 Task 2-1.................. ..................................................................... 5 Objective.............................................................................. 5

134

Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28-2008 28-2008 December 2008 DOE STANDARD GUIDE OF GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-STD-1128-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1128-2008 iii Foreword This Technical Standard does not contain any new requirements. Its purpose is to provide a guide to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. U.S. Department of Energy (DOE) health physicists may adapt

135

Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

STD-1128-2008 STD-1128-2008 December 2008 DOE STANDARD GUIDE OF GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-STD-1128-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1128-2008 iii Foreword This Technical Standard does not contain any new requirements. Its purpose is to provide a guide to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. U.S. Department of Energy (DOE) health physicists may adapt

136

Biodiesel Handling and Use Guidelines  

DOE Green Energy (OSTI)

This document is a field guide for end-users, distributors, and those involved in related activities. These guidelines cover fuel use and handling issues that could be anticipated or encountered in the field.

Tyson, S.

2001-09-05T23:59:59.000Z

137

DOE standard: Radiological control  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

Not Available

1999-07-01T23:59:59.000Z

138

Radiological Worker Training - Radiological Control Training for Supervisors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A December 2008 DOE HANDBOOK Radiological Worker Training Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Radiological Worker Training - Appendix A Radiological Control Training for Supervisors DOE-HDBK-1130-2008 iii Foreword This Handbook describes an implementation process for training as recommended in

139

Storage/Handling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

140

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4-1 4-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Elements of a Radiological Control Program Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify factors that influence the scope and magnitude of a Radiological Control Program at any nuclear facility. 2. Identify typical elements of a Radiological Control Program. Training Aids: Overhead Transparencies (OTs): OT 4.1 - OT 4.5 (may be supplemented or substituted with updated or site-specific information) Handouts - "List of Radiological Control Program Elements" "Elements of a Radiological Control Program" Equipment Needs: Overhead projector Screen Flip chart Markers Masking tape Student Materials: Student's Guide

142

Radiological Assessor Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-2008 1-2008 August 2008 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techs\ Foreword This Handbook describes an implementation process for training as recommended in Implementation Guide G441.1-1B, Radiation Protection Programs, March 2007, and as outlined in DOE- STD- 1098-99, CN1, March 2005, DOE Radiological Control (the Radiological Control Standard - RCS). The Handbook is meant to assist those individuals within the Department of

143

Propane gas: Handle with care  

SciTech Connect

Because of its chemical composition and combustion properties, this liquefied petroleum (LP) gas can be mixed with air and used as a direct replacement for natural gas with no burner or process equipment modifications. One major and growing use of propane is as a vehicle fuel. Growing industrial use of propane also has prompted the National Fire Protection Association (NFPA) to issue new codes. NFPA standard 58-95, Storing and Handling of Liquefied Petroleum Gases, stresses the need to adhere to safe work and handling practices whenever propane is involved. All employees directly handling the gas should be formally trained and certified, and recertified annually. Although the code applies only to those directly handling propane or operating propane equipment such as portable cylinder filling stations, all employees working around or with propane or other LP gases should understand the characteristics of LP gas and be aware of basic safe handling practices. The paper discusses what LP gas is, special safety concerns, the care required in refilling cylinders, and cylinder inspection.

Fernald, D. [Plant Systems, Inc., Berea, OH (United States)

1996-04-01T23:59:59.000Z

144

FY 2006 Annual Progress Report - Heavy Vehicle Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc.) ... 67 4. MATERIALS FOR AIR HANDLING AND THERMAL MANAGEMENT... 75 A. Austenitic Stainless Steel...

145

Radiological worker training  

SciTech Connect

This Handbook describes an implementation process for core training as recommended in Implementation Guide G441.12, Radiation Safety Training, and as outlined in the DOE Radiological Control Standard (RCS). The Handbook is meant to assist those individuals within the Department of Energy, Managing and Operating contractors, and Managing and Integrating contractors identified as having responsibility for implementing core training recommended by the RCS. This training is intended for radiological workers to assist in meeting their job-specific training requirements of 10 CFR 835. While this Handbook addresses many requirements of 10 CFR 835 Subpart J, it must be supplemented with facility-specific information to achieve full compliance.

NONE

1998-10-01T23:59:59.000Z

146

324 Building Baseline Radiological Characterization  

SciTech Connect

This report documents the analysis of radiological data collected as part of the characterization study performed in 1998. The study was performed to create a baseline of the radiological conditions in the 324 Building.

R.J. Reeder, J.C. Cooper

2010-06-24T23:59:59.000Z

147

Nuclear & Radiological Material Removal | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

efforts result in permanent threat reduction. NNSA is returning Russian-origin highly enriched uranium (HEU) fresh and spent fuel from Russian-designed research reactors worldwide...

148

Nuclear and Radiological Material Security | National Nuclear...  

National Nuclear Security Administration (NNSA)

17, 2013 NNSA, Republic of Korea Ministry Agree to Minimize Use of HEU in Nuclear Reactors Sep 3, 2013 NNSA Conducts Two Emergency Response Training Courses in Armenia Aug 29, 2013...

149

Nuclear & Radiological Material Removal | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

17, 2013 NNSA, Republic of Korea Ministry Agree to Minimize Use of HEU in Nuclear Reactors Sep 3, 2013 NNSA Conducts Two Emergency Response Training Courses in Armenia Aug 29, 2013...

150

GTRI's Nuclear and Radiological Material Protection | National...  

National Nuclear Security Administration (NNSA)

of national regulatory infrastructures; Provide remote monitoring and orphan source search and recovery capabilities to support national efforts to strengthen the control and...

151

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

152

Tritium Handling and Safe Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE DOE-HDBK-1129-2007 March 2007 ____________________ DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1129-2007

153

Portable vacuum object handling device  

DOE Patents (OSTI)

The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuable to apply the vacuum to lift the object.

Anderson, G.H.

1981-07-30T23:59:59.000Z

154

Portable vacuum object handling device  

SciTech Connect

The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

Anderson, Gordon H. (Los Alamos, NM)

1983-08-09T23:59:59.000Z

155

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

156

Uranium hexafluoride: A manual of good handling practices. Revision 7  

SciTech Connect

The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

NONE

1995-01-01T23:59:59.000Z

157

Radiological Safety Training for Accelerator Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1108-2002 May 2002 Reaffirmation with Change Notice 2 July 2013 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change Notice No.2 Radiological Training for Accelerator Facilities Page/Section Change Throughout the document: Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Revised to: Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement

158

Radiological Assessor Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

141-2001 141-2001 April 2001 Change Notice No. 1 and Reaffirmation January 2007 DOE HANDBOOK Radiological Assessor Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Assessor Training DOE-HDBK-1141-2001 iii

159

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1131-2007 iii Foreword This Handbook describes an implementation process for core training as recommended in chapter 14, Radiation Safety Training, of Implementation Guide G44.1B, Radiation Protection Programs Guide, and as outlined in the DOE Radiological Control Standard [RCS - DOE-STD-1098-99, Ch. 1]. The Handbook is meant to assist those individuals

160

Radiological Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Part 2 of 9 Radiological Control Technician Training Technician Qualification Standard Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank. DOE-HDBK-1122-2009 iii Table of Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Purpose of Qualification Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Phase I: RCT Academics Training . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1 Phase II: RCT Core Practical (JPMs) Training . . . . . . . . . . . . . . . . . .. . . . . . . 1

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Control Technician Training Facility Practical Training Attachment Phase IV Coordinated and Conducted for the Office of Health, Safety and Security U.S. Department of Energy DOE-HDBK-1122-2009 ii This page intentionally left blank DOE-HDBK-1122-2009 iii Table of Contents Page Introduction................................................................................................................................1 Facility Job Performance Measures ........................................................................................2 Final Verification Signatures ....................................................................................................3 DOE-HDBK-1122-2009 iv

162

Disabling Radiological Dispersal Terror  

SciTech Connect

Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.

Hart, M

2002-11-08T23:59:59.000Z

163

DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13.1 13.1 Overhead 13.1 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators Objectives: * Identify the general characteristics of accelerators. * Identify the types of particles accelerated. * Identify the two basic types of accelerators. * Identify uses for accelerators. * Define prompt radiation. * Identify prompt radiation sources. OT 13.2 Overhead 13.2 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Define radioactivation. * Explain how contaminated material differs from activated material with regard to radiological concerns. * Identify activation sources. OT 13.3 Overhead 13.3 DOE-HDBK-1141-2001 Radiological Aspects of Accelerators (cont.) Objectives: * Identify engineered and administrative controls at accelerator facilities. * Identify the special

164

Appendix A: Handling of Federal  

Gasoline and Diesel Fuel Update (EIA)

and selected State legislation and regulation in the AEO This page inTenTionally lefT blank 177 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Appendix A: Handling of Federal and selected State legislation and regulation in the AEO Legislation Brief description AEO handling Basis Residential sector A. National Appliance Energy Conservation Act of 1987 Requires Secretary of Energy to set minimum efficiency standards for 10 appliance categories with periodic updates Included for categories represented in the AEO residential sector forecast. Public Law 100-12. a. Room air conditioners Sets standards for room air conditioners in 2014. Require new purchases of room air conditioners to meet the standard. Federal Register Notice

165

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 of 3) 2 of 3) Radiological Contamination Control Training for Laboratory Research Instructor's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page DEPARTMENT OF ENERGY - Course/Lesson Plan.............................. 1 Standardized Core Course Materials................................................... 1 Course Goal.........................................................................1 Target Audience.................................................................. 1 Course Description............................................................... 1 Prerequisites...................................................................... 1

166

Tritium Handling and Safe Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-HDBK-1129-2008 December 2008 DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE-HDBK-1129-2008 ii This page is intentionally blank. DOE-HDBK-1129-2008 iii TABLE OF CONTENTS SECTION PAGE FOREWORD................................................................................................................................ ix ACRONYMS ................................................................................................................................ xi 1.0 INTRODUCTION ....................................................................................................................

167

Portable vacuum object handling device  

DOE Patents (OSTI)

The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

Anderson, G.H.

1983-08-09T23:59:59.000Z

168

Enhancing CIMOSA with Exception Handling  

E-Print Network (OSTI)

CIMOSA (Open System Architecture for CIM) [2], an architecture for the modelling of manufacturing applications, does not provide a facility for exception definition and handling. Exceptions, traditionally associated to programming language and operating systems, are necessary in all types of languages, including specification languages. Our contribution consists of the enhancement of the CIMOSA model with a complete facility and methodology for the specification of the system behaviour in case of exception.

Messina Pleinevaux Swiss; S. Messina; P. Pleinevaux

1996-01-01T23:59:59.000Z

169

Radiological Worker Training - Radiological Contamination Control for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B B December 2008 DOE HANDBOOK RADIOLOGICAL WORKER TRAINING RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ . Radiological Worker Training Appendix B Radiological Contamination Control for Laboratory Research DOE-HDBK-1130-2008 iii Foreword This Handbook describes a recommended implementation process for core training as outlined in

170

DOE N 435.1, Contact-Handled and Remote-Handled Transuranic Waste Packaging  

Directives, Delegations, and Requirements

Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner ...

2011-08-15T23:59:59.000Z

171

FMAC: Coal-Handling Maintenance Guide  

Science Conference Proceedings (OSTI)

The Coal Handling System Maintenance Guide provides fossil plant maintenance personnel with current maintenance information on this system. This report will assist plant maintenance personnel in improving the reliability of and reducing the maintenance costs for the coal handling system.

2006-12-22T23:59:59.000Z

172

ENDTOEND REQUEST HANDLING IN DISTRIBUTED VIDEOONDEMAND SYSTEMS  

E-Print Network (OSTI)

that adequate storage and stream handling capacities are present at the servers in the remote clusters. In addition, the remote sites act as sources of supplemental request handling capacity minimizing overall service is delivered only when the local cluster can­ not handle the load. Between the two remote clusters

Mundur, Padma

173

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 1 2009 Change Notice No. 2 2011 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population

174

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

98 98 October 1998 Change Notice No. 1 June 2001 Change Notice No. 2 December 2003 Reaffirmation with Errata May 2004 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-98 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration,

175

Radiological Toolbox User's Manual  

Science Conference Proceedings (OSTI)

A toolbox of radiological data has been assembled to provide users access to the physical, chemical, anatomical, physiological and mathematical data relevant to the radiation protection of workers and member of the public. The software runs on a PC and provides users, through a single graphical interface, quick access to contemporary data and the means to extract these data for further computations and analysis. The numerical data, for the most part, are stored within databases in SI units. However, the user can display and extract values using non-SI units. This is the first release of the toolbox which was developed for the U.S. Nuclear Regulatory Commission.

Eckerman, KF

2004-07-01T23:59:59.000Z

176

Smart Radiological Dosimeter  

DOE Patents (OSTI)

A radiation dosimeter providing an indication of the dose of radiation to which the radiation sensor has been exposed. The dosimeter contains features enabling the monitoring and evaluating of radiological risks so that a user can concentrate on the task at hand. The dosimeter provides an audible alarm indication that a predetermined time period has elapsed, an audible alarm indication reminding the user to check the dosimeter indication periodically, an audible alarm indicating that a predetermined accumulated dose has been prematurely reached, and an audible alarm indication prior or to reaching the 3/4 scale point.

Kosslow, William J.; Bandzuch, Gregory S.

2004-07-20T23:59:59.000Z

177

PNNL: Available Technologies: Nuclear & Radiological  

PNNL has more than 40 years of experience in radiological science and radiochemical separations based on its activities at the U.S. Department of ...

178

A radiological evaluation of phosphogypsum  

SciTech Connect

Phosphogypsum is the by-product resulting from phosphoric acid or phosphate fertilizer production. The phosphate used in these chemical processes contains the naturally occurring radioactive material U and all its subsequent decay products. During processing, the U generally remains in the phosphoric acid product, while the daughter, {sup 226}Ra, tends to be concentrated in the phosphogypsum. Phosphogypsum has physical properties that make it useful as a sub-base for roadways, parking lots, and similar construction. A radiological evaluation, to determine exposures to workers mixing this material with a stabilizing agent (portland cement), was performed at a South Louisiana phosphoric acid chemical plant. Measurements of the {sup 226}Ra content of the phosphogypsum showed an average of 1.1 +/- 0.3 Bq g-1 (0.7-1.7 Bq g-1). The average measured gross gamma exposure rate on the phosphogypsum pile corresponded to a dose equivalent rate of 0.368 +/- 0.006 mu Sv h-1 (0.32-0.42 mu Sv h-1). Radon daughter concentrations measured on top of the phosphogypsum pile ranged from 0.0006 to 0.001 working levels. An analysis of the airborne {sup 226}Ra concentrations showed only background levels.

Laiche, T.P.; Scott, L.M. (Louisiana State Univ., Baton Rouge (USA))

1991-05-01T23:59:59.000Z

179

ORISE: REAC/TS Radiological Incident Medical Consultation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Incident Medical Consultation Radiological Incident Medical Consultation Radiological Incident Medical Consultation The Oak Ridge Institute for Science and Education (ORISE) provides the U.S. Department of Energy (DOE) with a comprehensive capability to respond effectively to medical emergencies involving radiological or nuclear materials. Through the management of the Radiation Emergency Assistance Center/Training Site (REAC/TS), ORISE provides advice and consultation to emergency personnel responsible for the medical management of radiation accidents. REAC/TS strengthens hospital preparedness for radiation emergencies by preparing and educating first responders, medical personnel and occupational health professionals who will provide care to patients with a radiation injury or illness. REAC/TS staff provide medical advice,

180

Depleted UF6 Production and Handling Slide Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Production and Handling Depleted UF6 Production and Handling Slide Presentation An online slide presentation about production and handling of depleted UF6, from mining of uranium...

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SRS - Programs - Nuclear Materials Management  

NLE Websites -- All DOE Office Websites (Extended Search)

built in the mid-1950s, housed various Special Nuclear Materials missions including plutonium storage, shipping and handling; billet production for reactor target fabrication...

182

CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

J.F. Beesley

2005-04-21T23:59:59.000Z

183

Radiological Worker Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 December 2008 Change Notice 1 June 2009 DOE HANDBOOK Radiological Worker Training U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1130-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1130-2008 Original Change Part 2 Module 2 page 17 Medical radiation sources (total average dose ~ 54 mrem/yr) 1) X rays (total average dose ~ 40mrem/yr) a) X rays are similar to gamma rays; however, they originate outside the nucleus.

184

For S Radiological  

Office of Legacy Management (LM)

? . ? . -. .- * -* (\/If.r.-5- .* , d- For S Radiological ' mer Bridgepo pecial Metals Adrian, Survey of the Irt Brass Company Extrusion Plant, Michigan / /f?t' . ( F. F. Haywood H. W. Dickson W. D. Cottrell W. H. Shinpaugh _ : I., _-. .I ( ._ rc/ DOE/EV-0005128 ORNL-57 13 / J. E. Burden 0. R. Stone R. W. Doane W. A. Goldsmith 4 , Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A06 Microfiche A01 This report was prepared as an account of work sponsored by an agency of the UnitedStatesGovernment. Neither theUnitedStatesGovernment noranyagency thereof, nor any of their employees, makes any warranty, express or implied, or

185

Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

_______ _______ Change Notice 1 June 2009 DOE HANDBOOK RADIOLOGICAL CONTROL TECHNICIAN TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive DOE-HDBK-1122-2009 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1122-2009 Original Change Part 3 1.05-1 NCRP Report No. 93 "Ionizing Radiation Exposure of the Population of the United States". NCRP Report No. 160 "Ionizing Radiation Exposure of the Population of the United States". Part 3 1.05-9 4) U.S. national average from diagnostic

186

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Measurement Not Measurement Sensitive DOE-HDBK-1131-2007 December 2007_______ Change Notice 1 Reaffirmed 2013 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a member of the general population is about 360 millirem/year. The average annual radiation dose to a member of the general population is about 620 millirem/year. Part 2 page 5 Natural background radiation is by far the

187

General Employee Radiological Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

_______ _______ Change Notice 1 June 2009 DOE HANDBOOK GENERAL EMPLOYEE RADIOLOGICAL TRAINING U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Not Measurement Sensitive This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change 1 DOE-HDBK-1131-2007 Original Change Part 2 page 5 The average annual radiation dose to a member of the general population is about 360 millirem/year. The average annual radiation dose to a member of the general population is about 620 millirem/year. Part 2 page 5 Natural background radiation is by far the

188

AERIAL RADIOLOGICAL SURVEYS  

SciTech Connect

Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

Proctor, A.E.

1997-06-09T23:59:59.000Z

189

Standardized radiological dose evaluations  

SciTech Connect

Following the end of the Cold War, the mission of Rocky Flats Environmental Technology Site changed from production of nuclear weapons to cleanup. Authorization baseis documents for the facilities, primarily the Final Safety Analysis Reports, are being replaced with new ones in which accident scenarios are sorted into coarse bins of consequence and frequency, similar to the approach of DOE-STD-3011-94. Because this binning does not require high precision, a standardized approach for radiological dose evaluations is taken for all the facilities at the site. This is done through a standard calculation ``template`` for use by all safety analysts preparing the new documents. This report describes this template and its use.

Peterson, V.L.; Stahlnecker, E.

1996-05-01T23:59:59.000Z

190

Cask system design guidance for robotic handling  

SciTech Connect

Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs.

Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

1990-10-01T23:59:59.000Z

191

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Force Established Nuclear Radiological Threat Task Force Established November 03, 2003 Washington, DC Nuclear Radiological Threat Task Force Established NNSA's Administrator...

192

CRAD, Radiological Controls - Idaho Accelerated Retrieval Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Controls - Idaho Accelerated Retrieval Project Phase II CRAD, Radiological Controls - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix...

193

Concerns Regarding Lead Contamination and Radiological Controls...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Concerns Regarding Lead Contamination and Radiological Controls at the Nevada Test Site, INS-O-06-02 Concerns Regarding Lead Contamination and Radiological Controls at...

194

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

195

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

196

GIS Symbology for FRMAC/CMHT Radiological/Nuclear Products  

SciTech Connect

This document is intended to codify, to the extent currently possible, the representation of map products produced for and by the Federal Radiological Monitoring and Assessment Center (FRMAC) and the Consequence Management Home Team (CHMT), particularly those that include model products from the National Atmospheric Release Advisory Capability (NARAC). This is to facilitate consistency between GIS products produced by different members of these teams, which should ease the task of interpreting these products by both team members and those outside the team who may need to use these products during a response. The aspects of symbology being considered are primarily isopleths levels (breakpoints) and colors used to plot NARAC modeled dose or deposition fields on mpas, although some comments will be made about the handling of legend and supporting textual information. Other aspects of symbolizing such products (e.g., transparency) are being left to the individual team members to allow them to adapt to particular organizational needs or requirements that develop during a particular a response or exercise. This document has been written in coordination with the creation of training material in Baskett, et al., 2008. It is not intended as an aid to NARAC product interpretation but to facilitate the work of GIS specialists who deal with these products in map design and in the development of supporting scripts and software that partially or completely automate the integration of NARAC model products with other GIS data. This work was completed as part of the NA-42 Technical Integration Project on GIS Automated Data Processing and Map Production in FY 2008. Other efforts that are part of this work include (a) updating the NARAC shapefile product representation to facilitate the automation work proceed at RSL as part of the same TI effort and (b) to ensure that the NARAC shapefile construct includes all of the necessary legend and other textual data to interpret dispersion and deposition patterns and related products correctly. This document is focusing on the products produced by the GIS Division of the Remove Sensing Laboratory (RSL) and by the National Atmospheric Release Advisory Center (NARAC), both separately and in combination. The expectation is that standard products produced by either group independently or in combination should use the same key attributes in displaying the same kinds of data so that products of a given type generally look similar in key aspects of the presentation, thereby minimizing any confusion of users when a variety of products from these groups may be needed. This document is dealing with the set of common standard products used in responding to radiological/nuclear releases. There are a number of less standard products that are used occasionally or in certain specific situations that are not addressed here. This includes special products that are occasionally produced by both NARAC and RSL in responses and major exercises to meet immediate and unanticipated requirements. At some future time, it may be appropriate to review the handling of such special products by both organizations to determine if there are any areas that would benefit from being integrated with the conventions described here. A particular area that should be addressed in the near-term is that of Derived Response Levels (DRLs) calculated by the Consequence Management Home Team (CMHT) or FRMAC Assessment Scientists. A new calculation is done for every event assigning contour levels, or break-points, based upon field measurements. These contour levels can be applied to deposition or dose rate NARAC calculations. Because these calculations are different every time, they can not be stored in a database.

Walker, H; Aluzzi, F; Foster, K; Pobanz, B; Sher, B

2008-10-06T23:59:59.000Z

197

CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building structures and space allocations. The Carrier/Cask Handling System interfaces with the Waste Handling Building Electrical System for electrical power.

E.F. Loros

2000-06-23T23:59:59.000Z

198

Confirmatory radiological survey of portions of the former A. H. Robins Research Center, Richmond, Virginia  

SciTech Connect

The former A.H. Robins Research Center, in Richmond, VA, was devoted primarily to the research and development of pharmaceuticals. The use of radionuclides at the A.H. Robins Research Center was first begun in the early 1960s and the facility is now operating under Nuclear Regulatory Commission (NRC) License No. 45-09042-01. A. H. Robins' Drug Metabolism Department used radioactive material (H-3, C-14, Na-22, P-32, S-35, CI-36, Ca-45, Cr-51, Ni-63, Rb-86, I-125, I-129, I-131, and Cs-137) in laboratory tracer studies on animals, for calibration of instrumentation, and for research analyses. The radionuclides were used in various,rooms throughout the facility. Following its acquisition by American Home Products in 1990, radionuclide activities were discontinued at this facility. The process for the termination of the material license for A.H. Robins (AHR) was initiated by the Corporate Radiation Health Safety Officer of Wyeth-Ayerst Research (WAR), another wholly owned subsidiary of American Home Products (AHP). In June 1990, WAR developed and submitted a decommissioning plan to the NRC. A radiological survey of the areas in which radionuclides were known to have been handled was performed to determine the extent of the contamination. During the cleanup and survey of the facility, the licensee identified H-3 and C-14 as the major

Adams, W.C.

1992-05-01T23:59:59.000Z

199

Scheduling coal handling processes using metaheuristics.  

E-Print Network (OSTI)

??The operational scheduling at coal handling facilities is of the utmost importance to ensure that the coal consuming processes are supplied with a constant feed… (more)

Conradie, David Gideon

2008-01-01T23:59:59.000Z

200

Waste management handling in Benin City.  

E-Print Network (OSTI)

??The researcher was inspired by the topic “Waste management handling” due to the ugly situa-tion of waste being littered all over the city, which have… (more)

Oseghale, Peter

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Special Training Materials | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear and Radiological Field Training Center Special Training Materials Special Training Materials Members of the 54th WMD Civil Support Team (Wisconsin National Guard) operate...

202

Best Practices for Biomass Handling in Wood Yard Operations  

Science Conference Proceedings (OSTI)

Utilities are beginning to add wood and other biomass fuels to fire their generating units to enable them to produce carbon-neutral electricity and participate in state or national renewable energy programs. However, because the material handling aspects of biomass differ from those of coal, firing at a significant scale requires new equipment to receive, store, and deliver the biomass to the flame front. This equipment is analogous in function to existing machinery but is quite different in detail, desi...

2011-08-29T23:59:59.000Z

203

Incorporation of HPAC 5.0 Transport Phenomenology to RASCAL's Radiological Releases  

SciTech Connect

The purpose of this paper is to describe the incorporation of DTRA's HPAC (Hazard Prediction and Assessment Capability) code under the NRC's code RASCAL (Radiological Assessment System for Consequence AnaLysis). The current version of RASCAL (version 3.0.5) evaluates releases from: nuclear power plants, spent fuel storage pools and casks, fuel cycle facilities, and radioactive material handling facilities. It appears to be a single piece of software; however, it is a set of inter-linked modules. These elements include: (1) Source term: this module calculates a time-dependent source term, which for nuclear power plants, is composed of about 50 radionuclides including parents and daughters; (2) Meteorological data processor: this module interrupts weather observations and forecasts along with local topography to generate time-dependent wind fields used in the transport of the plume; (3) Atmospheric transport and diffusion: this module uses the wind fields with a two-dimensional Gaussian puff model to transport the plume downwind and to calculate concentrations of each radionuclide as a function of time and location; (4) Dose calculator: this module calculates various types of doses resulting from airborne releases (TEDE, thyroid, acute, etc.) to individuals at each location from three dose pathways--inhalation, cloudshine, and groundshine. It also calculates the longer-term intermediate phase doses from deposited radionuclides. The calculations are completely consistent with the EPA protective action guide manual and the methods adopted by the Federal Radiological Monitoring and Assessment Center (FRMAC); (5) Display of results: this module allows the user to display a wide variety of calculated results as either a picture of the plume footprint on a map background for each of the result types or as numeric table; and (6) Uranium hexafluoride module: for uranium hexafluoride releases, RASCAL contains a heavy gas model to account for the exothermic reaction with air and gravitational slumping of the plume. In summary, the incorporation of HPAC transport methodology under RASCAL provides for a much more defined prediction of the dispersion of the radiological material as well as the latest dose conversion factors following a postulated accident.

Sanders, Robert Lon [ORNL

2008-01-01T23:59:59.000Z

204

DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13-1 13-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Radiological Aspects of Accelerators Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify the general characteristics of accelerators. 2. Identify the types of particles accelerated. 3. Identify the two basic types of accelerators. 4. Identify uses for accelerators. 5. Define prompt radiation. 6. Identify prompt radiation sources. 7. Define radioactivation. 8. Explain how contaminated material differs from activated material with regard to radiological concerns. 9. Identify activation sources. 10. Identify engineered and administrative controls at accelerator facilities. 11. Identify the special radiological concern and recommended instrument for each

205

Preliminary assessment of radiological doses in alternative waste management systems without an MRS facility  

SciTech Connect

This report presents generic analyses of radiological dose impacts of nine hypothetical changes in the operation of a waste management system without a monitored retrievable storage (MRS) facility. The waste management activities examined in this study include those for handling commercial spent fuel at nuclear power reactors and at the surface facilities of a deep geologic repository, and the transportation of spent fuel by rail and truck between the reactors and the repository. In the reference study system, the radiological doses to the public and to the occupational workers are low, about 170 person-rem/1000 metric ton of uranium (MTU) handled with 70% of the fuel transported by rail and 30% by truck. The radiological doses to the public are almost entirely from transportation, whereas the doses to the occupational workers are highest at the reactors and the repository. Operating alternatives examined included using larger transportation casks, marshaling rail cars into multicar dedicated trains, consolidating spent fuel at the reactors, and wet or dry transfer options of spent fuel from dry storage casks. The largest contribution to radiological doses per unit of spent fuel for both the public and occupational workers would result from use of truck transportation casks, which are smaller than rail casks. Thus, reducing the number of shipments by increasing cask sizes and capacities (which also would reduce the number of casks to be handled at the terminals) would reduce the radiological doses in all cases. Consolidating spent fuel at the reactors would reduce the radiological doses to the public but would increase the doses to the occupational workers at the reactors.

Schneider, K.J.; Pelto, P.J.; Daling, P.M.; Lavender, J.C.; Fecht, B.A.

1986-06-01T23:59:59.000Z

206

Marshall Islands radiological followup  

SciTech Connect

In August, 1968, President Johnson announced that the people of Bikini Atoll would be able to return to their homeland. Thereafter, similar approval was given for the return of the peoples of Enewetak. These two regions, which comprised the Pacific Nuclear Testing Areas from 1946 to 1958, will probably be repopulated by the original inhabitants and their families within the next year. As part of its continuing responsibility to insure the public health and safety in connection with the nuclear programs under its sponsorship, ERDA (formerly AEC) has contracted Brookhaven National Laboratory to establish radiological safety and environmental monitoring programs for the returning Bikini and Enewetak peoples. These programs are described in the following paper. They are designed to define the external radiation environment, assess radiation doses from internal emitters in the human food chain, make long range predictions of total doses and dose commitments to individuals and to each population group, and to suggest actions which will minimize doses via the more significant pathways. (auth)

Greenhouse, N.A.; McCraw, T.F.

1976-04-30T23:59:59.000Z

207

I COMPREHENSIVE RADIOLOGICAL SURVEY I  

Office of Legacy Management (LM)

im im I COMPREHENSIVE RADIOLOGICAL SURVEY I Prepared by Oak Ridge Associated Universities Prprd* OFF-SITE PROPERTY H' | Prepared for Office of Operational FORMER LAKE ONTARIO ORDNANCE WORKS SITE Safety U.S. Department LEWISTON, NEW YORK I of Energy i J.D. BERGER i Radiological Site Assessment Program Manpower Education, Research, and Training Division I l*~~~~~~ ~~~~DRAFT REPORT January 1983 I I I ------- COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY H' FORMER LAKE ONTARIO ORDNANCE WORKS SITE LEWISTON, NEW YORK Prepared for U.S. Department of Energy as part of the Formerly Utilized Sites -- Remedial Action Program J. D. Berger Project Staff L.W. Cole W.O. Helton R.D. Condra T.J. Sowell P.R. Cotten C.F. Weaver G.R. Foltz T.S. Yoo R.C. Gosslee Prepared by Radiological Site Assessment Program

208

Radiological Source Registry and Tracking  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Home HSS Logo Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive sealed sources identified in Title 10 Code of Federal Regulation Part 835, Occupational Radiation Protection (10 CFR 835), Appendix E, and International Atomic Energy Agency (IAEA) Categories 1 and 2 radioactive sealed sources identified in Attachment 5, Appendix A of O 321.1B, will submit information to the DOE Radiological Source Registry and Tracking (RSRT) System.

209

Radiological Emergency Response Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes a radiological emergency response plan fund, into which any entity operating a nuclear reactor or storing nuclear fuel and radioactive waste in this state (referred to...

210

Radiological Threat Reduction: Dealing with Dirty Bombs  

E-Print Network (OSTI)

Nonproliferation and National Security Department May 2, 2007 #12;Topics What is a Radiological Dispersal Device

Homes, Christopher C.

211

Homeland Security Chemical/Biological/Radiological/Nuclear ...  

Science Conference Proceedings (OSTI)

... Information at NIST. Homeland Security Chemical/Biological/Radiological/ Nuclear/Explosives (CBRNE) Information at NIST. ...

2010-09-24T23:59:59.000Z

212

DECOMMISSIONING PLAN AND RADIOLOGICAL  

E-Print Network (OSTI)

Cabot Performance Materials (Cabot) holds NRC License SMC-1562, covering storage of radioactive materials at both their Revere and Reading sites in Pennsylvania. Former ore processing at the Revere facility generated waste slag contaminated with uranium and thorium. In 1988, Cabot began onsite decommissioning activities for the Revere facility, including site

unknown authors

2001-01-01T23:59:59.000Z

213

Radiological training for tritium facilities  

Science Conference Proceedings (OSTI)

This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

NONE

1996-12-01T23:59:59.000Z

214

FDH radiological design review guidelines  

SciTech Connect

These guidelines discuss in more detail the radiological design review process used by the Project Hanford Management Contractors as described in HNF-PRO-1622, Radiological Design Review Process. They are intended to supplement the procedure by providing background information on the design review process and providing a ready source of information to design reviewers. The guidelines are not intended to contain all the information in the procedure, but at points, in order to maintain continuity, they contain some of the same information.

Millsap, W.J.

1998-09-29T23:59:59.000Z

215

Thermal decomposition study of hydroxylamine nitrate during storage and handling  

E-Print Network (OSTI)

Hydroxylamine nitrate (HAN), an important agent for the nuclear industry and the U.S. Army, has been involved in several costly incidents. To prevent similar incidents, the study of HAN safe storage and handling boundary has become extremely important for industries. However, HAN decomposition involves complicated reaction pathways due to its autocatalytic behavior and therefore presents a challenge for definition of safe boundaries of HAN storage and handling. This research focused on HAN decomposition behavior under various conditions and proposed isothermal aging testing and kinetic-based simulation to determine safety boundaries for HAN storage and handling. Specifically, HAN decomposition in the presence of glass, titanium, stainless steel with titanium, or stainless steel was examined in an Automatic Pressure Tracking Adiabatic Calorimeter (APTAC). n-th order kinetics was used for initial reaction rate estimation. Because stainless steel is a commonly used material for HAN containers, isothermal aging tests were conducted in a stainless steel cell to determine the maximum safe storage time of HAN. Moreover, by changing thermal inertia, data for HAN decomposition in the stainless steel cell were examined and the experimental results were simulated by the Thermal Safety Software package. This work offers useful guidance for industries that manufacture, handle, and store HAN. The experimental data acquired not only can help with aspects of process safety design, including emergency relief systems, process control, and process equipment selection, but also is a useful reference for the associated theoretical study of autocatalytic decomposition behavior.

Zhang, Chuanji

2003-05-01T23:59:59.000Z

216

Radiological assessment. A textbook on environmental dose analysis  

SciTech Connect

Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

Till, J.E.; Meyer, H.R. (eds.)

1983-09-01T23:59:59.000Z

217

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide: Fuel Handling Equipment Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical task during a nuclear power plant refueling outage. The proper operation of fuel handling equipment (such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators) is important to a successful refueling outage and to preparing fuel for eventual disposal.BackgroundThe fuel handling system contains the components used to move fuel from the time that the new fuel is received until the spent fuel ...

2013-12-13T23:59:59.000Z

218

Assessment of Coal Handling for Fuel Flexibility  

Science Conference Proceedings (OSTI)

To reduce total generating costs, power generators may use multiple solid fuels. This study is a preliminary investigation of the methods and costs of handling multiple solid fuels. An important byproduct of the study was some of the first-ever systematic comparisons of coal handling costs at a sample of plants.

1998-09-03T23:59:59.000Z

219

Constraint Handling in Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

In this article, the authors propose a particle swarm optimization PSO for constrained optimization. The proposed PSO adopts a multiobjective approach to constraint handling. Procedures to update the feasible and infeasible personal best are designed ... Keywords: Constrained Optimization, Constraint Handling, Feasible Personal Best, Infeasible Personal Best, Multiobjective Optimization, Particle Swarm Optimization

Wen Fung Leong; Gary G. Yen

2010-01-01T23:59:59.000Z

220

Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants  

DOE Green Energy (OSTI)

Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

Manohar S. Sohal; J. Stephen Herring

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029  

SciTech Connect

This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

2013-09-01T23:59:59.000Z

222

Safe Handling of Engineering Nanoscale Materials: DOE Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

A. H. Carim A. H. Carim Basic Energy Sciences Basic Energy Sciences 5 DOE Policy 456.1: DOE Policy 456.1: Secretarial Policy Statement On Nanoscale Safety Secretarial...

223

Improved Empty Vehicle Balancing in Automated Material Handling Systems  

Science Conference Proceedings (OSTI)

The use of automated guided vehicles in high-tech industries such as the semiconductor industry results, due to the size of such factories, in highly complex rail-networks. In contrast to the routing of vehicles that are transporting a lot to its destination, ... Keywords: Vehicle Balancing, AMHS, Semiconductor, Simulation

Roland Wertz; Christian Fischmann; Fabian Böttinger; Martin Kasperczyk

2008-04-01T23:59:59.000Z

224

Teleoperated Control of Hydraulic Equipment for Hazardous Material Handling.  

E-Print Network (OSTI)

??Traditionally, teleoperation has been an expensive and lengthy process. This thesis shows that by incorporating off-the-shelf technology into a modular design, teleoperation can be developed… (more)

Fleming, Michael Ryals

2004-01-01T23:59:59.000Z

225

Strategic Business Intelligence at Toyota Material Handling Europe.  

E-Print Network (OSTI)

?? Business Intelligence (BI) is as an academic subject a rather unexplored research field and within the business context, BI leads an ambivalent existence. BI… (more)

Olsson, Jon-Erik

2008-01-01T23:59:59.000Z

226

Neutron Energy Measurements in Radiological Emergency Response Applications  

Science Conference Proceedings (OSTI)

We present significant results in recent advances in the determination of neutron energy. Neutron energy measurements are a small but very significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of paramount importance.

Sanjoy Mukhopadhyay, Paul Guss, Michael Hornish, Scott Wilde, Tom Stampahar, Michael Reed

2009-04-30T23:59:59.000Z

227

Radiological Training for Tritium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 2 Change Notice No. 2 May 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 2. Radiological Safety Training for Tritium Facilities DOE-HDBK-1105-2002 Page/Section Change Part 1, page 14 Change: U.S. Department of Energy, Radiological Control

228

LANL responds to radiological incident  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL responds to radiological incident LANL responds to radiological incident LANL responds to radiological incident Multiple tests indicate no health risks to public or employees. August 27, 2012 Aerial view of the Los Alamos Neutron Science Center(LANSCE). Aerial view of the Los Alamos Neutron Science Center (LANSCE). The contamination poses no danger to the public. The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The Laboratory has determined that about a dozen people

229

Radiological control manual. Revision 1  

SciTech Connect

This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPP and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.

Kloepping, R.

1996-05-01T23:59:59.000Z

230

INTERNATIONAL SYMPOSIUM ON PROCESSING AND HANDLING ...  

Science Conference Proceedings (OSTI)

... Battle, DuPont White Pigments and Mineral Products, Edge Moor Plant, Edge Moor, ... PHYSICAL EXAMINATION AND HANDLING OF WET AND DRY C60: K. ... part of a modern ironmaking blast furnace with high pulverised coal injection, ...

231

A sampling device with a capped body and detachable handle  

DOE Patents (OSTI)

The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and out of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.

Jezek, Gerd-Rainer

1997-12-01T23:59:59.000Z

232

Standard practice for radiologic examination of semiconductors and electronic components  

E-Print Network (OSTI)

1.1 This practice provides the minimum requirements for nondestructive radiologic examination of semiconductor devices, microelectronic devices, electromagnetic devices, electronic and electrical devices, and the materials used for construction of these items. 1.2 This practice covers the radiologic examination of these items to detect possible defective conditions within the sealed case, especially those resulting from sealing the lid to the case, and internal defects such as extraneous material (foreign objects), improper interconnecting wires, voids in the die attach material or in the glass (when sealing glass is used) or physical damage. 1.3 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this practice. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the app...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

233

Current Trends in Gamma Radiation Detection for Radiological Emergency Response  

SciTech Connect

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

Mukhopadhyay, S., Guss, P., Maurer, R.

2011-09-01T23:59:59.000Z

234

Guidelines for the Selection, Use, and Handling of High Temperature Insulation  

Science Conference Proceedings (OSTI)

This guide addresses design considerations for selecting replacement materials based on reviewing acceptable operating experience; handling new and used insulating materials safely; and identifying training criteria for personnel that come in contact with insulation. The user can complete an economically sound, energy conserving, and safe insulation maintenance project by applying this guide.

1997-11-13T23:59:59.000Z

235

Nuclear Radiological Threat Task Force Established | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Threat Task Force Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

236

NNSA Conducts Radiological Response Training in Kazakhstan |...  

National Nuclear Security Administration (NNSA)

Radiological Response Training in Kazakhstan | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

237

NNSA Conducts International Radiological Response Training in...  

National Nuclear Security Administration (NNSA)

International Radiological Response Training in Vienna | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

238

Remote-Handled Transuranic Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatindicates the shipper of the RH-TRU waste. The site-specific letter designations for each of the|DOE sites are provided in Table 1. Not all of the sites listed in Table 1 have generated/stored RH-|TRU waste.

Washington TRU Solutions

2001-08-01T23:59:59.000Z

239

LM Records Handling System (LMRHS01) - Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats...

240

LM Records Handling System (LMRHS01) - Electronic Records Keeping...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publications LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees...

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

T-656: Microsoft Office Visio DXF File Handling Arbitrary Code...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability T-656: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability June 28,...

242

WIPP radiological assistance team dispatched to Los Alamos as precautionary measure  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Assistance Team Dispatched Radiological Assistance Team Dispatched To Los Alamos as Precautionary Measure CARLSBAD, N.M., May 11, 2000 - A team of radiological experts has been dispatched from the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) in response to a week-long forest fire that is threatening Los Alamos National Laboratory (LANL), one of the nation's premiere research laboratories. "We are responding completely as a precautionary measure," said Jere Galle, team leader for the WIPP Radiological Assistance Program (RAP) team. "It is our understanding that nuclear materials at LANL are not in harm's way. Our primary concern, however, is always to protect human health and the environment." The RAP team's mission is to provide radiological assistance to federal agencies, state,

243

U.S. Department of Energy Region 6 Radiological Assistance Program response plan. Revision 2  

Science Conference Proceedings (OSTI)

Upon request, the DOE, through the Radiological Assistance Program (RAP), makes available and will provide radiological advice, monitoring, and assessment activities during radiological incidents where the release of radioactive materials is suspected or has occurred. Assistance will end when the need for such assistance is over, or if there are other resources available to adequately address the incident. The implementation of the RAP is usually accomplished through the recommendation of the DOE Regional Coordinating Office`s (RCO) on duty Regional Response Coordinator (RRC) with the approval of the Regional Coordinating Office Director (RCOD). The DOE Idaho Operations Office (DOE-ID) is the designated RCO for DOE Region 6 RAP. The purpose of this document is: to describe the mechanism for responding to any organization or private citizen requesting assistance to radiological incidents; to coordinate radiological assistance among participating federal agencies, states, and tribes in DOE Region 6; and to describe the RAP Scaled Response concept of operations.

Jakubowski, F.M.

1998-02-01T23:59:59.000Z

244

Radiation Sources and Radioactive Materials (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

245

Model Recovery Procedure for Response to a Radiological Transportation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation Emergency...

246

DOE - Office of Legacy Management -- South Valley Superfund Site...  

Office of Legacy Management (LM)

Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Department...

247

DOE - Office of Legacy Management -- Kerr McGee - 028  

Office of Legacy Management (LM)

Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Kerr McGee...

248

Confirmatory radiological survey of portions of the former A. H. Robins Research Center, Richmond, Virginia. Final report  

SciTech Connect

The former A.H. Robins Research Center, in Richmond, VA, was devoted primarily to the research and development of pharmaceuticals. The use of radionuclides at the A.H. Robins Research Center was first begun in the early 1960s and the facility is now operating under Nuclear Regulatory Commission (NRC) License No. 45-09042-01. A. H. Robins` Drug Metabolism Department used radioactive material (H-3, C-14, Na-22, P-32, S-35, CI-36, Ca-45, Cr-51, Ni-63, Rb-86, I-125, I-129, I-131, and Cs-137) in laboratory tracer studies on animals, for calibration of instrumentation, and for research analyses. The radionuclides were used in various,rooms throughout the facility. Following its acquisition by American Home Products in 1990, radionuclide activities were discontinued at this facility. The process for the termination of the material license for A.H. Robins (AHR) was initiated by the Corporate Radiation Health Safety Officer of Wyeth-Ayerst Research (WAR), another wholly owned subsidiary of American Home Products (AHP). In June 1990, WAR developed and submitted a decommissioning plan to the NRC. A radiological survey of the areas in which radionuclides were known to have been handled was performed to determine the extent of the contamination. During the cleanup and survey of the facility, the licensee identified H-3 and C-14 as the major

Adams, W.C.

1992-05-01T23:59:59.000Z

249

Nuclear / Radiological Advisory Team | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

/ Radiological Advisory Team | National Nuclear Security / Radiological Advisory Team | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear / Radiological Advisory Team Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations > Nuclear / Radiological Advisory Team Nuclear / Radiological Advisory Team

250

Storage and Handling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage and Handling Storage and Handling Storage and Handling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management Business Center RETIREMENT OF RECORDS: 1. The Program Office is responsible for originating the Records Transmittal and Receipt Form SF-135 (PDF, 107KB), and sending it to IM-23 at doerha@hq.doe.gov for approval. 2. IM-23 reviews the SF-135 for completeness/correctness (Coordinates with the originating office by email if more information is required.). 3. IM-23 sends the SF-135 for approval to WNRC. PREPARING RECORDS FOR THE TRANSFER TO THE WNRC: 1. Use your organization's Records Information Disposition Schedule (RIDS) as a guide toward assessing records for storage. Refer to DOE O

251

Radiological assessment of the town of Edgemont  

SciTech Connect

Congress, in 1980, gave the Nuclear Regulatory Commission (NRC) the responsibility to coordinate and conduct a monitoring, engineering assessment, and remedial cleanup program in Edgemont, South Dakota. The Congressional intent was to locate public properties in Edgemont that had been contaminated by radioactive materials from a local uranium mill, and to clean up those properties. Because the Atomic Energy Act of 1954 gave NRC the authority to monitor for contamination but not to clean up contamination, Congress later assigned the remedial cleanup responsibility to the Department of Energy (DOE). NRC, through Battelle Pacific Northwest Laboratory (PNL), conducted a radiological survey of 96% of the properties in Edgemont and vicinity during the time period of September 1980 through April 1984. (Out of 976 total properties, 941 were surveyed.) The strategy of the survey was to screen properties for the possible presence of contamination by using short- and long-term radon progeny measurements, indoor and outdoor gamma exposure rate measurements, and soil radium-226 measurements. Properties that failed the screening surveys were measured more extensively to determine whether the elevated readings were due to residual radioactive materials from the uranium mill. This report contains the historical perspective of the Edgemont survey, explains the development and modifications of survey protocols, examines the problems encountered during the survey, and lists a summary of the results. The report also presents conclusions about the effectiveness of the survey techniques and about the rationale of a comprehensive survey of a whole community. The appendices section of this report contains all the protocols, a list of all the properties showing survey results for each, and reports on special studies conducted during the survey. These special studies contain many valuable insights that may prove beneficial to future radiological assessment surveys.

Jackson, P.O.; Thomas, V.W.; Young, J.A.

1985-01-01T23:59:59.000Z

252

Radiological Assistance Program (RAP)- Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Programs > Radiological Major Programs > Radiological Assistance Program Radiological Assistance Program Overview Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Radiological Assistance Program Bookmark and Share Survey equipment is used to detect and measure radiation Survey equipment is used to detect and measure radiation. Click on image to view larger image. The Radiological Assistance Program (RAP) team at Argonne can provide assistance in the event of a radiological accident or incident. Support ranges from giving technical information or advice over the telephone, to sending highly trained team members and state-of-the-art equipment to the accident site to help identify and minimize any radiological hazards. The

253

Recommendations for cask features for robotic handling from the Advanced Handling Technology Project  

SciTech Connect

This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs.

Drotning, W.

1991-02-01T23:59:59.000Z

254

Radiological Training for Tritium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HANDBOOK DOE HANDBOOK RADIOLOGICAL TRAINING FOR TRITIUM FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Tritium Facilities DOE-HDBK-1105-2002 Page/Section Change Cover sheets parts 1, 2, 3, and 4 Change: Office of Environment, Safety & Health

255

Radiological Control Training for Supervisors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-2001 3-2001 August 2001 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK Radiological Control Training for Supervisors U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Control Training for Supervisors

256

Radiological Training for Accelerator Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-2002 8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Accelerator Facilities

257

DOE-HDBK-1141-2001; Radiological Assessor Training, Instructor's Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-1 8-1 DEPARTMENT OF ENERGY LESSON PLAN Course Material Topic: Radiological Aspects of Plutonium Objectives: Upon completion of this lesson, the participant will be able to: 1. Identify the radiological properties of plutonium. 2. Identify the biological effects of plutonium. 3. Identify special controls and considerations required for plutonium operations. 4. Describe appropriate instruments, measurement techniques, and special radiological survey methods for plutonium. 5. Describe personnel protection requirements and dose control techniques for plutonium. Training Aids: Overhead Transparencies (OTs): OT 8.1 - OT 8.12 (may be supplemented or substituted with updated or site-specific information) Equipment Needs: Overhead projector Screen

258

The enclosed file contains aerial radiological data that was collected with a fi  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enclosed file contains aerial radiological data that was collected with a fixed-wing aircraft (C-12) off enclosed file contains aerial radiological data that was collected with a fixed-wing aircraft (C-12) off of the east coast of Japan on three separate flights dated April 5, 2011, April 18, 2011, and May 9, 2011. Please note that the normal analysis of aerial radiological data assumes that the material is deposited on the ground and is not constantly moving. Therefore, this data set differs from previously posted aerial data in that the data must be viewed as three separate "snapshots" of the radiological signature from the ocean on these three dates, and NOT as one contiguous data set or flow pattern of the same deposition taken on different dates. Further, the vertical profile of the material is more ambiguous for over-sea data than for terrestrial data.

259

Safe Handling Of Nuclear Substances Undergraduate Laboratories  

E-Print Network (OSTI)

Safe Handling Of Nuclear Substances Undergraduate Laboratories There are three main hazards associated with working with unsealed sources of nuclear substances. These are: 1. Skin contamination and/or deposition of the nuclear substance in the body 2. Spread of contamination 3. External radiation In teaching

Beaumont, Christopher

260

Water Management in Ash-Handling Systems  

Science Conference Proceedings (OSTI)

In 1980, EPA proposed revisions to the effluent standards and guidelines for fly ash and bottom ash transport systems. This review of utility practices provides a comprehensive account of the operation of and problems experienced in wet handling of bottom and fly ash and suggests areas for further research.

1987-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of the triage, monitoring and treatment Handbook for Members of the Public Affected by Radiological Terrorism - A European Response  

Science Conference Proceedings (OSTI)

European national emergency response plans have long been focused on accidents at nuclear power plants. Recently, the possible threats by disaffected groups have shifted the focus to being prepared also for malevolent use of radiation that are aimed at creating disruption and panic in the society. The casualties will most likely be members of the public. According to the scenario, the number of affected people can vary from a few to mass casualties. The radiation exposure can range from very low to substantial, possibly combined with conventional injuries. There is a need to develop practicable tools for the adequate response to such acts and more specifically to address European guidelines for triage, monitoring and treatment of exposed people. Although European countries have developed emergency response plans for nuclear accidents they have not all made plans for handling malevolent use of radioactive material. Indeed, there is a need to develop practical guidance on emergency response and medical treatment of the public affected by malevolent acts. Generic guidance on this topic has been published by international organisations. They are, however, not operational documents to be used in emergency situations. The Triage, Monitoring and Treatment (TMT) Handbook aims to strengthen the European ability to efficiently respond to malevolent acts in terms of protecting and treating exposed people. Part of the Handbook is also devoted to public information and communication issues which would contribute to public reassurance in emergency situations. The Handbook will be drafted by European and international experts before it is circulated to all emergency response institutions in Europe that would be a part of the handling of malevolent acts using radioactive material. The institutions would be given a 6 months consultation time with encouragement to test the draft Handbook in national exercises. A workshop will allow feedback from these end users on the content, structure and usefulness of the Handbook before a final version is produced. In order to achieve the project's objectives a consortium has been drawn together including, Belgian Nuclear Research Centre, the Norwegian Radiation Protection Authority, Radiation and Nuclear Safety Authority of Finland, the UK Health Protection Agency, the Central Laboratory for Radiological Protection of Poland and the World Health Organisation. Enviros Consulting is acting as the technical secretariat for the project. The Handbook will aim to harmonise the approaches to handling malevolent acts across Europe. This harmonisation will have an added value on the public confidence in authorities since differing approaches in neighbouring countries could lead to public confusion and mistrust. (authors)

Kruse, P. [Enviros Consulting Limited, Culham Science Centre, Abingdon OX (United Kingdom); Rojas-Palma, C. [Belgian Nuclear Research Centre (SCK-CEN), Radiation Protection Div., Mol (Belgium)

2007-07-01T23:59:59.000Z

262

Final remote-handled waste canister leaves Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Remote-handled waste canister leaves LANL Remote-handled waste canister leaves LANL Final remote-handled waste canister leaves Los Alamos National Laboratory The Laboratory began shipping the canisters exactly one month ago and averaged four shipments per week. July 2, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

263

RadSTraM: Radiological Source Tracking and Monitoring, Phase II Final Report  

SciTech Connect

This report focuses on the technical information gained from the Radiological Source Tracking and Monitoring (RadSTraM) Phase II investigation and its implications. The intent of the RadSTraM project was to determine the feasibility of tracking radioactive materials in commerce, particularly International Atomic Energy Agency (IAEA) Category 3 and 4 materials. Specifically, Phase II of the project addressed tracking radiological medical isotopes in commerce. These categories of materials are susceptible to loss or theft but the problem is not being addressed by other agencies.

Warren, Tracy A [ORNL; Walker, Randy M [ORNL; Hill, David E [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Abercrombie, Robert K [ORNL

2008-12-01T23:59:59.000Z

264

Viability of Existing INL Facilities for Dry Storage Cask Handling  

SciTech Connect

This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

2013-04-01T23:59:59.000Z

265

ORISE Resources: Radiological and Nuclear Terrorism: Medical...  

NLE Websites -- All DOE Office Websites (Extended Search)

The program concludes with an opportunity to apply new knowledge and decision-making skills in a series of six simulated patient case studies depicting hypothetical radiological...

266

Radiological Assistance Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

267

Radiological Assistance Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Program | National Nuclear Security Administration Assistance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Assistance Program Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Radiological Assistance Program Radiological Assistance Program RAP Logo NNSA's Radiological Assistance Program (RAP) is the nation's

268

Nuclear / Radiological Advisory Team | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

advice for both domestic and international nuclear or radiological incidents. It is led by a Senior Energy Official who runs the NNSA field operation and who coordinates NNSA...

269

RADIOLOGICAL ASSESSMENT OF BALLOD AND ASSOCIATES PROPERTY  

Office of Legacy Management (LM)

Cotton, Robert Gosslee, Jonathan Sowell, Clayton Weaver FINAL REPORT July 30, 1981 Work performed by Radiological Site Assessment Program Manpower Education, Research, and...

270

Remote Inspection, Measurement and Handling for LHC  

E-Print Network (OSTI)

Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation, cryogenic and pressure hazards. The ability to carry out visual inspection, measurement and handling activities remotely during periods when the LHC tunnel is potentially hazardous offers advantages in terms of safety, accelerator down time, and costs. The first applications identified were remote measurement of radiation levels at the start of shut-down, remote geometrical survey measurements in the collimation regions, and remote visual inspection during pressure testing and initial machine cool-down. In addition, for remote handling operations, it will be necessary to be able to transmit several real-time video images from the tunnel to the control room. The paper describes the design, development and use of a remotely controlled vehicle to demonstrate the feasibility of meeting the above requirements in the LHC tunnel. Design choices are explained along with operating experience to-dat...

Kershaw, K; Coin, A; Delsaux, F; Feniet, T; Grenard, J L; Valbuena, R

2007-01-01T23:59:59.000Z

271

DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

E. F. Loros

2000-06-30T23:59:59.000Z

272

History of remote handling at LAMPF  

SciTech Connect

A portable remote-handling system (Monitor) has been developed for performing remote maintenance on radioactive experimental facilities at the Clinton P. Anderson Meson Physics Facility (LAMPF). This system has been continually improved since its implementation in 1976. The present system has performed highly sophisticated tasks in improving and maintaining the LAMPF experimental facility. Unlike conventional hot-cell remote-handling technology, the Monitor system is portable and highly flexible, thereby allowing quick response to unforeseen tasks with minimal planning and/or special tooling. In addition to performing routine maintenance and repairs, the Monitor system is capable of performing major revisions and improvements to current facilities, keeping pace with new experimental requirements.

Grisham, D.L.; Lambert, J.E.

1982-01-01T23:59:59.000Z

273

Fuel handling apparatus for a nuclear reactor  

DOE Patents (OSTI)

Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

Hawke, Basil C. (Solana Beach, CA)

1987-01-01T23:59:59.000Z

274

Vestibule and Cask Preparation Mechanical Handling Calculation  

SciTech Connect

The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process.

N. Ambre

2004-05-26T23:59:59.000Z

275

Release criteria and pathway analysis for radiological remediation  

Science Conference Proceedings (OSTI)

Site-specific activity concentrations were derived for soils contaminated with mixed fission products (MFP), or uranium-processing residues, using the Department of Energy (DOE) pathway analysis computer code RESRAD at four different sites. The concentrations and other radiological parameters, such as limits on background-subtracted gamma exposure rate were used as the basis to arrive at release criteria for two of the sites. Valid statistical parameters, calculated for the distribution of radiological data obtained from site surveys, were then compared with the criteria to determine releasability or need for further decontamination. For the other two sites, RESRAD has been used as a preremediation planning tool to derive residual material guidelines for uranium. 11 refs., 4 figs., 3 tabs.

Subbaraman, G.; Tuttle, R.J.; Oliver, B.M. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.); Devgun, J.S. (Argonne National Lab., IL (United States))

1991-01-01T23:59:59.000Z

276

Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant  

Science Conference Proceedings (OSTI)

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

Hickey, Eva E.; Strom, Daniel J.

2005-08-01T23:59:59.000Z

277

NUCLEAR ENGINEERING & RADIOLOG SC BSE Plan Requirements  

E-Print Network (OSTI)

NUCLEAR ENGINEERING & RADIOLOG SC BSE Plan Requirements 1 Campus: UMICH RG = Requirement Group Career: UENG RQ = Requirement Program: LN = Line Plan: 6000BSE RG 6412 NUCLEAR ENGINEERING no exceptions here) RG 6521 NUCLEAR ENGINEERING AND RADIOLOGICAL SCIENCES RESIDENCY, GPA REQUIREMENTS Effective

Shyy, Wei

278

Nevada Test Site Radiological Control Manual  

Science Conference Proceedings (OSTI)

This document supersedes DOE/NV/25946--801, “Nevada Test Site Radiological Control Manual,” Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council Nevada Test Site

2010-02-09T23:59:59.000Z

279

Nevada Test Site Radiological Control Manual  

SciTech Connect

This document supersedes DOE/NV/11718--079, “NV/YMP Radiological Control Manual,” Revision 5 issued in November 2004. Brief Description of Revision: A complete revision to reflect the recent changes in compliance requirements with 10 CFR 835, and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council - Nevada Test Site

2009-10-01T23:59:59.000Z

280

Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting  

DOE Green Energy (OSTI)

Investigation of innovative methods for collecting, handling, storing, and transporting corn stover for potential use for production of cellulosic ethanol.

Atchison, J. E.; Hettenhaus, J. R.

2003-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Radiological characterization of Yankee Nuclear Power Station  

SciTech Connect

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is the determination of the extent of radiological contamination of the Yankee site. This paper describes the site radiological characterization program that has been implemented for decommissioning the Yankee plant. Radiological scoping surveys were completed to support submittal of a decommissioning plan to the U.S. Nuclear Regulatory Commission (NRC) by October 1, 1993. These surveys were designed to provide sufficient detail to estimate the extent of contamination, volume of radiological waste, activity of radiological waste, and personnel dose estimates for removal activities. Surveys were conducted both inside and on the grounds outside of the Yankee plant buildings. Survey results were combined with analytical evaluations to characterize the Yankee site.

Bellini, F.X.; Cumming, E.R.; Hollenbeck, P. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

282

Chris Densham T2K Target Remote Handling  

E-Print Network (OSTI)

Chris Densham T2K Target Remote Handling CJ Densham, MD Fitton, M Baldwin, M Woodward Rutherford are handled by remote controlled crane. Concrete shield Horns are shielded by iron and concrete shields A numerical controlled crane is used in the TS. A remote handling machine is attached to this crane. Crane

McDonald, Kirk

283

The Remote-Handled TRU Waste Program  

SciTech Connect

RH TRU Waste is radioactive waste that requires shielding in addition to that provided by the container to protect people nearby from radiation exposure. By definition, the radiation dose rate at the outer surface of the container is greater than 200 millirem per hour and less than 1,000 rem per hour. The DOE is proposing a process for the characterization of RH TRU waste planned for disposal in the WIPP. This characterization process represents a performance-driven approach that satisfies the requirements of the New Mexico Hazardous Waste Act, the Environmental Protection Agency (EPA) regulations for WIPP long-term performance, the transportation requirements of the Nuclear Regulatory Commission (NRC) and the Department of Transportation, as well as the technical safety requirements of RH TRU waste handling. The transportation, management and disposal of RH TRU waste is regulated by external government agencies as well as by the DOE itself. Externally, the characterization of RH-TRU waste for disposal at the WIPP is regulated by 20.4.1.500 New Mexico Administrative Code (incorporating 40 CFR 261.13) for the hazardous constituents and 40 CFR 194.24 for the radioactive constituents. The Nuclear Regulatory Commission certifies the shipping casks and the transportation system must meet DOT regulations. Internally, the DOE evaluates the environmental impacts of RH TRU waste transportation, handling and disposal through its National Environmental Policy Act program. The operational safety is assessed in the RH TRU Waste Safety Analysis Report, to be approved by the DOE. The WIPP has prepared a modification request to the Hazardous Waste Facility Permit that includes modifications to the WIPP facility for the safe receipt and handling of RH TRU waste and the addition of an RH TRU waste analysis plan. Modifications to the facility include systems and equipment for safe handling of RHTRU containers. Two shipping casks are to be used to optimize RH TRU was te throughput: the RH-72B and the CNS 10-160B transportation casks. Additionally, a draft Notification of Proposed Change to the EPA 40 CFR 194 Certification of the WIPP has been prepared, which contains a proposal for the RH TRU characterization program for compliance with the EPA requirements.

Gist, C. S.; Plum, H. L.; Wu, C. F.; Most, W. A.; Burrington, T. P.; Spangler, L. R.

2002-02-26T23:59:59.000Z

284

System for handling and storing radioactive waste  

DOE Patents (OSTI)

A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, J.K.; Lindemann, P.E.

1982-07-19T23:59:59.000Z

285

Safety Advice for Storage and Handling of  

E-Print Network (OSTI)

"This document is intended for information only and sets out advice for the safe storage and handling of anhydrous titanium tetrachloride. The information contained in these guidelines is provided in good faith and, while it is accurate as far as the authors are aware, no representations or warranties are made with regards to its completeness. For guidance on individual circumstances specific advice should be sought and in all cases the applicable national, European and international regulations should always be complied with. No responsibility will be assumed by Cefic in relation to the information

unknown authors

2007-01-01T23:59:59.000Z

286

System for handling and storing radioactive waste  

DOE Patents (OSTI)

A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

1984-01-01T23:59:59.000Z

287

NNSA Conducts Radiological Training in Slovenia | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Blog > NNSA Conducts Radiological Training in Slovenia NNSA Conducts Radiological Training in Slovenia Posted By Office of Public Affairs NNSA Blog NNSA today concluded...

288

USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?  

SciTech Connect

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

Magoulas, V.

2013-06-03T23:59:59.000Z

289

Radiological decontamination, survey, and statistical release method for vehicles  

SciTech Connect

Earth-moving vehicles (e.g., dump trucks, belly dumps) commonly haul radiologically contaminated materials from a site being remediated to a disposal site. Traditionally, each vehicle must be surveyed before being released. The logistical difficulties of implementing the traditional approach on a large scale demand that an alternative be devised. A statistical method for assessing product quality from a continuous process was adapted to the vehicle decontamination process. This method produced a sampling scheme that automatically compensates and accommodates fluctuating batch sizes and changing conditions without the need to modify or rectify the sampling scheme in the field. Vehicles are randomly selected (sampled) upon completion of the decontamination process to be surveyed for residual radioactive surface contamination. The frequency of sampling is based on the expected number of vehicles passing through the decontamination process in a given period and the confidence level desired. This process has been successfully used for 1 year at the former uranium millsite in Monticello, Utah (a cleanup site regulated under the Comprehensive Environmental Response, Compensation, and Liability Act). The method forces improvement in the quality of the decontamination process and results in a lower likelihood that vehicles exceeding the surface contamination standards are offered for survey. Implementation of this statistical sampling method on Monticello projects has resulted in more efficient processing of vehicles through decontamination and radiological release, saved hundreds of hours of processing time, provided a high level of confidence that release limits are met, and improved the radiological cleanliness of vehicles leaving the controlled site.

Goodwill, M.E.; Lively, J.W.; Morris, R.L.

1996-06-01T23:59:59.000Z

290

GTRI's Nuclear and Radiological Material Removal | National Nuclear...  

National Nuclear Security Administration (NNSA)

Removal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

291

US, Netherlands Expand Partnership to Secure Radiological Materials...  

National Nuclear Security Administration (NNSA)

members - Canada, the Czech Republic, Finland, New Zealand, Norway, the Republic of Korea and the United Kingdom - to pursue nonproliferation efforts around the world,...

292

Center for Nanophase Materials Sciences (CNMS) - >ES&H  

NLE Websites -- All DOE Office Websites (Extended Search)

default.aspx CNMS adheres to the DOE Policy on Nanoscale Materials, DOE Order 456.1 THE SAFE HANDLING OF UNBOUND ENGINEERED NANOPARTICLES, and ORNL requirements....

293

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Triage | National Nuclear Security Administration Triage | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Triage Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Render Safe > Radiological Triage Radiological Triage Triage Logo NNSA's Triage is a non-deployable, secure, on-line capability

294

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

295

Understanding Contamination; Twenty Years of Simulating Radiological Contamination  

SciTech Connect

A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

Emily Snyder; John Drake; Ryan James

2012-02-01T23:59:59.000Z

296

Radiological Worker Training - Radiological Safety Training for Radiation Producing (X-Ray) Devices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C C December 2008 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management

297

Fuel handling system for a nuclear reactor  

DOE Patents (OSTI)

A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

Saiveau, James G. (Hickory Hills, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

298

Primer on tritium safe handling practices  

Science Conference Proceedings (OSTI)

This Primer is designed for use by operations and maintenance personnel to improve their knowledge of tritium safe handling practices. It is applicable to many job classifications and can be used as a reference for classroom work or for self-study. It is presented in general terms for use throughout the DOE Complex. After reading it, one should be able to: describe methods of measuring airborne tritium concentration; list types of protective clothing effective against tritium uptake from surface and airborne contamination; name two methods of reducing the body dose after a tritium uptake; describe the most common method for determining amount of tritium uptake in the body; describe steps to take following an accidental release of airborne tritium; describe the damage to metals that results from absorption of tritium; explain how washing hands or showering in cold water helps reduce tritium uptake; and describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

Not Available

1994-12-01T23:59:59.000Z

299

METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS  

DOE Patents (OSTI)

A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.

Nicoll, D.

1959-02-24T23:59:59.000Z

300

Method and system rapid piece handling  

DOE Patents (OSTI)

The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

Spletzer, Barry L. (9504 Arvilla, NE, Albuquerque, NM 87111)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Overview on Hydrate Coring, Handling and Analysis  

SciTech Connect

Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

2003-06-30T23:59:59.000Z

302

Fukushima Radiological Assessment Tool: Benchmarking Radiological Assessment and Dose Models using Fukushima Dataset  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is developing the Fukushima Radiological Assessment Tool (FRAT), a comprehensive database and software application for accessing, analyzing, and interpreting data related to radiological releases from the Fukushima Daiichi Nuclear Power Plant (NPP). This report documents the development of the FRAT to support the benchmarking of emergency response and dose modeling codes used by nuclear power plants, using radiological data from the Fukushima ...

2013-07-31T23:59:59.000Z

303

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Internal Exposure Control Internal Exposure Control Instructor's Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and "Derived Air Concentration" (DAC). 1.12.04 Identify the basis for determining Annual Limit on Intake (ALI). 1.12.05 Identify the definition of "reference man". 1.12.06 Identify a method of using DACs to minimize internal exposure potential. 1.12.07 Identify three factors that govern the behavior of radioactive materials in the

304

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Internal Exposure Control Internal Exposure Control Study Guide 1.12-1 Course Title: Radiological Control Technician Module Title: Internal Exposure Control Module Number: 1.12 Objectives: 1.12.01 Identify four ways in which radioactive materials can enter the body. 1.12.02 Given a pathway for radioactive materials into the body, identify one method to prevent or minimize entry by that pathway. 1.12.03 Identify the definition and distinguish between the terms "Annual Limit on Intake" (ALI) and "Derived Air Concentration" (DAC). 1.12.04 Identify the basis for determining Annual Limit on Intake (ALI). 1.12.05 Identify the definition of "reference man". 1.12.06 Identify a method of using DACs to minimize internal exposure potential. 1.12.07 Identify three factors that govern the behavior of radioactive materials in the

305

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 1. and Reaffirmation January 2007 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585...

306

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585...

307

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 of 3) 3 of 3) RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH Student's Guide Office of Environment, Safety & Health U.S. Department of Energy February 1997 DOE-HDBK-1106-97 ii This page intentionally left blank. DOE-HDBK-1106-97 iii Table of Contents Page TERMINAL OBJECTIVE............................................................................1 ENABLING OBJECTIVES...........................................................................1 I. RADIOLOGICAL CONTAMINATION................................................. 2 A. Comparison of Radiation and Radioactive Contamination ..................... 2 B. Types of Contamination.............................................................. 2

308

Glove Perforations During Interventional Radiological Procedures  

SciTech Connect

Intact surgical gloves are essential to avoid contact with blood and other body fluids. The objective of this study was to estimate the incidence of glove perforations during interventional radiological procedures. In this study, a total of 758 gloves used in 94 interventional radiological procedures were examined for perforations. Eleven perforations were encountered, only one of which was of occult type. No significant difference in the frequency of glove perforation was found between the categories with varying time duration.

Leena, R. V., E-mail: leenarv_76@yahoo.co.uk; Shyamkumar, N. K. [Christian Medial College, Department of Radiodiagnosis (India)

2010-04-15T23:59:59.000Z

309

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

, in contact with skin and if swallowed. Irritating to respiratory system and skin. Risk of serious damage - 319953 www.sigma-aldrich.com Page 2 #12;METHODS FOR CLEANING UP Cover with dry-lime, sand, or soda ash spill site after material pickup is complete. Section 7 - Handling and Storage HANDLING User Exposure

Choi, Kyu Yong

310

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

. Irritating to eyes, respiratory system and skin. Very toxic to aquatic organisms, may cause long-term adverse FOR CLEANING UP Cover with dry-lime, sand, or soda ash. Place in covered containers using non-sparking tools after material pickup is complete. Section 7 - Handling and Storage HANDLING User Exposure: Do

Choi, Kyu Yong

311

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

. Irritating to eyes, respiratory system and skin. For additional information on toxicity, please refer or soda ash, pick up, keep in a closed container, and hold for waste disposal. Ventilate area and wash spill site after material pickup is complete. Section 7 - Handling and Storage HANDLING User Exposure

Choi, Kyu Yong

312

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

. Target organ(s): Central nervous system. Kidneys. HMIS RATING HEALTH: 3* FLAMMABILITY: 2 REACTIVITY: 1 material pickup is complete. Cover with dry-lime, sand, or soda ash. Place in covered containers using non-sparking tools and transport outdoors. Section 7 - Handling and Storage HANDLING User Exposure: Do not breathe

Choi, Kyu Yong

313

SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

(s): Teeth. Cardiovascular system. HMIS RATING HEALTH: 3* FLAMMABILITY: 0 REACTIVITY: 2 SPECIAL HAZARD or soda ash, pick up, keep in a closed container, and hold for waste disposal. Ventilate area and wash spill site after material pickup is complete. Section 7 - Handling and Storage HANDLING ALDRICH - 435589

Lin, Anna L.

314

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

315

LM Records Handling System-Fernald Historical Records System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management, LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management Energy.gov Careers & Internships For Staff & Contractors...

316

Biodiesel Handling and Use Guide: Fourth Edition (Revised)  

DOE Green Energy (OSTI)

Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

Not Available

2009-01-01T23:59:59.000Z

317

Handbook for Handling, Storing, and Dispensing E85  

DOE Green Energy (OSTI)

A guidebook that contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

Not Available

2002-04-01T23:59:59.000Z

318

Production and Handling Slide 1: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

and Handling The Uranium Fuel Cycle Skip Presentation Navigation Next Slide Last Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image...

319

Handbook for Handling, Storing, and Dispensing E85  

DOE Green Energy (OSTI)

Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

Not Available

2008-04-01T23:59:59.000Z

320

Chromoblastomycosis associated with in a carpenter handling exotic woods  

E-Print Network (OSTI)

in a carpenter handling exotic woods Nuno Menezes 1 , Pauloas saprophytes in the soil, wood and vegetation [ 3 ]. Theyare normally made of tropical wood [ 9 ]. The inoculation

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Radiological Instrumentation Assessment for King County Wastewater Treatment Division  

SciTech Connect

The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection of radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 ?Ci per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.

Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.

2005-05-19T23:59:59.000Z

322

Remote-Handled Transuranic Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

Washington TRU Solutions

2006-12-01T23:59:59.000Z

323

ITER Engineering Design Activities -R & DITER-In-Vessel Remote Handling  

E-Print Network (OSTI)

ITER Engineering Design Activities - R & DITER- In-Vessel Remote Handling Blanket Module Remote Handling Project (L-6) Divertor Remote Handling Project (L-7) Objective To develop and demonstrate handling equipment, port handling equipment, auxiliary remote handling tools and a blanket mockup structure

324

Radiological survey results at 4400 Piehl Road, Ottawa Lake, Michigan  

SciTech Connect

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 4400 Piehl Road in Ottawa Lake, Michigan. The survey was performed in September, 1992. The purpose of the survey was to determine if materials containing uranium from work performed under government contract at the former Baker Brothers facility in Toledo, Ohio had been transported off-site to this neighboring area. The radiological survey included surface gamma scans indoors and outdoors, alpha and beta scans inside the house and attached garage, beta-gamma scans of the hard surfaces outside, and the collection of soil, water, and dust samples for radionuclide analyses. Results of the survey demonstrated that the majority of the measurements on the property were within DOE guidelines. However, the presence of isolated spots of uranium contamination were found in two areas where materials were allegedly transported to the property from the former Baker Brothers site. Uranium uptake by persons on the property by ingestion is fairly unlikely, but inhalation is a possibility. Based on these findings, it is recommended that the residential property at 4400 Piehl Road in Ottawa Lake, Michigan be considered for inclusion under FUSRAP.

Foley, R.D.; Johnson, C.A.

1993-04-01T23:59:59.000Z

325

Remote Handling Equipment for a High-Level Waste Waste Package Closure System  

SciTech Connect

High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

Kevin M. Croft; Scott M. Allen; Mark W. Borland

2006-04-01T23:59:59.000Z

326

Radiological Risk Assessment for King County Wastewater Treatment Division  

SciTech Connect

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.

Strom, Daniel J.

2005-08-05T23:59:59.000Z

327

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

328

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide Study Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages and state the applicable limits. 2.12.05 Describe the necessary radiation and contamination surveys to be performed on exclusive use vehicles and state the applicable limits. 2.12.06 Identify the proper placement of placards on a transport vehicle. i 2.12.07 Identify inspection criteria that should be checked prior to releasing a

329

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instructor's Guide Instructor's Guide 2.12-1 Course Title: Radiological Control Technician Module Title: Shipment/Receipt of Radioactive Material Module Number: 2.12 Objectives: 2.12.01 List the applicable agencies which have regulations that govern the transport of radioactive material. 2.12.02 Define terms used in DOT regulations. 2.12.03 Describe methods that may be used to determine the radionuclide contents of a package. 2.12.04 Describe the necessary radiation and contamination surveys to be performed on packages and state the applicable limits. 2.12.05 Describe the necessary radiation and contamination surveys to be performed on exclusive use vehicles and state the applicable limits. 2.12.06 Identify the proper placement of placards on a transport vehicle. L 2.12.07 Identify inspection criteria that should be checked prior to releasing a

330

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Source Control Radioactive Source Control Study Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. i 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. i 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. i 2.08.04 Describe the approval and posting requirements for radioactive materials areas. i 2.08.05 Describe the process and procedures used at your site for storage and accountability of radioactive sources. INTRODUCTION A radioactive source is material used for its emitted radiation. Sources are constructed as sealed or unsealed and are classified as accountable or exempt.

331

Reagent Storage and Handling for SCR and SNCR Systems  

Science Conference Proceedings (OSTI)

As utilities move to post-combustion nitrogen oxides (NOx) control technologies, the need to understand reagent storage and handling requirements for these systems increases. This report reviews various approaches to the storage and handling of anhydrous ammonia, aqueous ammonia, and urea. Systems that convert urea to ammonia also are included.

2002-05-30T23:59:59.000Z

332

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

Cryostat 1. Remote handling The high radiation levels and presence of hazardous, ac- tivated mercury vaporsMERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 placement within the Shielding Module in a remote environment. · Providing double containment of the mercury

McDonald, Kirk

333

Integrative path planning and motion control for handling large components  

Science Conference Proceedings (OSTI)

For handling large components a large workspace and high precision are required. In order to simplify the path planning for automated handling systems, this task can be divided into global, regional and local motions. Accordingly, different types of ... Keywords: integrative production, motion control, path planning, robotic assembly application

Rainer Müller; Martin Esser; Markus Janssen

2011-12-01T23:59:59.000Z

334

HANDLING FRESH FISH REFRIGERATION OF FISH -PART 2  

E-Print Network (OSTI)

(Fishery Leaflet 427) Cold-Storage Design and Refrigeration Equipment Part 3 (Fisher y Leaflet 429) FactorsHANDLING FRESH FISH REFRIGERATION OF FISH - PART 2 UNITED STATES DEPARTMENT OF THE INTERIOR FISH 428 Washington 25, D, C. December 1956 REFRIGERATION OF FISH - PART TWO HANDLING FRESH FISH By Charles

335

Dynamic manipulation inspired by the handling of a pizza peel  

Science Conference Proceedings (OSTI)

This paper discusses dynamic manipulation inspired by the handling mechanism of a pizza chef. The chef handles a tool called "pizza peel," where a plate is attached at the tip of a bar, and he remotely manipulates a pizza on the plate. We found that ... Keywords: dynamic manipulation, high-speed robot, robot skill

Mitsuru Higashimori; Keisuke Utsumi; Yasutaka Omoto; Makoto Kaneko

2009-08-01T23:59:59.000Z

336

An apparatus for remotely handling components  

DOE Patents (OSTI)

The inventive apparatus for remotely handling barlike components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of t he first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components. In a preferred embodiment, the apparatus also includes a control mechanism for remotely controlling movement of the jaw in the locking mode to assume one of a plurality of locking positions corresponding to positioning one of the stepped portions opposite the base.

Szkrybalo, G.A.; Griffin, D.L.

1992-12-31T23:59:59.000Z

337

T-625: Opera Frameset Handling Memory Corruption Vulnerability | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Opera Frameset Handling Memory Corruption Vulnerability 5: Opera Frameset Handling Memory Corruption Vulnerability T-625: Opera Frameset Handling Memory Corruption Vulnerability May 18, 2011 - 3:05pm Addthis PROBLEM: A vulnerability has been reported in Opera, which can be exploited by malicious people to compromise a user's system. PLATFORM: Opera versions prior to 11.11 ABSTRACT: The vulnerability is caused due to an error when handling certain frameset constructs during page unloading and can be exploited to corrupt memory via a specially crafted web page. reference LINKS: Secunia Advisory: SA44611 Opera Knowledge Base Opera 11.11 for Windows Opera Download Opera Mobile IMPACT ASSESSMENT: High Discussion: Framesets allow web pages to hold other pages inside them. Certain frameset constructs are not handled correctly when the page is unloaded, causing a

338

Routine Radiological Environmental Monitoring Plan. Volume 1  

SciTech Connect

The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

Bechtel Nevada

1999-12-31T23:59:59.000Z

339

RADIOLOGICAL PROTECTIVE APPAREL PROGRAM AT HANFORD  

SciTech Connect

A program is described for providing adequate radiological protective clothing for all employees. The program consolidates all protective clothing requirements and the development and evaluation of clothing to be utilized, and establishes sound criteria for future procurement of accepted clothing. A council composed of representatives from all interested groups provides an effective means of consultation for the development, evaluation, and establishment of acceptable radiological apparel. Specifications and standards were established for use in the procurement of radiological protective apparel. Items of a non-launderable nature are warehoused and dispersed as requested. Routine reuse items which are laundry-maintained are dispersed through a central laundry facility. A chart illustrates the organization of the program. (C.H.)

Mehas, T.C.

1961-10-31T23:59:59.000Z

340

FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

C.E. Sanders

2005-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Robust telerobotics - an integrated system for waste handling, characterization and sorting  

Science Conference Proceedings (OSTI)

The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application of emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.

Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

1997-01-01T23:59:59.000Z

342

Alternative Materials for Ground Electrodes  

Science Conference Proceedings (OSTI)

Power utility companies struggle with issues resulting from copper theftespecially on transmission line support structures accessible to the public and fitted with copper grounding conductors. It is increasingly important to identify alternative materials that can be used to provide a durable grounding system yet not be targeted for theft. In response, EPRI is investigating the use of alternative materials for electrode designsexamining life expectancy, corrosion, material compatibility and current handl...

2010-12-23T23:59:59.000Z

343

Site-specific waste management instruction - radiological screening facility  

DOE Green Energy (OSTI)

This Site-Specific Waste Management Instruction provides guidance for managing waste generated from radiological sample screening operations conducted to support the Environmental Restoration Contractor`s activities. This document applies only to waste generated within the radiological screening facilities.

G. G. Hopkins

1997-12-31T23:59:59.000Z

344

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network (OSTI)

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

Weber, Rodney

345

THE RADIOLOGICAL ASSESSMENT AND RECOVERY OF CONTAMINATED AREAS  

SciTech Connect

The Civil Effects Test Operation Exercise CEX-57.1 following Operation Plumbbob was carried out to obtain information on decontamination procedures that could be used as radiological countermeasures. The test was conducted on D + 1 and D + 2 days after shot Coulomb C. Data were obtained on reclamation of land areas by scraping with a motorgrader, on fire-hosing and scrubbing a concrete- slab roof, and on fire-hosing a composition roof. In addition, some shielding data were obtained for a small building with 6-in.-thick concrete walls and roof. The conceptual nature of a radiological defense system and the role of decontamination or reclamation in such a system are discussed. Most of the report deals with methods for reducing the observed data to interpretive form because the data were taken within a large contaminated area. The decontamination effectiveness in terms of the fraction of contamination remaining was computed. It is concluded that low levels of contamination at the Nevada Test Site could be utilized to advantage to obtain data on gamma -radiation properties, such as the effects of materials and source geometries on the attenuation of fission-product gamma rays. However, higher levels of fall-out in terms of the fall-out particle mass, are required to obtain useful information and training on decontamination techniques; therefore the use of low levels of contamination to conduct studies in this area is not recommended. (auth)

Miller, C.F.

1958-03-01T23:59:59.000Z

346

Radiological Contingency Planning for the Mars Science Laboratory Launch  

SciTech Connect

This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Aeronautics and Space Administration, state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

Paul Guss, Robert Augdahl, Bill Nickels, Cassandra Zellers

2008-04-16T23:59:59.000Z

347

Radiological Contingency Planning for the Mars Science Laboratory Launch  

SciTech Connect

This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Space and Aeronautics and Space Administration (NASA), state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

Paul P. Guss

2008-04-01T23:59:59.000Z

348

RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT  

Science Conference Proceedings (OSTI)

This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

KOZLOWSKI, S.D.

2007-05-30T23:59:59.000Z

349

Handling effluent from nuclear thermal propulsion system ground tests  

SciTech Connect

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Allen, G.C.

1992-09-09T23:59:59.000Z

350

Economizer Applications in Dual-Duct Air-Handling Units  

E-Print Network (OSTI)

This paper provides analytical tools and engineering methods to evaluate the feasibility of the economizer for dual-duct air-handling units. The results show that the economizer decreases cooling energy consumption without heating energy penalties for dual-fan, dual-duct air-handling units. The economizer has significant heating energy penalties for single-fan, dual-duct air-handling units. The penalties are higher than the cooling energy savings when the cold airflow is less than the hot airflow. Detailed engineering analyses are required to evaluate the feasibility of the economizer for single-fan, dual-duct systems.

Joo, I.; Liu, M.

2002-01-01T23:59:59.000Z

351

Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE))

NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

352

NNSA, Philippine Nuclear Research Institute to Prevent Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Philippine Nuclear Research Institute to Prevent Radiological Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

353

Radiological Surveys Performed in Support of the Demolition and Bulk Disposal Decommissioning Method  

SciTech Connect

Connecticut Yankee Atomic Power Company is decommissioning the Haddam Neck Plant using the 'Demolition and Bulk Disposal' method, or commonly referred to as 'Rip and Ship'. In general, completing the project using this method entails the removal of all irradiated fuel and highly contaminated systems and components, and the subsequent demolition of the above ground portions of most site structures. Since most structures are removed from site, cost and time savings are realized by virtually eliminating the need for remediation. However, this method of decommissioning creates more waste, both radiological and non-radiological, which must be segregated, packaged and disposed of properly. Prior to demolition, various types of radiological surveys must be performed and work controls put into place to minimize the spread of contamination to other areas of the site, and to prevent the inadvertent release of radioactive materials from the site. This paper will discuss the various types of radiological surveys performed, and controls implemented, in support of the demolition and bulk material disposal decommissioning method, with the emphasis on pre-demolition surveys. Details will be provided on the release criteria, survey design, survey implementation and data analysis on each of the various surveys, as well as a discussion on the controls implemented to prevent the various wastes from inadvertently being shipped to an inappropriate disposal facility. This paper will also strive to provide lessons learned for future projects that utilize the demolition and bulk disposal decommissioning method. (authors)

Yetter, R.F. [Babcock Services, Inc., 1840 Terminal Drive, Richland, WA 99352 (United States); Newson, C.T. [Connecticut Yankee Atomic Power Company, 362 Injun Hollow Road, East Hampton, CT 06424 (United States)

2006-07-01T23:59:59.000Z

354

Inspection Report - Radiological Waste Operations in Area G at Los Alamos National Laboratory, INS-O-13-03  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection Report Inspection Report Radiological Waste Operations in Area G at Los Alamos National Laboratory INS-O-13-03 March 2013 Department of Energy Washington, DC 20585 March 20, 2013 MEMORANDUM FOR THE MANAGER, LOS ALAMOS FIELD OFFICE, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Radiological Waste Operations in Area G at Los Alamos National Laboratory" INTRODUCTION Los Alamos National Laboratory (Los Alamos) has a national security mission that includes science, engineering and technology related to radioactive and hazardous materials such as plutonium, americium, asbestos and lead. Material Disposal Area G, located in Technical Area

355

Biodiesel Handling and Use Guide | Open Energy Information  

Open Energy Info (EERE)

Biodiesel Handling and Use Guide Biodiesel Handling and Use Guide Jump to: navigation, search Tool Summary Name: Biodiesel Handling and Use Guide Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.nrel.gov/vehiclesandfuels/npbf/pdfs/43672.pdf This document is a guide for those who blend, store, distribute, and use biodiesel. It is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

356

Production and Handling Slide 20: Advantages of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Advantages of UF6 Only one isotope of F2 Can be handled at reasonable...

357

V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCUSSION: The vulnerability is caused due to an error within the Windows NAT Driver when handling ICMP packets and can be exploited to cause the system to stop responding IMPACT:...

358

V-079: ISC BIND AAAA Record Lookup Handling Assertion Failure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lets Remote Users Deny Service T-633: BIND RRSIG RRsets Negative Caching Off-by-one Bug Lets Remote Users Deny Service U-183: ISC BIND DNS Resource Records Handling Vulnerability...

359

Input handling in agent-based micro-level simulators.  

E-Print Network (OSTI)

??In this thesis we presented a new direction for handling missing values in multi agent-based simulation (MABS) at micro-level by using truth tables and logical… (more)

Fayyaz, Muhammad

2010-01-01T23:59:59.000Z

360

Strategies for handling missing data in randomised trials  

E-Print Network (OSTI)

sensitivity analysis and how to handle missing baseline variables. Published: 13 December 2011 References 1. National Research Council: The prevention and treatment of missing data in clinical trials. The National Academies Press; Washington, DC; 2010 [http...

2011-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PRIME VALUE METHOD TO PRIORITIZE RISK HANDLING STRATEGIES  

Science Conference Proceedings (OSTI)

Funding for implementing risk handling strategies typically is allocated according to either the risk-averse approach (the worst risk first) or the cost-effective approach (the greatest risk reduction per implementation dollar first). This paper introduces a prime value approach in which risk handling strategies are prioritized according to how nearly they meet the goals of the organization that disburses funds for risk handling. The prime value approach factors in the importance of the project in which the risk has been identified, elements of both risk-averse and cost-effective approaches, and the time period in which the risk could happen. This paper also presents a prioritizer spreadsheet, which employs weighted criteria to calculate a relative rank for the handling strategy of each risk evaluated.

Noller, D

2007-10-31T23:59:59.000Z

362

In-Plant Ash-Handling Reference Manual  

Science Conference Proceedings (OSTI)

Despite problems with ash-handling systems that have led to failures in electrostatic precipitators, there has been no extensive reference manual for specifying, operating, and maintaining such systems. The comprehensive manual compiled in this study serves as a reference for every phase of boiler bottom ash- and fly ash-handling systems design and operation as well as a primer for those unfamiliar with these systems.

1986-12-01T23:59:59.000Z

363

Safety philosophy in the transportation of radioactive material  

SciTech Connect

From Winter meeting of American Society of Mechanical Engineers; Detroit, Michigan, USA (11 Nov 1973). The radiological'' and common cause risks'' involved in transporting radioactive materials are briefly discussed. (TFD)

Langhaar, J.W.

1974-04-30T23:59:59.000Z

364

Radiological Monitoring of Waste Treatment Plant  

Science Conference Proceedings (OSTI)

Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

Amin, Y. M. [Physics Dept, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nik, H. W. [Asialab (Malaysia) Sdn Bhd, 14 Jalan Industri USJ 1, 47600 Subang Jaya (Malaysia)

2011-03-30T23:59:59.000Z

365

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Radioactive Source Control 8 Radioactive Source Control Instructor's Guide 2.08-1 Course Title: Radiological Control Technician Module Title: Radioactive Source Control Module Number: 2.08 Objectives: 2.08.01 Describe the requirements for radioactive sources per 10 CFR 835. L 2.08.02 Identify the characteristics of radioactive sources that must be controlled at your site. L 2.08.03 Identify the packaging, marking, and labeling requirements for radioactive sources. L 2.08.04 Describe the approval and posting requirements for radioactive materials areas. L 2.08.05 Describe the process and procedures used at your site for storage and accountability of radioactive sources. References: 1. 10 CFR 835, "Occupational Radiation Protection," (1998) Instructional Aids: 1. Overheads 2. Overhead projector and screen

366

HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE  

SciTech Connect

Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.

Donna Post Guillen

2013-05-01T23:59:59.000Z

367

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

368

Plutonium stabilization and handling (PuSH)  

SciTech Connect

This Functional Design Criteria (FDC) addresses construction of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. The major sections of the project are: site preparation; SPS Procurement, Installation, and Testing; storage vault modification; and characterization equipment additions. The SPS will be procured as part of a Department of Energy nationwide common procurement. Specific design crit1460eria for the SPS have been extracted from that contract and are contained in an appendix to this document.

Weiss, E.V.

1997-01-23T23:59:59.000Z

369

An external dose reconstruction involving a radiological dispersal device  

E-Print Network (OSTI)

Recent events have underscored the need for the United States government to provide streamlined emergency response procedures and subsequent dose estimations for personnel responding to incidents involving radioactive material. Indeed, the National Council on Radiation Protection and Measurements Report No. 138 (NCRP 2001) indicates that exposures received by first responders will be important for a number of reasons, including planning for the appropriate use of key personnel in an extended emergency situation. In response, the Department of Homeland Security has published Protective Action Guides (DHS 2006) to help minimize these exposures and associated risks. This research attempts to provide some additional radiological exposure knowledge so that an Incident Commander, with limited or no information, can make more informed decisions about evacuation, sheltering-in-place, relocation of the public, turn-back levels, defining radiation hazard boundaries, and in-field radiological dose assessments of the radiation workers, responders, and members of the public. A method to provide such insight begins with providing a model that describes the physics of radiation interactions, radiation source and geometry, collection of field measurements, and interpretation of the collected data. A Monte Carlo simulation of the model is performed so that calculated results can be compared to measured values. The results of this investigation indicate that measured organ absorbed doses inside a tissue equivalent phantom compared favorably to the derived organ absorbed doses measured by the Panasonic thermoluminescence dosimeters and with Monte Carlo �N� Particle modeled results. Additionally, a Victoreen 450P pressurized ion chamber measured the integrated dose and these results compared well with the Panasonic right lateral TLD. This comparison indicates that the Victoreen 450P ionization chamber could potentially serve as an estimator of real-time effective dose and organ absorbed dose, if energy and angular dependence corrections could be taken into account. Finally, the data obtained in this investigation indicate that the MCNP model provided a reasonable method to determine organ absorbed dose and effective dose of a simulated Radiological Dispersal Device in an Inferior-Superior geometry with Na99mTcO4 as the source of radioactive material.

Hearnsberger, David Wayne

2006-12-01T23:59:59.000Z

370

Step-By-Step Guide for Waste Handling at WIPP - Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

the nation's nuclear waste disposal problem Step-By-Step Guide for Waste Handling at WIPP The handling and disposal of contact-handled transuranic waste at the Waste Isolation...

371

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Considerations for First Aid Radiological Considerations for First Aid Study Guide 2.15-1 Course Title: Radiological Control Technician Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. i 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. INTRODUCTION "Standard first aid is applied prior to contamination control whenever it is considered to have life-saving value, or is important to the patient for relief of pain or prevention of

372

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Radiological Considerations for First Aid 5 Radiological Considerations for First Aid Instructor's Guide 2.15-1 Course Number: Radiological Control Technicians Module Title: Radiological Considerations for First Aid Module Number: 2.15 Objectives: 2.15.01 List the proper steps for the treatment of minor injuries occurring in various radiological areas. 2.15.02 List the requirements for responding to major injuries or illnesses in radiological areas. 2.15.03 State the RCT's responsibility at the scene of a major injury in a radiological area after medical personnel have arrived at the scene. L 2.15.04 List the requirements for treatment and transport of contaminated injured personnel at your facility. References: 1. Basic Radiation Protection Technology (2nd edition) - Daniel A. Gollnick 2. Operational Health Physics Training - H. J. Moe

373

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Protection Standards Radiological Protection Standards Instructor's Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of the 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" Instructional Aids:

374

Radiological Safety Training for Uranium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HDBK-1113-2008 DOE HDBK-1113-2008 April 2008 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR URANIUM FACILITIES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1113-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1113-2008 iii Foreword This Handbook describes a recommended implementation process for additional training as outlined in DOE-STD-1098-99, Radiological Control (RCS). Its purpose is to assist those individuals, Department of Energy (DOE) employees, Managing and Operating (M&O) contractors, and Managing and Integrating

375

NV/YMP RADIOLOGICAL CONTROL MANUAL  

SciTech Connect

This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) and the Yucca Mountain Office of Repository Development (YMORD). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations Part 835 (10 CFR 835), Occupational Radiation Protection. Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Pleasanton, California; and at Andrews Air Force Base, Maryland. In addition, field work by NNSA/NSO at other locations is also covered by this manual.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE; BECHTEL NEVADA

2004-11-01T23:59:59.000Z

376

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. ii Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2013 Program Management Foreword

377

Microsoft Word - Berger Radiological Conditions.doc  

Office of Legacy Management (LM)

Dec. Dec. 2, 2009 1 Summary of Information Regarding Radiological Conditions of NFSS Vicinity Properties J. D. Berger, CHP DeNuke Contracting Services, Inc. Oak Ridge, TN The following is a summary of the information obtained from reviews of radiological survey reports, prepared by ORAU in support of the DOE Formerly Utilized Sites Remedial Action Program. These reports were obtained for review from the IVEA Program at ORAU/ORISE. A list of the reports, reviewed for this summary, is included at the end of this report. Hard copies of reports for ORAU survey activities of NFSS and NFSS Vicinity Properties are available at the South Campus Site of ORAU (these reports are not available in electronic form). In addition, there are 12 - 14 boxes of hard-copy supporting data and information, pertinent to the surveys. I inspected the contents of Box 54. That box contained records for NFSS Vicinity

378

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

06-97 06-97 February 1997 CHANGE NOTICE NO. 1 March 2002 Reaffirmation with Errata August 2002 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Reaffirmation with Errata DOE-HDBK-1106-97 Radiological Contamination Control for Laboratory Research

379

OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL  

Office of Legacy Management (LM)

2 7% 2 7% d &y / 7 ORNL/TM- 10076 OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL ~-T-m -~=- -~ w-~- -"" * ,<.~- ~w&$UREMENTs: TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NF002) J. K. Williams B. A. Berven ~.~~;:;-~~~ ~. -,' - ~~ 7, OPERATED BY MARTIN MARIDTA ENERGY SYSTEMS, INC, FOR THE UNITED STATES DEPARTMENT OF ENERGY --... ORNL/TM-10076 HEALTH AND SAFETY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AH 10 05 00 0; ONLWCOI) RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN IN THE NIAGARA FALLS, NEW YORK, AREA (NFOO2) J. K. Williams* and B. A. Berven *Biology Division Date Published November 1986 Investigation Team B. A. Berven - RASA Program Manager W. D. Cottrell - FUSRAP Project Director W. H. Shinpaugh - Field Survey Supervisor

380

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

145-2008 145-2008 April 2008 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2008 Program Management Guide

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fixation of Radiological Contamination; International Collaborative Development  

Science Conference Proceedings (OSTI)

A cooperative international project was conducted by the Idaho National Laboratory (INL) and the United Kingdom’s National Nuclear Laboratory (NNL) to integrate a capture coating with a high performance atomizing process. The initial results were promising, and lead to further trials. The somewhat longer testing and optimization process has resulted in a product that could be demonstrated in the field to reduce airborne radiological dust and contamination.

Rick Demmer

2013-03-01T23:59:59.000Z

382

Estimation of tritium and helium inventory in the tritium handling system in Korea  

Science Conference Proceedings (OSTI)

In Korea, the Wolsong Tritium Removal Facility (WTRF) is under construction to reduce the amount of tritium present in the moderator and coolant of the CANDU type Wolsong nuclear power plants. Recently, a study on the tritium handling system for recovery of the tritium collected from the WTRF was started. Some tritium would enter the steel of the container walls and subsequently decay to helium. This helium can deteriorate the mechanical properties of the material of the tritium handling system. To evaluate the tritium and helium inventory in the stainless steel wall of this system, the time-dependent diffusion equation was developed, solved and the results are presented in this paper. These results were compared to previous work that evaluated the tritium inventory in the stainless steel wall of 50-L tritium containers. Tritium and helium concentration profiles and the corresponding inventories were evaluated with respect to the various parameters such as exposure time, temperature, and partial pressure. After 24 years, the helium inventory in the wall of the tritium handling system exceeds the tritium inventory. (authors)

Yook, D.; Lee, S.; Lee, K. [Dept. of Nuclear Eng., KAIST, 373-1, Kusong-dong, Yusong-gu, Daejon 305-701 (Korea, Republic of); Song, K. M.; Shon, S. H. [KEPRI, 103-16 Munji-Dong, Yuseong-Gu, Daejeon, 305-380 (Korea, Republic of)

2008-07-15T23:59:59.000Z

383

Protracted Hypofractionated Radiotherapy for Graves' Ophthalmopathy: A Pilot Study of Clinical and Radiologic Response  

Science Conference Proceedings (OSTI)

Purpose: To evaluate the clinical and radiologic response of patients with Graves' ophthalmopathy given low-dose orbital radiotherapy (RT) with a protracted fractionation. Methods and Materials: Eighteen patients (36 orbits) received orbital RT with a total dose of 10 Gy, fractionated in 1 Gy once a week over 10 weeks. Of these, 9 patients received steroid therapy as well. Patients were evaluated clinically and radiologically at 6 months after treatment. Clinical response assessment was carried out using three criteria: by physical examination, by a modified clinical activity score, and by a verbal questionnaire considering the 10 most common signs and symptoms of the disease. Radiologic response was assessed by magnetic resonance imaging. Results: Improvement in ocular pain, palpebral edema, visual acuity, and ocular motility was observed in all patients. Significant decrease in symptoms such as tearing (p < 0.001) diplopia (p = 0.008), conjunctival hyperemia (p = 0.002), and ocular grittiness (p = 0.031) also occurred. Magnetic resonance imaging showed decrease in ocular muscle thickness and in the intensity of the T2 sequence signal in the majority of patients. Treatments were well tolerated, and to date no complications from treatment have been observed. There was no statistical difference in clinical and radiologic response between patients receiving RT alone and those receiving RT plus steroid therapy. Conclusion: RT delivered in at a low dose and in a protracted scheme should be considered as a useful therapeutic option for patients with Graves' ophthalmopathy.

Casimiro de Deus Cardoso, Cejana; Giordani, Adelmo Jose [Department of Clinical and Experimental Oncology, Division of Radiotherapy, Federal University of Sao Paulo, Sao Paulo, SP (Brazil); Borri Wolosker, Angela Maria [Department of Radiology, Federal University of Sao Paulo, Sao Paulo, SP (Brazil); Souhami, Luis [Department of Radiotherapy, McGill University Heath Centre, Montreal, Quebec (Canada); Gois Manso, Paulo [Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, SP (Brazil); Souza Dias, Rodrigo; Comodo Segreto, Helena Regina [Department of Clinical and Experimental Oncology, Division of Radiotherapy, Federal University of Sao Paulo, Sao Paulo, SP (Brazil); Araujo Segreto, Roberto, E-mail: segreto.dmed@epm.br [Department of Clinical and Experimental Oncology, Division of Radiotherapy, Federal University of Sao Paulo, Sao Paulo, SP (Brazil)

2012-03-01T23:59:59.000Z

384

Conceptual design report, plutonium stabilization and handling,project W-460  

SciTech Connect

Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

Weiss, E.V.

1997-03-06T23:59:59.000Z

385

Radiological Contingency Planning for the Mars Science Laboratory Launch  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) provides technical support to the requesting federal agency such as the Federal Bureau of Investigation, Department of Defense, the National Space and Aeronautics and Space Administration (NASA), or a state agency to address the radiological consequences of an event. These activities include measures to alleviate damage, loss, hardship, or suffering caused by the incident; protect public health and safety; restore essential government services; and provide emergency assistance to those affected. Scheduled to launch in the fall of 2009, Mars Science Laboratory is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Mars Science Laboratory is a rover that will assess whether Mars ever was, or is still today, an environment able to support microbial life. In other words, its mission is to determine the planet's "habitability." The Mars Science Laboratory rover will carry a radioisotope power system that generates electricity from the heat of plutonium's radioactive decay. This power source gives the mission an operating lifespan on Mars' surface of a full Martian year (687 Earth days) or more, while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much larger range of latitudes and altitudes than was possible on previous missions to Mars. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the DOE in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. NSTec is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools NSTec has available to support these efforts will be reported. The data platform NSTec will provide shall also be compatible with integration of assets and field data acquired with other DOE, NASA, state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

Paul Guss

2008-03-01T23:59:59.000Z

386

GN470094 - Handling Chemicals at SNL/CA  

NLE Websites -- All DOE Office Websites (Extended Search)

094, Handling Chemicals at SNL/CA 094, Handling Chemicals at SNL/CA Sponsor: Michael W. Hazen, 4000 Revision Date: October 31, 2008 Replaces Document Dated: October 16, 2007 This document is no longer a CPR. This document implements the requirements of Corporate procedure ESH100.2.IH.25, Control Chemical Hazards at SNL/CA. IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is the online version located on the Sandia Restricted Network (SRN). GN470094 - HANDLING CHEMICALS AT SNL/CA Subject Matter Expert: Al Buerer GN470094, Issue E Revision Date: October 31, 2008; Replaces Document Dated: October 16, 2007 Change History 1.0 Purpose, Scope, and Ownership 2.0 Responsibilities 3.0 Definitions 4.0 Training 5.0 Protective Equipment 6.0 Procurement of Chemicals

387

Arrival condition of spent fuel after storage, handling, and transportation  

Science Conference Proceedings (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

388

Handbook for Handling, Storing, and Dispensing E85 | Open Energy  

Open Energy Info (EERE)

for Handling, Storing, and Dispensing E85 for Handling, Storing, and Dispensing E85 Jump to: navigation, search Tool Summary Name: Handbook for Handling, Storing, and Dispensing E85 Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.afdc.energy.gov/afdc/pdfs/48162.pdf This document serves as a guide for blenders, distributors, sellers, and users of E85 as an alternative motor fuel. It provides basic information on the proper and safe use of E85 and offers supporting technical and policy references. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

389

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

Science Conference Proceedings (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

390

An aerial radiological survey of the Nevada Test Site  

SciTech Connect

A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

Hendricks, T J; Riedhauser, S R

1999-12-01T23:59:59.000Z

391

Certification plan transuranic waste: Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

1992-06-01T23:59:59.000Z

392

DOE-HDBK-1122-99; Radiological Control Technican Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Work Coverage Radiological Work Coverage Study Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that should be discussed with workers during pre-job briefings. 2.11.06 Describe exposure control techniques that can be used to control worker and technician radiation exposures. i 2.11.07 Describe the in-progress radiological surveys that should be performed, at your site, under various radiological conditions.

393

Surveillance Guides - RPS 11.2 Radiological Work Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOLOGICAL WORK PRACTICES RADIOLOGICAL WORK PRACTICES 1.0 Objective The objective of this surveillance is to evaluate the practices of workers performing tasks in radiological controlled areas to ensure that these practices protect the safety and health of the workers and comply with DOE requirements. 2.0 References 2.1 10 CFR 835, Occupational Radiation Protection 2.2 DOE/EH-0256T, rev. 1, Radiological Control Manual 3.0 Requirements Implemented This surveillance is conducted to implement requirement RP-0024 from the RL S/RID. This requirement comes from the Radiological Control Manual. 4.0 Surveillance Activities The Facility Representative performs the following activities to evaluate the effectiveness of work practices by contractor personnel in minimizing exposure to radiological hazards.

394

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Work Coverage Radiological Work Coverage Instructor's Guide 2.11-1 Course Title: Radiological Control Technician Module Title: Radiological Work Coverage Module Number: 2.11 Objectives: 2.11.01 List four purposes of job coverage. 2.11.02 Explain the differences between continuous and intermittent job coverage. 2.11.03 Given example conditions, identify those that should require job coverage. 2.11.04 Identify items that should be considered in planning job coverage. 2.11.05 Identify examples of information that should be discussed with workers during pre-job briefings. 2.11.06 Describe exposure control techniques that can be used to control worker and technician radiation exposures. L 2.11.07 Describe the in-progress radiological surveys that should be performed, at your site, under various radiological conditions.

395

Coal- and Ash-Handling Systems Reliability Conference and Workshop Proceedings  

Science Conference Proceedings (OSTI)

This report presents papers, discussion summaries, and conclusions from an EPRI workshop on reliability problems with coal- and ash-handling systems in power plants. Held in October 1980 in St. Louis, the workshop covered yard and in-plant coal handling, frozen coal, fugitive dust, fly ash handling, bottom ash handling, and ash disposal.

1981-08-01T23:59:59.000Z

396

Quarterly environmental radiological survey summary second quarter 1996 100, 200, 300 and 600 areas  

Science Conference Proceedings (OSTI)

This report provides a summary of the radiological surveys performed in support of the operational environmental monitoring program at the Hanford Site. The Second Quarter 1996 survey results and the status of actions required from current and past reports are summarized below: All the routine environmental radiological surveys scheduled during April, May, and June 1996 were completed. One Hundred twenty- five environmental radiological surveys were performed during the second quarter of 1996, twenty nine at the active waste sites and ninety six at the inactive waste sites. Contamination above background levels Wag found at three of the active waste sites and fifteen of the inactive waste sites. Contamination levels as high as 65,000 disintegrations per minute (dpm) were reported. Of these contaminated surveys seven were in Underground Radioactive Material (URM) areas and one was in an unposted area. The contamination found within three of the URM areas was immediately cleaned up and no further action was required. In the remaining four sites the areas were posted and will require decontamination. At the site where there was no posting, the contamination was below action levels, however, Site Support Services was notified. Radiological Problem Reports (RPR`s) were issued and the sites were turned over to the landlord for further action if required. During the second quarter 1996, 0. 7 hectares (1.7 acres) were stabilized and radiologically down posted from Surface Contamination (SC) to URM. No Compliance Assessment Reports (CARS) were issued for sites found out of compliance with standards identified in WHC-CM-7-5, Environmental Compliance. No Surveillance Compliance/Inspection Reports (SCIR) were closed during the Second Quarter of 1996. Five open SCIRB had not been resolved.

Dorian, J.J., Westinghouse Hanford

1996-07-26T23:59:59.000Z

397

Recycle of radiologically contaminated austenitic stainless steels  

Science Conference Proceedings (OSTI)

The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides.

Imrich, K.J.; Leader, D.R.; Iyer, N.C.; Louthan, M.R. Jr.

1995-02-01T23:59:59.000Z

398

Radiological Dose Calculations for Fusion Facilities  

Science Conference Proceedings (OSTI)

This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

Michael L. Abbott; Lee C. Cadwallader; David A. Petti

2003-04-01T23:59:59.000Z

399

NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management  

National Nuclear Security Administration (NNSA)

Helps Vietnam Establish Nuclear, Radiological Emergency Management Helps Vietnam Establish Nuclear, Radiological Emergency Management System | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Helps Vietnam Establish Nuclear, Radiological Emergency ... Press Release NNSA Helps Vietnam Establish Nuclear, Radiological Emergency Management

400

CRAD, Radiological Controls - Y-12 Enriched Uranium Operations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Radiological Controls - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of...

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Health Physics journal features U.S. radiological response to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics journal features U.S. radiological response to Fukushima accident | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

402

Hospital Triage in First Hours After Nuclear or Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

403

DOE-HDBK-1141-2001; Radiological Assessor Training, Overheads  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-HDBK-1141-2001 Radiological Properties of Plutonium * 15 isotopes, all radioactive * Pu-238 (heat source) * Pu-239 (reactor fuel, weapons) * Pu-240 (reactor fuel, weapons) *...

404

OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL  

Office of Legacy Management (LM)

W. D. Cottrell - FUSRAP Project Director M. G. Yalcintas - Field Survey Supervisor Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM Prepared by the OAK...

405

NNSA Nuclear/Radiological Incident Response | National Nuclear...  

National Nuclear Security Administration (NNSA)

field deployable teams of heath physics professionals equipped to conduct radiological search, monitoring, and assessment activities. Radiation Emergency Assistance CenterTraining...

406

DOE O 153.1, Departmental Radiological Emergency Response Assets  

Directives, Delegations, and Requirements

The order establishes requirements and responsibilities for the DOE/NNSA national radiological emergency response assets and capabilities and Nuclear Emergency ...

2007-06-27T23:59:59.000Z

407

Don Haward joins WIPP as manager of radiological control and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Don Harward Joins WIPP as Manager of Radiological Control and Emergency Preparedness CARLSBAD, N.M., May 12, 2000 - The Westinghouse Waste Isolation Division (WID) has named Don...

408

Nuclear and Radiological Field Training Center | Y-12 National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Training Center A site used for nuclear research in Oak Ridge, Tennessee during the Manhattan Project is now the Y-12 National Security Complex's Nuclear and Radiological...

409

METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY  

DOE Green Energy (OSTI)

Pyrophoric reagents represent an important class of reactants because they can participate in many different types of reactions. They are very useful in organic synthesis and in industrial applications. The Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) define Pyrophorics as substances that will self-ignite in air at temperatures of 130 F (54.4 C) or less. However, the U.S. Department of Transportation (DOT) uses criteria different from the auto-ignition temperature criterion. The DOT defines a pyrophoric material as a liquid or solid that, even in small quantities and without an external ignition source, can ignite within five minutes after coming in contact with air when tested according to the United Nations Manual of Tests and Criteria. The Environmental Protection Agency has adopted the DOT definition. Regardless of which definition is used, oxidation of the pyrophoric reagents by oxygen or exothermic reactions with moisture in the air (resulting in the generation of a flammable gas such as hydrogen) is so rapid that ignition occurs spontaneously. Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel. Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior to performing the experimental task. The purpose of this article is three fold: (1) to provide guidelines and general safety precautions to avoid accidents, (2) describe proper techniques on how to successfully handle, store, and dispose of pyrophoric liquids and solids, and (3) illustrate best practices for working with this class of reactants in a laboratory environment.

Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

2010-02-02T23:59:59.000Z

410

Some thoughts on using argumentation to handle trust  

Science Conference Proceedings (OSTI)

This paper describes some of our recent work on using argumentation to handle information about trust. We first discuss the importance of trust in computer science in general and in multi-agent systems in particular.We then describe the setting of our ...

Simon Parsons; Yuqing Tang; Kai Cai; Elizabeth Sklar; Peter McBurney

2011-07-01T23:59:59.000Z

411

Guidelines for Handling Confidential Information by Remote Access  

E-Print Network (OSTI)

Guidelines for Handling Confidential Information by Remote Access You have signed an OHSU of your access to OHSU electronic information and/or other sanctions. Remember, using remote access of the OHSU facilities. When you are utilizing remote access, you must provide the same level of security used

Chapman, Michael S.

412

A business process modeling notation extension for risk handling  

Science Conference Proceedings (OSTI)

During the years of prosperity, numerous organizations neglected numerous aspects of risk management. As systematic approach to handling identified risks is crucial to achieving success by the organization, modern business modeling standards and techniques ... Keywords: BPMN extension, business process modeling notation, risk management

Bartosz Marcinkowski; Michal Kuciapski

2012-09-01T23:59:59.000Z

413

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

414

Powered Remote Manipulators Perform Hazardous Retrieval, Handling, and Size Reduction Operations  

SciTech Connect

This paper describes a new lightweight, powered remote manipulator (PRM) that S.A.Robotics has developed for remote material handling and size reduction in hazardous environments such as reactor decommissioning projects. PRMs can be mounted to various deployment platforms such as remote controlled track-driven vehicles, commercial All Terrain Vehicles, or crane-mounted arms. They can also be installed as replacements for traditional Master-Slave Manipulators (MSMs) in hot cells. The PRM is a six degree of freedom manipulator with carbon fiber structural components that can provide up to a 3 meter (10 foot) reach. Either electric or hydraulic power options can be used and a variety of hydraulic fluids are available to meet combustible material limitations. The PRM is operated with easy-to-use joystick controls that allow operators to sit in a comfortable work station and handle 90 kg (200 pound) loads with a hydraulic power pack or 45 kg (100 pounds) with electric servo-motor driven equipment. With a quick disconnect tool changer, the manipulator can operate grippers, drills, shears, saws, sampling and survey instruments, and the arm can also deploy cameras and lights to support a wide range of remote applications. (authors)

Cole, M.D.; Owen, J.R.; Adams, S.R. [S.A.Robotics, Inc., 3985 S. Lincoln Avenue, Suite 100, Loveland, Colorado 80241 (United States)

2006-07-01T23:59:59.000Z

415

Radiological Control Technician: Standardized technician Qualification Standard  

Science Conference Proceedings (OSTI)

The Qualification Standard states and defines the knowledge and skill requirements necessary for successful completion of the Radiological Control Technician Training Program. The standard is divided into three phases: Phase I concerns RCT Academic training. There are 13 lessons associated with the core academics program and 19 lessons associated with the site academics program. The staff member should sign the appropriate blocks upon successful completion of the examination for that lesson or group of lessons. In addition, facility specific lesson plans may be added to meet the knowledge requirements in the Job Performance Measures (JPM) of the practical program. Phase II concerns RCT core/site practical (JPMs) training. There are thirteen generic tasks associated with the core practical program. Both the trainer/evaluator and student should sign the appropriate block upon successful completion of the JPM. In addition, facility specific tasks may be added or generic tasks deleted based on the results of the facility job evaluation. Phase III concerns the oral examination board successful completion of the oral examination board is documented by the signature of the chairperson of the board. Upon completion of all of the standardized technician qualification requirements, final qualification is verified by the student and the manager of the Radiological Control Department and acknowledged by signatures on the qualification standard. The completed Qualification Standard shall be maintained as an official training record.

Not Available

1992-10-01T23:59:59.000Z

416

An aerial radiological survey of the Central Savannah River Site, Aiken, South Carolina  

Science Conference Proceedings (OSTI)

An aerial radiological survey was conducted over a 194-square- kilometer (75-square-mile) area encompassing the central portion of the Savannah River Site (SRS). The survey was flown during February 10--27, 1987. These radiological measurements were used as baseline data for the central area and for determining the extent of man-made radionuclide distribution. Previous SRS surveys included small portions of the area; the 1987 survey was covered during the site- wide survey conducted in 1979. Man-made radionuclides (including cobalt-60, cesium-137, protactinium-234m, and elevated levels of uranium-238 progeny) that were detected during the survey were typical of those produced by the reactor operations and material processing activities being conducted in the area. The natural terrestrial radiation levels were consistent with those measured during prior surveys of other SRS areas. 1 refs., 4 figs.

Feimster, E.L.

1991-09-01T23:59:59.000Z

417

Radiological assessment of the decontamination and decommissioning of a small-scale fuel-reprocessing plant  

SciTech Connect

Decontamination and decommissioning (D and D) of surplus radiological facilities is becoming a major concern as buildings built during the 1940's and 1950's reach the end of their useful lives. Prior to the start of a D and D project, a detailed radiological characterization of the facility is required to determine the nature and extent of residual contamination. The Oak Ridge National Laboratory (ORNL) has recently begun such a characterization of Building 3505, originally called the Metal Recovery Facility, which served as a small-scale fuel reprocessing plant during the 1950's. Extensive contamination remains within areas of the facility, including transuranic (TRU) materials. Laboratory analyses were used in conjunction with in situ measurements of dose rate and contamination levels to determine the current status of the building and surrounding area. This information will be used to estimate the amount of decontamination required and the quantity of radioactive waste.

Simpson, D.R.; Emery, J.F.

1981-01-01T23:59:59.000Z

418

Luminescence analysis for radiological and nuclear forensic application  

Science Conference Proceedings (OSTI)

This paper briefly discusses recombination luminescence and its use in forensic radiation dosimetry. Recombination luminescence techniques offer a new capability for radiological forensic analysis of sites and vehicles previously cleared of isotopic ... Keywords: OSL, TL, environmental dosimetry, forensic, optically stimulated luminescence, radiological, retrospective population dosimetry, thermoluminescence

Nigel A. Spooner; Barnaby W. Smith

2008-01-01T23:59:59.000Z

419

Adapting collaborative radiological practice to low-resource environments  

Science Conference Proceedings (OSTI)

We describe how current radiological best practices are predicated on a sophisticated technological ecosystem usually comprised of multiple large-scale displays, and integrated record keeping and communication systems driven by high-speed networks. At ... Keywords: cscw, ictd, medicine, pacs, professional practice, radiology information systems, teleradiology

Beth E. Kolko; Alexis Hope; Waylon Brunette; Karen Saville; Wayne Gerard; Michael Kawooya; Robert Nathan

2012-02-01T23:59:59.000Z

420

Operation Castle. Radiological Safety. Volume 2. Final report  

SciTech Connect

This report is designed to cover the overall Operation Castle radiological safety matters from the viewpoint of those issues of direct concern to Headquarters, Joint Task Force Seven. It was written for the express purpose of assisting in the development of future radiological safety plans by presenting detailed discussion of the problems and solutions arising during Operation Castle.

Not Available

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FRMAC Interactions During a Radiological or Nuclear Event  

SciTech Connect

During a radiological or nuclear event of national significance the Federal Radiological Emergency Monitoring and Assessment Center (FRMAC) assists federal, state, tribal, and local authorities by providing timely, high-quality predictions, measurements, analyses and assessments to promote efficient and effective emergency response for protection of the public and the environment from the consequences of such an event.

Wong, C T

2011-01-27T23:59:59.000Z

422

NNSA Conducts Radiological Training in Slovenia | National Nuclear Security  

National Nuclear Security Administration (NNSA)

NNSA Blog > NNSA Conducts Radiological Training in Slovenia NNSA Blog > NNSA Conducts Radiological Training in Slovenia NNSA Conducts Radiological Training in Slovenia Posted By Office of Public Affairs NNSA Blog NNSA today concluded International Radiological Assistance Program Training for Emergency Response (I-RAPTER) in Slovenia. The training, co-sponsored by the International Atomic Energy Agency, was provided to 36 nuclear/radiological emergency responders, which included 15 participants from Slovenia and 21 students from 20 other countries. The training was conducted with involvement of personnel from Sandia National Laboratories, the Remote Sensing Laboratory and Idaho National Laboratory. To read more about the training see: http://www.nnsa.energy.gov/mediaroom/pressreleases/slovenia Posted on March 22, 2012 at 4:13 pm ET

423

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Protection Standards Radiation Protection Standards Study Guide 1.09-1 Course Title: Radiological Control Technician Module Title: Radiological Protection Standards Module Number: 1.09 Objectives: 1.09.01 Identify the role of advisory agencies in the development of recommendations for radiological control. 1.09.02 Identify the role of regulatory agencies in the development of standards and regulations for radiological control. 1.09.03 Identify the scope of 10 CFR Part 835. References: 1. ANL-88-26 (1988) "Operational Health Physics Training"; Moe, Harold; Argonne National Laboratory, Chicago 2. U.S. Department of Energy, DOE-STD-1098-99, "Radiological Control Standard" 3. 10 CFR Part 835 (1998) "Occupational Radiation Protection" DOE-HDBK-1122-99 Module 1.09 Radiation Protection Standards

424

EA-1919: Recycle of Scrap Metals Originating from Radiological Areas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1919: Recycle of Scrap Metals Originating from Radiological EA-1919: Recycle of Scrap Metals Originating from Radiological Areas EA-1919: Recycle of Scrap Metals Originating from Radiological Areas Summary This Programmatic EA evaluates alternatives for the management of scrap metal originating from DOE radiological control areas, including the proposed action to allow for the recycle of uncontaminated scrap metal that meets the requirements of DOE Order 458.1. (Metals with volumetric radioactive contamination are not included in the scope of this Programmatic EA.) PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 28, 2012 EA-1919: Notice of Public Comment Period Extension Recycling of Scrap Metals Originating from Radiological Areas December 12, 2012 EA-1919: Notice of Availability of a Draft Programmatic Environmental

425

Nuclear Radiological Threat Task Force Established | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Threat Task Force Established | National Nuclear Radiological Threat Task Force Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Radiological Threat Task Force Established Nuclear Radiological Threat Task Force Established November 03, 2003 Washington, DC Nuclear Radiological Threat Task Force Established

426

How ORISE is Making a Difference: Radiological Assessment and Monitoring  

NLE Websites -- All DOE Office Websites (Extended Search)

Develops Paperless Tool to Assist with Data Input Into Radiological Develops Paperless Tool to Assist with Data Input Into Radiological Assessment and Monitoring System During the Empire 09 exercise, the Oak Ridge Institute for Science and Education (ORISE) tested (for the first time) a paperless system of data management to support the operations of the Federal Radiological Monitoring and Assessment Center (FRMAC). The paperless FRMAC (pFRMAC) provides tools that enables the FRMAC to collect and process field measurements and samples following a radiological or nuclear event. The process allows field data to be entered into specialized electronic tablets that are then sent to the Radiological Assessment and Monitoring System (RAMS). RAMS is the hub of pFRMAC that provides data analysis to the consequence management home team and

427

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief  

DOE Green Energy (OSTI)

This technical brief is a guide to selecting high-temperature metallic materials for use in process heating applications such as burners, electrical heating elements, material handling, load support, and heater tubes, etc.

Not Available

2004-11-04T23:59:59.000Z

428

DOE Seeks Independent Evaluation of Remote-Handled Waste Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Seeks Independent Evaluation Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste program. The program must be approved by the New Mexico Environment Department and the U.S. Environmental Protection Agency before DOE will be permitted to accept and dispose of RH-TRU waste at WIPP. "Safety and compliance are our primary considerations in developing the plans for

429

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

430

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice 2 Change Notice 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

431

Radiological Contamination Control Training for Laboratory Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaffirmation Reaffirmation August 2002 Change Notice 1 December 2004 DOE HANDBOOK RADIOLOGICAL CONTAMINATION CONTROL TRAINING FOR LABORATORY RESEARCH U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-HDBK-1106-97 ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-HDBK-1106-97 iii Page/Section Change

432

Radiological Control Change Notice 1 Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DATE: May DATE: May 20, 2004 REPLY TO EH-52:Judith D. Foulke:301 :903-5865 ATTN OF: CHANGE NOTICE TO DEPARTMENT OF ENERGY (DOE) HANDBOOK, DOE-STD- SUBJECT. 1098-99, RADIOLOGICAL CONTROL TO: George Detsis, EH-3 1 This memorandum forwards Change Notice Number 1 to subject DOE Technical Standard, DOE-STD-1098-99. The changes are being made as part of the 5-year review of the standard. The table inserted into the document details the changes. After the changes are made, a notice of intent to reaffirm memorandum will be issued. A compact disk (CD) of the revised document in MS Word and in PDF format is attached. If there are any questions, please contact Dr. Judith Foulke of my staff on 3-5865 or electronic mail (Judy.Foulke@eh.doe.gov). ill R. McArthur, PhD, C1}T Office Director Office of Worker Protection Policy

433

Radiological Control Programs for Special Tritium Compounds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84-2004 84-2004 SEPTEMBER 2004 CHANGE NOTICE NO. 1 Date June 2006 DOE HANDBOOK RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS U.S. Department of Energy AREA OCSH Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Table of Changes Page Change 67 (near bottom) In row 1, column 2 of the table titled "dosimetric properties" 6 mrem was changed to 6 x 10 -2 mrem Available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techstds/ DOE-HDBK-1184-2004 iii Foreword The Department of Energy (DOE) and its predecessor agencies have undertaken a wide variety

434

Radiological Control Programs for Special Tritium Compounds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F 1325.8 F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: May 11, 2006 REPLY TO EH-52:JRabovsky:3-2 135 ATTN OF: APPROVAL OF CHANGE NOTICE 1 TO DEPARTMENT OF ENERGY (DOE) SUBJECT. HANDBOOK 1184-2004, RADIOLOGICAL CONTROL PROGRAMS FOR SPECIAL TRITIUM COMPOUNDS TO: Dennis Kubicki, EH-24 Technical Standards Manager This memorandum forwards the subject Change Notice 1 to DOE Handbook, DOE- HDBK- 1184-2004, which has approved for publication and distribution. The change to this handbook consists of a correction to the rule of thumb, listed in Appendix A, for converting the uptake of tritium oxide into radiation dose. A factor of 1/100 was inadvertently omitted from this rule of thumb when this DOE Handbook was originally published. This change does not affect the references, is not of a technical nature, and

435

Simulation-based optimal planning for material handling networks in mining  

Science Conference Proceedings (OSTI)

A two-level hierarchical simulation-based framework is proposed for real-time planning in one of the largest coal mines in the world. At the coal mine, various decisions (e.g. truck locks, hopper-silo connections and silo blend values) have to be made ... Keywords: coal blending problem, coal mine, coal mine scheduling problem, hierarchical planning, simulation-based optimization

Sai Srinivas Nageshwaraniyer, Young-Jun Son, Sean Dessureault

2013-03-01T23:59:59.000Z

436

Economic and Environmental Analysis of Fuel Cell Powered Materials Handling Equipment  

Science Conference Proceedings (OSTI)

This technical update describes an analysis of the economic and environmental attributes of forklift fleets powered by battery and fuel cell power plants. The report first provides background on the fuel cell forklift technology. The fuel cell forklift is then compared to three other technology options: conventional battery-powered forklifts, fast-charge forklifts at 15 kW of charging power, and fast-charge forklifts at 20 kW of charging power. This study develops models of the infrastructure and equipme...

2010-12-31T23:59:59.000Z

437

Optimizing Ash Handling - SmartAshTM System Evaluation  

Science Conference Proceedings (OSTI)

High ash levels in electrostatic precipitator (ESP) hoppers are notorious for increasing particulate matter (PM) emissions and plume opacity. Conventional means of monitoring hopper ash levels and fly ash handling system performance have been time-consuming and problematic. Neundorfer, Inc., has developed a fly ash conveying system-monitoring package (SmartAshSystem) that provides improved monitoring of fly ash removal process parameters and provides graphical depictions of ash system performance. Additi...

2007-11-21T23:59:59.000Z

438

EURISOL-DS Multi-Megawatt Target: Remote Handling Equipment  

E-Print Network (OSTI)

The design proposed within Task #2 of the EURISOL Design Study for the remote handling of the mercury converter target and its associated loop is presented with particular emphasis on achieving rapid turn-around during routine maintenance.The converter target needs to be completely exchanged every four months due to the high irradiation damage sustained. Other components are less susceptible to damage but may need periodic maintenance; in particular the on-line isotopic separation unit in the mercury loop.

Cyril Kharoua, Olivier Choisnet, Yacine Kadi, Karel Samec (CERN)

439

Safety aspects of large-scale handling of hydrogen  

DOE Green Energy (OSTI)

Since the decade of the 1950s, there has been a large increase in the quantity of hydrogen, especially liquid hydrogen, that has been produced, transported, and used. The technology of hydrogen, as it relates to safety, has also developed at the same time. The possible sources of hazards that can arise in the large-scale handling of hydrogen are recognized, and for the most part, sufficiently understood. These hazard sources are briefly discussed. 26 refs., 4 figs.

Edeskuty, F.J.; Stewart, W.F.

1988-01-01T23:59:59.000Z

440

CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING ELECTRICAL SYSTEM  

SciTech Connect

The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste handling building electrical system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

S.E. Salzman

1999-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Baseline descriptions for LWR spent fuel storage, handling, and transportation  

SciTech Connect

Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

Moyer, J.W.; Sonnier, C.S.

1978-04-01T23:59:59.000Z

442

Draft Environmental Assessment on the Remote-handled Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review and comment on a draft environmental assessment that the Department issued today, for a proposal to process approximately 327 cubic meters of remote-handled waste currently stored at the Idaho National Laboratory. An additional five cubic meters of waste stored at the Hanford Site near Richland, Washington is also evaluated since it is reasonably foreseeable that a decision may be made in the future to send that waste to Idaho for treatment. The project is necessary to prepare the waste for legally-required disposal. Under the Department�s preferred alternative, workers would use sealed rooms called hot cells at the Idaho Nuclear Technology and Engineering Center (INTEC) to process the waste, treat it as necessary and repackage it so that it is ready for disposal. The document describes the modifications necessary to hot cells to perform the work.

443

West Valley facility spent fuel handling, storage, and shipping experience  

Science Conference Proceedings (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

444

Automatic Continuous Commissioning of Measurement Instruments in Air Handling Units  

E-Print Network (OSTI)

This paper presents a robust strategy based on a condition-based adaptive statistical method for automatic commissioning of measurement instruments typically employed in air-handling units (AHU). The multivariate statistic method, principal component analysis (PCA), is adopted and modified to monitor the air handling process. Two PCA models are built corresponding to the heat balance and pressure-flow balance of the air-handling process. Sensor faults can be detected and isolated using the Q-statistic and the Q-contribution plot. The fault isolation ability against typical component faults is improved using knowledge-based analysis. A novel condition-based adaptive scheme is developed to update the PCA models with the operation conditions for continuous online application. A commissioning tool is developed to implement the strategy. Simulation tests and field tests in a building in Hong Kong were conducted to validate the automatic commissioning strategy for typical AHU. The integration of the tool with a building management system (BMS) and its application is demonstrated.

Xiao, F.; Wang, S.

2006-01-01T23:59:59.000Z

445

METHODS OF HANDLING AND LAUNDERING BERYLLIUM-CONTAMINATED GARMENTS  

SciTech Connect

In beryllium industries, it has been the general practice to supply workers with protective clothing. Problems in handling and laundering this clothing were investigated. These problems include: potential hazard to laundry workers and subsequent wearers of the clothing, special laundering techniques, methods to determine the degree of contamination on garments, and determining the most desirable types of garments for the purpose. Four methods to determine the degree of contamination discussed include the shake test, the vacuum test, the rinse test, and the smear test. Assuming conventional laundering procedures have been used, the potential hazard to subsequent wearers of the garment is minimal. Standards for determining adequacy of laundry are suggested. These ar 0.1 mu g Be/cm/sup 2/ as determined by the vacuum test, or 200 mu g Be/garment as determined by the rinse test. Possible hazard to those handling contaminated garments could be significant. This hazard is best controlled simply by use of wet methods. Included in this report is the summary of a survey conducted to determine how these problems are handled in other beryllium industries. (auth)

Cohen, J.J.

1963-04-01T23:59:59.000Z

446

US Army Radiological Bioassay and Dosimetry: The RBD software package  

Science Conference Proceedings (OSTI)

The RBD (Radiological Bioassay and Dosimetry) software package was developed for the U. S. Army Material Command, Arlington, Virginia, to demonstrate compliance with the radiation protection guidance 10 CFR Part 20 (ref. 1). Designed to be run interactively on an IBM-compatible personal computer, RBD consists of a data base module to manage bioassay data and a computational module that incorporates algorithms for estimating radionuclide intake from either acute or chronic exposures based on measurement of the worker`s rate of excretion of the radionuclide or the retained activity in the body. In estimating the intake,RBD uses a separate file for each radionuclide containing parametric representations of the retention and excretion functions. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent. For a given nuclide, if measurements exist for more than one type of assay, an auxiliary module, REPORT, estimates the intake by applying weights assigned in the nuclide file for each assay. Bioassay data and computed results (estimates of intake and committed dose equivalent) are stored in separate data bases, and the bioassay measurements used to compute a given result can be identified. The REPORT module creates a file containing committed effective dose equivalent for each individual that can be combined with the individual`s external exposure.

Eckerman, K.F.; Ward, R.C.; Maddox, L.B.

1993-01-01T23:59:59.000Z

447

Bayesian Network Analysis of Radiological Dispersal Device Acquisitions  

E-Print Network (OSTI)

It remains unlikely that a terrorist organization could produce or procure an actual nuclear weapon. However, the construction of a radiological dispersal device (RDD) from commercially produced radioactive sources and conventional explosives could inflict moderate human casualties and significant economic damage. The vast availability of radioactive sources and the nearly limitless methods of dispersing them demand an inclusive study of the acquisition pathways for an RDD. A complete network depicting the possible acquisition pathways for an RDD could be subjected to predictive modeling in order to determine the most likely pathway an adversary might take. In this work, a comprehensive network of RDD acquisition pathways was developed and analyzed utilizing the Bayesian network analysis software, Netica. The network includes variable inputs and motivations that can be adjusted to model different adversaries. Also, the inclusion of evidence nodes facilitates the integration of real-time intelligence with RDD plot predictions. A sensitivity analysis was first performed to determine which nodes had the greatest impact on successful completion of RDD acquisition. These results detail which portions of the acquisition pathways are most vulnerable to law enforcement intervention. Next, a series of case studies was analyzed that modeled specific adversarial organizations. The analysis demonstrates various features of the constructed Bayesian RDD acquisition network and provides examples of how this tool can be utilized by intelligence analysts and law enforcement agencies. Finally, extreme cases were studied in which the adversary was given the maximum and minimum amount of resources in order to determine the limitations of this model. The aggregated results show that successful RDD acquisition is mostly dependent on the adversary’s resources. Furthermore, the network suggests that securing radiological materials has the greatest effect on interdicting possible RDD plots. Limitations of this work include a heavy dependence on conditional probabilities that were derived from intuition, as opposed to actual historical data which does not exist. However, the model can be updated as attempted or successful RDD plots emerge in the future. This work presents the first probabilistic model of RDD acquisition pathways that integrates adversary motivations and resources with evidence of specific RDD threats.

Hundley, Grant Richard

2010-12-01T23:59:59.000Z

448

Idaho National Laboratory Radiological Response Training Range draft  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment Idaho National Laboratory Radiological Response Training Range draft environmental assessment available for public review and comment August 4, 2010 Media contact: Brad Bugger, 208-526-0833 The public is invited to read and comment on a draft environmental assessment that the U.S. Department of Energy has published for a proposed radiological response training range at the Idaho National Laboratory (INL). At the range, INL experts would train personnel, conduct exercises, and perform technology evaluation and demonstrations in support of national technical nuclear forensic and radiological emergency response programs. �The Radiological Response Training Range will allow emergency responders to prepare for a major radiological incident by training in an environment that safely simulates scenarios they might encounter,� said Vic Pearson, DOE�s document manager for the environmental assessment. �Activities at the range would directly support the nation�s readiness to respond to a radiological incident, but more importantly, would enable responders to develop proficiency in characterizing the scene in support of determining the origins of the incident.�

449

DOE-HDBK-1129-2007: Tritium Handling and Safe Storage; Replaced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HDBK-1129-2007: Tritium Handling and Safe Storage; Replaced by DOE-HDBK-1129-2008 DOE-HDBK-1129-2007: Tritium Handling and Safe Storage; Replaced by DOE-HDBK-1129-2008 Tritium...

450

V-177: VMware vCenter Chargeback Manager File Upload Handling...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: VMware vCenter Chargeback Manager File Upload Handling Vulnerability V-177: VMware vCenter Chargeback Manager File Upload Handling Vulnerability June 13, 2013 - 6:00am Addthis...

451

U-271: Google Android Dialer TEL URL Handling Flaw Lets Remote...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Google Android Dialer TEL URL Handling Flaw Lets Remote Users Deny Service U-271: Google Android Dialer TEL URL Handling Flaw Lets Remote Users Deny Service October 1, 2012 -...

452

Practical Guide to Vegetable Oil ProcessingChapter 8 Finished Product Storage and Handling  

Science Conference Proceedings (OSTI)

Practical Guide to Vegetable Oil Processing Chapter 8 Finished Product Storage and Handling Processing eChapters Processing Press Downloadable pdf of Chapter 8 Finished Product Storage and Handling from the book ...

453

Practical Handbook of Soybean Processing and UtilizationHarvest, Storage, Handling and Trading of Soybeans  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Harvest, Storage, Handling and Trading of Soybeans Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 4 Harvest, Storage, Handling and T

454

Disposal of Remote-Handled Transuranic Waste at the WasteIsolation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gear and is referred to as "contact-handled" TRU. However, TRU wastes with a surface radiation dose rate greater than 200 millirem per hour must be handled using remote...

455

MATERIALS SCIENCE AND TECHNOLOGY DIVISION March 1, 2011  

E-Print Network (OSTI)

(20) B.L. MURPHY MATERIALS THEORY G.M. STOCKS* A.R. STRANGE* F.W. AVERILL (12) M. BAJDICH (3) K. YAMAMOTO NUCLEAR MATERIALS SCIENCE AND TECHNOLOGY R.K. NANSTAD B.J. WADDELL* J.H. BAEK (5) J.T. BUSBY (31 19 NUCLEAR AND RADIOLOGICAL PROTECTION DIVISION 20 TECHNICIAN INTERN PROGRAM 21 CENTER FOR NANOPHASE

456

DOE - Office of Legacy Management -- Lowman Mill Site - ID 01  

Office of Legacy Management (LM)

Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Lowman, Idaho, Disposal Site Documents Related to Lowman Mill Site Historical documents may contain...

457

DOE - Office of Legacy Management -- Falls City Mill Site - TX...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Handled: Radiological Survey(s): Site Status: Also see Falls City, Texas, Disposal Site Documents Related to Falls City Mill Site Data Validation Package for...

458

Recycling issues facing target and RTL materials of inertial fusion designs L. El-Guebaly, P. Wilson, M. Sawan, D. Henderson, A. Varuttamaseni,  

E-Print Network (OSTI)

Sv/hr) with an extended cooling period of two years. Advanced remote handling equipment could recycle the Au/Gd and W of fabrication of the hohlraum walls and the highly precise assembly processes using remote handling equipment change of the materials cost to the COE but adds the cost of remote handling equipment and operations

California at San Diego, University of

459

DOE-HDBK-1122-99; Radiological Control Technician Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Radiological Control Technician Training Fundamental Academic Training Instructor's Guide Phase I Coordinated and Conducted for Office of Environment, Safety & Health U.S. Department of Energy DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide ii This page intentionally left blank. DOE-HDBK-1122-99 Radiological Control Technician Instructor's Guide iii Course Developers William Egbert Lawrence Livermore National Laboratory Dave Lent Coleman Research Michael McNaughton Los Alamos National Laboratory Bobby Oliver Lockheed Martin Energy Systems Richard Cooke Argonne National Laboratory Brian Thomson Sandia National Laboratory Michael McGough Westinghouse Savannah River Company Brian Killand Fluor Daniel Hanford Corporation Course Reviewers Technical Standards Managers

460

DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES  

SciTech Connect

Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).

Sexton, L.

2012-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "materials handled radiological" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

RJLG Presentation on Symposium for Safe Handling of Nanoparticles.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

RJ LeeGroup, Inc. RJ LeeGroup, Inc. Symposium on Safe Handling of Engineered Nanoscale Materials Exposure Assessment: Advance Analytical Techniques Gary S. Casuccio July 8, 2008 2 Exposure Assessment: Advance Analytical Techniques What are the goals?  To provide guidance that will help the NSRCs (and industry) develop site-specific controls that will protect workers and the environment.  Offer reasonable guidance for managing the uncertainly associated with nanomaterials whose hazards have not been determined.  Reduce to an acceptable level the risk of worker injury, worker ill-health and negative environmental impacts. 3 Exposure Assessment: Advance Analytical Techniques What are the issues with respect to nanoparticle measurement?  Sampling and analysis protocols have not been

462

Environments for Remote Teaching in Embedded Systems Courses Christian Trodhandl Thomas Handl Markus Proske Bettina Weiss  

E-Print Network (OSTI)

Environments for Remote Teaching in Embedded Systems Courses Christian Tr¨odhandl Thomas Handl points for discussion at the workshop: How to handle remote access? In a distance lab with a limited/2, 1040 Vienna, Austria {troedhandl,handl,proske,bw}@ecs.tuwien.ac.at 1 Introduction Embedded systems lab

463

Octant 1 boom extension The JET remote handling system has been used  

E-Print Network (OSTI)

Octant 1 boom extension Background The JET remote handling system has been used since 1998 to maintain and modify components inside the torus. The efficiency of in-vessel remote handling activities study Remote handling Top: The Octant 1 boom prior to being extended Bottom: The fully assembled

464

Modelling and simulation of high capacity waterside container handling systems at deep-sea terminals  

Science Conference Proceedings (OSTI)

Current handling systems at deep-sea container terminals run into their physical limits and new methods of handling containers are needed to deal with the ever-growing container shipping volumes. We present a domain specific simulation model of high ... Keywords: adjustable simulation model, container handling system, container workflow, productivity improvement, quay crane concepts

F. Geldof; B. C. van Haarlem; W. Lock; E. E. Roubtsova

2008-04-01T23:59:59.000Z

465

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical item during a nuclear power plant refueling outage. The proper operation of fuel handling equipment, such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators, is important to a successful refueling outage and to preparing fuel for eventual disposal.

2007-12-21T23:59:59.000Z

466

AUTOMATED RADIOLOGICAL MONITORING AT A RUSSIAN MINISTRY OF DEFENCE NAVAL SITE.  

SciTech Connect

The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between the military establishments of the Kingdom of Norway, the Russian Federation, and the US. This paper discusses joint activities conducted over the past year among Norwegian, Russian, and US technical experts on a project to develop, demonstrate and implement automated radiological monitoring at Russian Navy facilities engaged in the dismantlement of nuclear-powered strategic ballistic missile launching submarines. Radiological monitoring is needed at these facilities to help protect workers engaged in the dismantlement program and the public living within the footprint of routine and accidental radiation exposure areas. By providing remote stand-alone monitoring, the Russian Navy will achieve added protection due to the defense-in-depth strategy afforded by local (at the site), regional (Kola) and national-level (Moscow) oversight. The system being implemented at the Polyaminsky Russian Naval Shipyard was developed from a working model tested at the Russian Institute for Nuclear Safety, Moscow, Russia. It includes Russian manufactured terrestrial and underwater gamma detectors, smart controllers for graded sampling, radio-modems for offsite transmission of the data, and a data fusion/display system: The data fusion/display system is derived from the Norwegian Picasso AMEC Environmental Monitoring software package. This computer package allows monitoring personnel to review the real-time and histor