National Library of Energy BETA

Sample records for materials group lawrence

  1. Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  2. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration Savannah RiverMagnetic Materials

  3. A guide to source materials of the life and work of Lawrence B. Anderson '30

    E-Print Network [OSTI]

    Laguette, Victoria.

    1998-01-01

    From 1933 to 1976, Professor Lawrence B. Anderson taught in the MIT Department of Architecture, and from 1947 to 1971, he served as its chairman and dean. Concurrently, from 1937 to 1972 , he was principal partner in the ...

  4. Oxide materials for electronics Inorganic Materials and Ceramics Research Group

    E-Print Network [OSTI]

    Oxide materials for electronics Inorganic Materials and Ceramics Research Group Sverre M. Selbach annually #12;Inorganic and ceramic materials research group Professor Mari-Ann Einarsrud (1988) Professor docs 10 master students http://www.ntnu.edu/mse/research/ceramics NTNU Faculty of Natural Sciences

  5. Preliminary Notice of Violation, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    Personnel Contaminations and Radioactive Material Intakes at the Hazardous Waste Management Facilities at the Lawrence Livermore National Laboratory, (EA-98-01) On March 9,...

  6. Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with E.O. Lawrence Award

  7. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  8. Ernest O. Lawrence and the Cyclotron

    Office of Scientific and Technical Information (OSTI)

    with Additional Information Lawrence Honored Cyclotrons Ernest O. Lawrence Photo Courtesy the Lawrence Berkeley National Laboratory 'Lawrence Berkeley National...

  9. Role of Lawrence Livermore National Laboratory in the Laboratory to Laboratory Nuclear Materials Protection, Control and Accounting (MPC&A) Program

    SciTech Connect (OSTI)

    Blasy, J.A.; Koncher, T.R.; Ruhter, W.D.

    1995-05-02

    The Lawrence Livermore National Laboratory (LLNL) is participating in a US Department of Energy sponsored multi-laboratory cooperative effort with the Russian Federation nuclear institutes to reduce risks of nuclear weapons proliferation by strengthening systems of nuclear materials protection, control, and accounting in both countries. This program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (MPC&A) Program and it is designed to complement other US-Russian MPC&A programs such as the government-to-govermment (NunnLugar) programs. LLNL`s role in this program has been to collaborate with various Russian institutes in several areas. One of these is integrated safeguards and security planning and analysis, including the performing of vulnerability assessments. In the area of radiation measurements LLNL is cooperating with various institutes on gamma-ray measurement and analysis techniques for plutonium and uranium accounting. LLNL is also participating in physical security upgrades including entry control and portals.

  10. Lawrence Berkeley National Laboratory Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

  11. 2006 Nature Publishing Group Graphene-based composite materials

    E-Print Network [OSTI]

    for the preparation of graphene-polymer composites via complete exfoliation of graphite9 and molecular© 2006 Nature Publishing Group Graphene-based composite materials Sasha Stankovich1 *, Dmitriy A. Piner1 , SonBinh T. Nguyen2 & Rodney S. Ruoff1 Graphene sheets--one-atom-thick two-dimensional layers

  12. Consent Order, Lawrence Livermore National National Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National National Security, LLC - WCO-2010-01 Consent Order, Lawrence Livermore National National Security, LLC - WCO-2010-01 October 29, 2010 Issued to Lawrence...

  13. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, BuildingWilliams, Energy Performance of Buildings Group Lawrence Berkeley National Laboratory, Berkeley, CA ABSTRACT A Best Residential HVAC Systems J.A. McWilliams and I.S. Walker Environmental Energy Technologies Division May 2004

  14. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U Handler Efficiency in Houses Iain S. Walker, Energy Performance of Buildings Group Lawrence Berkeley handler fans. As air conditioners have become more efficient, the fraction of total energy consumption

  15. CURRICULUM VITAE LAWRENCE SCHOVANEC

    E-Print Network [OSTI]

    Rock, Chris

    was approximately $800M. Texas Tech is currently designated as a High Research University in the CarnegieCURRICULUM VITAE LAWRENCE SCHOVANEC CURRENT POSITION Provost and Senior Vice President Texas Tech Tech University (1/2014 - present) Interim Provost and Senior Vice President, Texas Tech University (6

  16. Smart Materials Behaviour in Phosphates: Role of Hydroxyl Groups and Relevance to Antiwear Films

    E-Print Network [OSTI]

    Mueser, Martin

    Smart Materials Behaviour in Phosphates: Role of Hydroxyl Groups and Relevance to Antiwear Films, thermal films undergo displacive transitions associated with instabilities of the hydroxyl groups

  17. Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton College Station Apts Apts Joe's Apts Apts Station

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton College Station:53 PM Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton College

  18. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae model (Journal About DOEPlantFriday,NationalLawrence

  19. Lawrence Berkeley Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with E.O. Lawrence Awarde

  20. Lawrence Berkeley Laboratory I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with E.O. Lawrence AwardeI

  1. Lawrence Berkeley National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with E.O. Lawrence50

  2. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    LBNL 58752 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Laboratory Evaluation of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12;Abstract A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility

  3. University of California Lawrence Livermore

    E-Print Network [OSTI]

    University of California Lawrence Livermore National Laboratory John Lindl - LLNL Fusion Energy Program Leader *This work was performed under the auspices of the U. S. Department of Energy by Lawrence and the Inertial Fusion Energy Program #12;Outline of Talk · The National Ignition Facility (NIF) · Indirect Drive

  4. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    by Lawrence Livermore National Security, LLC at Lawrence Livermore National Laboratory Radioactive and Hazardous Waste Management Storage Facilities, National Ignition Facility,...

  5. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Office of Environmental Management (EM)

    Lawrence Livermore National Laboratory - July 2013 Independent Oversight Review, Lawrence Livermore National Laboratory - July 2013 July 2013 Review of Preparedness for Severe...

  6. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Environmental Management (EM)

    Lawrence Livermore National Security, LLC - September 25, 2014 Preliminary Notice of Violation, Lawrence Livermore National Security, LLC - September 25, 2014 September 25, 2014...

  7. The Beamteam The Materials Research Group in Condensed Matter Physics at the University of Saskatchewan

    E-Print Network [OSTI]

    Saskatchewan, University of

    radiation to study new materials. The goal is the understanding of the electronic structure in orderThe Beamteam The Materials Research Group in Condensed Matter Physics at the University to design materials with novel electronic, optical, magnetic, photochemical and catalytic properties

  8. Technology transfer at Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Johnson, D. (ed.)

    1992-09-01

    Lawrence Berkeley Laboratory (LBL) is dedicated to commercializing new technology in such fields as advanced materials, biotechnology, and electronics. Technology transfer between national laboratories and the industrial community is important in maintaining America's competitive edge. This document examines opportunities to establish working relationships with LBL. Streamlined methods for technology transfer are available with the aid of the Technology Transfer Department and the Patent Department at LBL. Research activities at LBL are concentrated in three major program areas: Energy Sciences, General Sciences, and Biosciences. Each program area consists of three research divisions. LBL welcomes both requests for information and proposals to conduct research.

  9. Technology transfer at Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Johnson, D. [ed.

    1992-09-01

    Lawrence Berkeley Laboratory (LBL) is dedicated to commercializing new technology in such fields as advanced materials, biotechnology, and electronics. Technology transfer between national laboratories and the industrial community is important in maintaining America`s competitive edge. This document examines opportunities to establish working relationships with LBL. Streamlined methods for technology transfer are available with the aid of the Technology Transfer Department and the Patent Department at LBL. Research activities at LBL are concentrated in three major program areas: Energy Sciences, General Sciences, and Biosciences. Each program area consists of three research divisions. LBL welcomes both requests for information and proposals to conduct research.

  10. Audit of Lawrence Livermore National Laboratory orders for memorabilia

    SciTech Connect (OSTI)

    Not Available

    1988-12-23

    We reviewed selected aspects of orders placed by Lawrence Livermore National Laboratory, a Department of Energy contractor, during 1979--1985 for memorabilia, models, and illustrations and the oversight of those orders by the San Francisco Operations Office (SAN). This review extends earlier audit work at a second Department contractor, Rockwell International, Rocky Flats Plant, Engineering Prototype Group, on which we issued a report dated July 12, 1988. That audit focused on the Prototype Group's providing Livermore with illustrations, models, engineering prototypes, and other articles (mementos, plaques, etc.) during October 1977 through September 1985. Issues arose during that audit which required a separate review at SAN and Livermore, to determine specifically: the propriety of, and SAN oversight of, procurement practices followed by Livermore; the basis for the Livermore orders; the adequacy of reimbursement to the Department for silver used in medallions; and the cost ceilings for memorabilia contained in the Department's contract with the University of California, which operates Livermore for the Department. Limiting the audit scope to the orders Livermore placed with Rockwell's Prototype Group, we reviewed Department and Livermore procedures for acquiring memorabilia. In addition to interviewing SAN and Livermore Legal Counsel, Special Material Office personnel, and Research and Development Program representatives, we examined SMO requisitions, accounts payable listings and related payments, and selected research and development correspondences.

  11. Lawrence Livermore and Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with LawrenceLawrenceDonald

  12. Limiting and realistic efficiencies of multi-junction solar Photonic Materials Group, FOM institute AMOLF, Amsterdam

    E-Print Network [OSTI]

    Polman, Albert

    Limiting and realistic efficiencies of multi-junction solar cells Photonic Materials Group, FOM of multi-junction solar cells, varying the number of subcells, the concentration of solar light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Multi-junction Solar cells

  13. Copyright by Joel Lawrence Sachs

    E-Print Network [OSTI]

    Hillis, David

    and Conflict, Experimental Model Systems and Theory. Committee: ______________________________ James J. Bull and Conflict, Experimental Model Systems and Theory. by Joel Lawrence Sachs, B.A., M.Sc. Dissertation Presented age. Thanks, Dad. #12;v Acknowledgements Above all I would like to thank my major advisor, James J

  14. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with Lawrence Livermore

  15. Preliminary Notice of Violation, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    September 27, 2000 Issued to the University of California related to Authorization Basis Issues at the Lawrence Livermore National Laboratory, (EA-2000-12) On September 27, 2000,...

  16. Analysis Activities at Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on Lawrence Livermore’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  17. Lawrence Berkeley National Laboratory Compliance Order, October...

    Office of Environmental Management (EM)

    Agreement Name Lawrence Berkeley National Laboratory Compliance Order, October 6, 1995 HWCA 9596-016 State California Agreement Type Compliance Agreement Legal Driver(s)...

  18. Preliminary Notice of Violation, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    July 28, 1998 Issued to the University of California related to Criticality Safety and the Quality Assurance Program at the Lawrence Livermore National Laboratory, July 28, 1998...

  19. Lawrence D. Bobo and Victor Racialized Mass

    E-Print Network [OSTI]

    Napadow, Vitaly

    322 Lawrence D. Bobo and Victor Thompson · 12 Racialized Mass Incarceration Poverty, Prejudice to the simultaneous pro- cesses of urban socioeconomic restructuring that produced intensified ghetto poverty

  20. Lawrence Livermore National Laboratory Federal Facility Compliance...

    Office of Environmental Management (EM)

    Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory Compliance Order HWCA 9697-5002 State California Agreement Type Federal Facility Agreement Legal...

  1. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory This report documents the results of an independent oversight review of the fire...

  2. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Environmental Management (EM)

    Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review HIAR-LLNL-2011-03-25 This...

  3. E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division

    E-Print Network [OSTI]

    material areas (work areas where unsealed radioactive material is handled) and radioactive material storage) 75A Old Hazardous Waste Facility 75S Tritium Storage Locker 76 Radioanalytical Laboratory 83 LifeE.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Environmental

  4. Strategic Research Orientation `NanoMaterials for Energy' 1 Energy projects within MESA+ research groups, February 2013

    E-Print Network [OSTI]

    Boucherie, Richard J.

    Strategic Research Orientation `NanoMaterials for Energy' 1 Energy projectsMaterials for Energy' Information: www.utwente.nl/mesaplus/nme/ Project title Group Ph water splitting and CO2 reduction OS / PCS Sun-Young Park Jennifer Herek

  5. Independent Oversight Review of the Lawrence Livermore National...

    Energy Savers [EERE]

    Review of the Lawrence Livermore National Laboratory - March 2001 Independent Oversight Review of the Lawrence Livermore National Laboratory - March 2001 March 2001 Review of the...

  6. Momentum-resolved Electron Energy-Loss Spectroscopy Master Thesis, Electron Microscopy Group of Materials Science, Prof. Ute Kaiser

    E-Print Network [OSTI]

    Pfeifer, Holger

    of Materials Science, Prof. Ute Kaiser Background Electron energy-loss spectroscopy (EELS) is a well Microscopy group of Material Sciences in Ulm has gained experience in the acquisition and analysis of energy-loss spectra of two-dimensional materials using an in-column energy filter [1,2]. Aim The aim of the proposed

  7. Independent Oversight Inspection, Lawrence Livermore National Laboratory- February 2009

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  8. Independent Oversight Review, Lawrence Livermore National Laboratory- September 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory

  9. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Broader source: Energy.gov (indexed) [DOE]

    November 5, 1999 Issued to Lawrence Livermore National Laboratory related to Authorization Basis Issues On November 5, 1999, the U.S. Department of Energy (DOE) issued a nuclear...

  10. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  11. Optical Design Capabilities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  12. 5. Problem-Solving Labs This chapter contains some materials that describe our cooperative-group problem solving labs. This

    E-Print Network [OSTI]

    Minnesota, University of

    Page 117 5. Problem-Solving Labs This chapter contains some materials that describe our cooperative-group problem solving labs. This material is described below. Page Frequently Asked Questions About Our Problem-solving compares our problem-solving labs with traditional verification labs and inquiry labs. 125 General Lesson

  13. Bibliography of the technical literature of the Materials Joining Group, Metals and Ceramics Division, 1951 through June 1987

    SciTech Connect (OSTI)

    David, S.A.; Goodwin, G.M.; Gardner, K. (comps.)

    1987-08-01

    This document contains a listing of the written scientific information originating in the Materials Joining Group (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1987. It is a registry of about 400 documents as nearly as possible in the order in which they were issued.

  14. Lawrence Livermore National Laboratory, P. O. Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with LawrenceLawrence

  15. Analysis of Minimizers of the Lawrence-Doniach Energy for ...

    E-Print Network [OSTI]

    2014-04-07

    an asymptotic formula for the minimum Lawrence-Doniach energy as e and the interlayer distance .... loc(R2; R2) and therefore the Lawrence-Doniach energy.

  16. Understanding unemployment and local hiring in Lawrence, Massachusetts : a report for the City of Lawrence

    E-Print Network [OSTI]

    Bakhteiarov, Polina

    2011-01-01

    The purpose of this project is to assess the state of employment in Lawrence, Massachusetts in an effort to understand why the city has consistently struggled with an unemployment rate that is double the state average. ...

  17. Lawrence Livermore National Laboratory / Energy Security and

    E-Print Network [OSTI]

    Blake Natural Gas Infrastructure, Bill Pickles S2TAR GEN IV, AAA, and AFCI, Bill Halsey GeothermalLawrence Livermore National Laboratory / Energy Security and Technology Program Jeffrey Stewart is to provide research in the areas of national and homeland security and other important areas to DOE

  18. Curriculum Vitae of RUTH LAWRENCE Autumn 1999

    E-Print Network [OSTI]

    Lawrence, Ruth Elke

    Curriculum Vitae of RUTH LAWRENCE Autumn 1999 BIOGRAPHICAL SKETCH General Born: August 2, 1971 Sex Appointments 1999| Associate Professor without tenure (Hebrew University) 1997| Associate Professor with tenure and Awards 1999{2002 Joint Principal Investigator, BSF grant 9800119 with D. Bar-Natan, M. Hutchings, V

  19. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    LBNL 53484 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Heat Recovery in Building Envelopes Program, of the U.S. Department of Energy under contract No. DE-AC03-76SF00098. #12;HEAT RECOVERY because of heat recovery within the building envelope. The major objective of this study was to provide

  20. Lawrence E. Carlson Professor of Mechanical Engineering

    E-Print Network [OSTI]

    Carlson, Lawrence E.

    Education, American Society of Mechanical Engineers, pp. 31-33. Solar Stirling Engine 2Cam Rock ClimbingPortfolio Lawrence E. Carlson Professor of Mechanical Engineering Founding Co-Director, Integrated Teaching and Learning Program and Laboratory University of Colorado at Boulder #12;ENGINEERING EDUCATION

  1. Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton Grad College Station Apts Apts Joe's Apts Apts Station College

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Grad Princeton Lakeside Lawrence Wegmans Walmart Trader Lawrence Lakeside Princeton Grad College:25 PM 3:30 PM 3:37 PM 3:44 PM 3:49 PM 3:53 PM 4:00 PM Grad Princeton Lakeside Lawrence Wegmans Walmart

  2. CHARACTERIZATION OF SIALON-TYPE MATERIALS

    E-Print Network [OSTI]

    Spencer, P.N.

    2010-01-01

    an Economical Refractory Material", Industrial Heating, 50-of Sialon-Type Materials Newman Spencer Lawrence BerkeleyEXPERIHENTAL PROCEDURES A. The Material L Ml H2 M3 and M4 B.

  3. NMR and Transport Studies on Group IV Clathrates and Related Intermetallic Materials 

    E-Print Network [OSTI]

    Zheng, Xiang

    2012-10-19

    thermoelectric materials are the intermetallic clathrates. Clathrates are cage-structured materials with guest atoms enclosed. Previous studies have shown lower thermal conductivities compared with many other bulk compounds, and it is believed that guest atom...

  4. Jason Hick! Lawrence Berkeley National Laboratory! NERSC Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivationDept of Energy,Oracle OpenWorldThe

  5. Jason Hick! Lawrence Berkeley National Laboratory! NERSC Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducing theActivationDept of Energy,Oracle

  6. New UC ANR working group to address residual material from anaerobic digesters

    E-Print Network [OSTI]

    Downing, Jim

    2015-01-01

    material from anaerobic digesters A naerobic digestion is anmore under construction. Anaerobic digesters use microbes toUC Davis campus, anaerobic digesters break down food waste

  7. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  8. Lawrence Livermore National Laboratory | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORTLand and FacilityEnergyLawrence

  9. Lawrence Livermore National Laboratory Annual Report 2006

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer simulations performed on NNSA's Advanced Simulation and Computing (ASC) Program supercomputers at Livermore. ASC Purple and BlueGene/L, the world's fastest computer, together provide nearly a half petaflop (500 trillion operations per second) of computer power for use by the three NNSA national laboratories. Livermore-led teams were awarded the Gordon Bell Prize for Peak Performance in both 2005 and 2006. The winning simulations, run on BlueGene/L, investigated the properties of materials at the length and time scales of atomic interactions. The computing power that makes possible such detailed simulations provides unprecedented opportunities for scientific discovery. Laboratory scientists are meeting the extraordinary challenge of creating experimental capabilities to match the resolution of supercomputer simulations. Working with a wide range of collaborators, we are developing experimental tools that gather better data at the nanometer and subnanosecond scales. Applications range from imaging biomolecules to studying matter at extreme conditions of pressure and temperature. The premier high-energy-density experimental physics facility in the world will be the National Ignition Facility (NIF) when construction is completed in 2009. We are leading the national effort to perform the first fusion ignition experiments using NIF's 192-beam laser and prepare to explore some of the remaining important issues in weapons physics. With scientific colleagues from throughout the nation, we are also designing revolutionary experiments on NIF to advance the fields of astrophysics, planetary physics, and materials science. Mission-directed, multidisciplinary science and technology at Livermore is also focused on reducing the threat posed by the proliferation of weapons of mass destruction as well as their acquisition and use by terrorists. The Laboratory helps this important national effort by providing its unique expertise, integration analyses, and operational support to the Department of Homeland Security. For this vital facet of the Laboratory's national security mission, we are developing advanced technologies, such as

  10. Lawrence Livermore National Laboratory environmental report for 1990

    SciTech Connect (OSTI)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R.

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  11. Critical and strategic materials proceedings of the laboratory study group meeting

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given.

  12. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Energy Savers [EERE]

    LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services...

  13. Elucidating the Decomposition Mechanism of Energetic Materials with Geminal Dinitro Groups Using 2 Bromo-2-nitropropane

    E-Print Network [OSTI]

    Butler, Laurie J.

    for dissociation of a large series of energetic materials (RDX, PETN, HMX, and CL-20) is dependent upon the method of excitation. For instance, after thermal excitation, ground state energy calculations for PETN to undergo a nitro-nitrite isomerization.5 However, if PETN is excited via a UV photon, a conical

  14. Studies on the preservation of electronic materials commissioned by the Digital Archiving Working Group

    E-Print Network [OSTI]

    Carr, Leslie

    Library. Bennett, J.C. (1997) A framework of data types and formats, and issues affecting the long term and preserving digital collections. British Library Research and Innovation Report 107. London: The British preservation of digital material. British Library Research and Innovation Report 50. London: The British

  15. Lawrence Berkeley Laboratory 1994 site environmental report

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  16. Bob Lawrence Associates Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois: EnergyHills,BluefieldBob Lawrence Associates Inc

  17. Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with E.O. Lawrence

  18. Lawrence Berkeley National Laboratory New Employee Briefing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with E.O. Lawrence50New

  19. Lawrence Berkeley National Laboratory and CLASIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with E.O. Lawrence50Newand

  20. Lawrence Livermore National Laboratory | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with Lawrence

  1. LALP-07-094 Winter 2008 Materials Physics and Applications Division Group Profile

    E-Print Network [OSTI]

    the energy of fusion of light nuclei. It was known that deuterons fuse much more easily than protons deuterium fuel and producing a thermonuclear yield of roughly 10 megatons of TNT. Many group members Security Administration/Nevada Site Office. Mike, the first large-scale experiment with thermonuclear

  2. AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN

    E-Print Network [OSTI]

    AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN LAKE ONTARIO BASS FISHERY The St. Lawrence information on the economic importance of the bass fishery, considered by many to be one of the best smallmouth bass fisheries in the world. The economic value of this recreational fishery should be taken

  3. Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

  4. Kristin Persson Lawrence Berkeley National Laboratory A Google for Materials?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand Cubic Feet)Multimaterial Multiphysics

  5. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect (OSTI)

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  6. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

  7. Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned

    Broader source: Energy.gov [DOE]

    Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

  8. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

  9. Lawrence Livermore charitable campaign raises $3.3 million for...

    National Nuclear Security Administration (NNSA)

    See more. Lawrence Livermore raises 3.3 million for local organizations Dec 12, 2013 at 3:00 pm Blog archive December 2015 (7) November 2015 (11) October 2015 (15) September...

  10. TIMELINE: 60 Years of Computing at Lawrence Livermore National...

    Energy Savers [EERE]

    Lawrence Livermore machines have topped lists of the world's fastest, greenest, and most big-data capable systems, but if you ask the Laboratory's researchers, they'll voice...

  11. NREL/TP-620-35609 ERNEST ORLANDO LAWRENCE

    E-Print Network [OSTI]

    LBNL-54437 NREL/TP-620-35609 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY NATIONAL10337 (NREL). #12;Disclaimer This document was prepared as an account of work sponsored by the United

  12. Lawrence Livermore National Laboratory Environmental Report 2010

    SciTech Connect (OSTI)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

  13. Magnetic Materials Group - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration Savannah RiverMagnetic

  14. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  15. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  16. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect (OSTI)

    Wilson, K.L. (ed.)

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  17. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  18. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    SciTech Connect (OSTI)

    Various

    1986-12-01

    The Lawrence Berkeley Laboratory, operated by the University of California for the Department of Energy, provides national scientific leadership and supports technological innovation through its mission to: (1) Perform leading multidisciplinary research in general sciences and energy sciences; (2) Develop and operate unique national experimental facilities for use by qualified investigators; (3) Educate and train future generations of scientists and engineers; and (4) Foster productive relationships between LBL research programs and industry. The following areas of research excellence implement this mission and provide current focus for achieving DOE goals. GENERAL SCIENCES--(1) Accelerator and Fusion Research--accelerator design and operation, advanced accelerator technology development, accelerator and ion source research for heavy-ion fusion and magnetic fusion, and x-ray optics; (2) Nuclear Science--relativistic heavy-ion physics, medium- and low-energy nuclear physics, nuclear theory, nuclear astrophysics, nuclear chemistry, transuranium elements studies, nuclear data evaluation, and detector development; (3) Physics--experimental and theoretical particle physics, detector development, astrophysics, and applied mathematics. ENERGY SCIENCES--(1) Applied Science--building energy efficiency, solar for building systems, fossil energy conversion, energy storage, and atmospheric effects of combustion; (2) Biology and Medicine--molecular and cellular biology, diagnostic imaging, radiation biophysics, therapy and radiosurgery, mutagenesis and carcinogenesis, lipoproteins, cardiovascular disease, and hemopoiesis research; (3) Center for Advanced Materials--catalysts, electronic materials, ceramic and metal interfaces, polymer research, instrumentation, and metallic alloys; (4) Chemical Biodynamics--molecular biology of nucleic acids and proteins, genetics of photosynthesis, and photochemistry; (5) Earth Sciences--continental lithosphere properties, structures and behavior, and transport processes in geologic systems; and (6) Materials and Molecular Research--microstructures, electron microscopy, surfaces, and interfaces; solid-state and atomic physics; chemical energy, chemical physics, and reaction dynamics. Research and support activities conducted by LBL's Information and Computing Sciences and Engineering Divisions are central to the achievement of DOE goals. These divisions provide essential computational, instrumentation, and fabrication capability that strengthen the unique role of this national laboratory. The Laboratory's future is based on the multidisciplinary capability of its staff, its beneficial interactions with universities and industry, and the scientific and technical value of its programs and research facilities.

  19. The adaptive x-ray optics project at the Lawrence Livermore National...

    Office of Scientific and Technical Information (OSTI)

    The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Citation Details In-Document Search Title: The adaptive x-ray optics project at the Lawrence...

  20. A Case for Merge Joins in Mediator Systems Ramon Lawrence Kirk Hackert

    E-Print Network [OSTI]

    Lawrence, Ramon

    A Case for Merge Joins in Mediator Systems Ramon Lawrence Kirk Hackert IDEA Lab, Department of Computer Science, University of Iowa Iowa City, IA, USA {ramon-lawrence, kirk-hackert}@uiowa.edu Abstract

  1. REMOTE OPERATION OF DOE-1 ON THE LAWRENCE BERKELEY LABORATORY CDC 7600, 6600 AND 6400 COMPUTERS

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    to LBL should be sent prepaid. Lawrence Berkeley Labshipments should be sent prepaid to Greyhound West Berkeley

  2. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  3. Nonparametric Regression in Exponential Families Lawrence D. Brown1

    E-Print Network [OSTI]

    Zhou, Harrison Huibin

    Nonparametric Regression in Exponential Families Lawrence D. Brown1 , T. Tony Cai2 and Harrison H. Zhou3 University of Pennsylvania and Yale University Abstract Most results in nonparametric regression we consider nonparametric regression in exponential families which include, for example, Poisson

  4. Nonparametric Regression in Exponential Families Lawrence D. Brown1

    E-Print Network [OSTI]

    Brown, Lawrence D.

    Nonparametric Regression in Exponential Families Lawrence D. Brown1 , T. Tony Cai1 and Harrison H. Zhou2 University of Pennsylvania and Yale University Abstract Most results in nonparametric regression we consider nonparametric regression in exponential families with the main focus on the natural

  5. Using Neural Networks to Forecast Stock Market Prices Ramon Lawrence

    E-Print Network [OSTI]

    Lawrence, Ramon

    Using Neural Networks to Forecast Stock Market Prices Ramon Lawrence Department of Computer Science on the application of neural networks in forecasting stock market prices. With their ability to discover patterns in nonlinear and chaotic systems, neural networks offer the ability to predict market directions more

  6. Packaging Design for Lawrence Berkeley National Laboratory High Resistivity CCDs

    E-Print Network [OSTI]

    Packaging Design for Lawrence Berkeley National Laboratory High Resistivity CCDs R. J. Stovera* , W developed a four-side mosaic package fabricated from aluminum nitride. Our objectives have been to achieve a flatness of less than 10 micrometers peak-to-valley and a consistent final package thickness variation

  7. MICROWAVE PROCESSING OF LUNAR SOIL Lawrence A. Taylor1

    E-Print Network [OSTI]

    Taylor, Lawrence A.

    MICROWAVE PROCESSING OF LUNAR SOIL Lawrence A. Taylor1 and Thomas T. Meek2 The unique properties of lunar regolith make for the extreme coupling of the soil to microwave radiation. Space weathering lunar soil (i.e., 1200-1500 o C) in minutes in a normal kitchen-type 2.45 GHz microwave, almost as fast

  8. Building Footprints (Shapefile) of University of Kansas, Lawrence Campus

    E-Print Network [OSTI]

    Houser, Rhonda

    2011-02-18

    Data layer geneated with Intention to have basic building dataset for data analysis and generation of maps, for Lawrence Campus of the University of Kansas. Building outlines were digitized using ArcMap in ca. 2007 from aerial photograph to create...

  9. Learning in Boltzmann Trees Lawrence Saul and Michael Jordan

    E-Print Network [OSTI]

    Jordan, Michael I.

    Learning in Boltzmann Trees Lawrence Saul and Michael Jordan Center for Biological January 31, 1995 Abstract We introduce a large family of Boltzmann machines that can be trained using standard gradient descent. The networks can have one or more layers of hidden units, with tree

  10. LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon

    E-Print Network [OSTI]

    Rathbun, Julie A.

    LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon The lunar rocks described--make it easy to distinguish them from terrestrial rocks. However, the minerals that make up lunar rocks are (with a few notable exceptions) minerals that are also found on Earth. Both lunar and terrestrial rocks

  11. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    SciTech Connect (OSTI)

    NONE

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  12. Stormwater Best Management Practices Lawrence Berkeley National Laboratory Lessons Learned

    E-Print Network [OSTI]

    Stormwater Best Management Practices Lawrence Berkeley National Laboratory Lessons Learned LL-2004 and stormwater inspector noticed two dumpsters, one without a lid and one with the lid left open. Neither management practices for prevention of contamination to stormwater runoff. Employees had not been

  13. A Painting Interface for Interactive Surface Deformations Jason Lawrence

    E-Print Network [OSTI]

    A Painting Interface for Interactive Surface Deformations Jason Lawrence Princeton University. In this paper, we investigate combining these two approaches with a painting interface that gives the user direct, local control over a physical sim- ulation. The "paint" a user applies to the model defines its

  14. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    Division August 2003 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy under contract No. DE-AC03-76SF APPLICATIONS I.S. Walker, M.D. Mingee and D.E. Brenner Energy Performance of Buildings Group Indoor Environment

  15. EIS-0348 and EIS-0236-S3: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL), which is critical to the National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. This document is also Supplement 3 to the Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (EIS-0236) for use of proposed materials at the National Ignition Facility (NIF). This combination ensures timely analysis of the reasonably foreseeable environmental impact of NIF experiments using the proposed materials concurrent with the environmental analyses being conducted for the site-wide activities.

  16. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  17. New Conducting and Electrically Switching Molecular Materials based on Main Group and Transition Metal Ions Bridged by TCNQ Derivatives 

    E-Print Network [OSTI]

    Zhang, Zhongyue

    2013-05-24

    The field of molecular electronics has been under investigation by materials scientists for the last two decades, activity that has increased in recent years as their potential to be components in modern quantum computing ...

  18. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  19. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-05-21

    This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

  20. SBOT CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us RobCALIFORNIA LAWRENCE BERKELEY LAB POC

  1. Recovery Act Funded Projects at the Lawrence Berkeley National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8 AnnualDepartmentLawrence Berkeley

  2. 264 Chapter 4 Applications of Impedance Spectroscopy London (1979-1984) and the Fuel Cells Group, Materials Research Department,

    E-Print Network [OSTI]

    Macdonald, James Ross

    displays, energy storage in capacitors, sensors, and even bionics. Because the electrical response of ionic have usually been investigated by analyzing the frequency response of the mate rial over a wide range RESPONSE OF HIGH RESISTIVITY IONIC AND DIELECTRIC SOLID MATERIALS BY IMMITTANCE SPECTROSCOPY J. Ross

  3. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  4. PULSE COLUMN DESIGN By Lawrence E. Burkhart R.W. Fahien

    Office of Scientific and Technical Information (OSTI)

    PULSE COLUMN DESIGN By Lawrence E. Burkhart R.W. Fahien November 1958 Ames Laboratory Iowa State College Ames, Iowa UNITED STATES ATOMIC ENERGY COMMISSION Technical Information...

  5. Neutron Soft Errors in Xilinx FPGAs at Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    George, Jeffrey S.

    2008-01-01

    Quasi-Monoenergetic Neutron Beam from Deuteron Breakup”, inexperiments of atmospheric neutron effects on deep sub-Neutron Soft Errors in Xilinx FPGAs at Lawrence Berkeley

  6. Lawrence Berkeley National Laboratory 1995 site environmental report

    SciTech Connect (OSTI)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  7. Storm water modeling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Veis, Christopher

    1996-05-01

    Storm water modeling is important to Lawrence Livermore National Laboratory (LLNL) for compliance with regulations that govern water discharge at large industrial facilities. Modeling is also done to study trend in contaminants and storm sewer infrastructure. The Storm Water Management Model (SWMM) was used to simulate rainfall events at LLNL. SWMM is a comprehensive computer model for simulation of urban runoff quantity and quality in storm and combined sewer systems. Due to time constraints and ongoing research, no modeling was completed at LLNL. With proper information about the storm sewers, a SWMM simulation of a rainfall event on site would be beneficial to storm sewer analyst.

  8. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  9. Secretary of Energy Advisory Board Lawrence Livermore Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDISTDepartment ofPrime MinisterDepartment ofSummit |Lawrence

  10. St. Lawrence County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpionSquawAnsgar, Iowa:Lawrence

  11. DOE Selects Lawrence Livermore National Security, LLC to Manage its

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | Department of Energy WASHINGTON -Lawrence

  12. TEC Working Group Topic Groups Archives Communications

    Broader source: Energy.gov [DOE]

    The Communications Topic Group was convened in April 1998 to improve internal and external strategic level communications regarding DOE shipments of radioactive and other hazardous materials.

  13. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  14. Lawrence Livermore National Laboratory (LLNL) Waste Minimization Program Plan

    SciTech Connect (OSTI)

    Heckman, R.A. (Lawrence Livermore National Lab., CA (USA)); Tang, W.R. (Bechtel National, Inc., San Francisco, CA (USA))

    1989-08-04

    This Program Plan document describes the background of the Waste Minimization field at Lawrence Livermore National Laboratory (LLNL) and refers to the significant studies that have impacted on legislative efforts, both at the federal and state levels. A short history of formal LLNL waste minimization efforts is provided. Also included are general findings from analysis of work to date, with emphasis on source reduction findings. A short summary is provided on current regulations and probable future legislation which may impact on waste minimization methodology. The LLN Waste Minimization Program Plan is designed to be dynamic and flexible so as to meet current regulations, and yet is able to respond to an everchanging regulatory environment. 19 refs., 12 figs., 8 tabs.

  15. Environmental compliance Modeling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Brandstetter, E.R., LLNL

    1998-02-01

    This paper presents a post-rehabilitation monitoring and modeling study of the sanitary sewer system at Lawrence Livermore National Laboratory (LLNL). The study evaluated effectiveness of sewer system rehabilitation efforts and defined benchmarks for environmental success. A PCSWMM model for the sanitary sewer system was developed and applied to demonstrate the success of a $5 million rehabilitation effort. It determined that rainfall-dependent inflow and infiltration (RDI&I) had been reduced by 88%, and that system upgrades adequately manage predicted peak flows. An ongoing modeling and analysis program currently assists management in evaluating the system`s needs for continuing maintenance and further upgrades. This paper also summarizes a 1989 study that evaluated data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows, and the Sanitary Sewer Rehabilitation (SSR) project, which took place from 1991 through 1995.

  16. The Computation Directorate at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Cook, L

    2006-09-07

    The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

  17. Lawrence Berkeley Laboratory Institutional Plan FY 1993-98

    E-Print Network [OSTI]

    Chartock, Michael

    2009-01-01

    New Materials • Advanced Particle and Radiation Detectors • Energyand related new materials. OFFICE OF ENERGY RESEARCH A tv,'new generation of materials technology in support of the National Energy

  18. Workplace investigation of increased diagnosis of malignant melanoma among employees of Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Moore, D.H. II; Patterson, H.W.; Hatch, F.; Discher, D.; Schneider, J.S.; Bennett, D.

    1994-08-01

    Based on rates for the surrounding communities, the diagnosis rate of malignant melanoma for employees of Lawrence Livermore National Laboratory (LLNL) during 1972 to 1977 was three to four times higher than expected. In 1984 Austin and Reynolds concluded, as a result of a case-control study, that five occupational factors were {open_quotes}causally associated{close_quotes} with melanoma risk at LLNL. These factors were: (1) exposure to radioactive materials, (2) work at Site 300, (3) exposure to volatile photographic chemicals, (4) presence at the Pacific Test Site, and (5) chemist duties. Subsequent reviews of the Austin and Reynolds report concluded that the methods used were appropriate and correctly carried out. These reports did determine, however, that Austin and Reynolds` conclusion concerning a causal relationship between occupational factors and melanoma among employees was overstated. There is essentially no supporting evidence linking the occupational factors with melanoma from animal studies or human epidemiology. Our report summarizes the results of further investigation of potential occupational factors.

  19. HIGH-ENERGY PHYSICS LABORATORIES AND AGENCIES Particle Data Group

    E-Print Network [OSTI]

    HIGH-ENERGY PHYSICS LABORATORIES AND AGENCIES Particle Data Group Lawrence Berkeley National, write to: List of Addresses of High-Energy Physics Institutes Scientific Information Service CERN Greenwich (Universal) time. Cities with negative numbers lie to the east of Greenwich, England; cities

  20. Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  1. Nano-High: Lawrence Berkeley National Laboratory Lecture on Bad Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  2. Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  3. Redeveloping Lawrence, Massachusetts' [sic] Historic Mill District : insights into adaptive reuse in untested residential markets

    E-Print Network [OSTI]

    Clark, Heather, 1978-

    2004-01-01

    Lawrence, Massachusetts is one of a number of post-industrial cities in the northeastern United States that has the potential to convert underutilized industrial buildings into a valuable community asset, namely housing. ...

  4. Building community assets through individual development accounts : growing a strategic network in Lawrence, Massachusetts

    E-Print Network [OSTI]

    Wu, Cindy C. (Cindy Cin-Wei)

    2007-01-01

    This thesis aims to inform the decision-making process for growing an asset-building program through strategic partnerships with other community-based organizations (CBOs). The impetus for this paper came from Lawrence ...

  5. Sara Lawrence-Lightfoot Lectured at Siena on January 21, 1993

    E-Print Network [OSTI]

    the desire to undo racism, achieve equality, and build community inside and outside the classroom Lawrence, who overcame barriers of racism and sexism to establish a career as a child psychiatrist

  6. VWA-0007- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  7. VWA-0008- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  8. DESIGNING AN ENVIRONMENTAL SHOWCASE: THE SAN FRANCISCO Dale Sartor, Rick Diamond, Lawrence Berkeley National Laboratory,

    E-Print Network [OSTI]

    Diamond, Richard

    have conducted energy audits, reviewed retrofit design strategies and renovation plans and recommended, Lawrence Berkeley National Laboratory, Andy Walker, National Renewable Energy Laboratory Michael Giller, National Park Service Karl Brown, California Institute for Energy Efficiency Anne Sprunt Crawley, US

  9. Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)

    Broader source: Energy.gov [DOE]

    This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

  10. Pavement Through the Prairie, Wheels in the Wetlands: The battle over a road in Lawrence, Kansas

    E-Print Network [OSTI]

    Heiman, Kelly

    2012-04-01

    in the courts. By the 1990s, the scope of the South Lawrence Trafficway controversy had grown to include issues of historical and spiritual significance. As national politics prioritized questions of environmental justice in the wake of President Bill... in the courts. By the 1990s, the scope of the South Lawrence Trafficway controversy had grown to include issues of historical and spiritual significance. As national politics prioritized questions of environmental justice in the wake of President Bill...

  11. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  12. Lawrence Berkeley Laboratory, FY 1993 Site Development Plan

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Lawrence Berkeley Laboratory (LBL) 1993 Site Development Plan (SDP) provides analysis and policy guidance for the effective use and orderly development of land and facilities at the LBL main site. The SDP directly supports LBL`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). It is a concise policy document, prepared in compliance with DOE Order 4320.1 B, and is coupled to the 1993 Laboratory Integrated Facilities Plan (LIFP). It also serves as the current DOE framework for the implementation of the 1987 Long Range Development Plan (LRDP) approved by the Regents of the University of California. The SDP is updated annually, with periodic major revisions consistent with DOE policy and approved plans of the Regents. The plan is reviewed and approved by the DOE San Francisco Field Office. The specific purposes of the SDP are to: Summarize the mission and community setting of the Laboratory; Describe program trends and projections and future resource requirements; Describe site planning goals and future facilities and land uses; and Describe site planning issues and potential infrastructure replacement solutions. The SDP concisely expresses the policies for future development based on planning concepts, the anticipated needs of research programs, and site potential and constraints. The 1993 LIFP and other planning data provide detailed support for the plans identified in this document.

  13. Exploring Viral Genomics at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kilpatrick, K; Hiddessen, A

    2007-08-22

    This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I as a fluorescent dye to detect amplification of viral DNA that can later be integrated into microfluidic PCR system for sorting and analysis is shown.

  14. Lawrence Berkeley Laboratory FY 1992 Site Development Plan

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Lawrence Berkeley Laboratory 1992 Site Development Plan (SDP) provides analysis and policy guidance for the effective use and orderly development of land and facilities at the LBL main site. The SDP directly supports LBL's role as a multiprogram national laboratory operated by the University of California for the DOE. It is a concise policy document, prepared in compliance with DOE Order 4320.1B and based on revisions to the 1991 Technical Site Information (TSI). It also serves as the current DOE framework for the implementation of the 1987 Long Range Development Plan (LRDP) approved by the Regents of the University of California. The SDP is updated annually, with periodic major revisions consistent with DOE policy and approved plans of the Regents. The specific purposed of the SDP are to: Summarize the mission and community setting of the Laboratory; describe program trends and projections and future resource requirements; describe site planning goals and future facilities and land uses; and describe site planning issues and potential solutions. The SDP concisely expresses the policies for future development based on planning concepts, the anticipated needs of research programs, and site potential and constraints. The 1992 TSI document and other planning data provide detailed support for the plans identified in this document. Preparation of the SDP was coordinated by the Office for Planning and Development with technical support and data preparation by the Plant Engineering Department. Programmatic data and information are from program divisions and technical resource divisions, including the Environment, Health Safety Division. The 1992 SDP is consistent with approved university guidelines and future building area, land use, and population projections identified in the 1987 LRDP and the 1987 Site Development Plan Environmental Impact Report prepared under the California Environment Quality Act.

  15. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  16. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  17. Lawrence Berkeley Laboratory FY 1992 Site Development Plan

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Lawrence Berkeley Laboratory 1992 Site Development Plan (SDP) provides analysis and policy guidance for the effective use and orderly development of land and facilities at the LBL main site. The SDP directly supports LBL`s role as a multiprogram national laboratory operated by the University of California for the DOE. It is a concise policy document, prepared in compliance with DOE Order 4320.1B and based on revisions to the 1991 Technical Site Information (TSI). It also serves as the current DOE framework for the implementation of the 1987 Long Range Development Plan (LRDP) approved by the Regents of the University of California. The SDP is updated annually, with periodic major revisions consistent with DOE policy and approved plans of the Regents. The specific purposed of the SDP are to: Summarize the mission and community setting of the Laboratory; describe program trends and projections and future resource requirements; describe site planning goals and future facilities and land uses; and describe site planning issues and potential solutions. The SDP concisely expresses the policies for future development based on planning concepts, the anticipated needs of research programs, and site potential and constraints. The 1992 TSI document and other planning data provide detailed support for the plans identified in this document. Preparation of the SDP was coordinated by the Office for Planning and Development with technical support and data preparation by the Plant Engineering Department. Programmatic data and information are from program divisions and technical resource divisions, including the Environment, Health & Safety Division. The 1992 SDP is consistent with approved university guidelines and future building area, land use, and population projections identified in the 1987 LRDP and the 1987 Site Development Plan Environmental Impact Report prepared under the California Environment Quality Act.

  18. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  19. TEC Working Group Topic Groups Manual Review

    Broader source: Energy.gov [DOE]

    This group is responsible for the update of DOE Manual 460.2-1, Radioactive Material Transportation Practices Manual.  This manual was issued on September 23, 2002, and establishes a set of...

  20. From Berkeley Lab to the Marketplace Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Eisen, Michael

    · Fuel Cells and Batteries · Software and InformationTechnology Our research produces innovative: · Biosciences · Advanced Materials · Nanoscience · Biofuels, Solar, and Energy Efficiency · Medical Imaging

  1. Department of Energy Announces 2009 Ernest Orlando Lawrence Award...

    Broader source: Energy.gov (indexed) [DOE]

    materials research; environmental science and technology; life sciences (including medicine); nuclear technologies (fission and fusion); national security and non-proliferation;...

  2. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence...

    Energy Savers [EERE]

    biological, environmental and computer sciences; condensed matter and materials; fusion and plasma sciences; high energy and nuclear physics; and national security and...

  3. Inspection Report "Personal Property Management at Lawrence Livermore National Laboratory"

    SciTech Connect (OSTI)

    None

    2009-05-01

    The Department of Energy's (DOE's) Lawrence Livermore National Laboratory (Livermore) is a premier research and development institution for science and technology supporting the core mission of national security. According to Livermore, as of November 2008 the Laboratory managed 64,933 items of Government personal property valued at about $1 billion. At the beginning of Fiscal Year 2008, Livermore reported 249 DOE property items valued at about $1.3 million that were missing, unaccounted for, or stolen during Fiscal Year 2007. Livermore centrally tracks property utilizing the Sunflower Assets system (Sunflower), which reflects the cradle to grave history of each property item. Changes in the custodianship and/or location of a property item must be timely reported by the custodian to the respective property center representative for updating in Sunflower. In Fiscal Year 2008, over 2,000 individuals were terminated as a result of workforce reduction at Livermore, of which about 750 received a final notification of termination on the same day that they were required to depart the facility. All of these terminations potentially necessitated updates to the property database, but the involuntary terminations had the potential to pose particular challenges because of the immediacy of individuals departures. The objective of our inspection was to evaluate the adequacy of Livermore's internal controls over Government property. Based upon the results of our preliminary field work, we particularly focused on personal property assigned to terminated individuals and stolen laptop computers. We concluded that Livermore's internal controls over property could be improved, which could help to reduce the number of missing, unaccounted for, or stolen property items. Specifically, we found that: (1) The location and/or custodian of approximately 18 percent of the property items in our sample, which was drawn from the property assigned to individuals terminated on short notice in 2008, was inaccurately reflected in Sunflower. The data in this system is relied upon for tracking purposes, so inaccurate entries could increase the probability of property not being located during inventories and, thus, being reported as 'lost' or 'missing'. We believe that providing formal training to property custodians, which was not being done at the time of our inspection, could help improve this situation. (2) Some property custodians were not adequately protecting their Government laptop computers when taking them offsite, and they were not held accountable for the subsequent theft of the laptops. We made several recommendations to management intended to improve property controls at Livermore.

  4. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High EnergyJanuaryLawrence Berkeley NationalLawrence

  5. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High EnergyJanuaryLawrence BerkeleyLawrence Berkeley

  6. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and

    E-Print Network [OSTI]

    Washington at Seattle, University of

    with meteorological observations and a heat flux model. South of the island, we compare the ULS and thermalObservations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite, this paper examines the behavior of the Bering Sea St. Lawrence Island polynya using a combination

  7. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    SciTech Connect (OSTI)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

  8. CAREER PROFILE Lawrence E. Jones, Ph.D.

    E-Print Network [OSTI]

    Noé, Reinhold

    , and the Utility Variable-Generation Integration Group 2012 Achievement Award. He holds patents for technologies. Jones received his MSc, Licentiate and PhD degrees in Electrical Engineering from the Royal Institute

  9. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  10. HARMONIC is 3Competitive for Two Servers Marek Chrobak and Lawrence L. Larmore

    E-Print Network [OSTI]

    Chrobak, Marek

    HARMONIC is 3­Competitive for Two Servers Marek Chrobak and Lawrence L. Larmore Department the server algorithm, called HARMONIC, that always moves the servers with probabilities proportional to the inverses of distances to the request point. We show that for two servers HARMONIC is 3­competitive. Before

  11. Marine geology of the St. Lawrence Estuary Guillaume St-Onge

    E-Print Network [OSTI]

    a very thick (>450 m) Quaternary sedimentary sequence. The results from recently conducted geophysical, we will review some of these recent findings and discuss their implications for stratigraphy. Stratigraphy of the Quaternary deposits in the St. Lawrence Estuary High-resolution seismic reflection surveys

  12. The case for cool roofs Ronnen Levinson, Lawrence Berkeley National Laboratory, RMLevinson@LBL.gov

    E-Print Network [OSTI]

    1/4 The case for cool roofs Ronnen Levinson, Lawrence Berkeley National Laboratory, RMLevinson@LBL.gov 7 May 2012 Solar reflective "cool" roofs save energy, money, and CO2 when applied to air on the electrical grid by reducing late-afternoon peak power demand. Widespread use of cool roofs can lower outdoor

  13. APPL: A Probability Programming Language Maj. Andrew G. GLEN, Diane L. EVANS, and Lawrence M. LEEMIS

    E-Print Network [OSTI]

    Leemis, Larry

    APPL: A Probability Programming Language Maj. Andrew G. GLEN, Diane L. EVANS, and Lawrence M having arbitrary distributions. This arti- cle presents a prototype probability package named APPL (A probability software package, referred to as "A Prob- ability Programming Language" (APPL), that fills

  14. Gas Dynamic Effects On Laser Cut Quality Kai Chen, Y. Lawrence Yao, and Vijay Modi

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Gas Dynamic Effects On Laser Cut Quality Kai Chen, Y. Lawrence Yao, and Vijay Modi Department are very sensitive to gas jet pressure and nozzle standoff distance. Do a high gas pressure and a small shows the same behavior (i.e., discontinuity as gas pressure and standoff change

  15. Intermountain GIS Conference. April 1923 2010, Bozeman, MT. Patrick Lawrence, Maxwell BD, Rew LJ

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Intermountain GIS Conference. April 1923 2010, Bozeman, MT. Patrick Lawrence, Maxwell BD, Rew in the Python programming language, drawing on Python's builtin library, the RPy extension, ArcGIS geoprocessing and ArcGIS Server. As inputs, it accepts transect shapefiles, transect text files, or point

  16. Remedial investigation and feasibility study for the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex

    SciTech Connect (OSTI)

    Taffet, M.J. ); Oberdorfer, J.A. ); McIlvride, W.A. )

    1989-10-01

    This report summarizes the results and conclusions of the investigation of tritium and other compounds in ground water in the vicinity of landfills at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. 91 refs., 110 figs., 43 tabs.

  17. Optical dating of St. Lawrence Iroquoian ceramics from the Mailhot-Curran site, southern Quebec

    E-Print Network [OSTI]

    Optical dating of St. Lawrence Iroquoian ceramics from the Mailhot-Curran site, southern Quebec L) was applied on pottery sherds from the Mailhot-Curran archaeological site (BgFn-2), a Late Woodland period previous dating methods used for Mailhot-Curran (radiocarbon and seriation of the archaeological remains

  18. North and South Carolina Coasts MICHAEL A. MALLIN *, JOANN M. BURKHOLDER, LAWRENCE B. CAHOON and

    E-Print Network [OSTI]

    Mallin, Michael

    North and South Carolina Coasts MICHAEL A. MALLIN *, JOANN M. BURKHOLDERà, LAWRENCE B. CAHOON§ and MARTIN H. POSEY Center for Marine Science, University of North Carolina at Wilmington, 5001 Masonboro Loop Road, Wilmington, NC 28409, USA àDepartment of Botany, North Carolina State University, Raleigh

  19. The Sanford Underground Research Facility at Homestake U.C Berkeley and Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Department of Energy (DOE) by Lawrence Berkeley National Laboratory. The South Dakota Science and Technology Berkeley National Laboratory 2150 Shattuck Avenue, Office 1001A, MC 1295 Berkeley, CA 94704 Abstract and Engineering Laboratory (DUSEL). With the National Science Board's decision to halt development of a NSF

  20. Naysaying the Neutron Scattering Society Lawrence Cranberg, Jill Trewhella, and Henry R. Glyde

    E-Print Network [OSTI]

    Glyde, Henry R.

    Naysaying the Neutron Scattering Society Lawrence Cranberg, Jill Trewhella, and Henry R. Glyde, Austin Naysaying the Neutron Scattering Society The news story announcing the estab- lishment of the Neutron Scattering Society of America (June, page 73) raises a number of questions, and further

  1. Identification of Chinese Personal Names in Unrestricted Texts. Lawrence CHEUNG, Benjamin K. TSOU

    E-Print Network [OSTI]

    Identification of Chinese Personal Names in Unrestricted Texts. Lawrence CHEUNG, Benjamin K. TSOU Automatic identification of Chinese personal names in unrestricted texts is a key task in Chinese word, if it is not properly addressed. This paper (1) demonstrates the problems of Chinese personal name identification

  2. Empirical Studies of Software Engineering: Dewayne Perry,Adam Porter& Lawrence Votta

    E-Print Network [OSTI]

    Perry, Dewayne E.

    Empirical Studies of Software Engineering: A Roadmap Dewayne Perry,Adam Porter& Lawrence Votta Key empirical studies to improve software engineering research and practice, then we need to create better years were spent doing software engineering research at Bell Laboratories in Murray Hill NJ. His

  3. Lyapunov Vector Fields for Autonomous UAV Flight Control1 Dale A. Lawrence2

    E-Print Network [OSTI]

    Frew, Eric W.

    Lyapunov Vector Fields for Autonomous UAV Flight Control1 Dale A. Lawrence2 , Eric. W. Frew3 that incorporate Lyapunov stability properties to produce simple, globally stable vector fields in 3D. Use of the vector field is considered, using Lyapunov techniques to show global stability of heading and path

  4. Lawrence Livermore National Laboratory Robin L. Newmark, S. Julio Friedmann, A.J. Simon,

    E-Print Network [OSTI]

    Keller, Arturo A.

    little change, but more intense wet and dry periods can be expected ­ more floods and more droughts. · Flood peaks will become higher and natural spring/ summer runoff will become lower. · A possible sea) Water Used for Fuel Extraction and Processing Gal/MMBTU Primarily from steam injection #12;10 Lawrence

  5. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory, Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this draft environmental impact statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  6. Electromechanical battery research and development at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Baldwin, D.E.; Bender, D.A.; Fowler, T.K.

    1993-06-01

    The concepts undergirding a funded program to develop a modular electromechanical battery (EMB) at the Lawrence Livermore National Laboratory are described. Example parameters for EMBs for electric and hybrid-electric vehicles are given, and the importance of the high energy recovery efficiency of EMBs in increasing vehicle range in urban driving is shown.

  7. Recent transfer of coastal sediments to the Laurentian Channel, Lower St. Lawrence Estuary (Eastern Canada),

    E-Print Network [OSTI]

    St-Ong, Guillaume

    of the Lower St. Lawrence Estuary (Eastern Canada). The multibeam data were used to generate a high that they were produced by a combination of erosive turbidity flows and retrogressive failures. The two box cores. Introduction Submarine canyons are initiated by failures on depositional oversteepenings of continental slopes

  8. SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP Study investigates impacts of the material and energetic utilization of wood

    E-Print Network [OSTI]

    prices rise. (Photo: R. Rosin / TUM) 27.04.2015, Research news Wood is becoming an increasingly popular time since World War Two, more wood was being used in Germany to produce energy such as heat and electricity than to create commodities such as construction materials, composite wood products or paper

  9. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-06-04

    At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

  10. TEC Working Group Topic Groups Archives Consolidated Grant Topic Group

    Broader source: Energy.gov [DOE]

    The Consolidated Grant Topic Group arose from recommendations provided by the TEC and other external parties to the DOE Senior Executive Transportation Forum in July 1998. It was proposed that the consolidation of multiple funding streams from numerous DOE sources into a single grant would provide a more equitable and efficient means of assistance to States and Tribes affected by DOE nuclear material shipments.

  11. TEC Working Group Topic Groups Archives Training- Medical Training

    Broader source: Energy.gov [DOE]

    The TEC Training and Medical Training Issues Topic Group was formed to address the training issues for emergency responders in the event of a radioactive material transportation incident.

  12. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-04-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  13. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-03-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  14. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Chu, Steven (U.S. Energy Secretary)

    2012-06-28

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  15. EA-1065: Proposed Construction and Operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify 14,900 square feet of an existing building (Building 64) at the U.S. Department of Energy's Lawrence Berkeley Laboratory to...

  16. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  17. EA-1087: Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify existing Building 51B at the U.S. Department of Energy's Lawrence Berkeley National Laboratory to install and conduct experiments...

  18. Who's Who in the University of Kansas Libraries: Lawrence Campus 1993

    E-Print Network [OSTI]

    1993-01-01

    - Librarian II - Head, Acquisitions Department SHELLEY MILLER Librarian II - Bibliographer - Head, Spain, Portugal and Latin America Started my library career in SPLAT as a student assistant in 1976 while finishing BAs In Spanish and Social Welfare... of Kansas, Lawrence, for promotion of Ukranlan Studies (1977). LIVIA PERLAKY Library Assistant I - Aquisitions Department DAVID PARDUE Librarian I - SPLAT Monograph Cataloger Cataloging Department EVELYN CONSTANCE POWELL Librarian II - Science Reference...

  19. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  20. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  1. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David...

  2. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-{Tc} systems is reported under work for others. (DLC)

  3. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H[sub 2], and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO[sub 2], potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-[Tc] systems is reported under work for others. (DLC)

  4. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  5. EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA

    Broader source: Energy.gov [DOE]

    The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

  6. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  7. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High EnergyJanuary AdvancedJuneKentuckyLawrence

  8. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High EnergyJanuaryLawrence Berkeley National

  9. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High EnergyJanuaryLawrence Berkeley

  10. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4 » Inside Ice Under High30, 2011 NuclearLawrence

  11. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4 » Inside Ice Under High30, 2011Lawrence

  12. Lawrence O. "Larry" Bailey, Jr., Joins Carlsbad Field Office as Deputy Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »withNuclearLawrence O.

  13. Lawrence Pack, train conductor, and Y-12s uranium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »withNuclearLawrence

  14. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  15. Lawrence Residence 

    E-Print Network [OSTI]

    Raiford Stripling Associates, Inc.; Stripling, Raiford L.

    1962-01-01

    interpreted as of turbidity-flow origin. The embayment 1s filled with a dominant shale section wh1ch contains microfauna believed to represent bathyal depths. , Cores retrieved from fields in Jefferson County, southeast Texas, were studied to examine... shale samples Shell Hebert Ranch 1-C and Humble 1 Port Acres Gas Unit 1 48 14 Scanning electron micrographs of characteristic Frio foraminifera from selected wells including Shell Hebert Ranch 1-C and Humble 1 Port Acres Gas Unit 1, Jefferson County...

  16. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  17. Marine geology of the St. Lawrence Estuary This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    . Stratigraphy of the Quaternary deposits in the St. Lawrence Estuary High-resolution seismic reflection surveys bathymetric data, ~14 000 km of seismic profiles and 700 m of sediment cores from the St. Lawrence Estuary, we will review some of these recent findings and discuss their implications for stratigraphy

  18. Initiatives in the US nuclear material tracking system

    SciTech Connect (OSTI)

    Smith, M.R.; Kuzmycz, G. [Department of Energy, Washington, DC (United States); Heaton, E.R. [Pacific Northwest Lab., Richland, WA (United States)

    1994-07-01

    The Department of Energy (DOE) Office of Nonproliferation and National Security is in the process of developing a new worldwide nuclear materials tracking system. Its purpose is for DOE to better fulfill its international and domestic nuclear material tracking obligations and needs. The Lawrence Livermore National Laboratory (LLNL), is developing the International Nuclear Analysis (INA) Program to meet this goal. LLNL will assume the function and duties of the current Nuclear Materials management and Safeguards System (NMMSS) operated by Martin Marietta Energy Systems. The program is jointly funded by the DOE, the Nuclear Regulatory Commission and the US Enrichment Corporation.

  19. Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Korneev, Valeri A.

    1 Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley to the square root of the product of frequency of the signal and the mobility of the fluid in the reservoir. This provides an opportunity for locating the most productive zones of the field before drilling

  20. A Plea for Simpler Electricity Tariffs Philip E. Coleman and Christopher T. Payne, Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    A Plea for Simpler Electricity Tariffs Philip E. Coleman and Christopher T. Payne, Lawrence asserts that electric rate structures in the United States are often so confusing that even large a simplified declaration (in tariffs and/or bills) to electricity customers of what their marginal costs are

  1. Lawrence Berkeley National Laboratory report LBNL-725E 1 A New Type of Steady and Stable, Laminar, Premixed Flame

    E-Print Network [OSTI]

    Bell, John B.

    Lawrence Berkeley National Laboratory report LBNL-725E 1 A New Type of Steady and Stable, Laminar-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames;Nomenclature fuel equivalence ratio 1 Introduction There is growing evidence that a new type of laminar

  2. FAWNSort: Energy-efficient Sorting of 10GB Vijay Vasudevan, Lawrence Tan, Michael Kaminsky, Michael A. Kozuch,

    E-Print Network [OSTI]

    FAWNSort: Energy-efficient Sorting of 10GB Vijay Vasudevan, Lawrence Tan, Michael Kaminsky, Michael for the 10GB competition tried to use the most energy-efficient platform we could find that could hold-pass sort on more energy efficient hardware (such as Intel Atom- based boards) after experimenting

  3. Historical records of atmospheric metal deposition along the St. Lawrence Valley (eastern Canada) based on peat bog cores

    E-Print Network [OSTI]

    bogs Industrial Revolution Lead isotopes Northeastern America a b s t r a c t The recent history-Ville, Montreal, Quebec, Canada H3C 3P8 h i g h l i g h t s The onset of industrial activity was recorded short cores collected at three peat bogs along the St. Lawrence Valley (SLV). The onset of industrial

  4. Infrared studies in free standing crystals: N,O-doped Xe and Ar W. G. Lawrence and V. A. Apkarian

    E-Print Network [OSTI]

    Apkarian, V. Ara

    Infrared studies in free standing crystals: N,O-doped Xe and Ar W. G. Lawrence and V. A. Apkarian 28 April 1992) Infrared studies in N20-doped free-standing crystals of Xe and Ar are reported. Nz annealing of the solids during growth, have become known as free- standing crystals (FSC). While

  5. Automata groups 

    E-Print Network [OSTI]

    Muntyan, Yevgen

    2010-01-16

    automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...

  6. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  7. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  8. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  9. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  10. Materials Science and Engineering B 134 (2006) 282286 Control of metal impurities in "dirty" multicrystalline silicon for solar cells

    E-Print Network [OSTI]

    2006-01-01

    of photovoltaics (PV) in the energy market. The fluctuations of availability and feedstock cost determine.R. Webera,b a Department of Materials Science, University of California, Berkeley, CA 94720, USA b Lawrence processing of solar cells with satisfactory energy conversion efficiency based on inexpensive feedstock

  11. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  12. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Goyal, Amit (Oak Ridge National Laboratory)

    2012-06-28

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  13. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect (OSTI)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  14. Natal origin of atlantic bluefin tuna (thunnus thynnus) from the gulf of st. lawrence using ?13c and ?18o in otoliths 

    E-Print Network [OSTI]

    Schloesser, Ryan Walter

    2009-05-15

    . Lawrence was identified using stable carbon (?13C) and oxygen (?18O) isotopes in sagittal otoliths. Anthropogenic and natural processes are capable of impacting atmospheric and oceanic concentrations of ?13C and ?18O, affecting otolith concentrations...

  15. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    SciTech Connect (OSTI)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  16. A Proposal for a UPC Memory Consistency Model, v1.0 Lawrence Berkeley National Lab Tech Report LBNL54983

    E-Print Network [OSTI]

    California at Berkeley, University of

    A Proposal for a UPC Memory Consistency Model, v1.0 Lawrence Berkeley National Lab Tech Report LBNL shared read, denoted RR(l,v) . a relaxed shared write, denoted RW(l,v) . a private read, denoted PR in M . RW (M) is the set of relaxed shared writes in M . PR(M) is the set of private reads in M . PW (M

  17. A Proposal for a UPC Memory Consistency Model, v1.0 Lawrence Berkeley National Lab Tech Report LBNL-54983

    E-Print Network [OSTI]

    California at Berkeley, University of

    A Proposal for a UPC Memory Consistency Model, v1.0 Lawrence Berkeley National Lab Tech Report LBNL shared read, denoted RR(l,v) · a relaxed shared write, denoted RW(l,v) · a private read, denoted PR in M · RW(M) is the set of relaxed shared writes in M · PR(M) is the set of private reads in M · PW

  18. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    SciTech Connect (OSTI)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  19. Initial ultraviolet-B intensity data at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Patten, K.O. Jr.; Wuebbles, D.J. [Lawrence Livermore National Lab., CA (United States); Smith, G.J. [New Zealand Inst. for Industrial Research and Development, Lower Hutt (New Zealand)

    1993-10-01

    A measurement of UV-B reaching the ground has been established at the Lawrence Livermore National Laboratory. The instrument is the same as those operated by the National Institute for Water and Atmospheric Research in their network in New Zealand. The wavelength response of the radiometer is similar to the response of human skin to UV-B. Intensity data are collected by averaging meter readings over 10 minutes from 6:00 am to 6:00 pm Pacific Standard Time, then converting to effective UV-B intensity normalized at 310 nm. This report checks the intensities obtained at LLNL from November 1992 to July 1993 against the expected results: Increased solar zenith angle, whether from the daily cycle or from the yearly cycle in solar position, should decrease UV-B intensity at the ground due to increased optical path; and, intervening cloud cover should decrease ground UV-B intensity. Three additional findings are reported here: Maximum UV-B intensity on cloudless days does not always follow a smooth curve, but instead varies either high or low to some extent; Morning UV-B intensities are less than those in the afternoon at comparable solar zenith angles at certain times of year; LLNL wintertime daily-averaged UV-B intensities are somewhat higher than those observed at Auckland, New Zealand in their winter of 1992.

  20. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  1. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    SciTech Connect (OSTI)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  2. Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

    1997-04-01

    Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

  3. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  4. THE ODTX SYSTEM FOR THERMAL IGNITION AND THERMAL SAFETY STUDY OF ENERGETIC MATERIALS

    SciTech Connect (OSTI)

    Hsu, P C; Hust, G; Howard, M; Maienschein, J L

    2010-03-03

    Understanding the response of energetic material to thermal event is very important for the storage and handling of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) can precisely measure times to explosion and minimum ignition temperatures of energetic materials at elevated temperatures. These measurements provide insight into the relative ease of thermal ignition and allow for the determination of kinetic parameters. The ODTX system can potentialy be a good tool to measure violence of the thermal ignition by monitoring the size of anvil cavity. Recent ODTX experimental data on various energetic materials (solid and liquids) are reported in this paper.

  5. During the last few years our group has established the synthetic and analytic infrastructure re-quired to develop a promising new class of materials that operate on the basis of their structurally-

    E-Print Network [OSTI]

    Braun, Paul

    in response to external electric or magnetic fields, and to display field-induced birefringence, dichroism, amphidynamic materials are a promising platform for the de- sign of molecular machines. This presentation machines" 4:00 P.M. Monday, April 20, 2015 Room 100, Materials Science and Engineering Building 1304 W

  6. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  7. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The Energy MaterialsRooftopRunning Jobs by Group

  8. Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2004-02-27

    This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

  9. Materials and Chemistry Day Thursday 9th June 2015

    E-Print Network [OSTI]

    Wallace, Mark

    Materials and Chemistry Day Thursday 9th June 2015 Draft Programme Oxford Materials reserves:30-09:45 Registration Materials 09:45-10:00 Welcome Materials 10:15-11:30 Group A Materials Science Workshop Solar Buggy Design Materials Labs Jayne Shaw 10:15-11:30 Group B Chemistry Workshop Fantastic Plastics Chemistry Labs

  10. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  11. Arthur T. Motta, ~Joseph A. Faldowski, 1Lawrence M. Howe,2 and Paul R. Okamoto 3

    E-Print Network [OSTI]

    Motta, Arthur T.

    . 2 Senior research scientist, AECL Research, Reactor Materials Research Branch, Chalk River Labora- tories, Chalk River, Ontario, Canada, K0J 1J0. 3 Senior research scientist, Materials Science Division

  12. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  13. Overview of the Tritium research activities at Lawrence Livermore National Laboratory (LLNL)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015.

  14. Covetic Materials

    Broader source: Energy.gov (indexed) [DOE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  15. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    SciTech Connect (OSTI)

    Smith, A.R.; Hurley, D.L.

    1991-08-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite have been studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Bakground Facilities, in a multi-laboratory collaboration coordinated by Dr. Thomas Parnell's team at the Marshall Spacecraft Center, Huntsville, Alabama.

  16. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering

    E-Print Network [OSTI]

    Sutherland, Amanda J.; Beck, Emily C.; Detamore, Michael S.; Dennis, S. Connor; Converse, Gabriel L.; Hopkins, Richard A.; Berkland, Cory

    2015-05-12

    of Kansas Medical Center, Kansas City, Kansas, United States of America, 2 Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, United States of America, 3 Orbis Biosciences, Kansas City, Kansas, United States of America, 4 Children’s..." in 3D osteochondral gradient scaffolds. Biotechnology and bioengineering. 2014; 111(4):829– 41. doi: 10.1002/bit.25145 PMID: 24293388 Decellularized Cartilage May Be a Chondroinductive Material PLOS ONE | DOI:10.1371/journal.pone.0121966 May 12, 2015 13...

  17. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  18. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  19. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  20. Critical Materials:

    Office of Environmental Management (EM)

    Extraction Separation Processes for Critical Materials in 30- 21 Stage Test Facility (Bruce Moyer) ......

  1. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  2. GROUP STUDY ROOMS GROUP STUDY ROOMS

    E-Print Network [OSTI]

    Young, R. Michael

    STAFF AREA LEVEL 2 LOBBY bookBot GROUP STUDY ROOMS GROUP STUDY ROOMS GROUPSTUDYROOMS RAIN GARDEN LIBRARY TECHNOLOGY AND MEDIA SPACES GROUP STUDY EVENT AND MEETING SPACES STAFF ONLY STAIRS INSTITUTES AND UNIVERSITY CENTERS #12;GROUP STUDY ROOMS MAKER SPACE LEARNING COMMONS LOCKERS LOCKERS LOCKERS TEACHING

  3. Leadership in Science Lawrence Berkeley National Laboratory (LBNL) has been a

    E-Print Network [OSTI]

    , atomic, and molecular scales, understanding and fabricating nanostructured materials and devices Sustainable energy science and technology, including supply, energy storage, and efficiency Soft x

  4. Hydrogeology and tritium transport in Chicken Creek Canyon, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Jordan, Preston D.; Javandel, Iraj

    2007-01-01

    deeply weathered sandstone of the Orinda Formation. Wellsprimarily of Orinda Formation sandstones faulted over GreatValley Group shales and sandstones. The dip of strata in

  5. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    SciTech Connect (OSTI)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the area of host-pathogen interactions as well as policy makers from federal agencies. The main objectives of the workshop are: (1) to assess the current national needs, capabilities, near-term technologies, and future challenges in applying various diagnostics tools to public health and bio-defense; (2) to evaluate the utility and feasibility of host-response and pathogen biomarker profiling in the diagnosis and management of infectious diseases; and (3) to create a comprehensive developmental strategy from proof-of-concept, through validation, to deployment of appropriate advanced technology for the clinical/public health and bio-defense environments.

  6. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  7. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  8. Properties of Group Five and Group Seven transactinium elements

    E-Print Network [OSTI]

    Wilk, Philip A.

    2001-01-01

    of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by

  9. 3. Cooperative Group Problem Solving in Discussion Sections

    E-Print Network [OSTI]

    Minnesota, University of

    Page 37 3. Cooperative Group Problem Solving in Discussion Sections This chapter contains some materials we use in teaching problem-solving and cooperative group skills to our students. These materials are described briefly below. Page Why Cooperative Group Problem Solving? This brief summary explains why we use

  10. Hydrogen Storage Workshop Advanced Concepts Working Group

    E-Print Network [OSTI]

    / Current Status · Aerogels are the scaffold; template with organic functional groups; physisorption, acid benign ­ Inexpensive #12;Self-Assembled Nanocomposites ­ R&D Needs 1. Studying silica aerogels 2. Modifying aerogels 3. Theoretical Modeling - various chemical structures / materials 4. Functionalization

  11. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys...

  12. TEC Working Group Topic Groups Tribal

    Broader source: Energy.gov [DOE]

    The Tribal Topic Group was established in January 1998 to address government-to-government consultation between DOE and Indian Tribes affected by its transportation activities. The group focuses on...

  13. DOE-1 BDL SUMMARY. DOE-1 GROUP.

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    may be this command. DOE~! Reference Manual. placed in BDL-3W-7405-EN ons c BDl, SUMMARY DOE~· I l.awrence , Californiaused in conjunction with other DOE~l documentation. Table of

  14. Modelling Inter-Industry Material Flows

    E-Print Network [OSTI]

    CIEEDAC Modelling Inter-Industry Material Flows: A review of methodologies For Natural Resources Canada By Maggie Tisdale CIEEDAC Energy and Materials Research Group School of Resource and Environmental .................................................................................................. 2 2.2. INDIRECT EFFECTS

  15. Building the Digital Library Environment at the University of Kansas - Lawrence

    E-Print Network [OSTI]

    Digital Library Technical Infrastructure Task Force

    2000-11-10

    In May 2000, the Digital Library Executive Group formed the Digital Library Technical Infrastructure Task Force. This report is a result of Task Force discussions on the technical issues involved in creating a digital library environment...

  16. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA

  17. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  18. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  19. Silent Study Group Study

    E-Print Network [OSTI]

    Thompson, Michael

    36/72 36/7236/72 36/72 36/72 Silent Study Room 108C Group Study Room 108J Office Room 108A Office Room 108B Staff Room Room 108K Group Study Room 108I Group Study Room 108H Group Study Room 108G Group Study Room 108F Group Study Room 108E Group Study Room 108D Service Area Research Help / Circulation

  20. Authorized Limit Evaluation of Spent Granular Activated Carbon Used for Vapor-Phase Remediation at the Lawrence Livermore National Laboratory Livermore, California

    SciTech Connect (OSTI)

    Devany, R; Utterback, T

    2007-01-11

    This report provides a technical basis for establishing radiological release limits for granular activated carbon (GAC) containing very low quantities of tritium and radon daughter products generated during environmental remediation activities at Lawrence Livermore National Laboratory (LLNL). This evaluation was conducted according to the Authorized Limit procedures specified in United States Department of Energy (DOE) Order 5400.5, Radiation Protection of the Public and the Environment (DOE, 1993) and related DOE guidance documents. The GAC waste is currently being managed by LLNL as a Resource Conservation and Recovery Act (RCRA) mixed waste. Significant cost savings can be achieved by developing an Authorized Limit under DOE Order 5400.5 since it would allow the waste to be safely disposed as a hazardous waste at a permitted off-site RCRA treatment and disposal facility. LLNL generates GAC waste during vapor-phase soil remediation in the Trailer 5475 area. While trichloroethylene and other volatile organic compounds (VOCs) are the primary targets of the remedial action, a limited amount of tritium and radon daughter products are contained in the GAC at the time of disposal. As defined in DOE Order 5400.5, an Authorized Limit is a level of residual radioactive material that will result in an annual public dose of 100 milliroentgen-equivalent man per year (mrem/year) or less. In 1995, DOE issued additional release requirements for material sent to a landfill that is not an authorized low-level radioactive waste disposal facility. Per guidance, the disposal site will be selected based on a risk/benefit assessment under the As-Low-As-Reasonably-Achievable (ALARA) process while ensuring that individual doses to the public are less than 25 mrem in a year, ground water is protected, the release would not necessitate further remedial action for the disposal site, and the release is coordinated with all appropriate authorities. The 1995 release requirements also state that Authorized Limits may be approved by DOE field office managers without DOE headquarters (EH-1) approval if a reasonably conservative dose assessment demonstrates that: (1) Public doses will not exceed one mrem per year individually or 10 person-rem/year collectively; (2) Appropriate record keeping and data collection procedures are in place; (3) Copies of the release evaluation and procedures are properly maintained; and (4) Coordination with all applicable state and federal agencies is documented. Based on the above guidelines, this report uses one mrem/year for individual members of the public and 10 person-rem/year for the collective population as upper-bound doses for the determination of Authorized Limits.

  1. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  2. Matrix Groups Max Neunhffer

    E-Print Network [OSTI]

    St Andrews, University of

    Matrix Groups Max Neunhöffer Introduction GAP examples Matrix groups in GAP Schreier-Sims Problems Group algebras SLPs Constructive recognition The problem Troubles Matrix Groups Max Neunhöffer University of St Andrews GAC 2010, Allahabad #12;Matrix Groups Max Neunhöffer Introduction GAP examples

  3. GROUP THERAPY Syracuse University

    E-Print Network [OSTI]

    McConnell, Terry

    your individual needs. In a group, up to eight students meet with one or two group therapists. MostGROUP THERAPY Syracuse University Counseling Center 200 Walnut Place Phone: 315-443-4715 Fax: 315-443-4276 counselingcenter.syr.edu WHAT STUDENTS SAY ABOUT GROUP THERAPY I was really anxious about joining a group

  4. USD Catalysis Group for Alternative Energy

    SciTech Connect (OSTI)

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  5. Exact Solutions in a Model of Vertical Gas Migration Dmitriy B. Silin, SPE, Lawrence Berkeley National Laboratory / UC Berkeley; Tad W. Patzek, SPE,

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    SPE 103145 Exact Solutions in a Model of Vertical Gas Migration Dmitriy B. Silin, SPE, Lawrence questions re- garding the feasibility of this technology is the potential rate of leakage out of the primary of the velocity of plume migra- tion provides a conservative estimate for the time of ver- tical migration

  6. From Proceedings of the Twenty-First Annual Conference of the Cognitive Science Society. Vancouver: Lawrence Erlbaum (1999). Concrete and Abstract Models of Category Learning

    E-Print Network [OSTI]

    Langley, Pat

    1999-01-01

    : Lawrence Erlbaum (1999). Concrete and Abstract Models of Category Learning Pat Langley1 (langley@isle.org) Institute for the Study of Learning and Expertise 2164 Staunton Court, Palo Alto, CA 94306 USA Abstract of category learning with the growing evidence that dif- ferent theoretical paradigms typically produce

  7. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  8. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  9. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  10. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  11. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  12. GRAYSTONE GROUP ADVERTISING

    E-Print Network [OSTI]

    Wu, Shin-Tson

    and GRAYSTONE GROUP ADVERTISING Partnership The University Central Florida has partnered with the Graystone Group for the purposes of facilitating recruitment advertising services. Benefits of partnering evaluations. Placing Recruitment Advertising: · Graystone Group is available to support all your recruitment

  13. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    and energy storage. #12;Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 2, catalytic chemical vapor deposition of carbon nanotubes, nanowire (silicon, germanium) growth, nanocom

  14. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments...

  15. Single Step Channeling in Glass Interior by Femtosecond Laser Panjawat Kongsuwan, Hongliang Wang, Y. Lawrence Yao

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    as a revolutionary technique for creating 3D microfluidic structures inside transparent substrates [2]. Laser the material. Tightly focusing of a single femtosecond laser pulse using proper optical and laser processing processing procedures to form 3D microstructures. Femtosecond laser micromachining has emerged

  16. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  17. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  18. TEC Working Group Topic Groups Archives Protocols

    Broader source: Energy.gov [DOE]

    The Transportation Protocols Topic Group serves as an important vehicle for DOE senior managers to assess and incorporate stakeholder input into the protocols process. The Topic Group was formed to review a series of transportation protocols developed in response to a request for DOE to be more consistent in its approach to transportation.

  19. Supplementary Material for Sub-Angstrom Edge Relaxations Probed by Electron

    E-Print Network [OSTI]

    Zettl, Alex

    National Center for Electron Microscopy and Joint Center for Artificial Photosynthesis, Lawrence Berkeley

  20. Complex Materials

    SciTech Connect (OSTI)

    Cooper, Valentino

    2014-04-17

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  1. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  2. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  3. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  4. STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM

    SciTech Connect (OSTI)

    HSU, P C; Hust, G; May, C; Howard, M; Chidester, S K; Springer, H K; Maienschein, J L

    2011-08-03

    Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performed detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.

  5. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  6. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  7. Tritium Focus Group- INEL

    Broader source: Energy.gov [DOE]

    Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014.

  8. RESEARCH GROUP MANUFACTURING

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    RESEARCH GROUP MANUFACTURING ADDITIVE www.lboro.ac.uk/amrg PhD Studentships in Additive by the Additive Manufacturing Research Group is based around a family of processes comprising of adding layers Additive Manufacturing Research Group in the Wolfson School of Mechanical & Manufacturing Engineering

  9. A review of "Alchemy Tried in the Fire: Starkey, Boyle, and the Fate of Helmontian Chymistry." by William R. Newman and Lawrence M. Principe 

    E-Print Network [OSTI]

    Luciano Boschiero

    2003-01-01

    James Ver- sion. Because both these books positively invite such participation and such questions, both are good ?machines for thinking with.? William R. Newman and Lawrence M. Principe. Alchemy Tried in the Fire: Starkey, Boyle, and the Fate...? With the help of some important manuscript sources, Newman and Principe offer some enlightening answers to these questions. Through the laboratory notes of seventeenth-century American alchemist, George Starkey, these authors provide a rare insight...

  10. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  11. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  12. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  13. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments [OSTI]

    2002-00-00

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  14. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  15. Post-rehabilitation flow monitoring and analysis of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Brandstetter, E.R.; Littlefield, D.C.; Villegas, M.

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) is operated by the University of California under contract with the U.S. Department of Energy (DOE). The Livermore site, approximately 50 miles southeast of San Francisco, occupies 819 acres. So far, there have been three phases in an assessment and rehabilitation of the LLNL sanitary sewer system. A 1989 study that used data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows. A Sanitary Sewer Rehabilitation (SSR) project, from October of 1991 to March of 1996, in which the system was assessed and rehabilitated. The third study is the post-rehabilitation assessment study that is reported in this document. In this report, the sanitary sewer system is described, and the goals and results of the 1989 study and the SSR project are summarized. The goals of the post-rehabilitation study are given and the analytical procedures and simulation model are described. Results, conclusions, and recommendations for further work or study are given. Field operations are summarized in Appendix A. References are provided in Appendix B.

  16. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy`s inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  17. Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs), Subpart H

    SciTech Connect (OSTI)

    Hall, L.; Biermann, A

    2000-06-27

    As a Department of Energy (DOE) Facility whose operations involve the use of radionuclides, Lawrence Livermore National Laboratory (LLNL) is subject to the requirements of 40 CFR 61, the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Subpart H of this Regulation establishes standards for exposure of the public to radionuclides (other than radon) released from DOE Facilities (Federal Register, 1989). These regulations limit the emission of radionuclides to ambient air from DOE facilities (see Section 2.0). Under the NESHAPs Subpart H Regulation (hereafter referred to as NESHAPs), DOE facilities are also required to establish a quality assurance program for radionuclide emission measurements; specific requirements for preparation of a Quality Assurance Program Plan (QAPP) are given in Appendix B, Method 114 of 40 CFR 61. Throughout this QAPP, the specific Quality Assurance Method elements of 40 CFR 61 Subpart H addressed by a given section are identified. In addition, the US Environmental Protection Agency (US EPA) (US EPA, 1994a) published draft requirements for QAPP's prepared in support of programs that develop environmental data. We have incorporated many of the technical elements specified in that document into this QAPP, specifically those identified as relating to measurement and data acquisition; assessment and oversight; and data validation and usability. This QAPP will be evaluated on an annual basis, and updated as appropriate.

  18. Proceedings of the second FY87 meeting of the National Working Group for Reduction in Transuranic Waste Arisings

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    The Second FY87 Meeting of the National Working Group for Reduction in Transuranic Waste Arisings (NWGRTWA) was held at the Lawrence Livermore National Laboratory, Tuesday and Wednesday, July 28--29, 1987. The purpose of the meeting was to discuss (1) modeling programs for waste reduction, (2) proposed FY88 and out-year tasks including the SRL Pu incineration, immobilization improvement, erbia coating technology, and (3) improvements in up-stream recovery operations to effect waste reduction. In addition, tours were made of the LLNL Waste Operations, the Laser Fusion (NOVA), and the Magnetic Fusion (MFTF).

  19. Imaging and Nanoscale Characterization Group Center for Nanophase Materials Sciences

    E-Print Network [OSTI]

    Pennycook, Steve

    , Department of Physics & Astronomy, The University of Tennessee, USA. 2008 Session Chair, APS March meeting of Sciences, University of Science and Technology of China Solid State Physics M.S., 1991 Peking University, China Condensed Matter Physics Ph.D., 1997 Professional Experience 2002­present Research Scientist, Oak

  20. US-EU-Japan Working Group on Critical Materials

    Energy Savers [EERE]

    Rare Earth Elements - feeding the global supply chain Janice Zinck, Manager, Natural Resources Canada -Mine Waste Management and Processing Research Program 12:50 The current...

  1. Nuclear Materials Management and Safeguards System Working Group Charter

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session |SecurityNSDDfor 5th NEWSNotice

  2. EM QA Working Group September 2011 Meeting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementof Energy LaboratoryAprilAcquisition and

  3. US-EU-Japan Working Group on Critical Materials

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin the Nation's, ChinaJulyNovemberUS-Canada

  4. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food DrivevehĂ­culosStudents build

  5. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  6. Final Report on ASU Research Funded through Lawrence Livermore National Laboratory Grant ASU XAJ9991/CO

    SciTech Connect (OSTI)

    Calhoun, R; Sommer, J

    2004-01-21

    The line of inquiry which the ASU lidar group has been investigating, with collaboration and support from LLNL, is to create approaches and algorithms for better utilizing the rich information available through modern remote sensors in dispersion modeling systems. In particular, our goal is to create a lidar-data-driven dispersion model mode in ADAPT/LODI. This report describes progress towards this goal during the 2002/2003 academic year. Because of the nature of lidar data and the necessity to utilize additional information, both numerical and measured, this is essentially a data retrieval and data fusion project. With the current generation of commercially available lidar, the scope of the domain in which we are interested is initially 4 to 14 kilometers in radius, where the potentially scanned domain is roughly hemispherical. Figure 1, for example, taken from a recent lidar deployment in Oklahoma City, shows visually the most typical range of the domain that can be probed with the ASU lidar. Ranges 2 or 3 times the distance to the cluster of buildings in the photograph can be probed with a properly functioning, commercially available lidar. This could be of significant value for protecting key buildings with roof-top located remote sensors coupled with dispersion models.

  7. Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details, helping users to branch out to other related sources. Titles of the projects provide clues both to the imaging focus of the research and the scientific discipline for which the visualizations are intended. Only a few of the many titles/images/projects are listed here: 1) Hybrid Parallelism for Volume Rendering at Large Scale Analysis of Laser Wakefield Particle Acceleration Data; 2) Visualization of Microearthquake Data from Enhanced Geothermal Systems; 3) PointCloudXplore: Visualization and Analysis of 3D Gene Expression Data; 4) Visualization of Quantum Monte-Carlo simulations; 5) Global Cloud Resolving Models; 6) Visualization of large-scale GFDL/NOAA climate simulations; 7) Direct Numerical Simulation of Turbulent Flame Quenching by Fine Water Droplets; 8) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 9) Sunfall: Visual Analytics for Astrophysics; 10) Fast Contour Descriptor Algorithm for Supernova Image Classification; 11) Supernova Recognition Using Support Vector Machines; 12) High Performance Visualization - Query-Driven Network Traffic Analysis; 13) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 14) Life Sciences: Cell Division of Caulobacter Crescentus; 15) Electron Cloud Simulations.

  8. A BRIEF DESCRIPTION OF THE SMALL-SCALE SAFETY TESTING SYSTEMS AT LAWRENCE LIVERMORE NATIONAL LABORATORY

    SciTech Connect (OSTI)

    HSU, P C

    2008-07-31

    Small-scale sensitivity testing is important for determining material response to various stimuli including impact, friction, and static spark. These tests, briefly described below, provide parameters for safety in handling. ERL Type 12 drop hammer equipment at LLNL, shown in Figure 1, was used to determine the impact sensitivity. The equipment includes a 2.5-kg drop weight, a striker (upper anvil, 2.5 kg for solid samples and 1.0 kg for liquid samples), a bottom anvil, a microphone sensor, and a peakmeter. For each drop, sample (35 mg for solid or 45 microliter for liquid) is placed on the bottom anvil surface and impacted by the drop weight from different heights. Signs of reactions upon impact are observed and recorded. These signs include noises, flashes or sparks, smoke, pressure, gas emissions, temperature rise due to exothermic reaction, color change of the sample, and changes to the anvil surface (noted by inspection). For solid samples, a 'GO' was defined as a microphone sensor (for noise detection) response of {ge} 1.3 V as measured by a peakmeter. The higher the DH{sub 50} values, the lower the impact sensitivity. The method used to calculate DH{sub 50} values is the 'up and down' or Bruceton method. PETN and RDX have impact sensitivities of 15 and 35 cm, respectively. TATB has impact sensitivity more than 177 cm. For liquid samples, a 'GO' was determined by the noise levels as measured by the peakmeter, appearance of flashes, temperature rise of the anvil, and visual inspection of the anvil surface. Two liquid samples TMETN and FEFO have impact sensitivities of 14 and 32 cm, respectively. Figure 2 shows a 'GO' event observed during the impact sensitivity test; flashes appeared as the drop weight impacted the sample. A BAM friction sensitivity test machine, as shown in Figure 3, was used to determine the frictional sensitivity. The system uses a fixed porcelain pin and a movable porcelain plate that executes a reciprocating motion. Weight affixed to a torsion arm allows for a variation in applied force between 0.5 kg to 36.0 kg. The relative measure of the frictional sensitivity of a material is based upon the smallest load (kg) at which reaction occurs for a 1-in-10 series of attempts. The lower the load values, the higher the frictional sensitivity. PETN has a frictional sensitivity of 6.4 kg. The static spark machine at LLNL is used to evaluate the electrostatic discharge hazards (human ESD) associated with the handling of explosives. The machine was custom-built almost 30 years ago and consists of a capacitor bank (up to 20,000 pF), a voltage meter, and a discharge circuit, as shown in Figure 4. An adjustable resistor up to 510 ohms (chosen to simulate human body) is wired to the discharge circuit. A 5-mg sample is placed in a Teflon washer sealed to a steel disc and covered with a Mylar tape. High static voltage (up to 10 kv) is applied and discharged to the sample. Evidence of reaction is judged from the condition of Mylar tape, smokes, and color change of the sample. Voltage, capacitance, and resistance can be adjusted to achieve the desired static energy. The results obtained are expressed as a zero in 10 or one-in-ten at a specific voltage and joules. One reaction in ten trials at {le} 0.25 joules is considered spark-sensitive. Primary explosives show reaction at 0.1 joule.

  9. Detector Support Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    browser. Concerns? Hall B Navigation DSG Home Staff Presentations Notes print version Detector Support Group Spotlight Archive Index Rotation test for the SVT detector EPICS...

  10. JLab Users Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UserResearcher Information print version UG Resources Background & Purpose Users Group Wiki By Laws Board of Directors Board of Directors Minutes Directory of Members Events...

  11. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    1983-08-16

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  12. Disclaimers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what you wereDisclaimers Welcome to Lawrence

  13. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  14. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  15. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReference Materials Reference

  16. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReference Materials

  17. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    LASP's mechanical analysts also lead mechanical verification testing including: random vibration, forceMechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has

  18. Spent Fuel Working Group Report. Volume 1

    SciTech Connect (OSTI)

    O`Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.

  19. Advances in optical materials for large aperture lasers

    SciTech Connect (OSTI)

    Stokowski, S.E.; Lowdermilk, W.H.; Marchi, F.T.; Swain, J.E.; Wallerstein, E.P.; Wirtenson, G.R.

    1981-12-15

    Lawrence Livermore National Laboratory (LLNL) is using large aperture Nd: glass lasers to investigate the feasibility of inertial confinement fusion. In our experiments high power laser light is focussed onto a small (100 to 500 micron) target containing a deuterium-tritium fuel mixture. During the short (1 to 5 ns) laser pulse the fuel is compressed and heated, resulting in fusion reactions. The generation and control of the powerful laser pulses for these experiments is a challenging scientific and engineering task, which requires the development of new optical materials, fabrication techniques, and coatings. LLNL with the considerable cooperation and support from the optical industry, where most of the research and development and almost all the manufacturing is done, has successfully applied several new developments in these areas.

  20. TEC Working Group Topic Groups Archives Protocols Meeting Summaries...

    Office of Environmental Management (EM)

    Working Group Topic Groups Archives Protocols Meeting Summaries Meeting Summaries Philadelphia TEC Meeting, Protocols Topic Group Summary - July 1999 Jacksonville TEC Meeting,...

  1. SIDEWALL MATERIALS FOR ALUMINIUM SMELTER

    E-Print Network [OSTI]

    Liley, David

    is needed to protect sidewall material High heat loss Overall Reaction: 2Al2O3 (sol) + 3C(s) = 4Al(l) + 3CO2 (SUT) Prof. Geoff Brooks (SUT) Dr. Xiao Yong Yan (CSIRO) High Temperature Processing Research Group CO2 per tonne Al Australia's Aluminium Industry * Australian Aluminium Council: www

  2. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  3. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect (OSTI)

    A., B

    2008-07-31

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

  4. Thermodynamic estimation: Ionic materials

    SciTech Connect (OSTI)

    Glasser, Leslie, E-mail: l.glasser@curtin.edu.au

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.

  5. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering The development of new high-performance materials for energy Use of Advanced Characterization Techniques for Materials Development in Energy and Transportation and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  6. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  7. Rhodes 801-A Rhodes 801-B Group 1: Group 1

    E-Print Network [OSTI]

    Cahay, Marc

    Marie Group 3: Group 3: Bennett, Christopher Paul Davenport, Austin Lovell Creech, Nathan Alan Colburn Worcester, Austin Thomas Group 8: Group 8: TableATableBTableCTableD TableATableBTableCTableD #12;Rhodes 801

  8. Central extensions of Current Groups and the Jacobi Group 

    E-Print Network [OSTI]

    Docherty, Pamela Jane

    2012-11-28

    A current group GX is an infinite-dimensional Lie group of smooth maps from a smooth manifold X to a finite-dimensional Lie group G, endowed with pointwise multiplication. This thesis concerns current groups G§ for compact ...

  9. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and res

  10. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  11. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  12. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  13. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  14. Chemical and Engineering Materials Richard Ibberson, Division Director

    E-Print Network [OSTI]

    Chemical and Engineering Materials Richard Ibberson, Division Director Melissa Richards1 , Division Administrative Assistant 03/02/2015 Engineering Materials Andrew Payzant, Group Leader Ke An VULCAN Dong Ma

  15. Material protection, control, and accounting enhancements through the Russian/US cooperative MPC & A program

    SciTech Connect (OSTI)

    Scott, S.C. [Los Alamos National Lab., NM (United States); Sude, S. [Brookhaven National Lab., Upton, NY (United States); Buckley, W.M. [Lawrence Livremore National Lab., CA (United States)] [and others

    1997-11-01

    The cooperative Russian/US Mining and Chemical Combine (Gorno-Khimichesky Kombinat, GKhK, also referred to as Krasnoyarsk-26) Materials Protection, Control, and Accounting (MPC & A) project was initiated in June 1996. Since then, the GKhK has collaborated with Brookhaven, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories to test, evaluate, and implement MPC & A elements including bar codes, computerized nuclear material accounting software, nondestructive assay technologies, bulk measurement systems, seals, video surveillance systems, radio communication systems, metal detectors, vulnerability assessment tools, personnel access control systems, and pedestrian nuclear material portal monitors. This paper describes the strategy for implementation of these elements at the GKhK and the status of the collaborative efforts. 8 refs., 7 figs., 1 tab.

  16. Renormalization group aspects of graphene

    E-Print Network [OSTI]

    Maria A. H. Vozmediano

    2010-10-25

    Graphene is a two dimensional crystal of carbon atoms with fascinating electronic and morphological properties. The low energy excitations of the neutral, clean system are described by a massless Dirac Hamiltonian in (2+1) dimensions which also captures the main electronic and transport properties. A renormalization group analysis sheds light on the success of the free model: due to the special form of the Fermi surface which reduces to two single points in momentum space, short range interactions are irrelevant and only gauge interactions like long range Coulomb or effective disorder can play a role in the low energy physics. We review these features and discuss briefly other aspects related to disorder and to the bilayer material along the same lines.

  17. Materials Science & Technology, MST: Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for new technologies and specialized hardware; and Providing user-based materials characterization capabilities. MST Groups overview Metallurgy (MST-6) foamvoids Polymers...

  18. Materials with supramolecular chirality : liqid crystals and polymers for catalysis

    E-Print Network [OSTI]

    Martin, Karen Villazor

    2005-01-01

    Mesomorphic organizations provide a powerful and efficient method for the preorganization of molecules to create synthetic materials with controlled supramolecular architectures. Incorporation of polymerizable groups within ...

  19. Optical Spectroscopy for Materials Applications | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Spectroscopy for Materials Applications The two main objectives of the Smith research group are: (1) to measure the organization and dynamics of biological structures, and...

  20. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  1. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  2. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory,...

  3. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Manufacturing New materials drive the development of innovative products. Building upon a rich history in materials science, ORNL is discovering and developing...

  4. Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  5. February 2014 LAWRENCE LEEMIS

    E-Print Network [OSTI]

    Leemis, Larry

    : Operations research, manufacturing, production, ergonomics. · Engineering Statistics, E 3293: Random, computer applications, ergonomics. · Statistical Control I, IE 230: Random variables, distributions

  6. Lawrence Grove Oral History

    E-Print Network [OSTI]

    Grove, Lawrence; Miller, Timothy

    2009-09-23

    circuits. We had circuit riders. The genius of John Wesley, the founder of Methodism, always a member of the Church of England, never a member of the Methodist church, was one who had the practical skills of getting people organized so that they could do... might call “canned sermons”. Usually there was one sermon on salvation. There was one sermon on assurance, which was one of John Wesley?s very important concepts. There was another sermon on Christian living, living responsibly in most cases not using...

  7. Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    en Sandia California works on nuclear weapon W80-4 Life Extension Program http:www.nnsa.energy.govblogsandia-california-works-nuclear-weapon-w80-4-life-extension-program...

  8. Curriculum Vitae Lawrence Chung

    E-Print Network [OSTI]

    Chung, Lawrence

    reengineering, using qualitative and quantitative modeling and reasoning techniques.. Lecturer Department of Toronto, November 1993. Thesis title: Representing and Using Non-Functional Requirements: A Process of Toronto, March 1984. Thesis title: An Extended Taxis Compiler. Supervisor: Professor John Mylopoulos. B

  9. Ernest Orlando Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Citation Claire E. Max 2004 Physics: For her contributions to the theory of laser guide star adaptive optics and its application in ground-based astronomy to correct telescopic...

  10. A. Lawrence Bryan, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries PrintA2 September 9 - Tuesday TM-behavior ofA.

  11. lawrence berkeley laboratories

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A en

  12. lawrence livermore laboratories

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A en

  13. E.O. Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sectorfor $1.14Dynein

  14. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with E.O.GasSecurity83/%2A

  15. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and- EnergyNews »with

  16. Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)

    SciTech Connect (OSTI)

    Skripka, G.; Vatulin, V.; Yuferev, V. [VNIIEF, Sarov (Russian Federation)] [and others

    1997-11-01

    This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans.

  17. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  18. BEATRIX: The international breeder materials exchange

    SciTech Connect (OSTI)

    Johnson, C.E.; Reuther, T.C.; Dupouy, J.M.

    1986-01-01

    The BEATRIX experiment is an IEA-sponsored effort that involves the exchange of solid breeder materials and shared irradiation testing among research groups in several countries. The materials will be tested in both closed capsules (to evaluate material lifetime) and opened capsules (to evaluate purge-flow tritium recovery). Pre- and post-irradiation measurement of thermophysical and mechanical properties will also be carried out.

  19. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  20. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  1. Bell, group and tangle

    SciTech Connect (OSTI)

    Solomon, A. I.

    2010-03-15

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  2. 12. Automatic Groups Suppose

    E-Print Network [OSTI]

    Gilman, Robert

    for the generator a to the automaton in Figure 1, we obtain a synchronized automaton which accepts a linear language12. Automatic Groups Suppose : G is a choice of generators, and R is a rational language which are all synchronous and rational. We will define synchronous presently. R and are called an automatic

  3. Introducing a digital library reading appliance into a reading group

    E-Print Network [OSTI]

    Marshall, Cathy

    Introducing a digital library reading appliance into a reading group Catherine C. Marshall, Morgan will we read digital library materials? This paper describes the reading practices of an on-going reading group, and how these practices changed when we introduced XLibris, a digital library reading appliance

  4. Curriculum Revision REPORT OF AD HOC WORKING GROUP ON

    E-Print Network [OSTI]

    Brown, Sally

    Curriculum Revision REPORT OF AD HOC WORKING GROUP ON CURRICULUM REVISION (November 2002- March (2) Charge to Ad Hoc Working Group on Curriculum.............................. 12 (3) Materials;Curriculum Revision SUMMARY Curriculum transformation at the College of Forest Resources (CFR) is a response

  5. Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Binding ORNL discovery holds potential for separations, sensors, batteries, biotech and more Home | Science & Discovery | Advanced Materials Advanced Materials |...

  6. Composite material dosimeters

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  7. Data Mining Group VNG Corporation

    E-Print Network [OSTI]

    Shahabi, Cyrus

    Data Mining Group VNG Corporation Data Mining Group_VNG Corporation 1 #12;Data Mining Group_VNG Corporation 2 1 ·Introduction 2 ·Edge Rank 3 ·Parameter Estimate 4 ·Conclusion #12;Data Mining Group_VNG Corporation 3 #12;Data Mining Group_VNG Corporation 4 #12; User's self activity Update status Write blogs

  8. Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel

    E-Print Network [OSTI]

    Members #12;USFCC Working Groups Government Affairs Codes & Standards Education & Marketing Materials Storage Materials Codes & Standards #12;Regulatory Affairs Facilitate international open markets Develop, NFPA, ASME, CSA, UL, IEEE, and others Published technical papers on PEM and SOFC Nomenclature, costing

  9. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  10. TEC Working Group Topic Groups Archives Communications Conference...

    Office of Environmental Management (EM)

    Communications Conference Call Summaries TEC Working Group Topic Groups Archives Communications Conference Call Summaries Conference Call Summaries Conference Call Summary April...

  11. TEC Working Group Topic Groups Routing Conference Call Summaries...

    Office of Environmental Management (EM)

    Routing Conference Call Summaries TEC Working Group Topic Groups Routing Conference Call Summaries CONFERENCE CALL SUMMARIES January 31, 2008 December 6, 2007 October 4, 2007...

  12. TEC Working Group Topic Groups Security Conference Call Summaries...

    Office of Environmental Management (EM)

    Conference Call Summaries TEC Working Group Topic Groups Security Conference Call Summaries Conference Call Summaries August 17, 2006 (Draft) July 18, 2006 (Draft) June 20, 2006...

  13. TEC Working Group Topic Groups Archives Mechanics of Funding...

    Office of Environmental Management (EM)

    Mechanics of Funding and Techical Assistance TEC Working Group Topic Groups Archives Mechanics of Funding and Techical Assistance Mechanics of Funding and Techical Assistance Items...

  14. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    SciTech Connect (OSTI)

    Deng Xinfa; Yu Guisheng

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  15. TEC Working Group Topic Groups Rail Meeting Summaries | Department...

    Office of Environmental Management (EM)

    - March 15, 2006 Pueblo TEC Meeting, Rail Topic Group Summary - September 22, 2005 Phoenix TEC Meeting, Rail Topic Group Summary - April 4, 2005 Minneapolis TEC Meeting, Rail...

  16. Proceedings of the workshop on cool building materials

    SciTech Connect (OSTI)

    Akbari, H.; Fishman, B.; Frohnsdorff, G.

    1994-04-01

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  17. Demonstration of Energy Savings of Cool Roofs

    E-Print Network [OSTI]

    Konopacki, S.

    2010-01-01

    to Mitigate Urban Heat Islands". Atmospheric Environment 32:1995. "Mitigation of Urban Heat Islands: Materials, UtilityDr. Lisa Gartland of the Heat Island Group at Lawrence OUR S

  18. Design and qualification of an absolute thickness measuring machine

    E-Print Network [OSTI]

    Kelly, Darcy K. (Darcy Kendal), 1980-

    2004-01-01

    The target fabrication group at Lawrence Livermore National Laboratory develops various high energy density physics targets, which are used to study the interaction of materials when shot with high energy lasers. These ...

  19. Probing Nanotribological and Electrical Properties of Organic Molecular Films with Atomic Force Microscopy

    E-Print Network [OSTI]

    Weeks, Eric R.

    Graduate Group, University of California, Berkeley, California 3 Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California Summary: Structural aspects between na- nomechanical and charge transport properties of molecular films at the molecular scale

  20. Wave Propagation in Multiferroic Materials

    E-Print Network [OSTI]

    Keller, Scott Macklin

    2013-01-01

    Waves in Magnetoelectric Materials . . . Need forApplication of Multiferroic Materials to Receive AntennaMaterials . . . . . . . . . . . . . . . . . . . . . . . . .

  1. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Division Search APS ... Search Button About ASD General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is...

  2. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

    E-Print Network [OSTI]

    damage to fusion materials · Safety analyses in support of future fusion power plants and experimental-PRES-420586 Overview of OFES LLNL Fusion Program Fusion Power Associates 30th Anniversary Meeting States of Matter ­ FI Advanced Concepts Exploration ­ Virtual Lab for Technology ITER NIF Burning Plasma

  3. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  4. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344 Blank template

    E-Print Network [OSTI]

    combines the best aspects of nuclear fusion and fission neutrons and energy #12;NIF-1208-15665.ppt MosesThis work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore be a defining moment for the world's energy future #12;NIF-1208-15665.ppt Moses, FPA, LIFE, 12/03/08 4 A variety

  5. Shilling, R. and B. G. Shinn-Cunningham (2000). Virtual Auditory Displays. To appear in Handbook of Virtual Environment Technology. K. Stanney (ed), Lawrence Erlbaum, Associates, Inc., in press.

    E-Print Network [OSTI]

    Shinn-Cunningham, Barbara G.

    2000-01-01

    of Virtual Environment Technology. K. Stanney (ed), Lawrence Erlbaum, Associates, Inc., in press. Keywords-modal enhancement, pitch, timbre, intensity, distance, room modeling, radio communication Virtual Environments attention when designing virtual environments or simulations. This lack of attention is unfortunate since

  6. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01)19^ U N I T ECommunications Group

  7. Working Group Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: Model or Working Group

  8. Helms Research Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions forHeavy-Duty Waste HaulerHeikoHe,Helms Group

  9. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAboutNuclearPrincipalResearchResearchResearch Groups

  10. DOE STGWG Group

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergyThis memo fromDepartment ofSTGWG Group

  11. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  12. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, Richard W. (Hinsdale, IL); Nieman, G. William (Evanston, IL); Weertman, Julia R. (Evanston, IL)

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  13. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect (OSTI)

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  14. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  15. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    SciTech Connect (OSTI)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  16. March, 2001 Neutron Scattering Group

    E-Print Network [OSTI]

    Johnson, Peter D.

    March, 2001 Neutron Scattering Group A High Performance Hybrid Spectrometer for theA High of the instrument performance · Igor Zaliznyak · Laurence Passell OutlineOutline #12;Neutron Scattering GroupNeutron states in single crystals.single crystals. #12;Neutron Scattering GroupNeutron Scattering Group What

  17. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  18. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program APPENDIX A: DATA REQUESTS ..................................... 11 #12;Data Management Group 1999 Annual Report Page 1 of 14 INTRODUCTION The Data Management Group is a research project located at the Joint

  19. Methods for removing contaminant matter from a porous material

    DOE Patents [OSTI]

    Fox, Robert V. (Idaho Falls, ID) [Idaho Falls, ID; Avci, Recep (Bozeman, MT) [Bozeman, MT; Groenewold, Gary S. (Idaho Falls, ID) [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  20. Winter 2015 Positive Parenting Group

    E-Print Network [OSTI]

    Winter 2015 Positive Parenting Group This is an eight-week parent group series starting Monday, January 12, 2015 Future parent group sessions to be held: January 26 (no group 19th ) February 2, 9 and 23 (no group 16th ) and March 2, 9 and 16 6:00 p.m. to 8:00 p.m. Room 145 of the Clinical Services

  1. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  2. Department of Materials Science &

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  3. Sandia Energy - Materials Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Chemistry Home Transportation Energy Predictive Simulation of Engines Clean FuelsPower Materials Chemistry Materials ChemistryAshley Otero2015-10-28T02:42:21+00:00...

  4. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  5. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Education Center About Us Conferences and Workshops Advanced Qualification of Additive Manufacturing Materials Workshop Quantum and Dirac Materials for Energy...

  6. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their...

  7. Working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusion

    SciTech Connect (OSTI)

    Browand, F; Gutierrez, W; Leonard, A; McBride, D; McCallen, R; Ross, J; Roth, K; Rutledge, W; Salari, K

    1998-09-28

    The first Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Sandia National Laboratories (SNL) in Albuquerque, New Mexico on August 28, 1998. The purpose of the meeting was to review the proposed Multi-Year Program Plan (MYPP) and provide an update on the Group"s progress. In addition, the technical details of each organization"s activities were presented and discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), SNL, University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center. These presenters are part of a DOE appointed Technical Team assigned to developing the MYPP. The goal of the MYPP is to develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational tools (A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles, R. McCallen, D. McBride, W. Rutledge, F. Browand, A. Leonard, .I. Ross, UCRL-PROP- 127753 Dr. Rev 2, May 1998). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions from the Meeting participants, and outlines the future actions.

  8. Neil 65 Group Picture Neil 65 Group Picture

    E-Print Network [OSTI]

    Mohar, Bojan

    Neil 65 Group Picture Neil 65 Group Picture December 14, 2003 Row 1: Tom Dowling, Nolan Mc Glover, Mike Lohman, Sangil Oum, Blair Dowling http://www.math.ohio-state.edu/~maharry/Neil65/pictures/Neil65GroupPicture.html25.9.2004 18:19:04 #12;

  9. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  10. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation sector is about 20%, opportunities for materials-based technologies to improve energy efficiency (e Ridge National Laboratory (ORNL). He is also the Director of the High Temperature Materials Laboratory

  11. Tritium breeding materials

    SciTech Connect (OSTI)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  12. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  13. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2000 prepared by: Data Management Group Joint Program PROCESSING ...................................................2 Text Based Data Retrieval System `drs'.................................2 Internet Browser Data Retrieval System (iDRS).....................3 Complex Data Requests

  14. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    iv Data Management Group Annual Report 2003 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located ........................................................................................................ 3 Text-based Data Retrieval System `drs

  15. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2001 prepared by: Data Management Group Joint Program..............................................................................2 Text Based Data Retrieval System `drs' ..........................................................2 Internet Browser Data Retrieval System (iDRS)..............................................3 Complex Data

  16. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2002 prepared by: Data Management Group Joint Program Based Data Retrieval System `drs' ............................................... 3 Internet Browser Data Retrieval System (iDRS) .................................. 4 Complex Data Requests

  17. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  18. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  19. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  20. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable federal...

  1. Interagency Sustainability Working Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Areas Sustainable Buildings & Campuses Interagency Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group...

  2. Water Resources Working Group Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members ­ WICCI Tim Asplund (Co-Chair) - Wisconsin Department

  3. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION

  4. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2004 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located of the funding partners: Ministry of Transportation, Ontario #12;SUMMARY The Data Management Group (DMG

  5. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2000 prepared by: Data Management Group Joint Program ...........................................18 #12;i SUMMARY The Data Management Group (DMG), in cooperation with the funding agencies, has. In addition, there were 26 complex requests for data that required a customized computer program. Eight

  6. Bobst Group SA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois: EnergyHills,BluefieldBob Lawrence Associates

  7. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  8. Programs for Increasing the Engagement of Underrepresented Ethnic Groups and People with Disabilities in HPC. Final assessment report

    SciTech Connect (OSTI)

    Taylor, Valerie

    2012-12-23

    Given the significant impact of computing on society, it is important that all cultures, especially underrepresented cultures, are fully engaged in the field of computing to ensure that everyone benefits from the advances in computing. This proposal is focused on the field of high performance computing. The lack of cultural diversity in computing, in particular high performance computing, is especially evident with respect to the following ethnic groups – African Americans, Hispanics, and Native Americans – as well as People with Disabilities. The goal of this proposal is to organize and coordinate a National Laboratory Career Development Workshop focused on underrepresented cultures (ethnic cultures and disability cultures) in high performance computing. It is expected that the proposed workshop will increase the engagement of underrepresented cultures in HPC through increased exposure to the excellent work at the national laboratories. The National Laboratory Workshops are focused on the recruitment of senior graduate students and the retention of junior lab staff through the various panels and discussions at the workshop. Further, the workshop will include a community building component that extends beyond the workshop. The workshop was held was held at the Lawrence Livermore National Laboratory campus in Livermore, CA. from June 14 - 15, 2012. The grant provided funding for 25 participants from underrepresented groups. The workshop also included another 25 local participants in the summer programs at Lawrence Livermore National Laboratory. Below are some key results from the assessment of the workshops: 86% of the participants indicated strongly agree or agree to the statement "I am more likely to consider/continue a career at a national laboratory as a result of participating in this workshop." 77% indicated strongly agree or agree to the statement "I plan to pursue a summer internship at a national laboratory." 100% of the participants indicated strongly agree or agree to the statement "The CMD-IT NLPDEV workshop was a valuable experience."

  9. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  10. Short intense ion pulses for materials and warm dense matter research

    E-Print Network [OSTI]

    Seidl, Peter A; Lidia, Steven M; Persaud, Arun; Stettler, Matthew; Takakuwa, Jeffrey H; Waldron, William L; Schenkel, Thomas; Barnard, John J; Friedman, Alex; Grote, David P; Davidson, Ronald C; Gilson, Erik P; Kaganovich, Igor D

    2015-01-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accel...

  11. GAMIDENT: a program to aid in the identification of unknown materials by gamma-ray spectroscopy

    SciTech Connect (OSTI)

    Howerton, R.J.; Eggens, C.J.

    1980-01-04

    A computer code, called GAMIDENT, was written to help identify isotopes by their gamma-ray emissions and thus to assist in the non-destructive assay of unknown materials. The program searches a file (called GAMIN) of gamma-ray spectra, from both radioactive decays and neutron captures, for matches with observed photon energies. This report describes the search procedure used, outlines the use of the code, and gives examples. The code is designed for operation at the Lawrence Livermore Laboratory on a CDC-7600 computer. It is written in standard Fortran (ANSI) as much as possible, but it contains some LRLTRAN instructions required to make use of the Livermore Timesharing System. The code uses about 30,000 words of SCM and about 550,000 words of LCM. Typical problems run in less than 30 seconds. The source program and the data file are available on request.

  12. TEC Working Group Topic Groups Archives | Department of Energy

    Office of Environmental Management (EM)

    the following links: Communicatons Consolidated Grant Topic Group Training - Medical Training Protocols Route Identificaiton Process Mechanics of Funding and Technical Assistance...

  13. TEC Working Group Topic Groups Routing | Department of Energy

    Office of Environmental Management (EM)

    group members will be to provide stakeholder perspectives and input to the Office of Logistics Management (OLM) in the Department of Energy's (DOE) Office of Civilian Radioactive...

  14. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  15. Appendix B: Glossary of Polymer Materials

    E-Print Network [OSTI]

    Hall, Christopher

    -334 (Wiley, New York, 1985). Acrylic ester polymers A group of amorphous carbon-chain polymers of whichAppendix B: Glossary of Polymer Materials This glossary emphasises the individuality of polymers and polymer families, historically, scientifically and technically. It complements the rest of the book

  16. Earth-Abundant Materials

    Broader source: Energy.gov [DOE]

    DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. The sections below...

  17. Factors of material consumption

    E-Print Network [OSTI]

    Silva Díaz, Pamela Cristina

    2012-01-01

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  18. CRITICAL MATERIALS INSTITUTE PROJECTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL National Technology Roadmap for Critical Materials 4 4-3 4.3.3 McCall, Scott LLNL Additive Manufacturing of Permanent Magnets 2 2-1 2.1.2 Turchi, Patrice LLNL Materials...

  19. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  20. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  1. Karankawa linguistic Materials

    E-Print Network [OSTI]

    Grant, Anthony P.

    1994-01-01

    In this paper I present the available materials on the diverse dialectal forms of the extinct Karankawa language of coastal Texas in the form of an English-Karankawa vocabulary, together with the attested sentence and text material, a transcription...

  2. Radioactive Materials Product Stewardship

    E-Print Network [OSTI]

    Radioactive Materials Product Stewardship ABackground Report for the National Dialogue...................................................................................................26 Low Level Waste (LLW) Disposal Regulations on Radioactive Materials Product Stewardship Prepared by the: Product Stewardship Institute University

  3. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  4. VHTR Materials Overview

    SciTech Connect (OSTI)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-07-30

    The PowerPoint presentation was given at the DOE-NE Materials Crosscut Coordination Meeting, Tuesday, 30 July 2013.

  5. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Garritt Tucker Drexel University, Philadelphia, Pennsylvania Atomistic Methods to Quantify Nanoscale Strain and Deformation Mechanisms in Nanostructured Materials Thursday, August...

  6. HIGH PERFORMANCE MACROMOLECULAR MATERIALS

    E-Print Network [OSTI]

    M. Gregory Forest. Department of Mathematics. Institute for Advanced Materials, Nanoscience & Technology. University of North Carolina at Chapel Hill.

  7. Instructions and Materials

    Broader source: Energy.gov [DOE]

    The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

  8. Status report on the geology of the Lawrence Livermore National Laboratory site and adjacent areas. Volume I. Text and appendices A-E

    SciTech Connect (OSTI)

    Carpenter, D.W.; Puchlik, K.P.; Ramirez, A.L.; Wagoner, J.L.; Knauss, K.G.; Kasameyer, P.W.

    1980-10-01

    In April, 1979, geoscience personnel at Lawrence Livermore National Laboratory (LLNL) initiated comprehensive geologic, seismologic, and hydrologic investigations of the LLNL site and nearby areas. These investigations have two objectives: 1. to obtain data for use in preparing a Final Environmental Impact Report for LLNL, pursuant to the National Environmental Policy Act; 2. to obtain data for use in improving the determination of a design basis earthquake for structural analysis of LLNL facilities. The first phases of these investigations have been completed. Work completed to date includes a comprehensive literature review, analyses of three sets of aerial photographs, reconnaissance geophysical surveys, examination of existing LLNL site borehole data, and the logging of seven exploratory trenches, segments of two sewer trenches, a deep building foundation excavation, a road cut, and an enlarged creek bank exposure. One absolute age date has been obtained by the /sup 14/C method and several dates of pedogenic carbonate formation have been obtained by the /sup 230/Th//sup 234/U method. A seismic monitoring network has been established, and planning for a site hydrologic monitoring program and strong motion instrument network has been completed. The seismologic and hydrologic investigations are beyond the scope of this report and will be discussed separately in future documents.

  9. Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept by the Lawrence Livermore National Laboratory

    E-Print Network [OSTI]

    Winterberg, Friedwardt

    2009-01-01

    The recently proposed Super Marx generator pure deuterium micro-detonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser DT fusion-fission hybrid concept (LiFE) [1]. In a Super Marx generator a large number of ordinary Marx generators charge up a much larger second stage ultra-high voltage Marx generator, from which for the ignition of a pure deuterium micro-explosion an intense GeV ion beam can be extracted. A typical example of the LiFE concept is a fusion gain of 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation a gain of the same magnitude can in theory be reached [2]. If feasible, the Super Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of ther...

  10. Environmental assessment for the demonstration of uranium-atomic vapor laser isotope separation (U-AVLIS) at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy, proposes to use full-scale lasers and separators to demonstrate uranium enrichment as part of the national Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) Program. Demonstration of uranium enrichment is planned to be conducted in Building 490 of the Lawrence Livermore National Laboratory (LLNL), near Livermore, California in 1991 and 1992. The collective goal of the U-AVLIS Program is to develop and demonstrate an integrated technology for low-cost enrichment of uranium for nuclear reactor fuel. Alternatives to the proposed LLNL demonstration activity are no action, use of alternative LLNL facilities, and use of an alternative DOE site. This EA describes the existing LLNL environment and surroundings that could be impacted by the proposed action. Potential impacts to on- site and off-site environments predicted during conduct of the Uranium Demonstration System (UDS) at LLNL and alternative actions are reported in this EA. The analysis covers routine activities and potential accidents. 81 refs., 8 figs., 6 tabs.

  11. On The Harmonic Oscillator Group

    E-Print Network [OSTI]

    Raquel M. Lopez; Sergei K. Suslov; Jose M. Vega-Guzman

    2011-12-04

    We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. A six parameter family of the square integrable oscillator wave functions, which seems cannot be obtained by the standard separation of variables, is presented as an example. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.

  12. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering New paradigms in the R&D of novel multifunctional oxide and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry Laboratory (ANL) during the past fifteen years. Also, the applications of these materials for a new

  13. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  14. Esselen Linguistic Materials

    E-Print Network [OSTI]

    Shaul, David L.; Turner, Katherine; Collins, James D.

    1984-01-01

    The primary purpose of this paper is to make a complete list of materials known on the Esselen language available in a single place. The existing lexical material has been organized into a lexicon which is followed by phrasal and sentence materials...

  15. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within the College of Engineering

  16. ARGX-87: Accident Response Group Exercise, 1987: A Broken Arrow mini exercise. [Training

    SciTech Connect (OSTI)

    Schuld, E.P.; Cruff, D.F.

    1987-07-01

    A Broken Arrow mini exercise dubbed ''Accident Response Group Exercise - 1987'' (ARGX-87) was conducted on June 1, 1987 at the Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNLL). The exercise started at 0445 PDT with a call from the Department of Energy (DOE) - EOC in Washington, DC, to the Albuquerque Operations (AL - ) - EOC. AL, in turn, called the Laboratory off-hour emergency number (Fire Dispatcher), who called the Laboratory Emergency Duty Officer (LEDO). The LEDO then contacted the Accident Response Group (ARG) Senior Scientific Advisor. Calls were placed to assemble appropriate members of the ARG in the ALERT Center. No phone number for SNLL was available at the Albuquerque Operations EOC, so a controller injected a message to SNLL to get them involved in the exercise. The messages received at the Laboratory identified the Air Force line item weapon system involved in the accident and the accident location. As people arrived at the ALERT Center they began discussing the details of the accident. They also started working the deployment logistics and other issues. Travel arrangements for the HOT SPOT equipment and ARG personnel were made for immediate deployment to the accident site in North Dakota. The exercise was terminated at 0840 as planned. While certain procedural deficiencies were noted, the exercise was considered a valuable learning experience. The results and observations from this experience will be used to refine the operating procedures and the training program.

  17. Working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and

    SciTech Connect (OSTI)

    Browand, F; Gutierrez, W; Leonard, A; McBride, D; McCallen, R; Ross, J; Roth, K; Rutledge, W; Salari, K.

    1998-09-28

    The first Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Sandia National Laboratories (SNL) in Albuquerque, New Mexico on August 28, 1998. The purpose of the meeting was to review the proposed Multi-Year Program Plan (MYPP) and provide an update on the Group s progress. In addition, the technical details of each organization s activities were presented and discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), SNL, University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center. These presenters are part of a DOE appointed Technical Team assigned to developing the MYPP. The goal of the MYPP is to develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational tools (A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles, R. McCallen, D. McBride, W. Rutledge, F. Browand, A. Leonard, .I. Ross, UCRL-PROP- 127753 Dr. Rev 2, May 1998). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions from the Meeting participants, and outlines the future actions.

  18. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. To address the facility-specific and site-specific vulnerabilities, responsible DOE and site-contractor line organizations have developed initial site response plans. These plans, presented as Volume 2 of this Management Response Plan, describe the actions needed to mitigate or eliminate the facility- and site-specific vulnerabilities identified by the CSV Working Group field verification teams. Initial site response plans are described for: Brookhaven National Lab., Hanford Site, Idaho National Engineering Lab., Lawrence Livermore National Lab., Los Alamos National Lab., Oak Ridge Reservation, Rocky Flats Plant, Sandia National Laboratories, and Savannah River Site.

  19. Ad Hoc Curriculum Implementation Working Group Ad Hoc Working Group

    E-Print Network [OSTI]

    Brown, Sally

    Ad Hoc Curriculum Implementation Working Group MINUTES Ad Hoc Working Group 4 December 2002 Friedman on her visit next week. ONE CURRICULUM OR TWO? Information presented by Trudeau shows that PSE and other programs cannot be merged into a single curriculum. The Faculty Senate website states

  20. ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA

    E-Print Network [OSTI]

    Piette, M.A.

    2010-01-01

    on samples of commercial buildings data collected by theCommercial Buildings, Buildings Energy Data Group, LawrencePiette and Denise Flora Buildings Energy Data Group Lawrence

  1. Acterra Group | Open Energy Information

    Open Energy Info (EERE)

    Product: Acterra Group provides consulting, project financing, services and support to energy, natural resource, and sustainability companies. Coordinates: 44.671312,...

  2. Filling factors and Braid group

    E-Print Network [OSTI]

    Wellington Cruz

    1998-02-25

    We extract the Braid group structure of a recently derived hierarchy scheme for the filling factors proposed by us which related the Hausdorff dimension, $h$, to statistics, $\

  3. Tailored Porous Materials

    SciTech Connect (OSTI)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  4. Composite materials for thermal energy storage

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  5. Guide to Savannah River Laboratory Analytical Services Group

    SciTech Connect (OSTI)

    Not Available

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  6. The Enrichment History of Hot Gas in Poor Galaxy Groups

    E-Print Network [OSTI]

    David S. Davis; John S. Mulchaey; Richard F. Mushotzky

    1998-08-10

    We have analyzed the ASCA SIS and GIS data for seventeen groups and determined the average temperature and abundance of the hot x-ray emitting gas. For groups with gas temperatures less than 1.5 keV we find that the abundance is correlated with the gas temperature and luminosity. We have also determined the abundance of the alpha-elements and iron independently for those groups with sufficient counts. We find that for the cool groups (i.e. kT <1.5 keV) the ratio of alpha-elements to iron is ~1, about half that seen in clusters. Spectral fits with the S, Si and Fe abundances allowed to vary separately suggest the S/Fe ratio is similar to that seen in clusters while the Si/Fe ratio in groups is half the value determined for richer systems. The mass of metals per unit blue luminosity drops rapidly in groups as the temperature drops. There are two possible explanations for this decrease. One is that the star formation in groups is very different from that in rich clusters. The other explanation is that groups lose much of their enriched material via winds during the early evolution of ellipticals. If the latter is true, we find that poor groups will have contributed significantly (roughly 1/3 of the metals) to the enrichment of the intergalactic medium.

  7. UCSB Materials Colloquium 4/16/2010 Compositional tuning of functional inorganic

    E-Print Network [OSTI]

    Bigelow, Stephen

    ://www.mrl.ucsb.edu/~seshadri +++ seshadri@mrl.ucsb.edu #12;UCSB Materials Colloquium 4/16/2010 Overview: Strategies for new functional materials 1. Make a material (new structure, new composition...) that displays the function sought (eg. Hg Ouyang support: NSF-IGERT, Department of Energy #12;UCSB Materials Colloquium 4/16/2010 Research group

  8. ANNUAL REPORT 1998 PHOTOVOLTAICS GROUP

    E-Print Network [OSTI]

    New South Wales, University of

    ANNUAL REPORT 1998 UNSW PHOTOVOLTAICS GROUP ANNUAL REPORT 1998 UNSW PHOTOVOLTAICS GROUP #12;THE UNIVERSITY OF NEW SOUTH WALES THE PHOTOVOLTAICS SPECIAL RESEARCH CENTRE IS A SPECIAL RESEARCH CENTRE OF THE AUSTRALIAN RESEARCH COUNCIL THE KEY CENTRE FOR PHOTOVOLTAIC ENGINEERING IS A KEY CENTRE OF THE AUSTRALIAN

  9. Neutron Scattering Group February, 2001

    E-Print Network [OSTI]

    Johnson, Peter D.

    Neutron Scattering Group February, 2001 A High Performance Instrument for the Single Crystal Igor Zaliznyak Outline #12;Neutron Scattering Group Neutron spectrometer for studies of the low-energy coherent excitations in single crystals. Common requirements for a single crystal neutron spectrometer

  10. FEATURE ARTICLES Group Decision Making

    E-Print Network [OSTI]

    FEATURE ARTICLES Group Decision Making in Honey Bee Swarms When 10,000 bees go house hunting, how a neighboring colony. A striking example of decision mak- ing by an animal group is the choice of a nesting site paper on house hunting by honey bees. Lindauer was then a postdtx:toral stu- dent at the University

  11. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Lightweighting Materials - 12. Materials Crosscutting Research and Development The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction...

  12. Introduction of Shougang Group Introduction of Shougang Group

    E-Print Network [OSTI]

    Cambridge, University of

    technology like mold powder design, watering modeling and defects control Material design like high, bearing, spring, non-tempering, and etc. Wire for welding, stranded wire, tire cord, fastener part

  13. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L.

    1993-06-01

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  14. Periodic homogenization and material symmetry in linear elasticity

    E-Print Network [OSTI]

    Mariya Ptashnyk; Brian Seguin

    2015-05-07

    Here homogenization theory is used to establish a connection between the symmetries of a periodic elastic structure associated with the microscopic properties of an elastic material and the material symmetries of the effective, macroscopic elasticity tensor. Previous results of this type exist but here more general symmetries on the microscale are considered. Using an explicit example, we show that it is possible for a material to be fully anisotropic on the microscale and yet have a nontrivial material symmetry group on the macroscale. Another example demonstrates that not all material symmetries of the macroscopic elastic tensor are generated by symmetries of the periodic elastic structure.

  15. Vehicle Technologies Office Merit Review 2014: Predicting and Understanding Novel Electrode Materials From First-Principles

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  16. Vehicle Technologies Office Merit Review 2015: Predicting and Understanding Novel Electrode Materials from First-Principles

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  17. Vehicle Technologies Office Merit Review 2015: Design of High Performance, High Energy Cathode Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  18. Vehicle Technologies Office Merit Review 2014: Design of High Performance, High Energy Cathode Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  19. Vehicle Technologies Office Merit Review 2014: Design and Synthesis of Advanced High-Energy Cathode Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

  20. Vehicle Technologies Office Merit Review 2015: Continuum Modeling as a Guide to Developing New Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkley National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...