Sample records for materials group lawrence

  1. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    SciTech Connect (OSTI)

    Amy Wong; Denise Thronas; Robert Marshall

    1998-11-04T23:59:59.000Z

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  2. Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  3. A guide to source materials of the life and work of Lawrence B. Anderson '30

    E-Print Network [OSTI]

    Laguette, Victoria.

    1998-01-01T23:59:59.000Z

    From 1933 to 1976, Professor Lawrence B. Anderson taught in the MIT Department of Architecture, and from 1947 to 1971, he served as its chairman and dean. Concurrently, from 1937 to 1972 , he was principal partner in the ...

  4. Butler Lawrence

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Apartments Wegman Arrive Wegman Depart Wal Mart Trader Apartments Lawrence Apartments Wegman Arrive Wegman Princeton Station Graduate College Wegman

  5. Butler Lawrence

    E-Print Network [OSTI]

    Rowley, Clarence W.

    Apartments Wegman Arrive Wegman Depart Wal Mart Trader Apartments Lawrence Apartments Wegman Arrive Wegman Station Graduate College Wegman Arrive Wegman Depart Wal Mart Trader

  6. Site Visit Report, Lawrence Livermore National Laboratory- March 2010

    Broader source: Energy.gov [DOE]

    Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages

  7. Preliminary report of the past and present uses, storage, and disposal of hazardous materials at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dreicer, M.

    1985-12-01T23:59:59.000Z

    This report contains the findings of a records search performed to survey the past and present use, storage, and disposal of hazardous materials and wastes at the Lawrence Livermore National Laboratory (LLNL) site. This report provides a point of departure for further planning of environmental protection activities at the site. This report was conducted using the LLNL archives and library, documents from the US Navy, old LLNL Plant Engineering blueprint files, published articles and reports, Environmental Protection Program records, employee interviews, and available aerial photographs. Sections I and II of this report provide an introduction to the LLNL site and its environmental characteristics. Several tenants have occupied the site prior to the establishment of LLNL, currently operated by the University of California for the US Department of Energy. Section III of this report contains information on environmentally related operations of early site users, the US Navy and California Research and Development. Section IV of this report contains information on the handling of hazardous materials and wastes by LLNL programs. The information is presented in 12 sub-sections, one for each currently operating LLNL program. General site areas, i.e., garbage trenches, the traffic circle landfill, the taxi strip, and old ammunition bunkers are discussed in Section V. 12 refs., 23 figs., 27 tabs.

  8. The Hazardous Material Technician Apprenticeship Program at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Steiner, S.D.

    1987-07-01T23:59:59.000Z

    This document describes an apprenticeship training program for hazardous material technician. This entry-level category is achieved after approximately 216 hours of classroom and on-the-job training. Procedures for evaluating performance include in-class testing, use of on-the-job checks, and the assignment of an apprentice mentor for each trainee. (TEM)

  9. Preliminary Notice of Violation, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    to the Unplanned Personnel Contaminations and Radioactive Material Intakes at the Hazardous Waste Management Facilities at the Lawrence Livermore National Laboratory,...

  10. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  11. The Supramolecular NanoMaterials Group From Nano-Particles

    E-Print Network [OSTI]

    The Supramolecular NanoMaterials Group From Nano-Particles to Nano-Polymers Francesco Stellacci Department of Materials Science and Engineering, MIT frstella@mit.edu #12;S u N M a G The Supramolecular NanoMaterials Group Supramolecular Materials Science Monolayer Protected Metal Nanoparticles Functionalized Carbon

  12. Role of Lawrence Livermore National Laboratory in the Laboratory to Laboratory Nuclear Materials Protection, Control and Accounting (MPC&A) Program

    SciTech Connect (OSTI)

    Blasy, J.A.; Koncher, T.R.; Ruhter, W.D.

    1995-05-02T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is participating in a US Department of Energy sponsored multi-laboratory cooperative effort with the Russian Federation nuclear institutes to reduce risks of nuclear weapons proliferation by strengthening systems of nuclear materials protection, control, and accounting in both countries. This program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (MPC&A) Program and it is designed to complement other US-Russian MPC&A programs such as the government-to-govermment (NunnLugar) programs. LLNL`s role in this program has been to collaborate with various Russian institutes in several areas. One of these is integrated safeguards and security planning and analysis, including the performing of vulnerability assessments. In the area of radiation measurements LLNL is cooperating with various institutes on gamma-ray measurement and analysis techniques for plutonium and uranium accounting. LLNL is also participating in physical security upgrades including entry control and portals.

  13. Records Management Plan Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Records Management Plan Page 1 Lawrence Berkeley National Laboratory Environment, Health and Safety Division Environmental Services Group Environmental Restoration Program Records Management Plan May 2007 #12;#12;Records Management Plan Page 3 TABLE OF CONTENTS 1 INTRODUCTION

  14. Concurrence' Lawrence Livermore National Laboratory FY2015 Ten...

    National Nuclear Security Administration (NNSA)

    manufacturing * Special nuclear materials-plutonium and tritium * High performance computing FY2015 Ten Year Site Plan Limited Report Page 3 of 6 Lawrence Livermore...

  15. 2006 Nature Publishing Group Graphene-based composite materials

    E-Print Network [OSTI]

    for the preparation of graphene-polymer composites via complete exfoliation of graphite9 and molecular© 2006 Nature Publishing Group Graphene-based composite materials Sasha Stankovich1 *, Dmitriy A. Piner1 , SonBinh T. Nguyen2 & Rodney S. Ruoff1 Graphene sheets--one-atom-thick two-dimensional layers

  16. Lawrence Berkeley National Laboratory University of California

    E-Print Network [OSTI]

    Eisen, Michael

    Lawrence Berkeley National Laboratory University of California Internal Audit T.L. HAMILTON Division Director Materials Sciences R.A. SEGALMAN Division Director, Acting Energy Sciences D.J. DEPAOLO Associate Laboratory Director Computational Research D.L. BROWN Division Director National Energy Research

  17. 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    your research at Lawrence Berkeley National Laboratory? AW: Throughout my career at LBNL, my group has focused on thermal and water management, especially in relation to...

  18. Summary of working group g: beam material interaction

    SciTech Connect (OSTI)

    Kiselev, D.; /PSI, Villigen; Mokhov, N.V.; /Fermilab; Schmidt, R.; /CERN

    2010-11-01T23:59:59.000Z

    For the first time, the workshop on High-Intensity and High-Brightness Hadron Beams (HB2010), held at Morschach, Switzerland and organized by the Paul Scherrer Institute, included a Working group dealing with the interaction between beam and material. Due to the high power beams of existing and future facilities, this topic is already of great relevance for such machines and is expected to become even more important in the future. While more specialized workshops related to topics of radiation damage, activation or thermo-mechanical calculations, already exist, HB2010 provided the occasion to discuss the interplay of these topics, focusing on components like targets, beam dumps and collimators, whose reliability are crucial for a user facility. In addition, a broader community of people working on a variety of issues related to the operation of accelerators could be informed and their interest sparked.

  19. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLauraGasSecurityLawrence

  20. US-EU-Japan Working Group on Critical Materials

    Broader source: Energy.gov (indexed) [DOE]

    for high- efficiency motors" Mamoru Nakamura, Director, Material Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology...

  1. 1/08 AMJ; Media Transition Group Media Material Location/Circulation Options

    E-Print Network [OSTI]

    Stowell, Michael

    materials, media or otherwise. Choosing a location When you place a new order for media materials, specify1/08 AMJ; Media Transition Group Media Material Location/Circulation Options With the closure of the media library, bibliographers have the following options for where dvd and video media materials can

  2. Life sciences: Lawrence Berkeley Laboratory, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-07-01T23:59:59.000Z

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  3. Group Members Synthesis of Nanostructured Materials Advanced Characterization Techniques

    E-Print Network [OSTI]

    of nanostructured materials. · Applications in nanophotonics, nanoelectronics, and energy. Experimental techniques, S. Gradecak,"Graphene cathode-based ZnO nanowire hybrid solar cells", Nano Letters 13, 233-239 (2013 particle composition to control structural and optical properties of GaN nanowires", Nanotechnology 23

  4. Nuclear Materials Management and Safeguards System Working Group Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclear Materials

  5. US-EU-Japan Working Group on Critical Materials

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into Fuel forShale_Gas.pdfUS-EU-Japan Working Group on

  6. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  7. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect (OSTI)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China) [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China)] [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)] [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)] [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15T23:59:59.000Z

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  8. Enterprise Assessments Targeted Review, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    February 2015 Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence...

  9. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review HIAR-LLNL-2011-03-25 This...

  10. Consent Order, Lawrence Livermore National National Security...

    Energy Savers [EERE]

    for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On October 29, 2010, the U.S. Department of Energy (DOE)...

  11. Analysis Activities at Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on Lawrence Livermore’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  12. LBNL/PUB-5515 Ernest Orlando Lawrence

    E-Print Network [OSTI]

    LBNL/PUB-5515 Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed ............................................2 Grant Logan Jonathan Wurtele Wim Leemans Enabling High Energy Density Physics at LBNL

  13. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    controls have been implemented to reduce the risk associated with events resulting from a fire or explosion at nuclear facilities. Independent Oversight Review, Lawrence Livermore...

  14. Independent Activity Report, Lawrence Livermore National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    technicians, and the Alameda County Fire Department to a fire in a fume hood containing a depleted uranium part. Independent Activity Report, Lawrence Livermore National Laboratory...

  15. E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division

    E-Print Network [OSTI]

    material areas (work areas where unsealed radioactive material is handled) and radioactive material storage) 75A Old Hazardous Waste Facility 75S Tritium Storage Locker 76 Radioanalytical Laboratory 83 LifeE.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Environmental

  16. Lawrence Weinstein Old Dominion University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy LastLawrence

  17. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    LBNL-58713 LBNL-58713 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Report on Applicability Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. LBNL-58713 ii #12 serves as the technical basis for this report. LBNL-58713 iii #12;In this report we applied

  18. Strategic Research Orientation `NanoMaterials for Energy' 1 Energy projects within MESA+ research groups, February 2013

    E-Print Network [OSTI]

    Twente, Universiteit

    Strategic Research Orientation `NanoMaterials for Energy' 1 Energy projectsMaterials for Energy' Information: www.utwente.nl/mesaplus/nme/ Project title Group Ph water splitting and CO2 reduction OS / PCS Sun-Young Park Jennifer Herek

  19. Lessons Learned by Lawrence Livermore National Laboratory Activity...

    Energy Savers [EERE]

    Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work...

  20. Vannevar Bush and Ernest Lawrence -- Two key individuals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lyman James Briggs, Arthur Holly Compton, Harold Clayton Urey, Ernest O. Lawrence and Edgar Murphee. Again, Lawrence was solidifying his position of strength and ability to...

  1. UCRL-ID-119170 LAWRENCE LIVERMORE NATIONAL LABORATORY

    E-Print Network [OSTI]

    . WorkperformedundertheauspicesoftheU.S.DepartmentofEnergybyLawrenceLivermoreNationalLaboratoryunder Contract W-7405-Eng-48. #12

  2. Independent Oversight Inspection, Lawrence Livermore National Laboratory- February 2009

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  3. Independent Oversight Inspection, Lawrence Livermore National Laboratory- May 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory

  4. Independent Oversight Inspection, Lawrence Livermore National Laboratory- June 2005

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  5. Independent Oversight Review, Lawrence Livermore National Laboratory- September 2011

    Broader source: Energy.gov [DOE]

    Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory

  6. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25T23:59:59.000Z

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  7. Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material

    E-Print Network [OSTI]

    Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material Tonio Buonassisia Applied Science and Technology Group, University and Lawrence Berkeley National Laboratory, Berkeley, California 94720 Received 23 September 2004; accepted 13

  8. Westar's Lawrence Energy Center wins for not blinking on safety

    SciTech Connect (OSTI)

    Peltier, R.

    2007-07-15T23:59:59.000Z

    It took Westar Energy eight years to upgrade the Lawrence Energy Center to burn Powder River Basin coal. Its zero lost-time accident record during the eight-year, million-man-hour project is a testament to Westar's commitment to workplace safety. The plant won the Powder River Basin Coal Users' Group plant of the year award for 2006. The article describes all the changes implemented at the plant, including replacing and upgrading controls for the belt conveyor, replacing the coal crushers, minimising dust and modifying coal bunkers, to cope with the increased volatility of Powder River Basin coal. Modifications were made to minimise slagging and fouling of boilers. 10 photos.

  9. Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups: Report on the joint meeting, July 9, 1986

    SciTech Connect (OSTI)

    Watson, R.D. (ed.)

    1986-09-01T23:59:59.000Z

    This paper contains a collection of viewgraphs from a joint meeting of the Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups. A list of contributing topics is: PPPL update, ATF update, Los Alamos RFP program update, status of DIII-D, PMI graphite studies at ORNL, PMI studies for low atomic number materials, high heat flux materials issues, high heat flux testing program, particle confinement in tokamaks, helium self pumping, self-regenerating coatings technical planning activity and international collaboration update. (LSP)

  10. Lawrence Livermore National Laboratory Proposal to Participate in the Carbon and

    E-Print Network [OSTI]

    for hydrogen storage. These materials have intrinsic high storage capacity with active carbon nanostructureLawrence Livermore National Laboratory Proposal to Participate in the Carbon and Metal Hydride storage Tanks are the "ace in the hole" storage technology Vacuum Shell Insulation Composite Overwrap

  11. Jiangcheng Bao Y. Lawrence Yao

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    system, it is easier to incorporate laser forming into an automatic manufacturing system. Material, NY 10027 Analysis and Prediction of Edge Effects in Laser Bending Laser forming of sheet metal offers forming of some materials and shapes that are not possible now. In single-axis laser bending of plates

  12. Lawrence Berkeley National Laboratory Center for Computational Sciences and Engineering

    E-Print Network [OSTI]

    ' & $ % Lawrence Berkeley National Laboratory Center for Computational Sciences and Engineering Combustion Richard Pember Phillip Colella Louis Howell Ann Almgren John Bell William Crutchfield Vincent Beckner Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory Keith

  13. DOE Selects Lawrence Livermore National Security, LLC to Manage...

    Office of Environmental Management (EM)

    and operating contractor for DOE's National Nuclear Security Administration's (NNSA) Lawrence Livermore National Laboratory in California. "Livermore National Laboratory...

  14. CHARACTERIZATION OF SIALON-TYPE MATERIALS

    E-Print Network [OSTI]

    Spencer, P.N.

    2010-01-01T23:59:59.000Z

    an Economical Refractory Material", Industrial Heating, 50-of Sialon-Type Materials Newman Spencer Lawrence BerkeleyEXPERIHENTAL PROCEDURES A. The Material L Ml H2 M3 and M4 B.

  15. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air

  16. Lawrence E. Carlson Professor of Mechanical Engineering

    E-Print Network [OSTI]

    Carlson, Lawrence E.

    Education, American Society of Mechanical Engineers, pp. 31-33. Solar Stirling Engine 2Cam Rock ClimbingPortfolio Lawrence E. Carlson Professor of Mechanical Engineering Founding Co-Director, Integrated Teaching and Learning Program and Laboratory University of Colorado at Boulder #12;ENGINEERING EDUCATION

  17. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    LBNL 53484 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Heat Recovery in Building Envelopes Program, of the U.S. Department of Energy under contract No. DE-AC03-76SF00098. #12;HEAT RECOVERY because of heat recovery within the building envelope. The major objective of this study was to provide

  18. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpactsW56

  19. NMR and Transport Studies on Group IV Clathrates and Related Intermetallic Materials 

    E-Print Network [OSTI]

    Zheng, Xiang

    2012-10-19T23:59:59.000Z

    thermoelectric materials are the intermetallic clathrates. Clathrates are cage-structured materials with guest atoms enclosed. Previous studies have shown lower thermal conductivities compared with many other bulk compounds, and it is believed that guest atom...

  20. Mechanics of Advanced Materials and Structures, 14:227244, 2007 Copyright c Taylor & Francis Group, LLC

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    -measuring devices [8­11]; graded refractive index materials [12]; thermionic converters [13]; den- tal and other

  1. Press Materials for Argonne CORAL announcement | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Materials for Argonne CORAL announcement Under the joint Collaboration of Oak Ridge, Argonne, and Lawrence Livermore (CORAL) initiative, the U.S. Department of Energy...

  2. Geothermal programs at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kasameyer, P.W.; Younker, L.W.

    1987-07-10T23:59:59.000Z

    Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

  3. Lawrence Livermore National Laboratory Summer Employment Summary

    SciTech Connect (OSTI)

    Wilson, A J

    2002-08-06T23:59:59.000Z

    This document will serve as a summary of my work activities as a summer employee for the Lawrence Livermore National Laboratory (LLNL). The intent of this document is to provide an overview of the National Ignition Facility (NIF) project, to explain the role of the department that I am working for, and to discuss my specific assigned tasks and their impact on the NIF project as a whole.

  4. Jason Hick! Lawrence Berkeley National Laboratory! NERSC Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON...January 2015 1663The HPC Data

  5. Jason Hick! Lawrence Berkeley National Laboratory! NERSC Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON...January 2015 1663The HPC

  6. Lawrence Livermore National Laboratory environmental report for 1990

    SciTech Connect (OSTI)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R. (eds.)

    1990-01-01T23:59:59.000Z

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  7. Independent Oversight Review of the Lawrence Livermore National...

    Energy Savers [EERE]

    Laboratory's health services and to conduct an Accreditation Association of Ambulatory Health Care accreditation survey. Independent Oversight Review of the Lawrence Livermore...

  8. CARTOGRAPHIC BASE FILES AT LAWRENCE BERKELEY LABORATORY: 1978. INVENTORY

    E-Print Network [OSTI]

    Burkhart, B.R.

    2011-01-01T23:59:59.000Z

    BERKELEY LABORATORY: 1978 INVENTORY f(ECEfVED tAWRENCE!FILES AT LAWRENCE BERKELEY LABORATORY: 1978 INVENTORY B. R.1979 ABSTRACT This inventory describes the cartographic base

  9. First-of-a-kind supercomputer at Lawrence Livermore available...

    National Nuclear Security Administration (NNSA)

    by a partnership of Cray, Intel and Lawrence Livermore, this Cray CS300 high performance computing cluster is available for collaborative projects with industry through...

  10. DOE's Oak Ridge and Lawrence Berkeley National Labs Join with...

    Office of Environmental Management (EM)

    that Oak Ridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) have joined with Dow Chemical Company as part of a Cooperative Research and...

  11. Analysis of Minimizers of the Lawrence-Doniach Energy for ...

    E-Print Network [OSTI]

    2014-04-07T23:59:59.000Z

    an asymptotic formula for the minimum Lawrence-Doniach energy as e and the ... In this case, an analysis of the behavior of energy minimizers and their.

  12. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Energy Savers [EERE]

    LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services...

  13. LAWRENCE BERKELEY NATIONAL LABORATORY REPORT NO. LBNL-59202 ERNEST ORLANDO LAWRENCE

    E-Print Network [OSTI]

    information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air

  14. Lawrence Berkeley Laboratory 1994 site environmental report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  15. Lawrence Livermore National Laboratory (LLNL): Hydrogen Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of Energy LaunchingLAWRENCE63725

  16. Lawrence Livermore National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of EnergyLawrence Livermore

  17. INSPECTION REPORT Government Vehicle Utilization at Lawrence

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernment Vehicle Utilization at Lawrence Livermore

  18. Lawrence Berkeley National Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News Releases Tribune carriesLauraLawrenceEnergy

  19. Lawrence Livermore National Laboratory, P. O. Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy LastLawrence Livermore National

  20. Lawrence, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia:Lawrence, Massachusetts:

  1. National Nuclear Security Administration Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| NationalryLawrence Livermore

  2. Studies on the preservation of electronic materials commissioned by the Digital Archiving Working Group

    E-Print Network [OSTI]

    Carr, Leslie

    Library. Bennett, J.C. (1997) A framework of data types and formats, and issues affecting the long term and preserving digital collections. British Library Research and Innovation Report 107. London: The British preservation of digital material. British Library Research and Innovation Report 50. London: The British

  3. Electrochemical phenomena provide unique methods for materials synthesis and surface modification. Within this framework, the group

    E-Print Network [OSTI]

    Acton, Scott

    components for information storage, sensors and energy conversion devices. "Further the understanding to tailor to specification materials and components for a variety of devices, focusing on micro of a variety of self-assembled nanostructures, as well as the development and integration of suitable

  4. THE CENTER FOR NANOPHASE MATERIALS SCIENCES USER GROUP MEMBERS August 9, 2010

    E-Print Network [OSTI]

    . Tennessee Brown, Gilbert ORNL Brown, Suree ORNL Browning, Jim ORNL Bruce, Barry U. Tennessee Bucknall, David Georgia Tech Budai, John ORNL Bulut, Lutfiye Brown U. Buncick, Milan Aegis Technologies Group Buongiorno, Florencia ORISE Campbell, Thomas Virginia Tech Campbell, Tom ADA Technologies Inc. Cao, Anmin U. Pittsburgh

  5. LALP-07-094 Winter 2008 Materials Physics and Applications Division Group Profile

    E-Print Network [OSTI]

    the energy of fusion of light nuclei. It was known that deuterons fuse much more easily than protons deuterium fuel and producing a thermonuclear yield of roughly 10 megatons of TNT. Many group members Security Administration/Nevada Site Office. Mike, the first large-scale experiment with thermonuclear

  6. A fuzzy analytic hierarchy process for group decision making: application for embedding information on communicating materials

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to use intelligent products for ensuring an information continuum all along the product lifecycle, group decision making, Intelligent product; Product Lifecycle Management; Data Dissemination I lifecycle (PLC). However, most of the time, products only provide a network pointer to a linked database (e

  7. Pressure safety program Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Borzileri, C.; Traini, M.

    1992-10-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a Research and Development facility. Programs include research in: nuclear weapons, energy, environmental, biomedical, and other DOE funded programs. LLNL is managed by the University of California for the Department of Energy. Many research and development programs require the use of pressurized fluid systems. In the early 1960`s, courses were developed to train personnel to safely work with pressurized systems. These courses served as a foundation for the Pressure Safety Program. The Pressure Safety Program is administered by the Pressure Safety Manager through the Hazards Control Department, and responsibilities include: (1) Pressure Safety course development and training, (2) Equipment documentation, tracking and inspections/retests, (3) Formal and informal review of pressure systems. The program uses accepted codes and standards and closely follows the DOE Pressure Safety Guidelines Manual. This manual was developed for DOE by Lawrence Livermore National Laboratory. The DOE Pressure Safety Guidelines Manual defines five (5) basic elements which constitute this Pressure Safety Program. These elements are: (1) A Pressure Safety Manual, (2) A Safety Committee, (3) Personnel who are trained and qualified, (4) Documentation and accountability for each pressure vessel or system, (5) Control of the selection and the use of high pressure hardware.

  8. AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN

    E-Print Network [OSTI]

    AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN LAKE ONTARIO BASS FISHERY The St. Lawrence information on the economic importance of the bass fishery, considered by many to be one of the best smallmouth bass fisheries in the world. The economic value of this recreational fishery should be taken

  9. Draft Environmental Impact Report LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    Lee, Jason R.

    . LBNL Transportation Demand Management Plan F-1 G. U.S. Department of Energy Policy StatementDraft Environmental Impact Report LAWRENCE BERKELEY NATIONAL LABORATORY LONG-RANGE DEVELOPMENT PLAN Seattle Tampa 201074 Draft Environmental Impact Report LAWRENCE BERKELEY NATIONAL LABORATORY LONG

  10. Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

  11. Kristin Persson Lawrence Berkeley National Laboratory A Google for Materials?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015JustKateKent5 B

  12. EM QA Working Group September 2011 Meeting Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20, 2013Meeting Materials EM QA

  13. Research collaboration opportunities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Budwine, C.M.

    1996-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a major research facility within the Department of Energy (DOE) complex. LLNL`s traditional mission is in Defense Programs, including a significant effort in non-proliferation and arms control. In terms of disciplinary areas, over 50% of our present research efforts are in the fields of large-scale computing, high energy-density physics, energy and environmental sciences, engineering, materials research, manufacturing, and biotechnology. The present decade presents new challenges to LLNL. Many factors have influenced us in modifying our research approach. The main driver is the realization that many scientific problems in our mission areas can best be solved by collaborative teams of experts. At LLNL we excel in physical sciences, but we need the expertise of many others, beyond our established areas of expertise. For example, to find an acceptable solution to reduce earthquake damage requires contributions from engineering, soil mechanics, hydrology, materials sciences, Geosciences, computer modeling, economics, law, and political science. In the pursuit of our mission goals, we are soliciting increased research collaborations with university faculty and students. The scientific and national security challenges facing us and our nation today are unprecedented. Pooling talents from universities, other research organizations, and the national laboratories will be an important approach to finding viable solutions.

  14. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

  15. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

  16. Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned

    Broader source: Energy.gov [DOE]

    Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

  17. 11. 2.. 30 LBNL-41343 ERNEST ORLANDO LAWRENCE

    E-Print Network [OSTI]

    11. 2.. 30 LBNL-41343 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Steady-State Solution Berkeley National Laboratory is an equal opportunity employer. #12;LBNL-41343 STEADY-STATE SOLUTION

  18. Lawrence B. Flanagan Craig S. Cook James R. Ehleringer

    E-Print Network [OSTI]

    Ehleringer, Jim

    Lawrence B. Flanagan á Craig S. Cook James R. Ehleringer Unusually low carbon isotope ratios limited overlap in species distributions inside and out- side these gardens. Solar exposure in hanging

  19. To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sent: Monday, January 29, 2007 6:28 PM To: Mansueti, Lawrence Subject: RE: Pepco Scheduled Line Repair Dec. 1-20, 2006 Larry, Regarding the planned line outage,...

  20. Lawrence Livermore National Laboratory Environmental Report 2010

    SciTech Connect (OSTI)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14T23:59:59.000Z

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

  1. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for magnetic circular dichroism (XMCD) and magnetic scattering experiments. Sunset Yellow 6-ID-B: Resonant and In-Field Scattering Beamline 6-ID-B,C is the primary beamline on...

  2. University of California, Davis, California Materials Sci. & Engr.Ph.D. 2008 Shanghai Inst. of Ceramics, Chinese Acad. Sci., Shanghai, China Materials Sci. & Engr.M.S. 2003

    E-Print Network [OSTI]

    Pennycook, Steve

    Inst. of Ceramics, Chinese Acad. Sci., Shanghai, China Materials Sci. & Engr.M.S. 2003 Jilin University, Changchun, China Materials Science B.S. 1997 Research Synopsis Structure-property-performance of nano, Shanghai, China Honors and Awards 2006-2008 Lawrence Graduate Student Research Fellowship at Lawrence

  3. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect (OSTI)

    Wilson, K.L. (ed.)

    1985-10-01T23:59:59.000Z

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  4. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterials

  5. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01T23:59:59.000Z

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  6. Lawrence Livermore National Laboratory Proposal to Participate...

    Broader source: Energy.gov (indexed) [DOE]

    EXAFS, ESR) to elucidate chemical structures We are the premier laboratory in carbon aerogels and have explored their use for hydrogen storage and gas separation Other materials...

  7. New Conducting and Electrically Switching Molecular Materials based on Main Group and Transition Metal Ions Bridged by TCNQ Derivatives

    E-Print Network [OSTI]

    Zhang, Zhongyue

    2013-05-24T23:59:59.000Z

    ,7,8,8-tetracyanoquinodimethane) has played a central role in the design of many unprecedented conducting materials including the first purely organic conductor (TTF)(TCNQ) (TTF = tetrathiafulvalene) which is nearly metallic and the electrically bistable switching material Cu...

  8. DHS-STEM Internship at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Feldman, B

    2008-08-18T23:59:59.000Z

    This summer I had the fortunate opportunity through the DHS-STEM program to attend Lawrence Livermore National Laboratories (LLNL) to work with Tom Slezak on the bioinformatics team. The bioinformatics team, among other things, helps to develop TaqMan and microarray probes for the identification of pathogens. My main project at the laboratory was to test such probe identification capabilities against metagenomic (unsequenced) data from around the world. Using various sequence analysis tools (Vmatch and Blastall) and several we developed ourselves, about 120 metagenomic sequencing projects were compared against a collection of all completely sequenced genomes and Lawrence Livermore National Laboratory's (LLNL) current probe database. For the probes, the Blastall algorithms compared each individual metagenomic project using various parameters allowing for the natural ambiguities of in vitro hybridization (mismatches, deletions, insertions, hairpinning, etc.). A low level cutoff was used to eliminate poor sequence matches, and to leave a large variety of higher quality matches for future research into the hybridization of sequences with mutations and variations. Any hits with at least 80% base pair conservation over 80% of the length of the match. Because of the size of our whole genome database, we utilized the exact match algorithm of Vmatch to quickly search and compare genomes for exact matches with varying lower level limits on sequence length. I also provided preliminary feasibility analyses to support a potential industry-funded project to develop a multiplex assay on several genera and species. Each genus and species was evaluated based on the amount of sequenced genomes, amount of near neighbor sequenced genomes, presence of identifying genes--metabolistic or antibiotic resistant genes--and the availability of research on the identification of the specific genera or species. Utilizing the bioinformatic team's software, I was able to develop and/or update several TaqMan probes for these and develop a plan of identification for the more difficult ones. One suggestion for a genus with low conservation was to separate species into several groups and look for probes within these and then use a combination of probes to identify a genus. This has the added benefit of also providing subgenus identification in larger genera. During both projects I had developed a set of computer programs to simplify or consolidate several processes. These programs were constructed with the intent of being reused to either repeat these results, further this research, or to start a similar project. A big problem in the bioinformatic/sequencing field is the variability of data storage formats which make using data from various sources extremely difficult. Excluding for the moment the many errors present in online database genome sequences, there are still many difficulties in converting one data type into another successfully every time. Dealing with hundreds of files, each hundreds of megabytes, requires automation which in turn requires good data mining software. The programs I developed will help ease this issue and make more genomic sources available for use. With these programs it is extremely easy to gather the data, cleanse it, convert it and run it through some analysis software and even analyze the output of this software. When dealing with vast amounts of data it is vital for the researcher to optimize the process--which became clear to me with only ten weeks to work with. Due to the time constraint of the internship, I was unable to finish my metagenomic project; I did finish with success, my second project, discovering TaqMan identification for genera and species. Although I did not complete my first project I made significant findings along the way that suggest the need for further research on the subject. I found several instances of false positives in the metagenomic data from our microarrays which indicates the need to sequence more metagenomic samples. My initial research shows the importance of expanding our known metagenomic

  9. Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977--March 1997

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report consists of a listing of Lawrence Livermore National Laboratory`s research items on the Yucca Mountain Project.

  10. Salvador M. Aceves Lawrence Livermore National Laboratory

    E-Print Network [OSTI]

    in overall pressure vessel shape #12;Space groups exhaust all possibilities for Packing 3D space stress distribution #12;­ Reject possibility of customized components (e.g. Space Shuttle tiles) ­ Design

  11. Request for Qualifications for Developers for the Lawrence Berkeley National Lab (LBNL)

    E-Print Network [OSTI]

    Walker, Matthew P.

    Request for Qualifications for Developers for the Lawrence Berkeley National Lab (LBNL) Second for the Lawrence Berkeley National Lab (LBNL) Second Campus at the Richmond Field Station I. Introduction for the Lawrence Berkeley National Lab (LBNL) Second Campus. The Second Campus will be home to a state

  12. Theoretical Modelling of Magnetic Refrigeration Materials A PhD studentship is available in the Warwick Theory Group on a theoretical/computational PhD project

    E-Print Network [OSTI]

    Low, Robert

    Theoretical Modelling of Magnetic Refrigeration Materials A PhD studentship is available in the Warwick Theory Group on a theoretical/computational PhD project on the modelling of magnetic refrigeration or air, or for very low temperatures, helium. Therefore, magnetic refrigeration is environmentally

  13. Eurographics Symposium on Rendering 2010 Jason Lawrence and Marc Stamminger

    E-Print Network [OSTI]

    Sen, Pradeep

    Eurographics Symposium on Rendering 2010 Jason Lawrence and Marc Stamminger (Guest Editors) Volume 29 (2010), Number 4 Compressive estimation for signal integration in rendering Pradeep Sen and Soheil Darabi Advanced Graphics Lab, University of New Mexico Abstract In rendering applications, we are often

  14. Building Footprints (Shapefile) of University of Kansas, Lawrence Campus

    E-Print Network [OSTI]

    Houser, Rhonda

    2011-02-18T23:59:59.000Z

    Data layer geneated with Intention to have basic building dataset for data analysis and generation of maps, for Lawrence Campus of the University of Kansas. Building outlines were digitized using ArcMap in ca. 2007 from aerial photograph to create...

  15. LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon

    E-Print Network [OSTI]

    Rathbun, Julie A.

    LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon The lunar rocks described--make it easy to distinguish them from terrestrial rocks. However, the minerals that make up lunar rocks are (with a few notable exceptions) minerals that are also found on Earth. Both lunar and terrestrial rocks

  16. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  17. Lawrence Berkeley National Laboratory Safety Assessment Document (SAD)

    E-Print Network [OSTI]

    Knowles, David William

    Lawrence Berkeley National Laboratory Safety Assessment Document (SAD) for the Advanced Light Assessment Document, Rev. 7 (May 29, 2009) ii Signature Page for Rev. 7 of the ALS SAD Prepared by: ALS EHS Program Manager Date: Reviewed by: ALS Deputy Division Director Date: ALS Deputy for Operations

  18. Biomedical Environmental Sciences Divisions Lawrence Livermore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find MoreTechnical Report:Biomedical Applications

  19. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  20. The building materials industry in China: An overview

    SciTech Connect (OSTI)

    Liu, Feng [Lawrence Berkeley Lab., CA (United States); Wang, Shumao [State Planning Commission, People`s Republic of China, (China). Energy Research Institute

    1994-12-01T23:59:59.000Z

    The present study of China`s building materials industry is a collaborative work between the Energy Research Institute (ERI) of the State Planning Commission of China and Lawrence Berkeley Laboratory (LBL) of the US Department of Energy (USDOE).

  1. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    that are climate and house construction dependent. These packages include materials procedures and equipment was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies developed around the idea of having packages of changes to the building HVAC system and building envelope

  2. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

    E-Print Network [OSTI]

    , or the State of California. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products. The ARB with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed

  3. Susan S. Hubbard Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Hubbard, Susan

    . PROFESSIONAL POSITIONS 2010- Deputy Director, Earth Sciences Division, LBNL 2010- Senior Scientist, LBNL 2008 Center, UC Berkeley 2004- Lead, Environmental Remediation and Water Resources Program, LBNL 2003- Lead, Environmental Geophysics Group, LBNL 2002-2010 Staff Scientist, LBNL 1998-2002 Scientist, LBNL 1990

  4. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  5. Irreducibility of the Lawrence-Krammer representation of the BMW algebra of type $A_{n-1}$

    E-Print Network [OSTI]

    Levaillant, Claire Isabelle

    2008-01-01T23:59:59.000Z

    It is known that the Lawrence-Krammer representation of the Artin group of type $A_{n-1}$ based on the two parameters $t$ and $q$ that was used by Krammer and independently by Bigelow to show the linearity of the Braid group on $n$ strands is generically irreducible. Here, we recover this result and show further that for some complex specializations of the parameters the representation is reducible. We give all the values of the parameters for which the representation is reducible as well as the dimensions of the invariant subspaces. We deduce some results of semisimplicity of the Birman-Murakami-Wenzl algebra of type $A_{n-1}$.

  6. University of California LawrenceLivermore

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    and Material Microstructural Properties on Capillary Barrier Design and Performance H51A-30 1 2 Dorthe the Kelvin's Law-range of processes with a traditional numerical modeling approach, - the model might have 0.39 0.48 porosity of coarse layer 0.50 0.41 average pump rate (ml/h) 29.8 29.3 average pump rate (m

  7. Hydrogen Storage atHydrogen Storage at Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    electrochemistry research for batteries and fuel cells · Metal hydrides · Nanostructured materials #12, and FE · Lithium batteries for pure- and hydrid-electric vehicles: materials, diagnostics, test cells, modeling · PEM fuel cells: Phil Ross (electrocatalysts), John Newman (modeling), Elton Cairns (systems

  8. Irreducibility of the Lawrence-Krammer representation of the BMW algebra of type $A_{n-1}$, PhD thesis California Institute of Technology 2008

    E-Print Network [OSTI]

    Levaillant, Claire

    2009-01-01T23:59:59.000Z

    Given two nonzero complex parameters $l$ and $m$, we construct by the mean of knot theory a matrix representation of size $\\chl$ of the BMW algebra of type $A_{n-1}$ with parameters $l$ and $m$ over the field $\\Q(l,r)$, where $m=\\unsurr-r$. As a representation of the braid group on $n$ strands, it is equivalent to the Lawrence-Krammer representation that was introduced by Lawrence and Krammer to show the linearity of the braid groups. We prove that the Lawrence-Krammer representation is generically irreducible, but that for some values of the parameters $l$ and $r$, it becomes reducible. In particular, we show that for these values of the parameters $l$ and $r$, the BMW algebra is not semisimple. When the representation is reducible, the action on a proper invariant subspace of the Lawrence-Krammer space must be a Hecke algebra action. It allows us to describe the invariant subspaces when the representation is reducible.

  9. New Conducting and Electrically Switching Molecular Materials based on Main Group and Transition Metal Ions Bridged by TCNQ Derivatives 

    E-Print Network [OSTI]

    Zhang, Zhongyue

    2013-05-24T23:59:59.000Z

    The field of molecular electronics has been under investigation by materials scientists for the last two decades, activity that has increased in recent years as their potential to be components in modern quantum computing ...

  10. Lawrence Livermore National Laboratory | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured VideosTechnologiesLatest

  11. Steven Lawrence | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,Enriched UraniumPhysical|Subcommittee on

  12. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpactsW56Administration

  13. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-05-21T23:59:59.000Z

    This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

  14. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05T23:59:59.000Z

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  15. Viterbi School of Engineering Research Innovation Fund Report COMPUTATIONAL SCIENCE WORKSHOP FOR UNDERREPRESENTED GROUPS

    E-Print Network [OSTI]

    Zhou, Chongwu

    graduate research assistants (one assistant for each group of 2 undergraduate students and a faculty mentor;2 · Gaurav Sukhatme (Computer Science, USC)--Robotics · Lin H. Yang (Lawrence Livermore National Laboratory

  16. Small Town Germans: The Germans of Lawrence, Kansas, from 1854 to 1918

    E-Print Network [OSTI]

    Rampelmann, Katja

    1993-01-01T23:59:59.000Z

    considering the influence of other German settlements in Douglas County. The small town of Eudora, seven miles east of Lawrence and the farming community of Stull, formerly known as Deer Creek, between Lawrence and Topeka, played important roles... as the area's largest commercial center, many Eudora and Stull Germans came to Lawrence to do their major shopping. But Eudora Germans soon founded their own clubs, such as a Turnverein, and German speaking churches. Stull Germans often went to Topeka...

  17. SCFA lead lab technical assistance at Lawrence Berkeley National Laboratory: Baseline review of three groundwater plumes

    E-Print Network [OSTI]

    Hazen, Terry

    2002-01-01T23:59:59.000Z

    Lab Technical Assistance #114 Lawrence Berkeley National Laboratory – Baseline Review of Three Groundwater Plumes Page 21 LBNL-51386 the Savannah River

  18. Lawrence Berkeley National Laboratory 1995 site environmental report

    SciTech Connect (OSTI)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01T23:59:59.000Z

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  19. Electroplating waste minimization at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dini, J.W.; Steffani, C.P.

    1992-04-01T23:59:59.000Z

    This paper describes efforts on waste minimization in the electroplating facility at Lawrence Livermore National Laboratory (LLNL). Issues that are covered include: elimination of cadmium plating, copper cyanide plating, hexavalent chromium plating and vapor degreasing, segregation of cyanide solutions, changing rinsing practices, recycling of rinse water, changing cleaning of aluminum parts and rejuvenation of gold plating solutions. Discussion is also presented on other issues currently being worked and these include: combining electroplating and physical vapor deposition, elimination of all cyanide plating processes, and recycling of electroless nickel and spent acid solutions.

  20. Precision and manufacturing at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Saito, T.T.; Wasley, R.J.; Stowers, I.F.; Donaldson, R.R.; Thompson, D.C.

    1993-11-01T23:59:59.000Z

    Precision Engineering is one of Lawrence Livermore National Laboratory`s core strengths. This paper discusses the past and present current technology transfer efforts of LLNL`s Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machining Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  1. Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of EnergyLawrence

  2. Lawrence Livermore National Security Enforcement Letter (NEL-2013-03)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of EnergyLawrencePenrose C.

  3. Lawrence Berkeley National Laboratory (LBNL) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia: EnergyLavon,Lawrence

  4. Recovery Act Funded Projects at the Lawrence Berkeley National Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In additionEnergy Environmental cleanupLawrence

  5. St. Lawrence County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity CorpSpringfield, Tennessee:InformationLawrence

  6. Materials Availability Expands the Opportunity for Large-Scale

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment C Y R U S W of Chemistry, University of California, Berkeley, California 94720, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Materials Science and Engineering

  7. Scale-up and Testing of Advanced Materials from the BATT Program...

    Broader source: Energy.gov (indexed) [DOE]

    AMR Berkeley Lab 129 Scale-up and Testing of Advanced Materials from the BATT Program Vincent Battaglia, Ph.D. Lawrence Berkeley National Laboratory May 16, 2012 es029 This...

  8. Scale-up and Testing of Advanced Materials from the BATT Program...

    Broader source: Energy.gov (indexed) [DOE]

    Scale-up and Testing of Advanced Materials from the BATT Program Vincent Battaglia, Ph.D. Lawrence Berkeley National Laboratory May 15, 2013 ES029) This presentation does not...

  9. The Computation Directorate at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Cook, L

    2006-09-07T23:59:59.000Z

    The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

  10. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  11. Overview of crash and impact analysis at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Logan, R.W.; Tokarz, F.J.

    1993-08-05T23:59:59.000Z

    This work provides a brief overview of past and ongoing efforts at Lawrence Livermore National Laboratory (LLNL) in the area of finite-element modeling of crash and impact problems. The process has been one of evolution in several respects. One aspect of the evolution has been the continual upgrading and refinement of the DYNA, NIKE, and TOPAZ family of finite-element codes. The major missions of these codes involve problems where the dominant factors are high-rate dynamics, quasi-statics, and heat transfer, respectively. However, analysis of a total event, whether it be a shipping container drop or an automobile/barrier collision, may require use or coupling or two or more of these codes. Along with refinements in speed, contact capability, and element technology, material model complexity continues to evolve as more detail is demanded from the analyses. A more recent evolution has involved the mix of problems addressed at LLNL and the direction of the technology thrusts. A pronounced increase in collaborative efforts with the civilian and private sector has resulted in a mix of complex problems involving synergism between weapons applications (shipping container, earth penetrator, missile carrier, ship hull damage) and a more broad base of problems such as vehicle impacts as discussed herein.

  12. Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  13. Redeveloping Lawrence, Massachusetts' [sic] Historic Mill District : insights into adaptive reuse in untested residential markets

    E-Print Network [OSTI]

    Clark, Heather, 1978-

    2004-01-01T23:59:59.000Z

    Lawrence, Massachusetts is one of a number of post-industrial cities in the northeastern United States that has the potential to convert underutilized industrial buildings into a valuable community asset, namely housing. ...

  14. Lawrence Livermore Site Office Manager Joins EM’s Senior Leadership Team

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM Acting Assistant Secretary Dave Huizenga announced today that Alice Williams, manager of the DOE National Nuclear Security Administration (NNSA) Lawrence Livermore Site Office has joined the EM senior leadership team.

  15. Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  16. Nano-High: Lawrence Berkeley National Laboratory Lecture on Bad Sugars

    Broader source: Energy.gov [DOE]

    Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

  17. Two energy scales and slow crossover in YbAl3 Jon Lawrence

    E-Print Network [OSTI]

    Lawrence, Jon

    crystals of YbInCu4 (Lawrence, Shapiro et al, PRB55 (1997) 14467) that the spin fluctuations in IV, PRB 50 (1994) 9882 Murani, PRB 50 (1994) 9882 #12;Anderson Impurity Model (AIM) Although intended

  18. VWA-0007- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  19. VWA-0008- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

  20. Building community assets through individual development accounts : growing a strategic network in Lawrence, Massachusetts

    E-Print Network [OSTI]

    Wu, Cindy C. (Cindy Cin-Wei)

    2007-01-01T23:59:59.000Z

    This thesis aims to inform the decision-making process for growing an asset-building program through strategic partnerships with other community-based organizations (CBOs). The impetus for this paper came from Lawrence ...

  1. Lawrence Berkeley National Laboratory Advanced Light Source Beamline 1.4

    E-Print Network [OSTI]

    Levenson, UC student at beamline1.4. #12;3 Table of Contents ABOUT LBNL......................................................................................................................4 THE LBNL calculation Second calculation · Janis He-3 cryostat #12;4 About LBNL The LBNL The Lawrence Berkeley National

  2. NOAA Technical Memorandum ERL GLERL-24 UPPER ST. LAWRENCE RIVER HYDRAULIC TRANSIENT MODEL

    E-Print Network [OSTI]

    of the St. Lawrence Seaway in 1959. Operation of the power dam is governed by the water level in Lake interests of national and international power, navigation, recreation, industrial, and domestic users

  3. Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)

    Broader source: Energy.gov [DOE]

    This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

  4. Cavitation Thermometry Using Molecular and Continuum Sonoluminescence Lawrence S. Bernstein* and Mitchell R. Zakin

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Cavitation Thermometry Using Molecular and Continuum Sonoluminescence Lawrence S. Bernstein (SB) sonoluminescence (SL) is explored as a probe of bubble temperature during cavitational collapse discrete intervals along the cavitational collapse time line, thus yielding different cavitation

  5. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

  6. Lady Chatterley's Lover as a rhetorical response: justification for D. H. Lawrence's mask of Oliver Mellors

    E-Print Network [OSTI]

    McCracken, David Scott

    1988-01-01T23:59:59.000Z

    of the novel. As a result, Lawrence rhetorically crafted his work's setting and characterization to motivate his readers toward modifying his situation's exigences. While canposing his three drafts, Lawrence was affected by his tuberculosis and by Frieda...'s egocentricity. Lingering Victorian morality, established English industrialism, and accepted Freudian psychology further constrained the production and the effectiveness of his last novel. B th gll~~Ch tt 1 ' I &, th 1 not a failure as a rhetorical response...

  7. Lawrence Livermore National Laboratory Underground Coal Gasification project

    SciTech Connect (OSTI)

    Thorsness, C.B.; Britten, J.A.

    1989-10-15T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has been actively developing Underground Coal Gasification (UCG) technology for 15 years. The goal of the project has been to develop a fundamental technological understanding of UCG and foster the commercialization of the process. In striving to achieve this goal the LLNL project has carried out laboratory experiments, developed mathematical models, actively participated in technology transfer programs, and conducted field test experiments. As a result of this work the Controlled Retracting Injection Point (CRIP) concept was developed which helps insure optimum performance of an underground gasifier in a flat seam, and provides a means to produce multiple gasification cavities. The LLNL field work culminated in the Rocky Mountain I field test in which a gasifier using the CRIP technology generated gas of a quality equal to that of surface gasifiers. This last test and others preceding it have demonstrated beyond any reasonable doubt, that UCG is technically feasible in moderately thick coal seams at modest depths. 2 refs., 2 tabs.

  8. Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1987-12-01T23:59:59.000Z

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

  9. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  10. Comparison Groups on Bills: Automated, Personalized Energy Information

    E-Print Network [OSTI]

    individualized energy information for a mass audience-the entire residential customer base of an electric or gas or gas utility. Keywords: Innovative billing, energy feedback, energy efficiency Running head: ComparisonComparison Groups on Bills: Automated, Personalized Energy Information Maithili Iyer Lawrence

  11. Adapting to Climate Change and Variability in the Great Lakes-St. Lawrence Basin Great Lakes-St. Lawrence Basin Project

    E-Print Network [OSTI]

    ; this is the adaptation component. Communication of climate change information to various publicsAdapting to Climate Change and Variability in the Great Lakes-St. Lawrence Basin 52 Great Lakes in response to potential climate change and variability. When we were preparing for this talk on what we have

  12. MICROWAVE PROCESSING OF LUNAR SOIL Lawrence A. Taylor1

    E-Print Network [OSTI]

    Taylor, Lawrence A.

    and microwave into hybrid heating can be used to form various structural and mechanical materials for use both

  13. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  14. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  15. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  16. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  17. Exploring Viral Genomics at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kilpatrick, K; Hiddessen, A

    2007-08-22T23:59:59.000Z

    This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I as a fluorescent dye to detect amplification of viral DNA that can later be integrated into microfluidic PCR system for sorting and analysis is shown.

  18. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion

  19. Butler Hibben Princeton Grad Lawrence Wegmans Wegmans Walmart Trader Butler Apts Magie Station College Apts (arrive) (depart) Joe's Apts

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    Butler Hibben Princeton Grad Lawrence Wegmans Wegmans Walmart Trader Butler Apts Magie Station Wegmans Wegmans Walmart Trader Butler Apts Magie Station College Apts (arrive) (depart) Joe's Apts

  20. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biological, environmental and computer sciences; condensed matter and materials; fusion and plasma sciences; high energy and nuclear physics; and national security and...

  1. From Berkeley Lab to the Marketplace Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Eisen, Michael

    : · Biosciences · Advanced Materials · Nanoscience · Biofuels, Solar, and Energy Efficiency · Medical Imaging research, and sponsored research. We license cutting-edge technologies to companies, including start

  2. Department of Energy Announces 2009 Ernest Orlando Lawrence Award...

    Broader source: Energy.gov (indexed) [DOE]

    materials research; environmental science and technology; life sciences (including medicine); nuclear technologies (fission and fusion); national security and non-proliferation;...

  3. Inspection Report "Personal Property Management at Lawrence Livermore National Laboratory"

    SciTech Connect (OSTI)

    None

    2009-05-01T23:59:59.000Z

    The Department of Energy's (DOE's) Lawrence Livermore National Laboratory (Livermore) is a premier research and development institution for science and technology supporting the core mission of national security. According to Livermore, as of November 2008 the Laboratory managed 64,933 items of Government personal property valued at about $1 billion. At the beginning of Fiscal Year 2008, Livermore reported 249 DOE property items valued at about $1.3 million that were missing, unaccounted for, or stolen during Fiscal Year 2007. Livermore centrally tracks property utilizing the Sunflower Assets system (Sunflower), which reflects the cradle to grave history of each property item. Changes in the custodianship and/or location of a property item must be timely reported by the custodian to the respective property center representative for updating in Sunflower. In Fiscal Year 2008, over 2,000 individuals were terminated as a result of workforce reduction at Livermore, of which about 750 received a final notification of termination on the same day that they were required to depart the facility. All of these terminations potentially necessitated updates to the property database, but the involuntary terminations had the potential to pose particular challenges because of the immediacy of individuals departures. The objective of our inspection was to evaluate the adequacy of Livermore's internal controls over Government property. Based upon the results of our preliminary field work, we particularly focused on personal property assigned to terminated individuals and stolen laptop computers. We concluded that Livermore's internal controls over property could be improved, which could help to reduce the number of missing, unaccounted for, or stolen property items. Specifically, we found that: (1) The location and/or custodian of approximately 18 percent of the property items in our sample, which was drawn from the property assigned to individuals terminated on short notice in 2008, was inaccurately reflected in Sunflower. The data in this system is relied upon for tracking purposes, so inaccurate entries could increase the probability of property not being located during inventories and, thus, being reported as 'lost' or 'missing'. We believe that providing formal training to property custodians, which was not being done at the time of our inspection, could help improve this situation. (2) Some property custodians were not adequately protecting their Government laptop computers when taking them offsite, and they were not held accountable for the subsequent theft of the laptops. We made several recommendations to management intended to improve property controls at Livermore.

  4. Lawrence O. "Larry" Bailey, Jr., Joins Carlsbad Field Office as Deputy Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy LastLawrence LivermoreLawrence

  5. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L80'sInside IceLawrence BerkeleyLawrence

  6. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  7. Marine and Petroleum Geology 25 (2008) 271288 Surface and subsurface signatures of gas seepage in the St. Lawrence

    E-Print Network [OSTI]

    Long, Bernard

    2008-01-01T23:59:59.000Z

    parts of the St. Lawrence platform and suggest the presence of a mature hydrocarbon source an open-window to the petroleum system and provide indirect evidence for the presence of mature source are characterized by seismic chimneys that may be traced down to the autochthonous Paleozoic rocks (St. Lawrence

  8. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    SciTech Connect (OSTI)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23T23:59:59.000Z

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

  9. Calculation of Transactinide Homolog Isotope Production Reactions Possible with the Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Moody, K J; Shaughnessy, D A; Gostic, J M

    2011-11-29T23:59:59.000Z

    The LLNL heavy element group has been investigating the chemical properties of the heaviest elements over the past several years. The properties of the transactinides (elements with Z > 103) are often unknown due to their low production rates and short half-lives, which require lengthy cyclotron irradiations in order to make enough atoms for statistically significant evaluations of their chemistry. In addition, automated chemical methods are often required to perform consistent and rapid chemical separations on the order of minutes for the duration of the experiment, which can last from weeks to months. Separation methods can include extraction chromatography, liquid-liquid extraction, or gas-phase chromatography. Before a lengthy transactinide experiment can be performed at an accelerator, a large amount of preparatory work must be done both to ensure the successful application of the chosen chemical system to the transactinide chemistry problem being addressed, and to evaluate the behavior of the lighter elemental homologs in the same chemical system. Since transactinide chemistry is literally performed on one single atom, its chemical properties cannot be determined from bulk chemical matrices, but instead must be inferred from the behavior of the lighter elements that occur in its chemical group and in those of its neighboring elements. By first studying the lighter group homologs in a particular chemical system, when the same system is applied to the transactinide element under investigation, its decay properties can be directly compared to those of the homologues, thereby allowing an inference of its own chemistry. The Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory (LLNL) includes a 1 MV Tandem accelerator, capable of accelerating light ions such as protons to energies of roughly 15 MeV. By using the CAMS beamline, tracers of transactinide homolog elements can be produced both for development of chemical systems and for evaluation of homolog chemical properties. CAMS also offers an environment for testing these systems 'online' by incorporating automated chemical systems into the beamline so that tracers can be created, transported, and chemically separated all on the shorter timescales required for transactinide experiments. Even though CAMS is limited in the types and energies of ions they can accelerate, there are still a wide variety of reactions that can be performed there with commercially available target materials. The half-lives of these isotopes vary over a range that could be used for both online chemistry (where shorter half-lives are required) and benchtop tracers studies (where longer lived isotopes are preferred). In this document, they present a summary of tracer production reactions that could be performed at CAMS, specifically for online, automated chemical studies. They are from chemical groups four through seven, 13, and 14, which would be appropriate for studies of elements 104-107, 113, and 114. Reactions were selected that had (a) commercially available target material, (b) half-lives long enough for transport from a target chamber to an automated chemistry system, and (c) cross-sections at CAMS available projectile energies that were large enough to produce enough atoms to result in a statistically relevant signal after losses for transport and chemistry were considered. In addition, the resulting product atoms had to decay with an observable gamma-ray using standard Ge gamma-ray detectors. The table includes calculations performed for both metal targets and their corresponding oxides.

  10. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    SciTech Connect (OSTI)

    Coty, J

    2009-03-16T23:59:59.000Z

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  11. Proceedings of the NSF Workshop on Research Needs in Thermal Aspects of Material Removal Processes, edited Ranga Komanduri, Oklahoma State University, Stillwater, OK, June 10-12, 2003

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    is accomplished by laser material interaction, and includes laser drilling, laser cutting and laser grooving in Laser Material Removal Y. Lawrence Yao, Hongqiang Chen Columbia University, New York, NY yly1@columbia In laser material removal using a continuous wave or long-pulsed laser, the primary material removal

  12. DESIGNING AN ENVIRONMENTAL SHOWCASE: THE SAN FRANCISCO Dale Sartor, Rick Diamond, Lawrence Berkeley National Laboratory,

    E-Print Network [OSTI]

    Diamond, Richard

    public and private sector activities, but it will also have high-visibility, with over eight million, and to reduce energy consumption by 30% or more. Fully occupied, the baseline energy cost at the Presidio, Lawrence Berkeley National Laboratory, Andy Walker, National Renewable Energy Laboratory Michael Giller

  13. Design for Reliability: Case Studies in Manufacturing Process Synthesis Y. Lawrence Yao*, and Chao Liu

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Design for Reliability: Case Studies in Manufacturing Process Synthesis Y. Lawrence Yao*, and Chao of manufacturing process design is to determine a set of process parameters for a manufacturing task. The design. Such a methodology is illustrated in case studies involving process design of laser forming of sheet metal, in which

  14. Gas Dynamic Effects On Laser Cut Quality Kai Chen, Y. Lawrence Yao, and Vijay Modi

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Gas Dynamic Effects On Laser Cut Quality Kai Chen, Y. Lawrence Yao, and Vijay Modi Department are very sensitive to gas jet pressure and nozzle standoff distance. Do a high gas pressure and a small shows the same behavior (i.e., discontinuity as gas pressure and standoff change

  15. Modeling Sensorineural Hearing Loss, W. Jesteadt (Ed), Lawrence Erlbaum Associates, February 1997

    E-Print Network [OSTI]

    Jenison, Rick L.

    1 Modeling Sensorineural Hearing Loss, W. Jesteadt (Ed), Lawrence Erlbaum Associates, February 1997 University of Wisconsin, Department of Psychology Madison, WI 53706 Running Head: Model of Cortical the conse- quences of sensorineural hearing loss. Robertson and Irvine (1989) have demonstrated reorganiza

  16. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  17. Lawrence Berkeley National Laboratory Arboricultural Operations Safety Requirements LBNL Arboricultural Operation Safety Requirements

    E-Print Network [OSTI]

    Eisen, Michael

    Lawrence Berkeley National Laboratory Arboricultural Operations Safety Requirements 1 of 3 LBNL reviewed with LBNL Facilities Electric Shop (6023)? * IF THE ANSWER TO 3E WAS NO, STOP THIS WORK ACTIVITY AND CONTACT FACILITIES ELECTRIC SHOP a. Name of LBNL individual consulted? #12;LBNL Arboricultural Operations

  18. Leadership in Science Lawrence Berkeley National Laboratory (LBNL) has been a

    E-Print Network [OSTI]

    Leadership in Science 13 Lawrence Berkeley National Laboratory (LBNL) has been a driving force founding, in 1931. As the birthplace of accelerator-based physics and nuclear medicine, LBNL has evolved approaches to the science and engineering of complex biosystems. LBNL is operated by the University

  19. Naysaying the Neutron Scattering Society Lawrence Cranberg, Jill Trewhella, and Henry R. Glyde

    E-Print Network [OSTI]

    Glyde, Henry R.

    Naysaying the Neutron Scattering Society Lawrence Cranberg, Jill Trewhella, and Henry R. Glyde, Austin Naysaying the Neutron Scattering Society The news story announcing the estab- lishment of the Neutron Scattering Society of America (June, page 73) raises a number of questions, and further

  20. Lyapunov Vector Fields for Autonomous UAV Flight Control1 Dale A. Lawrence2

    E-Print Network [OSTI]

    Frew, Eric W.

    Lyapunov Vector Fields for Autonomous UAV Flight Control1 Dale A. Lawrence2 , Eric. W. Frew3 that incorporate Lyapunov stability properties to produce simple, globally stable vector fields in 3D. Use of the vector field is considered, using Lyapunov techniques to show global stability of heading and path

  1. Studies in Process Simplification Ashok Dandekar Dewayne E. Perry Lawrence G. Votta

    E-Print Network [OSTI]

    Perry, Dewayne E.

    Studies in Process Simplification Ashok Dandekar Dewayne E. Perry Lawrence G. Votta Fujitsu Network@research.bell-labs.com votta@research.bell-labs.com Abstract One of the major problems with software development processes is their complexity. Hence, one of the primary motivations in process improvement is the simplification

  2. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-06-04T23:59:59.000Z

    At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

  3. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Chu, Steven (U.S. Energy Secretary)

    2012-06-28T23:59:59.000Z

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  4. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    SciTech Connect (OSTI)

    Chu, Steven (U.S. Energy Secretary) [U.S. Energy Secretary

    2012-05-21T23:59:59.000Z

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  5. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  6. Performance-oriented packaging testing of PPP-B-601 ERAPS wood box for packing Group II solid hazardous material. Test report for Oct 91

    SciTech Connect (OSTI)

    Wu, E.

    1991-10-01T23:59:59.000Z

    Qualification tests were performed to determine whether the in-service PPP-B-601 ERAPS Wood Box could be utilized to contain properly dunnaged solid type hazardous materials weighing up to a gross weight of 237 kg (523 pounds). The tests were conducted in accordance with Performance Oriented Packaging (POP) requirements specified by the United Nations Recommendations on the Transportation of Dangerous Goods. The box has conformed to the POP performance requirements; i.e., the box successfully retained its contents throughout the stacking, vibration and drop tests.

  7. Lawrence Berkeley National Laboratory Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured VideosTechnologiesLatest FeatureNews-

  8. Lawrence Livermore National Laboratory Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured VideosTechnologiesLatest FeatureNews--

  9. Campanell wins Lawrence Fellowship to pursue plasma physics research |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05 CalendarINT'L. S C9, 2012Princeton

  10. UESC Workshop Materials | Department of Energy

    Office of Environmental Management (EM)

    UESC Workshop Materials UESC Workshop Materials Presentation covers the UESC Workshop Materials and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG)...

  11. Associate director for Physical and Life Sciences, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator| National Lisa Cutler,National

  12. Cleantech Open meets with Lawrence Livermore, Sandia national laboratories

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies | National Nuclear|

  13. Director of the National Ignition Facility, Lawrence Livermore National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment of Energy Established |Laboratory |

  14. Lawrence Livermore National Lab Perforemance Evaluations | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpactsW56 WarheadSecurity

  15. DOE - Office of Legacy Management -- Lawrence Berkeley National Laboratory

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffaloJohns HopkinsLa PointeLatty Avenue

  16. Edward Jones, Lawrence Livermore National Laboratory, Outcomes of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup Report |ofM A NNRELU.S.-Japan

  17. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  18. Evaluation of Blue Confirmation Lights on Red Light Running at Signalized Intersections in Lawrence, Kansas: A Case Study

    E-Print Network [OSTI]

    Boakye, Kwaku Frimpong

    2014-08-31T23:59:59.000Z

    of Lawrence installed confirmation lights at six left-turn approaches of two signalized intersections (treatment sites) where RLR was prevalent. This study was conducted to evaluate the effectiveness of the confirmation lights. RLR violation data were...

  19. EA-1065: Proposed Construction and Operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify 14,900 square feet of an existing building (Building 64) at the U.S. Department of Energy's Lawrence Berkeley Laboratory to...

  20. EA-1087: Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to modify existing Building 51B at the U.S. Department of Energy's Lawrence Berkeley National Laboratory to install and conduct experiments...

  1. 2003 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23T23:59:59.000Z

    Annual Illness and Injury Surveillance Program report for 2003 for Lawrence Livermore National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  2. Development of a Novel Depleted Uranium Treatment Process at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gates-Anderson, D; Bowers, J; Laue, C; Fitch, T

    2007-01-22T23:59:59.000Z

    A three-stage process was developed at Lawrence Livermore National Laboratory to treat potentially pyrophoric depleted uranium metal wastes. The three-stage process includes waste sorting/rinsing, acid dissolution of the waste metal with a hydrochloric and phosphoric acid solution, and solidification of the neutralized residuals from the second stage with clay. The final product is a solid waste form that can be transported to and disposed of at a permitted low-level radioactive waste disposal site.

  3. Pavement Through the Prairie, Wheels in the Wetlands: The battle over a road in Lawrence, Kansas

    E-Print Network [OSTI]

    Heiman, Kelly

    2012-04-01T23:59:59.000Z

    of the Haskell-Baker Wetlands and the South Lawrence Trafficway." Genuine Kansas. No date. http://www.genuinekansas.com/history_baker_w etlands_controversy_timeline_kansas.htm 113 contemporaneous with the initial release of the Draft Environmental Impact...." Environmental History. (2010) 15 (2): 194. that recognized the environment as a critical national issue, historian Ann Vileisis argues, "... citizen activists in their communities dealt with broad choices facing the society at large: to embrace boundless...

  4. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  5. Breakout Group 3: Water Management

    Broader source: Energy.gov (indexed) [DOE]

    Jim Waldecker Ford Motor Company Heli Wang National Renewable Energy Laboratory Adam Weber Lawrence Berkeley National Laboratory Shawna McQueen (Facilitator) Energetics...

  6. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  7. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16T23:59:59.000Z

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  8. 1Option:UCRL#! Option:Additional Information! Lawrence Livermore National Laboratory

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    :Additional Information! Lawrence Livermore National Laboratory We replicate sound speeds for N2 for pressures to 25 kbars Laboratory We also replicate sound speed data for CH4 to 35 kbars and isotherms for CO2 to 10 kbars #12, SiO2, Fe3O4, CaCO3, Ni (solid, liquid), Al2SiO5, AlN (b1-solid, b4-solid), NiO, Al6O13Si2, FeS2, Si

  9. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29T23:59:59.000Z

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  10. EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA

    Broader source: Energy.gov [DOE]

    The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

  11. Associated Western Universities summer participant program at the Lawrence Livermore National Laboratory, Summer 1997

    SciTech Connect (OSTI)

    Williams, B.

    1997-08-01T23:59:59.000Z

    The Associated Western Universities, Inc. (AWU) supports a student summer program at Lawrence Livermore National Laboratory (LLNL). This program is structured so that honors undergraduate students may participate in the Laboratory`s research program under direct supervision of senior Laboratory scientists. Included in this report is a list of the AWU participants for the summer of 1997. All students are required to submit original reports of their summer activities in a format of their own choosing. These unaltered student reports constitute the major portion of this report.

  12. Lawrence Berkeley National Laboratory (LBNL): Fuel Cell and Hydrogen Activities Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of Energy LaunchingLAWRENCE

  13. Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News Releases Tribune carriesLauraLawrence

  14. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L80'sInside IceLawrence Berkeley

  15. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansas Regions(SC)Lawrence

  16. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansasLawrence Berkeley National

  17. Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansasLawrence Berkeley

  18. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  19. Lawrence Residence 

    E-Print Network [OSTI]

    Raiford Stripling Associates, Inc.; Stripling, Raiford L.

    1962-01-01T23:59:59.000Z

    interpreted as of turbidity-flow origin. The embayment 1s filled with a dominant shale section wh1ch contains microfauna believed to represent bathyal depths. , Cores retrieved from fields in Jefferson County, southeast Texas, were studied to examine... shale samples Shell Hebert Ranch 1-C and Humble 1 Port Acres Gas Unit 1 48 14 Scanning electron micrographs of characteristic Frio foraminifera from selected wells including Shell Hebert Ranch 1-C and Humble 1 Port Acres Gas Unit 1, Jefferson County...

  20. Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLaura H. Greene,honored

  1. Initiatives in the US nuclear material tracking system

    SciTech Connect (OSTI)

    Smith, M.R.; Kuzmycz, G. [Department of Energy, Washington, DC (United States); Heaton, E.R. [Pacific Northwest Lab., Richland, WA (United States)

    1994-07-01T23:59:59.000Z

    The Department of Energy (DOE) Office of Nonproliferation and National Security is in the process of developing a new worldwide nuclear materials tracking system. Its purpose is for DOE to better fulfill its international and domestic nuclear material tracking obligations and needs. The Lawrence Livermore National Laboratory (LLNL), is developing the International Nuclear Analysis (INA) Program to meet this goal. LLNL will assume the function and duties of the current Nuclear Materials management and Safeguards System (NMMSS) operated by Martin Marietta Energy Systems. The program is jointly funded by the DOE, the Nuclear Regulatory Commission and the US Enrichment Corporation.

  2. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30T23:59:59.000Z

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  3. Eric J. Glover, Gary W. Flake, Steve Lawrence, William P. Birmingham, Andries Kruger, C. Lee Giles, David M. Pennock. Improving Category Specific Web Search by Learning Query Modifications, Symposium on Applications and

    E-Print Network [OSTI]

    Pennock, David M.

    Eric J. Glover, Gary W. Flake, Steve Lawrence, William P. Birmingham, Andries Kruger, C. Lee Giles J. Glover 1;2 , Gary W. Flake 1 , Steve Lawrence 1 , William P. Birmingham 2 , Andries Kruger 1 , C

  4. Eric J. Glover, Gary W. Flake, Steve Lawrence, William P. Birmingham, Andries Kruger, C. Lee Giles, David M. Pennock. Improving Category Specific Web Search by Learning Query Modifications, Symposium on Applications and

    E-Print Network [OSTI]

    Pennock, David M.

    Eric J. Glover, Gary W. Flake, Steve Lawrence, William P. Birmingham, Andries Kruger, C. Lee Giles J. Glover ¢¡ £ , Gary W. Flake , Steve Lawrence , William P. Birmingham £ , Andries Kruger

  5. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Status of DPSSL Development

    E-Print Network [OSTI]

    by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Status

  6. Advanced Materials for Proton Exchange Membranes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Materials for Proton Exchange Membranes Advanced Materials for Proton Exchange Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19,...

  7. The Making of Beauty: Aesthetic Spaces in the Fiction of D. H. Lawrence, Muriel Spark, and Virginia Woolf 

    E-Print Network [OSTI]

    Lee, Joori

    2013-08-01T23:59:59.000Z

    This dissertation rethinks textual images of the other’s beauty, depicted in works by D. H. Lawrence, Muriel Spark, and Virginia Woolf, whose fascination with the other, called by this dissertation the beloved, urged them to inscribe the beloved’s...

  8. Ozone production efficiency in an urban area Lawrence I. Kleinman, Peter H. Daum, Yin-Nan Lee, Linda J. Nunnermacker,

    E-Print Network [OSTI]

    Ozone production efficiency in an urban area Lawrence I. Kleinman, Peter H. Daum, Yin-Nan Lee; accepted 1 August 2002; published 14 December 2002. [1] Ozone production efficiency can be defined and observational results on ozone production efficiency based on measurements made from aircraft flights

  9. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and

    E-Print Network [OSTI]

    Washington at Seattle, University of

    . The combination of the SAR imagery and ULS observations also allow measurement of the pack ice advection velocityObservations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite define a thermal ice thickness from the AVHRR retrieval of ice surface temperature combined

  10. A Plea for Simpler Electricity Tariffs Philip E. Coleman and Christopher T. Payne, Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    A Plea for Simpler Electricity Tariffs Philip E. Coleman and Christopher T. Payne, Lawrence asserts that electric rate structures in the United States are often so confusing that even large a simplified declaration (in tariffs and/or bills) to electricity customers of what their marginal costs are

  11. 1 | Valuing Ecosystem Services provided by Edinburgh's Trees | Tony Hutchings, Vicki Lawrence & Andy Brunt | 06/03/2013

    E-Print Network [OSTI]

    1 | Valuing Ecosystem Services provided by Edinburgh's Trees | Tony Hutchings, Vicki Lawrence & Andy Brunt | 06/03/2013 Estimating the Value of Edinburgh's Trees Estimating the Ecosystem Services Ecosystem Services provided by Edinburgh's Trees: Results of a 2011 Survey Estimating the Value of Edinburgh

  12. Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Korneev, Valeri A.

    1 Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley to the square root of the product of frequency of the signal and the mobility of the fluid in the reservoir. This provides an opportunity for locating the most productive zones of the field before drilling

  13. The Corossol structure: A possible impact crater on the seafloor of the northwestern Gulf of St. Lawrence, Eastern Canada

    E-Print Network [OSTI]

    . Lawrence, Eastern Canada Patrick LAJEUNESSE1* , Guillaume ST-ONGE2 , Jacques LOCAT3 , Mathieu J. DUCHESNE4 de geographie, Universite Laval, Quebec City, Quebec G1V 0A6, Canada 2 Canada Research Chair, Rimouski, Quebec G5L 3A1, Canada 3 Departement de geologie et de genie geologique, Universite Laval, Quebec

  14. Extending Sledgehammer with SMT Solvers Jasmin Christian Blanchette1, , Sascha Bhme1, and Lawrence C. Paulson2

    E-Print Network [OSTI]

    Paulson, Lawrence C.

    Extending Sledgehammer with SMT Solvers Jasmin Christian Blanchette1, , Sascha Böhme1, and Lawrence extended Sledgehammer to invoke satisfiability modulo theories (SMT) solvers as well, exploiting its relevance filter and parallel architecture. Isabelle users are now pleasantly surprised by SMT proofs

  15. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  16. 2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300

    SciTech Connect (OSTI)

    West, E; Woollett, J

    2004-11-16T23:59:59.000Z

    To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grassland community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.

  17. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  18. Environmental monitoring at the Lawrence Livermore National Laboratory: Annual report, 1987

    SciTech Connect (OSTI)

    Holland, R.C.; Brekke, D.D.

    1988-04-01T23:59:59.000Z

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore Laboratory (LLNL) for 1987. To evaluate the effect of LLNL operations on the local environment, measurements were made of direct radiation and a variety of radionuclides and chemical pollutants in ambient air, soil, sewage effluents, surface water, groundwater, vegetation, foodstuff, and milk at both the Livermore site and nearby Site 300. Evaluations were made of LLNL's compliance with the applicable guides, standards, and limits for radiological and nonradiological releases to the environment. The data indicates that the only releases in excess of applicable standards were four releases to the sanitary sewer. LLNL operations had no adverse impact on the environment during 1987. 65 refs., 24 figs.

  19. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  20. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

    1996-08-01T23:59:59.000Z

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  1. Recent results from the EBIT and Super EBIT at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Marrs, R.E.

    1996-10-07T23:59:59.000Z

    The electron beam ion trap (EBIT), and the higher-energy Super EBIT at Lawrence Livermore National Laboratory can produce any highly charged ion. These highly charged ions are used in a variety of research programs. Recent results from four different experiments are reviewed here. K-shell ionization cross sections have been measured for the hydrogenlike ions of several elements, and L-shell ionization cross sections have been measured for uranium ions. A measurement of the ground-state hyperfine transition in hydrogenlike {sup 165}H{sup 66+} is notable because of the complete absence of Doppler shifts. A cryogenic Penning trap, injected with EBIT ions, has been used to observe a single highly charged ion as it recombines by sequential electron capture from H{sub 2} gas. A large sputtered ion yield, suggesting a surface Coulomb explosion, has been observed from insulators bombarded with very highly charged EBIT ions. 21 refs., 11 figs.

  2. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Wilson, K. L.

    1997-08-01T23:59:59.000Z

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  3. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01T23:59:59.000Z

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  4. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01T23:59:59.000Z

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  5. Nuclear Materials Management Program at the NNSS

    SciTech Connect (OSTI)

    ,

    2012-06-08T23:59:59.000Z

    The Nevada National Security Site (NNSS), formerly the Nevada Test Site, was established in 1951 mainly for weapons testing; because special nuclear materials (SNM) were expended during the tests, a nuclear material management program was not required. That changed in December 2004 with the receipt of Category I SNM for purposes other than weapons testing. At that time, Material Control and Accountability and Nuclear Material Management were a joint laboratory (Los Alamos and Lawrence Livermore) effort with nuclear material management being performed at the laboratories. That changed in March 2006 when the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office appointed sole responsibility to the Management and Operations (M&O) contractor, National Security Technologies, LLC (NSTec). Since 2006 the basic nuclear material management work was completed by a combination of M&O employees and subcontractors, but a true Nuclear Material Management (NMM) Program was not determined to be necessary until recently. With expanding missions and more nuclear material (NM) coming to the NNSS, it became imperative to have an organization to manage these materials; therefore, an NMM Manager was officially appointed by NSTec in 2012. In June 2011 a Gap Analysis and white paper was completed by a subcontractor; this presentation will include highlights from those documents along with our plans to resolve the “gaps” and stand up a functional and compliant NMM Program at the NNSS.

  6. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Goyal, Amit (Oak Ridge National Laboratory)

    2012-06-28T23:59:59.000Z

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  7. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    SciTech Connect (OSTI)

    Goyal, Amit (Oak Ridge National Laboratory) [Oak Ridge National Laboratory

    2012-05-22T23:59:59.000Z

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  8. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996

    SciTech Connect (OSTI)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Strauch, M.S.

    1997-01-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  9. Automata groups

    E-Print Network [OSTI]

    Muntyan, Yevgen

    2010-01-16T23:59:59.000Z

    automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...

  10. School of Law Catalog 2007-2008 Vol. 2008, No. 1, May 30, 2007 Periodical postage paid at Lawrence, KS 66045

    E-Print Network [OSTI]

    School of Law Catalog 2007-2008 Vol. 2008, No. 1, May 30, 2007 Periodical postage paid at Lawrence ........................................................ 3 The University of Kansas Administration .................................. 3 School of Law Administration ................................................. 3 The School of Law and Its Programs

  11. Microsoft Word - Project Mgt Working Group Report

    Office of Environmental Management (EM)

    of the Bevatron Demolition Project, located at Lawrence Berkeley National Laboratory (LBNL), was to deactivate, demolish, and dispose of the Bevatron accelerator, ancillary...

  12. Final Report for the Arroyo Las Positas Maintenance Impact Study, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    van Hattem, M; Paterson, L

    2006-01-12T23:59:59.000Z

    In 2000, the Lawrence Livermore National Laboratory's (LLNL) Environmental Protection Department, in coordination with Plant Engineering (PE), began dredging sections of the Arroyo Las Positas (ALP) to alleviate concerns about flooding of sensitive facilities within the mainsite of Lawrence Livermore National Laboratory. In order to reduce potential impacts on the federally threatened California red-legged frog (Rana aurora draytonii), LLNL proposed to dredge sections of the ALP in a ''checkerboard pattern'', resulting in a mosaic of open water habitat and vegetated sections (Figure 1). The Arroyo Las Positas Management Plan (Plan) was coordinated with both state and federal agencies including the U.S. Fish and Wildlife Service (USFWS), California Department of Fish and Game (CDF&G), San Francisco Regional Water Quality Control Board (SFRWQCB), and the Army Corp of Engineers (ACOE). Water Discharge Requirements (WDRs) were issued for this project on December 30, 1999 (Order No. 99-086) by the SFRWQCB. Provision 19 of the WDRs outlined a five-year (2000 through 2004) Maintenance Impact Study (MIS) that LLNL began in coordination with dredging work that was conducted as part of the Arroyo Las Positas Management Plan. Provision 20 of these WDRs requires LLNL to submit a final report of the results of the Maintenance Impact Study for this project to the SFRWQCB. The purpose of this report is to present the results of the Maintenance Impact Study for Arroyo Las Positas and meet the requirements of Provision 20. A description of the annual monitoring included in this Maintenance Impact Study is included in the methods section of this report. Initially the Plan called for dredging the entire length of the Arroyo Las Positas (approximately 6,981 linear feet) over a 5-year period to minimize temporal impacts on the California red-legged frog. Dredging occurred in 2000 ({approx}1,300 ft.), 2001 ({approx}800 ft.), and 2002 ({approx}1,200 ft.), which constituted approximately 3,300 ft., or roughly half of the entire Plan (Figure 2). Logistical challenges and unanticipated cost influenced the decision to terminate the project prior to completion, and re-evaluate the long-term management goals for the ALP. No dredging was conducted in the final two years of the plan (2003 and 2004).

  13. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    SciTech Connect (OSTI)

    Tweed, J.

    1996-10-01T23:59:59.000Z

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  14. "To brush history against the grain": toward a historiography of dialectical materialism and Theresa Hak Kyung Cha's Dictee?

    E-Print Network [OSTI]

    Hwang, Junghyun

    2001-01-01T23:59:59.000Z

    fulfillment of the requirements for the degree of MASTER OF ARTS August 2001 Major Subject: English "TO BRUSH HISTORY AGAINST THE GRAIN": TOWARD A HISTORIOGRAPHY OF DIALECTICAL MATERIALISM AND THERESA HAK KYUNG CHA'S DICTEE A Thesis by JUNGHYUN HWANG.... Lawrence Mitchell (Head of Department) August 2001 Major Subject: English ABSTRACT "To Brush I-Iistory Against the Grain": Toward a Historiography of Dialectical Materialism and Theresa Hak Kyung Cha's Dictee. (August 2001) Junghyun Hwang, B. A...

  15. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05T23:59:59.000Z

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  16. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    SciTech Connect (OSTI)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01T23:59:59.000Z

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  17. Building an internet-based workflow system - the case of Lawrence Livermore National Laboratories` Zephyr project

    SciTech Connect (OSTI)

    Jordan, C. W., LLNL

    1998-04-01T23:59:59.000Z

    Lawrence Livermore National Laboratories` Zephyr System provides a showcase for the ways in which emerging technologies can help streamline procurement processes and improve the coordination between participants in engineering projects by allowing collaboration in ways that have not been possible before. The project also shows the success of a highly pragmatic approach that was initiated by the end user community, and that intentionally covered standard situations, rather than aiming at also automating the exceptions. By helping push purchasing responsibilities down to the end user, thereby greatly reducing the involvement of the purchasing department in operational activities, it was possible to streamline the process significantly resulting in time savings of up to 90%, major cost reductions, and improved quality. Left with less day-to- day purchasing operations, the purchasing department has more time for strategic tasks such as selecting and pre-qualifying new suppliers, negotiating blanket orders, or implementing new procurement systems. The case shows once more that the use of information technologies can result in major benefits when aligned with organizational adjustments.

  18. Cancer risks from soil emissions of volatile organic compounds at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dibley, V. R., LLNL

    1998-02-01T23:59:59.000Z

    The emission isolation flux chamber (EIFC) methodology was applied to Superfund investigations at the Lawrence Livermore National Laboratory Site 300 to determine if on-site workers were exposed to VOCs volatilizing from the subsurface and what, if any, health risks could be attributed to the inhalation of the VOCs volatilizing from the subsurface. During July and August of 1996, twenty, eighteen, and twenty six VOC soil vapor flux samples were collected in the Building 830, 832, and 854 areas, respectively using EIFCS. The VOC concentrations in the vapor samples were used to calculate soil flux rates which were used as input into an air dispersion model to calculate ambient air exposure-point concentrations. The exposure-point concentrations were compared to EPA Region IX Preliminary Remediation Goals (PRGs). Buildings 830 and 832 exposure-point concentrations were less then the PRGs therefore no cancer risks were calculated. The cancer risks for Building 854 ranged from 1.6 x 10{sup -7} to 2.1 x 10{sup -6}. The resultant inhalation cancer risks were all within the acceptable range, implying that on-site workers were not exposed to VOC vapors volatilizing from the subsurface soil that could have significant cancer risks. Therefore remediation in these areas would not be necessary.

  19. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  20. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16T23:59:59.000Z

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  1. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01T23:59:59.000Z

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  2. Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300

    SciTech Connect (OSTI)

    NONE

    1997-10-30T23:59:59.000Z

    Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

  3. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    SciTech Connect (OSTI)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21T23:59:59.000Z

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  4. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14T23:59:59.000Z

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  5. Covetic Materials

    Energy Savers [EERE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  6. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25T23:59:59.000Z

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  7. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  8. Materials Science Materials science has had a profound influence on the development of our technologically

    E-Print Network [OSTI]

    New Hampshire, University of

    Materials Science Materials science has had a profound influence on the development of our of materials. In addition, the materials engineer seeks to discover methods of fabricating materials specifically on materials science. In this group, research is being conducted on fracture and fatigue

  9. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  10. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

    2003-04-22T23:59:59.000Z

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  11. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

    2000-01-01T23:59:59.000Z

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  12. Environmental impact report addendum for the continued operation of Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Weston, R. F. [Roy F. Weston, Inc. (United States)

    1996-10-01T23:59:59.000Z

    An environmental impact statement/environmental impact report (ES/EIR) for the continued operation and management of Lawrence Livermore National Laboratory (LLNL) was prepared jointly by the U.S. Department of Energy (DOE) and the University of California (UC). The scope of the document included near-term (within 5-10 years) proposed projects. The UC Board of Regents, as state lead agency under the California Environmental Quality Act (CEQA), certified and adopted the EIR by issuing a Notice of Determination on November 20, 1992. The DOE, as the lead federal agency under the National Environmental Policy Act (NEPA), adopted a Record of Decision for the ES on January 27, 1993 (58 Federal Register [FR] 6268). The DOE proposed action was to continue operation of the facility, including near-term proposed projects. The specific project evaluated by UC was extension of the contract between UC and DOE for UC`s continued operation and management of LLNL (both sites) from October 1, 1992, through September 30, 1997. The 1992 ES/EIR analyzed impacts through the year 2002. The 1992 ES/EIR comprehensively evaluated the potential environmental impacts of operation and management of LLNL within the near-term future. Activities evaluated included programmatic enhancements and modifications of facilities and programs at the LLNL Livermore site and at LLNL`s Experimental Test Site (Site 300) in support of research and development missions 2048 established for LLNL by Congress and the President. The evaluation also considered the impacts of infrastructure and building maintenance, minor modifications to buildings, general landscaping, road maintenance, and similar routine support activities.

  13. Application of system simulation for engineering the technical computing environment of the Lawrence

    SciTech Connect (OSTI)

    Boyd, V; Edmunds, T; Minuzzo, K; Powell, E; Roche, L.

    1998-09-15T23:59:59.000Z

    This report summarizes an investigation performed by Lawrence Livermore National Laboratory s (LLNL) Scientific Computing Communications Department (SCCD) and the Garland Location of Raytheon Systems Company (RSC) from April through August.1998. The study assessed the applicability and benefits of utilizing System Simulation in architecting and deploying technical computing assets at LLNL, particularly in support of the ASCI program and associated scientific computing needs. The recommendations and other reported findings reflect the consensus of the investigation team. The investigation showed that there are potential benefits to performing component level simulation within SCCD in support of the ASCI program. To illustrate this, a modeling exercise was conducted by the study team that generated results consistent with measured operational performance. This activity demonstrated that a relatively modest effort could improve the toolset for making architectural trades and improving levels of understanding for managing operational practices. This capability to evaluate architectural trades was demonstrated by evaluating some of the productivity impacts of changing one of the design parameters of an existing file transfer system. The use of system simulation should be tailored to the local context of resource requirements/limitations, technology plans/processes/issues, design and deployment schedule, and organizational factors. In taking these matters into account, we recommend that simulation modeling be employed within SCCD on a limited basis for targeted engineering studies, and that an overall performance engineering program be established to better equip the Systems Engineering organization to direct future architectural decisions and operational practices. The development of an end-to-end modeling capability and enterprise-level modeling system within SCCD is not warranted in view of the associated development requirements and difficulty in determining firm operational performance requirements in advance of the critical architectural decisions. These recommendations also account for key differences between the programmatic and institutional environments at LLNL and RSC.

  14. Application of system simulation for engineering the technical computing environment of the Lawrence Livermore National Laboratorie

    SciTech Connect (OSTI)

    Boyd, V; Edmunds, T; Minuzzo, K; Powell, E; Roche, L

    1998-09-15T23:59:59.000Z

    This report summarizes an investigation performed by Lawrence Livermore National Laboratory? s (LLNL) Scientific Computing & Communications Department (SCCD) and the Garland Location of Raytheon Systems Company (RSC) from April through August.1998. The study assessed the applicability and benefits of utilizing System Simulation in architecting and deploying technical computing assets at LLNL, particularly in support of the ASCI program and associated scientific computing needs. The recommendations and other reported findings reflect the consensus of the investigation team. The investigation showed that there are potential benefits to performing component level simulation within SCCD in support of the ASCI program. To illustrate this, a modeling exercise was conducted by the study team that generated results consistent with measured operational performance. This activity demonstrated that a relatively modest effort could improve the toolset for making architectural trades and improving levels of understanding for managing operational practices. This capability to evaluate architectural trades was demonstrated by evaluating some of the productivity impacts of changing one of the design parameters of an existing file transfer system. The use of system simulation should be tailored to the local context of resource requirements/limitations, technology plans/processes/issues, design and deployment schedule, and organizational factors. In taking these matters into account, we recommend that simulation modeling be employed within SCCD on a limited basis for targeted engineering studies, and that an overall performance engineering program be established to better equip the Systems Engineering organization to direct future architectural decisions and operational practices. The development of an end-to-end modeling capability and enterprise-level modeling system within SCCD is not warranted in view of the associated development requirements and difficulty in determining firm operational performance requirements in advance of the critical architectural decisions. These recommendations also account for key differences between the programmatic and institutional environments at LLNL and RSC.

  15. Molten-Salt-Based Growth of Group III Nitrides

    DOE Patents [OSTI]

    Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

    2008-10-14T23:59:59.000Z

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  16. Fissile material disposition program final immobilization form assessment and recommendation

    SciTech Connect (OSTI)

    Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-10-03T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

  17. Assessment of Materials for Engaging Students in Statistical Discovery*

    E-Print Network [OSTI]

    Froelich, Amy G.

    of Materials · Course Project ­ Experiment and Regression Analysis ­ Experimental and Control Group Students randomly assigned to project groups. Assessment of Materials · Grading of Exam Questions ­ Rubric ­ Graded of Materials · Other Students Control Group ­ Students in project groups with high math ability students were

  18. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-01-10T23:59:59.000Z

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  19. Laboratory Directed Research and Development Program FY 2009 for Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Hansen, Todd C.

    2010-01-01T23:59:59.000Z

    of the photovoltaic efficiency of the proposed materials. Indiode, or more efficiency in a photovoltaic. The ability toto enhance the efficiency of the photovoltaic devices by

  20. All material in this document is the intellectual property of Technology and Innovation Management Group at RWTH Aachen University and/or the respective author/owner. Any copying, distribution,

    E-Print Network [OSTI]

    Di Pillo, Gianni

    All material in this document is the intellectual property of Technology and Innovation Management on the Attraction of Innovation Roles in Open Innovation Web-Based Platforms By Cinzia Battistella, Fabio Nonino-Creation: Bridging Mass Customization & Open Innovation November 16-19, 2011 San Francisco Airport Marriott

  1. Summary of a joint US-Japan study of potential approaches to reduce the attractiveness of various nuclear materials for use in a nuclear explosive device by a terrorist group

    SciTech Connect (OSTI)

    Bathke, C.G. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM (United States); Inoue, N.; Kuno, Y.; Mihara, T.; Sagara, H. [Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184 (Japan); Ebbinghaus, B.B. [Lawrence Livermore National Laboratory, P.O. Box L-168, Livermore, CA 94551 (United States); Murphy, J.; Dalton, D. [National Nuclear Security Administration, Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585 (United States); Nagayama, Y. [Ministry of Education, Culture, Sports, Science and Technology, 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan)

    2013-07-01T23:59:59.000Z

    This paper summarizes the results of a joint US-Japan study to establish a mutual understanding, through scientific-based study, of potential approaches to reduce the attractiveness of various nuclear materials for use in a terrorist nuclear explosive device (NED). 4 approaches that can reduce materials attractiveness with a very high degree of effectiveness are: -) diluting HEU with natural or depleted U to an enrichment of less than 10% U-235; -) storing Pu in nuclear fuel that is not man portable and with a dose rate greater or equal to 10 Gy/h at 1 m; -) storing Pu or HEU in heavy items, i.e. not transportable, provided the removal of the Pu or HEU from the item requires a purification/processing capability; and -) converting Pu and HEU to very dilute forms (such as wastes) that, without any security barriers, would require very long acquisition times to acquire a Category I quantity of Pu or of HEU. 2 approaches that can reduce materials attractiveness with a high degree of effectiveness are: -) converting HEU-fueled research reactors into LEU-fueled research reactors or dilute HEU with natural or depleted U to an enrichment of less than 20% U-235; -) converting U/Al reactor fuel into U/Si reactor fuel. Other approaches have been assessed as moderately or totally inefficient to reduce the attractiveness of nuclear materials.

  2. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    SciTech Connect (OSTI)

    Krishnan, A

    2006-08-30T23:59:59.000Z

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the area of host-pathogen interactions as well as policy makers from federal agencies. The main objectives of the workshop are: (1) to assess the current national needs, capabilities, near-term technologies, and future challenges in applying various diagnostics tools to public health and bio-defense; (2) to evaluate the utility and feasibility of host-response and pathogen biomarker profiling in the diagnosis and management of infectious diseases; and (3) to create a comprehensive developmental strategy from proof-of-concept, through validation, to deployment of appropriate advanced technology for the clinical/public health and bio-defense environments.

  3. NONDESTRUCTIVE EXAMINATION OF PLUTONIUM-BEARING MATERIAL CONTAINERS

    SciTech Connect (OSTI)

    Yerger, L.; Mcclard, J.; Traver, L.; Grim, T.

    2010-02-01T23:59:59.000Z

    The first nondestructive examination (NDE) of 3013-type containers as part of the Department of Energy's (DOE's) Integrated Surveillance Program (ISP) was performed in February, 2005. Since that date 280 NDE surveillances on 255 containers have been conducted. These containers were packaged with plutonium-bearing materials at multiple DOE sites. The NDE surveillances were conducted at Hanford, Lawrence Livermore National Laboratory (LLNL), and Savannah River Site (SRS). These NDEs consisted of visual inspection, mass verification, radiological surveys, prompt gamma analysis, and radiography. The primary purpose of performing NDE surveillances is to determine if there has been a significant pressure buildup inside the inner 3013 container. This is done by measuring the lid deflection of the inner 3013 container using radiography images. These lid deflection measurements are converted to pressure measurements to determine if a container has a pressure of a 100 psig or greater. Making this determination is required by Surveillance and Monitoring Plan (S&MP). All 3013 containers are designed to withstand at least 699 psig as specified by DOE-STD-3013. To date, all containers evaluated have pressures under 50 psig. In addition, the radiography is useful in evaluating the contents of the 3013 container as well as determining the condition of the walls of the inner 3013 container and the convenience containers. The radiography has shown no signs of degradation of any container, but has revealed two packaging anomalies. Quantitative pressure measurements based on lid deflections, which give more information than the 'less than or greater than 100 psig' (pass/fail) data are also available for many containers. Statistical analyses of the pass/fail data combined with analysis of the quantitative data show that it is extremely unlikely that any container in the population of 3013 containers considered in this study (e.g., containers packaged according to the DOE-STD-3013 by 2006) would exceed a pressure of 100 psig. At this time, Los Alamos National Laboratory (LANL) and LLNL continue to package containers. Future NDE surveillances will address containers packaged after 2006 for both sites as well as containers requested by the Materials Identification Surveillance (MIS) working group based on knowledge gained from shelf-life study and surveillance results.

  4. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2007 Microsystems and Nanotechnology Research Group 1 About

  5. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2008 Microsystems and Nanotechnology Research Group 1 About

  6. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  7. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  8. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  9. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  10. IBM Probes Material Capabilities at the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and to understand how the ordering and filling of these orbitals change as the material goes through its phase transition," says Parkin. Parkin and his group of researchers...

  11. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  12. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  13. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  14. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  15. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  16. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  17. Polyelectrolyte Materials for High Temperature Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    High 3M (3M) Temperature Fuel Cells John B. Kerr Lawrence Berkeley National Laboratory (LBNL) Collaborators: Los Alamos National Laboratory (LANL). February 13, 2007 This...

  18. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30T23:59:59.000Z

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA

  19. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23T23:59:59.000Z

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  20. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  1. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  2. Hydrogen Storage Workshop Advanced Concepts Working Group

    E-Print Network [OSTI]

    / Current Status · Aerogels are the scaffold; template with organic functional groups; physisorption, acid benign ­ Inexpensive #12;Self-Assembled Nanocomposites ­ R&D Needs 1. Studying silica aerogels 2. Modifying aerogels 3. Theoretical Modeling - various chemical structures / materials 4. Functionalization

  3. The Analysis of Interference Effects in the Sum Frequency Spectra of Water Interfaces Mac G. Brown, Elizabeth A. Raymond, Heather C. Allen, Lawrence F. Scatena, and

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    The Analysis of Interference Effects in the Sum Frequency Spectra of Water Interfaces Mac G. Brown, Elizabeth A. Raymond, Heather C. Allen, Lawrence F. Scatena, and Geraldine L. Richmond* Department involve the surface of liquid water. Unfortunately, obtaining spectral fits to vibrational spectra

  4. Business Career Services Center | 1300 Sunnyside Ave. Rm. 125 | Lawrence, KS 66045 | (785) 864-5591 | www.business.ku.edu

    E-Print Network [OSTI]

    Business Career Services Center | 1300 Sunnyside Ave. Rm. 125 | Lawrence, KS 66045 | (785) 864-5591 | www.business.ku.edu - 1 - What Can I Do With A Major In INFORMATION SYSTEMS? This handout will provide education. You'll gain a solid foundation in the various business disciplines and gain an understanding

  5. Dr. Paul Alivisatos was appointed as the seventh director of Lawrence Berkeley National Laboratory by the University of California (UC) Board

    E-Print Network [OSTI]

    Eisen, Michael

    Dr. Paul Alivisatos was appointed as the seventh director of Lawrence Berkeley National Laboratory. Yudof, Alivisatos was named interim director of Berkeley Lab on January 21, 2009, replacing former, Alivisatos was the deputy director of Berkeley Lab, serving as the lab's chief research officer, overseeing

  6. Tube-wave Effects in Cross-Well Seismic Data at Stratton Field Valeri Korneev, Lawrence Berkeley National Laboratory, Jorge Parra, South-West Research Institute,

    E-Print Network [OSTI]

    Korneev, Valeri A.

    Tube-wave Effects in Cross-Well Seismic Data at Stratton Field Valeri Korneev, Lawrence Berkeley vertical plane. The data were collected in the receiver wells Ward159 and Ward145, while sources were The analysis of crosswell seismic data for a gas reservoir in Texas revealed two newly detected seismic wave

  7. Properties of Group Five and Group Seven transactinium elements

    E-Print Network [OSTI]

    Wilk, Philip A.

    2001-01-01T23:59:59.000Z

    of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by

  8. Material Symbols 

    E-Print Network [OSTI]

    Clark, Andy

    2006-01-01T23:59:59.000Z

    What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

  9. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  10. LASER AUTOGENOUS BRAZING A NEW METHOD FOR JOINING DISSIMILAR METALS Gen Satoh, Y. Lawrence Yao

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    LASER AUTOGENOUS BRAZING ­ A NEW METHOD FOR JOINING DISSIMILAR METALS Paper #602 Gen Satoh, Y a novel process, laser autogenous brazing, being developed by the authors that enables joining of dissimilar metal pairs through a braze-like interface without the use of filler materials to maintain

  11. Improvement of Laser Induced Residual Stress Distributions via Shock Waves Wenwu Zhang and Y. Lawrence Yao

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    with drilling at micron scale are also presented. 1. Introduction Since laser materials processing undergoes to prevent propagation ofmicrocracks. Thermally induced stress in laser drilling and scribing ofceramics was studied (Modest, 1997; Modest and Thomas, 1999). Their simulations show that in laser drilling

  12. PROCEEDINGS, TOUGH Symposium 2012 Lawrence Berkeley National Laboratory, Berkeley, California, September 17-19, 2012

    E-Print Network [OSTI]

    Boyer, Edmond

    coupled with chemistry), the permeability and diffusion coefficients in different porous media vary-controlled because of the extremely low permeability of surrounding materials, like concrete or clay. Various perturbation at the concrete/bentonite or concrete/clay interfaces (Gaucher et al., 2004; Burnol et al. 2006

  13. Postdoctoral Researcher, Materials Chemistry (2 year contract)

    E-Print Network [OSTI]

    Humphrys, Mark

    Postdoctoral Researcher, Materials Chemistry (2 year contract) Adaptive Sensors Group Dublin City Foundation Ireland through the CLARITY CSET (www.clarity- centre.org), supplemented by significant project partners. The group's research strategy in materials chemistry research is to closely align activity

  14. WUFIINSTRUCTORS Andr Desjarlais is the Group Leader for the

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    IBP WUFIINSTRUCTORS André Desjarlais is the Group Leader for the Building Envelope and Materials Construction Association, Asphalt Roofing Manufacturers Association, and the Building Environment and Thermal Envelope Council. Areas of expertise include building envelope and material energy efficiency, moisture

  15. Twenty-five years of artificial photosynthesis research at Ernest Orlando Lawrence Berkeley National Laboratory

    SciTech Connect (OSTI)

    Otvos, J.W.; Calvin, M.

    1996-02-01T23:59:59.000Z

    This report summarizes the research done on artificial photosynthesis by the Calvin Group between 1970 and 1995 when the program was terminated. It contains a compilation of the personnel involved as well as a bibliography of publications supported by the project.

  16. Russia-U.S. joint program on the safe management of nuclear materials

    SciTech Connect (OSTI)

    Witmer, F.E.; Krumpe, P.F. [Dept. of Energy, Washington, DC (United States); Carlson, D.D. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1998-06-01T23:59:59.000Z

    The Russia-US joint program on the safe management of nuclear materials was initiated to address common technical issues confronting the US and Russia in the management of excess weapons grade nuclear materials. The program was initiated after the 1993 Tomsk-7 accident. This paper provides an update on program activities since 1996. The Fourth US Russia Nuclear Materials Safety Management Workshop was conducted in March 1997. In addition, a number of contracts with Russian Institutes have been placed by Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL). These contracts support research related to the safe disposition of excess plutonium (Pu) and highly enriched uranium (HEU). Topics investigated by Russian scientists under contracts with SNL and LLNL include accident consequence studies, the safety of anion exchange processes, underground isolation of nuclear materials, and the development of materials for the immobilization of excess weapons Pu.

  17. USD Catalysis Group for Alternative Energy

    SciTech Connect (OSTI)

    James D. Hoefelmeyer, Ranjit Koodali, Grigoriy Sereda, Dan Engebretson, Hao Fong, Jan Puszynski, Rajesh Shende, Phil Ahrenkiel

    2012-03-13T23:59:59.000Z

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  18. Postdoctoral Research Associate Imaging and Nanoscale Characterization Group

    E-Print Network [OSTI]

    Pennycook, Steve

    Qian Li Postdoctoral Research Associate Imaging and Nanoscale Characterization Group Center-ion battery and fuel cell materials. 2. Surface Charge and Polarization Dynamics of Ferroelectrics The surface

  19. Multi-material ALE with AMR for modeling hot plasmas and cold fragmenting materials

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    of the U. S. Department of Energy by Lawrence Livermoremethodology Applications in high energy density physics suchlation of laser-driven fusion energy targets. The addi- tion

  20. Electron beam related manufacturing technology development at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Anklam, T.M.

    1995-12-14T23:59:59.000Z

    In the defense community, certain uranium-alloy components have been manufactured by methods which generate large quantities of uranium bearing waste. Our estimates show that these components can be fabricated by vapor deposition and reduce waste generation by more than an order of magnitude. We present results from a series of uranium-alloy vapor deposition tests designed to produce samples of free-standing structures. Both flat plate and cylindrical shells were produced. The deposits were fully dense, defect free and displayed a high quality surface finish. The uranium-alloy was co-evaporated from a single source. Bulk chemistry specifications for the material were met, although some residual variation in chemistry was observed in sample cross sections. After heat treatment, the vapor deposited samples exhibited tensile properties similar to conventional ingot processed material.

  1. Electron beam related manufacturing technology development at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Anklam, T. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    1995-12-31T23:59:59.000Z

    In the defense community, certain uranium-alloy components have been manufactured by methods which generate large quantities of uranium bearing waste. The authors estimates show that these components can be fabricated by vapor deposition and reduce waste generation by more than an order of magnitude. They present results from a series of uranium-alloy vapor deposition tests designed to produce samples of free-standing structures. Both flat plate and cylindrical shells were produced. The deposits were fully dense, defect free and displayed a high quality surface finish. The uranium-alloy was co-evaporated from a single source. Bulk chemistry specifications for the material were met, although some residual variation in chemistry was observed in sample cross sections. After heat treatment, the vapor deposited samples exhibited tensile properties similar to conventional ingot processed material.

  2. Safeguards and security issues for the disposition of fissile materials

    SciTech Connect (OSTI)

    Jaeger, C.D.; Moya, R.W.; Duggan, R.A.; Mangan, D.L.; Tolk, K.M. [Sandia National Labs., Albuquerque, NM (United States); Rutherford, D.; Fearey, B. [Los Alamos National Lab., NM (United States); Moore, L. [Lawrence Livermore National Lab., CA (United States)

    1995-07-01T23:59:59.000Z

    The Department of Energy`s Office of Fissile Material Disposition (FMD) is analyzing long-term storage and disposition options for surplus weapons-usable fissile materials, preparing a programmatic environmental impact statement (PEIS), preparing for a record of decision (ROD) regarding this material and conducting other activities. The primary security objectives of this program are to reduce major security risks and strengthen arms reduction and nonproliferation (NP). To help achieve these objectives, a safeguards and security (S&S) team consisting of participants from Sandia, Los Alamos, and Lawrence Livermore National Laboratories was established. The S&S activity for this program is a cross-cutting task which addresses all of the FMD program options. It includes both domestic and international safeguards and includes areas such as physical protection, nuclear materials accountability and material containment and surveillance. This paper will discuss the activities of the Fissile Materials Disposition Program (FMDP) S&S team as well as some specific S&S issues associated with various FMDP options/facilities. Some of the items to be discussed include the threat, S&S requirements, S&S criteria for assessing risk, S&S issues concerning fissile material processing/facilities, and international and domestic safeguards.

  3. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17T23:59:59.000Z

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  4. advisory groups: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    construct environmentally sustainable Sze, Lawrence 99 NASA Advisory Council Space Operations Committee July 2010 Geosciences Websites Summary: NASA Advisory Council Space...

  5. advisory group cevag: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    construct environmentally sustainable Sze, Lawrence 99 NASA Advisory Council Space Operations Committee July 2010 Geosciences Websites Summary: NASA Advisory Council Space...

  6. awareness advisory group: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    construct environmentally sustainable Sze, Lawrence 158 NASA Advisory Council Space Operations Committee July 2010 Geosciences Websites Summary: NASA Advisory Council Space...

  7. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science Materials

  8. GROUP THERAPY Syracuse University

    E-Print Network [OSTI]

    McConnell, Terry

    your individual needs. In a group, up to eight students meet with one or two group therapists. MostGROUP THERAPY Syracuse University Counseling Center 200 Walnut Place Phone: 315-443-4715 Fax: 315-443-4276 counselingcenter.syr.edu WHAT STUDENTS SAY ABOUT GROUP THERAPY I was really anxious about joining a group

  9. Composite material and method of making

    DOE Patents [OSTI]

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20T23:59:59.000Z

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  10. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01T23:59:59.000Z

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  11. Labs at-a-Glance: Lawrence Berkeley National Laboratory | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >>Programs »AmesScienceofof

  12. 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeriesDepartmentSmall toMaterials Chemist:Laboratory

  13. DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelopEnergy Oak Ridge Office andto

  14. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k C o . C l a r k C oiAsymmetric

  15. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from...

  16. Concurrence' Lawrence Livermore National Laboratory FY2015 Ten Year Site Plan

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies |March 2015 NMMSS News

  17. Lawrence Livermore charitable campaign raises $3.3 million for local

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov

  18. First-of-a-kind supercomputer at Lawrence Livermore available for

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site OperationsAboutEnergy andFeatures |collaborative

  19. Energy Management and Control Systems and their Use for Performance Monitoring in the LoanSTAR Program, Technical Report prepared for the Lawrence Berkeley Laboratory, University of California, Energy and Environment Division

    E-Print Network [OSTI]

    Heinemeier, K. E.; Akbari, H.

    1993-01-01T23:59:59.000Z

    ESL-TR-93/06-02 LBL-33114 UC-350 LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA ENERGY AND ENVIRONMENT DIVISION ENERGY MANAGEMENT AND CONTROL SYSTEMS AND THEIR USE FOR PERFORMANCE MONITORING IN THE LOANSTAR PROGRAM Final Report Prepared...

  20. Dr. Stirling A. Colgate has been a staff physicist at Lawrence Livermore National Lab. (1952-1965) and was a staff member at Los Alamos National Laboratory, [LANL] from 1976 to 1991 and from

    E-Print Network [OSTI]

    Dr. Stirling A. Colgate has been a staff physicist at Lawrence Livermore National Lab. (1952 in WW II in the US Merchant Marine. Dr. Stirling A. Colgate is an associate staff member at Los Alamos

  1. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  2. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  3. Selmer groups as flat cohomology groups

    E-Print Network [OSTI]

    ?esnavi?ius, K?stutis

    2014-01-01T23:59:59.000Z

    Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined ...

  4. 1. Tsubono Group 1 1 Tsubono Group

    E-Print Network [OSTI]

    Ejiri, Shinji

    optical fiber ­ Test of the law of gravitation at extremely small distance references [1] Y. Aso, M. Ando1. Tsubono Group 1 1 Tsubono Group Research Subjects: Experimental Relativity, Gravitational Wave Physics, Laser Inter- ferometer Member: Kimio TSUBONO and Masaki ANDO The detection of gravitational waves

  5. Energy Materials & Processes | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials & Processes Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems Energy Materials &...

  6. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy`s inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  7. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010

    SciTech Connect (OSTI)

    Pawloski, G A

    2011-01-03T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  8. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments [OSTI]

    2002-00-00T23:59:59.000Z

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  9. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  10. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    1983-08-16T23:59:59.000Z

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  11. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01T23:59:59.000Z

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  12. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  13. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials Science

  14. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | National NuclearMaterial Misfits

  15. Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

  16. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  17. Final Report on ASU Research Funded through Lawrence Livermore National Laboratory Grant ASU XAJ9991/CO

    SciTech Connect (OSTI)

    Calhoun, R; Sommer, J

    2004-01-21T23:59:59.000Z

    The line of inquiry which the ASU lidar group has been investigating, with collaboration and support from LLNL, is to create approaches and algorithms for better utilizing the rich information available through modern remote sensors in dispersion modeling systems. In particular, our goal is to create a lidar-data-driven dispersion model mode in ADAPT/LODI. This report describes progress towards this goal during the 2002/2003 academic year. Because of the nature of lidar data and the necessity to utilize additional information, both numerical and measured, this is essentially a data retrieval and data fusion project. With the current generation of commercially available lidar, the scope of the domain in which we are interested is initially 4 to 14 kilometers in radius, where the potentially scanned domain is roughly hemispherical. Figure 1, for example, taken from a recent lidar deployment in Oklahoma City, shows visually the most typical range of the domain that can be probed with the ASU lidar. Ranges 2 or 3 times the distance to the cluster of buildings in the photograph can be probed with a properly functioning, commercially available lidar. This could be of significant value for protecting key buildings with roof-top located remote sensors coupled with dispersion models.

  18. Center for Nanophase Materials Sciences User Group Bylaws and Charter

    E-Print Network [OSTI]

    Pennycook, Steve

    by the Executive Committee, which shall prepare a slate of candidates for the election. The election process appointment within CNMS. In preparing the slate of candidates for the election, the Executive Committee shall reflected in the slate of candidates. To be eligible for election to the Executive Committee, each candidate

  19. EM QA Working Group September 2011 Meeting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM HighlightsSeptemberQUALITY ASSURANCE WORKING

  20. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call...

  1. Supporting Information Materials and Methods

    E-Print Network [OSTI]

    Collins, Steven H.

    1 Supporting Information Materials and Methods Description of Energy-Recycling Artificial Foot The energy-recycling artificial foot was comprised of six component groups: the attachment interface, the toe The prosthesis simulator boot weighed 1.30 kg, and the lift shoe weighed 1.42 kg, with each adding approximately

  2. SIDEWALL MATERIALS FOR ALUMINIUM SMELTER

    E-Print Network [OSTI]

    Liley, David

    is needed to protect sidewall material High heat loss Overall Reaction: 2Al2O3 (sol) + 3C(s) = 4Al(l) + 3CO2 (SUT) Prof. Geoff Brooks (SUT) Dr. Xiao Yong Yan (CSIRO) High Temperature Processing Research Group CO2 per tonne Al Australia's Aluminium Industry * Australian Aluminium Council: www

  3. Materials Characterization | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Electron

  4. Critical Materials Institute

    SciTech Connect (OSTI)

    Alex King

    2013-01-09T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  5. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  6. Thermodynamic estimation: Ionic materials

    SciTech Connect (OSTI)

    Glasser, Leslie, E-mail: l.glasser@curtin.edu.au

    2013-10-15T23:59:59.000Z

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.

  7. Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  8. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  9. Energy Systems Group Annual Report 

    E-Print Network [OSTI]

    Anand, N. K.; Caton, J.; Heffington, W. M.; O'Neal, D. L.; Somasundaram, S.; Turner, W. D.

    1986-01-01T23:59:59.000Z

    . The principal investigator on this project is Dr. D.L. O'Neal. Frost can have an adverse impact on the energy use and capacity of heat pumps operating in the heating mode at outdoor temperatures between 20 and 40 F. The objective of this project... model of the frost formation process will also be developed. An Analysis of Efficiency Improvements in Heat Pumps. funded by Lawrence Berkeley Laboratory (U.S. Department of Energy). Air-to-air heat pump technology has improved dramatically over the past...

  10. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  11. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  12. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  13. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  14. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  15. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  16. Methods for degrading lignocellulosic materials

    SciTech Connect (OSTI)

    Vlasenko, Elena (Davis, CA); Cherry, Joel (Davis, CA); Xu, Feng (Davis, CA)

    2011-05-17T23:59:59.000Z

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.

  17. Methods for degrading lignocellulosic materials

    DOE Patents [OSTI]

    Vlasenko, Elena (Davis, CA); Cherry, Joel (Davis, CA); Xu, Feng (Davis, CA)

    2008-04-08T23:59:59.000Z

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.

  18. 2001-2002 Wet Season Branchiopod Survey Report, Lawrence Livermore National Laboratory, Site 300, Alameda and San Joaquin Counties, California

    SciTech Connect (OSTI)

    Weber, W; Woollett, J

    2004-11-16T23:59:59.000Z

    Condor County Consulting on behalf of Lawrence Livermore National Laboratory (LLNL) has performed wet season surveys for listed branchiopods at Site 300, located in eastern Alameda County and western San Joaquin County. LLNL is collecting information for the preparation of an EIS covering ongoing explosives testing and related activities on Site 300. Related activities include maintenance of fire roads and annual control burns of approximately 607 hectares (1500 acres). Control burns typically take place on the northern portion of the site. Because natural branchiopod habitat is sparse on Site 300, it is not surprising that listed branchiopods were not observed during this 2001-2002 wet season survey. Although the site is large, a majority of it has topography and geology that precludes the formation of static seasonal pools. Even the relatively gentle topography of the northern half of the site contains few areas where water pools for more than two weeks. The rock outcrops found on the site did not provide suitable habitat for listed branchiopods. Most of the habitat available to branchiopods on the site is puddles that form in roadbeds and dry quickly. The one persistent pool on the site, the larger of the two modified vernal pools and the only one to fill this season, is occupied by two branchiopod species that require long-lived pools to reach maturity. In short, there is little habitat available on the site for branchiopods and most of the habitat present is generally too short-lived to support the branchiopod species that do occur at Site 300.

  19. Office of Inspector General report on audit of renovation and new construction projects at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-06-05T23:59:59.000Z

    The Oakland Operations Office (Oakland) is responsible for acquiring facilities needed to satisfy mission needs and to do so at the least cost to the Department of Energy (Department). The objective of the audit was to determine if proposed renovation and new construction projects at the Lawrence Livermore National Laboratory (Livermore) met mission needs while minimizing cost to the Government. In pursuing three projects, estimated to cost over $78 million, Livermore had not demonstrated that it had selected the best alternatives for meeting the Department`s needs while minimizing cost. Livermore was able to pursue these projects because Oakland did not ensure that the laboratory had performed cost and benefit analyses of all alternatives. Further, Oakland did not establish benchmarks to assess the reasonableness of the total costs of designing, constructing, and managing these projects. As a result, it was likely that the Department was spending more than necessary on renovation and new construction projects at Livermore. Although the projects met mission needs, it was recommended that the Manager, Oakland: (1) require Livermore to perform analyses of expected costs and benefits for alternatives; (2) evaluate the adequacy of Livermore`s cost and benefit analyses of alternatives; (3) establish benchmarks based on industry and other government agency cost data to assess the reasonableness of Livermore`s total design, construction, and project management costs; and (4) select the alternative that meets established needs at the least cost to the Government. Oakland agreed with the recommendations and will implement them starting with the Fiscal Year 1999 project submission and validation.

  20. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  1. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  2. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

  3. Material protection, control, and accounting enhancements through the Russian/US cooperative MPC & A program

    SciTech Connect (OSTI)

    Scott, S.C. [Los Alamos National Lab., NM (United States); Sude, S. [Brookhaven National Lab., Upton, NY (United States); Buckley, W.M. [Lawrence Livremore National Lab., CA (United States)] [and others

    1997-11-01T23:59:59.000Z

    The cooperative Russian/US Mining and Chemical Combine (Gorno-Khimichesky Kombinat, GKhK, also referred to as Krasnoyarsk-26) Materials Protection, Control, and Accounting (MPC & A) project was initiated in June 1996. Since then, the GKhK has collaborated with Brookhaven, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories to test, evaluate, and implement MPC & A elements including bar codes, computerized nuclear material accounting software, nondestructive assay technologies, bulk measurement systems, seals, video surveillance systems, radio communication systems, metal detectors, vulnerability assessment tools, personnel access control systems, and pedestrian nuclear material portal monitors. This paper describes the strategy for implementation of these elements at the GKhK and the status of the collaborative efforts. 8 refs., 7 figs., 1 tab.

  4. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  5. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  6. Functional Materials for Energy | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

  7. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect (OSTI)

    A., B

    2008-07-31T23:59:59.000Z

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

  8. GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA BARRETT, CIAN ADAMS, NICOLE BARTON, MICHAEL

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA ANDERSON FITZSIMONS, DENISEBINCHY, SUSAN CARLEY, JESSE CONWAY, AILBHE BROOKE, HENRY CONLAN, DEIRDRE, CAOIMHE HESKIN, CLODAGH MC GOVERN, MARIE-CLAIREMURRAY, AINE GROGAN, CLARE GERARD, ALLISON MC QUAID, RACHEL

  9. Chemical and Materials Science (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Home Advanced Photon Source About Us Useful Links Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for...

  10. Materials with supramolecular chirality : liqid crystals and polymers for catalysis

    E-Print Network [OSTI]

    Martin, Karen Villazor

    2005-01-01T23:59:59.000Z

    Mesomorphic organizations provide a powerful and efficient method for the preorganization of molecules to create synthetic materials with controlled supramolecular architectures. Incorporation of polymerizable groups within ...

  11. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21T23:59:59.000Z

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and res

  12. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  13. Microbial Fuel Cell Using Inexpensive Materials

    E-Print Network [OSTI]

    Microbial Fuel Cell Using Inexpensive Materials Group #4 Peter McAveney Brett Pedersen Jun-Chung Wong #12;Abstract We built and tested a microbial fuel cell using low-cost materials. Our intention- critical applications such as transportation. Microbial fuel cells cannot achieve comparable power

  14. Sudoplatov S. V. ON GENERIC GROUP TRIGONOMETRIES

    E-Print Network [OSTI]

    Sudoplatov, Sergey Vladimirovich

    ­447. 6. Sudoplatov S. V. On type identifications in trigonometrical theories // Materials of InternatSudoplatov S. V. ON GENERIC GROUP TRIGONOMETRIES The positive solution of known problem projective closure (the construction is defined in [5, theorem 8]); 2) an amalgamation (type identification

  15. Trial operation of material protection, control, and accountability systems at two active nuclear material handling sites within the All-Russian Institute of Experimental Physics (VNIIEF)

    SciTech Connect (OSTI)

    Skripka, G.; Vatulin, V.; Yuferev, V. [VNIIEF, Sarov (Russian Federation)] [and others

    1997-11-01T23:59:59.000Z

    This paper discusses Russian Federal Nuclear Center (RFNC)-VNIIEF activities in the area of nuclear material protection, control, and accounting (MPC and A) procedures enhancement. The goal of such activities is the development of an automated systems for MPC and A at two of the active VNIIEF research sites: a research (reactor) site and a nuclear material production facility. The activities for MPC and A system enhancement at both sites are performed in the framework of a VNIIEF-Los Alamos National Laboratory contract with participation from Sandia National Laboratories, Lawrence Livermore National Laboratory, Brookhaven National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and PANTEX Plant in accordance with Russian programs supported by MinAtom. The American specialists took part in searching for possible improvement of technical solutions, ordering equipment, and delivering and testing the equipment that was provided by the Americans.

  16. Eastern Gas Shales Project: Pennsylvania No. 5 well, Lawrence County. Phase III report, summary of laboratory analyses and mechanical characterization results

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    This summary presents a detailed characterization of the Devonian Shale occurrence in the EGSP-Pennsylvania No. 5 well. Information provided includes a stratigraphic summary and lithology and fracture analyses resulting from detailed core examinations and geophysical log interpretations at the EGSP Core Laboratory. Plane of weakness orientations stemming from a program of physical properties testing at Michigan Technology University are also summarized; the results of physical properties testing are dealt with in detail in the accompanying report. The data presented was obtained from the study of approximately 604 feet of core retrieved from a well drilled in Lawrence County of west-central Pennsylvania.

  17. SPPR Group Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    members will execute in August 2011. Facilities Use Charge agreements are drafted: In review stage by customer group; Proposal specifies annual update of charge amount...

  18. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  19. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR ­ IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

  20. Spent Fuel Working Group Report. Volume 1

    SciTech Connect (OSTI)

    O`Toole, T.

    1993-11-01T23:59:59.000Z

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.

  1. DREDGED MATERIAL EVALUATION AND

    E-Print Network [OSTI]

    DREDGED MATERIAL EVALUATION AND DISPOSAL PROCEDURES (USERS' MANUAL) Dredged Material Management 2009) Prepared by: Dredged Material Management Office US Army Corps of Engineers Seattle District #12........................................................................................2-1 2.2 The Dredged Material Evaluation Process

  2. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

    2009-10-06T23:59:59.000Z

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  3. Fermilab | Employee Advisory Group | Focus Group Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focus Group Report A random sampling of

  4. Lawrence G Brown: Publications

    E-Print Network [OSTI]

    In Geometric methods in operator algebras (Kyoto, 1983), volume 123 of Pitman Res. Notes Math. Ser., pages 1-35. Longman Sci. Tech., Harlow, 1986.

  5. Attila Lawrence Professor

    E-Print Network [OSTI]

    Hemmers, Oliver

    in the Designed Environment Research Methods management of a medium size design/construction company. 1978; Theory of the Built Environment

  6. St. Lawrence Cattaraugus

    E-Print Network [OSTI]

    Keinan, Alon

    Demographics. March 2012. Data Source: 2010 Census TIGER/Line® Shapefiles. PENNSYLVANIA VERMONT NEW HAMPSHIRE on Applied Demographics. March 2012. Data Source: 2010 Census TIGER/Line® Shapefiles. 0 10 Miles ¯ New York by Cornell Program on Applied Demographics. March 2012. Data Source: 2010 Census TIGER/Line® Shapefiles. 0 10

  7. Lawrence Berkeley Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLaura H. Greene,honorede

  8. Lawrence Berkeley Laboratory I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLaura H.

  9. A. Lawrence Bryan, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2,generationPhysicsA2 September 9 -

  10. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshowLaboratory

  11. Ernest Orlando Lawrence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) / EnvironmentalStoriesPublicErin Abernethy

  12. E.O. Lawrence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work with JeffersonFluctuation-driven magnetic

  13. Working group report: Neutrino physics

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.

  14. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is currently under construction. Old PS Group Site (visible...

  15. Proceedings of the workshop on cool building materials

    SciTech Connect (OSTI)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01T23:59:59.000Z

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  16. CFN | Thin Films Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Synthesis and Characterization Facility Thin-Film Processing Facility Online Manager (FOM) website FOM manual ESR for lab 1L32 (High-Resolution SEM and x-ray...

  17. Renormalization group aspects of graphene

    E-Print Network [OSTI]

    Maria A. H. Vozmediano

    2010-10-25T23:59:59.000Z

    Graphene is a two dimensional crystal of carbon atoms with fascinating electronic and morphological properties. The low energy excitations of the neutral, clean system are described by a massless Dirac Hamiltonian in (2+1) dimensions which also captures the main electronic and transport properties. A renormalization group analysis sheds light on the success of the free model: due to the special form of the Fermi surface which reduces to two single points in momentum space, short range interactions are irrelevant and only gauge interactions like long range Coulomb or effective disorder can play a role in the low energy physics. We review these features and discuss briefly other aspects related to disorder and to the bilayer material along the same lines.

  18. Chemical Safety Vulnerability Working Group report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  19. Design and qualification of an absolute thickness measuring machine

    E-Print Network [OSTI]

    Kelly, Darcy K. (Darcy Kendal), 1980-

    2004-01-01T23:59:59.000Z

    The target fabrication group at Lawrence Livermore National Laboratory develops various high energy density physics targets, which are used to study the interaction of materials when shot with high energy lasers. These ...

  20. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30T23:59:59.000Z

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  1. Materials Science & Engineering

    E-Print Network [OSTI]

    Reisslein, Martin

    Materials Science & Engineering The development of new high-performance materials for energy Research in Niskayuna, NY. He received his BS and PhD in Materials Science and Engineering at MIT. For 22 and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  2. Department of Materials Science &

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  3. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01T23:59:59.000Z

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  4. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Kawata, Daisuke

    2007-01-01T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed leading to a galaxy with S0 properties. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field...

  5. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Daisuke Kawata; John S. Mulchaey

    2007-11-20T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed, which may lead to a galaxy similar to an S0. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field.

  6. Finite group symmetry breaking

    E-Print Network [OSTI]

    G. Gaeta

    2005-10-02T23:59:59.000Z

    Finite group symmetry is commonplace in Physics, in particular through crystallographic groups occurring in condensed matter physics -- but also through the inversions (C,P,T and their combinations) occurring in high energy physics and field theory. The breaking of finite groups symmetry has thus been thoroughly studied, and general approaches exist to investigate it. In Landau theory, the state of a system is described by a finite dimensional variable (the {\\it order parameter}), and physical states correspond to minima of a potential, invariant under a group. In this article we describe the basics of symmetry breaking analysis for systems described by a symmetric polynomial; in particular we discuss generic symmetry breakings, i.e. those determined by the symmetry properties themselves and independent on the details of the polynomial describing a concrete system. We also discuss how the plethora of invariant polynomials can be to some extent reduced by means of changes of coordinates, i.e. how one can reduce to consider certain types of polynomials with no loss of generality. Finally, we will give some indications on extension of this theory, i.e. on how one deals with symmetry breakings for more general groups and/or more general physical systems.

  7. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  8. Introducing a digital library reading appliance into a reading group

    E-Print Network [OSTI]

    Marshall, Cathy

    Introducing a digital library reading appliance into a reading group Catherine C. Marshall, Morgan will we read digital library materials? This paper describes the reading practices of an on-going reading group, and how these practices changed when we introduced XLibris, a digital library reading appliance

  9. MATERIALS TRANSFER AGREEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

  10. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials at the Mesoscale 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Materials at the Mesoscale Los Alamos's bold proposal to...

  11. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Materials Science Lecture Series Dr Roger D Doherty M.A. D. Phil., Fellow TMS Emeritus Professor of Materials Science and Engineering, Drexel University,...

  12. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  13. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  14. EMSL - Energy Materials & Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials...

  15. Propulsion Materials Research Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Materials for Electric and Hybrid Drive Systems - Address materials issues impacting power electronics, motors, and other hybrid drive system components * Combustion System...

  16. Materials Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of these as mixed- material systems. Additionally, materials such as titanium, polycarbonate, acrylics, and metal matrix composites, and approaches to their use must be...

  17. Methods for removing contaminant matter from a porous material

    DOE Patents [OSTI]

    Fox, Robert V. (Idaho Falls, ID) [Idaho Falls, ID; Avci, Recep (Bozeman, MT) [Bozeman, MT; Groenewold, Gary S. (Idaho Falls, ID) [Idaho Falls, ID

    2010-11-16T23:59:59.000Z

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  18. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21T23:59:59.000Z

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  19. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  20. Bell, group and tangle

    SciTech Connect (OSTI)

    Solomon, A. I., E-mail: a.i.solomon@open.ac.u [Open University, Department of Physics (United Kingdom)

    2010-03-15T23:59:59.000Z

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  1. Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH

    E-Print Network [OSTI]

    Min, Byung Il

    Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory

  2. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Stabilitcroissanceetperformanceconomique

    E-Print Network [OSTI]

    Boyer, Edmond

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1026 économique, stabilité, canal d'investissement. Classification JEL : B22, E32, O42 1 Dr. Zied Ftiti. Université de Lyon, Université Lyon 2, F - 69007, Lyon, France. CNRS, GATE Lyon-St Etienne, UMR n° 5824

  3. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Sectorbasedexplanationofverticalintegrationin

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1136, France CNRS, GATE Lyon-St Etienne, UMR n° 5824, 69130, Ecully, France Université de Saint-Etienne, Jean. Reif, G. Solard, 2009 ; B. Mura, 2010). A network relates to a network of downstream firms using

  4. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Dynamicmodelsofresidentialsgrgation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1017 #12;DYNAMIC MODELS OF RESIDENTIAL SEGREGATION: AN ANALYTICAL SOLUTION S´ebastian GRAUWINa,b,c , Florence GOFFETTE-NAGOTa,d, , Pablo JENSENa,b,c,e aUniversit´e de Lyon, Lyon, F-69007, France bInstitut rh

  5. Group Analysis Jean Daunizeau

    E-Print Network [OSTI]

    Daunizeau, Jean

    ) is measurement error True response magnitude is fixed 111 Xy Fixed effect #12;Random effects-sphericity modelling Examples Power and efficiency: summary Overview #12;Group analysis: fixed versus random effects Two RFX methods: Holmes & Friston (HF) approach non-sphericity modelling Examples Power

  6. TKN Telecommunication Networks Group

    E-Print Network [OSTI]

    Wichmann, Felix

    consumption. Quite some effort has already been undertaken to address this issue, striving for low-energy trends in the power consumption, the NICs and APs are classified according to the following aspects Group Power consumption of WLAN network elements Salvatore Chiaravalloti, Filip Idzikowski, Lukasz

  7. Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Volume II of this report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for LLNL work activities. Appendix D presents the results of the review of NNSA, LSO, and contractor feedback and continuous improvement processes. Appendix E presents the results of the review of Plutonium Building essential safety system functionality, and Appendix F presents the results of the review of management of the selected focus areas.

  8. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect (OSTI)

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07T23:59:59.000Z

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  9. DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 2: MEAs...

    Broader source: Energy.gov (indexed) [DOE]

    Bob Sievers Teledyne Dick Snaider U.S. General Fuel Cell Corp Jim Waldecker Ford Adam Weber Lawrence Berkeley National Laboratory David Wood Oak Ridge National Laboratory Jason...

  10. Molecular-scale, Three-dimensional Non-Platinum Group Metal Electrodes...

    Broader source: Energy.gov (indexed) [DOE]

    Catalysis of Fuel Cell Reactions John B. Kerr Lawrence Berkeley National Laboratory (LBNL) September 30, 2009 Team Members: Adam Weber, Rachel Segalman, Robert Kostecki, Jeff...

  11. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation and the person responsible for the integration of science and resources in the Materials Science & Technology University in Mexico City and a Ph.D. in Materials Engineering from Rensselaer Polytechnic Institute, Troy NY

  12. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

    1987-01-01T23:59:59.000Z

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  13. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  14. UNDERGRADUATE Materials Science & Engineering

    E-Print Network [OSTI]

    Tipple, Brett

    UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  15. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  16. A Materials Facilities Initiative -

    E-Print Network [OSTI]

    A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

  17. University Materials Institute INTRODUCTION

    E-Print Network [OSTI]

    Escolano, Francisco

    University Materials Institute INTRODUCTION The University Materials Science Institute of Alicante the needed multidisciplinary character of the materials area. It is important to highlight the fact participate in the Materials Science PhD program which is imparted at the UA. Scientific research

  18. Dental Materials BIOMATERIALS

    E-Print Network [OSTI]

    Dental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant measurement methods to facilitate a rational approach to dental materials design, thus enabling improvements in the clinical performance of dental materials. In particular, methods for determining long-term performance

  19. XSD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials Science Magnetic Materials (MM) Primary Contact: Daniel Haskel Research...

  20. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  1. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01T23:59:59.000Z

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  2. Supporting Online Material Materials and Methods

    E-Print Network [OSTI]

    Wolfe, Cecily J.

    1 Supporting Online Material Materials and Methods (15) For all possible earthquake pairs. The parameters chosen for window length, filter bandpass, negative sidelobe identification, and cross-correlation threshold are appropriate for high-frequency earthquakes. In order to remove false positives or poor data

  3. SUPPORTING ONLINE MATERIAL Materials and Methods

    E-Print Network [OSTI]

    Newsome, William

    SUPPORTING ONLINE MATERIAL Materials and Methods Two adult male rhesus monkeys (Macaca mulatta with a head-holding device (S1), scleral search coil for monitoring eye position (S2) and a recording chamber monkeys remain actively engaged in experiments, so precise histological identification of recording sites

  4. KKG Group Paraffin Removal

    SciTech Connect (OSTI)

    Schulte, Ralph

    2001-12-01T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.

  5. Sensors & Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

  6. Lightweighting Materials | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL conducts lightweight materials research in several areas: materials development, properties and manufacturing, computational materials science, and multi-material enabling...

  7. An empirical study of a full-scale polymer thermochromic window and its implications on material science development objectives

    E-Print Network [OSTI]

    Lee, Eleanor S.

    2014-01-01T23:59:59.000Z

    National Laboratory Xiufeng Pang Lawrence Berkeley NationalEleanor S.Lee * , Xiufeng Pang, Sabine Hoffmann, C. Howdy

  8. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16T23:59:59.000Z

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  9. JLF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center atdiffusivities inJLF Forms JLFJLF User

  10. Materials for breeding blankets

    SciTech Connect (OSTI)

    Mattas, R.F.; Billone, M.C.

    1995-09-01T23:59:59.000Z

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified.

  11. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    1991-01-01T23:59:59.000Z

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  12. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch Finds VitaminResearch Groups

  13. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications Group Print

  14. # Energy Measuremenfs Group

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal -Center05Sites »ri

  15. Environmental/Interest Groups

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...)369s ..T

  16. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology|SolarSpeakers BureauSpecialSpecific Group

  17. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S [ORNL

    2012-05-01T23:59:59.000Z

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  18. INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE

    E-Print Network [OSTI]

    Simaan, Nabil

    .m.satterwhite@vanderbilt.edu Interdisciplinary Graduate Program in Materials Science Vanderbilt University School of Engineering PMB 350106INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE Materials advancements, faculty members from chemistry, physics, materials engineering, chemical engineering, electrical

  19. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

  20. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.