National Library of Energy BETA

Sample records for materials group lawrence

  1. Kristin Persson Lawrence Berkeley National Laboratory A Google for Materials?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristin Persson Lawrence Berkeley National Laboratory A Google for Materials? security visualization infrastructure transportation health communication Engineered Materials Enable Society consumption How are New Materials Invented? "Edison Style" When looking for a light bulb filament, Edison tried about 3,000 materials ... And he didn't find the best one ...! Materials Design: Hollywood Style Need to replace this video? Teflon Titanium Velcro 1930 1940 1950 1960 1970 1980 1990 2000

  2. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    SciTech Connect (OSTI)

    Amy Wong; Denise Thronas; Robert Marshall

    1998-11-04

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  3. Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  4. Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with E.O. Lawrence Award April 16, 2014 John Sarrao's research in plutonium, superconductivity, magnetism praised LOS ALAMOS, N.M., April 16, 2014-Los Alamos National Laboratory physicist John Sarrao is being honored by the U.S. Department of Energy with the 2013 Ernest O. Lawrence Award in Condensed Matter and Materials Sciences. "John Sarrao's exciting advances in actinide studies exemplify the quality of research performed at Los Alamos National Laboratory," said Los Alamos National

  5. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  6. Site Visit Report, Lawrence Livermore National Laboratory- March 2010

    Broader source: Energy.gov [DOE]

    Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages

  7. Human Resources at Lawrence Livermore National Laboratory | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Lawrence Livermore National Laboratory Careers at Lawrence Livermore National Laboratory Main contacts in Human Resources for recruitment and hiring: Jennifer Brizel Recruitment & Staffing Group Leader 925-422-9388 brizel1@llnl.gov Teri Kobayashi Senior Staffing Specialist 925-422-9050 kobayashi3@llnl.gov Daphne Simons Recruitment and Staffing Coordinator 925-422-7511 simons3@llnl.gov Careers

  8. E.O. Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E.O. Lawrence About the Lab Our Vision Lab Leadership History Nobelists Visit ⇒ Navigate Section About the Lab Our Vision Lab Leadership History Nobelists Visit Lawrence-tb Browse speech by section * Presentation of Award * Address by Mr. Birge * Remarks by Mr. C.E. Wallerstedt * Acceptance Speech (Text) (Audio) * Biography Submitted by Dr. Lawrence to the Nobel Committee * Biography written by Dr. Luis Alvarez * Publications by E. O. Lawrence * Publications about E. O. Lawrence available in

  9. Lawrence Berkeley National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to see violent explosions of dying stars "on demand," Saul Perlmutter of Lawrence Berkeley National Laboratory led a team to the surprising discovery that the expansion of the...

  10. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory July/August 1998 Celebrating Edward Teller at 90 Celebrating Edward Teller at 90 About the Review On the occasion of Edward Teller's 90th birthday, S&TR has the pleasure of honoring Lawrence Livermore's co-founder and most influential scientist. Teller is known for his inventive work in physics, his concepts leading to thermonuclear explosions, and his strong stands on such issues as science education, the nation's strategic defense, the needs for

  11. Lawrence Berkeley National Laboratory Overview

    Broader source: Energy.gov [DOE]

    Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

  12. Los Alamos physicist honored with E.O. Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos physicist honored with E.O. Lawrence Award Los Alamos physicist honored with E.O. Lawrence Award John Sarrao is being honored by the U.S. Department of Energy with the 2013 Ernest O. Lawrence Award in Condensed Matter and Materials Sciences. April 16, 2014 John Sarrao John Sarrao Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "John Sarrao's exciting advances in actinide studies exemplify the quality of research performed at Los Alamos National

  13. US-EU-Japan Working Group on Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-EU-Japan Working Group on Critical Materials 4 th Annual Meeting Iowa State University Hosted by The Critical Materials Institute The Ames Laboratory September 8, 2014 AGENDA 8:30 Registration 9:00 Welcome Alex King, Director, Critical Materials Institute Opening Remarks 9:10 Akito Tani, Deputy Director-General, Manufacturing Industries Bureau, MET 9:20 Gwenole Cozigou, Director, DG Enterprise and Industry 9:30 Mark Johnson, Director, Advanced Manufacturing Office, DOE Session 1: Anticipating

  14. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent Activity Report, Lawrence Livermore National Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program ...

  15. A. Lawrence Bryan, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Lawrence (Larry) Bryan, Jr. Research Professional III Savannah River Ecology Laboratory P.O. Drawer E Aiken, SC 29802 803-725-2907 (Voice) -3309 (Fax) 803-646-3616 (cell) lbryan@srel.uga.edu (e-mail) Education: B.S., Wildlife Biology/North Carolina State University. May, 1979 M.S., Wildlife Biology/Clemson University. December, 1981 Experience summary From 1984 through the present, I have been involved in research pertaining to the ecology, behavior and conservation of Wood Storks, including

  16. Ernest O. Lawrence and the Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ernest O. Lawrence and the Cyclotron Patents * Resources with Additional Information * Lawrence Honored * Cyclotrons Ernest O. Lawrence Photo Courtesy the Lawrence Berkeley National Laboratory 'Lawrence Berkeley National Laboratory is the namesake and legacy of its founder, Ernest Orlando Lawrence, winner of the 1939 Nobel Prize for Physics for his invention of the cyclotron, ... the granddaddy of today's most powerful accelerators. ... [Lawrence] was the "father of big science," the

  17. DOE - Office of Legacy Management -- Lawrence Berkeley National Laboratory

    Office of Legacy Management (LM)

    - 003 Lawrence Berkeley National Laboratory - 003 FUSRAP Considered Sites Site: Lawrence Berkeley National Laboratory (003) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Since the early 1930's the University of California has leased the Laboratory to the Department of Energy for a wide range of energy related research activities. The

  18. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332...

  19. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities...

  20. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory - September 2013 September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory This report documents the...

  1. Consent Order, Lawrence Livermore National National Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issued to Lawrence Livermore National Security, LLC for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On ...

  2. Edward Jones, Lawrence Livermore National Laboratory, Outcomes...

    Energy Savers [EERE]

    Edward Jones, Lawrence Livermore National Laboratory, Outcomes of U.S.-Japan Roundtable Edward Jones, Lawrence Livermore National Laboratory, Outcomes of U.S.-Japan Roundtable...

  3. Lawrence Livermore National Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Lawrence Livermore...

  4. Overview of the Tritium research activities at Lawrence Livermore National

    Office of Environmental Management (EM)

    Laboratory (LLNL) | Department of Energy the Tritium research activities at Lawrence Livermore National Laboratory (LLNL) Overview of the Tritium research activities at Lawrence Livermore National Laboratory (LLNL) Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. PDF icon Overview of the Tritium research activities at LLNL More Documents & Publications Overview of Tritium Activities at the Laboratory for Laser Energetics NIF

  5. Visualization Gallery from the Computational Research Division at Lawrence

    Office of Scientific and Technical Information (OSTI)

    Berkeley National Laboratory () | Data Explorer Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory Title: Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details,

  6. Visualization Gallery from the Computational Research Division at Lawrence

    Office of Scientific and Technical Information (OSTI)

    Berkeley National Laboratory () | Data Explorer Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory Title: Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details,

  7. Lawrence Livermore National Laboratory Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory Awards The Laboratory bestows awards to outstanding scientists and engineers from among its workforce and for exceptionally qualified incoming postdoctoral fellows. These include the Edward Teller Fellow; the LLNL S&T Awards; the Science, Technology, Engineering and Operations (STEO) Awards; and the Lawrence Fellowship Awards. Name Year Citation Cross Beam Energy Transfer Team - Debra Callahan, Laurent Divol, Shamasundar Dixit, Denise Hinkel, Nathan

  8. Lawrence Jones 121 Metals Development Building,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mpc.ameslab.gov Lawrence Jones 121 Metals Development Building, Ames, IA 50011-3020 jonesll@ameslab.gov 515-294-5236 Like high purity research-grade gadolinium. But the Materials Preparation Center at the Ames Laboratory is that scientific specialty shop where researchers can go for unmatched purity and quality in rare-earth specimens. It's also one of the few places in the world where scientists and engineers from academic institutions and industries can obtain custom-designed materials for

  9. Categorical Exclusion Determinations: Lawrence Livermore Site Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lawrence Livermore Site Office Categorical Exclusion Determinations: Lawrence Livermore Site Office Categorical Exclusion Determinations issued by Lawrence Livermore Site Office. DOCUMENTS AVAILABLE FOR DOWNLOAD June 3, 2014 CX-012321: Categorical Exclusion Determination Vessel Burst Test Site, Site 300, Lawrence Livermore National Laboratory CX(s) Applied: B3.11 Date: 06/03/2014 Location(s): California Offices(s): Lawrence Livermore Site Office June 19, 2013 CX-012096:

  10. Lawrence Livermore National Laboratory | Department of Energy

    Office of Environmental Management (EM)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of

  11. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    SciTech Connect (OSTI)

    Tolk, Norman H.; Feldman, L. C.; Luepke, G.

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated local mode can be excited cleanly, and is usually well-separated in energy from the phonon bath. These basic dynamical studies have provided new insights for example into the fundamental mechanisms that control proton diffusion in these oxides. This area of materials science has largely fulfilled its promise to identify degradation mechanisms in electronic and optoelectronic devices, and to advance solid oxide proton conductors for fuel cells, gas sensors and proton-exchange membrane applications. It also provides the basis for innovations in materials synthesis involving atomic-selective diffusion and desorption.

  12. Lawrence Livermore National Laboratory (LLNL): Hydrogen Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    63725 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Hydrogen Research at Lawrence Livermore National Laboratory Advanced Science and Technology for Carbonless transportation Salvador M. Aceves Lawrence Livermore National Laboratory LLNL-PRES-663725 2  Founded: 1952 as a Defense Technologies Laboratory  Location: Livermore, CA  Core

  13. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration About Us / Our Operations / Acquisition and Project Management / M & O Support Department / Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory DE-AC52-07NA27344 Operated by Lawrence Livermore National Security, LLC BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed

  14. Andrew C. Lawrence | Department of Energy

    Energy Savers [EERE]

    C. Lawrence About Us Andrew C. Lawrence - Director, Office of Environmental Protection, Sustainability Support, and Corporate Safety Analysis Andrew C. Lawrence Andrew Lawrence is the Director of the Office of Environmental Protection, Sustainability Support, and Corporate Analysis within the Office of the Associate Under Secretary for Environment, Health, Safety and Security (AU). He is responsible for establishing environmental protection policy, requirements and expectations for the

  15. Presentation: Overview of Lawrence Berkeley National Laboratory |

    Energy Savers [EERE]

    Department of Energy Overview of Lawrence Berkeley National Laboratory Presentation: Overview of Lawrence Berkeley National Laboratory The Secretary of Energy Advisory Board received an overview of Lawrence Berkeley National Laboratory. The presentation was given by Paul Alivisatos, Director of Berkeley Laboratory, on January 26, 2016. PDF icon Overview of Lawrence Berkeley National Laboratory More Documents & Publications Laboratory Directors Presentation: Synchrotron Radiation Light

  16. EM QA Working Group September 2011 Meeting Materials | Department...

    Energy Savers [EERE]

    Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)...

  17. Lawrence Livermore National Laboratory Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal LLNL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Lawrence Livermore National Laboratory

  18. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Environmental Management (EM)

    MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge)

  19. Audit of Lawrence Livermore National Laboratory orders for memorabilia

    SciTech Connect (OSTI)

    Not Available

    1988-12-23

    We reviewed selected aspects of orders placed by Lawrence Livermore National Laboratory, a Department of Energy contractor, during 1979--1985 for memorabilia, models, and illustrations and the oversight of those orders by the San Francisco Operations Office (SAN). This review extends earlier audit work at a second Department contractor, Rockwell International, Rocky Flats Plant, Engineering Prototype Group, on which we issued a report dated July 12, 1988. That audit focused on the Prototype Group's providing Livermore with illustrations, models, engineering prototypes, and other articles (mementos, plaques, etc.) during October 1977 through September 1985. Issues arose during that audit which required a separate review at SAN and Livermore, to determine specifically: the propriety of, and SAN oversight of, procurement practices followed by Livermore; the basis for the Livermore orders; the adequacy of reimbursement to the Department for silver used in medallions; and the cost ceilings for memorabilia contained in the Department's contract with the University of California, which operates Livermore for the Department. Limiting the audit scope to the orders Livermore placed with Rockwell's Prototype Group, we reviewed Department and Livermore procedures for acquiring memorabilia. In addition to interviewing SAN and Livermore Legal Counsel, Special Material Office personnel, and Research and Development Program representatives, we examined SMO requisitions, accounts payable listings and related payments, and selected research and development correspondences.

  20. Santer of Lawrence Livermore National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 6/1/2011 6.28 Human Effects on Global Warming By themselves, droplets of sulfuric acid resulting from the burning of fossil fuels are of little consequence. But vast numbers of them form an aerosol haze that moderates and obscures the "greenhouse effect" caused by heat-trapping gases. In 1995, Benjamin Santer of Lawrence Livermore National Laboratory was the first to quantify and explain the link between fossil fuel emissions and climate change, including the role of greenhouse gases

  1. EM QA Working Group September 2011 Meeting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QUALITY ASSURANCE WORKING GROUP (VIDEO CONFERENCE) Meeting Location: Hanford, WA will be the Lead Site for this Meeting in Conjunction with the ISM Conference Room: Video Conference with Site Offices and Headquarters Offices Agenda for September 13, 2011 Time Topic Lead 12:00 - 12:30 pm (eastern) Potential Revision to the Performance Indicator and Measurement Approach for Goal #5 of the Journey to Excellence Regarding Quality Assurance Bob Murray (DOE-HQ) 12:30 - 1:00 pm (eastern) Discussion of

  2. Ernest O. Lawrence - Patents - 1950 through 1956

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 – 1956) Lawrence Page * Resources with Additional Information * Lawrence Honored * Cyclotrons * Patents (1957–1960) US 2,530,169 ELECTRONIC REGULATOR - Lawrence, E. O.; Schmidt, F. H.; Waithman, V. B.; Nov 14, 1950 (to U.S. Atomic Energy Commission) The patent describes an electronic regulator and protector circuit for a device having a filamentary cathode and a bombardment-heated cathode to automatically extinguish an arc formed between the two cathodes and simultaneously regulate the arc

  3. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration About Us / Our Locations / Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The NNSA Lawrence Livermore National Laboratory (LLNL) is a design laboratory that is responsible for the safety and reliability of the nuclear explosives package in nuclear weapons. It supports surveillance, assessment, and refurbishment of the nuclear weapons stockpile. LLNL also possesses unique high-energy-density physics capabilities and scientific computing assets.

  4. Independent Activity Report, Lawrence Livermore National Laboratory -

    Office of Environmental Management (EM)

    February 2013 | Department of Energy February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility [HIAR LLNL-2013-02-27] The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational

  5. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Broader source: Energy.gov (indexed) [DOE]

    Basis Issues On November 5, 1999, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Lawrence Livermore National Laboratory related to the...

  6. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-98-06 July 28, 1998 Issued to the University of California related to Criticality Safety and the...

  7. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory On August 22, 1996, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Lawrence Livermore National Laboratory related to...

  8. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - June 2, 2005 June 2, 2005 Issued to Lawrence Livermore National Laboratory for Quality Assurance Deficiencies related to Weapon Activities, June 2, 2005 On June 2, 2005,...

  9. Analysis Activities at Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on Lawrence Livermore’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  10. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Violation, Lawrence Livermore National Laboratory - EA-98-01 March 9, 1998 Issued to University of California related to the Unplanned Personnel Contaminations and Radioactive...

  11. Lawrence Livermore National Laboratory, P. O. Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 Case Case Study DDCMP: Beyond Homogeneous Decomposition with ddcMD Scaling Long-Range Forces on...

  12. Dr. Yuan Ping Lawrence Livermore National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Creating, diagnosing and controlling high-energy- density matter with lasers Dr. Yuan Ping Lawrence Livermore National Lab Tuesday, Oct 22, 2013 - 3:00PM MBG AUDITORIUM...

  13. Enterprise Assessments Targeted Review, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence Livermore National...

  14. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-98-01

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued to University of California related to the Unplanned Personnel Contaminations and Radioactive Material Intakes at the Hazardous Waste Management Facilities at the Lawrence Livermore National Laboratory, (EA-98-01)

  15. Also a Centennial Year for Ernest Orlando Lawrence

    Office of Scientific and Technical Information (OSTI)

    ... Ernest Orlando Lawrence: The Man, His Lab, His Legacy A Revolutionary Idea that Changed Modern Physics A Few Important Events in Lawrence's Life E.O. Lawrence Remembered Ernest O. ...

  16. Lawrence Berkeley National Laboratory Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal LBL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Lawrence Berkeley National Laboratory Technologies

  17. Lawrence Berkeley Lab Indexing Toolbox

    Energy Science and Technology Software Center (OSTI)

    2003-09-08

    The Lawrence Berkeley Lab Indexing Toolbox is intended to be used in the context of X-ray crystallography experiments involving biological macromolecules. Macromolecules such as proteins form 3-dimensional periodic arrays (crystal) which in turn lead to lattice-like diffraction patterns when the crystal sample is irradiated with collimated X-rays from a synchrotron or other X-ray source. Once the diffraction pattern is captured on an imaging device the next step is to deduce the periodic nature of themore » crystal sample, along with its internal symmetry. this analysis, known as "indexing" is a well-studied problem. However, there are no other implementations designed to operate in an automated setting, in which the human experimentalist is not prosent to manually verify the results of indexing. In particular LABELIT uses three novel algorithms to facilitate automation: a more robust way to verify the position of the incident X-ray beam on the image, a better way to verify that the deduced lattice is consistent with the observed crystal lattice, and new method to deduce the internal symmetry from measurements of the lattice. Moreover, the algorithms are implemented in a Python framework that permits indexing to fail (in rare cases) without crashing the program, thus allowing the software to be incorporated in robotic systems where unattended operation is expected. It will be especially useful for high throughput operations at snychrotron beamlines.« less

  18. Site Visit Report, Lawrence Livermore National Laboratory - February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory - February 2011 Site Visit Report, Lawrence ... Office of Safety and Emergency Management Evaluations and Livermore Site Office staff. ...

  19. Lessons Learned by Lawrence Livermore National Laboratory Activity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work...

  20. Independent Oversight Review of the Lawrence Livermore National...

    Energy Savers [EERE]

    Review of the Lawrence Livermore National Laboratory - March 2001 Independent Oversight Review of the Lawrence Livermore National Laboratory - March 2001 March 2001 Review of the...

  1. Ernest O. Lawrence - Patents - 1957 through 1960

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 – 1960) Lawrence Page * Resources with Additional Information * Lawrence Honored * Cyclotrons * Patents (1950–1956) US 2,785,311 LOW VOLTAGE ION SOURCE - Lawrence, E. O.; Mar 12, 1957 (to U.S. Atomic Energy Commission) An improved generator is described for the production of a very high current ion beam. Electrons emitted from a cathode are directed by a magnetic field into a region of an arc discharge, where they bombard gas molecules. Ions formed in the region are drawn out by means of

  2. Ernest O. Lawrence and Y-12 Calutrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ernest O. Lawrence and Y-12 Calutrons -August 8 is the birthday of physicist Ernest O. Lawrence, born in Canton, South Dakota in 1901. He was a curious child - at age two, he tried to figure out how matches worked and ended up lighting his clothes on fire. His best friend in Canton was a boy named Merle Tuve, who would go on become a famous geophysicist. The boys built gliders together and constructed a crude radio transmitting station. -Lawrence worked his way through college - he received an

  3. Lawrence Berkeley National Laboratory (LBNL): Fuel Cell and Hydrogen Activities Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LAWRENCE BERKELEY NATIONAL LABORATORY | ENVIRONMENTAL ENERGY TECHNOLOGIES DIVISION Fuel Cell Seminar| November 11, 2014 LBNL Fuel-Cell and Hydrogen Activities Overview Adam Z. Weber Staff Scientist LBNL FCTO Program Manager ~4,000 employees ~$907 M / year budget LAWRENCE BERKELEY NATIONAL LABORATORY | ENVIRONMENTAL ENERGY TECHNOLOGIES DIVISION * Core Capabilities  Material Science  Molecular Foundry National Center for Electron Microscopy  Synchrotron based research  Advanced Light

  4. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    worker safety and health program (10 C.F.R. Part 851) associated with the sulfuric acid burn event that occurred at Lawrence Livermore National Laboratory. PDF icon Preliminary...

  5. Preliminary Notice of Violation, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    worker safety and health program (10 C.F.R. Part 851) associated with the sulfuric acid burn event that occurred at Lawrence Livermore National Laboratory. Preliminary Notice of...

  6. Ernest O. Lawrence and the Cyclotron

    Office of Scientific and Technical Information (OSTI)

    449-450, April 1,1947 A High Vacuum High Speed Ion Pump, DOE Technical Report Download Adobe PDF Reader , August 27, 1952 Top Lawrence Honored: 1957 Enrico Fermi Award Lawrencium...

  7. Lawrence, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Lawrence is a city in Marion County, Indiana. It falls under Indiana's 5th congressional district and Indiana's 7th...

  8. Science on Saturday @ Lawrence Livermore Lab

    Broader source: Energy.gov [DOE]

    Science on Saturday. Science on Saturday (SOS) is a series of science lectures for middle and high school students. Each topic highlights cutting-edge science occurring at the Lawrence Livermore...

  9. Ernest O. Lawrence - Patents - 1957 through 1960

    Office of Scientific and Technical Information (OSTI)

    slits is described. (T.R.H.) US 2,933,442 ELECTRONUCLEAR REACTOR - Lawrence, E. O.; McMillan, E. M.; Alvarez, L. W.; Apr 19, 1960 (to U.S. Atomic Energy Commission) An...

  10. Method of loading organic materials with group III plus lanthanide and actinide elements

    DOE Patents [OSTI]

    Bell, Zane W. (Oak Ridge, TN); Huei-Ho, Chuen (Oak Ridge, TN); Brown, Gilbert M. (Knoxville, TN); Hurlbut, Charles (Sweetwater, TX)

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  11. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory NNSA labs and sites get girls excited about engineering NNSA workers across the nuclear security enterprise took advantage of "Introduce a girl to engineering day" to instill hundreds of young women with excitement for science, technology, engineering, NNSA lab explores options to save Earth from asteroid impact The threat of potential earth impacts from space objects has been on

  12. INSPECTION REPORT Government Vehicle Utilization at Lawrence

    Office of Environmental Management (EM)

    Government Vehicle Utilization at Lawrence Livermore National Laboratory INS-O-15-01 October 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 7, 2014 MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections SUBJECT: INFORMATION: Inspection Report on "Government Vehicle Utilization at Lawrence Livermore

  13. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  14. Independent Oversight Inspection, Lawrence Livermore National Laboratory- June 2005

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  15. Independent Oversight Inspection, Lawrence Livermore National Laboratory- May 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory

  16. Independent Oversight Review, Lawrence Livermore National Laboratory- September 2011

    Broader source: Energy.gov [DOE]

    Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory

  17. Independent Oversight Inspection, Lawrence Livermore National Laboratory- February 2009

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  18. Independent Oversight Review, Lawrence Livermore National Laboratory- August 2014

    Broader source: Energy.gov [DOE]

    Review of the Lawrence Livermore National Laboratory Radiological Controls Activity-Level Implementation.

  19. Enforcement Letter, Lawrence Livermore National Security, LLC - May 2008 |

    Office of Environmental Management (EM)

    Department of Energy Security, LLC - May 2008 Enforcement Letter, Lawrence Livermore National Security, LLC - May 2008 May 15, 2008 Issued to Lawrence Livermore National Security, LLC related to the Protection of Classified Information at the Lawrence Livermore National Laboratory On May 15, 2008, the U.S. Department of Energy issued an Enforcement Letter to Lawrence Livermore National Security, LLC expressing concerns about the protection of classified information at the Lawrence Livermore

  20. Accelerated Aging of Roofing Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Aging of Roofing Materials Accelerated Aging of Roofing Materials 1 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman prepares to insert clean and soiled roofing specimens into a weatherometer. The weatherometer simulates exposure to heat, moisture, and UV radiation. Image: Heat Island Group, Lawrence Berkeley National Laboratory 2 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman configures a weatherometer to simulate the effects of heat, moisture, and UV

  1. Optical Design Capabilities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  2. Physicist, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Physicist, Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  3. DOE Selects Lawrence Livermore National Security, LLC to Manage its Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Lawrence Livermore National Security, LLC (LLNS) has been selected to be the management and operating contractor for DOE's...

  4. Department of Energy Announces 2009 Ernest Orlando Lawrence Award...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Each Lawrence Award category award winner receives a citation signed by the Secretary of Energy; a 14 karat gold medal bearing the likeness of Ernest O. Lawrence, and a 50,000 ...

  5. Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Lawrence Berkeley National Laboratory Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory has made plug-in electric vehicle (PEV) readiness a major focus of its site sustainability strategy. The laboratory began PEV charging for employees on a modest scale in May 2013 with six Level 1 EVSE. Currently, Berkeley Lab is working to

  6. Preliminary Notice of Violation, Lawrence Livermore National Security, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - September 25, 2014 | Department of Energy Lawrence Livermore National Security, LLC - September 25, 2014 Preliminary Notice of Violation, Lawrence Livermore National Security, LLC - September 25, 2014 September 25, 2014 Worker Safety and Health Enforcement Preliminary Notice of Violation issued to Lawrence Livermore National Security, LLC On September 25, 2014, the National Nuclear Security Administration issued a Preliminary Notice of Violation (WEA-2014-03) to Lawrence Livermore National

  7. Office of the Chief Financial Officer .:. Lawrence Berkeley National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of the Chief Financial Officer Office of the Cheif Financial Officer Lawrence Berkeley Naitonal Laboratory Department of Energy Quicklinks: ---...

  8. Enforcement Letter, Lawrence Berkeley National Laboratory- July 21, 1998

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Radiological Work Controls at the Lawrence Berkeley National Laboratory

  9. Site Visit Report, Lawrence Livermore National Laboratory - February 2011 |

    Energy Savers [EERE]

    Department of Energy Lawrence Livermore National Laboratory - February 2011 Site Visit Report, Lawrence Livermore National Laboratory - February 2011 February 2011 Lawrence Livermore National Laboratory Safety Basis Assessment TThis report documents the collective results of a review of the Lawrence Livermore National Laboratory's safety basis processes. The review was conducted jointly by Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations and

  10. Independent Oversight Review of the Lawrence Livermore National Laboratory

    Office of Environmental Management (EM)

    - March 2001 | Department of Energy Review of the Lawrence Livermore National Laboratory - March 2001 Independent Oversight Review of the Lawrence Livermore National Laboratory - March 2001 March 2001 Review of the Lawrence Livermore National Laboratory Health Services Department This report provides the results of an independent oversight review of the Health Services Division at the Department of Energy's (DOE) Lawrence Livermore National Laboratory. The review was performed March 19-21,

  11. Jason Hick! Lawrence Berkeley National Laboratory! NERSC Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HPC Data Center of the Future HPC J oint F acility U ser F orum June 1 6, 2 014 Agenda * NERSC's s torage s ystems & s ervices * Trends o f e xisGng s torage---class h ardware - Flash o vertakes d isk f or $ /GB/sec * Future s torage---class h ardware - Memristor, M RAM * Storage soKware advancements - Metadata p erformance - Burst b uffer - Access t o s torage s ystems * NERSC i n 2 020 * What t his m eans t o t he u ser --- 2 --- National Energy Research Scientific ! Computing Center

  12. Lawrence Livermore National Laboratory Environmental Report 2014

    SciTech Connect (OSTI)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.; Buscheck, W. M.; Byrne, J. G.; Cerruti, S. J.; Bish, C. B.; Fratanduono, M. E.; Grayson, A. R.; MacQueen, D. H.; Montemayor, W. E.; Ottaway, H. L.; Paterson, L. E.; Revelli, M. A.; Rosene, C. A.; Swanson, K. A.; Terrill, A. A.; Wegrecki, A. M.; Wilson, K. R.; Woollett, J. S.

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  13. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  14. Steven Lawrence | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Lawrence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  15. National Nuclear Security Administration Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Security, LLC Performance Evaluation Report Fiscal Year 2014 Performance Evaluation Report (PER) NNSA Livermore Field Office Performance Period: October 2013 - September 2014 November 14, 2014 Livermore Field Office November 14, 2014 LLNL PER 2 | P a g e Executive Summary The Department of Energy/National Nuclear Security Administration (DOE/NNSA), Livermore Field Office (LFO) in accordance with guidance from the DOE/NNSA Office of Infrastructure and Operations

  16. To: Mansueti, Lawrence <Lawrence.Mansueti@hq.doe.gov>

    Energy Savers [EERE]

    <ecchimento@comcast.net> To: Mansueti, Lawrence <Lawrence.Mansueti@hq.doe.gov> Sent: Fri Nov 18 10:58:43 2005 Subject: Letter (9/12/05) for filing in DOE DCPSC Docket #EO-05-01 Mr. Mansueti, Would you please file for consideration the attached letter, originally sent to FERC, in DOE's Docket No. EO-05-01 regarding the DCPSC complaint? Thank you. Elizabeth Chimento and Poul Hertel 1200 North Pitt Street 1217 Michigan Court Alexandria, VA 22314 Alexandria, VA 22314 September 12, 2005

  17. Lawrence Livermore National Laboratory environmental report for 1990

    SciTech Connect (OSTI)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R.

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  18. Campanell wins Lawrence Fellowship to pursue plasma physics research |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Campanell wins Lawrence Fellowship to pursue plasma physics research By John Greenwald May 7, 2014 Tweet Widget Google Plus One Share on Facebook Michael Campanell (Photo by Elle Starkman) Michael Campanell Princeton University graduate student Michael Campanell has won a highly competitive Lawrence Fellowship, resulting in a postdoctoral position at Lawrence Livermore National Laboratory. Campanell was one of just two candidates selected from a field of 163

  19. 2013 Annual Planning Summary for the Lawrence Livermore National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Lawrence Livermore National Laboratory 2013 Annual Planning Summary for the Lawrence Livermore National Laboratory The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Lawrence Livermore National Laboratory. PDF icon NNSA_LLNL_NEPA-APS-2013.pdf More Documents & Publications 2012 Annual Planning Summary for Livermore Site Office 2014 Annual Planning Summary for the West Valley Demonstration Project 2013

  20. PROJECT PROFILE: Lawrence Livermore National Laboratory (PREDICTS 2) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lawrence Livermore National Laboratory (PREDICTS 2) PROJECT PROFILE: Lawrence Livermore National Laboratory (PREDICTS 2) Funding Opportunity: PREDICTS 2 LLNL Logo.png SunShot Subprogram: PV Location: Livermore, CA Amount Awarded: $570,000 Awardee Cost Share: $375,000 Principal Investigator: Mihail Bora As a part of their PREDICTS 2 award, researchers at Lawrence Livermore National Laboratory (LLNL) will explore the use of spectral imaging as a non-destructive means of

  1. Energy Secretary Moniz Announces 2014 Ernest Orlando Lawrence Award Winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Moniz Announces 2014 Ernest Orlando Lawrence Award Winners Energy Secretary Moniz Announces 2014 Ernest Orlando Lawrence Award Winners May 21, 2015 - 11:32am Addthis News Media Contact (202) 586-4940 DOENews@hq.doe.gov WASHINGTON - U.S. Energy Secretary Ernest Moniz today announced nine exceptional U.S. scientists and engineers as recipients of the Ernest Orlando Lawrence Award for their contributions in research and development that supports the Energy Department's

  2. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence Award Winners

    Office of Environmental Management (EM)

    | Department of Energy 2013 Ernest Orlando Lawrence Award Winners Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence Award Winners April 16, 2014 - 11:30am Addthis News Media Contact: (202) 586-4940 WASHINGTON - U.S. Energy Secretary Ernest Moniz today announced six exceptional U.S. scientists and engineers as recipients of the Ernest Orlando Lawrence Award for their contributions in research and development that supports the Energy Department's science, energy and national

  3. Enforcement Letter, Lawrence Livermore National Laboratory - August 22,

    Office of Environmental Management (EM)

    1996 | Department of Energy Laboratory - August 22, 1996 Enforcement Letter, Lawrence Livermore National Laboratory - August 22, 1996 August 22, 1996 Issued to the University of California related to Radiological Worker Training Deficiencies at the Lawrence Livermore National Laboratory On August 22, 1996, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Lawrence Livermore National Laboratory related to radiological worker training deficiencies. PDF icon

  4. Lawrence Livermore National Security Enforcement Letter (NEL-2013-03)

    Office of Environmental Management (EM)

    Penrose C. Albright Department of Energy Washington, DC 20585 July 22, 2013 President and Laboratory Director Lawrence Livermore National Security, LLC Lawrence Livermore National Laboratory 7000 East Avenue Livermore, California 94550 NEL-2013-03 Dear Dr. Albright: The Office of Health, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances surrounding programmatic deficiencies identified in the Lawrence Livermore National Security, LLC (LLNS)

  5. Lessons Learned by Lawrence Livermore National Laboratory Activity-level

    Office of Environmental Management (EM)

    Work Planning & Control | Department of Energy Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control May 16, 2013 Presenter: Donna J. Governor, Lawrence Livermore National Laboratory Topics Covered: Work Control Review Board (WCRB) Functional Area Manager identified at the Institution level reporting directly to the Deputy Laboratory Director

  6. Independent Activity Report, Lawrence Livermore National Laboratory - March

    Office of Environmental Management (EM)

    2011 | Department of Energy Lawrence Livermore National Laboratory - March 2011 Independent Activity Report, Lawrence Livermore National Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review [HIAR-LLNL-2011-03-25] This Independent Activity Report documents an oversight activity conducted by Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations March 14-25, 2011,

  7. Independent Oversight Review, Lawrence Livermore National Laboratory - July

    Office of Environmental Management (EM)

    2013 | Department of Energy Lawrence Livermore National Laboratory - July 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - July 2013 July 2013 Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the National Nuclear Security Administration (NNSA) Livermore

  8. Lawrence County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Lawrence County, Indiana Bedford, Indiana Mitchell, Indiana Oolitic, Indiana Retrieved from "http:en.openei.orgw...

  9. Lawrence Berkeley National Laboratory (LBNL) | Open Energy Information

    Open Energy Info (EERE)

    Berkeley, California Zip: 94720 Region: Bay Area Website: www.lbl.gov References: LBNL Web Site1 The Lawrence Berkeley National Laboratory (LBNL) is a United States Department...

  10. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Margaret S. Wooldridge, University of Michigan: for her work advancing energy science and innovation. The Lawrence Award was established to honor the memory of Dr. Ernest Orlando ...

  11. Enforcement Letter, Lawrence Berkeley National Laboratory- May 28, 1997

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to the Dismissal of the As Low As Reasonably Achievable Committee at the Lawrence Berkeley National Laboratory

  12. Lawrence Berkeley National Laboratory Launches Cleanup and Demolition...

    Broader source: Energy.gov (indexed) [DOE]

    Calif. - Lawrence Berkeley National Laboratory authorized this month a small business joint venture to begin a deactivation and demolition project in an area here known as Old...

  13. First-of-a-kind supercomputer at Lawrence Livermore available...

    National Nuclear Security Administration (NNSA)

    at Lawrence Livermore National Laboratory, is available to industry collaborators to test big data technologies, architectures and applications. Developed by a partnership of Cray,...

  14. Lawrence Berkeley National Laboratory Berkeley Lab | Open Energy...

    Open Energy Info (EERE)

    Berkeley Lab Jump to: navigation, search Name: Lawrence Berkeley National Laboratory (Berkeley Lab) Place: Berkeley, California Zip: 94720 Product: String representation "Conducts...

  15. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of...

  16. NNSA Weapons Chief Participates in ROTC Day at Lawrence Livermore...

    National Nuclear Security Administration (NNSA)

    Weapons Chief Participates in ROTC Day at Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  17. Lawrence Livermore National Laboratory Environmental Report 2010

    SciTech Connect (OSTI)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

  18. Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

  19. Consent Order, Lawrence Livermore National National Security, LLC- WCO-2010-01

    Broader source: Energy.gov [DOE]

    Issued to Lawrence Livermore National Security, LLC for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program

  20. TIMELINE: 60 Years of Computing at Lawrence Livermore National...

    Energy Savers [EERE]

    Lawrence Livermore machines have topped lists of the world's fastest, greenest, and most big-data capable systems, but if you ask the Laboratory's researchers, they'll voice...

  1. Lawrence Berkeley National Laboratory Launches Cleanup and Demolition Project

    Broader source: Energy.gov [DOE]

    BERKELEY, Calif. – Lawrence Berkeley National Laboratory authorized this month a small business joint venture to begin a deactivation and demolition project in an area here known as Old Town.

  2. Director of Lawrence Livermore National Laboratory to Step Down...

    National Nuclear Security Administration (NNSA)

    Gordon noted that Tarter has led Lawrence Livermore, one of the Energy Department's national defense laboratories, through a transition to a post-Cold War world and helped carry ...

  3. Critical and strategic materials proceedings of the laboratory study group meeting

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given.

  4. ESnet Update Steve Cotter, Dept Head Lawrence Berkeley National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Update Steve Cotter, Dept Head Lawrence Berkeley National Lab Winter 2011 Joint Techs Clemson, SC Feb 2, 2011 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science @ESnet: It's all about the Science * More bandwidth to DOE facilities and Labs at lower costs * Richer network services in support of distributed science - Develop network aware' integrated services that deliver end-to-end' high- performance data transfer, HPC/cloud computing, and science collaborative

  5. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADMINISTATIVE / WASTE / REMEDIATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Security Systems Services (except Locksmiths) 561621 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Security Systems Services (except Locksmiths) 561621 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 COLORADO GOLDEN FIELD

  6. CONSTRUCTION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONSTRUCTION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov All Other Specialty Trade Contractors 238990 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov All Other Specialty Trade Contractors 238990 COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone (720) 356-1269 Email karen.downs@go.doe.gov Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and

  7. REAL ESTATE & EQUIPMENT LEASING / RENTAL CALIFORNIA LAWRENCE BERKELEY LAB

    Energy Savers [EERE]

    REAL ESTATE & EQUIPMENT LEASING / RENTAL CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Construction, Mining, and Forestry Machinery and Equipment Rental and Leasing 532412 Office Machinery and Equipment Rental and Leasing 532420 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Construction, Mining, and Forestry Machinery and Equipment Rental and Leasing 532412 Office Machinery and Equipment Rental and

  8. Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program

    Office of Environmental Management (EM)

    Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program OAS-L-15-04 November 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 24, 2014 MEMORANDUM FOR THE MANAGER, LIVERMORE FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Lawrence Livermore National Laboratory's Laboratory

  9. INFORMATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Environmental Management (EM)

    INFORMATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Periodical Publishers 511120 Software Publishers 511210 Telecommunications Resellers 517911 Data Processing, Hosting, and Related Services 518210 Internet Publishing and Broadcasting and Web Search Portals 519130 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Periodical Publishers 511120 Software Publishers 511210 Telecommunications Resellers 517911

  10. EDUCATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Environmental Management (EM)

    EDUCATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Computer Training 611420 Professional and Management Development Training 611430 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Computer Training 611420 Professional and Management Development Training 611430 COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone (720) 356-1269 Email karen.downs@go.doe.gov Computer Training 611420 Professional and

  11. Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned

    Broader source: Energy.gov [DOE]

    Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

  12. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002

    Office of Energy Efficiency and Renewable Energy (EERE)

    Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

  13. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

  14. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    SciTech Connect (OSTI)

    Chu, William T.

    2005-09-01

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''The motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80,000 volts using less than 1,000 volts on a semi-circular accelerating electrode, now called the ''dee''. Following the discovery by J. D. Cockcroft and E. T. S. Walton of how to produce larger currents at higher voltages, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. The 27-Inch Cyclotron was used extensively in early investigations of nuclear reactions involving neutrons and artificial radioactivity. In 1939, working with William Brobeck, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. It was housed in the Crocker Laboratory, where scientists first made transmutations of some elements, discovered several transuranic elements, and created hundreds of radioisotopes of known elements. At the Crocker Laboratory the new medical modality called nuclear medicine was born, which used radioisotopes for diagnosis and treatment of human diseases. In 1939 Lawrence was awarded the Nobel Prize in Physics, and later element 103 was named ''Lawrencium'' in his honor.

  15. Jefferson Lab Scientist Wins 2011 Lawrence Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wins 2011 Lawrence Award NEWPORT NEWS, VA, Nov. 28 - A Jefferson Lab scientist has received a prestigious national award from the U.S. Department of Energy that recognizes his leadership role in research and development in support of the department and its missions. Matt Poelker, a scientist with Jefferson Lab's accelerator division, was one of just nine winners of a 2011 Ernest Orlando Lawrence Award. Each winner receives a gold medal, a citation and $20,000. They also will be honored at a

  16. TIMELINE: 60 Years of Computing at Lawrence Livermore National Lab |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy TIMELINE: 60 Years of Computing at Lawrence Livermore National Lab TIMELINE: 60 Years of Computing at Lawrence Livermore National Lab November 18, 2015 - 10:08am Addthis What are the key facts? The lab has been a leader in computing sciences since its founding in the 1950s. Click through the timeline above to see how LLNL has used computers to solve problems through the decades. The lab is partnering with industry other national labs to build next-gen supercomputers that

  17. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  18. SBOT CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov ADMINISTATIVE / WASTE / REMEDIATION Security Systems Services (except Locksmiths) 561621 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 CONSTRUCTION All Other Specialty Trade Contractors 238990 EDUCATION Computer Training 611420 Professional and Management Development Training 611430 GOODS Photographic Equipment and Supplies Merchant Wholesalers 423410 Computer and Computer

  19. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROFESSIONAL / SCIENTIFIC / TECHNICAL CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services 541360 Testing Laboratories 541380 Custom Computer Programming Services 541511 Computer Systems Design Services 541512 Other Computer Related Services 541519 Administrative Management and General Management Consulting Services 541611 Other Scientific and Technical

  20. Associate director for Physical and Life Sciences, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration Associate director for Physical and Life Sciences, Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  1. Cleantech Open meets with Lawrence Livermore, Sandia national laboratories

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Cleantech Open meets with Lawrence Livermore, Sandia national laboratories | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional

  2. Director of the National Ignition Facility, Lawrence Livermore National

    National Nuclear Security Administration (NNSA)

    Laboratory | National Nuclear Security Administration the National Ignition Facility, Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional

  3. Researchers from NNSA labs receive Ernest Orlando Lawrence Awards |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Ernest Orlando Lawrence Awards | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  4. Retired lab physicist and computational pioneer, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration Retired lab physicist and computational pioneer, Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  5. GOODS CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Environmental Management (EM)

    GOODS CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Photographic Equipment and Supplies Merchant Wholesalers 423410 Computer and Computer Peripheral Equipment and Software Merchant Wholesalers 423430 Other Commercial Equipment Merchant Wholesalers 423440 Other Professional Equipment and Supplies Merchant Wholesalers 423490 Electrical Apparatus and Equipment, Wiring Supplies, and Related Equipment Merchant Wholesalers 423610 Electrical and

  6. FY 2008 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Lawrence Livermore National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  7. FY 2009 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Lawrence Livermore National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  8. FY 2010 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Lawrence Livermore National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  9. FY 2011 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Lawrence Livermore National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  10. FY 2012 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Lawrence Livermore National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  11. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-C: Soft X-ray Magnetic Spectroscopy This beamline operates in the soft x-ray energy spectrum (500 - 2700 eV) using an electromagnetic helical undulator to provide circularly...

  12. Magnetic Materials Group - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    davegag@aps.anl.gov Visiting Scientists, Post-Docs, & Students Lawrie Skinner Rick Weber Vladimir Stoica Lawrie Skinner Research Asst. Prof. Stony Brook 432B003 (630)...

  13. Effective Feb15 JLab Entrance at Lawrence Drive to Close | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Feb. 15: Jefferson Lab Entrance at Lawrence Drive to Close for Sewer Main Installation Hampton Roads Sanitation District is installing a 30-inch sewer main on Department of Energy property adjacent to Jefferson Avenue. One section of the line is being installed just outside the accelerator site fence and along Jefferson Avenue. Installation will now proceed under Lawrence Drive from the intersection of Lawrence and Jefferson Avenue all the way to the intersection of Lawrence and Hogan

  14. Department of Energy Announces 2009 Ernest Orlando Lawrence Award Call for

    Office of Environmental Management (EM)

    Nominations | Department of Energy 09 Ernest Orlando Lawrence Award Call for Nominations Department of Energy Announces 2009 Ernest Orlando Lawrence Award Call for Nominations February 2, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has issued a call for nominations for the 2009 Ernest Orlando Lawrence Award, one of the longest running and most prestigious science and technology awards given by the U.S. Government. The Lawrence Award is presented by the

  15. NNSA Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER

    National Nuclear Security Administration (NNSA)

    Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER NNSA/NA-00.2 National Nuclear Security Administration FY 2013 PEP Lawrence Livermore National Security, LLC Performance Evaluation Report Livermore Field Office Lawrence Livermore National Laboratory Performance Period: October 2012 - September 2013 November 22, 2013 Livermore Field Office November 22, 2013 NNSA Lawrence Livermore National Security, LLC PER NNSA/NA-00.2 Page 1 of 23 Executive Summary This report was

  16. Lawrence Berkeley National Laboratory Compliance Order, October 6, 1995 Summary

    Office of Environmental Management (EM)

    Berkeley National Laboratory Agreement Name Lawrence Berkeley National Laboratory Compliance Order, October 6, 1995 HWCA # 95/96-016 State California Agreement Type Compliance Agreement Legal Driver(s) FFCAct Scope Summary Address LDR requirements pertaining to storage and treatment of covered waste at LBNL Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 10/6/1995 SCOPE * Address LDR requirements pertaining to storage and treatment

  17. Guide to user facilities at the Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility. (GHT)

  18. Hadoop Hands-On Exercises Lawrence Berkeley National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hadoop Hands-On Exercises Lawrence Berkeley National Lab Oct 2011 We will ... Training accounts/User Agreement forms Test access to carver HDFS commands Monitoring Run the word count example Simple streaming with Unix commands Streaming with simple scripts Streaming "Census" example Pig Examples Additional Exercises 2 Instructions http://tinyurl.com/nerschadoopoct 3 Login and Environment ssh [username]@carver.nersc.gov echo $SHELL - should be bash 4 Remote Participants Visit:

  19. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-05-21

    This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

  20. MASTER UCRL-9537 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MASTER UCRL-9537 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California Contract No.W-7405-eng-48 A NHARMONIC POTENTIAL CONSTANTS AND THEIR DEPENDENCE UPON BOND LENGTH Dudley R. Herschbach and Victor W. Laurie January 1961 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any

  1. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect (OSTI)

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  2. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  3. EIS-0348 and EIS-0236-S3: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL), which is critical to the National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. This document is also Supplement 3 to the Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (EIS-0236) for use of proposed materials at the National Ignition Facility (NIF). This combination ensures timely analysis of the reasonably foreseeable environmental impact of NIF experiments using the proposed materials concurrent with the environmental analyses being conducted for the site-wide activities.

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Paul Alivisatos Principal Investigator Paul Alivisatos Paul Alivisatos, Director of Lawrence Berkeley National Laboratory; Samsung Distinguished Professor of Nanoscience and Nanotechnology and Professor of Chemistry and Materials Science & Engineering Lawrence Berkeley National Laboratory Dr. Paul Alivisatos is Director of the Lawrence Berkeley National Laboratory (Berkeley Lab) and is the University of California (UC) Berkeley's Samsung Distinguished Professor of

  5. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Nonlinear Interaction

    Office of Scientific and Technical Information (OSTI)

    19 14 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Nonlinear Interaction of Plane Elastic Waves A06 2 7 1998 Valeri A. Korneev, Kurt T. Nihei, and Larry R. Myer Earth Sciences Division June 1998 OF T4IS ~~~~~~~~~ 1 s DISCLAIMER This document was prepared as an account of work sponsored by t h e United States Government, While this document is believed to contain correct information, neither the United States Government nor a n y agency thereof, nor The Regents of the University of

  6. Storm water modeling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Veis, Christopher

    1996-05-01

    Storm water modeling is important to Lawrence Livermore National Laboratory (LLNL) for compliance with regulations that govern water discharge at large industrial facilities. Modeling is also done to study trend in contaminants and storm sewer infrastructure. The Storm Water Management Model (SWMM) was used to simulate rainfall events at LLNL. SWMM is a comprehensive computer model for simulation of urban runoff quantity and quality in storm and combined sewer systems. Due to time constraints and ongoing research, no modeling was completed at LLNL. With proper information about the storm sewers, a SWMM simulation of a rainfall event on site would be beneficial to storm sewer analyst.

  7. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  8. Lawrence Livermore National Laboratory site seismic safety program: summary of findings

    SciTech Connect (OSTI)

    Scheimer, J.F.

    1985-07-01

    This report summarizes the final assessments of geologic hazards at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of investigations are documented in a series of reports produced by LLNL's Site Seismic Safety Program and their consultants. The Program conducted a probabilistic assessment of hazards at the site as a result of liquefaction, landslide, and strong ground shaking, using existing models to explicitly treat uncertainties. The results indicate that the Greenville and Las Positas-Verona Fault systems present the greatest hazard to the LLNL site as a result of ground shaking, with a lesser contribution from the Calaveras Fault. Other, more distant fault systems do not materially contribute to the hazard. No evidence has been found that the LLNL site will undergo soil failures such as landslides or liquefaction. In addition, because of the locations and ages of the faults in the LLNL area, surface ground rupture during an earthquake is extremely unlikely.

  9. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  10. MEMORANDUM OF UNDERSTANDING Between The Numerical Algorithms Group Ltd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Between The Numerical Algorithms Group Ltd and The University of California, as Management and Operating Contractor for Lawrence Berkeley National Laboratory on a Visitor Exchange Program This Memorandum of Understanding (MOU) is by and between the Numerical Algorithms Group Ltd (NAG) with a registered address at: Wilkinson House, Jordan hill Road, Oxford, UK and the University of California, as Management and Operating Contractor for Lawrence Berkeley National Laboratory, including its

  11. 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National Laboratory 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National Laboratory January 15, 2014 - 10:25am Addthis Dr. Adam Weber oversees the work of intern Sara Kelly at Lawrence Berkeley National Laboratory in California. Dr. Weber was recently named one of the winners of the Presidential Early Career Awards for Scientists and Engineers. | Photo by Roy Kaltschmidt,

  12. Performance of Work for a Non-Department Entity at Lawrence Livermore National Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    Performance of Work for a Non- Department Entity at Lawrence Livermore National Laboratory INS-O-14-01 January 2014 Department of Energy Washington, DC 20585 January 29, 2014 MEMORANDUM FOR THE MANAGER, LIVERMORE FIELD OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Performance of Work for a Non-Department Entity at Lawrence Livermore National Laboratory" BACKGROUND Lawrence Livermore

  13. E. O. Lawrence Award Nominations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    E. O. Lawrence Award Nominations News News Home Featured Articles Science Headlines 2015 2014 2013 2016 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.04.12 E. O. Lawrence Award Nominations The Office of Science is now accepting nominations for the 2013 E. O. Lawrence Award.

  14. Type A Accident Report of the June 26, 2009 Vehicle Fatality at Lawrence

    Energy Savers [EERE]

    Livermore National Laboratory | Department of Energy Report of the June 26, 2009 Vehicle Fatality at Lawrence Livermore National Laboratory Type A Accident Report of the June 26, 2009 Vehicle Fatality at Lawrence Livermore National Laboratory October 1, 2009 On June 26, 2009, a Lawrence Livermore National Security (LLNS) employee was in the process of transporting six boxes containing personal property to his new office in preparation for a routine transfer to another position within the

  15. Top 10 Things You Didn't Know About Lawrence Berkeley National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Berkeley National Laboratory Top 10 Things You Didn't Know About Lawrence Berkeley National Laboratory January 21, 2014 - 1:30pm Addthis Located in Berkeley, California, Lawrence Berkeley National Laboratory is one of 17 Energy Department National Labs. The site consists of 76 buildings located on 183 acres, which overlook both the University of California at Berkeley campus and the San Francisco Bay. | Photo courtesy of Lawrence Berkeley National Lab. Located in

  16. ORNL's Amit Goyal wins E.O. Lawrence Award | Department of Energy

    Energy Savers [EERE]

    ORNL's Amit Goyal wins E.O. Lawrence Award ORNL's Amit Goyal wins E.O. Lawrence Award November 29, 2011 - 9:31am Addthis Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, has been named a winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy

  17. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-2003-04

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to an Extremity Radiological Overexposure at the Lawrence Livermore National Laboratory, (EA-2003-04)

  18. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-2000-12

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Authorization Basis Issues at the Lawrence Livermore National Laboratory, (EA-2000-12)

  19. St Lawrence Energy Corp formerly known as UroMed Corporation...

    Open Energy Info (EERE)

    Corp. (OTC: SLAW) is a Delaware company focused on the energy sector, including renewable energy and chemical transportation. References: St. Lawrence Energy Corp (formerly known...

  20. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-98-06

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Criticality Safety and the Quality Assurance Program at the Lawrence Livermore National Laboratory, (EA-98-06)

  1. The Ernest Orlando Lawrence Award Homepage | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us Print Text Size: A A A FeedbackShare Page Announcements Nominations for the 2015 E. O. Award are extended until June 30, 2015. The outcome of the 2014

  2. Labs at-a-Glance: Lawrence Berkeley National Laboratory | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Labs at-a-Glance: Lawrence Berkeley National Laboratory Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Safety and Security Policy Laboratory Policy

  3. A Statement from U.S. Secretary of Energy Ernest Moniz on New Leadership at Lawrence Berkeley National Laboratory

    Broader source: Energy.gov [DOE]

    The Department of Energy welcomes Dr. Michael Witherell as the new director of Lawrence Berkeley National Laboratory (LBNL).

  4. NIF User Group Executive Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF User Group Executive Board Professor Don Lamb (Chair) University of Chicago Dr. Riccardo Betti University of Rochester Dr. Alexis Casner Centre d'Études de Bruyère Le Châtel Professor Paul Drake Co-Chair Committee Elections University of Michigan Dr. Hans Hermann Los Alamos National Laboratory Dr. Paul Neumayer GSI Darmstadt Dr. Hye-Sook Park Lawrence Livermore National Laboratory Dr. Mingsheng Wei General Atomics Jena Meineche Young Researcher: Oxford University Gianluca Gregori Oxford

  5. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  6. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  7. DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical

    Energy Savers [EERE]

    to Develop Next-Generation Cool Roofs | Department of Energy and Lawrence Berkeley National Labs Join with Dow Chemical to Develop Next-Generation Cool Roofs DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical to Develop Next-Generation Cool Roofs April 14, 2011 - 12:00am Addthis Washington, DC - The U.S. Department of Energy today announced that Oak Ridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) have joined with Dow Chemical Company

  8. Microsoft PowerPoint - 08 Lawrence 2010 DOE PM Workshop_EO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13514_03-01-10_presentation | Department of Energy 8 Lawrence 2010 DOE PM Workshop_EO 13514_03-01-10_presentation Microsoft PowerPoint - 08 Lawrence 2010 DOE PM Workshop_EO 13514_03-01-10_presentation PDF icon Microsoft PowerPoint - 08 Lawrence 2010 DOE PM Workshop_EO 13514_03-01-10_presentation More Documents & Publications OVERVIEW OF EXECUTIVE ORDER 13XXX Federal Leadership in Environmental, Energy and Economic Performance Microsoft PowerPoint - 05 Okonski final Project Management

  9. LANL scientists win two prestigious E.O. Lawrence Awards from the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy LANL scientists win two prestigious E.O. Lawrence Awards LANL scientists win two prestigious E.O. Lawrence Awards from the Department of Energy Mark Chadwick and David Chavez are winners of 2011 Ernest Orlando Lawrence Awards November 28, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to

  10. Exploring Viral Genomics at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kilpatrick, K; Hiddessen, A

    2007-08-22

    This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I as a fluorescent dye to detect amplification of viral DNA that can later be integrated into microfluidic PCR system for sorting and analysis is shown.

  11. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  12. VWA-0007- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  13. VWA-0008- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  14. V R Fanelli1'2, J M Lawrence1 '2...

    Office of Scientific and Technical Information (OSTI)

    ... F: Met. Phys. 13 597 12 Murani A P, Severing A and Marshall W G 1996 Phys. Rev. B 53 2641 13 Lawrence J M, Chen Y Y and Thompson J D 1987 Theoretical and Experimental Aspects o ...

  15. Enterprise Assessments Targeted Review, Lawrence Livermore National Laboratory – February 2015

    Broader source: Energy.gov [DOE]

    Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence Livermore National Laboratory Plutonium Facility

  16. Lawrence Livermore Site Office Manager Joins EM’s Senior Leadership Team

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM Acting Assistant Secretary Dave Huizenga announced today that Alice Williams, manager of the DOE National Nuclear Security Administration (NNSA) Lawrence Livermore Site Office has joined the EM senior leadership team.

  17. Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  18. Nano-High: Lawrence Berkeley National Laboratory Lecture on Bad Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  19. Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  20. The Life of Ernest Orlando Lawrence | U.S. DOE Office of Science...

    Office of Science (SC) Website

    ... News, June 1992. For more information, view the following link: Lawrence and the Cyclotron: AIP History Center Web Exhibit External link Last modified: 3182013 11:03:43 AM

  1. Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997 Summary

    Office of Environmental Management (EM)

    Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory Compliance Order HWCA 96/97-5002 State California Agreement Type Federal Facility Agreement Legal Driver(s) FFCAct Scope Summary Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 2/24/1997 SCOPE * Require compliance by the DOE

  2. Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tri-Lab Directors' statement on the nuclear posture review April 9, 2010 Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George Miller, and Sandia Director Tom Hunter Los Alamos, New Mexico, April 9, 2010-The directors of the three Department of Energy, National Nuclear Security Administration Laboratories-Dr. George Miller from Lawrence Livermore National Laboratory, Dr. Michael Anastasio from Los Alamos National Laboratory, and Dr. Tom Hunter from Sandia

  3. Julie A. Smith and Christopher Lawrence Office of Electricity Delivery and Energy Reliability

    Office of Environmental Management (EM)

    christopher.lawrence@hq.doe.gov RE: Comments on a Draft Integrated, Interagency Pre-Application (IIP) Process Dear Ms. Smith and Mr. Lawrence: Please accept these Trout Unlimited (TU) comments on the draft Integrated, Interagency Pre-Application (IIP) Process. Trout Unlimited is concerned with expediting renewable development in a thoughtful and deliberate manner in order to protect and conserve fish and wildlife resources and sportsmen's interests. Trout Unlimited routinely participates in the

  4. Julie A. Smith and Christopher Lawrence Office of Electricity Delivery and Energy Reliability

    Office of Environmental Management (EM)

    christopher.lawrence@hq.doe.gov RE: Improving Performance of Federal Permitting and Review of Infrastructure Projects: Comments on a Draft Integrated, Interagency Pre-Application (IIP) Process Dear Ms. Smith and Mr. Lawrence: Please accept these comments on the draft Integrated, Interagency Pre-Application (IIP) Process on behalf of the Wyoming Infrastructure Authority (WIA), in response to your August 29, 2013, Request for Information (RFI) on "Improving Performance of Federal Permitting

  5. Meet This Year's Winners of the Lawrence Award | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This Year's Winners of the Lawrence Award Meet This Year's Winners of the Lawrence Award July 23, 2015 - 9:15am Addthis Mei Bai, Brookhaven National Laboratory 1 of 9 Mei Bai, Brookhaven National Laboratory Mei Bai's work helps us understand more about how the universe works, from the smallest subatomic particles to the largest stars. A nuclear physicist at Brookhaven National Laboratory, Bai's tool of choice is the Lab's flagship particle accelerator -- the Relativistic Heavy Ion Collider. With

  6. Meet the Winners of the Lawrence Award - 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meet the Winners of the Lawrence Award - 2014 Meet the Winners of the Lawrence Award - 2014 Addthis Mei Bai, Brookhaven National Laboratory 1 of 9 Mei Bai, Brookhaven National Laboratory Mei Bai's work helps us understand more about how the universe works, from the smallest subatomic particles to the largest stars. A nuclear physicist at Brookhaven National Laboratory, Bai's tool of choice is the Lab's flagship particle accelerator -- the Relativistic Heavy Ion Collider. With the collider, Bai

  7. by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

    Broader source: Energy.gov (indexed) [DOE]

    work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Richard A. Rankin Director, Industrial Partnerships Office and Interim Director Economic Development Office 22 May 2015 LLNL-PRES-670964 Lawrence Livermore National Laboratory LLNL-PRES-670964 From a mission-focus perspective, there are four areas where the nature of the security mission means interacting with private sector owners, and operators: *

  8. Mr. Christopher Lawrence and Ms. Julie Smith Office of Electricity Delivery and Energy Reliability

    Office of Environmental Management (EM)

    Mr. Christopher Lawrence and Ms. Julie Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Dear Mr. Lawrence and Ms. Smith, The Western Governors' Association (WGA) is submitting these comments in response to the Department of Energy's (DOE) Request for Information (RFI), dated August 29, 2013 1 . The RFI outlines a proposed process to establish a coordinated series of meetings and other

  9. Ms. Julie A. Smith Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability

    Office of Environmental Management (EM)

    October 30, 2013 Ms. Julie A. Smith Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Dear Ms. Smith and Mr. Lawrence: The Association of Fish and Wildlife Agencies (AFWA) would like to provide comments on the Federal Register Notice Request for Information (RFI) on Improving Performance of Federal Permitting and Review of Infrastructure Projects, Federal Register Document

  10. Lawrence Livermore National Laboratory Site Seismic Safety Program: Summary of findings

    SciTech Connect (OSTI)

    Scheimer, J.F.; Burkhard, N.R.; Emerson, D.O.

    1991-05-01

    This report summarizes the final assessments of geologic hazards at the Lawrence Livermore National Laboratory (LLNL) and includes a revision of the peak acceleration hazard curve. Detailed discussions of investigations are documented in a series of reports produced by LLNL's Site Seismic Safety Program and their consultants. The Program conducted a probabilistic assessment of hazards at the site as a result of liquefaction, landslide, and strong ground shaking, using existing models to explicitly treat uncertainties. The results indicate the Greenville and Las Positas-Verona Fault systems present the greatest hazard to the LLNL site as a result of ground shaking, with a lesser contribution from the Calaveras Fault. Other, more distant fault systems do not materially contribute to the hazard. No evidence has been found that the LLNL site will undergo soil failures such as landslides or liquefaction. In addition, because of the locations and ages of the faults in the LLNL area, surface ground rupture during an earthquake is extremely unlikely. 21 refs., 3 figs.

  11. Workplace investigation of increased diagnosis of malignant melanoma among employees of Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Moore, D.H. II; Patterson, H.W.; Hatch, F.; Discher, D.; Schneider, J.S.; Bennett, D.

    1994-08-01

    Based on rates for the surrounding communities, the diagnosis rate of malignant melanoma for employees of Lawrence Livermore National Laboratory (LLNL) during 1972 to 1977 was three to four times higher than expected. In 1984 Austin and Reynolds concluded, as a result of a case-control study, that five occupational factors were {open_quotes}causally associated{close_quotes} with melanoma risk at LLNL. These factors were: (1) exposure to radioactive materials, (2) work at Site 300, (3) exposure to volatile photographic chemicals, (4) presence at the Pacific Test Site, and (5) chemist duties. Subsequent reviews of the Austin and Reynolds report concluded that the methods used were appropriate and correctly carried out. These reports did determine, however, that Austin and Reynolds` conclusion concerning a causal relationship between occupational factors and melanoma among employees was overstated. There is essentially no supporting evidence linking the occupational factors with melanoma from animal studies or human epidemiology. Our report summarizes the results of further investigation of potential occupational factors.

  12. Cost benefit analysis of waste compaction alternatives at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This report presents a cost benefit analysis of the potential procurement and operation of various solid waste compactors, or, of the use of commercial compaction services, for compaction of solid transuranic (TRU), low-level radioactive, hazardous, and mixed wastes at Lawrence Livermore National Laboratory (LLNL) Hazardous Waste Management (HWM) facilities. The cost benefit analysis was conducted to determine if increased compaction capacity at HWM might afford the potential for significant waste volume reduction and annual savings in material, shipping, labor, and disposal costs. In the following cost benefit analysis, capital costs and recurring costs of increased HWM compaction capabilities are considered. Recurring costs such as operating and maintenance costs are estimated based upon detailed knowledge of system parameters. When analyzing the economic benefits of enhancing compaction capabilities, continued use of the existing HWM compaction units is included for comparative purposes. In addition, the benefits of using commercial compaction services instead of procuring a new compactor system are evaluated. 31 refs., 1 fig., 6 tabs.

  13. Overview of crash and impact analysis at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Logan, R.W.; Tokarz, F.J.

    1993-08-05

    This work provides a brief overview of past and ongoing efforts at Lawrence Livermore National Laboratory (LLNL) in the area of finite-element modeling of crash and impact problems. The process has been one of evolution in several respects. One aspect of the evolution has been the continual upgrading and refinement of the DYNA, NIKE, and TOPAZ family of finite-element codes. The major missions of these codes involve problems where the dominant factors are high-rate dynamics, quasi-statics, and heat transfer, respectively. However, analysis of a total event, whether it be a shipping container drop or an automobile/barrier collision, may require use or coupling or two or more of these codes. Along with refinements in speed, contact capability, and element technology, material model complexity continues to evolve as more detail is demanded from the analyses. A more recent evolution has involved the mix of problems addressed at LLNL and the direction of the technology thrusts. A pronounced increase in collaborative efforts with the civilian and private sector has resulted in a mix of complex problems involving synergism between weapons applications (shipping container, earth penetrator, missile carrier, ship hull damage) and a more broad base of problems such as vehicle impacts as discussed herein.

  14. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Xiang Zhang Principal Investigator Xiang Zhang Xiang Zhang, Ernest S. Kuh Endowed Chaired Professor of Mechanical Engineering and LBNL Materials Sciences Division Director Lawrence Berkeley National Laboratory Professor Xiang Zhang is the inaugural Ernest S. Kuh Endowed Chaired Professor at UC Berkeley and Director of NSF Nano-scale Science and Engineering Center. He is the Director of the Materials Sciences Division at Lawrence Berkeley National Laboratory, and a member

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Postdoctoral Scholars Postdoctoral Scholars Noah Bronstein Lawrence Berkeley National Laboratory Dr. Noah Bronstein is a postdoc in the Alivisatos Group at UC Berkeley. He is developing a new nanoparticle solar cell design in collaboration with Professor Yablonovitch. Additionally, he is collaborating with Derek Le and Lanfang Li (Nuzzo Group) on photoluminescent concentrator solar cells. Carissa Eisler Lawrence Berkeley National Laboratory Dr. Carissa Nicole Eisler is a

  17. HyMARC: Hydrogen Materials-Advanced Research Consortium | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy HyMARC: Hydrogen Materials-Advanced Research Consortium HyMARC: Hydrogen Materials-Advanced Research Consortium The Hydrogen Materials-Advanced Research Consortium (HyMARC), composed of Sandia National Laboratories, Lawrence Livermore National Laboratory, and Lawrence Berkeley National Laboratory, has been formed with the objective of addressing the scientific gaps blocking the advancement of solid-state storage materials. Illustration of the research consortia model showing a

  18. Materials Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Science Materials Science The unique internal construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. <a href="http://energy.gov/articles/berkeley-labs-gas-filled-insulation-rivals-fiber-buildings-sector">Learn more about this cost-effective, energy-efficient insulation</a>. The unique internal construction of the

  19. Fixed Monthly Living Expense Payments at the Lawrence Livermore National Laboratory, INS-L-11-05

    Office of Environmental Management (EM)

    Fixed Monthly Living Expense Payments at the Lawrence Livermore National Laboratory INS-L-11-05 September 2011 Department of Energy Washington, DC 20585 September 21, 2011 MEMORANDUM FOR MANAGER, LIVERMORE SITE OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections SUBJECT: INFORMATION: Inspection Report on "Fixed Monthly Living Expense Payments at the Lawrence Livermore National Laboratory" BACKGROUND The Lawrence Livermore National Laboratory (Livermore) is a

  20. Lawrence Pack, train conductor, and Y-12s uranium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Y-12's uranium? Trains were the primary means of long haul transportation in the 1940's. Many trains brought building materials to Y-12 and other Manhattan Project sites...

  1. Energy Absorbing Material - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Energy Absorbing Material Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary To overcome limitations with cellular silicone foams, LLNL innovators have developed a new 3D energy absorbing material with tailored/engineered bulk-scale properties. The energy absorbing material has 3D patterned architectures specially designed for specific energy absorbing properties. The

  2. Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory December 6, 2013 - 6:18pm Addthis The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by

  3. Using an Innovative Technique to Retrieve Oil in Lawrence County, Illinois

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Using an Innovative Technique to Retrieve Oil in Lawrence County, Illinois Using an Innovative Technique to Retrieve Oil in Lawrence County, Illinois April 25, 2012 - 5:07pm Addthis The ASP flooding technique is helping to retrieve 65-75 barrels of oil a day, an increase from the previous retrieval of 16 barrels a day. | Image by Hantz Leger. The ASP flooding technique is helping to retrieve 65-75 barrels of oil a day, an increase from the previous retrieval of 16

  4. Ernest 0. Lawrence, 1957 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About » Honors and Awards » Ernest 0. Lawrence, 1957 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1950's Ernest 0. Lawrence, 1957 Print Text Size: A A A FeedbackShare Page Citation For his

  5. Lawrence O. "Larry" Bailey, Jr., Joins Carlsbad Field Office as Deputy Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence O. "Larry" Bailey, Jr., Joins Carlsbad Field Office as Deputy Manager CARLSBAD, N.M., October 4, 2000 - Lawrence O. "Larry" Bailey, Jr., has been named Deputy Manager for the U.S. Department of Energy's (DOE) Carlsbad Field Office. "I am delighted to have Larry as a member of my management team," said Dr. Inés Triay, Manager of the Carlsbad Field Office. "His expertise and background will help us elevate the Carlsbad Field Office to a center of

  6. John H. Lawrence, 1983 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Honors and Awards » John H. Lawrence, 1983 The Enrico Fermi Award Fermi Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's 1950's Ceremony The Life of Enrico Fermi Contact Information The Enrico Fermi Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's John H. Lawrence, 1983 Print Text Size: A A A FeedbackShare Page Citation For pioneering

  7. The adaptive x-ray optics project at the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory (Conference) | SciTech Connect The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Citation Details In-Document Search Title: The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Authors: Pardini, T ; Poyneer, L A ; McCarville, T J ; Macintosh, B ; Bauman, B ; Pivovaroff, M J Publication Date: 2013-06-25 OSTI Identifier: 1108860 Report Number(s): LLNL-PROC-639907 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference

  8. Secretary Moniz's Remarks at the 2013 E. O. Lawrence Awards Ceremony in

    Energy Savers [EERE]

    Washington D.C. -- As Delivered | Department of Energy E. O. Lawrence Awards Ceremony in Washington D.C. -- As Delivered Secretary Moniz's Remarks at the 2013 E. O. Lawrence Awards Ceremony in Washington D.C. -- As Delivered June 24, 2014 - 2:09pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Well, thank you Jim, and I'll repeat the obvious, that this is really a great day when we have a chance to recognize some of the terrific scientists and engineers who really form the

  9. Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory December 6, 2013 - 6:18pm Addthis The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by

  10. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  11. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-06-04

    At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

  12. Human Resources at Critical Materials Institute | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Human Resources at Critical Materials Institute Each partner within the Critical Materials Institute manages its own hiring. Use these links to find key contacts for CMI partners that are most likely to hire for CMI research projects: The Ames Laboratory | Careers at Iowa State University Oak Ridge National Laboratory | Careers Idaho National Laboratory | Careers Lawrence Livermore National Laboratory | Careers Colorado School of Mines | Employment

  13. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    SciTech Connect (OSTI)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

  14. Remedial investigation and feasibility study for the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex

    SciTech Connect (OSTI)

    Taffet, M.J. ); Oberdorfer, J.A. ); McIlvride, W.A. )

    1989-10-01

    This report summarizes the results and conclusions of the investigation of tritium and other compounds in ground water in the vicinity of landfills at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. 91 refs., 110 figs., 43 tabs.

  15. EIS-0157: Site-wide for Continued Operation of Lawrence Livermore/Sandia National Laboratory, Livermore

    Broader source: Energy.gov [DOE]

    The Department of Energy prepared this environmental impact statement to analyze the potential environmental impacts of the continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratory - Livermore, including programmatic enhancements and facility modifications to occur over the subsequent 10-year term that are pursuant to research and development missions established for the Laboratories by Congress and the President.

  16. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory, Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this draft environmental impact statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  17. Electromechanical battery research and development at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Baldwin, D.E.; Bender, D.A.; Fowler, T.K.

    1993-06-01

    The concepts undergirding a funded program to develop a modular electromechanical battery (EMB) at the Lawrence Livermore National Laboratory are described. Example parameters for EMBs for electric and hybrid-electric vehicles are given, and the importance of the high energy recovery efficiency of EMBs in increasing vehicle range in urban driving is shown.

  18. Director of Lawrence Livermore National Laboratory to Step Down as Director

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Lawrence Livermore National Laboratory to Step Down as Director | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  19. First-of-a-kind supercomputer at Lawrence Livermore available for

    National Nuclear Security Administration (NNSA)

    collaborative research | National Nuclear Security Administration First-of-a-kind supercomputer at Lawrence Livermore available for collaborative research | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our

  20. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader Ross Muenchausen Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  1. 2010 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 10 High Temperature Membrane Working Group Meeting Archives 2010 High Temperature Membrane Working Group Meeting Archives View information from meetings of the High Temperature Membrane Working Group held in 2010. October 14, 2010, Las Vegas, Nevada Minutes Continuum Modeling of Membrane Properties, Ahmet Kusoglu and Adam Z. Weber, Lawrence Berkeley National Laboratory Some Durability Considerations for Proton Exchange Membranes, Steven Hamrock, 3M Fuel Cell Components Program

  2. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-04-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  3. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-03-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  4. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Chu, Steven (U.S. Energy Secretary)

    2012-06-28

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  5. Additive Manufacturing - Materials by Design - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Additive Manufacturing - Materials by Design Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing SummaryLivermore materials scientists and engineers are designing and building new materials that will open up new spaces on many Ashby material selection charts, such as those for stiffness and

  6. IHE material qualification tests description and criteria

    SciTech Connect (OSTI)

    Slape, R J

    1984-06-01

    This report describes the qualification tests presently being used at Pantex Plant, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory that are required by the Department of Energy prior to the approval for an explosive as an Insensitive High Explosive (IHE) material. The acceptance criteria of each test for IHE qualification is also discussed. 5 references, 10 figures.

  7. 6th US-Russian Pu Science Workshop Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US-Russian Pu Science Workshop Lawrence Livermore National Laboratory University of California, Livermore, California July 14 and 15, 2006 Local Chairs: Michael Fluss, James Tobin, Adam Schwartz LLNL, Livermore, USA Alexander V. Petrovtsev, RFNC * VNIITF, Snezhinsk, Russia Boris A. Nadykto, RFNC * VNIIEF, Sarov, Russia Lidia F. Timofeeva, VNIINM, Moscow, Russia Siegfried S. Hecker, (Luis Morales POC) LANL, Los Alamos, USA Valentin E. Arkhipov, IMP, Ural Branch of RAS, Yekaterinburg, Russia This

  8. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  9. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  10. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  11. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  12. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  13. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  14. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  15. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  16. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  17. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202)

  18. "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore National Laboratory | Princeton Plasma Physics Lab November 7, 2012, 4:15pm Colloquia MBG Auditorium "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been qualified. NIF reached its design goal of 1.8 MJ and 500 TW of ultraviolet light in 2012. The Ignition Campaign

  19. To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair Dec. 1-20, 2006

    Energy Savers [EERE]

    From: ecchimento@comcast.net [mailto:ecchimento@comcast.net] Sent: Monday, January 29, 2007 6:28 PM To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair Dec. 1-20, 2006 Larry, Regarding the planned line outage, scheduled for Feb. 20 through Mar. 6, I am requesting that the residents near the plant be moved for the duration of the outage to protect their health. Would you include this comment also in the ongoing recorded discussion? Thank you. Elizabeth -----Original Message-----

  20. Materials Genome Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Materials Genome Initiative Materials Genome Initiative Credit: The White House Credit: The White House Lead Performers: -- National Renewable Energy Laboratory - Golden, CO -- Lawrence Berkeley National Laboratory - Berkeley, CA Project Term: October 2014 to July 2015 Project Background The development of new higher performing materials for buildings and building systems will be a key element of making the high-efficiency, high-performing buildings of the future. The

  1. TEC Working Group Topic Groups Manual Review

    Broader source: Energy.gov [DOE]

    This group is responsible for the update of DOE Manual 460.2-1, Radioactive Material Transportation Practices Manual.  This manual was issued on September 23, 2002, and establishes a set of...

  2. EA-1065: Proposed Construction and Operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify 14,900 square feet of an existing building (Building 64) at the U.S. Department of Energy's Lawrence Berkeley Laboratory to...

  3. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  4. EA-1087: Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify existing Building 51B at the U.S. Department of Energy's Lawrence Berkeley National Laboratory to install and conduct experiments...

  5. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  6. Audit of Renovation and New Construction Projects at Lawrence Livermore National Laboratory, WR-B-97-06

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: Report on "Audit of Renovation and New Construction Projects at Lawrence Livermore National Laboratory" BACKGROUND: Lawrence Livermore National Laboratory must periodically renovate existing facilities or build new ones to accomplish its missions or to provide infrastructure to support its missions. The objective of the audit was to determine if Livermore's proposed renovation and new construction projects

  7. Preprint Lawrence Berkeley Laboratory U N I VERS ITY 0 F CALI FOR N I A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 LBL-2378 1 Preprint Lawrence Berkeley Laboratory U N I VERS ITY 0 F CALI FOR N I A Physics Division Submitted to Astrophysical Journal SEP e 8 1987 An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation G. Smoot, S.M Levin, C. Witebsky, G. De Amici, and Y. Rephaeli July 1987 TWO-WEEK LOAN COPY t This is a Library Circulating Copy which may be borrowed for two weeks, Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 An

  8. EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA

    Broader source: Energy.gov [DOE]

    The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

  9. James M. Craw, Nicholas P. Cardo, Yun (Helen) He Lawrence Berkeley National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-Mortem of the NERSC Franklin XT Upgrade to CLE 2.1 James M. Craw, Nicholas P. Cardo, Yun (Helen) He Lawrence Berkeley National Laboratory Berkeley, CA craw@nersc.gov, cardo@nersc.gov, yhe@lbl.gov And Janet M. Lebens Cray, Inc. jml@cray.com May 4, 2009 Atlanta CUG This presentation will discuss the lessons learned of the events leading up to the production deployment of CLE 2.1 and the post install issues experienced in upgrading NERSC's XT4(tm) system called Franklin CUG 2008 page 2

  10. To: Mansueti, Lawrence Subject: DCPSC Complaint DOE Docket #EO-05-01

    Energy Savers [EERE]

    Sent: Tuesday, November 15, 2005 6:18 PM To: Mansueti, Lawrence Subject: DCPSC Complaint DOE Docket #EO-05-01 Attached please find our letter regarding the DCPSC complaint that we ask you to please file for consideration in DOE's Docket #EO-05-01. Thank you. Elizabeth Chimento and Poul Hertel 1200 North Pitt Street Alexandria, Virginia November 14, 2005 Joseph T. Kelliher, Chairman Federal Energy Regulatory Commission 888 First Street, N.E. Washington, D.C. 20426 Re: District of Columbia Public

  11. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  12. Low-Cost Solutions for Dynamic Window Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 *

  13. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  14. Durable Joining of Dissimilar Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durable Joining of Dissimilar Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryOne barrier to solid oxide fuel cell manufacturing is forming robust joints between materials that don't chemically bond with each other and/or differ greatly in form or particle size, such as metals and ceramics. Berkeley Lab scientists solve this problem by decorating the surface of the more ductile material with particles of the less ductile material via

  15. TEC Working Group Topic Groups | Department of Energy

    Energy Savers [EERE]

    Topic Groups TEC Working Group Topic Groups TEC Topic Groups were formed in 1991 following an evaluation of the TEC program. Interested members, DOE and other federal agency staff meet to examine specific issues related to radioactive materials transportation. TEC Topic Groups enable a small number of participants to focus intensively on key issues at a level of detail that is unattainable during the TEC semiannual meetings due to time and group size constraints. Topic Groups meet individually

  16. Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility

    SciTech Connect (OSTI)

    Radev, R

    2009-09-04

    In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

  17. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  18. January 20, 2011, HSS Union Focus Group Meeting - Attendees

    Office of Environmental Management (EM)

    (HSS) January 20, 2011 HSS FOCUS GROUP Meeting Attendees HSS Attendees: Podonsky, Glenn Eckroade, Bill Campagnone, Mari-Jo Ardaiz, Michael Berry, Tracey Boulden III, John S Brewer, Stephanie Donovan, Dick Lawrence, Andrew Lewis, Charles Lingan, Robert Worthington, Pat McArthur, Bill Roege, William Simonson, Steven Staker, Thomas Stone, Barbara Thompson, Martha Weston-Dawkes, Andy Wilcher, Larry Lily Alexander Mark Do Heidi Ascosi National Training Center - Call-in: Gasperow, Lesley Nelson, Bob

  19. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  20. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  1. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL's use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  2. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL`s use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  3. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    DOE R&D Accomplishments [OSTI]

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  4. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  5. Galaxy groups

    SciTech Connect (OSTI)

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ?} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of ?{sub matter}?0.15 in a flat topology, with a 68% probability of being less than 0.44.

  6. Symposium on high temperature and materials chemistry

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  7. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  8. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics Implementation, GHG inventory, Market analysis, Policiesdeployment programs,...

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS RESEARCH Systematic reduction of sign errors in many-body calculations of atoms and molecules M. Bajdich,1 M. L. Tiago,1 R. Q. Hood,2 P. R. C. Kent,3 F. A. Reboredo1 1Materials Science and Technology Division, Oak Ridge National Laboratory 2Condensed Matter and Materials Division, Lawrence Livermore National Laboratory 3Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: We have developed a new systematically convergeable algorithm - Self-Healing Diffusion

  10. TEC Working Group Topic Groups Archives Training - Medical Training |

    Office of Environmental Management (EM)

    Department of Energy Training - Medical Training TEC Working Group Topic Groups Archives Training - Medical Training The TEC Training and Medical Training Issues Topic Group was formed to address the training issues for emergency responders in the event of a radioactive material transportation incident. The Topic Group first met in 1996 to assist DOE in developing an approach to address radiological emergency response training needs and to avoid redundancy of existing training materials. The

  11. XSD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging (IMG) Primary Contact: Francesco De Carlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences The IMG group designs, supports, and operates...

  12. Method of improving superconducting qualities of fabricated constructs by shock preprocessing of precursor materials

    DOE Patents [OSTI]

    Nellis, William J. (Berkeley, CA); Maple, M. Brian (Del Mar, CA)

    1992-01-01

    Disclosed is a method of improving the physical properties of superconducting materials which comprises: a. applying a high strain rate deformation to said materi The United States Government has rights in this invention pursuant to Contract No. W-7405-ENG-48 between the U.S. Department of Energy and the University of California, for the operation of Lawrence Livermore National Laboratory.

  13. Schuck Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Archive Research Members Publications Contacts The Schuck Research Group Home News Archive Research Members Publications Contacts Tweet We focus on investigating and controlling light-matter interactions at the nanoscale, and using light to probe local environments. We are particularly interested in understanding the nano- and meso-scale interactions between localized states in materials, and relating these properties with material and device functionality. We do this by correlating

  14. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and

  15. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and

  16. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and

  17. Skeleton Technologies Group | Open Energy Information

    Open Energy Info (EERE)

    Group Place: Sweden Product: Manufacturers of supercapacitors and other composite materials. References: Skeleton Technologies Group1 This article is a stub. You can help...

  18. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  19. Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

    1997-04-01

    Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

  20. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  1. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    SciTech Connect (OSTI)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  2. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  3. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    SciTech Connect (OSTI)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  4. Fiscal Year 2011 Audit of the Work Performed Under the Work for Others Program at the Lawrence Berkeley National Laboratory

    Office of Environmental Management (EM)

    Audits and Inspections Audit Report Fiscal Year 2011 Audit of the Work Performed Under the Work for Others Program at the Lawrence Berkeley National Laboratory OAS-L-13-10 June 2013 Department of Energy Washington, DC 20585 June 24, 2013 MEMORANDUM FOR THE MANAGER, BERKLEY SITE OFFICE FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Fiscal Year 2011 Audit of the Work Performed Under the Work for

  5. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  6. NERSC, LBL Researchers Share Materials Science Advances at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, LBL Researchers Highlight Materials Science at APS NERSC, LBL Researchers Share Materials Science Advances at APS March 3, 2014 APSlogo NERSC and Lawrence Berkeley National Laboratory (LBL) are well represented this week at the American Physical Society (APS) March meeting. Some 10,000 physicists, scientists, and students are expected to attend this year's meeting, which takes place March 3-7 in Denver, CO. Physicists and students will report on groundbreaking research from industry,

  7. Surface-Modified Active Materials for Lithium Ion Battery Electrodes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Active Materials for Lithium Ion Battery Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed a new fabrication technique for lithium ion battery electrodes that lowers binder cost without sacrificing performance and reliability. Description The innovative process evaporates a thin polymer coating on the active materials' particles and mixes these coated particles

  8. Materials Modeling for High-Performance Radiation Detectors (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Materials Modeling for High-Performance Radiation Detectors Citation Details In-Document Search Title: Materials Modeling for High-Performance Radiation Detectors Abstract not provided. Authors: Lordi, V. [1] + Show Author Affiliations Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) Publication Date: 2014-10-30 OSTI Identifier: 1178392 Report Number(s): LLNL-TR--663544 DOE Contract Number: AC52-07NA27344 Resource Type: Technical Report

  9. Helms Research Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helms Group Home Research Members Publications Collaborations Connect Physical Organic Materials Chemistry Our research is devoted to understanding transport phenomena in mesostructured systems assembled from organic, organometallic, polymeric and nanocrystalline components. Enhanced capabilities relevant to energy, health, water, and food quality are enabled by our unique approaches to the modular design of their architectures and interfaces.

  10. Microsoft Word - Tribal Group Call 4-11 final.doc

    Office of Environmental Management (EM)

    April 11, 2006 Participants: Jay Jones, Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), chaired the session. Other Topic Group members included Richard Arnold (Pahrump Paiute Tribe/Consolidated Group of Tribes and Organizations), Vicki Best (Bechtel SAIC Company [BSC]), Kevin Blackwell (Federal Railroad Administration), Barbara Durham (Timbisha Shoshone Tribe), Bob Fry (National Conference of State Legislatures), Steve Grey (Lawrence Livermore National

  11. The Lawrence Berkeley National Laboratory ES&H self-assessmentprogram

    SciTech Connect (OSTI)

    Chernowski, John G.

    2003-02-11

    Lawrence Berkeley National Laboratory (Berkeley Lab) is a multiprogram national research facility operated by the University of California for the U.S. Department of Energy (DOE). DOE environment, safety, and health (ES&H) policy requires that all Berkeley Lab work be performed safely, with minimal adverse impact on the public and the environment. To facilitate safe and responsible work, Berkeley Lab divisions, directorates, and select departments must develop and implement Integrated Safety Management (ISM) plans. Berkeley Lab operates a formal internal ES&H self-assessment process to evaluate ES&H programs and policies and assure that ISM is implemented at all levels of activities and operations. ISM requires that: (1) work is defined, (2) hazards are identified, (3) controls are developed and implemented, (4) work is performed as authorized, and (5) feedback and improvement are continuous. These five ISM core functions are sustained by applying the seven guiding principles of ISM. These are: (1) line management responsibility and accountability for ES&H, (2) clear ES&H roles and responsibilities, (3) competency commensurate with responsibilities, (4) an ongoing balance between safety on the one hand and research and operational priorities on the other, (5) identification of standards and requirements, (6) hazard controls tailored to the work, and (7) operations authorization. Self-assessment at Berkeley Lab is a continuous process of information gathering and evaluation. The goals of the self-assessment program are: (a) Ensure that work activities and operations are done safely and in a manner that maximizes public and environmental protection. (b) Ensure that the five core functions and seven guiding principles of integrated safety management are employed effectively in work planning and performance. (c) Meet regulatory requirements for DOE oversight, self-assessment, and an integrated safety management system. (d) Meet contractual requirements for ES&H performance and self-assessment. (Berkeley Lab operates under DOE/University of California Contract DE-AC03-7600098, Appendix F.)

  12. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  13. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  14. First-Of-Its-Kind Search Engine Will Speed Materials Research | Department

    Energy Savers [EERE]

    of Energy Of-Its-Kind Search Engine Will Speed Materials Research First-Of-Its-Kind Search Engine Will Speed Materials Research November 3, 2011 - 1:05pm Addthis Washington, D.C. - Researchers from the Department of Energy's (DOE's) Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT) jointly launched today a groundbreaking new online tool called the Materials Project, which operates like a "Google" of material properties,

  15. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect (OSTI)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  16. TEC Working Group Topic Groups Rail | Department of Energy

    Office of Environmental Management (EM)

    Rail TEC Working Group Topic Groups Rail The Rail Topic Group has the responsibility to identify and discuss current issues and concerns regarding rail transportation of radioactive materials by the Department of Energy (DOE). The group's current task is to examine different aspects of rail transportation including inspections, tracking and radiation monitoring, planning and process, and review of lessons learned. Ultimately, the main goal for members will be to assist in the identification of

  17. TEC Working Group Topic Groups Archives Communications | Department of

    Office of Environmental Management (EM)

    Energy Communications TEC Working Group Topic Groups Archives Communications The Communications Topic Group was convened in April 1998 to improve internal and external strategic level communications regarding DOE shipments of radioactive and other hazardous materials. Major issues under consideration by this Topic Group include: - Examination of DOE external and internal communications processes; - Roles and responsibilities when communicating with a diverse range of stakeholders; and -

  18. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Goyal, Amit (Oak Ridge National Laboratory)

    2012-06-28

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  19. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Groups Research Group Homepages: Nuclear Theory Group Dr. Sherry Yennello's Research Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Group...

  20. Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2004-02-27

    This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

  1. George F. Chapline EGG-M-88285 Lawrence Livermore National Laboratory

    Office of Scientific and Technical Information (OSTI)

    ... material which can survive the large neutron fluence during the required operating life. ... Therefore there is some room for optimism with respect to being able to operate fission ...

  2. High Risk Material Studies

    Broader source: Energy.gov [DOE]

    Spent Fuel Working Group Report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities.

  3. Microsoft PowerPoint - 08 Lawrence 2010 DOE PM Workshop_EO 13514_03-01-10_presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementing Executive Order 13514 p g Federal Leadership in Environmental, Energy, and Economic Performance f At the Department of Energy Andrew Lawrence Office of Nuclear Safety, Quality y, Q y Assurance, and Environment 1 I. E.O. 13514: Goals Goals Requirements Deadlines Deadlines II. DOE's Implementation Strategy Governance Model Strategic Sustainability Performance Plan III. Meeting E.O. Goals C DOE S Current DOE Status Key issues for Project Managers 2 Overview "T t bli h i t t d t t

  4. Heolo Group | Open Energy Information

    Open Energy Info (EERE)

    Product: Yunnan province based thermostable LiMn2O4 cathode material producer for Lithium secondary batteries. References: Heolo Group1 This article is a stub. You can help...

  5. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA

  6. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  7. Producing Beneficial Materials from Biomass and Biodiesel Byproducts -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Producing Beneficial Materials from Biomass and Biodiesel Byproducts Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryResearchers at Berkeley Lab have created a process to produce olefins from polyols that may be biomass derived. The team is also the first to introduce a method of producing high purity allyl alcohol at a large scale by

  8. Highly Efficient Multigap Solar Cell Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Efficient Multigap Solar Cell Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Yu, K. M., Walukeiwicz, W., Wu J., Shan, W., Beeman, J. W., Scarpulla, M. A., Dubon, O. D., Becla, P. "Diluted II-VI Oxide Semiconductors with Multiple Band Gaps," Physical Review Letters, Vo. 91, No. 24, Dec. 12, 2003. (178 KB) Technology Marketing Summary Scientists at Berkeley Lab have invented multiband gap semiconducting

  9. Water Based Process for Fabricating Thermoelectric Materials - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Find More Like This Return to Search Water Based Process for Fabricating Thermoelectric Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication LBNL Commercial Analysis Report (1,391 KB) Technology Marketing Summary Berkeley Lab scientists Rachel Segalman, Jeffrey Urban and Kevin See have invented a water based process to make thermoelectric films. The resulting composite film

  10. Full-Spectrum Semiconducting Material for Affordable, Highly Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells - Energy Innovation Portal Full-Spectrum Semiconducting Material for Affordable, Highly Efficient Solar Cells Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication N. Lopez, L. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, "Engineering the Electronic Band Structure for Multiband Solar Cells," Phys. Rev. Lett. 106, 128701 (2011). (863 KB) Technology Marketing Summary Wladyslaw Walukiewicz and Kin Man Yu of

  11. Meet CMI Researcher Ed Jones | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ed Jones CMI focus area deputy leader Ed Jones CMI researcher Ed Jones has been at Lawrence Livermore National Laboratory (LLNL) for 22 years, where his work has centered on the analysis, engineering, reliability and performance of energy, environmental, and national asset systems, including infrastructure and materials. He has developed extensive capabilities in the application of probabilistic methods and models to complex performance problems. Recent innovations have been applied to carbon

  12. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Alfredo Caro Image of Alfredo Caro Contact Information MST-8, MS G755 Los Alamos National Laboratory 505-665-2083 Bio Alfredo Caro joined Los Alamos National Laboratory in March 2010, coming from Lawrence Livermore National Lab, where he worked for seven years in fusion and fission computational materials science. While completing his Ph.D. at the Swiss Federal Institute of Technology, Caro's research covered experimental work on radiation damage; later, during his years at

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Lectures & Tutorials Lectures from the LMI-EFRC "New Approaches to Full Spectrum Solar Energy Conversion" Webinar, September 3, 2015, Caltech Harry A. Atwater Quantum Dot Luminescent Concentrators Paul Alivisatos, Lawrence Berkeley National Laboratory John Rogers Control of Thermal Radiation Using Photonic Structures for Energy Applications Shanhui Fan, Stanford University Eli Yablonovitch Printing Functional Materials Jennifer Lewis, Harvard lmi logo Panel

  14. Working Group Reports Summary of Single-Column Model Intensive Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports Summary of Single-Column Model Intensive Observation Period Workshop at Annual Atmospheric Radiation Measurement Science Team Meeting D. A. Randall Department of Atmospheric Science Colorado State University Fort Collins, Colorado R. T. Cederwall Lawrence Livermore National Laboratory Livermore, California * Study previous observation simulation system experiments (OSSEs) (i.e., Bill Frank, Pennsylvania State University [PSU]) and conduct OSSEs as necessary to evaluate

  15. Building A Science DMZ Eli Dart, Network Engineer ESnet Network Engineering Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Science DMZ Eli Dart, Network Engineer ESnet Network Engineering Group Joint Techs, Winter 2013 Honolulu, HI January 13, 2013 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Outline of the Afternoon Eli Dart, ESnet * Science DMZ architecture, security Brian Tierney, ESnet * Data transfer node, tools overview Raj Kettimuthu, ANL and University of Chicago * Globus Online -Short break- Jason Zurawski, Internet2 * perfSONAR Guy Almes, Texas A&M University *

  16. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  17. Ditec Automation Group | Open Energy Information

    Open Energy Info (EERE)

    Name: Ditec Automation Group Place: Mexico City, Mexico Product: Mexico City-based manufacturing and installation company. Focused on material handling, industrial ovens,...

  18. TEC Working Group Topic Groups Archives Consolidated Grant Topic Group |

    Office of Environmental Management (EM)

    Department of Energy Consolidated Grant Topic Group TEC Working Group Topic Groups Archives Consolidated Grant Topic Group The Consolidated Grant Topic Group arose from recommendations provided by the TEC and other external parties to the DOE Senior Executive Transportation Forum in July 1998. It was proposed that the consolidation of multiple funding streams from numerous DOE sources into a single grant would provide a more equitable and efficient means of assistance to States and Tribes

  19. NREL: Photovoltaics Research - Materials Science Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Staff The Materials Science staff members at the National Renewable Energy Laboratory work within one of four groups: the Materials Physics Group, the Microscopy & Imaging Group, the Interfacial & Surface Science Group, and the Thin Film Material Science & Processing Group. Access the staff members' background, areas of expertise, and contact information below. Nancy Haegel Center Director Paula Robinson Administrative Professional Materials Physics Angelo Mascarenhas Group

  20. Environmental Assessment and Corrective Measures Study Report for Remediating Contamination at Lawrence Berkeley National Laboratory Regulated under the Resource Conservation and Recovery Act

    Office of Environmental Management (EM)

    527 Environmental Assessment and Corrective Measures Study Report for Remediating Contamination at Lawrence Berkeley National Laboratory Regulated under the Resource Conservation and Recovery Act September 2005 United States Department of Energy Office of Environmental Management Office of Science EA & RCRA CMS Report i September 2005 CONTENTS Page LIST OF ABBREVIATIONS...................................................................................................... viii EXECUTIVE

  1. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  2. Using Energy-Filtered TEM to Solve Practical Materials Problems With Inspirations from Gareth Thomas.

    Office of Scientific and Technical Information (OSTI)

    1070C Using Energy-Filtered TEM to Solve Practical Materials Problems With Inspirations from Gareth Thomas. Joshua D. Sugar1, Farid El Gabaly1, William Chueh2, Kyle Fenton3, Paul G. Kotula3, Velimir Radmilovic6, Norman C. Bartelt1, Joseph T. McKeown4, Andreas M. Glaeser5, and Ron Gronsky5. 1 Sandia National Laboratories, Livermore, CA, USA. 2. Materials Science and Engineering, Stanford University, Stanford, CA, USA. 3. Sandia National Laboratories, Albuquerque, NM, USA. 4 Lawrence Livermore

  3. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  4. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  5. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  6. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  7. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  8. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  9. Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details, helping users to branch out to other related sources. Titles of the projects provide clues both to the imaging focus of the research and the scientific discipline for which the visualizations are intended. Only a few of the many titles/images/projects are listed here: 1) Hybrid Parallelism for Volume Rendering at Large Scale Analysis of Laser Wakefield Particle Acceleration Data; 2) Visualization of Microearthquake Data from Enhanced Geothermal Systems; 3) PointCloudXplore: Visualization and Analysis of 3D Gene Expression Data; 4) Visualization of Quantum Monte-Carlo simulations; 5) Global Cloud Resolving Models; 6) Visualization of large-scale GFDL/NOAA climate simulations; 7) Direct Numerical Simulation of Turbulent Flame Quenching by Fine Water Droplets; 8) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 9) Sunfall: Visual Analytics for Astrophysics; 10) Fast Contour Descriptor Algorithm for Supernova Image Classification; 11) Supernova Recognition Using Support Vector Machines; 12) High Performance Visualization - Query-Driven Network Traffic Analysis; 13) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 14) Life Sciences: Cell Division of Caulobacter Crescentus; 15) Electron Cloud Simulations.

  10. Transuranic Waste Transportation Working Group Agenda

    Office of Environmental Management (EM)

    States Energy Board Joint Meeting of the Radioactive Materials Transportation Committee and the Transuranic Waste Transportation Working Group The Hilton Knoxville Knoxville, Tennessee May 15, 2012 Tuesday, May 15, 2012 8:30 a.m. Breakfast 9:30 a.m. Welcome / Opening Remarks / Introductions - Christopher Wells, Southern States Energy Board - Sandra Threatt, Chair, SSEB Radioactive Materials Transportation Working Group - Elgan Usrey, Chair, SSEB Transuranic Waste Transportation Working Group

  11. A BRIEF DESCRIPTION OF THE SMALL-SCALE SAFETY TESTING SYSTEMS AT LAWRENCE LIVERMORE NATIONAL LABORATORY

    SciTech Connect (OSTI)

    HSU, P C

    2008-07-31

    Small-scale sensitivity testing is important for determining material response to various stimuli including impact, friction, and static spark. These tests, briefly described below, provide parameters for safety in handling. ERL Type 12 drop hammer equipment at LLNL, shown in Figure 1, was used to determine the impact sensitivity. The equipment includes a 2.5-kg drop weight, a striker (upper anvil, 2.5 kg for solid samples and 1.0 kg for liquid samples), a bottom anvil, a microphone sensor, and a peakmeter. For each drop, sample (35 mg for solid or 45 microliter for liquid) is placed on the bottom anvil surface and impacted by the drop weight from different heights. Signs of reactions upon impact are observed and recorded. These signs include noises, flashes or sparks, smoke, pressure, gas emissions, temperature rise due to exothermic reaction, color change of the sample, and changes to the anvil surface (noted by inspection). For solid samples, a 'GO' was defined as a microphone sensor (for noise detection) response of {ge} 1.3 V as measured by a peakmeter. The higher the DH{sub 50} values, the lower the impact sensitivity. The method used to calculate DH{sub 50} values is the 'up and down' or Bruceton method. PETN and RDX have impact sensitivities of 15 and 35 cm, respectively. TATB has impact sensitivity more than 177 cm. For liquid samples, a 'GO' was determined by the noise levels as measured by the peakmeter, appearance of flashes, temperature rise of the anvil, and visual inspection of the anvil surface. Two liquid samples TMETN and FEFO have impact sensitivities of 14 and 32 cm, respectively. Figure 2 shows a 'GO' event observed during the impact sensitivity test; flashes appeared as the drop weight impacted the sample. A BAM friction sensitivity test machine, as shown in Figure 3, was used to determine the frictional sensitivity. The system uses a fixed porcelain pin and a movable porcelain plate that executes a reciprocating motion. Weight affixed to a torsion arm allows for a variation in applied force between 0.5 kg to 36.0 kg. The relative measure of the frictional sensitivity of a material is based upon the smallest load (kg) at which reaction occurs for a 1-in-10 series of attempts. The lower the load values, the higher the frictional sensitivity. PETN has a frictional sensitivity of 6.4 kg. The static spark machine at LLNL is used to evaluate the electrostatic discharge hazards (human ESD) associated with the handling of explosives. The machine was custom-built almost 30 years ago and consists of a capacitor bank (up to 20,000 pF), a voltage meter, and a discharge circuit, as shown in Figure 4. An adjustable resistor up to 510 ohms (chosen to simulate human body) is wired to the discharge circuit. A 5-mg sample is placed in a Teflon washer sealed to a steel disc and covered with a Mylar tape. High static voltage (up to 10 kv) is applied and discharged to the sample. Evidence of reaction is judged from the condition of Mylar tape, smokes, and color change of the sample. Voltage, capacitance, and resistance can be adjusted to achieve the desired static energy. The results obtained are expressed as a zero in 10 or one-in-ten at a specific voltage and joules. One reaction in ten trials at {le} 0.25 joules is considered spark-sensitive. Primary explosives show reaction at 0.1 joule.

  12. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  13. Post-rehabilitation flow monitoring and analysis of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Brandstetter, E.R.; Littlefield, D.C.; Villegas, M.

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) is operated by the University of California under contract with the U.S. Department of Energy (DOE). The Livermore site, approximately 50 miles southeast of San Francisco, occupies 819 acres. So far, there have been three phases in an assessment and rehabilitation of the LLNL sanitary sewer system. A 1989 study that used data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows. A Sanitary Sewer Rehabilitation (SSR) project, from October of 1991 to March of 1996, in which the system was assessed and rehabilitated. The third study is the post-rehabilitation assessment study that is reported in this document. In this report, the sanitary sewer system is described, and the goals and results of the 1989 study and the SSR project are summarized. The goals of the post-rehabilitation study are given and the analytical procedures and simulation model are described. Results, conclusions, and recommendations for further work or study are given. Field operations are summarized in Appendix A. References are provided in Appendix B.

  14. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    SciTech Connect (OSTI)

    Stewart, Jeffrey S.

    2015-07-28

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. To make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.

  15. Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs), Subpart H

    SciTech Connect (OSTI)

    Hall, L.; Biermann, A

    2000-06-27

    As a Department of Energy (DOE) Facility whose operations involve the use of radionuclides, Lawrence Livermore National Laboratory (LLNL) is subject to the requirements of 40 CFR 61, the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Subpart H of this Regulation establishes standards for exposure of the public to radionuclides (other than radon) released from DOE Facilities (Federal Register, 1989). These regulations limit the emission of radionuclides to ambient air from DOE facilities (see Section 2.0). Under the NESHAPs Subpart H Regulation (hereafter referred to as NESHAPs), DOE facilities are also required to establish a quality assurance program for radionuclide emission measurements; specific requirements for preparation of a Quality Assurance Program Plan (QAPP) are given in Appendix B, Method 114 of 40 CFR 61. Throughout this QAPP, the specific Quality Assurance Method elements of 40 CFR 61 Subpart H addressed by a given section are identified. In addition, the US Environmental Protection Agency (US EPA) (US EPA, 1994a) published draft requirements for QAPP's prepared in support of programs that develop environmental data. We have incorporated many of the technical elements specified in that document into this QAPP, specifically those identified as relating to measurement and data acquisition; assessment and oversight; and data validation and usability. This QAPP will be evaluated on an annual basis, and updated as appropriate.

  16. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments [OSTI]

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  17. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  18. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  19. Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June 26, 2012 Jack Zhengji NERSC Training Event 09:00 - 12:00 PST June 26, 2012 Concurrently presented on the web and at NERSC's Oakland Scientific Facility Attendance: 45 Chemistry and Material Sciences Applications Zhengji Zhao, NERSC User Services Group Jack Deslippe, NERSC User Services Group The first hour of the training is targeted at beginners. We will show you how to get started running material

  20. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747

  1. Molten-Salt-Based Growth of Group III Nitrides

    DOE Patents [OSTI]

    Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  2. THE ODTX SYSTEM FOR THERMAL IGNITION AND THERMAL SAFETY STUDY OF ENERGETIC MATERIALS

    SciTech Connect (OSTI)

    Hsu, P C; Hust, G; Howard, M; Maienschein, J L

    2010-03-03

    Understanding the response of energetic material to thermal event is very important for the storage and handling of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) can precisely measure times to explosion and minimum ignition temperatures of energetic materials at elevated temperatures. These measurements provide insight into the relative ease of thermal ignition and allow for the determination of kinetic parameters. The ODTX system can potentialy be a good tool to measure violence of the thermal ignition by monitoring the size of anvil cavity. Recent ODTX experimental data on various energetic materials (solid and liquids) are reported in this paper.

  3. Hydrogen Pipeline Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations conducting hydrogen pipeline research for the Department of Energy to better understand and minimize hydrogen embrittlement and to identify improved and new materials for hydrogen pipelines. Hydrogen Pipeline Working Group Workshops: September 25-26,

  4. JLF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLF User Group NIF and Jupiter User Group Meeting 2016 The 2016 NIF User Group Meeting will take place the first week of February. The exact dates are Sunday evening, January 31th,...

  5. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials FY 2013 Progress Report ii CONTENTS INTRODUCTION ....................................................................................................................................... 1 Project 18516 - Materials for H1ybrid and Electric Drive Systems ...................................................... 4 Agreement 19201 - Non-Rare Earth Magnetic Materials ............................................................................ 4 Agreement 23278 - Low-Cost

  6. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science /science-innovation/_assets/images/icon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at

  7. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  8. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  9. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    SciTech Connect (OSTI)

    Smith, A.R.; Hurley, D.L.

    1991-08-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite have been studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Bakground Facilities, in a multi-laboratory collaboration coordinated by Dr. Thomas Parnell's team at the Marshall Spacecraft Center, Huntsville, Alabama.

  10. Dark Colored Cool Pigments for Materials Exposed to the Sun - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Dark Colored Cool Pigments for Materials Exposed to the Sun Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Zalich, M., Berdahl, P., "Fluorescent Pigments for High-Performance Cool Roofing," 2014 Building Technologies Office Peer Review, U.S. Department of Energy, Office of Energy Efficiency & Renewable

  11. Lawrence Berkeley National Laboratory

    National Nuclear Security Administration (NNSA)

    7%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  12. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships Supplier Resources News Media Contacts Media Library Publications Lab Report Social Media About Organization Management and Sponsors History Visiting Directions...

  13. Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    to bringing the facility on-line smoothly so it will provide the DOE with cost-effective solar power for years to come."

    "We are excited to move to the next phase and bring...

  14. lawrence berkeley laboratories

    National Nuclear Security Administration (NNSA)

    4%2A en Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge http:nnsa.energy.govblogbay-area-national-labs-team-tackle-long-standing-auto...

  15. Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    en Sandia California works on nuclear weapon W80-4 Life Extension Program http:www.nnsa.energy.govblogsandia-california-works-nuclear-weapon-w80-4-life-extension-program...

  16. Ernest Orlando Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Citation Claire E. Max 2004 Physics: For her contributions to the theory of laser guide star adaptive optics and its application in ground-based astronomy to correct telescopic...

  17. Lawrence Berkeley Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e UNIVERSITY OF CALIFORNIA Presented at the International Workhop on Physics and Engineering in Computerized Multidimensional Imaging and Processing, Irvine, CA, April 4, 1986; and to be published in Journal of the SPIE RECENT DEVELOPMENTS IN POSITRON EMISSION TOMOGRAPHY (PET) INSTRUMENTATION S.E. Derenzo and T.F. Budinger April 1986 Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 DlSTRlBUTiON OF THIS DOCUMENT bs UMLtMlTEO LEGAL NOTICE This book was prepared as an

  18. Lawrence Berkeley National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Research Staff | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff Research staff members in NREL's Materials Science Center are aligned within four groups: Materials Physics, Analytical Microscopy and Imaging Science, Interfacial and Surface Science, and Thin-Film Materials Science and Processing. For lead researcher contacts, see our research areas. For our business contact, see Work with Us. Photo of Nancy Haegel Nancy Haegel Center Director, Materials Science Center Email | 303-384-6548 Materials Physics Photo of Angelo Mascarenhas Angelo

  1. Ritu Sahore > Graduate Student - Giannelis Group > Researchers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate Student - Giannelis Group rs758@cornell.edu Ritu Sahore grew up in Punjab, India, and recieved her B.Tech.(Hons.) in Metallurgical and Materials Engineering from...

  2. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  3. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  4. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  5. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  6. Appendix 3. Task Force Meeting Agendas and Materials Reviewed by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Task Force Meeting Agendas and Materials Reviewed by the Hubs+ Task Force December 3-4 Task Force Meeting Agenda Hubs+ Task Force Meeting Agenda December 3-4, 2013 Lawrence Livermore National Laboratory HPCIC, Yosemite Room 7000 East Avenue Livermore, CA Tuesday, December 3 4:00-4:15 PM Introductions and Overview of Agenda Cherry Murray, TF Chair 4:15-5:30 PM Hubs Management Council Paper Presentation Pat Dehmer, Acting Director of Science *Pete Lyons, Assistant Secretary for Nuclear Energy

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Conductivity of Ferroelectric Domain Walls in BiFeO3 Peter Maksymovych,1 Jan Seidel,2-3 Ying Hao Chu,4 Pingping Wu,5 Arthur P. Baddorf,1 Long-Qing Chen,5 Sergei V. Kalinin,1 and Ramamoorthy Ramesh2-3 1 Center for Nanophase Materials Science, Oak Ridge National Laboratory 2 Lawrence Berkeley National Laboratory 3 University of California, Berkeley 4 National Chiao Tung University, Taiwan 5 Pennsylvania State University Achievement Two years ago, electrical conductivity was discovered in

  8. Women's Employee Resource Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Women's Employee Resource Group The Women's Employee Resource Group encourages women's contributions, professional development opportunities, and shared support across the Laboratory. Contact Us Office of Diversity and Strategic Staffing (505) 667-2602 Email Computational scientist Hai Ah Nam, a member of the Women's Employee Resource Group Computational scientist Hai Ah Nam, a member of the Women's Employee Resource Group, works on the Laboratory's new Trinity supercomputing system.

  9. JLab Users Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Users Group Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? JLab Users Group User Liaison Home Users Group Program Advisory Committee User/Researcher Information print version UG Resources Background & Purpose Users Group Wiki By Laws Board of Directors Board of Directors Minutes Directory of Members Events At-A-Glance Member Institutions News Users Group Mailing

  10. Moltech Power Systems Group MPS Group | Open Energy Information

    Open Energy Info (EERE)

    Moltech Power Systems Group MPS Group Jump to: navigation, search Name: Moltech Power Systems Group (MPS Group) Place: China Product: China-based subsidiary of Shanghai Huayi Group...

  11. Hanergy Holdings Group Company Ltd formerly Farsighted Group...

    Open Energy Info (EERE)

    Hanergy Holdings Group Company Ltd formerly Farsighted Group aka Huarui Group Jump to: navigation, search Name: Hanergy Holdings Group Company Ltd (formerly Farsighted Group, aka...

  12. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pion Group

  13. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Institute for Materials Science x

  14. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect (OSTI)

    A., B

    2008-07-31

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

  15. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  16. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-02-01 08:06:40

  17. Pending Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending Jobs by Group Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-02-01 08:07:15

  18. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  19. Pending Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending Jobs by Group Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:14...

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the August meeting, the Focus Group Secretary continues to work on deleting the language proposed by the QA Sub-group that would have divided the section on methods into one...

  1. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  2. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  3. USD Catalysis Group for Alternative Energy

    SciTech Connect (OSTI)

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  4. TEC Communications Topic Group

    Office of Environmental Management (EM)

    procurement - Routing criteriaemergency preparedness Tribal Issues Topic Group * TEPP Navajo Nation (Tom Clawson) - 1404 - Needs Assessment * Identified strengths and...

  5. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  6. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-02-01 08:07:17

  7. SSRL ETS Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STANFORD SYNCHROTRON RADIATION LABORATORY Stanford Linear Accelerator Center Engineering & Technical Services Groups: Mechanical Services Group Mechanical Services Group Sharepoint ASD: Schedule Priorites Accelerator tech support - Call List Documentation: Engineering Notes, Drawings, and Accelerator Safety Documents Mechanical Systems: Accelerator Drawings Accelerator Pictures Accelerator Vacuum Systems (SSRL) LCW Vacuum Projects: Last Updated: February 8, 2007 Ben Scott

  8. Nilsson Group Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stanford top slac line home group research line Welcome to the Nilsson group. Primary research interests in the Nilsson group includes using x-ray spectroscopies to understand: The Structure of water Bond breakage and formation during catalytic reactions on surfaces The fundamental studies of electrochemistry for energy conversion

  9. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  10. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  11. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  12. TEC Working Group Topic Groups Routing Key Documents | Department...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Routing Key Documents KEY DOCUMENTS PDF icon Proposed Task Plan - Routing Topic Group More Documents & Publications TEC Working Group...

  13. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and reservoir simulation were completed as prerequisites for design of efficient ASP flood patterns. Characterizing the complex reservoir geology that identifies the geologic conditions that will optimize oil recoveries for expansion of the ASP pilots in the Bridgeport and Cypress sandstones to other areas of Lawrence Field is the primary objective of this project. It will permit evaluation of efficiency of oil recovery from Bridgeport and Cypress sandstone reservoirs using ASP technology. Additionally evaluation of similar Pennsylvanian and Chesterian reservoirs shows that it is likely that ASP flood technology can be successfully applied to similar reservoirs in the Illinois Basin as well as to other U.S. reservoirs. Chemical flooding was introduced in stages with the first flood initiated in 2010 and a second offset pilot project initiated during 2011. Rex Energy Corporation is reporting a positive response on its ASP Middagh pilot project in the Pennsylvanian Bridgeport B reservoir, Lawrence Field. Oil response in the 15 acre flood has continued to show an increase in oil cut from 1% to 12%. Total pattern production increased from 16 BOPD and stabilized at a range of 65-75 BOPD in the last three months of 2011. Peak production rose to 100 + BOPD. Oil cut in the pilot increased for 1.0% to ~ 12.0% with an individual well showing oil cuts greater than 20%. A second, 58 acre pilot (Perkins-Smith) adjacent to and likely in communication with the Middagh pilot has been initiated. Preliminary brine injection has been implemented and ASP injection was initiated in mid-2012. Response is expected by mid-2013 with peak recovery expected by late 2013. Rex Energy is projecting full scale expansion with the next step of development being a 351 acre project scheduled to begin in mid-2013. Preliminary development has been initiated in this Delta Unit area located in the south half of section 32, T4N, R12W.

  14. Materials Synthesis and Integrated Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 Materials Synthesis and Integrated Devices We conduct basic and applied research in areas related to applied energy programs and a variety of problems relevant to the weapons program. Contact Us Group Leader Andrew Dattelbaum Email Deputy Group Leader George Goff Email Deputy Group Leader Jeff Willis Email Group Office (505) 665-9330 Dipen Sinha and team win Richard P. Feynman Innovation Prize Los Alamos researcher Dipen Sinha and team were recognized with the Richard P. Feynman Innovation

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on December 17, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:07 PM on May 26, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Taffy Almeida (Pacific Northwest National Laboratory (PNNL)), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Scot

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:05 PM on October 22, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Joan Kessner (Washington Closure Hanford (WCH)), Karl Pool (Pacific

  18. TEC Communications Topic Group

    Office of Environmental Management (EM)

    Tribal Issues Topic Group Judith Holm, Chair April 21, 2004 Albuquerque, NM Tribal Issues Topic Group * February Tribal Summit with Secretary of Energy (Kristen Ellis, CI) - Held in conjunction with NCAI mid-year conference - First Summit held in response to DOE Indian Policy - Addressed barriers to communication and developing framework for interaction Tribal Issues Topic Group * Summit (continued) - Federal Register Notice published in March soliciting input on how to improve summit process

  19. NIF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users NIF User Group The National Ignition Facility User Group provides an organized framework and independent vehicle for interaction between the scientists who use NIF for "Science Use of NIF" experiments and NIF management. Responsibility for NIF and the research programs carried out at NIF resides with the NIF Director. The NIF User Group advises the NIF Director on matters of concern to users, as well as providing a channel for communication for NIF users with funding agencies and

  20. US-EU-Japan Working Group on Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Physics, Tohoku University 2:00 Breaking ground on molecular engineering of extractants: How to save millions on design Theresa Windus, Professor, CMI-Iowa State University ...

  1. Nuclear Materials Management and Safeguards System Working Group...

    National Nuclear Security Administration (NNSA)

    subgroup per year at the Annual NMMSS Users Training Meeting to share accomplishments, lessons learned, best practices, emerging issues and technological approaches. B. Reports...

  2. Hydrogen-bond Specific Materials Modification in Group IV Semiconducto...

    Office of Scientific and Technical Information (OSTI)

    defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium,...

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on October 16, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Robert Elkins, Larry Markel, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Steve Trent, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. New personnel have joined the Focus Group since the last

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on November 27, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Joan Kessner, Larry Markel, Mary McCormick-Barger, Steve Trent, and Rich Weiss. I. Huei Meznarich requested comments on the minutes from the October 16, 2012 meeting. No HASQARD Focus Group members present stated any

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on August 20, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Steve Smith, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the July 23, 2013 meeting. No Focus Group members stated they had

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on April 15, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Scot Fitzgerald, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the March 18, 2014 meeting. No Focus Group members stated they

  7. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print...

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deviations from a procedure or deviations from a published analytical method. Also, the language in this section of HASQARD uses the term "modification" and the Focus Group was...

  9. Photoelectrochemical Working Group

    Broader source: Energy.gov [DOE]

    The Photoelectrochemical Working Group meets regularly to review technical progress, develop synergies, and collaboratively develop common tools and processes for photoelectrochemical (PEC) water...

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a. The action item related to organizing a working group to address the HASQARD language regarding independent assessments to ensure the language addresses all organizations...

  11. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  12. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  13. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  14. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  15. Obafemi Otelaja > Graduate Student - Robinson Group > Researchers, Postdocs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Graduates > The Energy Materials Center at Cornell Obafemi Otelaja Graduate Student - Robinson Group ooo24@cornell.edu

  16. Kendra Letchworth Weaver > Graduate Student - Arias Group > Researchers,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdocs & Graduates > The Energy Materials Center at Cornell Kendra Letchworth Weaver Graduate Student - Arias Group kll67

  17. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes. PDF ...

  18. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials (continued) * Generators are required to avoid Las Vegas metropolitan area and Hoover Dam (Section 6.4 of NNSS Waste Acceptance Criteria, available at ...

  19. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  20. Energy Materials Network

    Broader source: Energy.gov [DOE]

    High performance materials hold the key to innovation in many critical clean energy technologies. But with ambitious national targets to reduce America’s carbon footprint, advanced materials’ traditional 15-20 years-to-market timeframe isn’t keeping pace with America’s goals to achieve a clean energy economy. Through the Energy Materials Network (EMN), the Energy Department is taking a different approach to materials research and development (R&D) that aims to solve industry’s toughest clean energy materials challenges. EMN’s targeted, growing network of consortia led by the Energy Department’s national labs is better integrating all phases of R&D, from discovery through deployment, and facilitating industry access to its national laboratories’ capabilities, tools, and expertise to accelerate the materials development cycle and enable U.S. manufacturers to deliver innovative, made-in-America products to the world market. This effort supports the President’s Materials Genome Initiative, which is working to discover, manufacture, and deploy advanced materials twice as fast, at a fraction of the cost. EMN also supports the recommendations of the Advanced Manufacturing Partnership 2.0, a working group with leaders from industry, academia, and labor, which highlighted the importance of producing advanced materials for technologies critical to U.S. competitiveness in manufacturing.

  1. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  2. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-02-01 08:06:5

  3. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Rail Topic Group TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group Rail Topic Group PDF icon May 17, 2007 PDF icon January 16, 2007 PDF icon...

  4. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  5. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  6. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Recent Research Highlights nature materials cover nature materials cover nature materials cover advanced materials cover nature materials cover Luminescent Concentration of Diffuse Light Achieving 30X Concentration (Paul Alivisatos Group, LBNL and Ralph Nuzzo group, UIUC) September 2015 Controlling Thermal Emission with Graphene Metasurfaces (Atwater group, Caltech) August 2015 Engineering Light Absorption in Semiconductor Metafilms (Brongersma group, Stanford) June 2015

  8. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trails » Trails Working Group Trails Working Group Our mission is to inventory, map, and prepare historical reports on the many trails used at LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The LANL Trails Working Group inventories, maps, and prepares historical reports on the many trails used at LANL. Some of these trails are ancient pueblo footpaths that continue to be used for recreational hiking today. Some

  9. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on June 12, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Shannan Johnson, Joan Kessner, Larry Markel, Karl Pool, Steve Smith, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Chris Thomson, Amanda Tuttle, Sam Vega, Rick Warriner and Eric Wyse. I. Huei Meznarich requested comments on the

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2013 The beginning of the meeting was delayed due to an unannounced loss of the conference room scheduled for the meeting. After securing another meeting location, the meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:18 PM on April 16, 2013 in Conference Room 156 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Joan Kessner, Larry Markel, Mary McCormick-Barger, Karl Pool,

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 28, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 28, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on February 25, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, and Eric Wyse. I. Huei Meznarich asked if there were any

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on May 20, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Mary McCormick-Barger, Craig Perkins, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson and Eric Wyse. I. Acknowledging the

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on June 12, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Sara Champoux, Glen Clark, Jim Douglas, Robert Elkins, Scot Fitzgerald, Joan Kessner, Jan McCallum, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Rich Weiss and Eric Wyse. I. Acknowledging the presence of new and/or infrequent

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on June 17, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Robert Elkins, Shannan Johnson, Joan Kessner, Jan McCallum, Craig Perkins, Karl Pool, Chris Sutton and Rich Weiss. I. Because of the short time since the last meeting, Huei Meznarich stated that the minutes from the June 12, 2014 meeting have not yet

  16. NERSC Users Group (NUG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NUGEX Elections Charter User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » NERSC Users Group NERSC Users Group (NUG) The NERSC Users' Group, NUG, welcomes participation from all

  17. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  18. InterGroup Protocols

    Energy Science and Technology Software Center (OSTI)

    2003-04-02

    Existing reliable ordered group communication protocols have been developed for local-area networks and do not in general scale well to a large number of nodes and wide-area networks. The InterGroup suite of protocols is a scalable group communication system that introduces an unusual approach to handling group membership, and supports a receiver-oriented selection of service. The protocols are intended for a wide-area network, with a large number of nodes, that has highly variable delays andmore »a high message loss rate, such as the Internet. The levels of the message delivery service range from unreliable unordered to reliable timestamp ordered.« less

  19. Date Times Group Speakers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings - Spring 2014 Date Times Group Speakers Tues, 1-13 2:30-3:30pm Faculty Meeting Fri, 1-24 12:30-1:30pm Group Research Meeting Emmanuel Giannelis Fri, 1-31 12:30-1:30pm Student & Postdoc Mtg Apostolos Enotiadis; Nikki Ritzert & Megan Holtz Fri, 2-7 12:30-1:30pm Group Research Meeting CHESS Mon, 2-10 2:30-3:30pm Faculty Meeting Will Dichtel Fri, 2-14 12:30-1:30pm Student & Postdoc Mtg Frank DiSalvo Fri, 2-21 12:30-1:30pm Group Research Meeting Lynden Archer Fri, 2-28

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the September 21 meeting of the Focus Group, the concerns related to the current language in HASQARD Volume 1, Section 10.4, "Quality Systems" were discussed at the...

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been distributed to the Focus Group prior to the meeting. The comments that required editorial changes to the document were made in the working electronic version. b. At the June...

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markel, Mary McCormick-Barger, Dave St. John, Steve Smith, Steve Trent and Eric Wyse. ... On January 31, the Secretary received a call from the QA Sub-Group Chair, Steve Smith. ...

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elkins, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Rick ... Noe'l Smith-Jackson stated that the HASQARD document is the work of the Focus Group not ...

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markel, Huei Meznarich, Karl Pool, Noe'l Smith-Jackson, Andrew Stevens, Genesis Thomas, ... the radar of the DOE- HQ QA group. Noe'l Smith-Jackson commented that Ecology was always ...

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group to review. Rich began his presentation by stating that he does not believe the language in Revision 3 works nor is it necessary anymore. The purpose of the Revision 3...

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the last Focus Group meeting to get together and see if an agreement on proposed language could be achieved that would satisfy CHPRC sampling personnel and WSCF laboratory...

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the May 15 meeting, Rich Weiss sent an e-mail to the Focus Group to propose revised language for the last paragraph in Section 5.3 containing the sentence about measured...

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    change. This distribution was to allow the Focus Group time to review the proposed language and be prepared for the matter to come to a vote at the next meeting of the Focus...

  9. Tritium Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matters related to tritium. Contacts Mike Rogers (505) 665-2513 Email Chandra Savage Marsden (505) 664-0183 Email The Tritium Focus Group consists of participants from member...

  10. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from ALICE file catalog (at CERN), submitting jobs to pdsfgrid (via condor) which submits jobs to the compute nodes, monitoring the cluster work load, and uploading job information to ALICE file catalog. It is monitored with MonALISA (the monitoring page is here). It's made up of 2 Intel Xeon E5520 processors each with

  11. Macro Industrial Working Group

    Gasoline and Diesel Fuel Update (EIA)

    September 29, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Industrial team preliminary results for AEO2015 Overview AEO2015 2 Industrial Team Washington DC, September 29, 2014 WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE * AEO2015 is a "Lite" year - New ethane/propane pricing model only major update - Major side cases released with Reference case

  12. DOE STGWG Group

    Energy Savers [EERE]

    STGWG Group The State and Tribal Government Working Group (STGWG) is one of the intergovernmental organizations with which the DOE EM office works with. They meet twice yearly for updates to the EM projects. They were formed in 1989. It is comprised of several state legislators and tribal staff and leadership from states in proximity to DOE's environmental cleanup sites of the following states: New York, South Carolina, Ohio, Washington, New Mexico, Idaho, California, Colorado, Georgia,

  13. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  14. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  15. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  16. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect (OSTI)

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  17. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    SciTech Connect (OSTI)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  18. Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Volume II of this report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for LLNL work activities. Appendix D presents the results of the review of NNSA, LSO, and contractor feedback and continuous improvement processes. Appendix E presents the results of the review of Plutonium Building essential safety system functionality, and Appendix F presents the results of the review of management of the selected focus areas.

  19. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  20. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  1. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  2. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and BER usage as a function of time A powerpoint template you can use at the requirements review Downloads RequirementsWorkshopCaseStudyTemplate.doc | Word document

  3. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  4. Proceedings of the second FY87 meeting of the National Working Group for Reduction in Transuranic Waste Arisings

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    The Second FY87 Meeting of the National Working Group for Reduction in Transuranic Waste Arisings (NWGRTWA) was held at the Lawrence Livermore National Laboratory, Tuesday and Wednesday, July 28--29, 1987. The purpose of the meeting was to discuss (1) modeling programs for waste reduction, (2) proposed FY88 and out-year tasks including the SRL Pu incineration, immobilization improvement, erbia coating technology, and (3) improvements in up-stream recovery operations to effect waste reduction. In addition, tours were made of the LLNL Waste Operations, the Laser Fusion (NOVA), and the Magnetic Fusion (MFTF).

  5. Materials Science in Radiation and Dynamics Extremes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Materials Science in Radiation and Dynamics Extremes Our combination of modeling and experimental testing capabilities opens up unparalleled opportunities to do fundamental research leading to physics-based predictive models. Contact Us Group Leader Ellen Cerreta Email Deputy Group Leader (acting) Christopher Stanek Email Group Office (505) 665-4735 We predict structure/property relationships of materials, perform computational materials modeling, characterize thermophysical properties, and

  6. TEC Working Group Topic Groups Section 180(c) Meeting Summaries...

    Office of Environmental Management (EM)

    Meeting Summaries TEC Working Group Topic Groups Section 180(c) Meeting Summaries Meeting Summaries PDF icon Washington, DC TEC Meeting - 180(c) Group Summary - March 15, 2006 More...

  7. TEC Working Group Topic Groups Routing Meeting Summaries | Department...

    Office of Environmental Management (EM)

    Routing Meeting Summaries TEC Working Group Topic Groups Routing Meeting Summaries MEETING SUMMARIES PDF icon Atlanta TEC Meeting, Routing Topic Group Summary More Documents &...

  8. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Rail Conference Call Summaries TEC Working Group Topic Groups Rail Conference Call Summaries CONFERENCE CALL SUMMARIES Rail Topic Group Inspections Subgroup Planning Subgroup...

  9. TEC Working Group Topic Groups Archives Protocols Meeting Summaries...

    Office of Environmental Management (EM)

    Protocols Meeting Summaries TEC Working Group Topic Groups Archives Protocols Meeting Summaries Meeting Summaries PDF icon Philadelphia TEC Meeting, Protocols Topic Group Summary -...

  10. TEC Working Group Topic Groups Rail Meeting Summaries | Department...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Rail Meeting Summaries MEETING SUMMARIES PDF icon Kansas City TEC Meeting, Rail Topic Group Summary - July 25, 2007 PDF icon Atlanta TEC...

  11. Good Energy Group Plc previously Monkton Group Plc | Open Energy...

    Open Energy Info (EERE)

    Plc previously Monkton Group Plc Jump to: navigation, search Name: Good Energy Group Plc (previously Monkton Group Plc) Place: Chippenham, Wiltshire, United Kingdom Zip: SN15 1EE...

  12. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  13. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  14. Critical Materials Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Critical Materials Workshop PDF icon critical_materials_workshop_presentations.pdf More Documents & Publications Critical Materials Workshop EV Everywhere Workshop: Traction Drive Systems Breakout Group Report Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview

  15. A MATERIAL WORLD Tailoring Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WINTER* 2000-2001 A MATERIAL WORLD Tailoring Materials for the Future A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 4 ALSO: New Materials for Microsystems Predictive Modeling Meets the Challenge S A N D I A T E C H N O L O G Y ON THE COVER: Bonnie Mckenzie operates a dual beam Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The image on the computer screen shows a cross section of a radiation-hardened device. The cross section was rendered with the FIB/SEM and allowed the

  16. Breakout Items Action Items Fixed Price Contracting Topic Group Summaries

    Office of Environmental Management (EM)

    Albuquerque Meeting - July 1997 Breakout Items Action Items Fixed Price Contracting Topic Group Summaries TOPIC GROUP SUMMARIES Routing * Group reviewed and approved fourth draft of working paper "Routing Issues Related to U.S. Department of Energy Radioactive Materials Transportation: Discussion and Analysis" * Group submitted working paper and draft list of "Stakeholder Recommendations" to TEC/WG and DOE Group reached consensus on three major routing-related issues: * DOE

  17. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  18. ENN Group aka XinAo Group | Open Energy Information

    Open Energy Info (EERE)

    ENN Group aka XinAo Group Jump to: navigation, search Name: ENN Group (aka XinAo Group) Place: Langfang, Hebei Province, China Zip: 65001 Product: Chinese private industrial...

  19. Bell, group and tangle

    SciTech Connect (OSTI)

    Solomon, A. I.

    2010-03-15

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  20. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.