Sample records for materials cesc-webinar building

  1. CESC-Webinar: Building an Innovation and Entrepreneurship Driven...

    Open Energy Info (EERE)

    CESC-Webinar: Building an Innovation and Entrepreneurship Driven Economy: How Policies Can Foster Risk Capital Investment in Renewable Energy Jump to: navigation, search Tool...

  2. CESC-Webinar: Financial and Policy Innovations to Support Energy...

    Open Energy Info (EERE)

    to Support Energy Efficiency: Energy Performance Contracting and On-Bill Financing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CESC-Webinar: Financial and Policy...

  3. CESC-Webinar: Building an Innovation and Entrepreneurship Driven Economy:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump to: navigation,CE2CEQHow

  4. Category:CESC Webinar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump Lease. Add.png

  5. CESC-Webinar: Financial and Policy Innovations to Support Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information BurkinaButylCERTEL Jump to:CES

  6. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect (OSTI)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31T23:59:59.000Z

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  7. Opportunities to Apply Phase Change Materials to Building Enclosures...

    Energy Savers [EERE]

    Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building...

  8. RESCHEDULED: Webinar on Material Handling Fuel Cells for Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak...

  9. Materials Research Institute 199 Materials Research Institute Building

    E-Print Network [OSTI]

    Lee, Dongwon

    to biotechnology, building materials to automobiles, and much more. With more than a century of expertise projects in Penn State history. MRI and the Huck Institutes for the Life Sciences will join together

  10. We're Data Jammin': Building Interactive Educational Materials...

    Office of Environmental Management (EM)

    We're Data Jammin': Building Interactive Educational Materials to Teach Energy We're Data Jammin': Building Interactive Educational Materials to Teach Energy April 4, 2014 - 4:07pm...

  11. Small Business Harnessing Solar Energy with Building Materials...

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Harnessing Solar Energy with Building Materials Small Business Harnessing Solar Energy with Building Materials April 26, 2010 - 5:15pm Addthis A balcony in New York...

  12. NREL: Buildings Research - Webinar Rescheduled: Material Handling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attend this webinar. Printable Version Buildings Research Home Commercial Buildings Residential Buildings Facilities Working with Us Publications News Did you find what you...

  13. Use of advanced composite materials for innovative building design solutions/

    E-Print Network [OSTI]

    Lau, Tak-bun, Denvid

    2009-01-01T23:59:59.000Z

    Advanced composite materials become popular in construction industry for the innovative building design solutions including strengthening and retrofitting of existing structures. The interface between different materials ...

  14. (Durability of building materials and components)

    SciTech Connect (OSTI)

    Naus, D.J.

    1990-11-27T23:59:59.000Z

    The traveler participated in the fourth meeting of RILEM 100-TSL, Techniques for Service Life Prediction,'' and The Fifth International Conference on Durability of Building Materials and Components.'' In addition, the traveler met with staff members at Taywood Engineering Ltd., Electricite de France, and AEA Technology. The meeting pertained to performance of concrete materials in nuclear power plant structures, time variation of concrete material properties, methods for evaluating concrete structures, and modeling to predict the effects of degradation factors on concrete materials. As many of the concrete structures in general civil engineering applications as well as nuclear power plant applications in Europe are aging, there is increasing emphasis on assessing the durability of these structures. Information was provided of direct application to the Structural Aging Program which would not have been available without these visits. Of equal, or possibly more importance, was the individual contacts established at the organizations visited. Each organization was extremely interested in both the approach and scope of the Structural Aging Program and requested that they be informed of progress. The initial steps were taken to cooperate with several of these researchers and this should help the Structural Aging Program keep abreast of related European activities. In summary, information obtained during this trip will benefit the ongoing Structural Aging Program by informing Oak Ridge National Laboratory (ORNL) of the extensive European research programs addressing the durability of concrete structures, and also by forming and strengthening acquaintances with counterparts in other countries, thus enhancing the basis for possible international cooperation.

  15. Chemical and Materials Sciences Building | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    certified and meets strict guidelines for environmental sustainability set by the U.S. Green Buildings Council. The building includes 56 laboratories that meet modern standards...

  16. Project materials [Commercial High Performance Buildings Project

    SciTech Connect (OSTI)

    None

    2001-01-01T23:59:59.000Z

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  17. Study of building material emissions and indoor air quality

    E-Print Network [OSTI]

    Yang, Xudong, 1966-

    1999-01-01T23:59:59.000Z

    Building materials and furnishings emit a wide variety of indoor pollutants, such as volatile organic compounds (VOCs). At present, no accurate models are available to characterize material emissions and sorption under ...

  18. FireWise Construction: Site Design & Building Materials

    E-Print Network [OSTI]

    FireWise Construction: Site Design & Building Materials Based on the 2009 International Wildland for Testing and Materials (ASTM) committees that develop standards on the performance of materials in fire and water consumption, and the use of appropriate, resource-conserving materials. Peter developed the first

  19. No material is "fire proof;" however, proper use and assembly of fire-rated building materials

    E-Print Network [OSTI]

    General No material is "fire proof;" however, proper use and assembly of fire-rated building materials can reduce a fire's spread and extend the amount of time it takes for a home to ignite and burn. (Structural assembly is the process of layering materials when building exterior walls and roof.) Your roof

  20. The building materials industry in China: An overview

    SciTech Connect (OSTI)

    Liu, Feng [Lawrence Berkeley Lab., CA (United States); Wang, Shumao [State Planning Commission, People`s Republic of China, (China). Energy Research Institute

    1994-12-01T23:59:59.000Z

    The present study of China`s building materials industry is a collaborative work between the Energy Research Institute (ERI) of the State Planning Commission of China and Lawrence Berkeley Laboratory (LBL) of the US Department of Energy (USDOE).

  1. Chemical and Materials Sciences Building | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the RotatingChemicalChemical and

  2. Proceedings of the workshop on cool building materials

    SciTech Connect (OSTI)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01T23:59:59.000Z

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  3. Materials aspects of solar energy use in buildings

    SciTech Connect (OSTI)

    Moore, S.W.; McFarland, R.D.

    1984-05-01T23:59:59.000Z

    Advances in materials for solar energy utilization have the potential to produce large performance improvements (both present and future concepts) in use of solar energy or conservation. Because approximately 26 quads of the total national energy budget of 75 quads is consumed by buildings, solar and conservation improvements can have a large effect on our overall energy consumption. There have been a large number of materials research programs funded through the Department of Energy (DOE) in an attempt to expand the use of solar energy. These materials programs have covered the areas of sealants and gaskets, insulations, glazings, glazing-surface treatments, polymers, selective absorber surfaces, phase-change storage, and heat mirrors. In addition to developing the materials, a large effort has been directed toward determining the reliability and durability of solar materials. The present state of the art and status of these solar materials are discussed. Although much progress has been made in recent years, many improvements are still needed. For many of the more routine materials, simple cost reductions or durability improvements would suffice. For the more advanced concepts of controlling energy flow into or out of buildings, basic materials research remains a necessity. There are a large number of potentially viable concepts that appear promising but have not yet been developed into usable materials.

  4. Vector Symbolic Architectures: A New Building Material for Artificial General

    E-Print Network [OSTI]

    Levy, Simon D.

    Vector Symbolic Architectures: A New Building Material for Artificial General Intelligence1 Simon D. LEVY a,2 , and Ross GAYLER b a Washington and Lee University, USA b Veda Advantage Solutions, Australia. By directly encoding structure using famil- iar, computationally efficient algorithms, VSA bypasses many

  5. High-albedo materials for reducing building cooling energy use

    SciTech Connect (OSTI)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01T23:59:59.000Z

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  6. New phase-change thermal energy storage materials for buildings

    SciTech Connect (OSTI)

    Benson, D.K.; Christensen, C.B.; Burrows, R.W.

    1985-10-01T23:59:59.000Z

    A new class of phase-change thermal energy storage materials is under development at SERI. These materials are unusual in two ways. They reversibly absorb large amounts of heat during a solid-state, crystal transformation more than 70/sup 0/C below their melting temperatures, and their solid-state transformation temperatures may be adjusted over a range from 7/sup 0/C to 188/sup 0/C by varying the ratios of binary mixtures of the components. Because these storage materials remain solid throughout the range of their service temperatures, unique opportunities exist for incorporating them into building materials. Composites have been made with ordinary, porous construction materials such as wood, gypsum board, and lightweight concrete as the matrix and with the solid-state phase change materials (SS PCM) filling the void space. The thermal storage capacities of such composites are thereby increased by more than 100% without changing the basic nature and workability of the matrix, construction material. Parametric analyses have been conducted to determine what combination of properties would be optimum for certain solar and energy conserving building applications including Trombe wall, direct gain, and distributed cool storage (combined with night ventilation).

  7. Submission of manuscript to Energy and Buildings A thermal model for Phase Change Materials in a building roof for a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Submission of manuscript to Energy and Buildings A thermal model for Phase Change Materials in "Energy and Buildings 70 (2014) http://www.sciencedirect.com/science/article/pii/ S0378778813007962" DOI : 10.1016/j.enbuild.2013.11.079 #12;Manuscript submitted to Energy and Buildings S.GUICHARD 2013 2

  8. No material is "fire proof." However, the proper use and assembly of fire-rated building materials

    E-Print Network [OSTI]

    General No material is "fire proof." However, the proper use and assembly of fire-rated building materials can reduce a fire's spread and lengthen the amount of time it takes for a home to ignite and burn. Structural assembly is the process of layering materials when building exterior walls and roof. Your home

  9. Though no material is "fire proof," the proper use and assembly of fire-rated building materials

    E-Print Network [OSTI]

    General Though no material is "fire proof," the proper use and assembly of fire-rated building materials can reduce a fire's spread, and lengthen the amount of time it takes for a home to ignite and burn. Structural assembly is the layering of building materials. Decks are a very popular, well-used feature

  10. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH); Griffen, Charles W. (Mason, OH)

    1986-01-01T23:59:59.000Z

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  11. Gamma ray spectroscopic analysis of building materials used in Tiruvannamalai, Tamilnadu, India

    SciTech Connect (OSTI)

    Ravisankar, R.; Vanasundari, K.; Suganya, M.; Chandrasekaran, A.; Raghu, Y.; Sivakumar, S.; Vijayagopal, P.; Meenakshisundaram, V. [Post Graduate and Research Department of Physics, Government Arts College, Tiruvannamalai-606603 (India); Department of Physics, Global Institute of Engineering and Technology, Vellore-632509, Tamilnadu (India); Department of Physics, Aarupadai Veedu Institute of Technology, Paiyanoor-603 104.Tamilnadu (India); Department of Physics, Arunai Engineering College, Tiruvannamalai-606603, Tamilnadu (India); Radiological Safety Division. Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2012-06-05T23:59:59.000Z

    Building materials cause direct radiation exposure because of their radium, thorium and potassium content. In this paper, samples of commonly used building materials in Tiruvannamalai, city, have been collected randomly over the city. The samples were tested for their radioactivity contents by using gamma spectroscopic measurements. All samples under investigation are within the recommended safety limit when used as building construction.

  12. Concrete as a Green Building Material Columbia University, New York, NY 10027, USA

    E-Print Network [OSTI]

    Meyer, Christian

    Concrete as a Green Building Material C. Meyer Columbia University, New York, NY 10027, USA to make it suitable as a "Green Building" material. Foremost and most successful in this regard is the use of the Green Building movement in North America is already changing the economic landscape and the factors

  13. CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E.F. Loros

    2000-06-28T23:59:59.000Z

    The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installing the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The Carrier Preparation Building Materials Handling System interfaces with the Cask/Carrier Transport System to move the carriers to and from the system. The Carrier Preparation Building System houses the equipment and provides the facility, utility, safety, communications, and auxiliary systems supporting operations and protecting personnel.

  14. Experimental and Simulation Approaches for Optimizing the Thermal Performance of Building Enclosures Containing Phase Change Materials

    E-Print Network [OSTI]

    Lee, Kyoung Ok

    2014-05-31T23:59:59.000Z

    It has been proven that the integration of phase change materials (PCM) into building enclosures helps with wall thermal management as well as in reducing building energy consumption. Most older and some current PCM ...

  15. Modeling VOC sorption of building materials and its impact on indoor air quality

    E-Print Network [OSTI]

    Zhang, Jinsong, 1975-

    2001-01-01T23:59:59.000Z

    Sorption of volatile organic compounds (VOCs) by building materials can have significant effect on the indoor VOC concentration levels and indoor air quality in buildings. The objective of this study was to investigate ...

  16. Imaging laser analysis of building materials - practical examples

    SciTech Connect (OSTI)

    Wilsch, G.; Schaurich, D.; Wiggenhauser, H. [BAM, Federal Institute for Materials Research and Testing, Berlin (Germany)

    2011-06-23T23:59:59.000Z

    The Laser induced Breakdown Spectroscopy (LIBS) is supplement and extension of standard chemical methods and SEM- or Micro-RFA-applications for the evaluation of building materials. As a laboratory method LIBS is used to gain color coded images representing composition, distribution of characteristic ions and/or ingress characteristic of damaging substances. To create a depth profile of element concentration a core has to be taken and split along the core axis. LIBS was proven to be able to detect all important elements in concrete, e. g. Chlorine, Sodium or Sulfur, which are responsible for certain degradation mechanisms and also light elements like lithium or hydrogen. Practical examples are given and a mobile system for on-site measurements is presented.

  17. A Case for Safer Building Materials: Lifecycle Concerns, Data Gaps, and

    E-Print Network [OSTI]

    Lee, Seung-Wuk

    ;Conventional Building Materials · Wood · Stone · Cement · Metal · Glass · Straw · Ceramics #12;Synthetic;Volatile organic compounds (VOCs) · Aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons

  18. P. Wargocki, H.N. Knudsen and M. Frontczak (2007) "The effect of using low-polluting building materials on

    E-Print Network [OSTI]

    research project is to quantify to what extent the use of low-polluting building materials would reduce-polluting building materials on ventilation requirements and energy use in buildings", Proceedings of IAQVEC 2007, Sendai, Japan, on CD-ROM. #12;#12;THE EFFECT OF USING LOW-POLLUTING BUILDING MATERIALS ON VENTILATION

  19. Research Profile Smart building materials of new generation can be decisive

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    Research Profile Smart building materials of new generation can be decisive for a wiser use the potential for a breakthrough in design of sustainable smart compounds.The conundrum is to control and design-performance computing and numerical simu- lation tools Microstructure and Rheology of Building Materials CONTACT Prof

  20. Monthly Theme January 2010 Movement of Hazardous Materials between or within buildings Monthly Theme January 2010

    E-Print Network [OSTI]

    Calgary, University of

    Monthly Theme January 2010 ­ Movement of Hazardous Materials between or within buildings Monthly Theme ­ January 2010 MOVEMENT OF HAZARDOUS MATERIALS BETWEEN OR WITHIN BUILDINGS Effective immediately for pick-up. This will reduce the transport hazard and cost when purchasing from Chemistry Stores (40% mark

  1. No material is "fire proof." However, the proper use and assembly of fire-rated building materials

    E-Print Network [OSTI]

    General No material is "fire proof." However, the proper use and assembly of fire-rated building materials can reduce a fire's spread, and extend the amount of time it takes for a home to ignite and burn your home. However, radiant energy can eventually ignite materials behind the window even with glass

  2. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect (OSTI)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01T23:59:59.000Z

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  3. Material quantities in building structures and their environmental impact

    E-Print Network [OSTI]

    De Wolf, Catherine (Catherine Elvire Lieve)

    2014-01-01T23:59:59.000Z

    Improved operational energy efficiency has increased the percentage of embodied energy in the total life cycle of building structures. Despite a growing interest in this field, practitioners lack a comprehensive survey of ...

  4. Environmental and economic tradeoffs in building materials production in India

    E-Print Network [OSTI]

    Schuchman, Nina Shayne

    2014-01-01T23:59:59.000Z

    The current and projected growth of India's economy and population will continue to lead to increased demand for buildings and infrastructure, and there is a real need to consider what this increase means in terms of natural ...

  5. alternative building material: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Astrophysics (arXiv) Summary: We discuss the issue of toy model building for the dark energy component of the universe. Specifically, we consider two generic toy models recently...

  6. Surface space : digital manufacturing techniques and emergent building material

    E-Print Network [OSTI]

    Ho, Joseph Chi-Chen, 1975-

    2002-01-01T23:59:59.000Z

    This thesis explores tectonic possibilities of new material and forming techniques. The design process is catalyzed by experimenting different configurations of the material.This project attempts to develop inventive ways ...

  7. International Conference on Urban Drainage, August 21 26, 2005. Copenhagen, WET-WEATHER POLLUTION FROM COMMONLY-USED BUILDING MATERIALS

    E-Print Network [OSTI]

    Pitt, Robert E.

    to the long-term pollution of sensitive waterways is building and construction materials. However, the long-WEATHER POLLUTION FROM COMMONLY-USED BUILDING MATERIALS Shirley E. Clark, Ph.D., P.E.*, Melinda M. Lalor, Ph-term effect of many building materials on the environment has not been quantified. Prior testing

  8. Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System 

    E-Print Network [OSTI]

    Fitzmaurice, Matthew Blake 1988-

    2012-11-06T23:59:59.000Z

    Trafficking of radioactive material, particularly special nuclear material (SNM), has long been a worldwide concern. To interdict this material the US government has installed radiation portal monitors (RPMs) around the globe. Building materials...

  9. Monte Carlo Simulation of Indoor External Exposure due to Gamma-emitting Radionuclides in Building Materials

    E-Print Network [OSTI]

    Jun Deng; Lei Cao; Xu Su

    2014-01-14T23:59:59.000Z

    The use of building materials containing naturally occurring radionuclides,such as K-40, U-238 and Th-232 and their progeny, could lead to external exposures of the residents of such buildings. In this paper, a set of models are set up to calculate the specific effective dose rates(the effective dose rate per Bq/kg of K-40, U-238 series, and Th-232 series) imposed to residents by building materials with MCNPX code. Effect of chemical composition, position concerned in the room and thickness as well as density of material is analyzed. In order to facilitate more precise assessment of indoor external dose due to gamma emitting radionuclides in building materials, three regressive expressions are proposed and validated by measured data to calculate specific effective rate for K-40, U-238 series and Th-232 series, respectively.

  10. Building America Webinar: Opportunities to Apply Phase Change Materials to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuilding Enclosures | Department of Energy

  11. 4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of

    E-Print Network [OSTI]

    the wastes from uranium mines have been removed from mining sites and used in local and nearby communities4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low levels of radioactivity. For example, the range of natural uranium concentrations may average as low

  12. A Protocol for Lifetime Energy and Environmental Impact Assessment of Building Insulation Materials

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Biswas, Kaushik [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors, and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist that provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines.

  13. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    SciTech Connect (OSTI)

    Shrestha, Som S., E-mail: shresthass@ornl.gov; Biswas, Kaushik; Desjarlais, Andre O.

    2014-04-01T23:59:59.000Z

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined.

  14. Fast evaluation of the fatigue lifetime of rubber-like materials based on a heat build-up protocol and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fast evaluation of the fatigue lifetime of rubber-like materials based on a heat build-up protocol Cedex, France Abstract The temperature of rubber-like materials increases under cyclic loadings, due results. Key words: rubber-like materials, heat build-up, infrared thermography, X-ray micro

  15. RESRAD-BUILD: A computer model for analyzing the radiological doses resulting from the remediation and occupancy of buildings contaminated with radioactive material

    SciTech Connect (OSTI)

    Yu, C.; LePoire, D.J.; Jones, L.G. [and others

    1994-11-01T23:59:59.000Z

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material. The transport of radioactive material inside the building from one compartment to another is calculated with an indoor air quality model. The air quality model considers the transport of radioactive dust particulates and radon progeny due to air exchange, deposition and resuspension, and radioactive decay and ingrowth. A single run of the RESRAD-BUILD code can model a building with up to: three compartments, 10 distinct source geometries, and 10 receptor locations. A shielding material can be specified between each source-receptor pair for external gamma dose calculations. Six exposure pathways are considered in the RESRAD-BUILD code: (1) external exposure directly from the source; (2) external exposure to materials deposited on the floor; (3) external exposure due to air submersion; (4) inhalation of airborne radioactive particulates; (5) inhalation of aerosol indoor radon progeny; and (6) inadvertent ingestion of radioactive material, either directly from the sources or from materials deposited on the surfaces of the building compartments. 4 refs., 23 figs., 4 tabs.

  16. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    SciTech Connect (OSTI)

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01T23:59:59.000Z

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  17. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    SciTech Connect (OSTI)

    Aguiar, Vitor A. P.; Medina, Nilberto H. [Instituto de Fisica, Universidade de Sao Paulo, SP (Brazil); Moreira, Ramon H.; Silveira, Marcilei A. G. [Departamento de Fisica, Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil)

    2010-05-21T23:59:59.000Z

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely {sup 40}K, {sup 232}Th and {sup 238}U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  18. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction

    SciTech Connect (OSTI)

    Ostowari, Ken; Nosson, Ali

    2000-09-30T23:59:59.000Z

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

  19. Blanc, I., Peuportier, B., "Eco-design of buildings and comparison of materials", In Proceedings of the 1 international seminar on Society & materials, SAM1, [CD ROM], 6-7 mars 2007, Sville, Spain, European

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the buildings including the dominant use phase. Life Cycle Assessment (LCA) applied to buildings is enlarging assessment for the building materials not only at the process stage but over the whole life cycle simulation tool with a building thermal simulation. The life cycle inventory database Ecoin- vent is used

  20. Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,Bubbles HelpManagementPagesBudget

  1. Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,Bubbles HelpManagementPagesBudgeton

  2. Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,Bubbles HelpManagementPagesBudgeton

  3. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    E-Print Network [OSTI]

    Abbasi, Akbar

    2015-01-01T23:59:59.000Z

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  4. Experimental and Simulation of Gamma Radiation Dose Rate for High Exposure Building Material

    E-Print Network [OSTI]

    Akbar Abbasi; Mustfa Hassanzadeh

    2014-10-27T23:59:59.000Z

    Natural radioactivity concentrations in high exposure building materials are commonly used in Iran, which is measured a direct exposure by using {\\gamma}-ray spectrometry. The values for 226Ra, 232Th and 40K were in the ranges 3.8 - 94.2, 6.5 - 172.2 and 556.9 - 1539.2 Bqkg-1, respectively. The absorbed dose rates in the standard dwelling room due to 238U, 232Th series and 40K were calculated with MCNPX code. The simulation and experimental results were between 7.95 - 41.74 and 8.36 - 39.99 nGy h-1, respectively. These results were compared with experimental outing and there was overlap closely. The simulation results are able to develop for any kind of dwelling places.

  5. Optics and materials research for controlled radiant energy transfer in buildings. Final technical report

    SciTech Connect (OSTI)

    Goldner, R.B.

    1996-07-01T23:59:59.000Z

    The primary objective of this project was to perform the optics and materials research necessary to identify and solve the technical problems associated with fabricating durable, variable reflectivity electrochromic windows for energy efficient buildings and vehicles. The research performed at the Tufts Electro-Optics Technology Center (EOTC) has identified and solved nearly all the significant problems, as discussed below in this final technical report. There still remains, however, one important problem to be solved--i.e., to better understand the science of deposition processes and thereby develop and optimize one or more production-worthy deposition processes that could be used for the practical production of affordable, variable reflectivity electrochromic windows. Therefore, it is recommended that such studies be carried out with the goals of: (1) determining the probable practical limits of performance; and, very importantly, (2) to develop and optimize deposition processes that could be used for the practical production of affordable electrochromic windows.

  6. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics

    SciTech Connect (OSTI)

    Hasan, A.; Norton, B. [Dublin Energy Lab., Focas Institute, School of Physics, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); McCormack, S.J. [Department of Civil, Structure and Environmental Engineering, Trinity College Dublin, Dublin 1 (Ireland); Huang, M.J. [Centre for Sustainable Technologies, University of Ulster, Newtownabbey, N. Ireland, BT370QB (United Kingdom)

    2010-09-15T23:59:59.000Z

    Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures {proportional_to}25 {+-} 4 C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 C was achieved for 30 min while 10 C temperature reduction was maintained for 5 h at -1000 W/m{sup 2} insolation. (author)

  7. Environmental effects of dredging: Building, developing, and managing dredged material islands for bird habitat. Technical note

    SciTech Connect (OSTI)

    Landin, M.C.

    1986-12-01T23:59:59.000Z

    This note describes the environmental considerations and techniques that have been developed and tested for building, developing, and managing dredged material islands for use by birds for nesting and other life requirements. The text of this note was taken from lectures presented from 1979 to 1986 at the Dredging Short Courses held each year by the Texas AM University Center for Dredging Studies and from information compiled for Engineer Manual EM 1110-2-5026 entitled `Beneficial Uses of Dredged Material.` One hundred years of dredging and open-water disposal operations by the Corps of Engineers (CE), state agencies, and private enterprise has resulted in the creation of over 2000 man-made islands throughout US coastal waters, riverine waterways, and the Great Lakes. The CE continues to maintain an interest in developing such islands because of its responsibility in using environmentally acceptable disposal methods and sites, the increasing shortage of upland disposal sites, the need for wildlife habitats in waterway areas, and the islands` recreational potential.

  8. Manuscript Prepared for Submission to "Construction and Building Materials" UNDERSTANDING THE LONG-TERM EFFECTS OF1

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Manuscript Prepared for Submission to "Construction and Building Materials" UNDERSTANDING THE LONG are those that show high reflectance of sunlight and are designed to12 retain the ability over time. Airborne particulate matter that settles on a roof can either reflect or13 absorb incoming solar radiation

  9. Accepted by the Journal of Building Physics (2007) Microstructure and Thermal Conductivity of Hydrated Calcium Silicate Board Materials

    E-Print Network [OSTI]

    Bentz, Dale P.

    of Hydrated Calcium Silicate Board Materials Chi T. Do, Dale P. Bentz1 , and Paul E. Stutzman Building and pore size are examined for two calcium silicate boards of different densities. Thermal conductivities; radiation; thermal conductivity. Introduction In recent years, a variety of low-density calcium silicate

  10. Determination of the radioactive material and plutonium holdup in ducts and piping in the 324 Building

    SciTech Connect (OSTI)

    Haggard, D.L.; Brackenbush, L.W.; Tanner, J.E.

    1996-01-01T23:59:59.000Z

    This report describes the measurements Performed to determine the radionuclide content and mass of plutonium in exposed ducts, filters, and piping in the 324 Building at the US Department of Energy Hanford Site in Washington State. This information is needed to characterize facility radiation levels, to verify compliance with criticality safety specifications, and to allow more accurate nuclear material control using nondestructive assay (NDA) methods. Gamma assay techniques typically employed for NDA analysis were used to determine the gamma-emitting isotopes in the ducts, filters, and piping. Passive neutron counting was selected to estimate -the plutonium content because high gamma levels from fission and activation products effectively mask any gamma emissions from plutonium. A high-purity gamma-ray detector Was used to measure the mixed fission and activation radionuclides. A neutron slab detector containing five {sup 3}He proportional counters was used to determine the neutron emission rates and estimate the mass of plutonium present. Both measurement systems followed the methods and procedures routinely used for nuclear waste assay and safeguards measurements.

  11. Effects of Material Moisture Adsorption and Desorption on Building Cooling Loads

    E-Print Network [OSTI]

    Fairey, P.; Kosar, D.

    1988-01-01T23:59:59.000Z

    ventilation of buildings in hot, humid climates has been shown to induce higher latent loads and higher room relative humidities during periods following the ventilation....

  12. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01T23:59:59.000Z

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  13. Analysis of low-cost building material for the MixAlco process

    E-Print Network [OSTI]

    Titzman, L. Clinton

    2009-05-15T23:59:59.000Z

    and tensile strengths that were too weak to build an economical structure. The identification of a hybrid papercrete-concrete structure produced results and economics within acceptable ranges. The papercrete-concrete alternative was tested on the same... ...................................................................................... 42 8.2 Concrete Testing ..................................................................................... 44 8.3 Layered Quonset Analysis ...................................................................... 48 IX BUILDING TECHNIQUES...

  14. Experimental Assessment of a Phase Change Material for Wall Building Use

    E-Print Network [OSTI]

    for reducing energy consumption in passively designed buildings. This tendency is confirmed by numerous papers room. The test cell is totally controlled so that a typical day can be repeated (temperature and solar% the last 30 years. Housing and tertiary buildings are responsible for the consumption of approximatively 46

  15. Assembly of biological building blocks for nano- and micro-fabrication of materials

    E-Print Network [OSTI]

    Chiang, Chung-Yi

    2008-01-01T23:59:59.000Z

    Experimental studies were performed to fabricate various material structures using genetically engineered M13 bacteriophage. This virus template showed superior controls of material syntheses from nanoscale to microscale. ...

  16. Job/Task Analysis: Enhancing the Commercial Building Workforce Through the Development of Foundational Materials; Preprint

    SciTech Connect (OSTI)

    Studer, D.; Kemkar, S.

    2012-09-01T23:59:59.000Z

    For many commercial building operation job categories, industry consensus has not been reached on the knowledge, skills, and abilities that practitioners should possess. The goal of this guidance is to help streamline the minimum competencies taught or tested by organizations catering to building operations and maintenance personnel while providing a basis for developing and comparing new and existing training programs in the commercial building sector. The developed JTAs will help individuals identify opportunities to enhance their professional skills, enable industry to identify an appropriately skilled workforce, and allow training providers to ensure that they are providing the highest quality product possible.

  17. Social and Economic Challenges of Implementing Sustainable Materials on Buildings in Kuwait

    E-Print Network [OSTI]

    Al-Foraih, R.; Al-Fahad, F.

    2012-01-01T23:59:59.000Z

    management and occupant cooperation. This raises challenges when requiring cooperation from building occupants and cleaning staff for the solid waste management credits which require dedication to reduce the amount of waste going to landfills and incinerating...

  18. Social and Economic Challenges of Implementing Sustainable Materials on Buildings in Kuwait 

    E-Print Network [OSTI]

    Al-Foraih, R.; Al-Fahad, F.

    2012-01-01T23:59:59.000Z

    of sustainable materials is more challenging as many materials are not available in Kuwait and the surrounding Gulf countries. Transportation from aboard should be decreased as much as possible to reduce cost as well as decreasing negative environmental impacts...

  19. In-Situ Study of Thermal Comfort Enhancement in a Building Equipped with Phase Change Material

    E-Print Network [OSTI]

    due to air temperature and radiative effects of the walls. Keywords: Thermal Energy Storage, Phase, thermal energy storage systems are essential for reducing de- pendency on fossil fuels buildings. Thermal energy storage can be accomplished either by using sensible heat storage or latent heat

  20. Glass-mica composite: a new structural thermal-insulating material for building applications

    SciTech Connect (OSTI)

    Low, N.M.P.

    1981-12-01T23:59:59.000Z

    Homogeneous, rigid glass-mica composites have been synthesized from mixtures of Canadian natural mica flakes of the phlogopite type and ground glass powders prepared from recycled soda-lime waste glasses by a simple sintering process. By means of selection of compositions and processing techniques, composites can be fabricated into products that exhibit a celular structure, a highly densified structure, and multilayer and sandwich structures. The cellular structure composite has a thermal conductivity in the range of 0.165 to 0.230 W/m /sup 0/C when measured over the temperature range 25 to 180/sup 0/C, and a compressive strength of about 0.874 MPa; the highly densified composite, on the other hand, has a thermal conductivity in the range of 0.155 to 0.330 W/m /sup 0/C, a compressive strength in excess of 40 MPa, and an instantaneous coefficient of thermal expansion of 5.8 X 10/sup -6///sup 0/C at 100/sup 0/C. These glass-mica composites exhibit qualities such as insulating efficiency, safety, mechanical strength, and durability that are suitable for engineering applications in building structures or other systems.

  1. Optics and materials research for controlled radiant energy transfer in buildings

    SciTech Connect (OSTI)

    Goldner, R.D.; Haas, T.E.

    1991-01-01T23:59:59.000Z

    Activities to develop thin film variable reflectivity electrochromic windows have focused in five areas in 1991: (1) evaluating the irreversible incorporation of lithium in the counterelectrode material, sputtered indium oxide; (2) responding to evidence that protons substitute for mobile lithium ions in standard'' five-layer electrochromic window structures operating in room air; (3) understanding the electronic and ionic conduction mechanisms in sputtered amorphous lithium niobate, the ion conductor adopted for electrochromic window structures fabricated at Tufts; (4) responding to the discovery that cathodic coloring of the variable reflecting tungsten bronze (Li{sub x}WO{sub 3}) is constrained by interaction with the underlying ITO or SnO{sub 2} transparent conductor in conventional electrochromic window structures; and (5) life testing of electrochromic window prototypes.

  2. Building debris

    E-Print Network [OSTI]

    Dahmen, Joseph (Joseph F. D.)

    2006-01-01T23:59:59.000Z

    This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

  3. System/Building Tech Integration | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SystemBuilding Integration SHARE System Building Technologies Integration The buildings industry encompasses numerous designers, builders, construction materials and components...

  4. Preliminary Evaluation of the Field and Laboratory Emission Cell (FLEC) for Sampling Attribution Signatures from Building Materials

    SciTech Connect (OSTI)

    Harvey, Scott D.; He, Lijian; Wahl, Jon H.

    2012-08-30T23:59:59.000Z

    This study provides a preliminary evaluation of the Field and Laboratory Emission Cell (FLEC) for its suitability for sampling building materials for toxic compounds and their associated impurities and residues that might remain after a terrorist chemical attack. Chemical warfare (CW) agents and toxic industrial chemicals were represented by a range of test probes that included CW surrogates. The test probes encompassed the acid-base properties, volatilities, and polarities of the expected chemical agents and residual compounds. Results indicated that dissipation of the test probes depended heavily on the underlying material. Near complete dissipation of almost all test probes occurred from galvanized stainless steel within 3.0 hrs, whereas far stronger retention with concomitant slower release was observed for vinyl composition floor tiles. The test probes displayed immediated permanence on Teflon. FLEC sampling was further evaluated by profiling residues remaining after the evaporation of 2-chloroethyl ethyl sulfide, a sulfur mustard simulant. This study lays the groundwork for the eventual goal of applying this sampling approach for collection of forensic attribution signatures that remain after a terrorist chemical attack.

  5. Kiowa County Commons Building

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

  6. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01T23:59:59.000Z

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  7. Building America Webinar: Opportunities to Apply Phase Change...

    Energy Savers [EERE]

    Opportunities to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar,...

  8. Utilizing New Binder Materials for Green Building has Zero Waste by Recycling Slag and Sewage Sludge Ash 

    E-Print Network [OSTI]

    Zeedan, S. R.

    2010-01-01T23:59:59.000Z

    binding material to save energy and to produce new innovative zero materials waste . The current research aims to investigate new binder materials as alternative of Portland cement. Alkali activated slag (AAS) blended with sewage sludge ash (SSA...

  9. Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates

    SciTech Connect (OSTI)

    Kosny, J.; Shukla, N.; Fallahi, A.

    2013-01-01T23:59:59.000Z

    Traditional thermal designs of building envelope assemblies are based on static energy flows, yet building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles and their dynamic operation can decrease thermal efficiency. Design work supporting the development of low-energy houses showed that conventional insulations may not always be the most cost effective solution to improvement envelope thermal performance. PCM-enhanced building envelopes that simultaneously reduce the total cooling loads and shift the peak-hour loads are the focus of this report.

  10. The culture of building to craft--a regional contemporary aesthetic : material resources, technological innovations and the form making process

    E-Print Network [OSTI]

    Nanda, Puja, 1971-

    1999-01-01T23:59:59.000Z

    In the non-Western context, there always has been a dilemma between "who we are" and "who we should be" . One could say "between tradition and modernity" . When the alien culture of building was adopted, the ties with the ...

  11. Accepting Gifts of Building Materials Page 1 of 3 Virginia Polytechnic Institute and State University No. 12105 Rev.: 2

    E-Print Network [OSTI]

    Virginia Tech

    projects and wishing to take advantage of the benefits derived from the gifting of materials, has materials for university construction projects may be accepted if the donated materials meet university and state specifications for the project for which they are donated. THE ACCEPTANCE OF GIFTED MATERIALS

  12. Comparison of environmental impacts of steel and concrete as building materials using the Life Cycle Assessment method

    E-Print Network [OSTI]

    Johnson, Timothy Werner

    2006-01-01T23:59:59.000Z

    In the United States, the construction industry accounts for almost 75% of total raw material used. This is an obvious drain on natural resources and has a major impact on the surrounding environment. Construction materials ...

  13. Framework for Building Design Recyclability

    E-Print Network [OSTI]

    Zhang, Fan

    2008-01-01T23:59:59.000Z

    Recycling of building materials is an important aspect of sustainable construction, while sustainable construction is a critical issue to fulfill overall sustainable development. Researchers have proved that building materials recycling...

  14. Use Of Superacids To Digest Chrysotile And Amosite Asbestos In Simple Mixtures Or Matrices Found In Building Materials Compositions

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY); Petrakis, Leon (Port Jefferson, NY); Webster, Ronald P. (Shoreham, NY)

    1999-12-21T23:59:59.000Z

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a flouro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP(O)(OH).sub.2, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided

  15. Nanomaterials, such as carbon nanotubes and graphene, and biomaterials, such as proteins and other biopolymers, are promising building blocks for smart functional materials. Being "Smart" towards external stimuli such as stress, chemical reactions, pH,

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    biopolymers, are promising building blocks for smart functional materials. Being "Smart" towards externalSponsored by the Nebraska Center for Materials and Nanoscience Efficient Energy Transport and Storage in Functional for controllable transports of energy carriers (phonons and electrons). Specifically, carbon nanomaterials exhibit

  16. The Targeted Synthesis of Single Site Vanadyl Species on the Surface and in the Framework of Silicate Building Block Materials

    SciTech Connect (OSTI)

    M Lee; J Jiao; R Mayes; E Hagaman; C Barnes

    2011-12-31T23:59:59.000Z

    A new synthetic methodology for the targeted preparation of single site, atomically dispersed vanadyl groups in silicate matrices is described. This methodology requires functionalized silicate building blocks Si{sub 8}O{sub 20}(OSnMe{sub 3}){sub 8} that become linked together through vanadyl ({triple_bond}V=O) groups in the matrix. A sequential addition strategy is illustrated which allows the targeting of specific connectivities for the vanadyl group to the silicate building block matrix (i.e. the number of V-O-Si bonds linking the vanadyl unit). Silicate matrices containing exclusively 3-connected (OV(OSi{sub cube}){sub 3}), 2-connected (OV(OR)(OSi{sub cube}){sub 2}) or 1-connected (OVCl{sub 2}(OSi{sub cube})) vanadyl sites are described and characterized via a wide variety spectroscopic and physical techniques (gravimetric analysis, EXAFS, AA and solid state NMR ({sup 51}V, {sup 29}Si, and {sup 17}O)). We demonstrate how the combination of gravimetric, solid state NMR (SSNMR) and EXAFS data can be used to uniquely define the vanadyl sites in these matrices. Furthermore, the use of {sup 17}O SSNMR (1D and MQMAS) is illustrated as an indirect spectroscopic probe to follow changes in the ligands bound to vanadium atom within the vanadyl groups in these matrices.

  17. The targeted synthesis of single site vanadyl species on the surface and in the framework of silicate building block materials

    SciTech Connect (OSTI)

    Lee, Ming-Yung [University of Tennessee, Knoxville (UTK); Jiao, Jian [ORNL; Mayes, Richard T [ORNL; Hagaman, Edward {Ed} W [ORNL; Barnes, Craig E. [University of Tennessee, Knoxville (UTK)

    2011-01-01T23:59:59.000Z

    A new synthetic methodology for the targeted preparation of single site, atomically dispersed vanadyl groups in silicate matrices is described. This methodology requires functionalized silicate building blocks Si{sub 8}O{sub 20}(OSnMe{sub 3}){sub 8} that become linked together through vanadyl ({triple_bond}V-O) groups in the matrix. A sequential addition strategy is illustrated which allows the targeting of specific connectivities for the vanadyl group to the silicate building block matrix (i.e. the number of V-O-Si bonds linking the vanadyl unit). Silicate matrices containing exclusively 3-connected (OV(OSi{sub cube}){sub 3}), 2-connected (OV(OR)(OSi{sub cube}){sub 2}) or 1-connected (OVCl{sub 2}(OSi{sub cube})) vanadyl sites are described and characterized via a wide variety spectroscopic and physical techniques (gravimetric analysis, EXAFS, AA and solid state NMR ({sup 51}V, {sup 29}Si, and {sup 17}O)). We demonstrate how the combination of gravimetric, solid state NMR (SSNMR) and EXAFS data can be used to uniquely define the vanadyl sites in these matrices. Furthermore, the use of {sup 17}O SSNMR (1D and MQMAS) is illustrated as an indirect spectroscopic probe to follow changes in the ligands bound to vanadium atom within the vanadyl groups in these matrices.

  18. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterials

  19. Electronic digital materials

    E-Print Network [OSTI]

    Langford, William Kai

    2014-01-01T23:59:59.000Z

    Digital materials are constructions assembled from a small number of types of discrete building blocks; they represent a new way of building functional, multi-material, three-dimensional structures. In this thesis, I focus ...

  20. Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System

    E-Print Network [OSTI]

    Fitzmaurice, Matthew Blake 1988-

    2012-11-06T23:59:59.000Z

    , weather, and time of day. 6 Gamma rays are electromagnetic radiation emitted by excited nuclei in order for them to reach the ground state after decaying. Once emitted, these particles mainly interact with matter in three ways: photoelectric effect... and measured density were then used to define the MCNP material card for concrete. Pulse height tallies were used to determine the total gamma ray count rate in each of the four gamma detectors in the RPM. 5 CHAPTER II BACKGROUND II.A. Radiation...

  1. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

  2. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D. [ed.] [Solar Energy Research Inst., Golden, CO (United States)

    1992-10-01T23:59:59.000Z

    Developments in passive solar buildings that took place from the early 1970`s through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  3. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D. (ed.) (Solar Energy Research Inst., Golden, CO (United States))

    1992-01-01T23:59:59.000Z

    Developments in passive solar buildings that took place from the early 1970's through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  4. Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials

    SciTech Connect (OSTI)

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley; Quelen, Sarah; Marlot, Lea; Preble, Chelsea; Chen, Sharon; Montalbano, Amadine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2013-11-18T23:59:59.000Z

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products?single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles?and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. This accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  5. Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates

    SciTech Connect (OSTI)

    Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL

    2012-03-01T23:59:59.000Z

    Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

  6. Use of Phase Change Material in a Building Wall Assembly: A Case Study of Technical Potential in Two Climates

    SciTech Connect (OSTI)

    Childs, Kenneth W [ORNL] [ORNL; Stovall, Therese K [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

  7. FORESTRY BUILDING: BUILDING EMERGENCY PLAN

    E-Print Network [OSTI]

    FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

  8. BUILDING NAME HEYDON-LAURENCE BUILDING

    E-Print Network [OSTI]

    Viglas, Anastasios

    BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

  9. Around Buildings

    E-Print Network [OSTI]

    Treib, Marc

    1987-01-01T23:59:59.000Z

    Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

  10. BUILDING INSPECTION Building, Infrastructure, Transportation

    E-Print Network [OSTI]

    BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

  11. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01T23:59:59.000Z

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  12. Department of Environmental Conservation, University of Massachusetts-Amherst Concentration in Building Systems 1

    E-Print Network [OSTI]

    Schweik, Charles M.

    systems but encompasses specialized training in fields such as green building, structural timber design sensitive building materials & systems (green building); wood-concrete composite systems; innovative in Building Systems 1 Environmental Conservation Graduate Program Building Systems Concentration A

  13. a-1 m-wing building: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochromics Initiative New materials processing technologies Fenestration Performance, Building Applications, and DesignDesign Tool for Small Commercial Buildings...

  14. STRUCTURAL ENGINEERING, MECHANICS AND MATERIALS

    E-Print Network [OSTI]

    Wang, Yuhang

    of companies worldwide; cladding effects on, and hybrid control of, the response of tall buildings Buildings · Masonry Structures · Nano/Microstructure of Cement-based Materials · Polymeric Composite Systems · Reliable Engineering Computing · Risk Analysis · Seismic Hazard Mitigation · Smart Materials

  15. A Look at Retail and Service Buildings - Index Page

    U.S. Energy Information Administration (EIA) Indexed Site

    stores, automobile showrooms, drugstores, building material supply stores, and wholesale shopping clubs. See Description of Building Types on the main CBECS page for a more...

  16. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31T23:59:59.000Z

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  17. Building technologies

    SciTech Connect (OSTI)

    Jackson, Roderick

    2014-07-14T23:59:59.000Z

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  18. Building technologies

    ScienceCinema (OSTI)

    Jackson, Roderick

    2014-07-15T23:59:59.000Z

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  19. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  20. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  1. Nanomagnetic molecular materials based on the hexacyanometallate building block: the preparation and characterization of high-spin cluster and chain compounds 

    E-Print Network [OSTI]

    Berlinguette, Curtis Paul

    2005-08-29T23:59:59.000Z

    presented in Chapter II describes the successful incorporation of the [Fe(CN)6]3- building block into planar geometries with nuclearities ranging from three to ten metal centers. In Chapter III, this methodology was optimized to yield two pentanuclear Fe...

  2. Nanomagnetic molecular materials based on the hexacyanometallate building block: the preparation and characterization of high-spin cluster and chain compounds

    E-Print Network [OSTI]

    Berlinguette, Curtis Paul

    2005-08-29T23:59:59.000Z

    presented in Chapter II describes the successful incorporation of the [Fe(CN)6]3- building block into planar geometries with nuclearities ranging from three to ten metal centers. In Chapter III, this methodology was optimized to yield two pentanuclear Fe...

  3. GRADUATE STUDIES IN BUILDING TECHNOLOGY AN INTERDISCIPLINARY PROGRAM INCLUDING

    E-Print Network [OSTI]

    Reif, Rafael

    materials industry, in building construction and industrialized buildings, as well as practice buildings; and new housing construction costs represent about eight percent of the annual GNP. The average to the construction of new buildings, to the retrofit or rehabilitation of existing buildings and to the efficient

  4. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

  5. Berkeley Lab to Help Build Straw Bale Building

    SciTech Connect (OSTI)

    Worsham, S.A.; Van Mechelen, G.

    1998-12-01T23:59:59.000Z

    The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

  6. Better Buildings

    E-Print Network [OSTI]

    Neukomm, M.

    2012-01-01T23:59:59.000Z

    efficiency as top priority energy resource Revolutionary change in market Robust energy efficiency industry Prime the market for new technology Better Buildings Challenge Goals Make commercial & industrial buildings 20% more efficient by 2020... opportunities for energy efficiency 2 Great opportunities in the residential, commercial and industrial sectors 20% + savings is average Other benefits: Jobs, Environment, Competitiveness But persistent barriers exist?? ?Energy efficiency...

  7. Deactivation of Building 7602

    SciTech Connect (OSTI)

    Yook, H.R.; Barnett, J.R.; Collins, T.L. [and others

    1995-10-01T23:59:59.000Z

    The Department of Energy (DOE) has sponsored research and development programs in Building 7602 at Oak Ridge National Laboratory (ORNL) since 1984. This work focused on development of advanced technology for processing nuclear fuels. Building 7602 was used for engineering-scale tests using depleted and natural uranium to simulate the nuclear fuel. In April 1994 the DOE Office of Nuclear Energy (NE) sent supplemental FY 1994 guidance to ORNL stating that in FY 1995 and beyond, Building 7602 is considered surplus to NE programs and missions and shall be shut down (deactivated) and maintained in a radiologically and industrially safe condition with minimal surveillance and maintenance (S&M). DOE-NE subsequently provided FY 1995 funding to support the deactivation activities. Deactivation of Building 7602 was initiated on October 1, 1994. The principal activity during the first quarter of FY 1995 was removal of process materials (chemicals and uranium) from the systems. The process systems were operated to achieve chemical solution concentrations needed for reuse or disposal of the solutions prior to removal of the materials from the systems. During this phase of deactivation the process materials processed and removed were: (1) Uranyl nitrate solution 30,178 L containing 4490 kg of uranium; (2) Nitric acid (neutralized) 9850 L containing less than 0.013 kg of uranium; (3) Organic solution 3346 L containing 265 kg of uranium; (4) Uranium oxide powder 95 kg; and (5) Miscellaneous chemicals. At the end of December 1994, the process systems and control systems were shut down and deactivated. Disposition of the process materials removed from the process systems in Building 7602 proved to be the most difficult part of the deactivation. An operational stand down and funding reductions at Y-12 prevented planned conversion of the uranyl nitrate solution to depleted uranium oxide powder. This led to disposal of the uranyl nitrate solution as waste.

  8. Building America Webinar: Ventilation in Multifamily Buildings...

    Energy Savers [EERE]

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential...

  9. Building America Expert Meeting: Transforming Existing Buildings...

    Energy Savers [EERE]

    Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

  10. Advanced building skins : translucent thermal storage elements

    E-Print Network [OSTI]

    Kienzl, Nico, 1971-

    1999-01-01T23:59:59.000Z

    Advances in the material sciences continue to provide designers with a wealth of new materials that challenge preconceived notions of the building envelope and its performance. These new technologies can be used to create ...

  11. Building Science

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question ŤHow do we first do no harm with high-r enclosures??

  12. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    1992 Are the pyramids of Egypt built of poured concreteel-Anba’ut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

  13. Healthy buildings

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

  14. Healthy buildings

    SciTech Connect (OSTI)

    Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

    1991-01-01T23:59:59.000Z

    This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

  15. Archive Reference Buildings by Building Type: Supermarket

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  16. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  17. Physical Surveys of Over 300 Buildings in Hot and Humid Climates Indicate Material/Design Performance Flaws Exist in Comparison to Expected Results Using Nationally Accepted Standards

    E-Print Network [OSTI]

    Othmer, A. E.

    2000-01-01T23:59:59.000Z

    and tape recorder ready, every lighting fixture wattage, thermostat location, return air duct system, window size, with type and orientation, along with every millimeter of missing caulking and door sealant are recorded for evaluation. Using standard... conservation methods that employ their rebate program materials1 devices and private vendors. Our program has the ability to suggest different conservation measures, that can be categorized as no or low cost to the end user. END RESULTS (ACTUAL SAVINGS...

  18. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHAREManufacturing |Building We're

  19. Building Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-EfficientBuilding

  20. Building Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-EfficientBuilding

  1. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    an energy-efficient demonstration building and design centerenergy- efficient demonstration office building and designenergy-efficient materials, space-conditioning systems, controls, and design

  2. Optimal building-integrated photovoltaic applications

    SciTech Connect (OSTI)

    Kiss, G.; Kinkead, J. [Kiss and Co. Architects, New York, NY (United States)

    1995-11-01T23:59:59.000Z

    Photovoltaic (solar electric) modules are clean, safe and efficient devices that have long been considered a logical material for use in buildings. Recent technological advances have made PVs suitable for direct integration into building construction. PV module size, cost, appearance and reliability have advanced to the point where they can function within the architectural parameters of conventional building materials. A building essentially provides free land and structural support for a PV module, and the module in turn displaces standard building components. This report identifies the highest-value applications for PVs in buildings. These systems should be the first markets for BIPV products in the commercial buildings, and should remain an important high-end market for the foreseeable future.

  3. Optics and materials research for controlled radiant energy transfer in buildings. Annual project status report, January 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Goldner, R.D.; Haas, T.E.

    1991-12-31T23:59:59.000Z

    Activities to develop thin film variable reflectivity electrochromic windows have focused in five areas in 1991: (1) evaluating the irreversible incorporation of lithium in the counterelectrode material, sputtered indium oxide; (2) responding to evidence that protons substitute for mobile lithium ions in ``standard`` five-layer electrochromic window structures operating in room air; (3) understanding the electronic and ionic conduction mechanisms in sputtered amorphous lithium niobate, the ion conductor adopted for electrochromic window structures fabricated at Tufts; (4) responding to the discovery that cathodic coloring of the variable reflecting tungsten bronze (Li{sub x}WO{sub 3}) is constrained by interaction with the underlying ITO or SnO{sub 2} transparent conductor in conventional electrochromic window structures; and (5) life testing of electrochromic window prototypes.

  4. Home | Better Buildings Workforce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Connect with Us LinkedIn Twitter Better Buildings...

  5. A marine research lab in Maine : building coastal identity

    E-Print Network [OSTI]

    Marinace, F. Paul (Frank Paul)

    1995-01-01T23:59:59.000Z

    If the design of a building originates from the place in which it is built, from the social traditions of that place, and from building traditions which are specific to local materials and climate, then it will project an ...

  6. Building Energy Optimization Analysis Method (BEopt) - Building...

    Energy Savers [EERE]

    about BEopt. See an example of a Building America project that used BEopt. Find more case studies of Building America projects across the country that incorporate BEopt when...

  7. Heat storage and distribution inside passive-solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-05-01T23:59:59.000Z

    Passive solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed. Design guidelines are given.

  8. Hood River Middle School Music and Science Building

    High Performance Buildings Database

    Hood River, OR The Hood River Middle School Music and Science Building is includes music and science classroom, music practice rooms, teacher offices, a greenhouse, an adjacent recycling and storage building, and outdoor spaces including an amphitheater and garden. The building is integrated with the school's progressive sustainability and permaculture curriculum. Students can track and create experiments using data from the buildings net zero energy system and rainwater harvesting system, and learn about the building's innovative and integrated use of materials and systems.

  9. Small Commercial Building Re-tuning: A Primer

    SciTech Connect (OSTI)

    Cort, Katherine A.; Hostick, Donna J.; Underhill, Ronald M.; Fernandez, Nicholas; Katipamula, Srinivas

    2013-09-30T23:59:59.000Z

    To help building owners and managers address issues related to energy-efficient operation of small buildings, DOE has developed a Small Building Re-tuning training curriculum. This "primer" provides additional background information to understand some of the concepts presented in the Small Building Re-tuning training. The intent is that those who are less familiar with the buidling energy concepts will review this material before taking the building re-tuning training class.

  10. Industrial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0 0.0Decade4Year114,937

  11. 3Building a Business Building a Business

    E-Print Network [OSTI]

    Arnold, Jonathan

    15 3Building a Business Building a Business This section provides direction on the kinds. If you contemplate building a "garage- based" company to sell a product into a niche market, you should-ups conjure up images of future wealth, of building the next Amgen or Microsoft, of launching what will become

  12. Material impacts on operational energy usage

    E-Print Network [OSTI]

    Love, Andrea, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Decisions regarding materials and construction of a building are made all the time in the architectural process, but thought is not always given to how those choices may affect the buildings ultimate energy usage and the ...

  13. San Diego County- Green Building Program

    Broader source: Energy.gov [DOE]

    The County of San Diego has a Green Building Incentive Program designed to promote the use of resource efficient construction materials, water conservation and energy efficiency in new and...

  14. Home Energy Ratings and Building Performance

    E-Print Network [OSTI]

    Gardner, J.C.

    climate as they affect the rating score of a proposed or completed structure. The rating is used to determine the most cost effective mechanical systems, building envelope design including window and door types, effect of various roofing materials...

  15. Building the Basic PVC Wind Turbine

    Broader source: Energy.gov (indexed) [DOE]

    Building the Basic PVC Wind Turbine Grades: 5-8, 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's...

  16. Planning ahead : characteristics of versatile buildings

    E-Print Network [OSTI]

    Mahler, Stephen N

    1983-01-01T23:59:59.000Z

    If a building is to maintain its life-long usefulness it must be possible to alter it to accommodate different programmatic demands. This thesis investigates the spatial and material character that facilitates this ...

  17. Building America Webinar: Saving Energy in Multifamily Buildings...

    Energy Savers [EERE]

    More Documents & Publications Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar Energy Saver Guide Building America...

  18. and Pollutant Safeguarding Buildings

    E-Print Network [OSTI]

    commercial buildings, these flows are driven primarily by the building's ventilation system, but natural2004 Airflow and Pollutant Transport Group Safeguarding Buildings Against Chemical and Biological research since 1998 to protect buildings and building occupants from threats posed by airborne chemical

  19. Building America Webinar: Building America Research Tools | Department...

    Energy Savers [EERE]

    Building America Research Tools Building America Webinar: Building America Research Tools This webinar was held on March 18, 2015, and reviewed Building America research tools,...

  20. Building America Top Innovations Hall of Fame Profile - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovations Hall of Fame Profile - Building Energy Optimization Analysis Method (BEopt) Building America Top Innovations Hall of Fame Profile - Building Energy...

  1. A Data and Knowledge Management System for Intelligent Buildings

    E-Print Network [OSTI]

    Hong, J.; Chen, Z.; Li, H.; Xu, Q.

    2006-01-01T23:59:59.000Z

    words: Intelligent building; Assessment; Methodology; Information system 1. INTRODUCTION It is the development and application of modern technologies in the areas of information, communication, materials, and machinery in the construction.... According to our literature review [12], key technologies that support IBs include sustainable architecture, building structure control, building facility control, computer and network, information and communication, safety and security control...

  2. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31T23:59:59.000Z

    Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

  3. APS Building Monitors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Monitors For non-401 Building Monitors, select: LOMs Other APS Buildings 401 West WCtr Lab Wing ECtr East 5th Floor Yiying Ge na na na na 4th Floor Rick Fenner Karen...

  4. Building Performance Simulation

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    a future with  very low energy buildings resulting in very consumption  of  low  energy  buildings,  with  site  EUI design and operation of low energy buildings through better 

  5. Thick Buildings [Standards

    E-Print Network [OSTI]

    Coffin, Christie Johnson

    1995-01-01T23:59:59.000Z

    on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

  6. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    United States and China, Energy and Buildings, 2013. Underin Singapore. Energy and Buildings, 37, 167-174. Eom, J. ,building operations. Energy and Buildings, 33, 783–791.

  7. BUILDING PROCTOR rev. April 2014

    E-Print Network [OSTI]

    BUILDING PROCTOR MANUAL rev. April 2014 #12;Building Proctor Manual rev. April 2014 2 TABLE.........................................................................................................................................5 Role of a Building Proctor ..............................................................................................................5 Authority of Building Proctor

  8. Emergency Response Plan for the Fred Kaiser and Macleod Buildings

    E-Print Network [OSTI]

    Pulfrey, David L.

    with Disabilities - Locations ..............................................10 6 Responsibilities In the Case of Hazardous Material Releases, Spills, Explosions or Fires..27 Building Occupants - Instructions................................................................27 9.1 Explosion or Fire due to Hazardous Materials .........................................27 9

  9. Handbook of energy use for building construction

    SciTech Connect (OSTI)

    Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

    1980-03-01T23:59:59.000Z

    The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

  10. Material Nature Versus Structural Nurture: The Embodied Carbon of Fundamental Structural Elements

    E-Print Network [OSTI]

    Sathre, Roger

    2013-01-01T23:59:59.000Z

    progressive materials management systems consider post-useforms of post-use material management. This simplificationof end-of-life management of building materials. Resour. ,

  11. Buildings Interoperability Landscape ? DRAFT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Heating, Refrigerating, and Air-Conditioning Engineers BACS building automation and control system BCHP building-cooling-heating-power BPM Business Process Modeling BTO...

  12. Building Scale DC Microgrids

    E-Print Network [OSTI]

    Marnay, Chris

    2013-01-01T23:59:59.000Z

    Folsom CA, Integration of Renewable Resources: OperationalOffice of Energy Efficiency and Renewable Energy, BuildingOffice of Energy Efficiency and Renewable Energy, Building

  13. Office Buildings - Full Report

    Gasoline and Diesel Fuel Update (EIA)

    1). Table 1. Totals and means of of floorspace, number of workers, and hours of operation for office buildings, 2003 Buildings (thousand) Total Floorspace (million sq. ft.)...

  14. Solar buildings. Overview: The Solar Buildings Program

    SciTech Connect (OSTI)

    Not Available

    1998-04-01T23:59:59.000Z

    Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

  15. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  16. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    SciTech Connect (OSTI)

    Otis, C.; Maxwell, S.

    2012-06-01T23:59:59.000Z

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  17. Better Buildings Neighborhood Program

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

  18. NIST Preliminary Reconnaissance, Building

    E-Print Network [OSTI]

    Magee, Joseph W.

    NIST Preliminary Reconnaissance, Building Performance and Emergency Communications, Joplin)): Support R&D to improve building codes and standards and practices for design and construction of buildings of and data collection on the impact of severe wind on buildings, structures, and infrastructure ­ Section 204

  19. RESEARCH BUILDING AT NORTHWESTERN

    E-Print Network [OSTI]

    Engman, David M.

    BIOMEDICAL RESEARCH BUILDING AT NORTHWESTERN MEDICINE #12;"Our new Biomedical Research Building-intensive medical schools. Perkins+Will has designed a building that will be superbly functional and have great a magnificent 12-story Biomedical Research Building to address this priority. The new 600,000 square foot

  20. BUILDING MANAGEMENT & RESTRICTED ACCESS

    E-Print Network [OSTI]

    Johnston, Daniel

    BUILDING MANAGEMENT & RESTRICTED ACCESS Plan Annex 2014 VIII #12;#12;#12;The University of Texas at Austiniv #12;Building Management & Restricted Access Plan Annex v CONTENTS RECORD OF CHANGES .......................................................................................................15 J. BUILDING SECURITY OPERATIONS RESTRICTED ACCESS PROCEDURES FOR BUILDINGS ON ELECTRONIC ACCESS

  1. FOREST CENTRE STORAGE BUILDING

    E-Print Network [OSTI]

    deYoung, Brad

    FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

  2. Community Development Building Division

    E-Print Network [OSTI]

    California Energy Commission 1516 Ninth Street Sacramento, Ca 95814-5514 Re: Green Building Ordinance of Los Altos Energy Efficiency Ordinance, Green Building Regulations under the 2005 California Building by the Board on that date. The Green Building Regulation, Chapter 12.66 of the City Municipal code, will ensure

  3. Building Envelopes | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE Building Envelopes MFEL.jpg The

  4. Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement

    SciTech Connect (OSTI)

    Seguin, Nicole R. [Los Alamos National Laboratory

    2012-07-18T23:59:59.000Z

    Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

  5. Analysis of Heat Charging and Discharging on the Phase Change Energy-Storage Composite Wallboard (PCECW) in Building

    E-Print Network [OSTI]

    Yue, H.; Chen, C.; Liu, Y.; Guo, H.

    2006-01-01T23:59:59.000Z

    This research paper combines the phase change material and the basal building material to constitute a kind of new phase change energy- storage composite wallboard (PCECW), applied in a residential building in Beijing. We analyzed the energy-storage...

  6. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building better understanding of product performance by the entire construction materials industry. INNOVATIONSFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  7. Conjugated Materials DOI: 10.1002/anie.201310290

    E-Print Network [OSTI]

    MĂĽller, Peter

    Conjugated Materials DOI: 10.1002/anie.201310290 Dithiolodithiole as a Building Block for Conjugated Materials** Derek J. Schipper, Lionel C. H. Moh, Peter MĂĽller, and Timothy M. Swager* Abstract as a conjugated building block for organic materials is described. The resulting materials exhibit complimentary

  8. House Simulation Protocols (Building America Benchmark) - Building...

    Energy Savers [EERE]

    House Simulation Protocols. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that utilize House Simulation...

  9. Building Green in Greensburg: Business Incubator Building

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing SunChips Business Incubator building in Greensburg, Kansas.

  10. Building Green in Greensburg: City Hall Building

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

  11. Improved Building Performance Through Effective Communication & Training

    E-Print Network [OSTI]

    Bates, R.

    2005-01-01T23:59:59.000Z

    IMPROVED BUILDING PERFORMANCE THROUGH EFFECTIVE COMMUNICATION & TRAINING Rick Bates Project Manager Environmental Education Foundation Gilbert, AZ ABSTRACT This paper describes the procedures involved in the development of a... for not understanding how buildings should be cared for. Separate course materials and separate training programs had been designed although the same underlying guidance was needed for both groups. The gender and age relationship between these groups...

  12. User's manual for RESRAD-BUILD version 3.

    SciTech Connect (OSTI)

    Yu, C.; LePoire, D. J.; Cheng, J. J.; Gnanapragasam, E.; Arnish, J.; Biwer, B. M.; Zielen, A. J.; Williams, W. A.; Wallo, A., III; Peterson, H. T., Jr.

    2003-07-31T23:59:59.000Z

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material. The transport of radioactive material within the building from one compartment to another is calculated with an indoor air quality model. The air quality model considers the transport of radioactive dust particulates and radon progeny due to air exchange, deposition and resuspension, and radioactive decay and ingrowth. A single run of the RESRAD-BUILD code can model a building with up to three compartments, four source geometries (point, line, area, and volume), 10 distinct source locations, and 10 receptor locations. The volume source can be composed of up to five layers of different materials, with each layer being homogeneous and isotropic. A shielding material can be specified between each source-receptor pair for external gamma dose calculations. The user can select shielding material from eight different material types. Seven exposure pathways are considered in the RESRAD-BUILD code: (1) external exposure directly from the source, (2) external exposure to materials deposited on the floor, (3) external exposure due to air submersion, (4) inhalation of airborne radioactive particulates, (5) inhalation of aerosol indoor radon progeny and tritiated water vapor, (6) inadvertent ingestion of radioactive material directly from the source, and (7) ingestion of materials deposited on the surfaces of the building compartments. Various exposure scenarios may be modeled with the RESRAD-BUILD code. These include, but are not limited to, office worker, renovation worker, decontamination worker, building visitor, and residency scenarios. Both deterministic and probabilistic dose analyses can be performed with RESRAD-BUILD, and the results can be shown in both text and graphic reports.

  13. Joseph Vance Building, The

    High Performance Buildings Database

    Seattle, WA In 2006, the Rose Smart Growth Investment Fund acquired the historic Joseph Vance Building with the purpose of transforming it into "the leading green and historic class B" building in the marketplace. The terra cotta Vance Building was constructed in 1929 and has 14 floors - 13 floors of offices over ground-floor retail with a basement for mechanical equipment and storage. In 2009 the U.S. Green Building Council (USGBC) awarded the Vance Building LEED for Existing Buildings (EB) Gold certification.

  14. Building America Top Innovations Hall of Fame Profile - Building...

    Energy Savers [EERE]

    Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top Innovations Hall of Fame...

  15. Building Science-Based Climate Maps - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on the IECC...

  16. Trends in Commercial Buildings--Buildings and Floorspace

    U.S. Energy Information Administration (EIA) Indexed Site

    Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings TrendDetail Commercial Floorspace TrendDetail Background: Adjustment to...

  17. Building operating systems services: An architecture for programmable buildings.

    E-Print Network [OSTI]

    Dawson-Haggerty, Stephen

    2014-01-01T23:59:59.000Z

    7.3.2 Building Performance Analysis . . . . . . 7.4 RelatedWork 2.1 Building Physical Design . . . . . . . . . .3.2.6 Building Applications . . . . . . . . . . .

  18. Heat storage and distribution inside passive-solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01T23:59:59.000Z

    Passive-solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed, including both convection through single doorways and convective loops that may exist involving a sunspace. Design guidelines are given.

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  20. Building, landscape and section

    E-Print Network [OSTI]

    Johnson, Daniel B. (Daniel Bryant)

    1992-01-01T23:59:59.000Z

    All buildings have in their section a relationship to the landscape on which they are sited. Therefore we as inhabitants of these buildings may or may not have a relationship with the landscape. It is the supposition of ...

  1. Special Building Renovations

    Broader source: Energy.gov [DOE]

    A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

  2. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  3. APS Building Managers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Managers BUILDING CONTACT 400,401,402,411,412,413,415,420,431-436,438 Steven Downey 450 Glenn Kailus 382 Joe Gagliano 378 Ed Theres 314 Ed Russell...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

  6. Financing green buildings

    E-Print Network [OSTI]

    Pierce, Christopher John, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    An emerging trend in real estate is the development of sustainable buildings, partially due to the huge environmental impact of the design, construction and operation of commercial buildings. This thesis provides a brief ...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2009 S.B. 1182 created the Oklahoma Uniform Building Code Commission. The 11-member Commission was given the power to conduct rulemaking processes to adopt new building codes. The codes adopted...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  9. Building condition monitoring

    E-Print Network [OSTI]

    Samouhos, Stephen V. (Stephen Vincent), 1982-

    2010-01-01T23:59:59.000Z

    The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

  10. Change in historic buildings

    E-Print Network [OSTI]

    Yin, Chien-Ni

    1992-01-01T23:59:59.000Z

    Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

  11. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

  12. The Economics of Green Building

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2010-01-01T23:59:59.000Z

    Benjamin. "Do LEED-Certified Buildings Save Energy? Yes,But,." Energy and Buildings, 2009, 41, pp. 897-905. Royalrating, and publicizing buildings along these dimensions (

  13. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Center for Building Energy Efficiency, and the China Center on Building Energy Efficiency (CERC-BEE) November,1)  CERC  Building  Energy  Efficiency  (CERC?BEE) 

  14. The Economics of Green Building

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2010-01-01T23:59:59.000Z

    Environment Quality in Green Buildings: A Review," Nationalof Popular Attention to Green Building Notes: Sources:2007 - 2009 panel of green buildings and nearby control

  15. Building Operator Certification

    E-Print Network [OSTI]

    Lilley, D.

    2013-01-01T23:59:59.000Z

    Building Operator Certification Energy Efficiency through Operator Training CATEE December 18, 2013 – San Antonio, TX Dennis Lilley, CEM, PMP ESL-KT-13-12-49 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Building Operator Certification Energy Efficiency through Operator Training What is Building Operator Certification? Industry-recognized credential in energy efficient building operation practices Created with 100 industry experts Launched in 1996 9...

  16. Building Songs 5

    E-Print Network [OSTI]

    Zla ba sgrol ma

    2009-10-28T23:59:59.000Z

    . Sman shad building song 5.WAV Length of track 00:02:14 Related tracks (include description/relationship if appropriate) Title of track Building Songs 5 Translation of title Description (to be used in archive entry) Skar ma chos mdzin... sings a building song. Such songs are traditionally sung antiphonally between two groups of men while they are ramming walls. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma...

  17. Building Songs 8

    E-Print Network [OSTI]

    Zla ba sgrol ma

    2009-10-28T23:59:59.000Z

    . Sman shad building song 8.WAV Length of track 00:01:28 Related tracks (include description/relationship if appropriate) Title of track Building Songs 8 Translation of title Description (to be used in archive entry) Skar ma chos mdzin... sings a building song. Such songs are traditionally sung antiphonally between two groups of men while they are ramming walls. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma...

  18. Building Songs 7

    E-Print Network [OSTI]

    Zla ba sgrol ma

    2009-10-28T23:59:59.000Z

    . Sman shad building song 7.WAV Length of track 00:09:57 Related tracks (include description/relationship if appropriate) Title of track Building Songs 7 Translation of title Description (to be used in archive entry) Skar ma chos mdzin... sings a building song. Such songs are traditionally sung antiphonally between two groups of men while they are ramming walls. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma...

  19. Building Performance Evaluation

    E-Print Network [OSTI]

    King, A.; Harris, J.; Mbentin, B.

    2012-01-01T23:59:59.000Z

    Building Performance Evaluation Anne King and Jo Harris, MBEKTN and BSRIA Agenda ? Background to funding and programme ? The Building Performance Evaluation Programme in the UK ? Requirements ? Results ? Impact ? Discussion ? Do you/ How do... you do Building Performance Evaluation? ? What gaps are there and what could research do to fill them? Background ? The Technology Strategy Board ? the funders ? Low Impact Building programme ? BSRIA and others ? evaluators ? Soft Landings...

  20. Building a private cloud with Open Nebula

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE BuildingBuildingBuildingprivate

  1. Buildings Technologies Deployment | Clean energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHAREManufacturing |BuildingEnergyBuilding

  2. Building 9731 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,BubblesBuilding 9731 Building 9731

  3. Building Agent Software - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,BubblesBuilding 9731 Building

  4. Building Technologies Program | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE BuildingBuilding Technologies

  5. Executive report Building knowledge

    E-Print Network [OSTI]

    Geffner, Hector

    Executive report Building knowledge To build citizens To build cities UPF CAMPUS ICŔRIA INTERNATIONAL PROJECT 2010 International Campus of Excellence Programme #12;2 UPF CAMPUS ICŔRIA INTERNATIONAL this presentation from the one submitted in the CEI 2009 programme where UPF was classified as a `promising

  6. Archive Reference Buildings by Building Type: Primary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  7. Building America Webinar: Building America: Research for Real...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Building America: Research for Real-World Results Building America Webinar: Building America: Research for Real-World Results December 17, 2014 3:00PM to...

  8. Archive Reference Buildings by Building Type: Stand-alone retail

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  9. Archive Reference Buildings by Building Type: Small office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  10. Archive Reference Buildings by Building Type: Large office

    Office of Energy Efficiency and Renewable Energy (EERE)

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  11. Archive Reference Buildings by Building Type: Fast food

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  12. Archive Reference Buildings by Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  13. Archive Reference Buildings by Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  14. Development of a geometric database structure and sketching interface for energy simulation software for buildings

    E-Print Network [OSTI]

    Zareen, Hadiba

    1996-01-01T23:59:59.000Z

    and responsive design solutions. Explicit representation of building design parameters are needed if computers are to be used to aid energy conscious design and evaluation. Energy calculation programs require data relating to building materials, occupancy...

  15. Energy-Optimised Building- Experience and Future Perspectives from a Demonstration Programme in Germany 

    E-Print Network [OSTI]

    Hans, O.; Voss, K.; Wagner, A.; Gossner, H.; Grunewald, J.; Petzold, H.; Herkel, S.; Pfafferott, J.; Lehmann, D.; Neumann, C.

    2008-01-01T23:59:59.000Z

    In 1995, the German Federal Ministry of Economics and Technology launched an intensive research and demonstration programme on energy-optimised construction of new buildings as well as retrofitting the building stock. Beside research on materials...

  16. Energy-Optimised Building- Experience and Future Perspectives from a Demonstration Programme in Germany

    E-Print Network [OSTI]

    Hans, O.; Voss, K.; Wagner, A.; Gossner, H.; Grunewald, J.; Petzold, H.; Herkel, S.; Pfafferott, J.; Lehmann, D.; Neumann, C.

    In 1995, the German Federal Ministry of Economics and Technology launched an intensive research and demonstration programme on energy-optimised construction of new buildings as well as retrofitting the building stock. Beside research on materials...

  17. INSERT YOUR BUILDING NAME HERE: BUILDING EMERGENCY PLAN

    E-Print Network [OSTI]

    INSERT YOUR BUILDING NAME HERE: BUILDING EMERGENCY PLAN Date Adopted: 6/4/13 Date Revised: 6/4/13 Prepared By: Tracey Simmerman #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table of Contents Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

  18. Buildings and Areas 1001 Broadway Building D1 BDWY

    E-Print Network [OSTI]

    Carter, John

    Design (LEED) Green Building Rating System is a nationally accepted benchmark for the designBuildings and Areas 1001 Broadway Building D1 BDWY 1313 East Columbia Building B3 CLMB Administration Building D1 ADMN Admissions & C2 ADAL Alumni Building Archbishop Murphy A1 ATMA Apartments Arrupe

  19. Material worlds : [de]constructing the ethos of concrete in Mumbai

    E-Print Network [OSTI]

    Shah, Priyanka (Priyanka Dinesh)

    2008-01-01T23:59:59.000Z

    What can a building material tell us about a city? As the most widely used structural building material in the world, reinforced cement concrete shapes the urban form of several of our largest megacities Sao Paulo, Cairo, ...

  20. Embedded Commissioning for Building Design

    E-Print Network [OSTI]

    Akin, O.; Turkaslan-Bulbul, M. T.; Gursel, I.; Garrett, J. H.; Akinci, B.; Wang, H.

    2004-01-01T23:59:59.000Z

    Building Commissioning has a broad scope that extends to all phases of building delivery. We view commissioning as a building delivery embedded process that persistently verifies and validates design intent throughout the building lifecycle process...

  1. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29T23:59:59.000Z

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  2. Also Known As (Room or Building)

    E-Print Network [OSTI]

    Mottram, Nigel

    Room No. Also Known As (Room or Building) Hearing Assistance Type 702 InfraRed 704 InfraRed 706 Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam Smith Building Adam

  3. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    platforms and  building automation systems (BAS), a building  automation  control,  fault  detection  and  diagnostics  (FDD),  and  continuous  system 

  4. Mork Family Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Southern California, University of

    , materials science, and petroleum engineering. The reputation of the MFD for excellence in chemical Engineering MS in Materials Science MS in Petroleum Engineering PhD in Chemical Engineering PhD in Materials buildings: HEDCO Petroleum and Chemical Engineering Building Neely Petroleum and Chemical Engineering

  5. Jackson Park Hospital Green Building Medical Center

    SciTech Connect (OSTI)

    William Dorsey; Nelson Vasquez

    2010-03-31T23:59:59.000Z

    Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

  6. BUILDING EMERGENCY ACTION PLAN [Medical Sciences Building, Building # 192] / [506 S. Mathews, Urbana

    E-Print Network [OSTI]

    Gilbert, Matthew

    BUILDING EMERGENCY ACTION PLAN [Medical Sciences Building, Building # 192] / [506 S. Mathews requires the BUILDING EMERGENCY MANAGEMENT TEAM: Building Command Post1 1. M2 classroom, Carle Forum This Building Emergency Action Plan (BEAP) is to be used in conjunction with the Emergency Response Guide (ERG

  7. EMERGENCY RESPONSE PLAN TECHNOLOGICAL INSTITUTE BUILDING (TECH)

    E-Print Network [OSTI]

    Mohseni, Hooman

    Assistance Fire, smoke, explosion, medical emergency, and life-threatening hazardous material spills V. BUILDING SAFETY SYSTEMS 21 VI. FIRE FIGHTING 24 VII. CLOTHING FIRE 25 VIII. CHEMICAL, BIOLOGICAL ALARM NOTIFICATION RESPONSIBILITIES 36 G. FIRE EXTINGUISHER 38 H. EMERGENCY GUIDELINES FOR INSTRUCTORS

  8. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building materials industry. INNOVATIONS IN BUILDINGS Contact ORNL 2012-G00695/tcc Ensuring Affordable, EfficientFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  9. BuildingName The Description of the Project

    E-Print Network [OSTI]

    Kamat, Vineet R.

    , and regulated building materials. 3. Construction of new masonry and drywall/metal stud walls and partitions. 4. New plumbing work, including natural gas, vacuum, domestic hot and cold water, purified water piping OF FIRE SERVICES (BFS). FOR A COMPLETE LISTING, REFER TO DESIGN GUIDELINE SID-F. B. The building in which

  10. 1/8" = 1'-0" SCALE BUILDING SECTIONS

    E-Print Network [OSTI]

    Dyer, Bill

    MECHANICAL CODE 2009 UNIFORM PLUMBING CODE 2008 NATIONAL ELECTRIC CODE 2009 INTERNATIONAL ENERGY CONSERVATION EDITIONS AS REQUIRED BY THE STATE OF MONTANA: 2009 INTERNATIONAL BUILDING CODE 2009 INTERNATIONAL CODE NO HAZARDOUS MATERIALS EXCEEDING THE LIMITS STATED IN THE 2009 INTERNATIONAL BUILDING CODE TABLES

  11. Registration Form American Society of Materials UTA Summer Camp 2014 Materials Science and Engineering,

    E-Print Network [OSTI]

    Texas at Arlington, University of

    of Materials Science and Engineering 501 W. 1st Street, Room 231 ­ Engineering Laboratory Building PO Box 19031 Arlington, TX 76019 #12;ASM International Materials Science Camp at Materials Science and Engineering of Materials Science and Engineering. The camp will provide an opportunity for the students to learn more about

  12. The Lovejoy Building

    High Performance Buildings Database

    Portland, OR Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

  13. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Containment buildings (40 CFR parts 264/265, subpart DD) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    In 1992, EPA developed standards for a new hazardous waste management unit called a containment building. Containment buildings, which are essentially waste piles enclosed in a building, facilitate management of bulky materials without triggering land disposal and land disposal restrictions (LDR). This module outlines the regulatory history and purpose of containment buildings. It discusses the relationship between LDR and containment buildings, summarizes the design and operating standards applicable to containment buildings, and describes the relationship between generator accumulation standards and containment buildings.

  14. DAYLIGHTING METRICS FOR RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    unknown authors

    It is now widely accepted that the standard method for daylighting evaluation- the daylight factor- is due for replacement with metrics founded on absolute values for luminous quantities predicted over the course of a full year using sun and sky conditions derived from standardised climate files. The move to more realistic measures of daylighting introduces significant levels of additional complexity in both the simulation of the luminous quantities and the reduction of the simulation data to readily intelligible metrics. The simulation component, at least for buildings with standard glazing materials, is reasonably well understood. There is no consensus however on the composition of the metrics, and their formulation is an ongoing area of active research. Additionally, non-domestic and residential buildings present very different evaluation scenarios and it is not yet clear if a single metric would be applicable to both. This study uses a domestic dwelling as the setting to investigate and explore the applicability of daylighting metrics for residential buildings. In addition to daylighting provision for task and disclosing the potential for reducing electric lighting usage, we also investigate the formulation of metrics for non-visual effects such as entrainment of the circadian system.

  15. Building Songs 10

    E-Print Network [OSTI]

    Zla ba sgrol ma

    2009-11-06T23:59:59.000Z

    . Sman shad building song 10.WAV Length of track 00:06:03 Related tracks (include description/relationship if appropriate) Title of track Building Songs 10 Translation of title Description (to be used in archive entry) Male villagers... sing a building song. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma Date of recording November 6th 2009. Place of recording Gad dmar khug market Mda' ma Township, Sde dge...

  16. What is Building America?

    SciTech Connect (OSTI)

    None

    2013-06-20T23:59:59.000Z

    DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

  17. Building Songs 11

    E-Print Network [OSTI]

    Zla ba sgrol ma

    2009-11-06T23:59:59.000Z

    . Sman shad building song 11.WAV Length of track 00:21:12 Related tracks (include description/relationship if appropriate) Title of track Building Songs 11 Translation of title Description (to be used in archive entry) Male villagers... sing a building song. Genre or type (i.e. epic, song, ritual) Building song Name of recorder (if different from collector) Zla ba sgrol ma Date of recording November 6th 2009. Place of recording Gad dmar khug market Mda' ma Township, Sde dge...

  18. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

  19. What is Building America?

    ScienceCinema (OSTI)

    None

    2013-07-22T23:59:59.000Z

    DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

  20. Building Science- Ventilation

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question Ť"What are the best ventilation techniques"

  1. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to achieve Leadership in Energy and Environmental Design gold certification from the U.S. Green Building Council. The Center for Integrated Nanotechnologies brings together...

  2. Forest Road Building Regulations

    Broader source: Energy.gov [DOE]

    The Wisconsin Department of Natural Resources has regulations for building a forest road, if development requires one. Regulations include zoning ordinances and permits for stream crossing, grading...

  3. building.ppt

    E-Print Network [OSTI]

    Building Parenting Skills and Interactions with Kangaroo Care. Sharon A. Wilkerson, PhD, RN. Associate Professor of Nursing. Purdue University. West Lafayette ...

  4. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  5. Building bridges for fish

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building-bridges-for-fish Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

  6. Chapter 3: Building Siting

    Broader source: Energy.gov (indexed) [DOE]

    and up, especially at doors and loading docks, requires loading docks on the south side of buildings. significant effort and energy for snow removal. Desirable locations of...

  7. New American Home 2010: Las Vegas, Nevada, Building Technologies Program (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    This brochure details the New American Home 2010, which demonstrates the use of innovative building materials, cutting-edge design, and the latest construction techniques.

  8. Expansion of the Volpentest Hazardous Materials Management and...

    Broader source: Energy.gov (indexed) [DOE]

    activities, such as trucks for transporting building materials and solid waste, heat and exhaust fumes from construction Environmental Assessment 5-1 November 2002 DOE...

  9. Expansion of the Volpentest Hazardous Materials Management and...

    Broader source: Energy.gov (indexed) [DOE]

    activities, such as trucks for transporting building materials and solid waste, heat and exhaust fumes from construction equipment motors, or backfilling, could be...

  10. Comparison of Building Energy Modeling Programs: Building Loads

    E-Print Network [OSTI]

    LBNL-6034E Comparison of Building Energy Modeling Programs: Building Loads Dandan Zhu1 , Tianzhen Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U;Comparison of Building Energy Modeling Programs: Building Loads A joint effort between Lawrence Berkeley

  11. New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors

    E-Print Network [OSTI]

    New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors Building energy codes are complex. Plans examiners and building inspectors are expected to understand and enforce energy savings. This new, hands-on course strives to provide plans examiners and building inspectors

  12. Building and Facility Codes Code Building Location Bldg # Coordinates

    E-Print Network [OSTI]

    Russell, Lynn

    Building and Facility Codes Code Building Location Bldg # Coordinates APM Applied Physics & Mathematics Building Muir 249 F7 ASANT Asante Hall Eleanor Roosevelt 446 F5 BIO Biology Building Muir 259 F7 BIRCH Birch Aquarium SIO 2300 S-D7 BONN Bonner Hall Revelle 131 G8 BSB Biomedical Sciences Building

  13. Asia Materials symposium May 24, 2014

    E-Print Network [OSTI]

    Furui, Sadaoki

    4th Asia Materials symposium May 24, 2014 South Building No. 8, 6F, room 623 Tokyo Institute of Technology (Ookayama Campus) Program 9:30 Opening (Martin Vacha, Editor-in-Chief, NPG Asia Materials) Session 1: Invited talks by young researches from TokyoTech 9:35 Nobuhiro Matsushita (Materials & Structures

  14. Engineering Building a better

    E-Print Network [OSTI]

    Barthelat, Francois

    and modern buildings laid out around an oasis of green space. Much like the multicultural population restoration, waste reduction, climate change impact mitigation and air pollution abatement. + 5 COURSESCivil Engineering future Building a better #12;McGill University Montreal, with a population

  15. BUILDING ENERGY 1987 Edition

    E-Print Network [OSTI]

    changes in lighting control and HVAC requirements. The lighting control requirements in Section 2-5319(a, are required for all alterations. The HVAC requirements of new buildings are requ ired for some HVAC alterat for a wide variety of building shapes. "SECOND GENERATioN" ALTERNATIVE HVAC COMPLIANCE CODIFIED 4

  16. Building Technologies Research and

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Impact of Buildings Centers of Excellence · 40% of total primary energy consumption · 74% of electricity consumption · 56% of natural gas consumption (including gas-generated electricity used in buildings) · 39 the nation accounts for its energy consumption, making the energy savings potential even greater. National

  17. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20T23:59:59.000Z

    The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

  18. 200 Market Building

    High Performance Buildings Database

    Portland, OR The 200 Market Building is a high-rise built in 1973 and located in downtown Portland, Oregon. It was purchased in 1988 by its current owner, 200 Market Associates, primarily because of its optimal location in Portland's central business district. Since 1989 the building has undergone continuous improvements in multiple phases.

  19. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

  20. Reference Buildings by Building Type: Small Hotel

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  1. Reference Buildings by Building Type: Large Hotel

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  2. BUILDING PERFORMANCE ENGINEERING DURING CONSTRUCTION

    E-Print Network [OSTI]

    Toole, T. Michael

    1 BUILDING PERFORMANCE ENGINEERING DURING CONSTRUCTION T. Michael Toole1 and Matthew Hallowell2 of building performance engineering tasks on design-bid-build projects are typically provided by entities building construction projects. Twenty four building performance engineering tasks were required

  3. About Singapore Green Building Council

    E-Print Network [OSTI]

    About Singapore Green Building Council About SGBC Green Building Conference Conference Programme Green Building Conference In line with the mission of the Singapore Green Building Council (SGBC is please to present the inaugural SGBC Green Building Conference 2010 to be held from 13 ­ 16 September

  4. NREL Buildings Research Video

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus?the first Federal building to be LEED® Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

  5. City of Scottsdale- Green Building Policy for Public Buildings

    Broader source: Energy.gov [DOE]

    In 2005, Scottsdale approved a green building policy for new city buildings and remodels. The resolution requires all new, occupied city buildings of any size to be designed, contracted and built...

  6. Building UPF for Y-12 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE BuildingBuildingBuilding UPF for

  7. Building a linker library for silicon nitride window membrane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE BuildingBuildingBuilding

  8. MATERIAL TRACKING USING LANMAS

    SciTech Connect (OSTI)

    Armstrong, F.

    2010-06-07T23:59:59.000Z

    LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

  9. Presentation: Better Buildings Residential Program Solution Center...

    Office of Environmental Management (EM)

    Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential...

  10. Building Technologies Program | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

  11. Information Technology Tools for Multifamily Building Programs...

    Energy Savers [EERE]

    Information Technology Tools for Multifamily Building Programs Information Technology Tools for Multifamily Building Programs Better Buildings Neighborhood Program Multifamily ...

  12. Building America Webinar: Retrofit Ventilation Strategies in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies in Multifamily Buildings Webinar Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar This webinar, presented by...

  13. Better Buildings Residential Program Solution Center Demonstration...

    Energy Savers [EERE]

    Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution...

  14. Membership Criteria: Better Buildings Residential Network | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network Membership Criteria: Better Buildings Residential Network...

  15. Better Buildings Neighborhood Program Grant Recipient Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Neighborhood Program Grant Recipient Management Handbook Better Buildings Neighborhood Program Grant Recipient Management Handbook Better Buildings Neighborhood...

  16. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    Building thermal loadThe building thermal load predictor. . . . . . . .of Figures 1.1 Classification schematic for building MPC

  17. A material resource evaluation for UMore

    E-Print Network [OSTI]

    Netoff, Theoden

    of Minnesota School of Architecture students in Arch 8565: Material Performance in Sustainable Building, 2012 Performance in Sustainable Building, taught at the University of Minnesota School of Architecture Forest products: architecture from the ground-up Pardees Azodanloo, Samaneh Vahaji, and Emerson Stepp

  18. Building America Solution Center - Building America Top Innovation...

    Energy Savers [EERE]

    America Top Innovation SCimagemale.jpg The Building America Solution Center is a Web-based tool connecting users to fast, free, and expert building science and energy...

  19. Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    Building on President Obama's Climate Action Plan and the Administration's Better Buildings Initiative, the Energy Department announced today that the Department's Better...

  20. A Look at Principal Building Activities in Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public...

  1. Webinar: Make Your Building Sing!: Building-Retuning to Reduce...

    Broader source: Energy.gov (indexed) [DOE]

    (PNNL) developed a curricula focused on retuning both large (with a building automation system, or BAS) and small (without a BAS) commercial buildings. Hear from Better...

  2. Building America Webinar: Building America Technology-to-Market...

    Broader source: Energy.gov (indexed) [DOE]

    introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building America's research, development, and demonstration activities over...

  3. FEATURED PROJECT Biomedical Sciences Building: Slated to open in March 2012, UCSC's

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    materials, as well as an inspiring setting for teaching and research. Now the largest building on campus, Mc. Construction was completed in less than 15 months and the building will receive LEED "Silver" or "GoldSanta Cruz FEATURED PROJECT Biomedical Sciences Building: Slated to open in March 2012, UCSC

  4. Distributed Wireless Control for Building Energy Management Alan Marchiori and Qi Han

    E-Print Network [OSTI]

    Han, Qi "Chee"

    Distributed Wireless Control for Building Energy Management Alan Marchiori and Qi Han Department building energy management systems are es- sential to enabling the development of mass-market, low- energy to the total energy efficiency. As building technologies and materi- als improve, the relative impact

  5. Jointly organised by Centre for Asian Tall Buildings and Urban Habitat

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    for Infrastructure and Construction Industry Development THE UNIVERSITY OF HONG KONG Sustainable Building Design on climate change, the depletion of the earth's resources, widespread pollution, the concept of sustainable a building in operation down to the kinds of building materials used in its construction with emphasis

  6. FY 2013 EL Program Description EL Program: Embedded Intelligence in Buildings

    E-Print Network [OSTI]

    Perkins, Richard A.

    be significantly reduced. Congress has established a national goal of achieving net-zero energy buildings by 2030, Materials, and Infrastructure Summary: Congress has established a national goal of achieving net-zero energy buildings by 2030.1 Approximately 84% of the life cycle energy use of a building is associated

  7. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    Seven recent energy-efficient U.S. office buildings areSeven recent energy-efficient U.S. office buildings are18, 1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W.

  8. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    the case for building energy-efficiency labels. 3.1 Trendsenergy efficiency. Building energy efficiency labels are anThe use of building energy efficiency labels may be the

  9. GREEN BUILDINGS IN CHALLENGES AND

    E-Print Network [OSTI]

    Delaware, University of

    GREEN BUILDINGS IN DELAWARE: CHALLENGES AND OPPORTUNITIES FINAL REPORT A Renewable Energy-8405 Telefax: (302) 831-3098 Website: http://ceep.udel.edu #12;GREEN BUILDINGS IN DELAWARE: CHALLENGES .......................................................................................................2 2.1. Green Buildings

  10. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Breakdown of Total  Electricty Consumption ? Building A kWh/Breakdown of Total  Electricty Consumption ? Building B kWh/Breakdown of Total   Electricty Consumption ? Building C 

  11. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    a future with very low energy buildings resulting in very making  for  low  energy  buildings.   This  project  will and operation of low energy buildings.  Several studies, 

  12. Building & Fire Assist Director

    E-Print Network [OSTI]

    Yetisgen-Yildiz, Meliha

    Sites / Underground StorageTanks PCB Disposal Chemical Spill Advice Chemical Waste Hazardous Materials & Reporting Animal / Research Protocol Hazardous Materials Review Animal UseMedicalScreening Biological Safety) Air Quality Chemical Inventories (My Chem) Hazardous Materials Recycling Water Quality Contaminated

  13. Digital cellular solids : reconfigurable composite materials

    E-Print Network [OSTI]

    Cheung, Kenneth Chun-Wai

    2012-01-01T23:59:59.000Z

    Digital materials are comprised of a small number of types of discrete physical building blocks, which assemble to form constructions that meet the versatility and scalability of digital computation and communication ...

  14. Green Energy Standards for Public Buildings

    Broader source: Energy.gov [DOE]

    In March 2012, West Virginia enacted the Green Buildings Act, which applies to all new construction of public buildings, buildings receiving state grant funds, and buildings receiving state...

  15. Building America Webinar: National Residential Efficiency Measures...

    Energy Savers [EERE]

    Database Webinar Slides Building America Webinar: Saving Energy in Multifamily Buildings Building America Webinar: Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

  16. Building-integrated photovoltaics

    SciTech Connect (OSTI)

    NONE

    1993-01-01T23:59:59.000Z

    This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

  17. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    SciTech Connect (OSTI)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31T23:59:59.000Z

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following topics in the primary five-day Building Energy/Sustainability Management Certificate program in five training modules, namely: 1) Strategic Planning, 2) Sustainability Audits, 3) Information Analysis, 4) Energy Efficiency, and 5) Communication. Training Program 2 addresses the following technical topics in the two-day Building Technologies workshop: 1) Energy Efficient Building Materials, 2) Green Roofing Systems, 3) Energy Efficient Lighting Systems, 4) Alternative Power Systems for Buildings, 5) Innovative Building Systems, and 6) Application of Building Performance Simulation Software. Program 3 is a seminar which provides an overview of elements of programs 1 and 2 in a seminar style presentation designed for the general public to raise overall public awareness of energy and sustainability topics.

  18. 324 Building spent fuel segments pieces and fragments removal summary report

    SciTech Connect (OSTI)

    SMITH, C L

    2003-01-09T23:59:59.000Z

    As part of the 324 Building Deactivation Project, all Spent Nuclear Fuel (SNF) and Special Nuclear Material were removed. The removal entailed packaging the material into a GNS-12 cask and shipping it to the Central Waste Complex (CWC).

  19. Fuzzy Comprehensive Evaluation Model and Influence Factors Analysis on Comprehensive Performance of Green Buildings

    E-Print Network [OSTI]

    Sun, J.; Wu, Y.; Dai, Z.; Hao, Y.

    2006-01-01T23:59:59.000Z

    A green building involves complex system engineering including energy efficiency and energy utilization, water-saving and water utilization, material-saving and material utilization, and land-saving and indoor environment quality and operation...

  20. BETTER BUILDINGS ALLIANCE

    Office of Energy Efficiency and Renewable Energy (EERE)

    Commercial buildings—our offices, schools, hospitals, restaurants, hotels and stores—consume nearly 20% of all energy used in the United States. We spend more than $200 billion each year to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by commissioning existing systems so they operate as intended. Energy efficiency is a cost-effective way to save money, support job growth, reduce pollution, and improve competitiveness.

  1. INL Green Building Strategy

    SciTech Connect (OSTI)

    Jennifer Dalton

    2005-05-01T23:59:59.000Z

    Green buildings, also known as sustainable buildings, resource efficient buildings, and high performance buildings, are structures that minimize the impact on the environment by using less energy and water, reducing solid waste and pollutants, and limiting the depletion of natural resources. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish the mission. This infrastructure, particularly the buildings, should incorporate green design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. With this in mind, the recommendations described in this strategy are intended to form the INL foundation for green building standards. The recommendations in this strategy are broken down into three levels: Baseline Minimum, Leadership in Energy and Environmental Design (LEED)Certification, and Innovative. Baseline Minimum features should be included in all new occupied buildings no matter what the purpose or size. These features do not require significant research, design, or capital costs and yet they can reduce Operation and Maintenance (O&M) costs and produce more environmentally friendly buildings. LEED Certification features are more aggressive than the Baseline Minimums in that they require documentation, studies, and/or additional funding. Combined with the Baseline Minimums, many of the features in this level will need to be implemented to achieve the goal of LEED certification. LEED Silver certification should be the minimum goal for all new buildings (including office buildings, laboratories, cafeterias, and visitor centers) greater than 25,000 square feet or a total cost of $10 million. Innovative features can also contribute to LEED certification, but are less mainstream than those listed in the previous two levels. These features are identified as areas where INL can demonstrate leadership but they could require significant upfront cost, additional studies, and/or development. Appendix A includes a checklist summary of the INL Green Building Strategy that can be used as a tool during the design process when considering which green building features to include. It provides a quick reference for determining which strategies have lower or no increased capital cost, yield lower O&M costs, increase employee productivity, and contribute to LEED certification.

  2. Buildings to Grid Integration & Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings to Grid Integration & Interoperability Joe Hagerman, Senior Advisor DOE Building Technologies Office March 11, 2013 EERE: Office of Energy Efficiency and Renewable Energy...

  3. Solar Ready Buildings Planning Guide

    SciTech Connect (OSTI)

    Lisell, L.; Tetreault, T.; Watson, A.

    2009-12-01T23:59:59.000Z

    This guide offers a checklist for building design and construction to enable installation of solar photovoltaic and heating systems at some time after the building is constructed.

  4. The Economics of Green Building

    E-Print Network [OSTI]

    Eichholtz, Piet; Kok, Nils; Quigley, John M.

    2010-01-01T23:59:59.000Z

    Even among green buildings, increased energy efficiency isof total returns to energy efficient and green constructionof Energy and Indoor Environment Quality in Green Buildings:

  5. Frederick County- Green Building Program

    Broader source: Energy.gov [DOE]

    Frederick County administers a green building program. It has two goals: (1) to ensure that County building projects implement strategies that enhance environmental performance and fiscal...

  6. Building Random Trees from Blocks

    E-Print Network [OSTI]

    2012-09-18T23:59:59.000Z

    Sep 18, 2012 ... We have a finite collection of unlabeled, rooted, nonplanar building ... We use these as building blocks of an unlabeled, rooted, nonplanar tree.

  7. Chapter 8: Constructing the Building

    Broader source: Energy.gov (indexed) [DOE]

    stormwater management functions. Professional development - Given the increas- ing demand for green buildings, knowledge of the skills needed to deliver these buildings will...

  8. Part 1. Background Material In this portion of the text, most of the topics that are appropriate to an

    E-Print Network [OSTI]

    Simons, Jack

    these building blocks combine to form nanoscopic materials (e.g., quantum dots, graphene sheets) whose dimensions

  9. Covetic Materials

    Energy Savers [EERE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  10. Personalized building comfort control

    E-Print Network [OSTI]

    Feldmeier, Mark Christopher, 1974-

    2009-01-01T23:59:59.000Z

    Creating an appropriate indoor climate is essential to worker productivity and personal happiness. It is also an area of large expenditure for building owners. And, with rising fuel costs, finding ways of reducing energy ...

  11. Building Energy Efficient Schools

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.

    1985-01-01T23:59:59.000Z

    Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

  12. BUILDING A STRONG FOUNDATION.

    E-Print Network [OSTI]

    Linsley, Braddock K.

    BUILDING A STRONG FOUNDATION. UALBANY FACTS. Enrollment: 12,822 undergraduates 4,516 graduate ('14-'15): NYS Resident Tuition: $6,170 Non-NYS Resident Tuition: $17,810 Room, Board, and Fees: $15

  13. Building America Report Template

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 27 and 28, 2014 Denver, Colorado Prepared for The U.S. Department of Energy's Building America Program Office of Energy Efficiency and Renewable Energy Prepared by Sam...

  14. Visualizing a Living Building

    E-Print Network [OSTI]

    Padget, Steve

    2013-01-01T23:59:59.000Z

    This paper will chronicle the design process of the Odum School of Ecology at the University of Georgia and its objective to accomplish Living BuildingTM certification. In order to accomplish this, the architect (BNIM) and project partners applied...

  15. Building Energy Standards

    Broader source: Energy.gov [DOE]

    The 2015 Vermont Commercial Building Energy Standards (CBES) took effect on March 1, 2015. The code is based on the 2015 IECC, with amendments to incorporate ASHRAE 90.1-2013. The new guidelines ...

  16. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09T23:59:59.000Z

    This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Cancels DOE G 413.3-6.

  17. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by...

  18. Relationships in design build

    E-Print Network [OSTI]

    Wampler, Charles Wilson

    2010-01-01T23:59:59.000Z

    As design build (DB) becomes more popular, different ways of writing contracts and forming relationships with the various parties are being considered. The main point of this paper is to look at the relationships between ...

  19. Building Technologies Office

    Office of Environmental Management (EM)

    energy-efficient solutions Lower building energy use by 50% Double U.S. energy productivity Aiming High for 2030 Annual energy use by 20 quads 1 billion metric tons CO 2 200...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    All new residential, commercial, and community-owned buildings constructed on or after January 1, 1992 that recieve financing from the Alaska Housing Finance Corporation (AHFC) must comply with...

  1. Safety in Buildings 

    E-Print Network [OSTI]

    Hutcheon, N. B.

    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, ...

  2. Systems building in architecture

    E-Print Network [OSTI]

    Tzannetakis, Charilaos Panayotis

    1983-01-01T23:59:59.000Z

    This work is an inquiry into the interventions of the systems design in the whole building process. At the beginning, three approaches which represent different points of view of interventions in production and use are ...

  3. Wind Tunnel Building - 1 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  4. Passive solar buildings research

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-12-31T23:59:59.000Z

    This chapter covers research advances in passive solar buildings research during the time span from 1982 through 1991. These advances fall within the following categories: (1) short-term energy monitoring, (2) heat transport by natural convection within buildings, and (3) design guidelines and design tools. In short-term energy monitoring, a simulation model of the building is calibrated, based on data taken in a 3-day test. The method accurately predicts performance over an extended period. Heat transport through doorways is characterized for complex situations that arise in passive solar buildings. Simple concepts and models adequately describe the energy transport in many situations of interest. In a new approach, design guidelines are automatically generated for any specific locality. Worksheets or an accompanying computer program allow the designer to quickly and accurately evaluate performance and investigate design alternatives. 29 refs., 19 figs., 2 tabs.

  5. High Performance Buildings Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  6. The Ruskin Building 4.1 Building Condition

    E-Print Network [OSTI]

    Flynn, E. Victor

    39 The Ruskin Building 04 #12;40 4.1 Building Condition TEACHING ROOMS STUDENT ANCILLARY ADMIN First Floor Plan Second Floor Plan Third Floor Plan 4.1 Building Condition This Section provides an overview of the condition of the existing buildings. Below is a series of plans identifying the present

  7. F. MISSION CENTER BUILDING F. MISSION CENTER BUILDING

    E-Print Network [OSTI]

    Mullins, Dyche

    F. MISSION CENTER BUILDING 153 F. MISSION CENTER BUILDING BACKGROUND The 3.06 acre Mission Center Building site is located in the northeast portion of San Francisco's Mission District on the southern half of the block bounded by 14th, Harrison, 15th and Folsom Streets. The site contains a six-story brick building

  8. 3-100.1 Building Evacuation 1 Building Evacuation

    E-Print Network [OSTI]

    Glebov, Leon

    3-100.1 Building Evacuation 1 SUBJECT: Building Evacuation Effective Date: 10-20-10 Policy Number and Safety APPLICABILITY/ACCOUNTABILITY: This policy applies to all individuals in all buildings on all University of Central Florida campuses. BACKGROUND INFORMATION: University buildings occasionally need

  9. 1 | Building America eere.energy.gov DOE's Building America

    E-Print Network [OSTI]

    1 | Building America eere.energy.gov DOE's Building America Low-E Storm Window Adoption Program Working Group #12;2 | Building America eere.energy.gov Pacific Northwest National Laboratory · Katie Cort, Larson Manufacturing Company Key Staff #12;3 | Building America eere.energy.gov Problem · Windows account

  10. Building Knowledge about Buildings Matthew T. Young and Eyal Amir

    E-Print Network [OSTI]

    Amir, Eyal

    Building Knowledge about Buildings Matthew T. Young and Eyal Amir University of Illinois, Urbana The ability to encode information about the structure of buildings is essential for the development of applications which are able to reason about buildings and answer queries concerning their design and function

  11. Building anBuilding an Entrepreneurship ProgramEntrepreneurship Program

    E-Print Network [OSTI]

    Prinz, Friedrich B.

    Building anBuilding an Entrepreneurship ProgramEntrepreneurship Program At Your UniversityAt Your University Tina L. Seelig REE Latin America November 24 - 26, 2004 #12;Question of the Day: How do you build innovation Build networks within our own universities Create relationships with industry Develop

  12. NREL researchers discover ways to increase accuracy in building energy simulations tools to improve predictions of

    E-Print Network [OSTI]

    the wall cavities were not insulated during construction or where the insulating material has settled properties of building materials, insulation levels, and the temperature dependence of conduction throughNREL researchers discover ways to increase accuracy in building energy simulations tools to improve

  13. LBNL# 40102 Field Investigation of Duct System Performance in California Light Commercial Buildings 1 of 26

    E-Print Network [OSTI]

    -top units and their associated ductwork. These simple systems use similar duct materials and construction, restaurants and professional buildings. First-cost dominates construction practices in these buildings. This potentially leads to short-cuts in construction practices and/or using lower grade materials. Often resulting

  14. Influence of concrete fracture on the rain infiltration and thermal performance of building facades

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the occupants. Over time, the pore structure of such materials may however be altered by cracks and defects for the purpose of durability assessments as well. Keywords heat; moisture; modelling; building material; fracture is to be accounted for in any long-term performance assessment. Hygrothermal simulations of building components

  15. Indoor Air Quality Factors in Designing a Healthy Building John D. Spengler

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    , building materials and systems, ventilation models, design tools Shortened title: IAQ in Designing and regulations, rapid introduction of new building materials and commercial products, as well as the prevailing indoor air quality (IAQ) is an important determinant of healthy design, it is not the sole determinant

  16. BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN

    E-Print Network [OSTI]

    Florida, University of

    BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A R RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDIN T PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEM

  17. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  18. Analysis of the Chinese Market for Building Energy Efficiency

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Shi, Qing

    2014-03-20T23:59:59.000Z

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components. This chapter examines insulation in walls and roofs; efficient windows and doors; heating, air conditioning and controls; and lighting. These markets have seen significant growth because of the strength of the construction sector but also the specific policies that require and promote efficient building components. At the same time, as requirements have become more stringent, there has been fierce competition, and quality has at time suffered, which in turn has created additional challenges. Next we examine existing buildings in chapter four. China has many Soviet-style, inefficient buildings built before stringent requirements for efficiency were more widely enforced. As a result, there are several specific market opportunities related to retrofits. These fall into two or three categories. First, China now has a code for retrofitting residential buildings in the north. Local governments have targets of the number of buildings they must retrofit each year, and they help finance the changes. The requirements focus on insulation, windows, and heat distribution. Second, the Chinese government recently decided to increase the scale of its retrofits of government and state-owned buildings. It hopes to achieve large scale changes through energy service contracts, which creates an opportunity for energy service companies. Third, there is also a small but growing trend to apply energy service contracts to large commercial and residential buildings. This report assesses the impacts of China’s policies on building energy efficiency. By examining the existing literature and interviewing stakeholders from the public, academic, and private sectors, the report seeks to offer an in-depth insights of the opportunities and barriers for major market segments related to building energy efficiency. The report also discusses trends in building energy use, policies promoting building energy efficiency, and energy performance contracting for public building retrofits.

  19. CALIFORNIA ENERGY Large HVAC Building

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Energy Systems: Productivity and Building Science Program. This program was funded by the California of Portland Energy Conservation, Inc. Project Management: Cathy Higgins, Program Director for New Buildings

  20. To Collaborative LIfe Sciences Building

    E-Print Network [OSTI]

    To Collaborative LIfe Sciences Building To Professional Development Center Collaborative Life Sciences Building SW MEADE SW PORTER SW M OODY I-5 To Main Campus To South Waterfront I-405 Collaborative Life Sciences Building 0650 SW Meade St. Academic & Student Recreation Center (ASRC) C8 Art Building

  1. Manning building RoyalParade

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    Manning building (403) MileLane RoyalParade RoyalParade Tram stop No.16Walker Street Scott building (402) Sissons building (401) 399 Royal Parade (404) 381 Royal Parade Cafeteria Cossar Hall Main of Pharmacy and Pharmaceutical Sciences Building 401 G Reception G Student services G Cossar Hall G Sissons

  2. Building Address Locations -Assumes entire

    E-Print Network [OSTI]

    Guenther, Frank

    Building Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC Biosquare III 670 Albany Floors 2, 3, 6, 7 BMC Biosquare III 670 Albany Floors 1, 4, 5, 8 BU Building

  3. Building Name Room Support By

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Building Name Room Technology Classroom? Technology Support By: Phone Number: Contact Name: Agricultural Sciences Building G29 Standard iDC 304-293-2832 n/a Agricultural Sciences Building G31 Standard iDC 304-293-2832 n/a Agricultural Sciences Building G101 Standard iDC 304-293-2832 n/a Agricultural

  4. International Trends in Green Building

    E-Print Network [OSTI]

    Zhang, Junshan

    International Trends in Green Building Friday, August 26, 2011 Registration 8:00 a.m. Presentation, Canada Green Building Council The presentation will cover international trends and innovations in the green-building industry as well as new opportunities for green-building collaboration with Arizona

  5. Building America Building Science Education Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP:Brookhaven Teaching FellowsBuilderHVACR BUILDING

  6. Building Technologies Program: Building America Publications

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin usAcquisitionAlex3EnergyBuilding RemovalProgram HOME

  7. Bradshaw Construction New Office Building

    High Performance Buildings Database

    Eldersburg, MD The New Office Building is part of an effort by Bradshaw Construction Corporation to combine office, off-site shop buildings and off-site storage yards at one consolidated location. The new site, located off Maryland Route 26, shall provide space for an office building and parking; and secured shop building and storage yard. The New Office Building Project has achieved LEED Silver certification. The office building is designed as a free standing building of approximately 8,200 square feet in area, one story in height.

  8. Building Blocks for the Future of Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science,Energy,BubblesBuildingEnergy

  9. Building Equipment Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE Building Envelopes MFEL.jpg

  10. Building Technologies Experimental Capabilities and Apparatus Directory |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE Building

  11. Community Development Department Building & Safety Division

    E-Print Network [OSTI]

    BUILDING, RESIDENTIAL AND GREEN BUILDING CODES, AMENDING FREMONT MUNICIPAL CODE TITLE vn (BUILDING TO ENERGY REGULATIONS THE 2010 CALIFORNIA,GREEN BUILDING CODE The City of Fremont proposed to adopt local................ Community Development Department Building & Safety Division 39550 Liberty Street

  12. Performance Metrics for Commercial Buildings

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

    2010-09-30T23:59:59.000Z

    Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

  13. Commercial & Institutional Green Building Performance

    E-Print Network [OSTI]

    Harrison, S.; Mundell,C.; Meline, K.; Kraatz,J.

    2014-01-01T23:59:59.000Z

    Buildings Voluntary Green Building Programs: • LEED www.usgbc.org • Living Building Challenge living-future.org/lbc • Green Globes www.greenglobes.com • WELL Buildings wellbuildinginstitute.com • ENERGY STAR energystar.gov ESL-KT-14...The North Central Branch Texas Public Works Association Commercial & Institutional Green Building Performance 11.19.2014 ESL-KT-14-11-26 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Q&A Your Presenters: Chris...

  14. Lightweight concrete : investigations into the production of variable density cellular materials

    E-Print Network [OSTI]

    Cooke, Timothy Graham

    2012-01-01T23:59:59.000Z

    This research focuses on the intersection between material composition and form in the development of a new type of concrete. As concrete is the most widely used building material in the world, innovation in this material ...

  15. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

  16. Re-Building Greensburg

    ScienceCinema (OSTI)

    Hewitt, Steven; Wallach, Daniel; Peterson, Stephanie;

    2013-05-29T23:59:59.000Z

    Greensburg, KS - A town that was devastated by a tornado in 2007, yet came back to be one of the Nation's most energy-efficient, sustainable communities. Civic leaders and entrepreneurs helped rally residents behind the idea of "greening" Greensburg, inspiring the construction of numerous energy-efficient buildings, some of which generate their own renewable power with solar panels and wind turbines. Many of the town's government buildings use cutting edge energy-saving technologies, saving the local taxpayers' money. Greensburg has demonstrated to the world that any city can reach its energy efficiency and renewable energy goals today using widely available technologies.

  17. Filter Press Building

    E-Print Network [OSTI]

    Bush, W. M.

    " exemplifies the ultimate all-electric application. INTRODUCTION The City of Avon Lake launched a program in 1983 to eKpand and modernize its water pollution control facilities. A part of this expansion was construction of a separate building to house a...? was established as a year-round requirement for both management 585 ESL-IE-86-06-94 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 ~>-:? ~ Filter Press Building Avon Lake Water Pollution Control...

  18. Bagley University Classroom Building

    High Performance Buildings Database

    Duluth, MN, MN LEED PLATINUM CERTIFIED AND PASSIVHAUS ( certification pending) CLASSROOM BUILDING The Nature Preserve where this building is located is a contiguous natural area, 55 acres in size, deeded to the University in the 1950's for educational and recreational use. The site has hiking trails through old growth hard woods frequented by the university students as well as the public. We were charged with designing a facility to serve eight different departments for the nature portions of their teaching and study at a regional University.

  19. Historic Building Renovations

    Broader source: Energy.gov [DOE]

    When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

  20. Buildings Performance Database Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing at DOE's PaducahBuildingsEnergy

  1. Commercial Building Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial Building EnergyBuilding

  2. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal Ongoing at DOE's Paducah Site BuildingEnergy5

  3. Hotbox Test R-value Database and the Building Envelopes Program (BEP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Building Envelopes Program at Oak Ridge National Laboratory (ORNL) is a program within the Buildings Technology Center (BTC), the premier U.S. research facility devoted to developing technologies that improve the energy efficiency and environmental compatibility of residential and commercial buildings. Our program is divided into two parts: building envelope research, which focuses on the structural elements that enclose a building (walls, roofs and foundations), and materials research, which concentrates on the materials within the envelope systems (such as insulation). The building envelope provides the thermal barrier between the indoor and outdoor environment, and its elements are the key determinants of a building's energy requirements that result from the climate where it is located. [copied from http://www.ornl.gov/sci/roofs+walls/

  4. Building design guidelines for solar energy technologies

    SciTech Connect (OSTI)

    Givoni, B.

    1989-01-01T23:59:59.000Z

    There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

  5. Worldwide status of energy standards for buildings: Appendices

    SciTech Connect (OSTI)

    Janda, K.B.; Busch, J.F.

    1993-02-01T23:59:59.000Z

    This informal survey was designed to gain information about the worldwide status of energy efficiency standards for buildings, particularly non-residential buildings such as offices, schools, and hotels. The project has three goals: 1. To understand and learn from the experience of countries with existing building energy standards; 2. To locate areas where these lessons might be applied and energy standards might be effectively proposed and developed; and 3. To share the information gathered with all participating countries. These appendices include the survey cover letter, the survey, and the details of selected energy standards in 35 countries, thus providing supporting material for the authors` article of the same title.

  6. Partnership Building a Bridge

    E-Print Network [OSTI]

    will accelerate new ideas into clinical treatments for the prevention and cure of cancer. Cancer Research Clinical efficient translation of new discoveries into clinical treatments for the prevention and cure of cancerCancer Research Clinical Partnership Building a Bridge Between Purdue Discovery and Clinical

  7. SUSY Model Building

    E-Print Network [OSTI]

    Stuart Raby

    2007-10-19T23:59:59.000Z

    I review some of the latest directions in supersymmetric model building, focusing on SUSY breaking mechanisms in the minimal supersymmetric standard model [MSSM], the "little" hierarchy and $\\mu$ problems, etc. I then discuss SUSY GUTs and UV completions in string theory.

  8. String Model Building

    E-Print Network [OSTI]

    Stuart Raby

    2009-11-06T23:59:59.000Z

    In this talk I review some recent progress in heterotic and F theory model building. I then consider work in progress attempting to find the F theory dual to a class of heterotic orbifold models which come quite close to the MSSM.

  9. Buildings Energy Efficiency Policy

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Efficiency Wind Biomass Natural Gas Combined Cycle Nuclear Coal IGCC Photovoltaics RangeofBuildings Energy Efficiency Policy ­ A Brief History Steven Nadel Executive Director American Council for an Energy- Efficient Economy #12;U.S. Energy Use in Relation to GDP 1970-2008 0.0 50.0 100

  10. Fire in Buildings 

    E-Print Network [OSTI]

    Shorter, G.

    During the lifetime of any building in Canada it is probable that one or more "unwanted" fires will occur. "Fire Loss in Canada, 1959," the report of the Dominion Fire Commissioner, states that for the period 1950-1959 the average number of reported...

  11. Moving Toward Zero Energy Buildings 

    E-Print Network [OSTI]

    Ginsberg, M.

    2008-01-01T23:59:59.000Z

    of Directors U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 00 12 02/ 5 86 - 12 11 mark.ginsberg@ee.doe.gov Moving Toward Zero Energy Buildings When I began discussing the idea of Zero Energy Buildings in the mid...-1990s, I received sceptical looks and laughter. Today, we are seeing the concept blossom into a large number of buildings throughout the world that are net zero fossil fuel buildings. I use the term zero energy buildings to mean ?buildings...

  12. Moving Toward Zero Energy Buildings

    E-Print Network [OSTI]

    Ginsberg, M.

    2008-01-01T23:59:59.000Z

    -1990s, I received sceptical looks and laughter. Today, we are seeing the concept blossom into a large number of buildings throughout the world that are net zero fossil fuel buildings. I use the term zero energy buildings to mean ?buildings... of Directors U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 00 12 02/ 5 86 - 12 11 mark.ginsberg@ee.doe.gov Moving Toward Zero Energy Buildings When I began discussing the idea of Zero Energy Buildings in the mid...

  13. Funding Opportunity Webinar- Buildings University Innovators and Leaders Development (BUILD)

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of the “Buildings University Innovators and Leaders Development (BUILD)” Funding Opportunity Announcement, DE-FOA-0001167. The webinar was originally presented on November 19, 2014.

  14. City of Bloomington- Green Building Requirements for Municipal Buildings

    Broader source: Energy.gov [DOE]

    In March 2009, the City of Bloomington passed an ordinance establishing the Green Buildings Program. It requires that all new construction and major renovations of city buildings be built to...

  15. Santa Clara County- Green Building Policy for County Government Buildings

    Broader source: Energy.gov [DOE]

    In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009.

  16. New York City- Green Building Requirements for Municipal Buildings

    Broader source: Energy.gov [DOE]

    In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the...

  17. Building America Webinar: Building America Technology-to-Market...

    Broader source: Energy.gov (indexed) [DOE]

    7, 2015 3:00PM to 4:30PM EDT This free webinar will introduce the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building America's...

  18. Revisit of Energy Use and Technologies of High Performance Buildings

    E-Print Network [OSTI]

    Li Ph.D., Cheng

    2014-01-01T23:59:59.000Z

    Energy performance of LEED for new construction buildings:New Buildings Institute.New Buildings Institute. 2013. Buildings database, http://

  19. Development of building-integrated PV modules using color solar cells for various exterior walls

    SciTech Connect (OSTI)

    Ishikawa, N.; Kanai, M.; Hide, I. [Daido Hoxan Inc. (Japan). Chitose Labs.] [and others

    1997-12-31T23:59:59.000Z

    The authors have been developing building-material-integrated PV modules used as exterior walls of building using color solar cells with an emphasis on design. Mainly the authors developed four types of modules, glass curtain walls, precast-concrete (PC)-incorporated-type, slanted wall-type and renovation-type modules. They constructed the demonstration test facilities of those modules and evaluated the performance of building-material-integrated modules for various types of exterior walls. No problems were observed at an outdoor demonstration test facility. The authors confirmed the color and shape of those modules can be harmonized with the design of the building.

  20. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01T23:59:59.000Z

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  1. Riverside County- Sustainable Building Policy

    Broader source: Energy.gov [DOE]

    In February 2009, the County of Riverside Board of Supervisors adopted Policy Number H-29, creating the Sustainable Building Policy. The Policy requires that all new county building projects...

  2. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  3. Broward County- Green Building Policy

    Broader source: Energy.gov [DOE]

    In October 2008, Board of County Commissioners of Broward County passed a resolution creating the County Green Building Policy. All new County-owned and operated buildings must achieve a minimum...

  4. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    HVAC consumes more electricity in September, the daily trendsHVAC Equipment Figure 44 Building 2 typical weekday electricity consumption trendHVAC Equipment Figure 45 Building 2 typical weekend electricity consumption trend

  5. Local Option- Green Building Incentives

    Broader source: Energy.gov [DOE]

    To encourage sustainable building practices, North Carolina law allows all counties and cities to provide reductions or partial rebates for building permit fees. To qualify for a fee reduction,...

  6. LAB #6 The Swaying Building

    E-Print Network [OSTI]

    2007-02-21T23:59:59.000Z

    differential equations that model the swaying of a building. Let y(t) be a measure of how far the building is bent- the displacement (in meters) of the top of the ...

  7. Energy Standards for State Buildings

    Broader source: Energy.gov [DOE]

    The State is still required by statute to adopt planning and construction standards for state buildings that conserve energy and optimize the energy performance of new buildings. The standards mu...

  8. Commercial Building Codes and Standards

    Broader source: Energy.gov [DOE]

    Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building...

  9. Building Commissioning in the USA 

    E-Print Network [OSTI]

    Castro, N.; Friedman, H.

    2006-01-01T23:59:59.000Z

    Building Commissioning in the USA Natascha Castro, Annex 47- US Team Leader National Institute of Standards and Technology Hannah Friedman, Cost-Benefit Subtask Leader Portland Energy Conservation, Inc. Asian Pacific Conference on Building...

  10. 1995 building energy codes and standards workshops: Summary and documentation

    SciTech Connect (OSTI)

    Sandahl, L.J.; Shankle, D.L.

    1996-02-01T23:59:59.000Z

    During the spring of 1995, Pacific Northwest National Laboratory (PNNL) conducted four two-day Regional Building Energy Codes and Standards workshops across the US. Workshops were held in Chicago, Denver, Rhode Island, and Atlanta. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing building energy codes in their states. The workshops provided an opportunity for state and other officials to learn more about residential and commercial building energy codes and standards, the role of the US Department of Energy and the Building Standards and Guidelines Program at Pacific Northwest National Laboratory, Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. Participants heard success stories, got tips on enforcement training, and received technical support materials. In addition to receiving information on the above topics, workshop participants had an opportunity to provide input on code adoption issues, building industry training issues, building design issues, and exemplary programs across the US. This paper documents the workshop planning, findings, and follow-up processes.

  11. Development of Building Automation and Control Systems

    E-Print Network [OSTI]

    Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    A design flow for building automation and control systems,’’Development of Building Automation and Control Systems Yangdesign of the build- ing automation system (including the

  12. Energy Department Issues Green Building Certification System...

    Office of Environmental Management (EM)

    Issues Green Building Certification System Final Rule to Support Increased Energy Measurement and Efficient Building Design Energy Department Issues Green Building Certification...

  13. Revealing myths about people, energy and buildings

    E-Print Network [OSTI]

    Diamond, R.

    2011-01-01T23:59:59.000Z

    Myths about People, Energy and Buildings Rick Diamond andmyths about people, energy and buildings are current today?myths about people, energy and buildings? Who tells these

  14. Retrofit Ventilation Strategies in Multifamily Buildings Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Ventilation Strategies in Multifamily Buildings Webinar Retrofit Ventilation Strategies in Multifamily Buildings Webinar Slides from the Building America webinar on...

  15. Sustainable Buildings and Infrastructure | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Buildings Implementation Plan DOE Sustainable Buildings and Campuses USGBC Roadmap to Sustainable Government Buildings DOE Greening Federal Facilities, Resource Guide...

  16. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  17. Building Energy Data Exchange Specification Scoping Report |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Data Exchange Specification Scoping Report Building Energy Data Exchange Specification Scoping Report The Building Energy Data Exchange Specification (BEDES),...

  18. Energy Sciences Building | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Argonne's Energy Sciences Building Energy Sciences Building The Energy Sciences Building is a world-class scientific facility and a shining example of sustainable design....

  19. Special announcement: Building 9731 shines again

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special announcement: Building 9731 shines again Over the past several weeks, concentrated activity in and around Building 9731, the first building completed at Y-12 and the...

  20. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01T23:59:59.000Z

    from Smart Building strategies: Improved energy efficiencySmart Buildings benefits fall into three categories: Improved energy efficiency1. Achieve Energy Efficiency Mandates. Use Smart Building

  1. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

  2. Green Libraries Are More Than Just Buildings

    E-Print Network [OSTI]

    Aulisio, George J.

    2013-01-01T23:59:59.000Z

    France: UNESCO. U.S. Green Building Council (USGBC). (internationally recognized green building program. Retrievednecessarily entail a green building, but it does involve a

  3. Building Energy Information Systems: User Case Studies

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01T23:59:59.000Z

    energy and building automation systems. Lilburn, GA:providers' use of building automation systems (BAS), orweb- based building control and automation systems and their

  4. Model Predictive Control for Energy Efficient Buildings

    E-Print Network [OSTI]

    Ma, Yudong

    2012-01-01T23:59:59.000Z

    more sophisticated building automation systems and buildingthrough the building automation system “Automated Logic Websystem. ALC is a building automation system, offering a user

  5. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01T23:59:59.000Z

    and typical building automation systems. A key element ofsystem and building automation systems for HVAC systemnetwork for Building Automation System (BAS) data. GSA is

  6. Development of Building Automation and Control Systems

    E-Print Network [OSTI]

    Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    design flow for building automation systems that focuses onflow for building automation and control systems,’’ in Proc.Development of Building Automation and Control Systems Yang

  7. Commercial Buildings Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    types of commercial buildings. Read more DOE Invests 6 Million to Support Commercial Building Efficiency DOE Invests 6 Million to Support Commercial Building Efficiency These...

  8. Rating the energy performance of buildings

    E-Print Network [OSTI]

    Olofsson, Thomas; Meier, Alan; Lamberts, Roberto

    2004-01-01T23:59:59.000Z

    Energy and Sustainable Buildings, 2004 Available at http://Energy and Sustainable Buildings, Vol. 3, (2004), Olofsson,for a commercial office building in Melbourne, Australia,

  9. Occupant satisfaction in mixed-mode buildings.

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2008-01-01T23:59:59.000Z

    Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.Department of Environmental Building Research Establishment

  10. Online map of buildings using radiant technologies

    E-Print Network [OSTI]

    Karmann, Caroline; Schiavon, Stefano; Bauman, Fred

    2014-01-01T23:59:59.000Z

    of radiant slab cooling using building simulation and fieldmeasurements. Energy and Buildings, 41, 3, 320-330.2013) Net-Zero Energy Buildings - Worldwide. Available at:

  11. Tobacco Policy in Municipal Buildings, 2001

    E-Print Network [OSTI]

    Department of Population Health Sciences Center for Health Policy and Program Evaluation,

    2002-01-01T23:59:59.000Z

    WINNEBAGO County Banned in all buildings Cities County WOODCounty Banned in all buildings WOOD Cities MENASHA NEENAHBanned in some but not all buildings County ARPIN AUBURNDALE

  12. Automated Continuous Commissioning of Commercial Buildings

    E-Print Network [OSTI]

    Bailey, Trevor

    2013-01-01T23:59:59.000Z

    P. “Real Time Model-based Energy Diagnostics in Buildings. ”Proc. Building Simulation ’11, Sydney, Australia, Novemberhttp://www.eere.energy.gov/buildings/energyplus/. 7. http://

  13. Occupant satisfaction in mixed-mode buildings

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2009-01-01T23:59:59.000Z

    Environmental Quality in Green Buildings”. Indoor Air; 14 (Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.

  14. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  15. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Wall, L.W.

    2009-01-01T23:59:59.000Z

    cooling, and lighting using passive systems, and optimal building design strategies to realize that potential. ASSESSMENT OF PROGRESS-

  16. Hawaii-Okinawa Building Evaluations

    SciTech Connect (OSTI)

    Metzger, I.; Salasovich, J.

    2013-05-01T23:59:59.000Z

    NREL conducted energy evaluations at the Itoman City Hall building in Itoman, Okinawa Prefecture, Japan, and the Hawaii State Capitol building in Honolulu, Hawaii. This report summarizes the findings from the evaluations, including the best practices identified at each site and opportunities for improving energy efficiency and renewable energy. The findings from this evaluation are intended to inform energy efficient building design, energy efficiency technology, and management protocols for buildings in subtropical climates.

  17. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  18. Connected Buildings Interoperability Vision Webinar

    Broader source: Energy.gov [DOE]

    Connected Buildings Interoperability Vision Webinar slides, by Kevin Lynn, U.S. Department of Energy, May 20, 2015.

  19. Farm Buildings Pocketbook in Metric 

    E-Print Network [OSTI]

    Anonymous

    1971-01-01T23:59:59.000Z

    Some useful advice giving standards, dimensions and data in metric for those interested in the design of farm buildings

  20. Building Technologies Research and Integration Center | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE BuildingBuilding

  1. May 28, 2009 Smart Buildings

    E-Print Network [OSTI]

    May 28, 2009 Smart Buildings: Business Case and Action Plan Paul Ehrlich1 and Rick Diamond2 1 of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. #12;Smart Buildings: Business Case Contract No. DE-AC02-05CH11231. GSA Smart Buildings Report Page ii April 8, 2009 #12;Acknowledgements

  2. Buildings Events | Department of Energy

    Energy Savers [EERE]

    Webinar: Building America Technology-to-Market Roadmaps 3:00PM to 4:30PM EDT Zero Energy Buildings: What are they and how do we build them? 3:00PM to 4:00PM EDT Residential Energy...

  3. 2008 BUILDING ENERGY EFFICIENCY STANDARDS

    E-Print Network [OSTI]

    2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards and consultants. Valerie Hall, Deputy Director of the Energy Efficiency and Renewable Division provided policy

  4. Going for "Green" Sustainable Building

    E-Print Network [OSTI]

    Going for "Green" Sustainable Building Certification Statistics Europe Status May 2011 rics.org/sustainability #12;Sustainable Building Certification Statistics Europe Foreword Investors are increasingly the usefulness of sustainability certificates in mainstreaming the uptake of so-called `green' buildings across

  5. BUILDING STRONGSM 2008 AFEP Preliminary

    E-Print Network [OSTI]

    BUILDING STRONGSM 1 2008 AFEP Preliminary Research Results Northwest Power and Conservation Council Meeting March 2009 Boise, ID #12;BUILDING STRONGSM 2 Focus Today · Anadromous Fish Evaluation Program Purpose · Juvenile Fish Passage · Adult Fish · Predation ­ Avian ­ Pinniped · Lamprey #12;BUILDING

  6. Introduction to Green Building & LEED

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    Introduction to Green Building & LEED Alistair Jackson Principal O'Brien & Company alistair ­ Green Building Standard · MLS Listing Service #12;#12;#12;#12;#12;#12;#12;#12 of existing infrastructure and provides a foundation for high performance green buildings · Integrated

  7. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  8. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  9. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  10. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  11. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    SciTech Connect (OSTI)

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01T23:59:59.000Z

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  12. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  13. SUSY GUT Model Building

    E-Print Network [OSTI]

    Stuart Raby

    2008-08-27T23:59:59.000Z

    I discuss an evolution of SUSY GUT model building, starting with the construction of 4d GUTs, to orbifold GUTs and finally to orbifold GUTs within the heterotic string. This evolution is an attempt to obtain realistic string models, perhaps relevant for the LHC. This review is in memory of the sudden loss of Julius Wess, a leader in the field, who will be sorely missed.

  14. Anomaly for Model Building

    E-Print Network [OSTI]

    Utpal Sarkar

    2006-06-19T23:59:59.000Z

    A simple algorithm to calculate the group theory factor entering in anomalies at four and six dimensions for SU(N) and SO(N) groups in terms of the Casimir invariants of their subgroups is presented. Explicit examples of some of the lower dimensional representations of $SU(n), n \\leq 5$ and SO(10) groups are presented, which could be used for model building in four and six dimensions.

  15. Buildings of the Future

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) and the Pacific Northwest National Laboratory are developing a vision for future buildings—at least one hundred years from today—based on the collective views of thought leaders. As part of this effort, we will explore technology and demographic trends that could revolutionize the built environment across energy, water, environment, resilient design, health, security, and productivity.

  16. Building and Buildings, Scotland: The Building Standards Advisory Committee (Scotland) Regulations, 1959 

    E-Print Network [OSTI]

    Maclay, John.S.

    1959-01-01T23:59:59.000Z

    These regulations make provision for the constitution and procedure of the Building Standards Advisory Committee which the Secretary of State is required to appoint under section 12 of the Building (Scotland) Act, 1959

  17. 9731: First building completed at Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First building completed at Y-12 Building 9731 has a rich history at Y-12. Completed in March 1943, it was the first building completed on the site. It was also the first building...

  18. A review on Phase Change Materials Integrated in Building Walls

    E-Print Network [OSTI]

    19% of the total CO2 emissions [1]. Nowadays, thermal energy storage systems are essential use [2]. Thermal energy storage can be accomplished either by using sensible heat storage or latent for reducing energy demand, further investigations are needed to really assess their use. Keywords: Thermal

  19. Building (as) performance : a material approach to adaptive architecture

    E-Print Network [OSTI]

    Dimitrov, Andrey

    2009-01-01T23:59:59.000Z

    One measure of performance in adaptive architecture is its ability the respond effectively to the environment and evolving program. As architects strive to create designs that respond to external change, more and more ...

  20. Contribution of Building Materials to Urban Wet-Weather Pollutant

    E-Print Network [OSTI]

    Clark, Shirley E.

    and to prevent stripping of asphalt from binders. · Fillers include carbon black from pyrolized tires. Asphalt · Khandal et al. (1995) investigated incorporation recycled asphalt pavement (RAP) into new

  1. Investigation of Wet-Weather Pollution Contribution from Building Materials

    E-Print Network [OSTI]

    Clark, Shirley E.

    .84) 154 (0.78) 226 (1.07) Map courtesy of U.S. Geological Website on Acid Rain OBJECTIVES · To investigate-up (plywood with roofing paper and tar) ­ flat tar-covered with reflective aluminum paint ­ new anodized Not givenRusty galvanized roof tar

  2. Opportunities to Apply Phase Change Materials to Building Enclosures

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1 March

  3. Next Generation Building Envelope Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.DepartmentPower Grid | Department of1, 2013EMThe OfficeThese1

  4. RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11 Connecticut Ave NW, Suite 600REQUEST FOR

  5. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23T23:59:59.000Z

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  6. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  7. 308 Building zone I stabilization and confinement

    SciTech Connect (OSTI)

    Metcalf, I.L.; Schwartz, K.E.; Rich, J.W.; Benecke, M.W.; Lanham, G.W.

    1994-08-01T23:59:59.000Z

    The 308 Building located on the Hanford Site near Richland, Washington, is currently in transition to shutdown status. After this transition is complete, the facility will be maintained/surveilled and given to the U.S. Department of Energy Office of Facility Transition and Management (EM-60) for utilization, remedial action, or decontamination and decommissioning (D&D). This may require that the facility be maintained in the shutdown status for as long as 30 yrs. To date, all of the special nuclear material (SNM) has been removed, potential fuel supply equipment preserved, surplus materials and equipment excessed, and enclosure cleanup and stabilization completed. A major activity in support of the 308 Building shutdown was the cleanup and stabilization of the enclosures and surface contamination areas. This document discusses the specific designs, processes, and methods used to stabilize and confine the radiological material within the enclosure and exhaust ducts to allow the shutdown of the active support systems. The process and designs employed were effective, yet simple, and maximized the use of current technologies and commercial products.

  8. 308 Building Zone I stabilization and confinement

    SciTech Connect (OSTI)

    Metcalf, I.L.; Schwartz, K.E.; Rich, J.W.; Benecke, M.W.; Rasmussen, D.E.

    1993-10-01T23:59:59.000Z

    The 308 Building (Fast Flux Test Facility [FFTF] fuel supply) at the Hanford Site, located in Richland, Washington, is currently in transition to shutdown status. After shutdown, the facility will be maintained/surveilled and turned over to the U.S. Department of Energy (DOE) Office of Facility Transition and Management (EM-60) for utilization, remedial action, or decontamination and decommissioning (D&D). This may require that the facility be maintained in the shutdown mode for up to 30 years. To date, all of the special nuclear material (SNM) has been removed from the facility, potential fuel supply equipment has been preserved, surplus materials and equipment have been excessed, and enclosure cleanup and stabilization has begun. Shutdown planning has been completed, which outlines the major tasks, scope, methodology, and timing for the shutdown activities. A major activity in support of the 308 Building shutdown is the cleanup and stabilization of the enclosures and surface contamination areas. This document identifies the specific designs, processes, and methods to stabilize and confine the radiological material within the enclosures and exhaust ducts to allow shutdown of the active support systems. The designs and steps planned will be effective, are simple, and make maximum use of current technologies and commercial items.

  9. Catalan vaulting in advanced material : new approaches to contemporary compressive form

    E-Print Network [OSTI]

    Ramage, Michael H. (Michael Hector)

    2006-01-01T23:59:59.000Z

    The translation of traditional building methods to modern construction techniques offers unexplored opportunities for material and form in architecture. Recent innovations in cellular ceramics married with traditional ...

  10. Design, Synthesis, and Evaluation of Next Generation Technologies in Stimulus-Responsive Materials and Organic Electronics

    E-Print Network [OSTI]

    Unruh, Jr, David Allen

    2011-01-01T23:59:59.000Z

    Building Blocks in Organic Electronics Abstract The donor-performing organic electronics. Inspired by the desirableMaterials and Organic Electronics by David Allen Unruh, Jr.

  11. Building America Webinar: Retrofitting Central Space Conditioning...

    Energy Savers [EERE]

    Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings - Steam Systems, Retrofit Measure Packages, Hydronic Systems Building America Webinar:...

  12. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review...

  13. Preliminary Energy Savings Impact Evaluation: Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings Impact Evaluation: Better Buildings Neighborhood Program Preliminary Energy Savings Impact Evaluation: Better Buildings Neighborhood Program Preliminary Energy...

  14. Building America Webinar: High Performance Space Conditioning...

    Energy Savers [EERE]

    and payback. bawebinardentzandconlin111814.pdf More Documents & Publications Ventilation in Multifamily Buildings Multifamily Ventilation - Best Practice? Building America...

  15. Buildings Performance Database Recommend Data Fields | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy. bpdrecommendeddatafields.pdf More Documents & Publications BEDES Beta Data Preparation Process for the Buildings Performance Database Commercial Building...

  16. Building America Webinar: Retrofitting Central Space Conditioning...

    Energy Savers [EERE]

    Strategies for Multifamily Buildings - Control strategies to improve hydronic space heating performance Building America Webinar: Retrofitting Central Space Conditioning...

  17. Window Replacement, Rehabilitation, & Repair Guides - Building...

    Energy Savers [EERE]

    Window Replacement, Rehabilitation, & Repair Guides - Building America Top Innovation Window Replacement, Rehabilitation, & Repair Guides - Building America Top Innovation Effec...

  18. Better Buildings EECBG Q1 Reporting Webinar

    Broader source: Energy.gov [DOE]

    Better Buildings EECBG Q1 Reporting Webinar, from the U.S. Department of Energy's Better Buildings program.

  19. Building America Webinar: Retrofitting Central Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings - Introduction This presentation serves as the introduction to...

  20. State Policies to Encourage Green Building Principles

    Broader source: Energy.gov [DOE]

    state green building policies, Database of State Incentives for Renewables and Efficiency, energy efficient building codes, energy efficient products

  1. Presentation: Better Buildings Residential Program Solution Center...

    Energy Savers [EERE]

    bbrpscdemopresentation061814.pdf More Documents & Publications Better Buildings Residential Program Solution Center Demonstration Webinar Presentation: Better Buildings...

  2. Presentation: Better Buildings Neighborhood Program (BBNP) Summary...

    Energy Savers [EERE]

    Presentation: Better Buildings Neighborhood Program (BBNP) Summary of Reported Data Presentation: Better Buildings Neighborhood Program (BBNP) Summary of Reported Data...

  3. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    to enable demand response or any other building strategy (demand response. By using EVs connected to the buildings for

  4. Materials at UC Santa Barbara Ranked in the top two programs in the country for research impact and citations, materials research at UC

    E-Print Network [OSTI]

    Akhmedov, Azer

    as semiconductors · Soft cellular materials · Nanostructured materials by molecular beam epitaxy Solid chemistry to synthesize conjugated polymer composites for use in photovoltaic and optoelectronic devices in energy efficiency in Buildings, Lighting, Computing, Electronics & Photonics, Energy Production & Storage

  5. MaterialsScienceandEngineeringDepartmentColloquium 4:00 P.M. Monday, SePteMber 29, 2014

    E-Print Network [OSTI]

    Braun, Paul

    , MaterialS Science and engineering building 1304 W green Street, urbana Department of Materials Science structures to QR-codes so that large libraries of calculations can be mined for finding novel unknown

  6. Building the Information Superhighway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHAREManufacturing |

  7. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    project having the potential to impact lead-containing building materials, including lead paint. ResultsUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Lead Basis, lead-containing materials have the potential to negatively impact the health of construction workers

  8. Better Buildings Residential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher|for1, 20114,Residential 2014 Building

  9. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavid Cohan Program Manager

  10. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavid Cohan

  11. Building Energy Modeling Library

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavidDepartment ofAmir

  12. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of EnergyRoland Risser Director, Building

  13. Buildings Interoperability Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of EnergyRolandBuilding theAugust 2015Vision

  14. Buildings Performance Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of EnergyRolandBuilding theAugustDOE

  15. 1999 Commercial Buildings Characteristics

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E Building8)Data Reports

  16. Buildings Success Stories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary 29 - MarchCodesEnergy 3 PeerEnergy1 Buildings

  17. Buildings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to:Brunei: Energy3BuildingOS byprovide

  18. DOE Buildings Performance Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTPFeedstock SupplyBuildings

  19. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project *1980-1981 U.S.CapabilitiesCapacity Building

  20. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial BuildingCommercial