National Library of Energy BETA

Sample records for materials group lawrence

  1. Seismology Group Leader, Lawrence Livermore National Laboratory | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Seismology Group Leader, Lawrence Livermore National Laboratory Artie Rogers demonstrating seismology modeling. Artie Rogers August 2009 Fulbright Scholarship Artie Rodgers, Seismology Group Leader at Lawrence Livermore National Laboratory, was recently awarded a Fulbright Scholarship. In January he will be heading to Grenoble, France to study the relationship between topography and seismology with computer modeling at Laboratoire de Géohysique Interne et

  2. Kristin Persson Lawrence Berkeley National Laboratory A Google for Materials?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristin Persson Lawrence Berkeley National Laboratory A Google for Materials? security visualization infrastructure transportation health communication Engineered Materials Enable Society consumption How are New Materials Invented? "Edison Style" When looking for a light bulb filament, Edison tried about 3,000 materials ... And he didn't find the best one ...! Materials Design: Hollywood Style Need to replace this video? Teflon Titanium Velcro 1930 1940 1950 1960 1970 1980 1990 2000

  3. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    SciTech Connect (OSTI)

    Amy Wong; Denise Thronas; Robert Marshall

    1998-11-04

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  4. Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  5. Lawrence Livermore National Laboratory's Use of Time and Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through development and application of science and technology to enhance the Nation's ... overhead, general and administrative expenses, and profit) and actual costs for materials. ...

  6. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  7. Site Visit Report, Lawrence Livermore National Laboratory- March 2010

    Broader source: Energy.gov [DOE]

    Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages

  8. Human Resources at Lawrence Livermore National Laboratory | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Lawrence Livermore National Laboratory Careers at Lawrence Livermore National Laboratory Main contacts in Human Resources for recruitment and hiring: Jennifer Brizel Recruitment & Staffing Group Leader 925-422-9388 brizel1@llnl.gov Teri Kobayashi Senior Staffing Specialist 925-422-9050 kobayashi3@llnl.gov Daphne Simons Recruitment and Staffing Coordinator 925-422-7511 simons3@llnl.gov Careers

  9. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration Lawrence Livermore National Lab Perforemance Evaluations FY 2016 FY 2016 Performance Evaluation Plan, Lawrence Livermore National Security, LLC FY 2015 FY 2015 Performance Evaluation Report, Lawrence Livermore National Security, LLC FY 2015 Performance Evaluation Report, Fee Determination Letter, Lawrence Livermore National Security, LLC FY 2015 Performance Evaluation Plan, Lawrence Livermore National Security, LLC FY 2014 FY 2014 Performance Evaluation Report,

  10. Ernest Orlando Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ernest Orlando Lawrence Award The Ernest Orlando Lawrence Award was established in 1959 in honor of a scientist who helped elevate American physics to world leadership. E. O. Lawrence was the inventor of the cyclotron, an accelerator of subatomic particles, and a 1939 Nobel Laureate in physics for that achievement. Each Lawrence Award category winner receives a citation signed by the Secretary of Energy, a gold medal bearing the likeness of Ernest Orlando Lawrence, and a $20,000 honorarium. Name

  11. Lawrence Berkeley National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to see violent explosions of dying stars "on demand," Saul Perlmutter of Lawrence Berkeley National Laboratory led a team to the surprising discovery that the expansion of the...

  12. Lawrence Jones 121 Metals Development Building,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mpc.ameslab.gov Lawrence Jones 121 Metals Development Building, Ames, IA 50011-3020 jonesll@ameslab.gov 515-294-5236 Like high purity research-grade gadolinium. But the Materials...

  13. Department of Energy Announces 2009 Ernest Orlando Lawrence Award...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nominations for the Lawrence Award are solicited in each of the following seven fields: chemistry; materials research; environmental science and technology; life sciences ...

  14. Los Alamos physicist honored with E.O. Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos physicist honored with E.O. Lawrence Award Los Alamos physicist honored with E.O. Lawrence Award John Sarrao is being honored by the U.S. Department of Energy with the 2013 Ernest O. Lawrence Award in Condensed Matter and Materials Sciences. April 16, 2014 John Sarrao John Sarrao Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "John Sarrao's exciting advances in actinide studies exemplify the quality of research performed at Los Alamos National

  15. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    About Us Our Operations Acquisition and Project Management M & O Support Department Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence ...

  16. E.O. Lawrence Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... has made to U.S. leadership in energy, science and security, please visit http:science.energy.gov lawrence

  17. A. Lawrence Bryan, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Lawrence (Larry) Bryan, Jr. Research Professional III Savannah River Ecology Laboratory P.O. Drawer E Aiken, SC 29802 803-725-2907 (Voice) -3309 (Fax) 803-646-3616 (cell) lbryan@srel.uga.edu (e-mail) Education: B.S., Wildlife Biology/North Carolina State University. May, 1979 M.S., Wildlife Biology/Clemson University. December, 1981 Experience summary From 1984 through the present, I have been involved in research pertaining to the ecology, behavior and conservation of Wood Storks, including

  18. Lawrence Livermore National Laboratory Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.M. Di Nicola, Shamasundar Dixit, Gaylen Erbert, James Folta, John Heebner, Mark Henesian, Mark Hermann, Kenneth Jancaitis, Kai LaFortune, Lawrence Lagin, Douglas Larson, ...

  19. Ernest O. Lawrence and the Cyclotron

    Office of Scientific and Technical Information (OSTI)

    ... Ernest Orlando Lawrence, National Academy of Sciences (NAS) Top Cyclotrons A Revolutionary Idea that Changed Modern Physics, LBNL Ernest Lawrence's Cyclotron: Invention for the ...

  20. Edward Jones, Lawrence Livermore National Laboratory, Outcomes...

    Energy Savers [EERE]

    Edward Jones, Lawrence Livermore National Laboratory, Outcomes of U.S.-Japan Roundtable Edward Jones, Lawrence Livermore National Laboratory, Outcomes of U.S.-Japan Roundtable...

  1. Enforcement Letter, Lawrence Livermore National Security, LLC...

    Office of Environmental Management (EM)

    Security, LLC - May 2008 Enforcement Letter, Lawrence Livermore National Security, LLC - May 2008 May 15, 2008 Issued to Lawrence Livermore National Security, LLC related to the...

  2. Lawrence Livermore National Lab Perforemance Evaluations | National...

    National Nuclear Security Administration (NNSA)

    at NNSA Blog Home About Us Our Operations Acquisition and Project Management Performance Evaluations Lawrence Livermore National Lab Perforemance Evaluations Lawrence...

  3. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory - September 2013 September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory This report documents the...

  4. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities...

  5. Lawrence Dr Reopens - Lawrence Access to ARC Closes | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Lawrence Berkeley National Laboratory NNSA missions now powered by California gold...en sunshine An NNSA national laboratory is taking advantage of California's blue skies to power critical national security and science research. The solar power system installed at Lawrence Livermore National Laboratory (LLNL) is now fully functional and producing electricity. In 2015, NNSA announced the... Sandia's ice sheet modeling of Greenland, Antarctica helps predict sea-level rise The

  6. Visualization Gallery from the Computational Research Division at Lawrence

    Office of Scientific and Technical Information (OSTI)

    Berkeley National Laboratory () | Data Explorer Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory Title: Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details,

  7. Classification of poison inhalation hazard materials into severity groups

    SciTech Connect (OSTI)

    Griego, N.R.; Weiner, R.F.

    1996-02-01

    Approximately 1.5 billion tons of hazardous materials (hazmat) are transported in the US annually, and most reach their destinations safely. However, there are infrequent transportation accidents in which hazmat is released from its packaging. These accidental releases can potentially affect the health of the exposed population and damage the surrounding environment. Although these events are rare, they cause genuine public concern. Therefore, the US Department of Transportation Research & Special Programs Administration (DOT- RSPA) has sponsored a project to evaluate the protection provided by the current bulk (defined as larger than 118 gallons) packagings used to transport materials that have been classified as Poison Inhalation Hazards (PIH) and recommend performance standards for these PIH packagings. This project was limited to evaluating bulk packagings larger than 2000 gallons. This project involved classifying the PIH into severity categories so that only one set of packaging performance criteria would be needed for each severity category rather than a separate set of performance criteria for each individual PIH. By grouping the PIH into Hazard Zones, Packaging Groups and performance standards for these Hazard Zones can be defined. Each Hazard Zone can correspond to a Packaging Group or, as in 49CFR173 for non-bulk packagings, one Packaging Group may cover more than one Hazard Zone. If the packaging groups are chosen to correspond to the classification categories presented in this report, then the maximum allowable leak rates used to define these categories could be used as the maximum allowable leak rates for the performance oriented packaging standards. The results discussed in this report are intended to provide quantitative guidance for the appropriate authorities to use in making these decisions.

  8. Lawrence Livermore National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of

  9. Independent Oversight Inspection, Lawrence Livermore National Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2007 | Department of Energy Lawrence Livermore National Laboratory - May 2007 Independent Oversight Inspection, Lawrence Livermore National Laboratory - May 2007 May 2007 Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory This report provides the results of an inspection of the environment, safety, and health programs at the Department of Energy's (DOE) Lawrence Livermore National Laboratory. The inspection was conducted during January

  10. Andrew C. Lawrence | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C. Lawrence About Us Andrew C. Lawrence - Director, Office of Environmental Protection, Sustainability Support, and Corporate Safety Analysis Andrew C. Lawrence Andrew Lawrence is the Director of the Office of Environmental Protection, Sustainability Support, and Corporate Analysis within the Office of the Associate Under Secretary for Environment, Health, Safety and Security (AU). He is responsible for establishing environmental protection policy, requirements and expectations for the

  11. Presentation: Overview of Lawrence Berkeley National Laboratory |

    Energy Savers [EERE]

    Department of Energy Overview of Lawrence Berkeley National Laboratory Presentation: Overview of Lawrence Berkeley National Laboratory The Secretary of Energy Advisory Board received an overview of Lawrence Berkeley National Laboratory. The presentation was given by Paul Alivisatos, Director of Berkeley Laboratory, on January 26, 2016. PDF icon Overview of Lawrence Berkeley National Laboratory More Documents & Publications Laboratory Directors Presentation: Synchrotron Radiation Light

  12. Lawrence Livermore National Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Lawrence Livermore National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Lawrence Livermore National Laboratory (LLNL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Lawrence Livermore National Laboratory 23 Technology Marketing Summaries Category Title and Abstract Laboratories Date Energy Storage

  13. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Energy Savers [EERE]

    MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge)

  14. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    SciTech Connect (OSTI)

    Tolk, Norman H.; Feldman, L. C.; Luepke, G.

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated local mode can be excited cleanly, and is usually well-separated in energy from the phonon bath. These basic dynamical studies have provided new insights for example into the fundamental mechanisms that control proton diffusion in these oxides. This area of materials science has largely fulfilled its promise to identify degradation mechanisms in electronic and optoelectronic devices, and to advance solid oxide proton conductors for fuel cells, gas sensors and proton-exchange membrane applications. It also provides the basis for innovations in materials synthesis involving atomic-selective diffusion and desorption.

  15. Audit of Lawrence Livermore National Laboratory orders for memorabilia

    SciTech Connect (OSTI)

    Not Available

    1988-12-23

    We reviewed selected aspects of orders placed by Lawrence Livermore National Laboratory, a Department of Energy contractor, during 1979--1985 for memorabilia, models, and illustrations and the oversight of those orders by the San Francisco Operations Office (SAN). This review extends earlier audit work at a second Department contractor, Rockwell International, Rocky Flats Plant, Engineering Prototype Group, on which we issued a report dated July 12, 1988. That audit focused on the Prototype Group's providing Livermore with illustrations, models, engineering prototypes, and other articles (mementos, plaques, etc.) during October 1977 through September 1985. Issues arose during that audit which required a separate review at SAN and Livermore, to determine specifically: the propriety of, and SAN oversight of, procurement practices followed by Livermore; the basis for the Livermore orders; the adequacy of reimbursement to the Department for silver used in medallions; and the cost ceilings for memorabilia contained in the Department's contract with the University of California, which operates Livermore for the Department. Limiting the audit scope to the orders Livermore placed with Rockwell's Prototype Group, we reviewed Department and Livermore procedures for acquiring memorabilia. In addition to interviewing SAN and Livermore Legal Counsel, Special Material Office personnel, and Research and Development Program representatives, we examined SMO requisitions, accounts payable listings and related payments, and selected research and development correspondences.

  16. US-EU-Japan Working Group on Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Okada, President, Santoku Corporation 10:20 Life Cycle knowledge-base for materials criticality management and resource policy support Gian Andrea Blengini, Scientific OfficerSr. ...

  17. EM QA Working Group September 2011 Meeting Materials | Department...

    Energy Savers [EERE]

    Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)...

  18. EM QA Working Group September 2011 Meeting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area and QA Resources Focus Area of the EM QA Corporate ... Practices Working Group and Quality Assurance ... of AL6XN Piping * Analysis: - The following causes ...

  19. Independent Activity Report, Lawrence Livermore National Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2013 | Department of Energy February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility [HIAR LLNL-2013-02-27] The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational

  20. Consent Order, Lawrence Livermore National National Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with implementation of the Chronic Beryllium Disease Prevention Program (CBDPP) and related work planning and control processes at the Lawrence Livermore National Laboratory. ...

  1. Sandia Computational Mathematician Receives DOE's EO Lawrence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Pavel Bochev (in Sandia's Computational Mathematics Dept.) has received an EO Lawrence Award for his pioneering theoretical and practical advances in numerical methods for partial ...

  2. Dr. Yuan Ping Lawrence Livermore National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Creating, diagnosing and controlling high-energy- density matter with lasers Dr. Yuan Ping Lawrence Livermore National Lab Tuesday, Oct 22, 2013 - 3:00PM MBG AUDITORIUM ...

  3. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Violation, Lawrence Livermore National Laboratory - EA-98-01 March 9, 1998 Issued to University of California related to the Unplanned Personnel Contaminations and Radioactive...

  4. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Broader source: Energy.gov (indexed) [DOE]

    Basis Issues On November 5, 1999, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Lawrence Livermore National Laboratory related to the...

  5. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-98-06 July 28, 1998 Issued to the University of California related to Criticality Safety and the...

  6. Enterprise Assessments Targeted Review, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence Livermore National...

  7. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Yesterday Secretary of Energy Ernest Moniz hosted a ... flexibility in collecting data for stockpile stewardship ... The solar power system installed at Lawrence Livermore ...

  8. Lawrence Livermore researchers awarded early career funding ...

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory scientists Jennifer Pett-Ridge and Todd Gamblin have been selected by DOE's Office of Science Early Career Research program to receive ...

  9. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory (LLNL) is a design laboratory that is responsible for the safety and reliability of the nuclear explosives package in nuclear weapons. It ...

  10. Lawrence Livermore National Laboratory, P. O. Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 Case Case Study DDCMP: Beyond Homogeneous Decomposition with ddcMD Scaling Long-Range Forces on ...

  11. Analysis Activities at Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on Lawrence Livermore’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  12. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Letter, Lawrence Livermore National Laboratory - November 5, 1999 Enforcement Letter, EG&G Mound Applied Technologies - August 22, 1996 Enforcement Letter, Brookhaven ...

  13. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-98-01

    Broader source: Energy.gov [DOE]

    Issued to University of California related to the Unplanned Personnel Contaminations and Radioactive Material Intakes at the Hazardous Waste Management Facilities at the Lawrence Livermore National Laboratory, (EA-98-01)

  14. Also a Centennial Year for Ernest Orlando Lawrence

    Office of Scientific and Technical Information (OSTI)

    ... Ernest Orlando Lawrence: The Man, His Lab, His Legacy A Revolutionary Idea that Changed Modern Physics A Few Important Events in Lawrence's Life E.O. Lawrence Remembered Ernest O. ...

  15. LBL-15480 Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5480 Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Materials & Molecular Research Division Presented at the International Conference on Photochemistry and Photobiology, Alexandria, Egypt, January 5-10, 1983 MOLECULAR BEAM STUDIES OF PRIMARY PHOTOCHEMICAL PROCESSES Yuan T. Lee December 1982 Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 DISTRIBUTION OF THIS DOCUMENT 16 miMVrf} LEGAL NOTICE This book was prepared as an account of work sponsored by an agency

  16. Lawrence Berkeley Lab Indexing Toolbox

    Energy Science and Technology Software Center (OSTI)

    2003-09-08

    The Lawrence Berkeley Lab Indexing Toolbox is intended to be used in the context of X-ray crystallography experiments involving biological macromolecules. Macromolecules such as proteins form 3-dimensional periodic arrays (crystal) which in turn lead to lattice-like diffraction patterns when the crystal sample is irradiated with collimated X-rays from a synchrotron or other X-ray source. Once the diffraction pattern is captured on an imaging device the next step is to deduce the periodic nature of themore » crystal sample, along with its internal symmetry. this analysis, known as "indexing" is a well-studied problem. However, there are no other implementations designed to operate in an automated setting, in which the human experimentalist is not prosent to manually verify the results of indexing. In particular LABELIT uses three novel algorithms to facilitate automation: a more robust way to verify the position of the incident X-ray beam on the image, a better way to verify that the deduced lattice is consistent with the observed crystal lattice, and new method to deduce the internal symmetry from measurements of the lattice. Moreover, the algorithms are implemented in a Python framework that permits indexing to fail (in rare cases) without crashing the program, thus allowing the software to be incorporated in robotic systems where unattended operation is expected. It will be especially useful for high throughput operations at snychrotron beamlines.« less

  17. Lawrence Berkeley National Laboratory Launches Cleanup and Demolition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Berkeley National Laboratory Launches Cleanup and Demolition Project Lawrence Berkeley National Laboratory Launches Cleanup and Demolition Project June 30, 2015 - 12:00pm ...

  18. FY 2010 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2010 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2010 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  19. FY 2008 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2008 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2008 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  20. FY 2009 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2009 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2009 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  1. FY 2011 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2011 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2011 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  2. Site Visit Report, Lawrence Livermore National Laboratory - February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory - February 2011 Site Visit Report, Lawrence ... Office of Safety and Emergency Management Evaluations and Livermore Site Office staff. ...

  3. Lawrence Berkeley National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    The solar power system installed at Lawrence Livermore National Laboratory (LLNL) is now ... Solar power purchase for DOE laboratories WASHINGTON D.C. -- The U.S. Department of ...

  4. Ernest O. Lawrence and the Cyclotron

    Office of Scientific and Technical Information (OSTI)

    449-450, April 1,1947 A High Vacuum High Speed Ion Pump, DOE Technical Report Download Adobe PDF Reader , August 27, 1952 Top Lawrence Honored: 1957 Enrico Fermi Award Lawrencium...

  5. Science on Saturday @ Lawrence Livermore Lab

    Broader source: Energy.gov [DOE]

    Science on Saturday. Science on Saturday (SOS) is a series of science lectures for middle and high school students. Each topic highlights cutting-edge science occurring at the Lawrence Livermore...

  6. Lawrence, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Lawrence is a city in Marion County, Indiana. It falls under Indiana's 5th congressional district and Indiana's 7th...

  7. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    worker safety and health program (10 C.F.R. Part 851) associated with the sulfuric acid burn event that occurred at Lawrence Livermore National Laboratory. PDF icon Preliminary...

  8. Preliminary Notice of Violation, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    worker safety and health program (10 C.F.R. Part 851) associated with the sulfuric acid burn event that occurred at Lawrence Livermore National Laboratory. Preliminary Notice of...

  9. Ernest O. Lawrence - Patents - 1957 through 1960

    Office of Scientific and Technical Information (OSTI)

    slits is described. (T.R.H.) US 2,933,442 ELECTRONUCLEAR REACTOR - Lawrence, E. O.; McMillan, E. M.; Alvarez, L. W.; Apr 19, 1960 (to U.S. Atomic Energy Commission) An...

  10. Climate Feedbacks from Permafrost Charlie Koven Lawrence Berkeley Na?onal Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding and Modeling of Climate Feedbacks from Permafrost Charlie Koven Lawrence Berkeley Na?onal Lab With many others: Bill Riley, Dave Lawrence, Jen Harden, Gustaf Hugelius, the CESM Land Model Working Group, and the Permafrost Carbon Network Thanks to DOE-BER support from Regional and Global Climate Modeling Program (BGC Feedbacks SFA), Terrestrial Ecosystem Science Program (NGEE Arc?c), and Earth System Modeling Program (IMPACTS SFA) IPCC-AR5 (Ciais et al., 2013) Figure 6.22 | The

  11. Physicist, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Physicist, Lawrence Livermore National Laboratory Kennedy Reed Kennedy Reed July 2009 Presidential Award for Excellence in Science and Engineering Mentoring President Obama has named Lawrence Livermore National Laboratory physicist Kennedy Reed as a recipient of the prestigious Presidential Award for Excellence in Science and Engineering Mentoring. Reed is a theoretical physicist at the laboratory, conducting research on atomic collisions in high temperature plasmas.

  12. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Researcher, Lawrence Livermore National Laboratory Placeholder for Mike Fitzgerald image Mike Fitzgerald February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Another paper titled

  13. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  14. Independent Oversight Review, Lawrence Livermore National Laboratory- July 2013

    Broader source: Energy.gov [DOE]

    Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory

  15. Independent Oversight Inspection, Lawrence Livermore National Laboratory- June 2005

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  16. Independent Oversight Review, Lawrence Livermore National Laboratory- September 2011

    Broader source: Energy.gov [DOE]

    Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory

  17. Independent Oversight Review, Lawrence Livermore National Laboratory- August 2014

    Broader source: Energy.gov [DOE]

    Review of the Lawrence Livermore National Laboratory Radiological Controls Activity-Level Implementation.

  18. Independent Oversight Inspection, Lawrence Livermore National Laboratory- February 2009

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  19. Accelerated Aging of Roofing Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Accelerated Aging of Roofing Materials 1 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman prepares to insert clean and soiled roofing specimens into a weatherometer. The weatherometer simulates exposure to heat, moisture, and UV radiation. Image: Heat Island Group, Lawrence Berkeley National Laboratory 2 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman configures a weatherometer to simulate the effects of heat, moisture, and UV radiation on roofing materials.

  20. Method of loading organic materials with group III plus lanthanide and actinide elements

    DOE Patents [OSTI]

    Bell, Zane W.; Huei-Ho, Chuen; Brown, Gilbert M.; Hurlbut, Charles

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  1. Optical Design Capabilities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  2. DOE Selects Lawrence Livermore National Security, LLC to Manage its Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Lawrence Livermore National Security, LLC (LLNS) has been selected to be the management and operating contractor for DOE's...

  3. Accelerated Aging of Roofing Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Aging of Roofing Materials Accelerated Aging of Roofing Materials Addthis 1 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman prepares to insert clean and soiled roofing specimens into a weatherometer. The weatherometer simulates exposure to heat, moisture, and UV radiation. Image: Heat Island Group, Lawrence Berkeley National Laboratory 2 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman configures a weatherometer to simulate the effects of heat, moisture, and UV

  4. Consent Order, Lawrence Livermore National National Security, LLC -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WCO-2010-01 | Department of Energy Lawrence Livermore National National Security, LLC - WCO-2010-01 Consent Order, Lawrence Livermore National National Security, LLC - WCO-2010-01 October 29, 2010 Issued to Lawrence Livermore National Security, LLC for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On October 29, 2010, the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) issued a

  5. Enforcement Letter, Lawrence Livermore National Laboratory- June 2, 2005

    Broader source: Energy.gov [DOE]

    Issued to Lawrence Livermore National Laboratory for Quality Assurance Deficiencies related to Weapon Activities, June 2, 2005

  6. Independent Oversight Review of the Lawrence Livermore National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - March 2001 | Department of Energy Review of the Lawrence Livermore National Laboratory - March 2001 Independent Oversight Review of the Lawrence Livermore National Laboratory - March 2001 March 2001 Review of the Lawrence Livermore National Laboratory Health Services Department This report provides the results of an independent oversight review of the Health Services Division at the Department of Energy's (DOE) Lawrence Livermore National Laboratory. The review was performed March 19-21,

  7. Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Lawrence Berkeley National Laboratory Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory Joined the Challenge: April 2013 Headquarters: Berkeley, CA Charging Location: Berkeley, CA Domestic Employees: 4,200 Lawrence Berkeley National Laboratory has made plug-in electric vehicle (PEV) readiness a major focus of its site sustainability strategy. The laboratory began PEV

  8. Office of the Chief Financial Officer .:. Lawrence Berkeley National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of the Chief Financial Officer Office of the Cheif Financial Officer Lawrence Berkeley Naitonal Laboratory Department of Energy Quicklinks: ---...

  9. Enforcement Letter, Lawrence Berkeley National Laboratory- July 21, 1998

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Radiological Work Controls at the Lawrence Berkeley National Laboratory

  10. FY 2012 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration FY 2012 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2012 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % $50,506,024 $44,555,181 88% Lawrence Livermore National Security, LLC, the management and operating contractor for the Lawrence Livermore National Laboratory, earned a Very Good rating in Programs and Operations, a Good rating in Institutional Management and Business, and 88

  11. Enforcement Letter, Lawrence Livermore National Laboratory- August 22, 1996

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Radiological Worker Training Deficiencies at the Lawrence Livermore National Laboratory

  12. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Environmental Management (EM)

    ADMINISTATIVE WASTE REMEDIATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen ... Security Systems Services (except Locksmiths) 561621 Hazardous Waste Treatment and ...

  13. Bibliography of the technical literature of the Materials Joining Group, 1951--1991

    SciTech Connect (OSTI)

    David, S.A.; Goodwin, G.M.; Gardner, K.

    1991-12-01

    This document contains a listing of the written scientific information originating in the Materials Joining (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1991. This registry of documents is as much as possible, in the order of issue date.

  14. Jason Hick! Lawrence Berkeley National Laboratory! NERSC Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HPC Data Center of the Future HPC J oint F acility U ser F orum June 1 6, 2 014 Agenda * NERSC's s torage s ystems & s ervices * Trends o f e xisGng s torage---class h ardware - Flash o vertakes d isk f or $ /GB/sec * Future s torage---class h ardware - Memristor, M RAM * Storage soKware advancements - Metadata p erformance - Burst b uffer - Access t o s torage s ystems * NERSC i n 2 020 * What t his m eans t o t he u ser --- 2 --- National Energy Research Scientific ! Computing Center

  15. Jason Hick! Lawrence Berkeley National Laboratory! NERSC Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scalability Challenges in Large-Scale Tape Environments IEEE M SST June 4 , 2 014 Agenda * NERSC a nd i ts s torage s ystems * The G olden A ge o f T ape * Our c hallenges a t s cale - Reading d ata, s ystem u sability - Proac5vely m aintaining t he s ystem - Having e nough p eople * Industry c hallenges a t s cale - Component a nd e nd---system r eliability * Mechanical f ailures - fl ash, d isk, t ape - Speed v ersus s ize o f s ingle d evices - Detec5ng a nd r epairing f ailures * Summary ---

  16. Lawrence Livermore National Laboratory Environmental Report 2014

    SciTech Connect (OSTI)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.; Buscheck, W. M.; Byrne, J. G.; Cerruti, S. J.; Bish, C. B.; Fratanduono, M. E.; Grayson, A. R.; MacQueen, D. H.; Montemayor, W. E.; Ottaway, H. L.; Paterson, L. E.; Revelli, M. A.; Rosene, C. A.; Swanson, K. A.; Terrill, A. A.; Wegrecki, A. M.; Wilson, K. R.; Woollett, J. S.

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  17. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  18. National Nuclear Security Administration Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Security, LLC Performance Evaluation Report Fiscal Year 2014 Performance Evaluation Report (PER) NNSA Livermore Field Office Performance Period: October 2013 - September 2014 November 14, 2014 Livermore Field Office November 14, 2014 LLNL PER 2 | P a g e Executive Summary The Department of Energy/National Nuclear Security Administration (DOE/NNSA), Livermore Field Office (LFO) in accordance with guidance from the DOE/NNSA Office of Infrastructure and Operations

  19. To: Mansueti, Lawrence <Lawrence.Mansueti@hq.doe.gov>

    Energy Savers [EERE]

    <ecchimento@comcast.net> To: Mansueti, Lawrence <Lawrence.Mansueti@hq.doe.gov> Sent: Fri Nov 18 10:58:43 2005 Subject: Letter (9/12/05) for filing in DOE DCPSC Docket #EO-05-01 Mr. Mansueti, Would you please file for consideration the attached letter, originally sent to FERC, in DOE's Docket No. EO-05-01 regarding the DCPSC complaint? Thank you. Elizabeth Chimento and Poul Hertel 1200 North Pitt Street 1217 Michigan Court Alexandria, VA 22314 Alexandria, VA 22314 September 12, 2005

  20. Light-Material Interactions in Energy Conversion - Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley National Laboratory; Samsung Distinguished Professor of Nanoscience and Nanotechnology and Professor of Chemistry and Materials Science & Engineering Lawrence Berkeley...

  1. Lawrence Livermore National Laboratory environmental report for 1990

    SciTech Connect (OSTI)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R.

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  2. Lawrence Livermore National Security Enforcement Letter (NEL-2013-03)

    Energy Savers [EERE]

    Penrose C. Albright Department of Energy Washington, DC 20585 July 22, 2013 President and Laboratory Director Lawrence Livermore National Security, LLC Lawrence Livermore National Laboratory 7000 East Avenue Livermore, California 94550 NEL-2013-03 Dear Dr. Albright: The Office of Health, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances surrounding programmatic deficiencies identified in the Lawrence Livermore National Security, LLC (LLNS)

  3. Lessons Learned by Lawrence Livermore National Laboratory Activity-level

    Energy Savers [EERE]

    Work Planning & Control | Department of Energy Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control May 16, 2013 Presenter: Donna J. Governor, Lawrence Livermore National Laboratory Topics Covered: Work Control Review Board (WCRB) Functional Area Manager identified at the Institution level reporting directly to the Deputy Laboratory Director

  4. Independent Activity Report, Lawrence Livermore National Laboratory - March

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy March 2011 Independent Activity Report, Lawrence Livermore National Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review [HIAR-LLNL-2011-03-25] This Independent Activity Report documents an oversight activity conducted by Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations March 14-25, 2011, at the Lawrence Livermore National

  5. 2013 Annual Planning Summary for the Lawrence Livermore National Laboratory

    Energy Savers [EERE]

    | Department of Energy Lawrence Livermore National Laboratory 2013 Annual Planning Summary for the Lawrence Livermore National Laboratory The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Lawrence Livermore National Laboratory. PDF icon NNSA_LLNL_NEPA-APS-2013.pdf More Documents & Publications 2012 Annual Planning Summary for Livermore Site Office 2013 Annual Planning Summary for the Office of Fossil Energy 2014 Annual

  6. PROJECT PROFILE: Lawrence Livermore National Laboratory (PREDICTS 2) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lawrence Livermore National Laboratory (PREDICTS 2) PROJECT PROFILE: Lawrence Livermore National Laboratory (PREDICTS 2) Funding Opportunity: PREDICTS 2 LLNL Logo.png SunShot Subprogram: PV Location: Livermore, CA Amount Awarded: $570,000 Awardee Cost Share: $375,000 Principal Investigator: Mihail Bora As a part of their PREDICTS 2 award, researchers at Lawrence Livermore National Laboratory (LLNL) will explore the use of spectral imaging as a non-destructive means of

  7. Jefferson Lab Scientist Wins 2011 Lawrence Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wins 2011 Lawrence Award Jefferson Lab Scientist Wins 2011 Lawrence Award NEWPORT NEWS, VA, Nov. 28 - A Jefferson Lab scientist has received a prestigious national award from the U.S. Department of Energy that recognizes his leadership role in research and development in support of the department and its missions. Matt Poelker, a scientist with Jefferson Lab's accelerator division, was one of just nine winners of a 2011 Ernest Orlando Lawrence Award. Each winner receives a gold medal, a citation

  8. Campanell wins Lawrence Fellowship to pursue plasma physics research |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Campanell wins Lawrence Fellowship to pursue plasma physics research By John Greenwald May 7, 2014 Tweet Widget Google Plus One Share on Facebook Michael Campanell (Photo by Elle Starkman) Michael Campanell Princeton University graduate student Michael Campanell has won a highly competitive Lawrence Fellowship, resulting in a postdoctoral position at Lawrence Livermore National Laboratory. Campanell was one of just two candidates selected from a field of 163

  9. Lawrence Berkeley National Laboratory Launches Cleanup and Demolition

    Office of Environmental Management (EM)

    Project | Department of Energy Berkeley National Laboratory Launches Cleanup and Demolition Project Lawrence Berkeley National Laboratory Launches Cleanup and Demolition Project June 30, 2015 - 12:00pm Addthis The Lawrence Berkeley National Laboratory Old Town area. The Lawrence Berkeley National Laboratory Old Town area. Site boundary fencing wraps around the Old Town work area for the cleanup project. Site boundary fencing wraps around the Old Town work area for the cleanup project. The

  10. The Life of Ernest Orlando Lawrence | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Life of Ernest Orlando Lawrence The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us The Life of Ernest Orlando Lawrence Print Text Size: A A A FeedbackShare Page Ernest Orlando Lawrence Physicist, Engineer,

  11. First-of-a-kind supercomputer at Lawrence Livermore available...

    National Nuclear Security Administration (NNSA)

    Catalyst, a first-of-a-kind supercomputer at Lawrence Livermore National Laboratory, is available to industry collaborators to test big data technologies, architectures and ...

  12. Lawrence County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Lawrence County, Indiana Bedford, Indiana Mitchell, Indiana Oolitic, Indiana Retrieved from "http:en.openei.orgw...

  13. DOE's Oak Ridge and Lawrence Berkeley National Labs Join with...

    Broader source: Energy.gov (indexed) [DOE]

    (ORNL) and Lawrence Berkeley National Laboratory (LBNL) have joined with Dow Chemical Company as part of a Cooperative Research and Development Agreement to fund key ...

  14. Lawrence Berkeley National Laboratory U.S. Department of Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Programmable Information Highway (with no Traffic Jams) Inder Monga Energy Sciences Network ...

  15. Lawrence Berkeley National Laboratory Berkeley Lab | Open Energy...

    Open Energy Info (EERE)

    Berkeley Lab Jump to: navigation, search Name: Lawrence Berkeley National Laboratory (Berkeley Lab) Place: Berkeley, California Zip: 94720 Product: String representation "Conducts...

  16. Enforcement Letter, Lawrence Berkeley National Laboratory- May 28, 1997

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to the Dismissal of the As Low As Reasonably Achievable Committee at the Lawrence Berkeley National Laboratory

  17. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of...

  18. Lawrence Berkeley National Laboratory (LBNL) | Open Energy Information

    Open Energy Info (EERE)

    Berkeley, California Zip: 94720 Region: Bay Area Website: www.lbl.gov References: LBNL Web Site1 The Lawrence Berkeley National Laboratory (LBNL) is a United States Department...

  19. Lawrence Livermore National Laboratory Environmental Report 2010

    SciTech Connect (OSTI)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

  20. Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

  1. Bibliography of the technical literature of the Materials Joining Group, Metals and Ceramics Division, 1951 through June 1987

    SciTech Connect (OSTI)

    David, S.A.; Goodwin, G.M.; Gardner, K.

    1987-08-01

    This document contains a listing of the written scientific information originating in the Materials Joining Group (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1987. It is a registry of about 400 documents as nearly as possible in the order in which they were issued.

  2. Secretary Chu Announces 2009 Ernest Orlando Lawrence Award Winners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 09 Ernest Orlando Lawrence Award Winners Secretary Chu Announces 2009 Ernest Orlando Lawrence Award Winners December 16, 2009 - 12:00am Addthis Washington, DC - US Secretary of Energy Steven Chu announced today the winners of the 2009 E.O. Lawrence Award for their outstanding contributions in research and development supporting the Department of Energy and its missions. The six winners named today will receive a gold medal, a citation and $50,000. Winners will be honored

  3. Energy Secretary Moniz Announces 2014 Ernest Orlando Lawrence Award Winners

    Broader source: Energy.gov [DOE]

    Secretary Moniz announced the 2014 winners of the Ernest Orlando Lawrence Awards, nine mid-career scientists who have already made substantial contributions to their fields and the nation.

  4. To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 29, 2007 6:28 PM To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair Dec. 1-20, 2006 Larry, Regarding the planned line outage, scheduled for Feb. 20 through Mar...

  5. TIMELINE: 60 Years of Computing at Lawrence Livermore National...

    Energy Savers [EERE]

    Lawrence Livermore machines have topped lists of the world's fastest, greenest, and most big-data capable systems, but if you ask the Laboratory's researchers, they'll voice...

  6. Secretary Chu Announces 2011 Ernest Orlando Lawrence Award Winners

    Broader source: Energy.gov [DOE]

    Washington, D.C. - U.S. Secretary of Energy Steven Chu announced today the winners of the 2011 Ernest Orlando Lawrence Award for their outstanding contributions in research and development...

  7. INFORMATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Energy Savers [EERE]

    INFORMATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Periodical Publishers 511120 Software Publishers 511210 Telecommunications Resellers 517911 Data Processing, Hosting, and Related Services 518210 Internet Publishing and Broadcasting and Web Search Portals 519130 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Periodical Publishers 511120 Software Publishers 511210 Telecommunications Resellers 517911

  8. ESnet Update Steve Cotter, Dept Head Lawrence Berkeley National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Update Steve Cotter, Dept Head Lawrence Berkeley National Lab Winter 2011 Joint Techs Clemson, SC Feb 2, 2011 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science @ESnet: It's all about the Science * More bandwidth to DOE facilities and Labs at lower costs * Richer network services in support of distributed science - Develop network aware' integrated services that deliver end-to-end' high- performance data transfer, HPC/cloud computing, and science collaborative

  9. Retired lab physicist and computational pioneer, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration Retired lab physicist and computational pioneer, Lawrence Livermore National Laboratory Berni Alder, 2009 National Medal of Science Winner Berni Alder September 2009 National Medal of Science Winner President Obama has named Berni Alder, Lawrence Livermore National Laboratory retired physicist, as a recipient of the National Medal of Science, the highest honor bestowed by the United States government on scientists, engineers, and

  10. EDUCATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Energy Savers [EERE]

    EDUCATION CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Computer Training 611420 Professional and Management Development Training 611430 LAWRENCE LIVERMORE LAB POC Jill Swanson Telephone (925) 423-4535 Email swanson6@llnl.gov Computer Training 611420 Professional and Management Development Training 611430 COLORADO GOLDEN FIELD OFFICE POC Karen Downs Telephone (720) 356-1269 Email karen.downs@go.doe.gov Computer Training 611420 Professional and

  11. Reuse of waste cutting sand at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Mathews, S., LLNL

    1998-02-25

    Lawrence Livermore National Laboratory (LLNL) examined the waste stream from a water jet cutting operation, to evaluate the possible reuse of waste garnet sand. The sand is a cutting agent used to shape a variety of materials, including metals. Nearly 70,000 pounds of waste sand is generated annually by the cutting operation. The Environmental Protection Department evaluated two potential reuses for the spent garnet sand: backfill in utility trenches; and as a concrete constituent. In both applications, garnet waste would replace the sand formerly purchases by LLNL for these purposes. Findings supported the reuse of waste garnet sand in concrete, but disqualified its proposed application as trench backfill. Waste sand stabilized in ac concrete matrix appeared to present no metals-leaching hazard; however, unconsolidated sand in trenches could potentially leach metals in concentrations high enough to threaten ground water quality. A technical report submitted to the San Francisco Bay Regional Water Quality Control Board was reviewed and accepted by that body. Reuse of waste garnet cutting sand as a constituent in concrete poured to form walkways and patios at LLNL was approved.

  12. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

  13. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

  14. Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned

    Broader source: Energy.gov [DOE]

    Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

  15. Preliminary Notice of Violation, Lawrence Livermore National Security, LLC- September 25, 2014

    Broader source: Energy.gov [DOE]

    Worker Safety and Health Enforcement Preliminary Notice of Violation issued to Lawrence Livermore National Security, LLC

  16. Lawrence Livermore National Laboratory Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and...

  17. Critical and strategic materials proceedings of the laboratory study group meeting

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given.

  18. DOE Releases Request for Information on Critical Materials, Including Fuel Cell Platinum Group Metal Catalysts

    Broader source: Energy.gov [DOE]

    The Request for Information (RFI) is soliciting feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to the demand, supply, opportunities for developing substitutes, and potential for using materials more efficiently in the energy sector.

  19. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    SciTech Connect (OSTI)

    Chu, William T.

    2005-09-01

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''The motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80,000 volts using less than 1,000 volts on a semi-circular accelerating electrode, now called the ''dee''. Following the discovery by J. D. Cockcroft and E. T. S. Walton of how to produce larger currents at higher voltages, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. The 27-Inch Cyclotron was used extensively in early investigations of nuclear reactions involving neutrons and artificial radioactivity. In 1939, working with William Brobeck, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. It was housed in the Crocker Laboratory, where scientists first made transmutations of some elements, discovered several transuranic elements, and created hundreds of radioisotopes of known elements. At the Crocker Laboratory the new medical modality called nuclear medicine was born, which used radioisotopes for diagnosis and treatment of human diseases. In 1939 Lawrence was awarded the Nobel Prize in Physics, and later element 103 was named ''Lawrencium'' in his honor.

  20. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  1. LBL-26762 Co4F49.0.274 LB Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26762 Co4F49.0.274 LB Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Materials & Chemical Sciences Division Presented at the International Symposium on Near-Future Chemistry in Nuclear Energy Field, Ibaraki-Ken, Japan, February 15-16, 1989, and to be published in the Proceedings Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms R.E. Continetti, B.A. Balko, and Y.T. Lee February 1989 Prepared for the U.S. Department of Energy under

  2. Ellen O. Tauscher named to Lawrence Livermore and Los Alamos Boards of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governors Tauscher named to Boards of Governors Ellen O. Tauscher named to Lawrence Livermore and Los Alamos Boards of Governors Tauscher has also been appointed as a member of the LANS/LLNS Boards' Mission Committee. August 27, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  3. Bibliography of the technical literature of the Materials Joining Group, Metals and Ceramics Division, 1951--June 1989

    SciTech Connect (OSTI)

    David, S.A.; Goodwin, G.M.; Gardner, K.

    1989-10-01

    This document contains a listing of the written scientific information originating in the Materials Joining (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1989. This registry of documents is as much as possible, in the order of issue date. A complete cross-referenced listing of the technical literature of the Metals and Ceramics Division is also available.

  4. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence Award Winners

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Ernest Moniz today announced six exceptional U.S. scientists and engineers as recipients of the Ernest Orlando Lawrence Award for their contributions in research and development that supports the Energy Department’s science, energy and national security missions.

  5. Performance Evaluation Erich Strohmaier, Lawrence Berkeley National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Performance Evaluation Erich Strohmaier, Lawrence Berkeley National Laboratory Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research ASCR / NERSC Workshop January 5-6, 2011 Some Current Projects * UPC, CAF and Titanium - And hybrids of these with others (MPI) * Performance Characterization and Benchmarking of HPC Systems (Apex-MAP) - Synthetic parameterized performance probes * The Performance Engineering Research Institute (PERI) - Application

  6. Environmental monitoring at the Lawrence Livermore Laboratory. 1979 annual report

    SciTech Connect (OSTI)

    Silver, W.J.; Lindeken, C.L.; White, J.H.; Buddemeir, R.W.

    1980-04-25

    Information on monitoring activities is reported in two sections for EDB/ERA/INIS. The first section covers all information reported except Appendix D, which gives details of sampling and analytical procedures for environmental monitoring used at Lawrence Livermore Laboratory. A separate abstract was prepared for Appendix D. (JGB)

  7. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Energy Savers [EERE]

    PROFESSIONAL / SCIENTIFIC / TECHNICAL CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services 541360 Testing Laboratories 541380 Custom Computer Programming Services 541511 Computer Systems Design Services 541512 Other Computer Related Services 541519 Administrative Management and General Management Consulting Services 541611 Other Scientific and Technical

  8. ORNL's Amit Goyal wins E.O. Lawrence Award

    Broader source: Energy.gov [DOE]

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, has been named a winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission.

  9. Hot Electron Photovoltaics Using Low Cost Materials and Simple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Electron Photovoltaics Using Low Cost Materials and Simple Cell Design Lawrence ... Similarly, complex cell designs or designs that feature nano-architectures such as quantum ...

  10. Surface-Modified Active Materials for Lithium Ion Battery Electrodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active Materials for Lithium Ion Battery Electrodes Lawrence Berkeley National Laboratory ... Berkeley Lab researcher Gao Liu has developed a new fabrication technique for lithium ion ...

  11. The adaptive x-ray optics project at the Lawrence Livermore National...

    Office of Scientific and Technical Information (OSTI)

    The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Citation Details In-Document Search Title: The adaptive x-ray optics project at the Lawrence ...

  12. The adaptive x-ray optics project at the Lawrence Livermore National...

    Office of Scientific and Technical Information (OSTI)

    The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Citation Details In-Document Search Title: The adaptive x-ray optics project at the Lawrence Livermore ...

  13. Effective Feb15 JLab Entrance at Lawrence Drive to Close | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effective Feb15 JLab Entrance at Lawrence Drive to Close Effective Feb. 15: Jefferson Lab Entrance at Lawrence Drive to Close for Sewer Main Installation Hampton Roads Sanitation District is installing a 30-inch sewer main on Department of Energy property adjacent to Jefferson Avenue. One section of the line is being installed just outside the accelerator site fence and along Jefferson Avenue. Installation will now proceed under Lawrence Drive from the intersection of Lawrence and Jefferson

  14. Secretary of Energy Announces Eight E.O. Lawrence Award Winners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Eight E.O. Lawrence Award Winners Secretary of Energy Announces Eight E.O. Lawrence Award Winners February 7, 2007 - 10:15am Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today named eight winners of the Ernest Orlando Lawrence Award. The Lawrence Award honors scientists and engineers at mid-career for exceptional contributions in research and development that support the Department of Energy and its mission to advance the national, economic and energy

  15. Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977--March 1997

    SciTech Connect (OSTI)

    1997-03-01

    This report consists of a listing of Lawrence Livermore National Laboratory`s research items on the Yucca Mountain Project.

  16. Department of Energy Announces 2009 Ernest Orlando Lawrence Award Call for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nominations | Department of Energy 09 Ernest Orlando Lawrence Award Call for Nominations Department of Energy Announces 2009 Ernest Orlando Lawrence Award Call for Nominations February 2, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has issued a call for nominations for the 2009 Ernest Orlando Lawrence Award, one of the longest running and most prestigious science and technology awards given by the U.S. Government. The Lawrence Award is presented by the

  17. NNSA Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER

    National Nuclear Security Administration (NNSA)

    Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER NNSA/NA-00.2 National Nuclear Security Administration FY 2013 PEP Lawrence Livermore National Security, LLC Performance Evaluation Report Livermore Field Office Lawrence Livermore National Laboratory Performance Period: October 2012 - September 2013 November 22, 2013 Livermore Field Office November 22, 2013 NNSA Lawrence Livermore National Security, LLC PER NNSA/NA-00.2 Page 1 of 23 Executive Summary This report was

  18. High Performancng David Skinner Lawrence Berkeley National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performancng David Skinner Lawrence Berkeley National Laboratory Feb 12, 2013 Science Gateways @ NERSC Today at NUG * What is a science gateway? * NEWT a web API for HPC * Examples running at NERSC now * Futures / Questions 2 Things people do on NERSC computers and data systems * Authenticate using NERSC credentials * Check machine status * Upload and download files * Submit a compute job * Monitor a job * Get user account information * Store app data (not scientific data) * Issue UNIX commands

  19. Technical Sessions J. E. Penner Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Penner Lawrence Livermore National Laboratory Livermore, California 94550 The stated goal of the Atmospheric Radiation Measure- ment (ARM) program is to improve the treatment of radia- tion in general circulation models (GCMs). The means for doing so will be to compare model-predicted radiative fluxes with measured fluxes at four to six permanent sites. The measured fluxes will characterize the fluxes expected on the scale of a GCM grid box. Because aerosol optical depths at solar wavelengths

  20. Special Analysis for the Disposal of the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada (Program Document) | SciTech Connect EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada Citation Details In-Document Search Title: Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the

  1. Special Analysis for the Disposal of the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada (Program Document) | SciTech Connect EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada Citation Details In-Document Search Title: Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the

  2. Special Analysis for the Disposal of the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada (Program Document) | SciTech Connect Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada Citation Details In-Document Search Title: Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste

  3. Special Analysis for the Disposal of the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada (Program Document) | SciTech Connect Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada Citation Details In-Document Search Title: Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste

  4. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-05-21

    This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

  5. Lawrence Berkeley National Laboratory Compliance Order, October 6, 1995 Summary

    Office of Environmental Management (EM)

    Berkeley National Laboratory Agreement Name Lawrence Berkeley National Laboratory Compliance Order, October 6, 1995 HWCA # 95/96-016 State California Agreement Type Compliance Agreement Legal Driver(s) FFCAct Scope Summary Address LDR requirements pertaining to storage and treatment of covered waste at LBNL Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 10/6/1995 SCOPE * Address LDR requirements pertaining to storage and treatment

  6. Associate director for Physical and Life Sciences, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration Associate director for Physical and Life Sciences, Lawrence Livermore National Laboratory William Goldstein William Goldstein American Association for the Advancement of Science (AAAS) Fellow William Goldstein has been awarded the distinction of American Association for the Advancement of Science (AAAS) Fellow. Election as a fellow is an honor bestowed upon AAAS members by their peers. Goldstein was elected for distinguished

  7. Guide to user facilities at the Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility. (GHT)

  8. Hadoop Hands-On Exercises Lawrence Berkeley National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hadoop Hands-On Exercises Lawrence Berkeley National Lab Oct 2011 We will ... Training accounts/User Agreement forms Test access to carver HDFS commands Monitoring Run the word count example Simple streaming with Unix commands Streaming with simple scripts Streaming "Census" example Pig Examples Additional Exercises 2 Instructions http://tinyurl.com/nerschadoopoct 3 Login and Environment ssh [username]@carver.nersc.gov echo $SHELL - should be bash 4 Remote Participants Visit:

  9. UCRL-10377 UNIVERSITY OF CALI FORNIA Lawrence Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    377 UNIVERSITY OF CALI FORNIA Lawrence Radiation Laboratory Berkeley, California Contract No. W-7105-eng--48 THE DETERMINATION OF MOLECULAR STRUCTURE FROM ROTATIONAL SPECTRA Victor W. Laurie and Dudley R. Herschbach July 1962 LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or repreeentation, expressed or implied, with respect to the accu- racy,

  10. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-C: Soft X-ray Magnetic Spectroscopy This beamline operates in the soft x-ray energy spectrum (500 - 2700 eV) using an electromagnetic helical undulator to provide circularly...

  11. Magnetic Materials Group - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    davegag@aps.anl.gov Visiting Scientists, Post-Docs, & Students Lawrie Skinner Rick Weber Vladimir Stoica Lawrie Skinner Research Asst. Prof. Stony Brook 432B003 (630)...

  12. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  13. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Working Group Translator Update Shaocheng Xie Lawrence Livermore National Laboratory Outline 1. Data development in support of CMWG * Climate modeling best estimate data * Extended and updated TWP-ICE forcing and evaluation data * Radiative heating and cloud microphysics data for TWP-ICE * BBHRP for SGP * Other relevant data 2. Survey results for data used by CMWG and future forcing data development Initial data list * Cloud fraction from ARSCL and TSI * Liquid water path and

  14. EIS-0348 and EIS-0236-S3: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL), which is critical to the National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. This document is also Supplement 3 to the Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (EIS-0236) for use of proposed materials at the National Ignition Facility (NIF). This combination ensures timely analysis of the reasonably foreseeable environmental impact of NIF experiments using the proposed materials concurrent with the environmental analyses being conducted for the site-wide activities.

  15. Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program

    Energy Savers [EERE]

    Years | Department of Energy Latest Report Shows Cost of Going Solar has Dropped Significantly for 5 Years Latest Report Shows Cost of Going Solar has Dropped Significantly for 5 Years August 12, 2015 - 2:28pm Addthis Latest Report Shows Cost of Going Solar has Dropped Significantly for 5 Years Lawrence Berkeley National Lab today released the eighth installment of the Tracking the Sun report series, which is funded by the U.S. Department of Energy SunShot Initiative. The report shows that

  16. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Nonlinear Interaction

    Office of Scientific and Technical Information (OSTI)

    19 14 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Nonlinear Interaction of Plane Elastic Waves A06 2 7 1998 Valeri A. Korneev, Kurt T. Nihei, and Larry R. Myer Earth Sciences Division June 1998 OF T4IS ~~~~~~~~~ 1 s DISCLAIMER This document was prepared as an account of work sponsored by t h e United States Government, While this document is believed to contain correct information, neither the United States Government nor a n y agency thereof, nor The Regents of the University of

  17. Storm water modeling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Veis, Christopher

    1996-05-01

    Storm water modeling is important to Lawrence Livermore National Laboratory (LLNL) for compliance with regulations that govern water discharge at large industrial facilities. Modeling is also done to study trend in contaminants and storm sewer infrastructure. The Storm Water Management Model (SWMM) was used to simulate rainfall events at LLNL. SWMM is a comprehensive computer model for simulation of urban runoff quantity and quality in storm and combined sewer systems. Due to time constraints and ongoing research, no modeling was completed at LLNL. With proper information about the storm sewers, a SWMM simulation of a rainfall event on site would be beneficial to storm sewer analyst.

  18. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  19. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. II

    SciTech Connect (OSTI)

    Thorson, Patrick

    1998-09-30

    Volume II of the Site Environmental Report for 1997 is published by Ernest Orlando Lawrence Berkeley National Laboratory as a supplemental appendix to the report printed in volume I. Volume II contains the environmental monitoring and sampling data used to generate summary results in the main report for routine and nonroutine activities at the Laboratory (except for groundwater sampling data). Data presented in volume II are given in Systeme International (SI) units. The list below categorizes the volume II data sections with corresponding summary result tables in volume I: Stack Air, Ambient Air, Rainwater, Creeks, Creek Baseline Study, Hydraugers, Lakes, Stormwater, Sewer, Fixed Treatment Units, Soil, Sediment, Vegetation.

  20. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect (OSTI)

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  1. Lawrence Livermore National Laboratory site seismic safety program: summary of findings

    SciTech Connect (OSTI)

    Scheimer, J.F.

    1985-07-01

    This report summarizes the final assessments of geologic hazards at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of investigations are documented in a series of reports produced by LLNL's Site Seismic Safety Program and their consultants. The Program conducted a probabilistic assessment of hazards at the site as a result of liquefaction, landslide, and strong ground shaking, using existing models to explicitly treat uncertainties. The results indicate that the Greenville and Las Positas-Verona Fault systems present the greatest hazard to the LLNL site as a result of ground shaking, with a lesser contribution from the Calaveras Fault. Other, more distant fault systems do not materially contribute to the hazard. No evidence has been found that the LLNL site will undergo soil failures such as landslides or liquefaction. In addition, because of the locations and ages of the faults in the LLNL area, surface ground rupture during an earthquake is extremely unlikely.

  2. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  3. Two Los Alamos scientists honored with E.O. Lawrence Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Los Alamos scientists honored with E.O. Lawrence Awards Two Los Alamos scientists honored with E.O. Lawrence Awards Outstanding performance in two vital mission areas resulted in prestigious awards for two Los Alamos National Laboratory scientists this week. May 21, 2015 Two Los Alamos scientists honored with E.O. Lawrence Awards Los Alamos National Laboratory, Los Alamos, New Mexico Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email

  4. Top 10 Things You Didn't Know About Lawrence Berkeley National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Berkeley National Laboratory Top 10 Things You Didn't Know About Lawrence Berkeley National Laboratory January 21, 2014 - 1:30pm Addthis Located in Berkeley, California, Lawrence Berkeley National Laboratory is one of 17 Energy Department National Labs. The site consists of 76 buildings located on 183 acres, which overlook both the University of California at Berkeley campus and the San Francisco Bay. | Photo courtesy of Lawrence Berkeley National Lab. Located in

  5. Type A Accident Report of the June 26, 2009 Vehicle Fatality at Lawrence

    Energy Savers [EERE]

    Livermore National Laboratory | Department of Energy Report of the June 26, 2009 Vehicle Fatality at Lawrence Livermore National Laboratory Type A Accident Report of the June 26, 2009 Vehicle Fatality at Lawrence Livermore National Laboratory October 1, 2009 On June 26, 2009, a Lawrence Livermore National Security (LLNS) employee was in the process of transporting six boxes containing personal property to his new office in preparation for a routine transfer to another position within the

  6. First-of-a-kind supercomputer at Lawrence Livermore available for

    National Nuclear Security Administration (NNSA)

    collaborative research | National Nuclear Security Administration Home / Blog First-of-a-kind supercomputer at Lawrence Livermore available for collaborative research Friday, May 16, 2014 - 12:00pm Catalyst, a first-of-a-kind supercomputer at Lawrence Livermore National Laboratory, is available to industry collaborators to test big data technologies, architectures and applications. Developed by a partnership of Cray, Intel and Lawrence Livermore, this Cray CS300 high performance computing

  7. 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National Laboratory 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National Laboratory January 15, 2014 - 10:25am Addthis Dr. Adam Weber oversees the work of intern Sara Kelly at Lawrence Berkeley National Laboratory in California. Dr. Weber was recently named one of the winners of the Presidential Early Career Awards for Scientists and Engineers. | Photo by Roy Kaltschmidt,

  8. E. O. Lawrence Award Nominations | U.S. DOE Office of Science...

    Office of Science (SC) Website

    The Lawrence Award's webpage (http:science.energy.govlawrence) describes its nomination guidelines and process. All nominations are made via an electronic submission process at ...

  9. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards Lawrence Berkeley National Laboratory Print ...

  10. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Lawrence Berkeley National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card ...

  11. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-98-06

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Criticality Safety and the Quality Assurance Program at the Lawrence Livermore National Laboratory, (EA-98-06)

  12. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-2000-12

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Authorization Basis Issues at the Lawrence Livermore National Laboratory, (EA-2000-12)

  13. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-2003-04

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to an Extremity Radiological Overexposure at the Lawrence Livermore National Laboratory, (EA-2003-04)

  14. St Lawrence Energy Corp formerly known as UroMed Corporation...

    Open Energy Info (EERE)

    Corp. (OTC: SLAW) is a Delaware company focused on the energy sector, including renewable energy and chemical transportation. References: St. Lawrence Energy Corp (formerly known...

  15. The Ernest Orlando Lawrence Award Homepage | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us Print Text Size: A A A FeedbackShare Page Announcements Nominations for the 2015 E. O. Award are extended until June 30, 2015. The outcome of the 2014

  16. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  17. Polyelectrolyte Materials for High Temperature Fuel Cells

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on polyelectrolyte materials for high temperature fuel cells, was given by John Kerr of Lawrence Berkeley National Laboratory at a meeting on new fuel cell projects in February 2007.

  18. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  19. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  20. Microsoft PowerPoint - 08 Lawrence 2010 DOE PM Workshop_EO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13514_03-01-10_presentation | Department of Energy 8 Lawrence 2010 DOE PM Workshop_EO 13514_03-01-10_presentation Microsoft PowerPoint - 08 Lawrence 2010 DOE PM Workshop_EO 13514_03-01-10_presentation PDF icon Microsoft PowerPoint - 08 Lawrence 2010 DOE PM Workshop_EO 13514_03-01-10_presentation More Documents & Publications OVERVIEW OF EXECUTIVE ORDER 13XXX Federal Leadership in Environmental, Energy and Economic Performance Microsoft PowerPoint - 05 Okonski final Project Management

  1. LANL scientists win two prestigious E.O. Lawrence Awards from the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy LANL scientists win two prestigious E.O. Lawrence Awards LANL scientists win two prestigious E.O. Lawrence Awards from the Department of Energy Mark Chadwick and David Chavez are winners of 2011 Ernest Orlando Lawrence Awards November 28, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to

  2. BEDES Strategic Working Group Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Data Exchange Specification: Strategic Working Group Recommendations Rick Diamond, Robin Mitchell, Andrea Mercado, Shankar Earni, and Lindsay Holiday Lawrence Berkeley National Laboratory Jonathan Raab, Raab Associates October 27, 2014 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of

  3. NIF User Group Executive Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF User Group Executive Board Professor Don Lamb (Chair) University of Chicago Dr. Riccardo Betti University of Rochester Dr. Alexis Casner Centre d'Études de Bruyère Le Châtel Professor Paul Drake Co-Chair Committee Elections University of Michigan Dr. Hans Hermann Los Alamos National Laboratory Dr. Paul Neumayer GSI Darmstadt Dr. Hye-Sook Park Lawrence Livermore National Laboratory Dr. Mingsheng Wei General Atomics Jena Meineche Young Researcher: Oxford University Gianluca Gregori Oxford

  4. Exploring Viral Genomics at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kilpatrick, K; Hiddessen, A

    2007-08-22

    This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I as a fluorescent dye to detect amplification of viral DNA that can later be integrated into microfluidic PCR system for sorting and analysis is shown.

  5. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  6. Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  7. Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  8. Nano-High: Lawrence Berkeley National Laboratory Lecture on Bad Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  9. VWA-0007- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  10. VWA-0008- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  11. Microsoft PowerPoint - 08 Lawrence 2010 DOE PM Workshop_EO13514...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 DOE PM WorkshopEO 1351403-01-10presentation Microsoft PowerPoint - 08 Lawrence 2010 DOE PM WorkshopEO 1351403-01-10presentation PDF icon Microsoft PowerPoint - 08 ...

  12. Enterprise Assessments Targeted Review, Lawrence Livermore National Laboratory – February 2015

    Broader source: Energy.gov [DOE]

    Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence Livermore National Laboratory Plutonium Facility

  13. Top 10 Things You Didn't Know About Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore ... Learn more by browsing other articles in the "Top Things You Didn't Know About" series. ...

  14. Top 10 Things You Didn't Know About Lawrence Berkeley National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Berkeley National Laboratory Top 10 Things You Didn't Know About Lawrence Berkeley ... energy facts by browsing other articles in the "Top Things You Didn't Know About" series. ...

  15. Lawrence Livermore Site Office Manager Joins EM’s Senior Leadership Team

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM Acting Assistant Secretary Dave Huizenga announced today that Alice Williams, manager of the DOE National Nuclear Security Administration (NNSA) Lawrence Livermore Site Office has joined the EM senior leadership team.

  16. Julie A. Smith and Christopher Lawrence Office of Electricity Delivery and Energy Reliability

    Energy Savers [EERE]

    christopher.lawrence@hq.doe.gov RE: Improving Performance of Federal Permitting and Review of Infrastructure Projects: Comments on a Draft Integrated, Interagency Pre-Application (IIP) Process Dear Ms. Smith and Mr. Lawrence: Please accept these comments on the draft Integrated, Interagency Pre-Application (IIP) Process on behalf of the Wyoming Infrastructure Authority (WIA), in response to your August 29, 2013, Request for Information (RFI) on "Improving Performance of Federal Permitting

  17. Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tri-Lab Directors' statement on the nuclear posture review April 9, 2010 Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George Miller, and Sandia Director Tom Hunter Los Alamos, New Mexico, April 9, 2010-The directors of the three Department of Energy, National Nuclear Security Administration Laboratories-Dr. George Miller from Lawrence Livermore National Laboratory, Dr. Michael Anastasio from Los Alamos National Laboratory, and Dr. Tom Hunter from Sandia

  18. Meet the Winners of the Lawrence Award - 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winners of the Lawrence Award - 2014 Meet the Winners of the Lawrence Award - 2014 Addthis Mei Bai, Brookhaven National Laboratory 1 of 9 Mei Bai, Brookhaven National Laboratory Mei Bai's work helps us understand more about how the universe works, from the smallest subatomic particles to the largest stars. A nuclear physicist at Brookhaven National Laboratory, Bai's tool of choice is the Lab's flagship particle accelerator -- the Relativistic Heavy Ion Collider. With the collider, Bai has

  19. Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997 Summary

    Office of Environmental Management (EM)

    Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory Compliance Order HWCA 96/97-5002 State California Agreement Type Federal Facility Agreement Legal Driver(s) FFCAct Scope Summary Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 2/24/1997 SCOPE * Require compliance by the DOE

  20. Spotlight: Two Los Alamos scientists honored with E.O. Lawrence Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Los Alamos scientists honored with E.O. Lawrence Awards Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Spotlight: Two Los Alamos scientists honored with E.O. Lawrence Awards Fryer and Dors noted for achievements in space physics, satellite radiation sensors July 1, 2015 Eric E. Dors (l) and Christopher L. Fryer (r) Eric E. Dors (l) and Christopher L. Fryer (r) Contact Linda Anderman Email Outstanding performance

  1. Mr. Christopher Lawrence and Ms. Julie Smith Office of Electricity Delivery and Energy Reliability

    Energy Savers [EERE]

    Mr. Christopher Lawrence and Ms. Julie Smith Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Dear Mr. Lawrence and Ms. Smith, The Western Governors' Association (WGA) is submitting these comments in response to the Department of Energy's (DOE) Request for Information (RFI), dated August 29, 2013 1 . The RFI outlines a proposed process to establish a coordinated series of meetings and other

  2. Ms. Julie A. Smith Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability

    Energy Savers [EERE]

    October 30, 2013 Ms. Julie A. Smith Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Dear Ms. Smith and Mr. Lawrence: The Association of Fish and Wildlife Agencies (AFWA) would like to provide comments on the Federal Register Notice Request for Information (RFI) on Improving Performance of Federal Permitting and Review of Infrastructure Projects, Federal Register Document

  3. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  4. Cost benefit analysis of waste compaction alternatives at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This report presents a cost benefit analysis of the potential procurement and operation of various solid waste compactors, or, of the use of commercial compaction services, for compaction of solid transuranic (TRU), low-level radioactive, hazardous, and mixed wastes at Lawrence Livermore National Laboratory (LLNL) Hazardous Waste Management (HWM) facilities. The cost benefit analysis was conducted to determine if increased compaction capacity at HWM might afford the potential for significant waste volume reduction and annual savings in material, shipping, labor, and disposal costs. In the following cost benefit analysis, capital costs and recurring costs of increased HWM compaction capabilities are considered. Recurring costs such as operating and maintenance costs are estimated based upon detailed knowledge of system parameters. When analyzing the economic benefits of enhancing compaction capabilities, continued use of the existing HWM compaction units is included for comparative purposes. In addition, the benefits of using commercial compaction services instead of procuring a new compactor system are evaluated. 31 refs., 1 fig., 6 tabs.

  5. Lawrence Livermore National Laboratory Site Seismic Safety Program: Summary of findings

    SciTech Connect (OSTI)

    Scheimer, J.F.; Burkhard, N.R.; Emerson, D.O.

    1991-05-01

    This report summarizes the final assessments of geologic hazards at the Lawrence Livermore National Laboratory (LLNL) and includes a revision of the peak acceleration hazard curve. Detailed discussions of investigations are documented in a series of reports produced by LLNL's Site Seismic Safety Program and their consultants. The Program conducted a probabilistic assessment of hazards at the site as a result of liquefaction, landslide, and strong ground shaking, using existing models to explicitly treat uncertainties. The results indicate the Greenville and Las Positas-Verona Fault systems present the greatest hazard to the LLNL site as a result of ground shaking, with a lesser contribution from the Calaveras Fault. Other, more distant fault systems do not materially contribute to the hazard. No evidence has been found that the LLNL site will undergo soil failures such as landslides or liquefaction. In addition, because of the locations and ages of the faults in the LLNL area, surface ground rupture during an earthquake is extremely unlikely. 21 refs., 3 figs.

  6. Overview of crash and impact analysis at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Logan, R.W.; Tokarz, F.J.

    1993-08-05

    This work provides a brief overview of past and ongoing efforts at Lawrence Livermore National Laboratory (LLNL) in the area of finite-element modeling of crash and impact problems. The process has been one of evolution in several respects. One aspect of the evolution has been the continual upgrading and refinement of the DYNA, NIKE, and TOPAZ family of finite-element codes. The major missions of these codes involve problems where the dominant factors are high-rate dynamics, quasi-statics, and heat transfer, respectively. However, analysis of a total event, whether it be a shipping container drop or an automobile/barrier collision, may require use or coupling or two or more of these codes. Along with refinements in speed, contact capability, and element technology, material model complexity continues to evolve as more detail is demanded from the analyses. A more recent evolution has involved the mix of problems addressed at LLNL and the direction of the technology thrusts. A pronounced increase in collaborative efforts with the civilian and private sector has resulted in a mix of complex problems involving synergism between weapons applications (shipping container, earth penetrator, missile carrier, ship hull damage) and a more broad base of problems such as vehicle impacts as discussed herein.

  7. Workplace investigation of increased diagnosis of malignant melanoma among employees of Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Moore, D.H. II; Patterson, H.W.; Hatch, F.; Discher, D.; Schneider, J.S.; Bennett, D.

    1994-08-01

    Based on rates for the surrounding communities, the diagnosis rate of malignant melanoma for employees of Lawrence Livermore National Laboratory (LLNL) during 1972 to 1977 was three to four times higher than expected. In 1984 Austin and Reynolds concluded, as a result of a case-control study, that five occupational factors were {open_quotes}causally associated{close_quotes} with melanoma risk at LLNL. These factors were: (1) exposure to radioactive materials, (2) work at Site 300, (3) exposure to volatile photographic chemicals, (4) presence at the Pacific Test Site, and (5) chemist duties. Subsequent reviews of the Austin and Reynolds report concluded that the methods used were appropriate and correctly carried out. These reports did determine, however, that Austin and Reynolds` conclusion concerning a causal relationship between occupational factors and melanoma among employees was overstated. There is essentially no supporting evidence linking the occupational factors with melanoma from animal studies or human epidemiology. Our report summarizes the results of further investigation of potential occupational factors.

  8. Lawrence Berkeley National Laboratory (LBNL): Fuel Cell and Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capabilities Material Science Molecular Foundry National Center for Electron Microscopy Synchrotron based research Advanced Light Source (ALS) Computing ...

  9. 3D-Printed Foam Outperforms Standard Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D-Printed Foam Outperforms Standard Materials 3D-Printed Foam Outperforms Standard Materials April 27, 2016 - 5:58pm Addthis News release from Lawrence Livermore Laboratory, April 27, 2016. Lawrence Livermore National Laboratory (LLNL) material scientists have found that 3D-printed foam works better than standard cellular materials in terms of durability and long-term mechanical performance. Foams, also known as cellular solids, are an important class of materials with applications ranging from

  10. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  11. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    matter and materials; fusion and plasma sciences; high energy and nuclear ... SLAC National Accelerator Laboratory: for his work advancing fusion and plasma sciences. ...

  12. Lessons Learned by Lawrence Livermore National Laboratory Activity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topics Covered: Work Control Review Board (WCRB) Functional Area Manager identified at the ... for this activity Stakeholders Advisory Group established to represent each of the ...

  13. HyMARC: Hydrogen Materials-Advanced Research Consortium | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy HyMARC: Hydrogen Materials-Advanced Research Consortium HyMARC: Hydrogen Materials-Advanced Research Consortium The Hydrogen Materials-Advanced Research Consortium (HyMARC), composed of Sandia National Laboratories, Lawrence Livermore National Laboratory, and Lawrence Berkeley National Laboratory, has been formed with the objective of addressing the scientific gaps blocking the advancement of solid-state storage materials. Illustration of the research consortia model showing a

  14. Accident Response Group | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Accident Response Group NNSA's Accident Response Group (ARG) provides technical guidance and responds to U.S. nuclear weapons accidents. ARG_Logo The team assists in assessing weapons damage and risk, and in developing and implementing procedures for safe weapon recovery, packaging, transportation, and disposal of damaged weapons. The ARG headquarters is located in Albuquerque, New Mexico and is supported by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National

  15. Lawrence Pack, train conductor, and Y-12s uranium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Y-12's uranium? Trains were the primary means of long haul transportation in the 1940's. Many trains brought building materials to Y-12 and other Manhattan Project sites...

  16. Materials Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Science Materials Science The unique internal construction of the gas-filled panels developed at the Lawrence Berkeley National Laboratory in California are as effective barriers to heat as its pink fibrous counterparts with less material in less space. <a href="http://energy.gov/articles/berkeley-labs-gas-filled-insulation-rivals-fiber-buildings-sector">Learn more about this cost-effective, energy-efficient insulation</a>. The unique internal construction of the

  17. Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory December 6, 2013 - 6:18pm Addthis The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by

  18. Secretary Moniz's Remarks at the 2013 E. O. Lawrence Awards Ceremony in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. -- As Delivered | Department of Energy E. O. Lawrence Awards Ceremony in Washington D.C. -- As Delivered Secretary Moniz's Remarks at the 2013 E. O. Lawrence Awards Ceremony in Washington D.C. -- As Delivered June 24, 2014 - 2:09pm Addthis Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Well, thank you Jim, and I'll repeat the obvious, that this is really a great day when we have a chance to recognize some of the terrific scientists and engineers who really form the

  19. The adaptive x-ray optics project at the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory (Conference) | SciTech Connect The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Citation Details In-Document Search Title: The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Authors: Pardini, T ; Poyneer, L A ; McCarville, T J ; Macintosh, B ; Bauman, B ; Pivovaroff, M J Publication Date: 2013-06-25 OSTI Identifier: 1108860 Report Number(s): LLNL-PROC-639907 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference

  20. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-06-04

    At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

  1. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    SciTech Connect (OSTI)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

  2. Remedial investigation and feasibility study for the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex

    SciTech Connect (OSTI)

    Taffet, M.J. ); Oberdorfer, J.A. ); McIlvride, W.A. )

    1989-10-01

    This report summarizes the results and conclusions of the investigation of tritium and other compounds in ground water in the vicinity of landfills at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. 91 refs., 110 figs., 43 tabs.

  3. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory, Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this draft environmental impact statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  4. Electromechanical battery research and development at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Baldwin, D.E.; Bender, D.A.; Fowler, T.K.

    1993-06-01

    The concepts undergirding a funded program to develop a modular electromechanical battery (EMB) at the Lawrence Livermore National Laboratory are described. Example parameters for EMBs for electric and hybrid-electric vehicles are given, and the importance of the high energy recovery efficiency of EMBs in increasing vehicle range in urban driving is shown.

  5. EIS-0157: Site-wide for Continued Operation of Lawrence Livermore/Sandia National Laboratory, Livermore

    Broader source: Energy.gov [DOE]

    The Department of Energy prepared this environmental impact statement to analyze the potential environmental impacts of the continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratory - Livermore, including programmatic enhancements and facility modifications to occur over the subsequent 10-year term that are pursuant to research and development missions established for the Laboratories by Congress and the President.

  6. TEC Working Group Topic Groups Archives Communications

    Broader source: Energy.gov [DOE]

    The Communications Topic Group was convened in April 1998 to improve internal and external strategic level communications regarding DOE shipments of radioactive and other hazardous materials.

  7. Human Resources at Critical Materials Institute | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Human Resources at Critical Materials Institute Each partner within the Critical Materials Institute manages its own hiring. Use these links to find key contacts for CMI partners that are most likely to hire for CMI research projects: The Ames Laboratory | Careers at Iowa State University Oak Ridge National Laboratory | Careers Idaho National Laboratory | Careers Lawrence Livermore National Laboratory | Careers Colorado School of Mines | Employment

  8. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  9. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-{Tc} systems is reported under work for others. (DLC)

  10. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H[sub 2], and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO[sub 2], potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-[Tc] systems is reported under work for others. (DLC)

  11. Lasers in materials processing

    SciTech Connect (OSTI)

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out.

  12. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Chu, Steven (U.S. Energy Secretary)

    2012-06-28

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  13. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-04-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  14. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect (OSTI)

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-03-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  15. 2010 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 10 High Temperature Membrane Working Group Meeting Archives 2010 High Temperature Membrane Working Group Meeting Archives View information from meetings of the High Temperature Membrane Working Group held in 2010. October 14, 2010, Las Vegas, Nevada Minutes Continuum Modeling of Membrane Properties, Ahmet Kusoglu and Adam Z. Weber, Lawrence Berkeley National Laboratory Some Durability Considerations for Proton Exchange Membranes, Steven Hamrock, 3M Fuel Cell Components Program

  16. George F. Chapline EGG-M-88285 Lawrence Livermore National Laboratory

    Office of Scientific and Technical Information (OSTI)

    FISSION FRAGMENT ROCKETS -- A POTENTIAL BREAKTHROUGH * * " ^ " * * ' - George F. Chapline EGG-M-88285 Lawrence Livermore National Laboratory Livermore, California 94550 D E S S 016953 Paul W. Dickson and Bruce G. Schnitzler Idaho National Engineering Laboratory Idaho Falls, Idaho 83415 ABSTRACT A new reactor concept which has the potential of enabling extremely energetic and ambitious space propulsion missions is described. Fission fragments are directly utilized as the propellant by

  17. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  18. To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair Dec. 1-20, 2006

    Energy Savers [EERE]

    From: ecchimento@comcast.net [mailto:ecchimento@comcast.net] Sent: Monday, January 29, 2007 6:28 PM To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair Dec. 1-20, 2006 Larry, Regarding the planned line outage, scheduled for Feb. 20 through Mar. 6, I am requesting that the residents near the plant be moved for the duration of the outage to protect their health. Would you include this comment also in the ongoing recorded discussion? Thank you. Elizabeth -----Original Message-----

  19. "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore National Laboratory | Princeton Plasma Physics Lab November 7, 2012, 4:15pm Colloquia MBG Auditorium "New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been qualified. NIF reached its design goal of 1.8 MJ and 500 TW of ultraviolet light in 2012. The Ignition Campaign

  20. Lawrence Livermore National Laboratory Federal Facility Agreement, June 29, 1992 Summary

    Office of Environmental Management (EM)

    Site 300) Agreement Name Lawrence Livermore National Laboratory Federal Facility Agreement Under CERCLA Section 120, June 29, 1992 State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; USEPA; California Department of Toxic Substances Control; Central Valley Regional Water Quality Control Board Date 6/29/1992

  1. Lawrence Livermore National Laboratory Main Site FFA Under CERCLA Section 120, November 1, 1988 Summary

    Office of Environmental Management (EM)

    Lawrence Livermore National Laboratory (Main Site) Federal Facility Agreement Under CERCLA Section 120, November 1, 1988 State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; USEPA; California Department of Health Services; California Regional Water Quality Control Board Date 11/1/1988 SCOPE * Establish a

  2. Lawrence O. "Larry" Bailey, Jr., Joins Carlsbad Field Office as Deputy Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration Livermore researchers awarded early career funding Friday, May 16, 2014 - 3:44pm Lawrence Livermore National Laboratory scientists Jennifer Pett-Ridge and Todd Gamblin have been selected by DOE's Office of Science Early Career Research program to receive funding for proposed projects. Jennifer Pett-Ridge was selected for her work titled "Microbial Carbon Tranformations in Wet Tropical Soils: The Importance of Redox Fluctuations. Todd Gamblin will receive

  3. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  4. EA-1065: Proposed Construction and Operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify 14,900 square feet of an existing building (Building 64) at the U.S. Department of Energy's Lawrence Berkeley Laboratory to...

  5. EA-1087: Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify existing Building 51B at the U.S. Department of Energy's Lawrence Berkeley National Laboratory to install and conduct experiments...

  6. Energy Department Awards Contract to the University of California to Manage and Operate Lawrence Berkeley National Laboratory

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -- The Department of Energy (DOE) has awarded a new five-year contract to the University of California to manage and operate its Lawrence Berkeley National Laboratory (LBNL).  The...

  7. IHE material qualification tests description and criteria

    SciTech Connect (OSTI)

    Slape, R J

    1984-06-01

    This report describes the qualification tests presently being used at Pantex Plant, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory that are required by the Department of Energy prior to the approval for an explosive as an Insensitive High Explosive (IHE) material. The acceptance criteria of each test for IHE qualification is also discussed. 5 references, 10 figures.

  8. Additive Manufacturing - Materials by Design - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Additive Manufacturing - Materials by Design Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing SummaryLivermore materials scientists and engineers are designing and building new materials that will open up new spaces on many Ashby material selection charts, such as those for stiffness and

  9. Materials Genome Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Materials Genome Initiative Materials Genome Initiative Credit: The White House Credit: The White House Lead Performers: -- National Renewable Energy Laboratory - Golden, CO -- Lawrence Berkeley National Laboratory - Berkeley, CA Project Term: October 2014 to July 2015 Project Background The development of new higher performing materials for buildings and building systems will be a key element of making the high-efficiency, high-performing buildings of the future. The

  10. Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award. This is recognition of the work of many folks at Los Alamos as well as a broader set of colleagues and collaborators, and not just my own efforts," said Sarrao. The award...

  11. TEC Working Group Topic Groups Manual Review

    Broader source: Energy.gov [DOE]

    This group is responsible for the update of DOE Manual 460.2-1, Radioactive Material Transportation Practices Manual.  This manual was issued on September 23, 2002, and establishes a set of...

  12. TEC Working Group Topic Groups Rail

    Broader source: Energy.gov [DOE]

    The Rail Topic Group has the responsibility to identify and discuss current issues and concerns regarding rail transportation of radioactive materials by the Department of Energy (DOE). The group’s...

  13. To: Mansueti, Lawrence Subject: DCPSC Complaint DOE Docket #EO-05-01

    Energy Savers [EERE]

    Sent: Tuesday, November 15, 2005 6:18 PM To: Mansueti, Lawrence Subject: DCPSC Complaint DOE Docket #EO-05-01 Attached please find our letter regarding the DCPSC complaint that we ask you to please file for consideration in DOE's Docket #EO-05-01. Thank you. Elizabeth Chimento and Poul Hertel 1200 North Pitt Street Alexandria, Virginia November 14, 2005 Joseph T. Kelliher, Chairman Federal Energy Regulatory Commission 888 First Street, N.E. Washington, D.C. 20426 Re: District of Columbia Public

  14. EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA

    Broader source: Energy.gov [DOE]

    The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

  15. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  16. PULSE COLUMN DESIGN By Lawrence E. Burkhart R.W. Fahien

    Office of Scientific and Technical Information (OSTI)

    PULSE COLUMN DESIGN By Lawrence E. Burkhart R.W. Fahien November 1958 Ames Laboratory Iowa State College Ames, Iowa UNITED STATES ATOMIC ENERGY COMMISSION Technical Information Service DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. F. H. Spedding, Director, Ames Laboratory. Work performed under Contract No. W-7405-Eng-82. L E G A L N O T I C E This report was prepared as an account of Government

  17. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  18. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  19. Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility

    SciTech Connect (OSTI)

    Radev, R

    2009-09-04

    In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

  20. Advanced Water Splitting Materials Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Splitting Materials Workshop Advanced Water Splitting Materials Workshop The U.S. Department of Energy's (DOE's) Lawrence Berkeley National Laboratory and Stanford University held the Advanced Water Splitting Materials Workshop on April 14-15, 2016, in Stanford, California. The workshop was supported by the DOE Fuel Cell Technologies Office and its purpose was to gather stakeholder input that will be foundational to the establishment of the DOE's Energy Materials Network (EMN) consortium

  1. Lawrence Uvermore Laboratory THE TECHNOLOGY OF HIRROR MACHINES - LLL FACILITIES FOR

    Office of Scientific and Technical Information (OSTI)

    PREPRINT UCRL- 79605 (%NtLr7//jpj?- - <f Lawrence Uvermore Laboratory THE TECHNOLOGY OF HIRROR MACHINES - LLL FACILITIES FOR MAGNETIC MIRROR FUSION EXPERIMENTS Thomas H. Batzer September 1 5 , 1977 T h i s paper was prepared f o r s u b m i t t a l t o t h e Seventh Symposium on Engineering Problems o f Fusion Research, Nuclear and Plasma S c i e n c e S o c i e t y of IEEE, K n o x v i l l e , T e n n e s s e e , October 2 5 - 2 8 , 1977. This Is a preprint of a paper intended for

  2. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    DOE R&D Accomplishments [OSTI]

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  3. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  4. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  5. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  6. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  7. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  8. Environmental monitoring at the Lawrence Livermore National Laboratory: 1986 annual report

    SciTech Connect (OSTI)

    Holland, R.C.; Buddemeier, R.W.; Brekke, D.D.

    1987-04-01

    This report documents the results of the environmental monitoring program at the Lawrence Livermore National Laboratory (LLNL) for 1986. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical pollutants in ambient air, soil, surface water, groundwater, vegetation, milk, foodstuff, and sewage effluents were made at both the Livermore site and nearby Site 300. This report was prepared to meet the requirements of DOE Order 5484.1. Evaluations are made of LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological releases to the environment. The data indicate that no releases in excess of the applicable standards were made during 1986, and that LLNL operations had no adverse environmental impact.

  9. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL's use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  10. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL`s use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  11. TEC Working Group Topic Groups Archives Consolidated Grant Topic Group

    Broader source: Energy.gov [DOE]

    The Consolidated Grant Topic Group arose from recommendations provided by the TEC and other external parties to the DOE Senior Executive Transportation Forum in July 1998. It was proposed that the consolidation of multiple funding streams from numerous DOE sources into a single grant would provide a more equitable and efficient means of assistance to States and Tribes affected by DOE nuclear material shipments.

  12. Microsoft Word - Group5PrecipProperties(RS).docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can We See Precipitation Properties Conserved through the Melting Layer Report Participants: Shuaiqu Tang, Lawrence Livermore National Laboratory Jonathan Edwards-Opperman, University of Oklahoma Kathryn Verlinden, Oregon State University Nils Küchler, University of Cologne, Germany Instructors: Matt Kumjian, Pennsylvania State University Herman Russchenberg, Delft University of Technology, Netherlands July 2015 Group 5, July 2015, ARM Summer Training and Science Applications 1 1.0 Can We See

  13. TEC Working Group Topic Groups | Department of Energy

    Energy Savers [EERE]

    Topic Groups TEC Working Group Topic Groups TEC Topic Groups were formed in 1991 following an evaluation of the TEC program. Interested members, DOE and other federal agency staff meet to examine specific issues related to radioactive materials transportation. TEC Topic Groups enable a small number of participants to focus intensively on key issues at a level of detail that is unattainable during the TEC semiannual meetings due to time and group size constraints. Topic Groups meet individually

  14. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  15. Labs at-a-Glance: Lawrence Berkeley National Laboratory | U.S...

    Office of Science (SC) Website

    Accelerator Science and Technology Condensed Matter Physics and Materials Science Chemical ... Materials Science and Engineering Chemical Engineering Systems Engineering and ...

  16. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  17. Symposium on high temperature and materials chemistry

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  18. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics Implementation, GHG inventory, Market analysis, Policiesdeployment programs,...

  19. Galaxy groups

    SciTech Connect (OSTI)

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ?} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of ?{sub matter}?0.15 in a flat topology, with a 68% probability of being less than 0.44.

  20. TEC Working Group Topic Groups Archives Training - Medical Training |

    Office of Environmental Management (EM)

    Department of Energy Training - Medical Training TEC Working Group Topic Groups Archives Training - Medical Training The TEC Training and Medical Training Issues Topic Group was formed to address the training issues for emergency responders in the event of a radioactive material transportation incident. The Topic Group first met in 1996 to assist DOE in developing an approach to address radiological emergency response training needs and to avoid redundancy of existing training materials. The

  1. Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

    1997-04-01

    Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

  2. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  3. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    SciTech Connect (OSTI)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  4. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  5. XSD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging (IMG) Primary Contact: Francesco De Carlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences The IMG group designs, supports, and operates...

  6. Method of improving superconducting qualities of fabricated constructs by shock preprocessing of precursor materials

    DOE Patents [OSTI]

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    Disclosed is a method of improving the physical properties of superconducting materials which comprises: a. applying a high strain rate deformation to said materi The United States Government has rights in this invention pursuant to Contract No. W-7405-ENG-48 between the U.S. Department of Energy and the University of California, for the operation of Lawrence Livermore National Laboratory.

  7. Fiscal Year 2011 Audit of the Work Performed Under the Work for Others Program at the Lawrence Berkeley National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Audits and Inspections Audit Report Fiscal Year 2011 Audit of the Work Performed Under the Work for Others Program at the Lawrence Berkeley National Laboratory OAS-L-13-10 June 2013 Department of Energy Washington, DC 20585 June 24, 2013 MEMORANDUM FOR THE MANAGER, BERKLEY SITE OFFICE FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Fiscal Year 2011 Audit of the Work Performed Under the Work for

  8. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    SciTech Connect (OSTI)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  9. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  10. The Lawrence Berkeley National Laboratory ES&H self-assessmentprogram

    SciTech Connect (OSTI)

    Chernowski, John G.

    2003-02-11

    Lawrence Berkeley National Laboratory (Berkeley Lab) is a multiprogram national research facility operated by the University of California for the U.S. Department of Energy (DOE). DOE environment, safety, and health (ES&H) policy requires that all Berkeley Lab work be performed safely, with minimal adverse impact on the public and the environment. To facilitate safe and responsible work, Berkeley Lab divisions, directorates, and select departments must develop and implement Integrated Safety Management (ISM) plans. Berkeley Lab operates a formal internal ES&H self-assessment process to evaluate ES&H programs and policies and assure that ISM is implemented at all levels of activities and operations. ISM requires that: (1) work is defined, (2) hazards are identified, (3) controls are developed and implemented, (4) work is performed as authorized, and (5) feedback and improvement are continuous. These five ISM core functions are sustained by applying the seven guiding principles of ISM. These are: (1) line management responsibility and accountability for ES&H, (2) clear ES&H roles and responsibilities, (3) competency commensurate with responsibilities, (4) an ongoing balance between safety on the one hand and research and operational priorities on the other, (5) identification of standards and requirements, (6) hazard controls tailored to the work, and (7) operations authorization. Self-assessment at Berkeley Lab is a continuous process of information gathering and evaluation. The goals of the self-assessment program are: (a) Ensure that work activities and operations are done safely and in a manner that maximizes public and environmental protection. (b) Ensure that the five core functions and seven guiding principles of integrated safety management are employed effectively in work planning and performance. (c) Meet regulatory requirements for DOE oversight, self-assessment, and an integrated safety management system. (d) Meet contractual requirements for ES&H performance and self-assessment. (Berkeley Lab operates under DOE/University of California Contract DE-AC03-7600098, Appendix F.)

  11. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Communications Group Print From left: Ashley White, Lori Tamura, and Keri Troutman. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and publicity, and

  12. Skeleton Technologies Group | Open Energy Information

    Open Energy Info (EERE)

    Group Place: Sweden Product: Manufacturers of supercapacitors and other composite materials. References: Skeleton Technologies Group1 This article is a stub. You can help...

  13. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  14. NERSC, LBL Researchers Share Materials Science Advances at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, LBL Researchers Highlight Materials Science at APS NERSC, LBL Researchers Share Materials Science Advances at APS March 3, 2014 APSlogo NERSC and Lawrence Berkeley National Laboratory (LBL) are well represented this week at the American Physical Society (APS) March meeting. Some 10,000 physicists, scientists, and students are expected to attend this year's meeting, which takes place March 3-7 in Denver, CO. Physicists and students will report on groundbreaking research from industry,

  15. Materials Modeling for High-Performance Radiation Detectors (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Materials Modeling for High-Performance Radiation Detectors Citation Details In-Document Search Title: Materials Modeling for High-Performance Radiation Detectors Abstract not provided. Authors: Lordi, V. [1] + Show Author Affiliations Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) Publication Date: 2014-10-30 OSTI Identifier: 1178392 Report Number(s): LLNL-TR--663544 DOE Contract Number: AC52-07NA27344 Resource Type: Technical Report

  16. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect (OSTI)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  17. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Goyal, Amit (Oak Ridge National Laboratory)

    2012-06-28

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  18. Overview of the Tritium research activities at Lawrence Livermore National Laboratory (LLNL)

    Broader source: Energy.gov [DOE]

    Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015.

  19. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  20. Helms Research Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helms Group Home Research Members Publications Collaborations Connect Physical Organic Materials Chemistry Our research is devoted to understanding transport phenomena in mesostructured systems assembled from organic, organometallic, polymeric and nanocrystalline components. Enhanced capabilities relevant to energy, health, water, and food quality are enabled by our unique approaches to the modular design of their architectures and interfaces.

  1. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    SciTech Connect (OSTI)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the area of host-pathogen interactions as well as policy makers from federal agencies. The main objectives of the workshop are: (1) to assess the current national needs, capabilities, near-term technologies, and future challenges in applying various diagnostics tools to public health and bio-defense; (2) to evaluate the utility and feasibility of host-response and pathogen biomarker profiling in the diagnosis and management of infectious diseases; and (3) to create a comprehensive developmental strategy from proof-of-concept, through validation, to deployment of appropriate advanced technology for the clinical/public health and bio-defense environments.

  2. Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2004-02-27

    This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

  3. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  4. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  5. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Groups Research Group Homepages: Nuclear Theory Group Dr. Sherry Yennello's Research Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Group...

  6. Christopher Lawrence United States Department of Energy 1000 Independence Avenue, SW

    Office of Environmental Management (EM)

    Energy Chicago Business Features Argonne Woman in Nuclear Physics Chicago Business Features Argonne Woman in Nuclear Physics January 9, 2012 - 4:08pm Addthis Kawtar Hafidi is an experimental nuclear physicist, working in the medium energy physics group at Argonne. Image courtesy of Argonne National Laboratory. Kawtar Hafidi is an experimental nuclear physicist, working in the medium energy physics group at Argonne. Image courtesy of Argonne National Laboratory. Chicago Business has the scoop

  7. Half metallic materials and their properties (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: Half metallic materials and their properties Citation Details In-Document Search Title: Half metallic materials and their properties Authors: Fong, C Y ; Pask, J E ; Yang, L H Publication Date: 2010-02-23 OSTI Identifier: 1130002 Report Number(s): LLNL-BOOK-424888 DOE Contract Number: W-7405-ENG-48 Resource Type: Book Publisher: Half metallic materials and their properties, Imperial College Press, London, 2013, pp. 320 Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore,

  8. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and Technology Policy (OSTP) convened four work groups: * Critical Material Criteria ... 28- 29, 2012) 15 Education and Training: Skills Required Across the Rare Earth Supply ...

  9. High Risk Material Studies

    Broader source: Energy.gov [DOE]

    Spent Fuel Working Group Report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities.

  10. Heolo Group | Open Energy Information

    Open Energy Info (EERE)

    Product: Yunnan province based thermostable LiMn2O4 cathode material producer for Lithium secondary batteries. References: Heolo Group1 This article is a stub. You can help...

  11. Working Group Reports Summary of Single-Column Model Intensive Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports Summary of Single-Column Model Intensive Observation Period Workshop at Annual Atmospheric Radiation Measurement Science Team Meeting D. A. Randall Department of Atmospheric Science Colorado State University Fort Collins, Colorado R. T. Cederwall Lawrence Livermore National Laboratory Livermore, California * Study previous observation simulation system experiments (OSSEs) (i.e., Bill Frank, Pennsylvania State University [PSU]) and conduct OSSEs as necessary to evaluate

  12. Building A Science DMZ Eli Dart, Network Engineer ESnet Network Engineering Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Science DMZ Eli Dart, Network Engineer ESnet Network Engineering Group Joint Techs, Winter 2013 Honolulu, HI January 13, 2013 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Outline of the Afternoon Eli Dart, ESnet * Science DMZ architecture, security Brian Tierney, ESnet * Data transfer node, tools overview Raj Kettimuthu, ANL and University of Chicago * Globus Online -Short break- Jason Zurawski, Internet2 * perfSONAR Guy Almes, Texas A&M University *

  13. Highly Efficient Multigap Solar Cell Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Efficient Multigap Solar Cell Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Yu, K. M., Walukeiwicz, W., Wu J., Shan, W., Beeman, J. W., Scarpulla, M. A., Dubon, O. D., Becla, P. "Diluted II-VI Oxide Semiconductors with Multiple Band Gaps," Physical Review Letters, Vo. 91, No. 24, Dec. 12, 2003. (178 KB) Technology Marketing Summary Scientists at Berkeley Lab have invented multiband gap semiconducting

  14. Water Based Process for Fabricating Thermoelectric Materials - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Find More Like This Return to Search Water Based Process for Fabricating Thermoelectric Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication LBNL Commercial Analysis Report (1,391 KB) Technology Marketing Summary Berkeley Lab scientists Rachel Segalman, Jeffrey Urban and Kevin See have invented a water based process to make thermoelectric films. The resulting composite film

  15. Meet CMI Researcher Ed Jones | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ed Jones CMI focus area deputy leader Ed Jones CMI researcher Ed Jones has been at Lawrence Livermore National Laboratory (LLNL) for 22 years, where his work has centered on the analysis, engineering, reliability and performance of energy, environmental, and national asset systems, including infrastructure and materials. He has developed extensive capabilities in the application of probabilistic methods and models to complex performance problems. Recent innovations have been applied to carbon

  16. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA. Performance at levels greater than those established by this document will provide a higher level of fire safety, fire protection, or loss control and is encouraged. In Section 7, Determination of Baseline Needs, a standard template was used to describe the process used that involves separating basic emergency response needs into nine separate services. Each service being evaluated contains a determination of minimum requirements, an analysis of the requirements, a statement of minimum performance, and finally a summary of the minimum performance. The requirement documents, listed in Section 5, are those laws, regulations, DOE Directives, contractual obligations, or LLNL policies that establish service levels. The determination of minimum requirements section explains the rationale or method used to determine the minimum requirements.

  17. Investigating Sources of Toxicity in Stormwater: Algae Mortality in Runoff Upstream of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Campbell, C G; Folks, K; Mathews, S; Martinelli, R

    2003-10-06

    A source evaluation case study is presented for observations of algae toxicity in an intermittent stream passing through the Lawrence Livermore National Laboratory near Livermore, California. A five-step procedure is discussed to determine the cause of water toxicity problems and to determine appropriate environmental management practices. Using this approach, an upstream electrical transfer station was identified as the probable source of herbicides causing the toxicity. In addition, an analytical solution for solute transport in overland flow was used to estimate the application level of 40 Kg/ha. Finally, this source investigation demonstrates that pesticides can impact stream water quality regardless of application within levels suggested on manufacturer labels. Environmental managers need to ensure that pesticides that could harm aquatic organisms (including algae) not be used within close proximity to streams or storm drainages and that application timing should be considered for environmental protection.

  18. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  19. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  20. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  1. Ditec Automation Group | Open Energy Information

    Open Energy Info (EERE)

    Name: Ditec Automation Group Place: Mexico City, Mexico Product: Mexico City-based manufacturing and installation company. Focused on material handling, industrial ovens,...

  2. 3D Covalent Organic Framework Materials database (Dataset) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Dataset: 3D Covalent Organic Framework Materials database Citation Details In-Document Search Title: 3D Covalent Organic Framework Materials database Authors: Haranczyk, Maciej [1] + Show Author Affiliations Lawrence Berkeley National Laboratory Publication Date: 2014-09-11 OSTI Identifier: 1155071 Report Number(s): 1 DOE Contract Number: AC02-05CH11231 Resource Type: Dataset Data Type: Numeric Data Resource Relation: Related Information: R.L. Martin et al Journal of Physical

  3. NNSA Completes Removal of All High Security Special Nuclear Material from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LLNL | National Nuclear Security Administration Completes Removal of All High Security Special Nuclear Material from LLNL September 21, 2012 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced that the last of the Security Category I/II special nuclear material items that required the highest level of security at Lawrence Livermore National Laboratory (LLNL) have been removed. LLNL's primary mission will continue to be to ensure the safety, security and

  4. Using Energy-Filtered TEM to Solve Practical Materials Problems With Inspirations from Gareth Thomas.

    Office of Scientific and Technical Information (OSTI)

    1070C Using Energy-Filtered TEM to Solve Practical Materials Problems With Inspirations from Gareth Thomas. Joshua D. Sugar1, Farid El Gabaly1, William Chueh2, Kyle Fenton3, Paul G. Kotula3, Velimir Radmilovic6, Norman C. Bartelt1, Joseph T. McKeown4, Andreas M. Glaeser5, and Ron Gronsky5. 1 Sandia National Laboratories, Livermore, CA, USA. 2. Materials Science and Engineering, Stanford University, Stanford, CA, USA. 3. Sandia National Laboratories, Albuquerque, NM, USA. 4 Lawrence Livermore

  5. Meet the CMI Researchers | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory, biogeochemistry Karl Gschneidner, Ames Laboratory, video, retirement Stephen Harrison, Simbol Scott Herbst, Idaho National Laboratory Ed Jones, Lawrence...

  6. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  7. TEC Working Group Topic Groups Archives

    Broader source: Energy.gov [DOE]

    The following Topic Groups are no longer active; however, related documents and notes for these archived Topic Groups are available through the following links:

  8. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  9. Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details, helping users to branch out to other related sources. Titles of the projects provide clues both to the imaging focus of the research and the scientific discipline for which the visualizations are intended. Only a few of the many titles/images/projects are listed here: 1) Hybrid Parallelism for Volume Rendering at Large Scale Analysis of Laser Wakefield Particle Acceleration Data; 2) Visualization of Microearthquake Data from Enhanced Geothermal Systems; 3) PointCloudXplore: Visualization and Analysis of 3D Gene Expression Data; 4) Visualization of Quantum Monte-Carlo simulations; 5) Global Cloud Resolving Models; 6) Visualization of large-scale GFDL/NOAA climate simulations; 7) Direct Numerical Simulation of Turbulent Flame Quenching by Fine Water Droplets; 8) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 9) Sunfall: Visual Analytics for Astrophysics; 10) Fast Contour Descriptor Algorithm for Supernova Image Classification; 11) Supernova Recognition Using Support Vector Machines; 12) High Performance Visualization - Query-Driven Network Traffic Analysis; 13) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 14) Life Sciences: Cell Division of Caulobacter Crescentus; 15) Electron Cloud Simulations.

  10. A BRIEF DESCRIPTION OF THE SMALL-SCALE SAFETY TESTING SYSTEMS AT LAWRENCE LIVERMORE NATIONAL LABORATORY

    SciTech Connect (OSTI)

    HSU, P C

    2008-07-31

    Small-scale sensitivity testing is important for determining material response to various stimuli including impact, friction, and static spark. These tests, briefly described below, provide parameters for safety in handling. ERL Type 12 drop hammer equipment at LLNL, shown in Figure 1, was used to determine the impact sensitivity. The equipment includes a 2.5-kg drop weight, a striker (upper anvil, 2.5 kg for solid samples and 1.0 kg for liquid samples), a bottom anvil, a microphone sensor, and a peakmeter. For each drop, sample (35 mg for solid or 45 microliter for liquid) is placed on the bottom anvil surface and impacted by the drop weight from different heights. Signs of reactions upon impact are observed and recorded. These signs include noises, flashes or sparks, smoke, pressure, gas emissions, temperature rise due to exothermic reaction, color change of the sample, and changes to the anvil surface (noted by inspection). For solid samples, a 'GO' was defined as a microphone sensor (for noise detection) response of {ge} 1.3 V as measured by a peakmeter. The higher the DH{sub 50} values, the lower the impact sensitivity. The method used to calculate DH{sub 50} values is the 'up and down' or Bruceton method. PETN and RDX have impact sensitivities of 15 and 35 cm, respectively. TATB has impact sensitivity more than 177 cm. For liquid samples, a 'GO' was determined by the noise levels as measured by the peakmeter, appearance of flashes, temperature rise of the anvil, and visual inspection of the anvil surface. Two liquid samples TMETN and FEFO have impact sensitivities of 14 and 32 cm, respectively. Figure 2 shows a 'GO' event observed during the impact sensitivity test; flashes appeared as the drop weight impacted the sample. A BAM friction sensitivity test machine, as shown in Figure 3, was used to determine the frictional sensitivity. The system uses a fixed porcelain pin and a movable porcelain plate that executes a reciprocating motion. Weight affixed to a torsion arm allows for a variation in applied force between 0.5 kg to 36.0 kg. The relative measure of the frictional sensitivity of a material is based upon the smallest load (kg) at which reaction occurs for a 1-in-10 series of attempts. The lower the load values, the higher the frictional sensitivity. PETN has a frictional sensitivity of 6.4 kg. The static spark machine at LLNL is used to evaluate the electrostatic discharge hazards (human ESD) associated with the handling of explosives. The machine was custom-built almost 30 years ago and consists of a capacitor bank (up to 20,000 pF), a voltage meter, and a discharge circuit, as shown in Figure 4. An adjustable resistor up to 510 ohms (chosen to simulate human body) is wired to the discharge circuit. A 5-mg sample is placed in a Teflon washer sealed to a steel disc and covered with a Mylar tape. High static voltage (up to 10 kv) is applied and discharged to the sample. Evidence of reaction is judged from the condition of Mylar tape, smokes, and color change of the sample. Voltage, capacitance, and resistance can be adjusted to achieve the desired static energy. The results obtained are expressed as a zero in 10 or one-in-ten at a specific voltage and joules. One reaction in ten trials at {le} 0.25 joules is considered spark-sensitive. Primary explosives show reaction at 0.1 joule.

  11. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments [OSTI]

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  12. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  13. Post-rehabilitation flow monitoring and analysis of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Brandstetter, E.R.; Littlefield, D.C.; Villegas, M.

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) is operated by the University of California under contract with the U.S. Department of Energy (DOE). The Livermore site, approximately 50 miles southeast of San Francisco, occupies 819 acres. So far, there have been three phases in an assessment and rehabilitation of the LLNL sanitary sewer system. A 1989 study that used data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows. A Sanitary Sewer Rehabilitation (SSR) project, from October of 1991 to March of 1996, in which the system was assessed and rehabilitated. The third study is the post-rehabilitation assessment study that is reported in this document. In this report, the sanitary sewer system is described, and the goals and results of the 1989 study and the SSR project are summarized. The goals of the post-rehabilitation study are given and the analytical procedures and simulation model are described. Results, conclusions, and recommendations for further work or study are given. Field operations are summarized in Appendix A. References are provided in Appendix B.

  14. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    SciTech Connect (OSTI)

    Stewart, Jeffrey S.

    2015-07-28

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. To make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.

  15. Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs), Subpart H

    SciTech Connect (OSTI)

    Hall, L.; Biermann, A

    2000-06-27

    As a Department of Energy (DOE) Facility whose operations involve the use of radionuclides, Lawrence Livermore National Laboratory (LLNL) is subject to the requirements of 40 CFR 61, the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Subpart H of this Regulation establishes standards for exposure of the public to radionuclides (other than radon) released from DOE Facilities (Federal Register, 1989). These regulations limit the emission of radionuclides to ambient air from DOE facilities (see Section 2.0). Under the NESHAPs Subpart H Regulation (hereafter referred to as NESHAPs), DOE facilities are also required to establish a quality assurance program for radionuclide emission measurements; specific requirements for preparation of a Quality Assurance Program Plan (QAPP) are given in Appendix B, Method 114 of 40 CFR 61. Throughout this QAPP, the specific Quality Assurance Method elements of 40 CFR 61 Subpart H addressed by a given section are identified. In addition, the US Environmental Protection Agency (US EPA) (US EPA, 1994a) published draft requirements for QAPP's prepared in support of programs that develop environmental data. We have incorporated many of the technical elements specified in that document into this QAPP, specifically those identified as relating to measurement and data acquisition; assessment and oversight; and data validation and usability. This QAPP will be evaluated on an annual basis, and updated as appropriate.

  16. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  17. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  18. TEC Working Group Topic Groups Tribal

    Broader source: Energy.gov [DOE]

    The Tribal Topic Group was established in January 1998 to address government-to-government consultation between DOE and Indian Tribes affected by its transportation activities. The group focuses on...

  19. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  20. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  1. Transuranic Waste Transportation Working Group Agenda

    Office of Environmental Management (EM)

    States Energy Board Joint Meeting of the Radioactive Materials Transportation Committee and the Transuranic Waste Transportation Working Group The Hilton Knoxville Knoxville, Tennessee May 15, 2012 Tuesday, May 15, 2012 8:30 a.m. Breakfast 9:30 a.m. Welcome / Opening Remarks / Introductions - Christopher Wells, Southern States Energy Board - Sandra Threatt, Chair, SSEB Radioactive Materials Transportation Working Group - Elgan Usrey, Chair, SSEB Transuranic Waste Transportation Working Group

  2. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assembly, and characterization for national security needs. Contact Us Group Leader Ross Muenchausen Email Deputy Group Leader Dominic Peterson Email Group Office...

  3. An Approach to Industrial Stormwater Benchmarks: Establishing and Using Site-Specific Threshold Criteria at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Campbell, C G; Mathews, S

    2006-09-07

    Current regulatory schemes use generic or industrial sector specific benchmarks to evaluate the quality of industrial stormwater discharges. While benchmarks can be a useful tool for facility stormwater managers in evaluating the quality stormwater runoff, benchmarks typically do not take into account site-specific conditions, such as: soil chemistry, atmospheric deposition, seasonal changes in water source, and upstream land use. Failing to account for these factors may lead to unnecessary costs to trace a source of natural variation, or potentially missing a significant local water quality problem. Site-specific water quality thresholds, established upon the statistical evaluation of historic data take into account these factors, are a better tool for the direct evaluation of runoff quality, and a more cost-effective trigger to investigate anomalous results. Lawrence Livermore National Laboratory (LLNL), a federal facility, established stormwater monitoring programs to comply with the requirements of the industrial stormwater permit and Department of Energy orders, which require the evaluation of the impact of effluent discharges on the environment. LLNL recognized the need to create a tool to evaluate and manage stormwater quality that would allow analysts to identify trends in stormwater quality and recognize anomalous results so that trace-back and corrective actions could be initiated. LLNL created the site-specific water quality threshold tool to better understand the nature of the stormwater influent and effluent, to establish a technical basis for determining when facility operations might be impacting the quality of stormwater discharges, and to provide ''action levels'' to initiate follow-up to analytical results. The threshold criteria were based on a statistical analysis of the historic stormwater monitoring data and a review of relevant water quality objectives.

  4. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  5. THE ODTX SYSTEM FOR THERMAL IGNITION AND THERMAL SAFETY STUDY OF ENERGETIC MATERIALS

    SciTech Connect (OSTI)

    Hsu, P C; Hust, G; Howard, M; Maienschein, J L

    2010-03-03

    Understanding the response of energetic material to thermal event is very important for the storage and handling of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) can precisely measure times to explosion and minimum ignition temperatures of energetic materials at elevated temperatures. These measurements provide insight into the relative ease of thermal ignition and allow for the determination of kinetic parameters. The ODTX system can potentialy be a good tool to measure violence of the thermal ignition by monitoring the size of anvil cavity. Recent ODTX experimental data on various energetic materials (solid and liquids) are reported in this paper.

  6. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and

  7. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  8. Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    en Sandia California works on nuclear weapon W80-4 Life Extension Program http:www.nnsa.energy.govblogsandia-california-works-nuclear-weapon-w80-4-life-extension-program...

  9. Lawrence Berkeley National Laboratory

    National Nuclear Security Administration (NNSA)

    7%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  10. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships Supplier Resources News Media Contacts Media Library Publications Lab Report Social Media About Organization Management and Sponsors History Visiting Directions...

  11. Lawrence Berkeley National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    to bringing the facility on-line smoothly so it will provide the DOE with cost-effective solar power for years to come."

    "We are excited to move to the next phase and bring...

  13. E.O. Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an inner despondency that no strain of martial music, or clank of saber, or roar of guns, or blindly emotional thirst for glory can either overcome or control. This struggling...

  14. lawrence berkeley laboratories

    National Nuclear Security Administration (NNSA)

    4%2A en Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge http:nnsa.energy.govblogbay-area-national-labs-team-tackle-long-standing-auto...

  15. Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June 26, 2012 Jack Zhengji NERSC Training Event 09:00 - 12:00 PST June 26, 2012 Concurrently presented on the web and at NERSC's Oakland Scientific Facility Attendance: 45 Chemistry and Material Sciences Applications Zhengji Zhao, NERSC User Services Group Jack Deslippe, NERSC User Services Group The first hour of the training is targeted at beginners. We will show you how to get started running material

  16. Molten-Salt-Based Growth of Group III Nitrides

    DOE Patents [OSTI]

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  17. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in extreme environments (high-temperature, high-stress, erosive, and corrosive environments, including the performance of materials in contact with molten slags and salts). Research includes materials design and discovery, materials processing and manufacturing, and service-life prediction of materials

  18. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    Office of Scientific and Technical Information (OSTI)

    Exploring nanoscale magnetism in advanced materials with polarized X-rays Peter Fischer Center for X-ray Optics Lawrence Berkeley National Laboratory 1 Cyclotron Rd Berkeley, CA 94270 U.S.A e-mail address: PJFischer@lbl.gov ABSTRACT Nanoscale magnetism is of paramount scientific interest and high technological relevance. To control magnetization on a nanoscale, both external magnetic fields and spin polarized currents, which generate a spin torque onto the local spin configuration, are being

  19. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    SciTech Connect (OSTI)

    Smith, A.R.; Hurley, D.L.

    1991-08-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite have been studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Bakground Facilities, in a multi-laboratory collaboration coordinated by Dr. Thomas Parnell's team at the Marshall Spacecraft Center, Huntsville, Alabama.

  20. TEC Working Group Topic Groups Security

    Broader source: Energy.gov [DOE]

    The Security Topic group is comprised of regulators, law enforcement officials, labor and industry representatives and other subject matter experts concerned with secure transport of spent nuclear...

  1. JLF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLF User Group NIF and Jupiter User Group Meeting 2016 The 2016 NIF User Group Meeting will take place the first week of February. The exact dates are Sunday evening, January 31th,...

  2. TEC Working Group Topic Groups Archives Protocols

    Broader source: Energy.gov [DOE]

    The Transportation Protocols Topic Group serves as an important vehicle for DOE senior managers to assess and incorporate stakeholder input into the protocols process. The Topic Group was formed to review a series of transportation protocols developed in response to a request for DOE to be more consistent in its approach to transportation.

  3. January 20, 2011, HSS Union Focus Group Meeting - Attendees

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donovan, Dick Lawrence, Andrew Lewis, Charles Lingan, Robert Worthington, Pat McArthur, ... Construction Research & Training 9. Thomas Hill - International Association of Fire ...

  4. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect (OSTI)

    A., B

    2008-07-31

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

  5. Appendix 3. Task Force Meeting Agendas and Materials Reviewed by

    Energy Savers [EERE]

    3. Task Force Meeting Agendas and Materials Reviewed by the Hubs+ Task Force December 3-4 Task Force Meeting Agenda Hubs+ Task Force Meeting Agenda December 3-4, 2013 Lawrence Livermore National Laboratory HPCIC, Yosemite Room 7000 East Avenue Livermore, CA Tuesday, December 3 4:00-4:15 PM Introductions and Overview of Agenda Cherry Murray, TF Chair 4:15-5:30 PM Hubs Management Council Paper Presentation Pat Dehmer, Acting Director of Science *Pete Lyons, Assistant Secretary for Nuclear Energy

  6. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  7. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  8. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos ...

  9. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    SciTech Connect (OSTI)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.; Marinak, M. M.; Verdon, C. P.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  10. TEC Working Group Topic Groups Routing

    Broader source: Energy.gov [DOE]

    The Routing Topic Group has been established to examine topics of interest and relevance concerning routing of shipments of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) to a...

  11. Ritu Sahore > Graduate Student - Giannelis Group > Researchers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate Student - Giannelis Group rs758@cornell.edu Ritu Sahore grew up in Punjab, India, and recieved her B.Tech.(Hons.) in Metallurgical and Materials Engineering from...

  12. JLab Users Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Users Group Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? JLab Users Group User Liaison Home Users Group Program Advisory Committee User/Researcher Information print version UG Resources Background & Purpose Users Group Wiki By Laws Board of Directors Board of Directors Minutes Directory of Members Events At-A-Glance Member Institutions News Users Group Mailing

  13. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  14. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  15. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  16. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  17. Moltech Power Systems Group MPS Group | Open Energy Information

    Open Energy Info (EERE)

    Moltech Power Systems Group MPS Group Jump to: navigation, search Name: Moltech Power Systems Group (MPS Group) Place: China Product: China-based subsidiary of Shanghai Huayi Group...

  18. Hanergy Holdings Group Company Ltd formerly Farsighted Group...

    Open Energy Info (EERE)

    Hanergy Holdings Group Company Ltd formerly Farsighted Group aka Huarui Group Jump to: navigation, search Name: Hanergy Holdings Group Company Ltd (formerly Farsighted Group, aka...

  19. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pion Group

  20. Critical Materials:

    Energy Savers [EERE]

    Facilities » Critical Materials Hub Critical Materials Hub Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Critical materials, including some rare earth elements that possess unique magnetic,

  1. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and reservoir simulation were completed as prerequisites for design of efficient ASP flood patterns. Characterizing the complex reservoir geology that identifies the geologic conditions that will optimize oil recoveries for expansion of the ASP pilots in the Bridgeport and Cypress sandstones to other areas of Lawrence Field is the primary objective of this project. It will permit evaluation of efficiency of oil recovery from Bridgeport and Cypress sandstone reservoirs using ASP technology. Additionally evaluation of similar Pennsylvanian and Chesterian reservoirs shows that it is likely that ASP flood technology can be successfully applied to similar reservoirs in the Illinois Basin as well as to other U.S. reservoirs. Chemical flooding was introduced in stages with the first flood initiated in 2010 and a second offset pilot project initiated during 2011. Rex Energy Corporation is reporting a positive response on its ASP Middagh pilot project in the Pennsylvanian Bridgeport B reservoir, Lawrence Field. Oil response in the 15 acre flood has continued to show an increase in oil cut from 1% to 12%. Total pattern production increased from 16 BOPD and stabilized at a range of 65-75 BOPD in the last three months of 2011. Peak production rose to 100 + BOPD. Oil cut in the pilot increased for 1.0% to ~ 12.0% with an individual well showing oil cuts greater than 20%. A second, 58 acre pilot (Perkins-Smith) adjacent to and likely in communication with the Middagh pilot has been initiated. Preliminary brine injection has been implemented and ASP injection was initiated in mid-2012. Response is expected by mid-2013 with peak recovery expected by late 2013. Rex Energy is projecting full scale expansion with the next step of development being a 351 acre project scheduled to begin in mid-2013. Preliminary development has been initiated in this Delta Unit area located in the south half of section 32, T4N, R12W.

  2. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  3. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:34:43

  4. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  5. Pending Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending Jobs by Group Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:14...

  6. Interagency Working Groups

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) works closely with agencies and partner organizations to coordinate interagency working groups

  7. Tritium Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tritium Focus Group Tritium Focus Group The purpose of the TFG, a Standing DOE Working Group, is to promote cost-effective improvements in tritium safety, handling, transportation, storage, and operations, and to enhance communication across the Department of Energy (DOE) (inclusive of the National Nuclear Security Administration (NNSA)) on all matters related to tritium. Contacts Mike Rogers (505) 665-2513 Email Chandra Savage Marsden (505) 664-0183 Email The Tritium Focus Group consists of

  8. TEC Communications Topic Group

    Office of Environmental Management (EM)

    procurement - Routing criteriaemergency preparedness Tribal Issues Topic Group * TEPP Navajo Nation (Tom Clawson) - 1404 - Needs Assessment * Identified strengths and...

  9. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on July 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Scot Fitzgerald, Larry Markel, Cindy Taylor, Sam Vega, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the June 12, 2012 meeting. No HASQARD Focus Group members present stated any

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on June 18, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Scot Fitzgerald, Joan Kessner, Larry Markel, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the May 21, 2013 meeting. No HASQARD Focus Group members present

  12. USD Catalysis Group for Alternative Energy

    SciTech Connect (OSTI)

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  13. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  14. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  15. Nilsson Group Members

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stanford top slac line home group research line Welcome to the Nilsson group. Primary research interests in the Nilsson group includes using x-ray spectroscopies to understand: The Structure of water Bond breakage and formation during catalytic reactions on surfaces The fundamental studies of electrochemistry for energy conversion

  16. SSRL ETS Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STANFORD SYNCHROTRON RADIATION LABORATORY Stanford Linear Accelerator Center Engineering & Technical Services Groups: Mechanical Services Group Mechanical Services Group Sharepoint ASD: Schedule Priorites Accelerator tech support - Call List Documentation: Engineering Notes, Drawings, and Accelerator Safety Documents Mechanical Systems: Accelerator Drawings Accelerator Pictures Accelerator Vacuum Systems (SSRL) LCW Vacuum Projects: Last Updated: February 8, 2007 Ben Scott

  17. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-04-29 11:35:05

  18. Materials Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Researchers in the Materials Characterization Research competency conduct studies of both natural and engineered materials from the micropore (nanometers) to macropore (meters) scale. Research includes, but is not limited to, thermal, chemical, mechanical, and structural (nano to macro) interactions and processes with regard to natural and engineered materials. The primary research investigation tools include SEM, XRD, micro XRD, core logging, medical CT, industrial

  19. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  20. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  1. Large Group Visits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Group Visits Large Group Visits All tours of the Museum are self-guided, but please schedule in advance so we can best accommodate your group. Contact Us thumbnail of Bradbury Science Museum (505) 667-4444 Email Let us know if you plan to bring a group of 10 or more. All tours of the Museum are self-guided, but please schedule in advance so we can best accommodate your group. Parking for buses and RVs is available on Iris Street behind the Museum off of 15th St. See attached map (pdf).

  2. V R Fanelli1'2, J M Lawrence1 '2, E A Goremychkin3, R Osborn4, E D Bauer1, K J M cClellan1, J D Thompson1, C

    Office of Scientific and Technical Information (OSTI)

    -dependence of the spin fluctuations in the intermediate valence compound CePd3 V R Fanelli1'2, J M Lawrence1 '2, E A Goremychkin3, R Osborn4, E D Bauer1, K J M cClellan1, J D Thompson1, C H Booth5, A D Christianson6 and P S Riseborough7 1 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 2 University o f California, Irvine, CA 92697, USA 3 University o f Southampton, Southampton SO 17 1BJ, United Kingdom 4 Argonne National Laboratory, Argonne, IL 60439, USA 5 Lawrence Berkeley National

  3. Combustion Dynamics Facility: April 1990 workshop working group reports

    SciTech Connect (OSTI)

    Kung, A.H.; Lee, Y.T.

    1990-04-01

    This document summarizes results from a workshop held April 5--7, 1990, on the proposed Combustion Dynamics Facility (CDF). The workshop was hosted by the Lawrence Berkeley Laboratory (LBL) and Sandia National Laboratories (SNL) to provide an opportunity for potential users to learn about the proposed experimental and computational facilities, to discuss the science that could be conducted with such facilities, and to offer suggestions as to how the specifications and design of the proposed facilities might be further refined to address the most visionary scientific opportunities. Some 130 chemical physicists, combustion chemists, and specialists in UV synchrotron radiation sources and free-electron lasers (more than half of whom were from institutions other than LBL and SNL) attended the five plenary sessions and participated in one or more of the nine parallel working group sessions. Seven of these sessions were devoted to broadening and strengthening the scope of CDF scientific opportunities and to detail the experimental facilities required to realize these opportunities. Two technical working group sessions addressed the design and proposed performance of two of the major CDF experimental facilities. These working groups and their chairpersons are listed below. A full listing of the attendees of the workshop is given in Appendix A. 1 tab.

  4. TEC Working Group Topic Groups Routing Key Documents | Department...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Routing Key Documents KEY DOCUMENTS PDF icon Proposed Task Plan - Routing Topic Group More Documents & Publications TEC Working Group...

  5. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  6. NIF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users NIF User Group The National Ignition Facility User Group provides an organized framework and independent vehicle for interaction between the scientists who use NIF for "Science Use of NIF" experiments and NIF management. Responsibility for NIF and the research programs carried out at NIF resides with the NIF Director. The NIF User Group advises the NIF Director on matters of concern to users, as well as providing a channel for communication for NIF users with funding agencies and

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 15, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:02 PM on January 15, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Scot Fitzgerald, Larry Markel, Karl Pool, Dave St. John, Chris Sutton, Chris Thompson, Steve Trent, Amanda Tuttle and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the December 18, 2012 meeting. One issue

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on December 17, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the

  9. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:07 PM on May 26, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Taffy Almeida (Pacific Northwest National Laboratory (PNNL)), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Scot

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:05 PM on October 22, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Joan Kessner (Washington Closure Hanford (WCH)), Karl Pool (Pacific

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016 The meeting was called to order by Jonathan Sanwald, HASQARD Focus Group Chair at 2:05 PM on January 26, 2016 in Conference Room 308 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Taffy Almeida (Pacific Northwest National Laboratory (PNNL)), Jeff Cheadle (DOE-ORP), Glen Clark (Washington River Protection Solution (WRPS)), Fred

  12. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    Refractory metal nitrides are synthesized during a combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed. The azide is combusted with a transition metal of the IIIB, IVB group, or a rare earth metal, and ignited to produce the refractory material.

  13. NERSC Users Group (NUG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policies User Surveys NERSC Users Group Monthly NUG Webinars Annual Meetings NUGEX Elections Charter User Announcements Help Staff Blogs Request Repository Mailing List...

  14. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all...

  15. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all print...

  16. Detector Support Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    browser. Concerns? Hall B Navigation DSG Home Staff Presentations Notes print version Detector Support Group Spotlight Archive Index Rotation test for the SVT detector EPICS...

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on October 16, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Robert Elkins, Larry Markel, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Steve Trent, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. New personnel have joined the Focus Group since the last

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on November 27, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Joan Kessner, Larry Markel, Mary McCormick-Barger, Steve Trent, and Rich Weiss. I. Huei Meznarich requested comments on the minutes from the October 16, 2012 meeting. No HASQARD Focus Group members present stated any

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on July 23, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Joan Kessner, Charleston Ramos, Chris Sutton, Steve Smith, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the June 18, 2013 meeting. One Focus Group member provided a comment on the June

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on August 20, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Steve Smith, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the July 23, 2013 meeting. No Focus Group members stated they had

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on April 15, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Scot Fitzgerald, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the March 18, 2014 meeting. No Focus Group members stated they

  2. Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Volume II of this report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for LLNL work activities. Appendix D presents the results of the review of NNSA, LSO, and contractor feedback and continuous improvement processes. Appendix E presents the results of the review of Plutonium Building essential safety system functionality, and Appendix F presents the results of the review of management of the selected focus areas.

  3. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  4. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    SciTech Connect (OSTI)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  5. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect (OSTI)

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  6. Hydrogen-bond Specific Materials Modification in Group IV Semiconducto...

    Office of Scientific and Technical Information (OSTI)

    defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium,...

  7. US-EU-Japan Working Group on Critical Materials

    Energy Savers [EERE]

    US e-Chromic America's Next Top Energy Innovator Challenge 828 likes US e-Chromic National Renewable Energy Laboratory US e-Chromic, based in Boulder, Colorado, was formed in March 2011, for the purpose of developing and commercializing reflective electrochromic (EC) thin film based on options to patents exclusively licensed from NREL. The company has exclusive rights to 3 issued and 1 pending NREL patents and non-exclusive rights to 3 issued and 7 pending NREL patents. Our EC thin film will be

  8. Nuclear Materials Management and Safeguards System Working Group...

    National Nuclear Security Administration (NNSA)

    subgroup per year at the Annual NMMSS Users Training Meeting to share accomplishments, lessons learned, best practices, emerging issues and technological approaches. B. Reports...

  9. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report

    Broader source: Energy.gov [DOE]

    The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes.

  10. Obafemi Otelaja > Graduate Student - Robinson Group > Researchers, Postdocs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Graduates > The Energy Materials Center at Cornell Obafemi Otelaja Graduate Student - Robinson Group ooo24@cornell.edu

  11. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes. PDF ...

  12. Kendra Letchworth Weaver > Graduate Student - Arias Group > Researchers,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdocs & Graduates > The Energy Materials Center at Cornell Kendra Letchworth Weaver Graduate Student - Arias Group kll67

  13. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  14. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  15. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  16. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  17. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  18. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Rail Topic Group TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group Rail Topic Group PDF icon May 17, 2007 PDF icon January 16, 2007 PDF icon...

  19. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  20. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  1. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  2. Proceedings of the second FY87 meeting of the National Working Group for Reduction in Transuranic Waste Arisings

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    The Second FY87 Meeting of the National Working Group for Reduction in Transuranic Waste Arisings (NWGRTWA) was held at the Lawrence Livermore National Laboratory, Tuesday and Wednesday, July 28--29, 1987. The purpose of the meeting was to discuss (1) modeling programs for waste reduction, (2) proposed FY88 and out-year tasks including the SRL Pu incineration, immobilization improvement, erbia coating technology, and (3) improvements in up-stream recovery operations to effect waste reduction. In addition, tours were made of the LLNL Waste Operations, the Laser Fusion (NOVA), and the Magnetic Fusion (MFTF).

  3. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C.

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  4. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  5. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  6. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Trails Working Group Our mission is to inventory, map, and prepare historical reports on the many trails used at LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The LANL Trails Working Group inventories, maps, and prepares historical reports on the many trails used at LANL. Some of these trails are ancient pueblo footpaths that continue to be used for recreational hiking today. Some serve as quiet

  7. Group key management

    SciTech Connect (OSTI)

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on May 15, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Michael Barnes, Glen Clark, Scot Fitzgerald, Shannan Johnson, Larry Markel, Steve Smith, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on

  9. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on June 12, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Shannan Johnson, Joan Kessner, Larry Markel, Karl Pool, Steve Smith, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Chris Thomson, Amanda Tuttle, Sam Vega, Rick Warriner and Eric Wyse. I. Huei Meznarich requested comments on the

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on August 21, 2012 in an alternate Conference Room in 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Larry Markel, Steve Smith, Chris Sutton. Chris Thompson, Amanda Tuttle, and Rich Weiss. I. Because the meeting was scheduled to take place in Room 308 and a glitch in

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:08 PM on December 18, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Joan Kessner, Larry Markel, Karl Pool, Steve Smith, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the November 27,

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:02 PM on February 26, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Scot Fitzgerald, Shannon Johnson, Joan Kessner, Larry Markel, Mary McCormick-Barger, Dave St. John, Steve Smith, Steve Trent and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the January 22, 2013 meeting. No

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on March 19, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Larry Markel, Mary McCormick-Barger, Karl Pool, Dave St. John, Steve Smith, Noe'l Smith-Jackson, Chris Sutton, Steve Trent, Rich Weiss and Eric Wyse. I. Huei Meznarich

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2013 The beginning of the meeting was delayed due to an unannounced loss of the conference room scheduled for the meeting. After securing another meeting location, the meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:18 PM on April 16, 2013 in Conference Room 156 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Joan Kessner, Larry Markel, Mary McCormick-Barger, Karl Pool,

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:00 PM on May 21, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Scot Fitzgerald, Joan Kessner, Larry Markel, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Steve Trent, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the April 16, 2013

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on October 15, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Glen Clark, Robert Elkins, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Rick Warriner, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on November 19, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Mike Barnes, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 28, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 28, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on February 25, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, and Eric Wyse. I. Huei Meznarich asked if there were any

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on March 18, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Rich Weiss, and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the February 25, 2014

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on May 20, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Mary McCormick-Barger, Craig Perkins, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson and Eric Wyse. I. Acknowledging the

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on June 12, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Sara Champoux, Glen Clark, Jim Douglas, Robert Elkins, Scot Fitzgerald, Joan Kessner, Jan McCallum, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Rich Weiss and Eric Wyse. I. Acknowledging the presence of new and/or infrequent

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on June 17, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Robert Elkins, Shannan Johnson, Joan Kessner, Jan McCallum, Craig Perkins, Karl Pool, Chris Sutton and Rich Weiss. I. Because of the short time since the last meeting, Huei Meznarich stated that the minutes from the June 12, 2014 meeting have not yet

  4. Schuck Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a near-field tip into any material. Congratulations to Alex Polyakov on this great work July 2014 - Our book chapter "Raman Spectroscopic Imaging of Biological Systems" was...

  5. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  6. InterGroup Protocols

    Energy Science and Technology Software Center (OSTI)

    2003-04-02

    Existing reliable ordered group communication protocols have been developed for local-area networks and do not in general scale well to a large number of nodes and wide-area networks. The InterGroup suite of protocols is a scalable group communication system that introduces an unusual approach to handling group membership, and supports a receiver-oriented selection of service. The protocols are intended for a wide-area network, with a large number of nodes, that has highly variable delays andmore » a high message loss rate, such as the Internet. The levels of the message delivery service range from unreliable unordered to reliable timestamp ordered.« less

  7. Strategic Initiatives Work Group

    Broader source: Energy.gov [DOE]

    The Work Group, comprised of members representing DOE, contractor and worker representatives, provides a forum for information sharing; data collection and analysis; as well as, identifying best practices and initiatives to enhance safety performance and safety culture across the Complex.

  8. Date Times Group Speakers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Research Meeting Toms Arias Mon, 3-10 2:30-3:30pm Faculty Meeting Richard Robinson Fri, 3-14 12:30-1:30pm Student & Postdoc Mtg Michael Zachman (Kourkoutis) & Deniz...

  9. Tritium Focus Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fall 2015 Tritium Focus Group Meeting November 3 - 5, 2015 Meeting location: J.R. Oppenheimer Study Center TA 3, Building 207, Main Floor Technical Area 3 Map (pdf) Directions via Google Maps Meeting Information Tritium Focus Group Charter (pdf) Hotel Information Classified Session Information Los Alamos Restaurants (pdf) LANL Information Visting Los Alamos Area Map Weather Contacts Mike Rogers (505) 665-2513 mrogers@lanl.gov Chandra Savage Marsden (505) 664-0183 chandra@lanl.gov

  10. DOE STGWG Group

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STGWG Group The State and Tribal Government Working Group (STGWG) is one of the intergovernmental organizations with which the DOE EM office works with. They meet twice yearly for updates to the EM projects. They were formed in 1989. It is comprised of several state legislators and tribal staff and leadership from states in proximity to DOE's environmental cleanup sites of the following states: New York, South Carolina, Ohio, Washington, New Mexico, Idaho, California, Colorado, Georgia,

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2010 The meeting was called to order by Dave Crawford, Focus Group Chairman at 2:03 PM on November 16, 2010 in Conference Room 208 at 2425 Stevens. Those attending were: Dave Crawford (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Paula Ciszak, Glen Clark, Doug Duvon, Kathi Dunbar, Robert Elkins, Scot Fitzgerald, Joan Kessner, Larry Markel, Huei Meznarich, Steve Smith, Chris Sutton, Noe'l Smith-Jackson, Chris Thompson, Eric Wyse. New members to the Focus Group were

  12. Vertical Velocity Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Velocity Focus Group ARM 2008 Science Team Meeting Norfolk, VA March 10-14 Background Vertical velocity measurements have been at the top of the priority list of the cloud modeling community for some time. Doppler measurements from ARM profiling radars operating at 915-MHz, 35-GHz and 94-GHz have been largely unexploited. The purpose of this new focus group is to develop vertical velocity ARM products suitable for modelers. ARM response to their request has been slow. Most ARM instruments are

  13. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from ALICE file catalog (at CERN), submitting jobs to pdsfgrid (via condor) which submits jobs to the compute nodes, monitoring the cluster work load, and uploading job information to ALICE file catalog. It is monitored with MonALISA (the monitoring page is here). It's made up of 2 Intel Xeon E5520 processors each with

  14. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  15. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  16. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  17. Good Energy Group Plc previously Monkton Group Plc | Open Energy...

    Open Energy Info (EERE)

    Plc previously Monkton Group Plc Jump to: navigation, search Name: Good Energy Group Plc (previously Monkton Group Plc) Place: Chippenham, Wiltshire, United Kingdom Zip: SN15 1EE...

  18. TEC Working Group Topic Groups Section 180(c) Meeting Summaries...

    Office of Environmental Management (EM)

    Meeting Summaries TEC Working Group Topic Groups Section 180(c) Meeting Summaries Meeting Summaries PDF icon Washington, DC TEC Meeting - 180(c) Group Summary - March 15, 2006 More...

  19. TEC Working Group Topic Groups Routing Meeting Summaries | Department...

    Office of Environmental Management (EM)

    Routing Meeting Summaries TEC Working Group Topic Groups Routing Meeting Summaries MEETING SUMMARIES PDF icon Atlanta TEC Meeting, Routing Topic Group Summary More Documents &...

  20. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Rail Conference Call Summaries TEC Working Group Topic Groups Rail Conference Call Summaries CONFERENCE CALL SUMMARIES Rail Topic Group Inspections Subgroup Planning Subgroup...