National Library of Energy BETA

Sample records for materials center managing

  1. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program

  2. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    SciTech Connect (OSTI)

    Kelly, K.E.

    1994-11-09

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

  3. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-11-09

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

  4. Project T100 -- Hazardous Materials Management and Emergency Response Training Center (HAMMER)

    SciTech Connect (OSTI)

    Norton, C.E.

    1994-11-09

    The scope of this Quality Assurance Program Plan (QAPP) is to provide a system of Quality Assurance reviews and verifications on the design and construction of the Hazardous Materials Management and Emergency Response (HAMMER) Training Center, project 95L-EWT-100 at Hanford. The reviews and verifications will be on activities associated with design, procurement, and construction of the HAMMER project which includes, but is not limited to earthwork, placement of concrete, laying of rail, drilling of wells, water and sewer line fabrication and installation, communications systems, fire protection/detection systems, line tie-ins, building and mock-up (prop) construction, electrical, instrumentation, pump and valves and special coatings.

  5. LANSCE | Lujan Center | Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Center Data Management Lujan Neutron Scattering Center Logo The Lujan Center within LANSCE utilizes a pulsed source and has a complement of 15 instruments. It maintains a ...

  6. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of ...

  7. Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Overview The Center for Energy Efficient Materials (CEEM) is an Energy Frontier ... Innovative materials and novel devices for sustainable energy efficient applications are ...

  8. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  9. Data Center Airflow Management Retrofit

    Broader source: Energy.gov [DOE]

    Case study bulletin describes the data center airflow management retrofit. The study includes information about how the data center energy densities (measured in power-use per square foot), increase energy savings for cooling, and how it can be realized by optimizing airflow pathways within the data center.

  10. Contact Us | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mailing Address: Center for Energy Efficient Materials University of California Santa Barbara, CA 93106-9560 Location: Center for Energy Efficient Materials Phelps 2300 University ...

  11. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  12. Materials Science and Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Engineering Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  14. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center for Lightweighting Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in ...

  15. PIA - Environmental Management Consolidated Business Center (EMCBC) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PDF icon PIA - Environmental Management Consolidated Business Center (EMCBC) More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 LM Records Handling System (LMRHS01) - Rocky

  16. Environmental Management Consolidated Business Center (EMCBC) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Services » Program Management » Environmental Management Consolidated Business Center (EMCBC) Environmental Management Consolidated Business Center (EMCBC) Environmental Management Consolidated Business Center (EMCBC) SITE OVERVIEW The Department of Energy (DOE) established the EMCBC in Cincinnati, OH, on June 7, 2004, to provide Environmental Management customers with required and improved business and technical support services. Establishing the EMCBC allowed EM's Closure

  17. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based

  18. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  19. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  20. Procurement and Materials Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Washington River Protection Solutions | Hanford.gov | Energy.gov Procurement and Materials Management Small Business Resources Small ... There are no upcoming events in the system. ...

  1. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  2. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  3. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nanophase Materials Sciences and Panos Datskos of ORNL Measurement Science and Systems Engineering Division The technology, based on nonlinear nanomechanical resonators,...

  4. Center for Lightweighting Automotive Materials and Processing...

    Broader source: Energy.gov (indexed) [DOE]

    GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

  5. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People...

  6. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  7. Bay Resource Management Center Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Resource Management Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass...

  8. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS Updates The CNMS has a new director Sean Smith from the University of Queensland in Australia has accepted the position of director for the Center for Nanophase Materials...

  9. Research | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research CEEM is one of 46 Energy Frontier Research Centers funded by the Department of Energy to address the energy challenge through technological advancements. The Center was launched in August 2009 and focuses on fundamental research in the three key areas of photovoltaics, thermoelectrics, and solid-state lighting. These technologies are strongly inter-related, not only through the materials they employ and physical principles upon which they operate, but also in the synergies resulting

  10. Facilities | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The Center for Energy Efficient Materials occupies approximately 3,000 square feet of assignable space in Phelps Hall. This space houses the Administrative offices of the Center, including offices for the Director, the Executive Director, the Financial Analyst, visiting scientists, and a number of post-docs, graduate students and undergraduate students. Two small seminar rooms are also included. The Institute for Energy Efficiency is co-located on the same floor, providing close

  11. Feed Materials Production Center. Final phase-in report volume 11 of 15 waste management, October 25, 1985--December 31, 1985

    SciTech Connect (OSTI)

    Watts, R.E.

    1986-01-17

    This volume of the Transition Final Report provides the findings, recommendations and corrective actions for the Waste Management areas developed during the phase-in actions by Westinghouse Materials Company (WMCO). The objective is to provide a summary of the studies and investigations performed by the WMCO Company during the transition period. The Waste Management effort at FMPC was expanded in 1984 when a separate group was formed within the NLO organization. This is considered to be an area where significant increase in priority and effort must be applied to resolve waste management problems and to bring the site in conformity to regulations and the Environmental Health/Safety Standards. During the transition, there was a comprehensive investigation in all areas of air, liquid and solid waste management for nuclear, chemical and conventional wastes. Not all of these investigations are documented in this report, but the information gathered was used in the development of the budgets (cost accounts), programs, and organizational planning.

  12. Arc Casting Intermetallic Alloy (Materials Preparation Center)

    SciTech Connect (OSTI)

    2010-01-01

    Arc casting of intermetallic (La-Ni-Sn) AB5 alloy used for metal hydride hydrogen storage. Upon solidification the Sn is partially rejected and increases in concentration in the remaining liquid. Upon completing solidification there is a great deal of internal stress in the ingot. As the ingot cools further the stress is relieved. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  13. International Center for Materials Research ICMR | Open Energy...

    Open Energy Info (EERE)

    Name: International Center for Materials Research (ICMR) Place: Kawasaki-shi, Kanagawa, Japan Zip: 210-0855 Product: International Center for Materials Reseach is a Japanese...

  14. Edison Material Technology Center EMTEC | Open Energy Information

    Open Energy Info (EERE)

    Material Technology Center EMTEC Jump to: navigation, search Name: Edison Material Technology Center (EMTEC) Place: Dayton, Ohio Zip: 45420 Product: String representation "A...

  15. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  16. A Look Inside Argonne's Center for Nanoscale Materials | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory A Look Inside Argonne's Center for Nanoscale Materials Share Topic Programs Materials science Nanoscience

  17. EERE Project Management Center Database PIA, The Office of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy Efficiency and ...

  18. RECORDS MANAGEMENT CENTERS OF EXCELLENCE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Centers of Excellence provides information that you may draw on to access the records management knowledge and expertise in the Department PDF icon RECORDS MANAGEMENT CENTERS ...

  19. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More accurate predictions for harvesting hydrogen with iridium oxide nanoparticles More Large Rectification in Molecular Heterojunctions More The Friendly Faces of CNM More A Lithium-Air Battery Based on Lithium Superoxide More Borophene: Atomically Thin Metallic Boron More Video Highlight A Look Inside Argonne's Center for Nanoscale Materials BROCHURES & NEWSLETTERS CNM Overview Brochure CNM Fact Sheet Key Research Areas Nanofabrication & Devices Nanophotonics & Biofunctional

  20. Executive Summaries for the Hydrogen Storage Materials Center...

    Broader source: Energy.gov (indexed) [DOE]

    storage materials in the areas of Chemical Hydrogen Storage Materials, Hydrogen ... Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption ...

  1. Categorical Exclusion Determinations: Environmental Management Consolidated Business Service Center

    Broader source: Energy.gov [DOE]

    Categorical Exclusion Determinations issued by Environmental Management Consolidated Business Service Center.

  2. GATE Center of Excellence in Lightweight Materials and Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Technologies | Department of Energy 6_vaidya_2012_p.pdf More Documents & Publications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

  3. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Process Research Division. He was also manager of the Materials and Process Research Department and the Materials Reliability Department. He spent one year in...

  4. Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Strategies for Fleet Managers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Delicious Rank Alternative Fuels Data

  5. Center for Next Generation of Materials by Design: Incorporating

    Office of Science (SC) Website

    Metastability (CNGMD) | U.S. DOE Office of Science (SC) Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Print Text Size: A A A FeedbackShare Page CNGMD Header Director William Tumas Lead

  6. NNSA Contract Reform in Action: Supply Chain Management Center...

    National Nuclear Security Administration (NNSA)

    Contract Reform in Action: Supply Chain Management Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  7. RECORDS MANAGEMENT CENTERS OF EXCELLENCE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Centers of Excellence.pdf More Documents & Publications RECORDS MANAGEMENT CENTERS OF EXCELLENCE Records Management Field Officer (RMFO) AU Functional Area Points of Contact by Office Directors

  8. Data Center Airflow Management Retrofit September 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Retrofit September 2010 Data Center Airflow Management Retrofit September 2010 PDF icon airflow-doe-femp.pdf More Documents & Publications Data Center Airflow Management Retrofit

  9. EERE Project Management Center Database PIA, The Office of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency and Renewable Energy (EERE) | Department of Energy EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) PDF icon EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) More

  10. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System NMMSS ...

  11. Heavy Isotopes Lead Materials Management Organization (LMMO)...

    Office of Scientific and Technical Information (OSTI)

    Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update ...

  12. Information system revives materials management

    SciTech Connect (OSTI)

    Hansen, T.

    1995-12-01

    Through a change in philosophy and the development of a new, more efficient information management system, Arizona Public Service Co. (APSW) has, in less than two years, reduced material and service costs by 10 percent. The utility plans to cut these costs form 1993 figures by 25 percent before 2000. The utility is breaking new ground with ongoing implementation of new business processes and the new Materials Logistics Information System (MLIS), which has been co-developed with Texas Instruments Software Division (TISD).

  13. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highly promising approach to expedite the materials discovery process using theory-guided electronic and structural engineering. This roundtable will bring together materials...

  14. General Recommendations for a Federal Data Center Energy Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dashboard Display | Department of Energy General Recommendations for a Federal Data Center Energy Management Dashboard Display General Recommendations for a Federal Data Center Energy Management Dashboard Display Document explains the benefits of developing dashboards to track energy use in Federal data centers and discusses typical dashboard content that is useful for energy management. PDF icon dc_dashboards_guide.pdf More Documents & Publications Wireless Sensors Improve Data Center

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AL 35487 (USA) 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) 3-Department of Chemistry, University of Kentucky,...

  16. SciDAC Outreach Center Participates in "Materials for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Participates in "Materials for Energy Applications" Workshop February 1, 2012 David Skinner From Jan. 30 to Feb. 1 Berkeley Lab hosted an invitation-only workshop on...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micronanofabricated environments for synthetic biology C. Patrick Collier and Michael L. Simpson Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences Oak...

  18. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Department of Chemistry, Vanderbilt University, Station B 351824, Nashville, TN 37235, USA 2 Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, 1 Bethel...

  19. GATE Center of Excellence in Lightweight Materials and Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit...

  20. User-centered guidelines for environmental management

    SciTech Connect (OSTI)

    Eike, D.R.; Fox, J.A.; Dailey, R.

    1993-08-01

    Environmental Management requirements facing US Department of Energy (DOE) facilities are detailed, complex, and often subject to rapid change. DOE`s Office of Environmental Guidance, RCRA/CERCLA Division (EH-231), is responsible for developing and issuing guidance to assist DOE facilities in interpreting and complying with Federal, State, and local requirements. Recognizing the potential for computerization of the guidance, EH-231 requested that Pacific Northwest Laboratory (PNL) develop an approach for preparing automated guidance. The approach developed by PNL, termed ``user-centered guidance,`` combines participatory design and traditional rapid prototyping techniques to produce a new form of environmental guidance that emphasizes the user`s needs. This paper describes the objectives, processes and current status of this effort.

  1. Center for Lightweighting Automotive Materials and Processing | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti010_mallick_2011_o.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

  2. Past Events | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor Materials for High-Efficiency Multijunction ... bulk Heterojunction Solar Cells Seminar Series Azita Emami: ... Perspectives on Advancing Energy Sustainability Seminar ...

  3. Instructional Materials | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigate wind turbine design factors like height, ... Download Wind Materials Here | Wind Energy Kit Overview ... of energy, such as methane gas or transportation fuels. ...

  4. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... "ORNL materials researchers get first look at atom-thin boundaries," Space Daily (November 11, 2014) "UT, ORNL Team Up in Possible Spintronics Advancement," Tennessee Today ...

  5. Current Partners > Partnerships > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below. More information about each of these, and other partners coming soon. General Motors Honeoye Falls, NY Primet Precision Materials Ithaca, NY Ford Motor Corporation...

  6. Center for Nanophase Materials Sciences (CNMS) - Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is home to our synthetic macromolecular capabilities and our complementary efforts in designing functional materials, including those with hybrid molecular architectures, for...

  7. Center for Nanophase Materials Sciences (CNMS) - Nanofabrication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clean room space for carrying out material modification using advanced lithographic, etching, thin-film deposition, and characterization tools. Process Design Assistance with...

  8. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can provide insights for the development of new materials for solar cells, solid-state lighting and superconductor power transmission. Computer codes will be made...

  9. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were recently purchased with American Recovery and Reinvestment Act funds, including new SEM and TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the...

  10. 2009 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sols Morgan Stefik, Surbhi Mahajan, Hiroaki Sai, Thomas H. Epps III, Frank S. Bates, Sol M. Gruner, Francis J. DiSalvo and Ulrich Wiesner Chemistry of Materials Vol.21, p....

  11. Management Technology for Energy Efficiency in Data Centers and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    airflow, and other necessary metrics combined with thermal imaging of the ... The software solutions allow all assets across the data center to be managed, visualized, ...

  12. Feed Materials Production Center annual environmental report for calendar 1989

    SciTech Connect (OSTI)

    Dugan, T.A.; Gels, G.L.; Oberjohn, J.S.; Rogers, L.K.

    1990-10-01

    The mission of the Department of Energy's (DOE) Feed Materials Production Center (FMPC) has been to process uranium for United States' defense programs. On July 10, 1989, the FMPC suspended production operations, but remains on standby for certain segments of production. The FMPC also manages the storage of some radioactive and hazardous materials. As part of its operations, the FMPC continuously monitors the environment to determine that it is operating within federal and state standards and guidelines regarding emission of radioactive and nonradioactive materials. Data collected from the FMPC monitoring program are used to calculate estimates of radiation dose for residents due to FMPC operations. For 1989, the estimate of dose through the air pathway, excluding radon, indicated that people in the area were exposed to less than 6% of the DOE guideline established to protect the public from radiation exposure. When radon emissions are included, the dose from FMPC operations during 1989 was less than 22% of the annual background radiation dose in the Greater Cincinnati area. This report is a summary of FMPC's environmental activities and monitoring program for 1989. An Environmental Compliance Self-Assessment presents the FMPC's efforts to comply with environmental regulations through June 1990. 44 refs., 48 figs.

  13. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  14. EFRC - Center for Defect Physics in Structural Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory EFRC - Center for Defect Physics in Structural Materials Research Personnel Publications Modeling This project will help incorporate our new, efficient, order-N (where N is the number of scattering sites in a defected crystal) method for solving the Poisson's equation for site-centered electronic-structure method used within the center (i.e., the LSMS code) for critical simulations. The method will be extended in collaboration to develop capabilities for relaxation by atomic

  15. UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards...

    National Nuclear Security Administration (NNSA)

    UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email:...

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rouleau,3 Karren L. More,5 G. Tayhas R. Palmore,2 and Robert H. Hurt2 1-Dept Chemistry, Brown University 2-School of Engineering, Brown University 3-Center for Nanophase Materials...

  17. Power Management Techniques for Data Centers: A Survey

    SciTech Connect (OSTI)

    Mittal, Sparsh

    2014-07-01

    With growing use of internet and exponential growth in amount of data to be stored and processed (known as ``big data''), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.

  18. Center for Lightweighting Automotive Materials and Processing | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 9 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ti_06_mallick.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies

  19. Statistical methods for nuclear material management

    SciTech Connect (OSTI)

    Bowen W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  20. A Look Inside Argonne's Center for Nanoscale Materials

    SciTech Connect (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-01-29

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  1. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  2. PIA - Environmental Management Consolidated Business Center ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Reactor National Scientific User Facility Users Week 2009 LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management

  3. DOE - Office of Legacy Management -- Visitors Center

    Office of Legacy Management (LM)

    farming, uranium production, and environmental cleanup eras, as well as the recent ecological restoration and legacy management mission, is presented through a series of exhibits. ...

  4. Environmental Survey preliminary report, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    This report presents the preliminary findings from the first phase of the environmental survey of the United States Department of Energy (DOE) Feed Materials Production Center (FMPC), conducted June 16 through 27, 1986. The survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with the FMPC. The survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the survey involves the review of existing site environmental data, observations of the operations carried on at FMPC, and interviews with site personnel. The survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its onsite activities. The Sampling and Analysis Plan will be executed by a DOE national laboratory or a support contractor. When completed, the results will be incorporated into the FMPC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the FMPC survey. 41 refs., 20 figs., 25 tabs.

  5. US DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DEI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE PROJECT MANAGEMENT CENTER NEPA DEI'ER1IllNATION Page I of3 RECIPIENT:Verdant Power, ... publication and distribution, and classroom training and informational programs), ...

  6. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  7. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  8. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  9. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  10. Contract Awarded for Environmental Management Consolidated Business Center

    Energy Savers [EERE]

    Mission Support | Department of Energy Environmental Management Consolidated Business Center Mission Support Contract Awarded for Environmental Management Consolidated Business Center Mission Support March 8, 2016 - 3:00pm Addthis Media Contact Lynette Chafin 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today announced the award an Indefinite Delivery/Indefinite Quantity (IDIQ) contract to SUNSi JV, LLC, of Pocatello, ID. SUNSi JV, LLC is a Small

  11. Supply Chain Management Center event highlights how small businesses can

    National Nuclear Security Administration (NNSA)

    help NNSA carry out its missions | National Nuclear Security Administration Supply Chain Management Center event highlights how small businesses can help NNSA carry out its missions Thursday, February 18, 2016 - 11:06am NNSA Blog The Supply Chain Management Center (SCMC) has been an important tool for NNSA to save taxpayer dollars. At the event on Feb. 18, NNSA leadership and the New Mexico congressional delegation were well represented. From left, Scott Bissen, SCMC Director; Rep. Steve

  12. Executive Summaries for the Hydrogen Storage Materials Center of Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE | Department of Energy Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE This report contains the executive summaries of the final technical reports from the

  13. Interim Management of Nuclear Materials

    Office of Environmental Management (EM)

    Integrated Safety Management (ISM) Integrated Safety Management (ISM) The objective of ISM is to perform work in a safe and environmentally sound manner. More specifically, as described in DOE P 450.4, Safety Management System Policy: "The Department and Contractors must systematically integrate safety into management and work practices at all levels so that missions are accomplished while protecting the public, the worker, and the environment. This is to be accomplished through effective

  14. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: ...

  15. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  16. Contract administration involving the remedial investigation and feasibility study at the Feed Materials Production Center

    SciTech Connect (OSTI)

    Not Available

    1991-08-28

    Advanced Sciences, Incorporated (ASI), has been performing a Remedial Investigation and Feasibility Study (RI/FS) at the Feed Materials Production Center (Fernald Facility) at Fernald, Ohio, under an 8 (a) contract with the US Small Business Administration (SBA). The Fernald Facility is a Government-owned facility operated by Westinghouse Materials Company of Ohio (WMCO) under a management and operating contract. The objective of this audit was to evaluate the award and administration of the ASI contract.

  17. Management of Transuranic Contaminated Material

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-09-30

    To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

  18. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  19. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  20. Technical considerations in materials management policy development

    SciTech Connect (OSTI)

    Avci, H.; Goldberg, M.

    1996-05-01

    Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE`s DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized.

  1. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Alumni Page 1 of 3 ⇐ Previous | Next ⇒ Here are past members and where they are now. List Image Mahmut Aksit Senior Materials Chemist - 3M ma573@cornell.edu List Image Nicole Benedek Asst. Professor - UT Austin nicole.benedek@austin.utexas.edu List Image Robert Berger Asst. Professor - Western Washington University robert.berger@wwu.edu List Image Turan Birol Postdoc - Rutgers University tb238@cornell.edu List Image Raymond Burns Product Research Technologist - Exxon Mobile

  2. Categorical Exclusion Determinations: Western Area Power Administration-Colorado River Storage Project Management Center

    Broader source: Energy.gov [DOE]

    Categorical Exclusion Determinations issued by Western Area Power Administration-Colorado River Storage Project Management Center.

  3. V-177: VMware vCenter Chargeback Manager File Upload Handling Vulnerability

    Broader source: Energy.gov [DOE]

    The vCenter Chargeback Manager contains a critical vulnerability that allows for remote code execution

  4. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-12-22

    The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

  5. Establishment of the Heavy Isotopes Lead Materials Management...

    Office of Scientific and Technical Information (OSTI)

    Lead Materials Management Organization (LMMO) Citation Details In-Document Search Title: Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) ...

  6. CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and people highlights from the Lujan Neutron Scattering Center at LANSCE CENTER SCIENCE & PEOPLE the Lujan April 2014 LA-UR-14-22812 I N S I D E 2 Seeking design rules for efficient lighting sources 3 Rate-dependent deformation mechanisms in beryllium 4 Improved understanding of a semiconductor used in infrared detectors 6 Mike Fitzsimmons elected NNSA Fellow 7 Pressure tuning: a new approach for making zero thermal expansion materials 8 Neutron scattering enables structural

  7. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: Project Title: Associated Materials: Programmatic RIS Previous Project Number(s) Status Code Allotment Code (S=Supplier, U=User) I authorize that the information listed above is for the NMMSS Program to use as part of the project number conversion process for this facility. Signature of Authorized Official Date

  8. Integrated Global Nuclear Materials Management Preliminary Concepts

    SciTech Connect (OSTI)

    Jones, E; Dreicer, M

    2006-06-19

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective policy, science/technology, and intelligence elements are all crucial and must be harmonized. It is envisioned that integrated solutions will include reducing and securing nuclear/radiological materials at their source; improved monitoring and tracking; and enhancing detection, interdiction, and response. An active architecture, artfully combined of many synergistic elements, would support national actions and international collaboration in nuclear materials management, and it would help navigate a transition toward global nuclear sustainability.

  9. Material Management/Strategic Reserve | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Material ManagementStrategic Reserve Y-12 ensures safe, secure and compliant storage of the nation's strategic reserve of nuclear materials at Y-12. Our Nuclear Materials...

  10. Center for Nanoscale Materials Fact Sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center...

  11. Postdoctoral Research Fellow Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & transport properties of the materials, which in turn can be used to engineer better solid electrolyte materials 2. Automation & Data Analytics * Designing a new material for...

  12. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect (OSTI)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  13. Staff > > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Leadership Team Faculty Directory Researchers, Postdocs & Graduates Scientific Advisory Board Center Alumni Here are past members and where they are now.

  14. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment Opportunities The Center employs qualified postdoctoral researchers at LANL on all CMIME research teams. Background in mechanical behavior andor radiation effects in...

  15. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related EFRC News What are EFRCs? Energy Frontier Research Centers address energy and science "grand challenges" in a broad range of research areas, which were defined through a...

  16. Featured Projects: Center for Materials at Irradiation and Mechanical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scale, the behavior of materials subject to extreme radiation doses and mechanical stress in order to synthesize new materials that can tolerate such conditions. It is a...

  17. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email: Mike Nastasi Phone: 402-472-3852 Bio Education Ph.D., Materials Science and Engineering, Cornell University, 1986 M.S., Materials Science and Engineering, Cornell...

  18. Ames Laboratory a partner in DOE Center for Computational Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials, as well as a companion database to predict targeted properties with energy-related application to thermoelectric materials. READ MORE at Brookhaven National Laboratory....

  19. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials physicists. He is also Director of the Doctoral Training Centre on Theory and Simulation of Materials at Imperial, where he leads 50 academics in the Departments of...

  20. 2016 Cornell Center for Materials Research Symposium > Local Events > The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials Center at Cornell 2016 Cornell Center for Materials Research Symposium May 25th, 2016 8:30am - 6:00pm Location: 120 Physical Sciences Building By Bill Steele New electron microscopy techniques can probe structural, physical and chemical properties of materials with spatial resolution ranging from atomic to macroscopic length scales, with impact across a broad range of disciplines in the physical and the life sciences, and with commercial applications. The 2016 Cornell Center

  1. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    Fuel Cell Technologies Publication and Product Library (EERE)

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. T

  2. DOE - Office of Legacy Management -- Center for Energy and Environment...

    Office of Legacy Management (LM)

    Center for Energy and Environmental Research - PR 02 FUSRAP Considered Sites Site: Center for Energy and Environmental Research (PR.02 ) Designated Name: Alternate Name: Location:...

  3. Getting Data Center Energy Management Started with Profiler Tools

    Broader source: Energy.gov [DOE]

    Webinar will introduce the Data Center Profiler (DC Pro) Tools available to help data centers estimate power usage effectiveness (PUE) without submetering.

  4. General Recommendations for a Federal Data Center Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wireless Sensors Improve Data Center Efficiency Data Center Energy Efficiency Measurement Assesment Kit Guide and Specification Case Study: Opportunities to Improve Energy ...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a whole new family of previously unknown electronic properties. Credit Published in Nano Letters, DOI: 10.1021nl203349b. Research at Oak Ridge National Laboratory's Center for...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expression Optimization and Synthetic Gene Networks in Cell-free Systems David K. Karig,1 Sukanya Iyer,2,3 Michael L. Simpson,1,4,5 Mitchel J. Doktycz,1,2 1-Center for Nanophase...

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standing Friedel Waves, Standing Spin Waves, and Indirect Bandgap Optical Transition in Nanostructures Jun-Qiang Lu1, X.-G. Zhang1,2, and Sokrates T. Pantelides3 1Center for...

  8. News > > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News + Events In This Section EMC2 News Archived News Stories News EMC2 News Center news updates 27 entries Archived News Stories Previous news stories from emc2 97 entries Home » News

  9. News > > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News + Events In This Section Why Partnerships? Current Partners Project Updates News & Events Resources Join News EMC2 News Center news updates 27 entries Archived News Stories Previous news stories from emc2 97 entries Home » News

  10. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARCHIVED CNMS IN THE NEWS Sergei V. Kalinin Wins ACerS Robert L. Coble Award for Young Scholars Sergei V. Kalinin, who is a member of the Imaging Functionality Group in the Center...

  11. Materials Control and Accountability Program Manager | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Materials Control and Accountability Program Manager Amy Whitworth Amy Whitworth July 2009 Fellow by the Institute of Nuclear Materials Management NNSA Materials Control and Accountability Program Manager Amy Whitworth was awarded the prestigious title of Fellow by the Institute of Nuclear Materials Management during its recent annual meeting in Tucson, Ariz. Fellows must be nominated by their peers, recommended by the INMM Fellows Committee and approved by the INMM

  12. The proposed fixation of sludge in cement at the Feed Materials Production Center

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1990-12-01

    The Feed Materials Production Center (FMPC), located near Cincinnati, Ohio, is a government-owned facility. Westinghouse Materials Company of Ohio (WMCO) is the prime contractor to the United States Department of Energy (DOE) at the FMPC. DOE has entered into a Consent Agreement with the United States Environmental Protection Agency (US EPA) to remediate the FMPC site. A project known as the Environmental Remedial Action (ERA) Project was created to accomplish the task of remediating the site. The majority of the estimated $2-billion ERA Project was broken into five smaller manageable subtasks called operable units.'' Each operable unit is handled as a project with its own project manager/engineer. Due to the project's complexity and stringent completion dates, DOE and WMCO have devised a project management philosophy to ensure the successful completion of the ERA Project. This paper will discuss the ERA project and the development needs to accomplish this project. In particular, development of processes for the treatment of waste sludges for Operable Units 1 and 4 will be discussed. Operable Units 2 sludges will be treated in a similar fashion to Operable Unit 1 if it is determined these sludges need treatment. 4 refs., 5 figs., 9 tabs.

  13. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Anthony David Rollett image of anthony rollet Contact Information Carnegie Mellon University Department of Materials Sci.& Eng. Wean Hall 3313, 5000 Forbes Ave. Pittsburgh, PA 15213-3890 Phone: (412) 268-3177 Email: rollett@andrew.cmu.edu Bio Education M.A. (1976), Metallurgy and Materials Science, Cambridge University, United Kingdom Ph.D. (1987) Materials Engineering, Drexel University Research and Professional Experience Professor of Materials Science &

  14. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Kenneth J. McClellan Contact Information Los Alamos National Laboratory Materials Science & Technology Division Structure/Property Relations, MS G755 Phone: (505) 667-5452 kmcclellan@lanl.gov Bio Education Ph.D., Materials Science and Engineering, Case Western Reserve University, 1994 M.S., Materials Science and Engineering, Case Western Reserve University, 1991 B.S., Metallurgy and Materials Science, Case Western Reserve University, 1988 Research and Professional

  15. In Silico Screening of Carbon Capture Materials | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeparationsRelevant to Clean Energy Technologies | Blandine Jerome In Silico Screening of Carbon Capture Materials

  16. Materials Project and Electrolyte Genome - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Materials Project and Electrolyte Genome The Materials Project and Electrolyte Genome are computer modeling tools designed to accelerate the discovery process before testing in the laboratory. Developing beyond-lithium-ion batteries requires the discovery of new working ions, cathodes, anodes, and electrolytes. The Materials Project and the Electrolyte Genome use high-throughput computer modeling to: identify new candidates for battery materials, predict their performance, and

  17. Mahmut Aksit > Senior Materials Chemist - 3M > Center Alumni > The Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Center at Cornell Mahmut Aksit Senior Materials Chemist - 3M ma573@cornell.edu Formerly a member of the Robinson Group, he received his PhD in June 2014.

  18. Argonne's Materials Engineering Research Facility - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research August 8, 2012, Videos Argonne's Materials Engineering Research Facility Argonne's Materials Engineering Research Facility (MERF) enables the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up

  19. Material Management and Minimization | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Management and Minimization | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  20. Resources > Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In This Section Why Partnerships? Current Partners Project Updates News & Events Resources Join PARTNERSHIPS Why Partnerships? ›Project Updates ›News + Events › Resources for Prospective Partners CONTENT COMING SOON Cornell Standard NDA Sample Sponsored Contract Language Standard Intellectual Property terms Center member form

  1. Center for Inverse Design: Modality 3 - Discovery of Missing Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3: Discovery of Missing Materials Modality 3 applies to yet discovered, currently undocumented materials. This approach is designed for a different class of problems: when the materials we would like to consider are simply undocumented standard compilations, i.e., they have not yet been made. Like the other two modalities, this one also involves a search space. But unlike Modalities 1 and 2, the steps involved in Modality 3 are: Calculate the stable crystal structure of a given hypothetical

  2. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory - Ellen Cerreta Image of Ellen Contact Information Los Alamos National Laboratory Materials Science and Technology Division MST-8, Structure/Property Relations Group Phone: (505) 665-2576 ecerreta@lanl.gov Bio Education Ph.D. (2001), Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania M.S. (1997), Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania B.S. (1996), Aerospace Engineering, University of

  3. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Pascal Bellon image of George Gray Contact Information Professor University of Illinois, Urbana-Champaign Department of Materials Science and Engineering Phone: (217)2675-0284 bellon@uiuc.edu http://www.mse.uiuc.edu/faculty/Bellon.html Bio Education Post-Doctoral Research Associate, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1993-1994 Ph.D., Materials Science, Université Pierre et Marie Curie, Paris, France, 1989

  4. University of Delaware | Catalysis Center for Energy Innovation | Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Bi-modal silica nanoparticle templates for synthesizing 3D ordered mesoporous replicas of various oxides. CCEI has a growing portfolio of novel classes of materials with tunable micro-, meso-, and/or hierarchical pores and functional groups, including: (1) three-dimensionally ordered mesoporous (3DOm) carbons, titanias, and zirconias (2) 3DOm-imprinted zeolites (3) hollow mesoporous carbons (4) hierarchically porous MFI and MEL zeolites These materials hold exciting implications for

  5. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    his work focused on theoretical condensed matter physics. In 1987, he returned to Switzerland and has been working on computational materials science ever since, a field in...

  6. Center for Nanophase Materials Sciences (CNMS) - 2014 CNMS User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences Oak Ridge National Laboratory September 15-19, 2014 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User...

  7. Center for Nanophase Materials Sciences (CNMS) - 2011 CNMS User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences Oak Ridge National Laboratory September 19-20, 2011 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User...

  8. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemistry group; in 1984, he joined the technical staff in the Materials Science & Technology Division, where he worked on a wide variety of modeling projects from composite...

  9. Center for Inverse Design: Modality 2 - Design of Materials with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    configuration or a couple of nearby metastable states are relevant. The appropriate strategy to identify potential materials then consists of three main steps: Develop design...

  10. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George T. (Rusty) Gray III image of George Gray Contact Information Laboratory Fellow Los Alamos National Laboratory Dynamic Materials Properties, Testing, and Modeling Los Alamos,...

  11. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quanxi Jia image of George Gray Contact Information Laboratory Fellow Los Alamos National Laboratory Materials Physics and Applications Division Phone: (505) 667-2716...

  12. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yongqiang Wang image of George Gray Contact Information Los Alamos National Laboratory Ion Beam Materials Laboratory, Team Leader Phone: (505) 665-1596 yqwang@lanl.gov Bio...

  13. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cu 10 nm nanocrystalline sample being uni-axial compressed to strain of 20% and then stress released. Irradiation Extremes Thrust Traditional structural materials degrade and...

  14. Center for Nanophase Materials Sciences (CNMS) - 2012 CNMS User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 911) Transmission Electron Microscopy for Soft Materials September 12-13, 2012 Second Photovoltaics School (Photovoltaics from Fundamentals to Applications) September 13, 2012...

  15. Publishing with NPG and Nature Materials | MIT-Harvard Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Following research on organic electronic materials at the University of Cambridge, Siemens Corporate Technology and Philips Research, he pursued a joint PhD in Applied Physics at ...

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 4-Department of Physics and Department of Electrical Engineering and Computer...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 3-Physics Department,...

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a diverse collection of leading journals, such as Nano Letters, Advanced Materials, and ACS Nano. They have also built capabilities for nanofiber synthesis and characterization at...

  19. Center for Nanophase Materials Sciences (CNMS) - Related ORNL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In particular, the facilities listed on this page offer a variety of capabilities for materials characterization and computational nanoscience that may enhance the research...

  20. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CINT), Physical Synthesis Lab: J. Kevin Baldwin LANL Technologist Ion Beam Materials Lab: Yongqiang Wang LANL Scientist Irradiation Thrust Electron Microscopy Lab: Rob...

  1. Executive Summaries for the Hydrogen Storage Materials Center...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Marcina Moreno (SNL) brought a special wisdom to her job as the MHCoE business manager, ... Many thanks to Karen McWilliams for gussying up this report. Last, but not least, thanks ...

  2. Security robots for nuclear materials management

    SciTech Connect (OSTI)

    Deming, R.

    1986-01-01

    Robots have successfully invaded industry where they have replaced costly personnel performing their tasks cheaper and better in most cases. There may be a place for a unique class of robots, security robots, in nuclear materials management. Robots could be employed in the functions of general response, patrol and neutralizing dangerous situations. The last is perhaps most important. Ion Track Instruments of Burlington, Massachusetts has designed an excellent unit to protect life in hazardous situations. The unit can detect, disrupt or remove explosives. It can enter dangerous areas to reconnoiter the extent of danger. It can communicate with those in a dangerous area. It can fight fires or clean an area using a 2 1/2 inch, two man hose. If necessary, it can engage an adversary in a fire fight using a twelve gauge shot gun.

  3. DEPARTMENT OF FNERGY EERE PROJECT MANAGEMENT CENTER NFPA DI!TERJ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF FNERGY EERE PROJECT MANAGEMENT CENTER NFPA DITERJ.fiNATION ... publication. and distribution; and classroom training and informational programs), ...

  4. EERE PROJECT MANAGEMENT CENTER Nl!PA DFTFnIINATION RECIPIENT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Il.II.': , u.s. DEPARTMENT OFFNERGY EERE PROJECT MANAGEMENT CENTER NlPA DFTFnIINATION ... publication, and distribution: and classroom training and informational programs), ...

  5. 2014 Annual Planning Summary for the Environmental Management Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Environmental Management Energy Technology Engineering Center.

  6. u.s. DEPARTl\\IENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTlIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERllJNAIION RECIPIENT:City of Philip and Philip Health Services PROJECf TITLE: Philip Health Services Geothermal ...

  7. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:Midwest Renewable Energy ... instructors together to develop classroom resources and an instructor discussion group. ...

  8. T-560: Cisco Security Advisory: Management Center for Cisco Security Agent Remote Code Execution Vulnerability

    Broader source: Energy.gov [DOE]

    The Management Center for Cisco Security Agent is affected by a vulnerability that may allow an unauthenticated attacker to perform remote code execution on the affected device.

  9. DOE - Office of Legacy Management -- Wright Air Development Center...

    Office of Legacy Management (LM)

    Wright Air Development Center - OH 0-08 FUSRAP Considered Sites Site: Wright Air Development Center (OH.0-08) Eliminated from further consideration under FUSRAP - Referred to DOD ...

  10. Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Uranium-233 | Department of Energy Waste Management » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a

  11. Environment, safety and health compliance assessment, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The Secretary of Energy established independent Tiger Teams to conduct environment, safety, and health (ES H) compliance assessments at US Department of Energy (DOE) facilities. This report presents the assessment of the Feed Materials Production Center (FMPC) at Fernald, Ohio. The purpose of the assessment at FMPC is to provide the Secretary with information regarding current ES H compliance status, specific ES H noncompliance items, evaluation of the adequacy of the ES H organizations and resources (DOE and contractor), and root causes for noncompliance items. Areas reviewed included performance under Federal, state, and local agreements and permits; compliance with Federal, state and DOE orders and requirements; adequacy of operations and other site activities, such as training, procedures, document control, quality assurance, and emergency preparedness; and management and staff, including resources, planning, and interactions with outside agencies.

  12. In silico screening of carbon-capture materials | Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In silico screening of carbon-capture materials Previous Next List L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W....

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in multiferroic BiFeO3, only 2-3 nm wide and distinct from the surrounding insulating material.1 Conductivity was completely unexpected since domain walls present only a subtle...

  14. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were recently purchased with American Recovery and Reinvestment Act funds, including new SEM and TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the...

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievement: The material of choice for spintronics device today is FeMgOFe tunnel ... by modi?cation of the interface is an important topic in spintronics research. ...

  16. Methane storage in advanced porous materials | Center for Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane storage in advanced porous materials Previous Next List Trevor A. Makal, Jian-Rong Li, Weigang Lu and Hong-Cai Zhou, Chem. Soc. Rev., 2012,41, 7761-7779 DOI: 10.1039...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Weitering, Nature Materials 7, 539 (2008). The research was sponsored by the National Human Genome Research Institute, National Institutes of Health Grant R01HG002647 (CZ), NSF...

  18. Carbon Dioxide Capture: Prospects for New Materials | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture: Prospects for New Materials Previous Next List D. M. D'Alessandro, B. Smit, and J. R. Long, Angew. Chem.-Int. Edit. 49 (35), 6058 (2010) DOI: 10.1002...

  19. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Nathan Mara IMage of Nathan Mar Contact Information Staff Scientist Los Alamos National Laboratory Metallurgy, MS G770 Phone: (505) 667-8665 Fax: (505) 667-5268 namara@lanl.gov Bio Education Ph.D., Materials Science and Eng., University of California-Davis, 2005 B.S., Mechanical Engineering and Materials Science, University of California-Davis, 2000 Research and Professional Experience Technical staff member, Los Alamos National Lab, March 2008 - present Director's

  20. NNSA recognizes Knight's service to Nuclear Materials Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Team. Knight began co-chairing the team in 2005 when the NMMT was in its infancy. The team of NNSA federal and contractor nuclear material managers develops...

  1. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Alumni Page 2 of 3 ⇐ Previous | Next ⇒ Here are past members and where they are now. List Image Mihir Khadilkar Graduate Student - Escobedo Group mrk97@cornell.edu List Image Jeung Gon Kim Principle Research Engineer - Samsung Cheil Industries List Image Henry Kostalik Researcher - 3M hak27@cornell.edu List Image Rachna Khurana rk455@cornell.edu List Image Anna Legard Senior Administrator - Halco Energy List Image Michael Lowe Senior Chemist - Dow Chemical Company List Image YingYing

  2. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  3. NNSA recognizes Knight's service to Nuclear Materials Management Team |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex NNSA recognizes ... NNSA recognizes Knight's service to Nuclear Materials Management Team Posted: August 13, 2015 - 3:38pm Print version Teresa Knight was honored by NNSA for her outstanding service to the Nuclear Materials Management The National Nuclear Security Administration presented CNS employee Teresa Knight with a special award in recognition of her outstanding service to the Department of Energy's Nuclear Materials Management Team. Knight began

  4. Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon SessionA7HonoNIMS.pdf More Documents & Publications Spomenka Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe Tom Lograsso, Ames Laboratory (Iowa State ...

  5. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Timothy Germann german Contact Information Los Alamos National Laboratory Theoretical Division Physics and Chemistry of Materials Group Phone: (505) 665-9772 tcg@lanl.gov Bio Education Ph.D., Chemical Physics, Harvard University, 1995 B.S., Computer Science, University of Illinois, Urbana-Champaign, 1991 B.S., Chemistry, University of Illinois, Urbana-Champaign, 1991 Research and Professional Experience Technical Staff Member, Los Alamos National Laboratory, April

  6. Materials Project - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration Materials Physics and Applications Division Lead Antoinette Taylor Toni Taylor November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the Laboratory's current technical staff. The new Fellows

  7. Summary 2012 Internship Projects | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Internship Projects Name Mentor Advisor Major Project Title Benjamin Abrams Ferenc Somodi Dan Morse Physics Preparation of Silicon Containing Anode Materials for Lithium-Ion Batteries Carl Bycraft Emmett Perl John Bowers Electrical Engineering Quantum Efficiency Measurement for Multijunction Photovoltaics Benjamin Campo Nathan Pffaf Steve DenBaars Electrical Engineering Temperature Evolution of Light Emitting Diode Efficiency Rachel Harris Chris Liman Michael Chabynic Investigating Degradation

  8. Managing Category I and II Asbestos-Containing Materials During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition August 2009 Presenter: Robert Devol, Bechtel Jacobs Company, LLC Track 3-6 Topics ...

  9. DOE - Office of Legacy Management -- Amchitka Island Test Center...

    Office of Legacy Management (LM)

    ... when a team led by the DOE Office of Legacy Management (LM) collected biological and ... LMSAMCS07053. March 2011 U.S. Department of Energy Office of Legacy Management Record of ...

  10. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  11. Assessment of medical waste management at a primary health-care center in Sao Paulo, Brazil

    SciTech Connect (OSTI)

    Moreira, A.M.M.; Guenther, W.M.R.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Assessment of medical waste management at health-care center before/after intervention. Black-Right-Pointing-Pointer Qualitative and quantitative results of medical waste management plan are presented. Black-Right-Pointing-Pointer Adjustments to comply with regulation were adopted and reduction of waste was observed. Black-Right-Pointing-Pointer The method applied could be useful for similar establishments. - Abstract: According to the Brazilian law, implementation of a Medical Waste Management Plan (MWMP) in health-care units is mandatory, but as far as we know evaluation of such implementation has not taken place yet. The purpose of the present study is to evaluate the improvements deriving from the implementation of a MWMP in a Primary Health-care Center (PHC) located in the city of Sao Paulo, Brazil. The method proposed for evaluation compares the first situation prevailing at this PHC with the situation 1 year after implementation of the MWMP, thus allowing verification of the evolution of the PHC performance. For prior and post-diagnosis, the method was based on: (1) application of a tool (check list) which considered all legal requirements in force; (2) quantification of solid waste subdivided into three categories: infectious waste and sharp devices, recyclable materials and non-recyclable waste; and (3) identification of non-conformity practices. Lack of knowledge on the pertinent legislation by health workers has contributed to non-conformity instances. The legal requirements in force in Brazil today gave origin to a tool (check list) which was utilized in the management of medical waste at the health-care unit studied. This tool resulted into an adequate and simple instrument, required a low investment, allowed collecting data to feed indicators and also conquered the participation of the unit whole staff. Several non-conformities identified in the first diagnosis could be corrected by the instrument utilized. Total waste generation increased 9.8%, but it was possible to reduce the volume of non-recyclable materials (11%) and increase the volume of recyclable materials (4%). It was also possible to segregate organic waste (7%), which was forwarded for production of compost. The rate of infectious waste generation in critical areas decreased from 0.021 to 0.018 kg/procedure. Many improvements have been observed, and now the PHC complies with most of legal requirements, offers periodic training and better biosafety conditions to workers, has reduced the volume of waste sent to sanitary landfills, and has introduced indicators for monitoring its own performance. This evaluation method might subsidize the creation and evaluation of medical waste management plans in similar heath institutions.

  12. EFRC management reference document Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... TEC-MURI program, and by the DARPA NMO program as well as the , an Energy Frontier Research Center (EFRC) funded by the U.S. DOE Office of Basic Energy Sciences." ...

  13. Management Council - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization  MANAGEMENT COUNCIL Peter Green, Dir. MSE Rachel Goldman MSE Ctirad Uher Physics Jamie Phillips EECS Max Shtein MSE Roy Clarke Physics Ted Goodson III Chemistry ...

  14. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    SciTech Connect (OSTI)

    Simpson, Lin

    2009-11-30

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. The report presents a review of the material status as related to DOE hydrogen storage targets and explains the basis for the down select decisions.

  15. SciDAC Outreach Center Participates in "Materials for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications" Workshop SciDAC Outreach Center Participates in "Materials for Energy Applications" Workshop SciDAC Outreach Center Participates in "Materials for Energy Applications" Workshop February 1, 2012 David Skinner From Jan. 30 to Feb. 1 Berkeley Lab hosted an invitation-only workshop on Materials for Energy Applications, which was jointly sponsored by all 17 DOE national laboratories. This three-day conference-the first of a planned series-was held to

  16. Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA), FINAL REPORT

    SciTech Connect (OSTI)

    Bertram Ludaescher; Ilkay Altintas

    2012-07-03

    This is the final report from SDSC and UC Davis on DE-FC02-01ER25486, Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA).

  17. Annual report procurement and logistics management center Sandia National Laboratories fiscal year 2002.

    SciTech Connect (OSTI)

    Palmer, David L.

    2003-05-01

    This report summarizes the purchasing and transportation activities of the Procurement and Logistics Management Center for Fiscal Year 2002. Activities for both the New Mexico and California locations are included.

  18. A'All) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    l A'All) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:Hudson Valley Community CoUege; sub: Three Rivers Community College PROJECf TITLE:...

  19. P AUll u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUll ) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION Page I of3 RECIPIENT: Proton Energy Systems STATE: CT PROJECT TITLE: Validation of an Advanced...

  20. Nuclear Materials Management and Safeguards System Reporting and Data Submission

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-02-10

    The manual provides clear and detailed instructions and procedures for documenting and reporting data submissions for nuclear materials transactions, inventories, and material balances to the Nuclear Materials Management and Safeguards System (NMMSS). Cancels DOE 5633.3B. Canceled by DOE M 474.1-2A.

  1. U.S. DEPARTMENT OF ENERGY RECORDS MANAGEMENT CENTERS OF EXCELLENCE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RECORDS MANAGEMENT CENTERS OF EXCELLENCE October 2015 The Centers of Excellence provides information on contacts that may be contacted for records management knowledge and expertise within the Department of Energy (DOE). This information resource will assist with establishing best practices, improving program effectiveness and achieving cost efficiencies. Multiple sites or organizations may be listed to provide operational viewpoints and approaches. Each office and point of contact provided

  2. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels DOE 1540.1A, DOE 1540.2, DOE 1540.3A.

  3. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels: DOE 1540.1A, DOE 1540.2, and DOE 1540.3A.

  4. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    SciTech Connect (OSTI)

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables.

  5. Materials Dow Select Decisions Made Within DOEs Chemical Hydrogen Storage Center of Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report Submitted by: The Chemical Hydrogen Storage Center of Excellence Coordinating Council Authors: Kevin C. Ott, Los Alamos National Laboratory Sue Linehan, Rohm and Haas Company Frank Lipiecki, Rohm and Haas Company Christopher L. Aardahl, Pacific Northwest National Laboratory May 2008 Acknowledgements The

  6. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    SciTech Connect (OSTI)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  7. Nuclear Waste Materials Characterization Center. Semiannual progress report, April 1985-September 1985

    SciTech Connect (OSTI)

    Mendel, J.E.

    1985-12-01

    Work continued on converting MCC Quality Assurance practices to comply with the national QA standard for nuclear facilities, ANSI/ASME NQA-1. Support was provided to the following: Office of Geologic Repositories; Salt Repository Project; Basalt Waste Isolation Project; Office of Defense Waste and Byproducts Management; Hanford Programs; Transportation Technology Center; and West Valley Demonstration Project. (LM)

  8. Héctor D. Abruña > Director, Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emile M. Chamot Professor Chemistry and Chemical Biology > Faculty Directory > The Energy Materials Center at Cornell Héctor D. Abruña Director, Energy Materials Center at Cornell Emile M. Chamot Professor Chemistry and Chemical Biology Research Group Webpage hda1@cornell.edu Professor Abruña, Emile M. Chamot Professor of Chemistry, completed his graduate studies with Royce W. Murray and Thomas J. Meyer at the University of North Carolina at Chapel Hill in 1980 and was a

  9. Establishment of the Heavy Isotopes Lead Materials Management Organization

    Office of Scientific and Technical Information (OSTI)

    (LMMO) (Conference) | SciTech Connect Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) Citation Details In-Document Search Title: Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) Authors: Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Sherman, Steven R [1] + Show Author Affiliations ORNL [ORNL Publication Date: 2013-01-01 OSTI Identifier: 1110926 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource

  10. Heavy Isotopes Lead Materials Management Organization (LMMO) Update

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update Authors: Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Sherman, Steven R [1] ; Bone, Sherri [2] + Show Author Affiliations ORNL U.S. Department of Energy, NA Publication Date: 2014-01-01 OSTI Identifier: 1156744

  11. Local Events > Events > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local Events Check out these great events around your area! 2016 Cornell Center for Materials Research Symposium May 25th, 2016 8:30am - 6:00pm Location: 120 Physical Sciences Building This year's title is "Novel Characterization Methods - Advances in Electron Microscopy" Home » Events » Local Events

  12. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect (OSTI)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.

  13. Naval Air Warfare Center, Aircraft Division at Warminster Environmental Materials Program. Phase 1. Interim report, October 1989-May 1992

    SciTech Connect (OSTI)

    Spadafora, S.J.; Hegedus, C.R.; Clark, K.J.; Eng, A.T.; Pulley, D.F.

    1992-06-24

    With the recent increase in awareness about the environment, there is an expanding concern of the deleterious effects of current materials and processes. Federal, state and local environmental agencies such as the EPA, State Air Resource Boards and local Air Quality Management Districts (AQMD) have issued legislation that restrict or prohibit the use and disposal of hazardous materials. National and local laws like the Clean Air and Clean Water Acts, Resource Conservation and Recovery Act, and AQMD regulations are examples of rules that govern the handling and disposal of hazardous materials and waste. The Department of Defense (DoD), in support of this effort, has identified the major generators of hazardous materials and hazardous waste to be maintenance depots and operations, particularly cleaning, pretreating, plating, painting and paint removal processes. Reductions of waste in these areas has been targeted as a primary goal in the DOD. The Navy is committed to significantly reducing its current hazardous waste generation and is working to attain a near zero discharge of hazardous waste by the year 2000. In order to attain these goals, the Naval Air Warfare Center Aircraft Division at Warminster has organized and is carrying out a comprehensive program in cooperation with the Naval Air Systems Command, the Air Force and the Department of Energy that deal with the elimination or reduction of hazardous materials. .... Environmental materials, Organic coatings, Inorganic pretreatments, Paint removal techniques, Cleaners, CFC'S.

  14. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    SciTech Connect (OSTI)

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  15. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Facility Proton Radiography Facility Lujan Neutron Scattering Center Center for Integrated Nanotechnologies Materials Science Laboratory National High Magnetic Field Laboratory ...

  16. Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)

    SciTech Connect (OSTI)

    Higginson, M.C.

    1994-10-01

    The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford`s environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO{sub 3} plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996).

  17. Recovery of Mark-18a (Mk-18A) Target Materials: Program Management...

    Office of Scientific and Technical Information (OSTI)

    Target Materials: Program Management Plan Citation Details In-Document Search Title: Recovery of Mark-18a (Mk-18A) Target Materials: Program Management Plan You are accessing ...

  18. Subtask 1: Molecules, Materials, and Systems for Solar Fuels | ANSER Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne-Northwestern National Laboratory 1: Molecules, Materials, and Systems for Solar Fuels Home > Research > Subtask 1 The above figure depicts an iridium catalyst used for water splitting. The above figure depicts an iridium catalyst used for water splitting. The greatest challenge facing the development of solar fuels is efficient fuel production at acceptable rates and driving forces. The ANSER Center is confronting this challenge by taking a hierarchical approach to designing,

  19. All Upcoming Events > Events > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Events In This Section EMC2 News Upcoming Events Calendar of Research Meetings Archived News RSS & Calender Feeds Upcoming Events May 2016 2016 Cornell Center for Materials Research Symposium May 25th, 2016 8:30am - 6:00pm Location: 120 Physical Sciences Building This year's title is "Novel Characterization Methods - Advances in Electron Microscopy" Event type: Local Events › Home » Events

  20. Huntington Veterans Affairs Medical Center - Faucet and Showerhead Replacement Project: Best Management Practice Case Study #7: Faucets and Showerheads, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01

    Case study overview of the Huntington Veterans Affairs Medical Center water efficiency program as part of FEMP's water efficiency best management practice series.

  1. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  2. Management of Biological Materials in Wastewater from Research & Development Facilities

    SciTech Connect (OSTI)

    Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

    2011-04-01

    PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

  3. Staff > Faculty Directory > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faculty Directory List Image Héctor D. Abruña Director, Energy Materials Center at Cornell Emile M. Chamot Professor Chemistry and Chemical Biology hda1@cornell.edu List Image Lynden Archer James A. Friend Family Distinguished Professor Chemical and Biomolecular Engineering laa25@cornell.edu List Image Tomás Arias Professor Department of Physics taa2@cornell.edu List Image Joel Brock Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics jdb20@cornell.edu List Image

  4. Integrating the Clearance in NPP Residual Material Management

    SciTech Connect (OSTI)

    Garcia-Bermejo, R.; Lamela, B.

    2008-01-15

    Previous Experiences in decommissioning projects are being used to optimize the residual material management in NPP, metallic scrap usually. The approach is based in the availability of a materials Clearance MARSSIM-based methodology developed and licensed in Spain. A typical project includes the integration of segregation, decontamination, clearance, quality control and quality assurance activities. The design is based in the clearance methodology features translating them into standard operational procedures. In terms of ecological taxes and final disposal costs, significant amounts of money could be saved with this type of approaches. The last clearance project managed a total amount of 405 tons scrap metal and a similar amount of other residual materials occupying a volume of 1500 m{sup 3}. After less than a year of field works 251 tons were finally recycled in a non-licensed smelting facility. The balance was disposed as LILW. In the planning phase the estimated cost savings were 4.5 Meuro. However, today a VLLW option is available in European countries so, the estimated cost savings are reduced to 1.2 Meuro. In conclusion: the application of materials clearance in NPP decommissioning lessons learnt to the NPP residual material management is an interesting management option. This practice is currently going on in Spanish NPP and, in a preliminary view, is consistent with the new MARSAME Draft. An interesting parameter is the cost of 1 m3 of recyclable scrap. The above estimates are very project specific because in the segregation process other residual materials were involved. If the effect of this other materials is removed the estimated Unit Cost were in this project around 1700 euro/m{sup 3}, this figure is clearly below the above VLLW disposal cost of 2600 euro. In a future project it appears feasible to descend to 839 euro/m{sup 3} and if it became routine values and is used in big Decommissioning projects, around 600 euro/m{sup 3} or below possibly could be achieved. A rough economical analysis permits to estimate a saving around 2000 US$ to 13000 US$ per cubic meter of steel scrap according the variability of materials and disposal costs. Many learnt lessons of this practice were used as a feed back in the planning of characterization activities for decommissioning a Spanish NPP and today are considered as a significant reference in our Decommissioning engineering approaches.

  5. Emergency department management of patients internally contaminated with radioactive material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  6. A knowledge continuity management program for the energy, infrastructure and knowledge systems center, Sandia National Laboratories.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2006-07-01

    A growing recognition exists in companies worldwide that, when employees leave, they take with them valuable knowledge that is difficult and expensive to recreate. The concern is now particularly acute as the large ''baby boomer'' generation is reaching retirement age. A new field of science, Knowledge Continuity Management (KCM), is designed to capture and catalog the acquired knowledge and wisdom from experience of these employees before they leave. The KCM concept is in the final stages of being adopted by the Energy, Infrastructure, and Knowledge Systems Center and a program is being applied that should produce significant annual cost savings. This report discusses how the Center can use KCM to mitigate knowledge loss from employee departures, including a concise description of a proposed plan tailored to the Center's specific needs and resources.

  7. UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email: Phone/Fax Name Email: Phone/Fax Name Email: Phone/Fax Name Email: Phone/Fax Return Via Mail To: U.S Department Of Energy ATTN: NMMSS Staff NA-73, GTN 1000 Independence Avenue, SW Washington, DC 20585-1290 Return Via Fax To: 301-903-1998 Return Via E-Mail To: NMMSS@nnsa.doe.gov

  8. Aging Management Guideline for commercial nuclear power plants: Motor control centers; Final report

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.; O`Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  9. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    Fuel Cell Technologies Publication and Product Library (EERE)

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  10. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    SciTech Connect (OSTI)

    Klebanoff, Lennie

    2007-09-01

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  11. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    SciTech Connect (OSTI)

    Singh, Nagendra; Tuttle, Mark A; Bhaduri, Budhendra L

    2015-01-01

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However, until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.

  12. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.

    2015-07-30

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less

  13. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    SciTech Connect (OSTI)

    Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.

    2015-07-30

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However, until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.

  14. High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecom Central Office and Large Data Center Applications

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet about high-efficiency, wideband, three-phase rectifiers and active rectifier management for ICT centers

  15. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    SciTech Connect (OSTI)

    Soloveichik, Grigorii

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of prospective organic liquid fuels was studied. During EFRC program various types of electrocatalysts, classes of fuels, and membranes have been investigated.

  16. Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177

    SciTech Connect (OSTI)

    Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (∼49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of written guidance to capture 'administrative and technical' knowledge (e.g., office instructions (OIs), generic communications (e.g., bulletins, generic letters, regulatory issue summary), standard review plans (SRPs), interim staff guidance (ISGs)); (5) use of mentoring strategies for experienced staff to train new staff members; (6) use of Microsoft SharePoint portals in capturing, transferring, and documenting knowledge for staff across the Division from Division management and administrative assistants to the project managers, inspectors, and technical reviewers; and (7) development and implementation of a Division KM Plan. A discussion and description of the successes and challenges of implementing these KM strategies at the NRC/SFST will be provided. (authors)

  17. Managing Category I and II Asbestos-Containing Materials During

    Energy Savers [EERE]

    Department of Energy Manager Helps Washington County Develop Energy Efficiency Projects Manager Helps Washington County Develop Energy Efficiency Projects August 11, 2010 - 1:01pm Addthis An Energy Department grant funded Autumn Salamack's new job as resource conservation manager for Kitsap County, Washington, and the energy efficient windows framed behind her. | Photo courtesy of Kitsap County, WA | An Energy Department grant funded Autumn Salamack's new job as resource conservation manager

  18. Young Investigator Program > Research > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Young Investigator Program In This Section YIA1 - Chen YIA2 - Rodríguez-Calero YIA3 - Rodriguez-López YIA4 - Hernández-Burgos YIA5 - Khurana YIA6 - Potash Young Investigator Program This program is designed to encourage Center postdocs and students to submit collaborative proposals for new research projects that advance the Center's overall programmatic goal of advancing the science of energy conversion and storage by understanding and exploiting fundamental properties of active

  19. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  20. Materials Down Select Decisions Made Within DOE’s Chemical Hydrogen Storage Center of Excellence

    Broader source: Energy.gov [DOE]

    Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen storage targets.

  1. Federal Energy Management Program technical assistance case study: Water conservation at the Denver Federal Center

    SciTech Connect (OSTI)

    1997-01-01

    As part of a national effort, Executive Order 12902 and the Energy Policy Act of 1992 mandated water conservation in all Federal facilities. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) was tasked with leading the effort providing the technical assistance needed to identify ways to comply with the order. To apply highly efficient water use technologies in the Federal sector, FEMP formed a partnership with DOE`s National Renewable Energy Laboratory (NREL); the General Services Administration (GSA); the Bureau of Reclamation; the Environmental Protection Agency (EPA); Denver Water, the local utility; and several manufacturers. The objectives of the partnership were: to improve energy and water efficiency in the Federal sector; to deploy US manufactured water technologies in the Federal sector; to reduce life-cycle cost and improve reliability of Federal installations; to establish a showcase site demonstrating technologies and operating practices of water conservation; to demonstrate effective government and industry partnerships. FEMP chose the 14-story Building 67 at the Denver Federal Center for the site of the water conservation project.

  2. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  3. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  4. Henry Kostalik > Researcher - 3M > Center Alumni > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Henry Kostalik Researcher - 3M hak27@cornell.edu Originally a member of the Coates Group, Henry received his PhD from Cornell in 2011. He is now working as a Sr. Research Specialist at 3M Corporate Research Laboratory

  5. Calendar of Research Meetings > News + Events > The Energy Materials Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Cornell News + Events In This Section EMC2 News Upcoming Events Calendar of Research Meetings Archived News RSS & Calender Feeds 2013-2014 Research Meetings To download a pdf listing of upcoming Center Research Meetings and Seminars click here

  6. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    ... and utilize their behavior and properties in new energy conversion and power-efficient energy technologies using low-dimensional materials, next-generation photovoltaics, ...

  7. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  8. Materials management in an internationally safeguarded fuels reprocessing plant

    SciTech Connect (OSTI)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  9. Microsoft Word - Final Nuclear Materials Management and Safeguards System Users Guide 2 4-3-13.docx

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management and Safeguards Users Guide National Nuclear Security Administration Office of Nuclear Materials Integration Office of Nuclear Materials Integration Nuclear Materials Management and Safeguards System (NMMSS) Users Guide-Rev. 2.0 Prepared by: Department of Energy National Nuclear Security Administration Nuclear Materials Integration - NA-73 April 2013 Xavier Ascanio Office of Nuclear Materials Integration Nuclear Materials Management and 73 NMMSS User Guide 2.0 April

  10. The Ohio State University Bioproducts Innovation Center Sustainable Materials Networking Event

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Bioenergy Technologies Office Deputy Director Dr. Valerie Reed addressed members of The Ohio State University Bioproducts Innovation Center on October 15, 2015, on the main campus of The Ohio State University. Dr. Reed spoke about important upcoming opportunities from the U.S. Department of Energy and the U.S. Department of Agriculture supporting the national bioeconomy.

  11. What Are the Best Materials to Separate a Xenon/Krypton Mixture? | Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome What Are the Best Materials to Separate a Xenon/Krypton Mixture? Previous Next List Simon, Cory M.; Mercado, Rocio; Schnell, Sondre; Smit, Berend; and Haranczyk, Maciej. What Are the Best Materials To Separate a Xenon/Krypton Mixture? Chem. Mater., 27, 4459-4475 (2015). DOI: 10.1021/acs.chemmater.5b01475 what are the best Abstract: Accelerating progress in the discovery and deployment of advanced nanoporous materials

  12. Biomimicry in metal-organic materials | Center for GasSeparationsRele...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimicry in metal-organic materials Previous Next List Muwei Zhang, Zhi-Yuan Gu, Mathieu Bosch, Zachary Perry, Hong-Cai Zhou, Coordination Chemistry Reviews, (2014) DOI: 10.1016...

  13. Manual for Nuclear Materials Management and Safeguards System Reporting and Data Submission

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-19

    The manual provides detailed instructions for documenting and reporting data submissions for nuclear materials transactions, inventories, and material balances to the Nuclear Materials Management and Safeguards System (NMMSS). Cancels DOE M 474.1-2. Canceled by DOE M 470.4-6.

  14. Michigan Technological Center for Nanostructured and Lightweight Materials in the Department of Chemical Engineering (Phase II)

    SciTech Connect (OSTI)

    Mullins, M.; Rogers, T.; King, J.; Holles, J.; Keith, J.; Heiden, P.; Cornilsen, B.; Allen, J.

    2009-12-10

    Summaries of the followings tasks are given in this report: Task 1 - Lightweight, Thermally Conductive Bipolar Plates for Improved Thermal Management in Fuel Cells; Task 2 - Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts; Task 3 - Hybrid inorganic/organic polymer nanocomposites; Task 4 - Carbonaceous Monolithic Electrodes for Fuel Cells and Rechargeable Batteries; and Task 5 - Movement and Freeze of Water in Fuel Cell Electrodes.

  15. Building America Solution Center Shows Builders How to Save Materials Costs While Saving Energy

    SciTech Connect (OSTI)

    Gilbride, Theresa L.

    2015-06-15

    This short article was prepared for the U.S. Department of Energy's Building America Update newsletter. The article identifies energy and cost-saving benefits of using advanced framing techniques in new construction identified by research teams working with the DOE's Building America program. The article also provides links to guides in the Building America Solution Center that give how-to instructions for builders who want to implement advanced framing construction. The newsletter is issued monthly and can be accessed at http://energy.gov/eere/buildings/building-america-update-newsletter

  16. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    SciTech Connect (OSTI)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  17. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    William D. Nix Professor Nix obtained his B.S. degree in Metallurgical Engineering from San Jose State College, and his M.S. and Ph.D. degrees in Metallurgical Engineering and Materials Science, respectively, from Stanford University. He joined the faculty at Stanford in 1963 and was appointed Professor in 1972. He was named the Lee Otterson Professor of Engineering at Stanford University in 1989 and served as Chairman of the Department of Materials Science and Engineering from 1991 to 1996. He

  18. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    SciTech Connect (OSTI)

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing technologies were added to the existing MMT platform: (1) air contamination (corrosion) sensors, (2) power monitoring, and (3) a wireless environmental sensing network. All three technologies are built on cost effective sensing solutions that increase the density of sensing points and enable high resolution mapping of DCs. The wireless sensing solution enables Air Conditioning Unit (ACU) control while the corrosion sensor enables air side economization and can quantify the risk of IT equipment failure due to air contamination. Validation data for six test sites demonstrate that leveraging MMT energy efficiency solutions combined with industry best practices results in an average of 20% reduction in cooling energy, without major infrastructure upgrades. As an illustration of the unique MMT capabilities, a data center infrastructure efficiency (DCIE) of 87% (industry best operation) was achieved. The technology is commercialized through IBM System and Technology Lab Services that offers MMT as a solution to improve DC energy efficiency. Estimation indicates that deploying MMT in existing DCs can results in an 8 billion kWh savings and projection indicates that constant adoption of MMT can results in obtainable savings of 44 billion kWh in 2035. Negotiations are under way with business partners to commercialize/license the ACU control technology and the new sensor solutions (corrosion and power sensing) to enable third party vendors and developers to leverage the energy efficiency solutions.

  19. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect (OSTI)

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  20. DOE - Office of Legacy Management -- Fernald Environmental Management

    Office of Legacy Management (LM)

    Project - 027 Fernald Environmental Management Project - 027 FUSRAP Considered Sites Site: Fernald Environmental Management Project (027) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Fernald Environmental Management Project (FEMP), formerly known as the Feed Materials Production Center, is located about 18 miles northwest of

  1. Optoelectronics of 2D Materials | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optoelectronics of 2D Materials November 25, 2014 at 4:30 PM/ 6-120 Xiaodong Xu University of Washington xiaodongXu-02 Abstract: Electronic valleys are extrema of Bloch energy bands in momentum space. Having multiple valleys gives the electron states pseudospin degrees of freedom in addition to their real spin. In this talk, I will discuss our experimental progress on the investigation of spins and pseudospins using atomically thin semiconductors, which are either single or bilayer group VI

  2. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Project Office Director Michael Nastasi (505) 667-7007 Co-Director Amit Misra (505) 667-9860 cmime@lanl.gov Resources Employment Opportunities News Related EFRC News - What are EFRCs? - Another LANL EFRC - Materials at Extremes EFRCs Upcoming Events Scientific Hypotheses Absorption and recombination of point and line defects at interfaces Hypotheses: The atomic structure of the interface controls the absorption, emission, storage and annihilation of defects at the interface. Misfit

  3. Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993

    SciTech Connect (OSTI)

    Martin, D.R.

    1994-02-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

  4. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect (OSTI)

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  5. GUIDELINES FOR IMPLEMENTATION OF AN ADVANCED OUTAGE CONTROL CENTER TO IMPROVE OUTAGE COORDINATION, PROBLEM RESOLUTION, AND OUTAGE RISK MANAGEMENT

    SciTech Connect (OSTI)

    Germain, Shawn St; Farris, Ronald; Whaley, April M; Medema, Heather; Gertman, David

    2014-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Managing NPP outages is a complex and difficult task due to the large number of maintenance and repair activities that are accomplished in a short period of time. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information, and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status, and periodic briefings in the OCC. It is a difficult task to maintain current the information related to outage progress and discovered conditions. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across, and out of the OCC. The use of these technologies will allow information to be shared electronically, providing greater amounts of real-time information to the decision makers and allowing OCC coordinators to meet with supporting staff remotely. Passively monitoring status electronically through advances in the areas of mobile worker technologies, computer-based procedures, and automated work packages will reduce the current reliance on manually reporting progress. The use of these technologies will also improve the knowledge capture and management capabilities of the organization. The purpose of this research is to improve management of NPP outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.

  6. A Study on Optimized Management Options for the Wolsong Low- and Intermediate - Level Waste Disposal Center in Korea - 13479

    SciTech Connect (OSTI)

    Park, JooWan; Kim, DongSun; Choi, DongEun [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)] [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)

    2013-07-01

    The safe and effective management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Currently, for permanent disposal of low- and intermediate-level waste (LILW), the Wolsong LILW Disposal Center (WLDC) is under construction. It will accommodate a total of 800,000 drums at the final stage after stepwise expansion. As an implementing strategy for cost-effective development of the WLDC, various disposal options suitable for waste classification schemes would be considered. It is also needed an optimized management of the WLDC by taking a countermeasure of volume reduction treatment. In this study, various management options to be applied to each waste class are analyzed in terms of its inventory and disposal cost. For the volume reduction and stabilization of waste, the vitrification and plasma melting methods are considered for combustible and incombustible waste, respectively. (authors)

  7. V-177: VMware vCenter Chargeback Manager File Upload Handling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apache modproxymodrewrite Bug Lets Remote Users Access Internal Servers U-047: Siemens Automation License Manager Bugs Let Remote Users Deny Service or Execute Arbitrary Code...

  8. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  9. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Burns, Peter; MSA Staff

    2011-05-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  10. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    SciTech Connect (OSTI)

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  11. Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Emergency Operations Center training manual

    SciTech Connect (OSTI)

    Not Available

    1990-02-28

    The objective of this training is to: describe the responsibilities, resources, and goals of the Emergency Operations Center and be able to evaluate and interpret this information to best direct and allocate emergency, plant, and other resources to protect life and the Paducah Gaseous Diffusion Plant.

  12. Industrial Assessment Center Program Helps Veterans Learn Valuable Energy Management Skills

    Broader source: Energy.gov [DOE]

    U.S. soldiers are participating in an Energy Department supported program that provides hands-on education for #engineering #jobs. The Industrial Assessment Center (IAC) program, is open to all engineering students at participating colleges and universities, but many veterans find that they can use the program to further develop many skills they obtained through their service.

  13. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    SciTech Connect (OSTI)

    Bowers, John; CEEM Staff

    2011-05-01

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  14. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

    2011-11-02

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  15. Implementation of Information Management System for Radiation Safety of Personnel at the Russian Northwest Center for Radioactive Waste Management 'SevRAO' - 13131

    SciTech Connect (OSTI)

    Chizhov, K.; Simakov, A.; Seregin, V.; Kudrin, I.; Shandala, N.; Tsovyanov, A.; Kryuchkov, V. [Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, RF Ministry of Health and Social Development. 46, Zhivopisnaya St., Moscow, 123182 (Russian Federation)] [Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, RF Ministry of Health and Social Development. 46, Zhivopisnaya St., Moscow, 123182 (Russian Federation); Krasnoschekov, A.; Kosnikov, A. [Northwest Center for Radioactive Waste Management 'SevRAO' - a branch of the Federal State Unitary Enterprise 'Enterprise for Radioactive Waste Management' 'RosRAO' 183017, Murmansk, Lobova st., 100 (Russian Federation)] [Northwest Center for Radioactive Waste Management 'SevRAO' - a branch of the Federal State Unitary Enterprise 'Enterprise for Radioactive Waste Management' 'RosRAO' 183017, Murmansk, Lobova st., 100 (Russian Federation); Kemsky, I. [Regional management - 120 of the Federal Medical-Biological Agency, 184682, Snezhnogorsk, Valentina Biryukova St., 5/1 (Russian Federation)] [Regional management - 120 of the Federal Medical-Biological Agency, 184682, Snezhnogorsk, Valentina Biryukova St., 5/1 (Russian Federation); Sneve, M. [Norwegian Radiation Protection Authority, Postboks 55, 1332 Oesteraas (Norway)] [Norwegian Radiation Protection Authority, Postboks 55, 1332 Oesteraas (Norway)

    2013-07-01

    The report is an overview of the information-analytical system designed to assure radiation safety of workers. The system was implemented in the Northwest Radioactive Waste Management Center 'SevRAO' (which is a branch of the Federal State Unitary Enterprise 'Radioactive Waste Management Enterprise RosRAO'). The center is located in the Northwest Russia. In respect to 'SevRAO', the Federal Medical-Biological Agency is the regulatory body, which deals with issues of radiation control. The main document to regulate radiation control is 'Reference levels of radiation factors in radioactive wastes management center'. This document contains about 250 parameters. We have developed a software tool to simplify control of these parameters. The software includes: input interface, the database, dose calculating module and analytical block. Input interface is used to enter radiation environment data. Dose calculating module calculates the dose on the route. Analytical block optimizes and analyzes radiation situation maps. Much attention is paid to the GUI and graphical representation of results. The operator can enter the route at the industrial site or watch the fluctuations of the dose rate field on the map. Most of the results are presented in a visual form. Here we present some analytical tasks, such as comparison of the dose rate in some point with control levels at this point, to be solved for the purpose of radiation safety control. The program helps to identify points making the largest contribution to the collective dose of the personnel. The tool can automatically calculate the route with the lowest dose, compare and choose the best route. The program uses several options to visualize the radiation environment at the industrial site. This system will be useful for radiation monitoring services during the operation, planning of works and development of scenarios. The paper presents some applications of this system on real data over three years - from March 2009 to February 2012. (authors)

  16. Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

  17. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Geophysical Experiences Materials Design Calendar NSEC Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission...

  18. EIS-0220: Interim Management of Nuclear Materials at the Savannah River Site

    Broader source: Energy.gov [DOE]

    This environmental impact statement assesses the potential environmental impacts of actions necessary to manage nuclear materials at the Savannah River Site (SRS) in Aiken, South Carolina, until decisions on their ultimate disposition are made and implemented. The Department of Energy has decided to initiate actions which will stabilize certain of the SRS materials that represent environment, safety and health vulnerabilities in their current storage condition or which may represent a vulnerability within the next 10 years.

  19. Commission. The Nuclear Materials Management and Safeguards System (NMMSS) 2014 Annual Users

    National Nuclear Security Administration (NNSA)

    April 2014 NMMSS News is sponsored by the Department of Energy and the Nuclear Regulatory Commission. The Nuclear Materials Management and Safeguards System (NMMSS) 2014 Annual Users Training Meeting will be held May 12-15, 2014, in Denver, Colorado. NMMSS is the U.S. Government's official information system containing current and historical accounting data and other related nuclear material information collected from both government and commercial nuclear facilities. The data serve a critical

  20. Development of Improved Graphical Displays for an Advanced Outage Control Center, Employing Human Factors Principles for Outage Schedule Management

    SciTech Connect (OSTI)

    St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David

    2015-09-01

    The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications; Provide real-time requirements monitoring; Maximize their collective situational awareness to improve decision-making; and Leverage macro data to better support resource allocation. INL has partnered with several commercial NPP utilities to develop a number of advanced outage management technologies. These outage management technologies have focused on both collaborative technologies for control centers and developing mobile technologies for NPP field workers. This report describes recent efforts made in developing a suite of outage technologies to support more effective schedule management. Currently, a master outage schedule is created months in advance using the plant’s existing scheduling software (e.g., Primavera P6). Typically, during the outage, the latest version of the schedule is printed at the beginning of each shift. INL and its partners are developing technologies that will have capabilities such as Automatic Schedule Updating, Automatic Pending Support Notifications, and the ability to allocate and schedule outage support task resources on a sub-hour basis (e.g., outage Micro-Scheduling). The remaining sections of this report describe in more detail the scheduling challenges that occur during outages, how the outage scheduling technologies INL is developing helps address those challenges, and the latest developments on this task (e.g., work accomplished to date and the path forward)

  1. Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.

    SciTech Connect (OSTI)

    Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L.

    2010-01-01

    Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

  2. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Alex Zunger; Tumas, Bill; CID Staff

    2011-05-01

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  3. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  4. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Allen, Todd; CMSNF Staff

    2011-05-01

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  5. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2011-11-02

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  6. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  7. Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V

    SciTech Connect (OSTI)

    Takeuchi, Esther Sans; Takeuchi, Kenneth James; Marschilok, Amy Catherine

    2013-07-26

    Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

  8. Notice of Intent to Revise DOE O 460.2A, Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  9. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    SciTech Connect (OSTI)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning.

  10. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management. Part 1

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management.

  11. Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"

    SciTech Connect (OSTI)

    2009-02-01

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our findings and conclusions based on our audit objectives. The audit included tests of controls and compliance with laws and regulations related to managing the Department-owned nuclear materials provided to non-Departmental domestic licensees. Because our review was limited it would not necessarily have disclosed all internal control deficiencies that may have existed at the time of our audit. We examined the establishment of performance measures in accordance with Government Performance and Results Act of 1993, as they related to the audit objective. We found that the Department had established performance measures related to removing or disposing of nuclear materials and radiological sources around the world. We utilized computer generated data during our audit and performed procedures to validate the reliability of the information as necessary to satisfy our audit objective. As noted in the report, we questioned the reliability of the NMMSS data.

  12. Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division

    Office of Legacy Management (LM)

    AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly

  13. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  14. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Michael Nastasi; CMIME Staff

    2011-05-01

    'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  15. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff

    2011-11-03

    'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  16. Data center thermal management

    DOE Patents [OSTI]

    Hamann, Hendrik F.; Li, Hongfei

    2016-02-09

    Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.

  17. Proactive Management of Materials Degradation - A Review of Principles and Programs

    SciTech Connect (OSTI)

    Bond, Leonard J.; Doctor, Steven R.; Taylor, Theodore T.

    2008-08-28

    The U.S. Nuclear Regulatory Commission (NRC) has undertaken a program to lay the technical foundation for defining proactive actions so that future degradation of materials in light water reactors (LWRs) is limited and, thereby, does not diminish either the integrity of important LWR components or the safety of operating plants. This technical letter report was prepared by staff at Pacific Northwest National Laboratory in support of the NRC Proactive Management of Materials Degradation (PMMD) program and relies heavily on work that was completed by Dr. Joseph Muscara and documented in NUREG/CR-6923. This report concisely explains the basic principles of PMMD and its relationship to prognostics, provides a review of programs related to PMMD being conducted worldwide, and provides an assessment of the technical gaps in PMMD and prognostics that need to be addressed. This technical letter report is timely because the majority of the U.S. reactor fleet is applying for license renewal, and many plants are also applying for increases in power rating. Both of these changes could increase the likelihood of materials degradation and underline, therefore, the interest in proactive management in the future.

  18. Potential for Data Center Efficiency Improvements | Department...

    Office of Environmental Management (EM)

    Data Center Efficiency Improvements Potential for Data Center Efficiency Improvements Document offers an overview of the Federal Energy Management Program's data center activities. ...

  19. Online Learning Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Online Learning Center Online Learning Center Online Learning Center Whether you're looking to discover new learning opportunities, better manage your career, request external ...

  20. APS Conference Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines intellectual stimulation with natural beauty. The Conference Center is within walking distance of the Argonne Guest House, a full-service, professionally-managed hotel and...

  1. EFRC Management Reference Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC management reference document Energy Frontier Research Centers Acknowledgments of Support (v.1, October 2009) Office of Basic Energy Sciences Office of Science US Department of Energy How to Acknowledge Basic Energy Sciences-Energy Frontier Research Center (BES-EFRC) funding in papers, presentations, and other materials: For a publication on work supported wholly under your EFRC, the acknowledgement should at a minimum state that "This material is based upon work supported as part of

  2. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    SciTech Connect (OSTI)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  3. Material and energy recovery in integrated waste management systems: Project overview and main results

    SciTech Connect (OSTI)

    Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Saccani, Cesare

    2011-09-15

    Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

  4. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center The U.S. Department of Energy's (DOE) Office of Enterprise Assessments (EA) provides expert evaluations of management performance in safety, security and other areas by seasoned experts who are independent of line management. Information related to enforcement, safety, security, emergency management and cyber performance management is made available to the public in the EA Information Center. Enforcement Info Center The Department's Enforcement Office conducts

  5. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  6. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  7. Facilities and Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Argonne Tandem Linac Accelerator System Argonne-Northwestern Solar Energy Research Center Center for Nanoscale Materials Facilities & Centers Argonne's...

  8. The Ohio State University Bioproducts Innovation Center Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio State University Bioproducts Innovation Center Sustainable Materials Networking Event The Ohio State University Bioproducts Innovation Center Sustainable Materials Networking...

  9. Annual report: Purchasing and Materials Management Organization, Sandia National Laboratories, fiscal year 1992

    SciTech Connect (OSTI)

    Zaeh, R.A.

    1993-04-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.

  10. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  11. Extreme Environments (EFree) Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extreme Environments (EFree ) Center LLNL Co-PI: Jonathon Crowhurst e-mail bio Novel materials for energy applications Ultrafast reflectivity measurements under high pressure...

  12. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  13. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  14. RECOVERY ACT: DYNAMIC ENERGY CONSUMPTION MANAGEMENT OF ROUTING TELECOM AND DATA CENTERS THROUGH REAL-TIME OPTIMAL CONTROL (RTOC): Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Ron Moon

    2011-06-30

    This final scientific report documents the Industrial Technology Program (ITP) Stage 2 Concept Development effort on Data Center Energy Reduction and Management Through Real-Time Optimal Control (RTOC). Society is becoming increasingly dependent on information technology systems, driving exponential growth in demand for data center processing and an insatiable appetite for energy. David Raths noted, 'A 50,000-square-foot data center uses approximately 4 megawatts of power, or the equivalent of 57 barrels of oil a day1.' The problem has become so severe that in some cases, users are giving up raw performance for a better balance between performance and energy efficiency. Historically, power systems for data centers were crudely sized to meet maximum demand. Since many servers operate at 60%-90% of maximum power while only utilizing an average of 5% to 15% of their capability, there are huge inefficiencies in the consumption and delivery of power in these data centers. The goal of the 'Recovery Act: Decreasing Data Center Energy Use through Network and Infrastructure Control' is to develop a state of the art approach for autonomously and intelligently reducing and managing data center power through real-time optimal control. Advances in microelectronics and software are enabling the opportunity to realize significant data center power savings through the implementation of autonomous power management control algorithms. The first step to realizing these savings was addressed in this study through the successful creation of a flexible and scalable mathematical model (equation) for data center behavior and the formulation of an acceptable low technical risk market introduction strategy leveraging commercial hardware and software familiar to the data center market. Follow-on Stage 3 Concept Development efforts include predictive modeling and simulation of algorithm performance, prototype demonstrations with representative data center equipment to verify requisite performance and continued commercial partnering agreement formation to ensure uninterrupted development, and deployment of the real-time optimal control algorithm. As a software implementable technique for reducing power consumption, the RTOC has two very desirable traits supporting rapid prototyping and ultimately widespread dissemination. First, very little capital is required for implementation. No major infrastructure modifications are required and there is no need to purchase expensive capital equipment. Second, the RTOC can be rolled out incrementally. Therefore, the effectiveness can be proven without a large scale initial roll out. Through the use of the Impact Projections Model provided by the DOE, monetary savings in excess of $100M in 2020 and billions by 2040 are predicted. In terms of energy savings, the model predicts a primary energy displacement of 260 trillion BTUs (33 trillion kWh), or a 50% reduction in server power consumption. The model also predicts a corresponding reduction of pollutants such as SO2 and NOx in excess of 100,000 metric tonnes assuming the RTOC is fully deployed. While additional development and prototyping is required to validate these predictions, the relative low cost and ease of implementation compared to large capital projects makes it an ideal candidate for further investigation.

  15. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1--October 31, 1998

    SciTech Connect (OSTI)

    1998-11-01

    This paper describes activities of the Center under the following topical sections: Electronic resource library; Environmental restoration and protection; Health and safety; Waste management; Communication program; Education program; Training; Analytical development; Materials science; Plutonium processing and handling; and Storage.

  16. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    SciTech Connect (OSTI)

    Jesse Schrieber

    2008-07-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

  17. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    SciTech Connect (OSTI)

    Jesse Schreiber

    2008-03-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet Americas nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in green technology.

  18. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  19. NASA's Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Revised) (Fact Sheet), Federal Energy Management Program (FEMP)

    Energy Savers [EERE]

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is located in Huntsville, Alabama, adjacent to Redstone Arsenal. MSFC has over 4.5 million square feet of building space occupied by 7,000 personnel, and consumes approximately 240 million gallons of potable water annually, supplied through the City of Huntsville. MSFC has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. In 2005,

  20. Benefits and costs of load management: a technical assistance and resource material handbook

    SciTech Connect (OSTI)

    Mueller, Ronald; Ackerman, Gary; Lau, Ronald; Patmore, James; Ma, Fred; Sechan, Neil; Schoor, Alan; Simon, Lois; Bleiweis, Bruce; Lloyd, Kevin

    1980-06-01

    This handbook will assist state regulatory authorities and electric utilities in complying with the Load Management Standard of the Public Utility Regulatory Policies Act of 1978. The handbook has two major sections. The first discusses load-management techniques in terms of equipment, customer applications, combinations of techniques, etc. Key steps for evaluating the costs and benefits of load management options also are presented. These steps are intended to sequentially eliminate ineffective load-management options as the cost-benefit calculation becomes more detailed. The second section includes up-to-date information on available load-management technologies, models for utility costing, load-management data transfer, prescreening of load-management options, and the load-management literature.

  1. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    SciTech Connect (OSTI)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  2. German Aerospace Center DLR | Open Energy Information

    Open Energy Info (EERE)

    Aerospace Center DLR Jump to: navigation, search Name: German Aerospace Center (DLR) Place: Stuttgart, Germany Zip: 70569 Product: Stuttgart-based, agency that manages the...

  3. Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutron scattering of deuterated block copolymers demonstrates how an applied electric field (left) alters structure and performance Energy filtered TEM of P3HT and P3HT-b-PEO...

  4. Work with Us | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Us We are eager to pursue materials science research with partners in industry, universities, and other organizations. Contact Us Photo of Nancy Haegel Nancy Haegel Center Director, Materials Science Center Email | 303-384-6548 For lead researcher contacts, see our research areas. To find research group managers or specific researchers, see our listing of research staff. Interested in Joining Our Team? Find an opportunity: Job | Internship | Post-doc Plan Your Visit Map to NREL Golden,

  5. About Us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    understanding of how advanced thermoelectric materials function and the design and synthesis of such materials. Focus The Center for Revolutionary Materials for Solid State...

  6. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Thackeray, Michael; CEES Staff

    2011-05-01

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  7. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

    2011-11-02

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  8. Application for managing model-based material properties for simulation-based engineering

    DOE Patents [OSTI]

    Hoffman, Edward L.

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  9. Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management

    SciTech Connect (OSTI)

    Shawn St. Germain; Ronald Farris; Heather Medeman

    2013-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S. will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

  10. Connectivity to National Atmospheric Release Advisory Center (NARAC)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-11

    To establish requirements for connectivity with the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory for all DOE and NNSA sites and facilities with potential for hazardous materials releases at levels that require emergency response. The requirements of this Notice have been incorporated into DOE O 151.1C, Comprehensive Emergency Management System, dated 11-2-05. No cancellations.

  11. Implementation Guide for Use with DOE O 460.2 Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-11-15

    The purpose of this guide is to assist those responsible for transporting and packaging Department materials, and to provide an understanding of Department policies on activities which supplement regulatory requirements. Does not cancel/supersede other directives.

  12. Categorical Exclusion Determinations: Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consolidated Business Service Center Categorical Exclusion Determinations: Environmental Management Consolidated Business Service Center Categorical Exclusion Determinations issued ...

  13. Data Center Energy Efficiency Measurement Assesment Kit Guide and Specification

    Broader source: Energy.gov [DOE]

    Guide describes the Federal Energy Management Program Data Center Energy Efficiency Measurement Assesment Kit and Specifications.

  14. DOE Order Self Study Modules - DOE O 460.1C Packaging and Transportation Safety and DOE O 460.2A Departmental Materials Transportation and Packaging Management

    Office of Environmental Management (EM)

    60.1C PACKAGING AND TRANSPORTATION SAFETY DOE O 460.2A DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT DOE O 460.1C and 460.2A Familiar Level June 2011 1 DOE O 460.1C PACKAGING AND TRANSPORTATION SAFETY DOE O 460.2A DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources, you will be able to perform the following: 1.

  15. Wireless Sensors Improve Data Center Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors Improve Data Center Efficiency Wireless Sensors Improve Data Center Efficiency Case study bulletin describes how to improve data center energy efficiency for wireless sensors, and how to use that information to manage the data center. PDF icon wireless_sensor.pdf More Documents & Publications Data Center Airflow Management Retrofit Data Center Airflow Management Retrofit September 2010 Data Center Energy Efficiency Measurement Assesment Kit Guide and Specification

  16. Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling

    SciTech Connect (OSTI)

    McDowell, David; Deo, Chaitanya; Zhu, Ting; Wang, Yan

    2015-10-21

    Understanding and improving microstructural mechanical stability in metals and alloys is central to the development of high strength and high ductility materials for cladding and cores structures in advanced fast reactors. Design and enhancement of radiation-induced damage tolerant alloys are facilitated by better understanding the connection of various unit processes to collective responses in a multiscale model chain, including: dislocation nucleation, absorption and desorption at interfaces; vacancy production, radiation-induced segregation of Cr and Ni at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels; investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S); time evolution of swelling (cluster growth) phenomena of irradiated materials; and energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip.

  17. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center of...

  18. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama Birmingham at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  19. Karen Nunez, Procedures Center Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the accelerator based on their knowledge and work they do. I get the benefit of learning a bit about these different perspectives while recording the necessary...

  20. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center EM Site Manager Reflects on Field Office's Formative Year, Looks to Future EM Site Manager Reflects on Field Office's Formative Year, Looks to Future EM Los Alamos Field Office Manager Douglas E. Hintze recently spoke with EM Update about the launch of EM's newest site office and its challenges and accomplishments. Read more Los Alamos Demolition Work Progresses Toward Goal of Completing Cleanup Los Alamos Demolition Work Progresses Toward Goal of Completing Cleanup

  1. Center for Functional Nanomaterials

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  2. 2013 Annual Planning Summary for the Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management Consolidated Business Center 2013 Annual Planning Summary for the Environmental Management Consolidated Business Center The ongoing and projected...

  3. Implementation of the National Incident Management System (NIMS)/Incident Command System (ICS) in the Federal Radiological Monitoring and Assessment Center(FRMAC) - Emergency Phase

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-04-01

    Homeland Security Presidential Directive HSPD-5 requires all federal departments and agencies to adopt a National Incident Management System (NIMS)/Incident Command System (ICS) and use it in their individual domestic incident management and emergency prevention, preparedness, response, recovery, and mitigation programs and activities, as well as in support of those actions taken to assist state and local entities. This system provides a consistent nationwide template to enable federal, state, local, and tribal governments, private-sector, and nongovernmental organizations to work together effectively and efficiently to prepare for, prevent, respond to, and recover from domestic incidents, regardless of cause, size, or complexity, including acts of catastrophic terrorism. This document identifies the operational concepts of the Federal Radiological Monitoring and Assessment Center's (FRMAC) implementation of the NIMS/ICS response structure under the National Response Plan (NRP). The construct identified here defines the basic response template to be tailored to the incident-specific response requirements. FRMAC's mission to facilitate interagency environmental data management, monitoring, sampling, analysis, and assessment and link this information to the planning and decision staff clearly places the FRMAC in the Planning Section. FRMAC is not a mitigating resource for radiological contamination but is present to conduct radiological impact assessment for public dose avoidance. Field monitoring is a fact-finding mission to support this effort directly. Decisions based on the assessed data will drive public protection and operational requirements. This organizational structure under NIMS is focused by the mission responsibilities and interface requirements following the premise to provide emergency responders with a flexible yet standardized structure for incident response activities. The coordination responsibilities outlined in the NRP are based on the NIMS/ICS construct and Unified Command (UC) for management of a domestic incident. The NRP Nuclear/Radiological Incident Annex (NUC) further provides requirements and protocols for coordinating federal government capabilities to respond to nuclear/radiological Incidents of National Significance (INS) and other radiological incidents. When a FRMAC is established, it operates under the parameters of NIMS as defined in the NRP. FRMAC and its operations have been modified to reflect NIMS/ICS concepts and principles and to facilitate working in a Unified Command structure. FRMAC is established at or near the scene of the incident to coordinate radiological monitoring and assessment and is established in coordination with the U.S. Department of Homeland Security (DHS); the coordinating agency; other federal agencies; and state, local, and tribal authorities. However, regardless of the coordinating agency designation, U.S. Department of Energy (DOE) coordinates radiological monitoring and assessment activities for the initial phases of the offsite federal incident response through the Radiological Assistance Program (RAP) and FRMAC assets. Monitoring and assessment data are managed by FRMAC in an accountable, secure, and retrievable format. Monitoring data interpretations, including exposure rate contours, dose projections, and any requested radiological assessments are to be provided to the DHS; to the coordinating agency; and to state, local, and tribal government agencies.

  4. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:www.nnsa.energy.govaboutusouroperationsmanagementandbudget

  5. Contact us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact us Home Director Donald T Morelli Professor of Materials Science and Director, MSUDOE Energy Frontier Research Center Department of Chemical Engineering & Materials...

  6. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24

  7. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  8. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  9. <...

  10. Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Project Management MaRIE is the experimental facility needed to control the time-dependent properties of materials for national security science missions. It ...

  11. Energy Security Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Security Center Energy Security Center Developing new ideas for reliable, secure, and sustainable carbon neutral energy solutions for the nation-the portal to LANL's diverse energy security research enterprise. Contact Leader Steven Buelow (505) 663 5629 Email Program Administrator Jutta Kayser (505) 663-5649 Email Research focus areas Materials and concepts for clean energy Science for renewable energy sources Superconducting cables Energy storage Fuel cells Mitigating impacts of global

  12. American Recovery and Reinvestment Act Federal Energy Management Program Technical Assistance Project 184 U.S. Customs and Border Protection Data Center, Springfield, Virginia

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-09-30

    This report documents the findings of an on-site energy audit of the U.S. Customs and Border Protection (CBP) Data Center in Springfield, Virginia.

  13. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:nnsa.energy.govaboutusouroperationsmanagementandbudget

    P...

  14. Single-Center Experience and 1-Year Follow-up Results of 'Sandwich Technique' in the Management of Common Iliac Artery Aneurysms During EVAR

    SciTech Connect (OSTI)

    Ricci, Carmelo; Ceccherini, Claudio Cini, Marco; Vigni, Francesco; Leonini, Sara; Tommasino, Giulio; Muzzi, Luigi; Tucci, Enrico; Benvenuti, Antonio; Neri, Eugenio

    2012-10-15

    Purpose: Abdominal aortic aneurysm (AAA) accompanied by common iliac artery (CIA) aneurysms requires a more demanding procedure owing to the difficulties in obtaining an adequate distal landing zone for the stent-graft limb(s), a potential site of endoleak. The 'sandwich technique' is a procedure to increase EVAR feasibility in the setting of adverse or challenging CIA anatomy. Its main advantages include no restrictions in terms of CIA diameter or length or internal iliac artery (IIA) diameter, no need to wait for a specific stent-graft. Our purpose is to describe our single-center experience and one year follow-up results of this new procedure. Materials and Methods: From April 2009 to June 2010, the sandwich technique was performed in our institution in 7 patients treated for AAA and unilateral CIA aneurysms (n. 5) or bilateral CIA aneurysms (n. 2). Inclusion criteria were the presence of unilateral or bilateral CIA aneurysm (independently from its diameter), IIA artery measuring up to 9 mm in its maximum diameter, not dilatation of IIA and EIA. Results: The mean follow-up length was 15 months (range: 14-20 months). All stent-implanted iliac branches remained patent on 1 year follow-up and IIA flow was preserved. None of the patients had symptoms of pelvic ischemia. CT scan follow-up showed aneurysm shrinkage in five patients, without any sign of endoleaks in all cases. Conclusions: In selected cases, the 'sandwich technique' showed good outcomes confirming to be a safe and easy to perform way to overcome anatomical constraints and expanding the limits of EVAR.

  15. Y-12 History Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 History Center Y-12 History Center Located within the New Hope Center at Y-12, the History Center houses a fascinating collection of informational materials and historical...

  16. Energy Efficiency in Data Centers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Centers Energy Efficiency in Data Centers Energy Efficiency in Data Centers The Federal Energy Management Program (FEMP) encourages agencies and organizations to improve data center energy efficiency. To help them construct and maintain energy-efficient data centers, FEMP provides a variety of publications, tools, and training opportunities. Learn about the Potential for Data Center Efficiency Improvements in FEMP's data center program overview. Center of Expertise Logo for the Center of

  17. A HUMAN RELIABILITY-CENTERED APPROACH TO THE DEVELOPMENT OF JOB AIDS FOR REVIEWERS OF MEDICAL DEVICES THAT USE RADIOLOGICAL BYPRODUCT MATERIALS.

    SciTech Connect (OSTI)

    COOPER, S.E.; BROWN, W.S.; WREATHALL, J.

    2005-02-02

    The U.S. Nuclear Regulatory Commission (NRC) is engaged in an initiative to risk-inform the regulation of byproduct materials. Operating experience indicates that human actions play a dominant role in most of the activities involving byproduct materials, which are radioactive materials other than those used in nuclear power plants or in weapons production, primarily for medical or industrial purposes. The overall risk of these activities is strongly influenced by human performance. Hence, an improved understanding of human error, its causes and contexts, and human reliability analysis (HRA) is important in risk-informing the regulation of these activities. The development of the human performance job aids was undertaken by stages, with frequent interaction with the prospective users. First, potentially risk significant human actions were identified based on reviews of available risk studies for byproduct material applications and of descriptions of events for byproduct materials applications that involved potentially significant human actions. Applications from the medical and the industrial domains were sampled. Next, the specific needs of the expected users of the human performance-related capabilities were determined. To do this, NRC headquarters and region staff were interviewed to identify the types of activities (e.g., license reviews, inspections, event assessments) that need HRA support and the form in which such support might best be offered. Because the range of byproduct uses regulated by NRC is so broad, it was decided that initial development of knowledge and tools would be undertaken in the context of a specific use of byproduct material, which was selected in consultation with NRC staff. Based on needs of NRC staff and the human performance related characteristics of the context chosen, knowledge resources were then compiled to support consideration of human performance issues related to the regulation of byproduct materials. Finally, with information sources and an application context identified, a set of strawman job aids was developed, which was then presented to prospective users for critique and comment. Work is currently under way to develop training materials and refine the job aids in preparation for a pilot evaluation.

  18. Covered Product Category: Data Center Storage

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for data center storage, a product category covered by the ENERGY STAR program. Federal laws and requirements mandate that...

  19. Portsmouth Environmental Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PORTS EIC.jpg The Portsmouth Environmental Information Center (EIC) provides greater accessibility for residents interested in learning more about DOE's environmental management ...

  20. Potential for Data Center Efficiency Improvements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... August 1. http:www.analyticspress.comdatacenters.html 4 http:www.nrdc.orgenergyfilesdata-center-efficien- cy-assessment-IP.pdf FEDERAL ENERGY MANAGEMENT PROGRAM For more ...

  21. LANSCE | Lujan Center | Sample and Equipment Shipping Instructions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample Shipping Hazardous Nanoparticles Radioactive, Nuclear, Special Nuclear Materials Contacts Lujan Center Leader Aaron Couture (acting) 505.667.1730 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Charles Kelsey (acting) 505.667.8755 User Program Administration lujan-uo@lanl.gov Administrative Assistant Julie Quintana-Valdez 505.665.5390 Department of Energy, National Nuclear Security Administration

  22. ( Sample of Shipment Notice) Federal Records Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ( Sample of Shipment Notice) Federal Records Center ( Sample of Shipment Notice) Federal Records Center This document instructs on how to ship records to the Federal Records Center PDF icon ( Sample of Shipment Notice) Federal Records Center More Documents & Publications Correspondence Style Guide Records Management Handbook Records Management Handbook

  1. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  2. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  3. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  4. Transuranic (TRU) Waste Processing Center- Overview

    Broader source: Energy.gov [DOE]

    DOE established the TRU Waste Processing Center (TWPC) as a regional center for the management, treatment, packaging and shipment of DOE TRU waste legacy inventory. TWPC is also responsible for managing and treating Low Level and Mixed Low Level Waste generated at ORNL. TWPC is operated by Wastren Advantage, Inc. (WAI) under contract to the DOE's Oak Ridge Office.

  5. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoc - Savannah River National Lab ttt45@cornell.edu List Image Giang Vo Research Investigator - Dupont gdv8@cornell.edu List Image Deli Wang Professor - Huazhong University of ...

  6. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. * PDOS measurements performed on polycrystalline samples have identified the...

  7. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 - Toilets and Urinals (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  8. Electron Microscopy Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Electron Microscopy Center The Electron Microscopy Center Group (EMC) develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials challenges. EMC emphasizes three major areas: materials research, experimental technique and instrumentation development, and operation of unique and state-of-the-art instrumentation. The goals of EMC materials research are closely aligned with those of our user community.

  9. Amarillo National Resource Center for Plutonium 1999 plan

    SciTech Connect (OSTI)

    1999-01-30

    The purpose of the Amarillo National Resource Center for Plutonium is to serve the Texas Panhandle, the State of Texas and the US Department of Energy by: conducting scientific and technical research; advising decision makers; and providing information on nuclear weapons materials and related environment, safety, health, and nonproliferation issues while building academic excellence in science and technology. This paper describes the electronic resource library which provides the national archives of technical, policy, historical, and educational information on plutonium. Research projects related to the following topics are described: Environmental restoration and protection; Safety and health; Waste management; Education; Training; Instrumentation development; Materials science; Plutonium processing and handling; and Storage.

  10. Feed Materials Production Center. Final phase-in report volume 1 of 15 operations and maintenance, October 25, 1985--December 31, 1985

    SciTech Connect (OSTI)

    Britton, W.H.

    1986-01-17

    The basic purpose of the transition program in the operations area was to obtain a detailed understanding of the FMPC operations with emphasis on equipment and organization, Also considered in this evaluation were several extant conditions at FMPC which may have significant impact on initiatives adopted in the operations area. These conditions are as follows: capital expenditures over the last several years averaged less than 20% of what might be considered minimum to sustain such a facility in a good operating condition; the production load is ramping up placing greater demands on an old facility; the workforce is relatively inexperienced (68% with less than five (5) years) at FMPC; plans are in place to institute major upgrading of FMPC facilities; the RFP described the need for a major effort in the Environment, Safety and Health Area. Considering the above concerns, the transition program was focused in the following areas: Procedures - An inexperienced workforce operating in an atmosphere requiring rigid compliance with more rigorous environmental criteria necessitates clear, concise up-to-date procedures to enhance performance; Training - New equipment, new people and rigorous environmental constraints demand an aggressive, focused training program. Equipment - Site conditions are not conducive to reliable equipment performance. Specific knowledge of forecasted equipment performance is imperative to control the present and plan the future. Restoration - The massive planned expenditures must be well understood to ensure that the future production needs are satisfied and that priorities are aligned with need. Maintenance - Based on the site descriptions provided in the RFP, it was clear that the past maintenance practice has been reactive. The facility upgrade program, to be successful, must be complemented by an agressively managed maintenance program.

  11. Materials Characterization Center state-of-the-art report on corrosion data pertaining to metallic barriers for nuclear-waste repositories

    SciTech Connect (OSTI)

    Merz, M.D.

    1982-10-01

    A compilation of published corrosion data on metals that have been suggested as canisters and overpack materials is presented. The data were categorized according to the solutions used in testing and divided into two parts: high-ionic strength solutions (such as seawater and brine) and low-ionic-strength waters (such as basalt and tuff waters). This distinction was made primarily because of the general difference in aggressiveness of these solutions with respect to general corrosion. A considerable amount of data indicated that titanium alloys have acceptably low uniform corrosion rates in anticipated repository sites; the other possible corrosion failure modes for titanium alloys, such as stress corrosion cracking and delayed failure due to hydrogen, have not been sufficiently studied to make any similar conclusions about lifetime with respect to these particular degradation processes. Other data suggested that iron-base alloys are sufficiently resistant to corrosion in basalt and tuff waters, although the effects of radiation and radiation combined with elevated temperature have not been reported in enough detail to conclusively qualify iron-base alloys for any particular barrier thickness in regard to uniform corrosion rate. The effect of overpack size on corrosion rate has been given little attention. A review of long-term underground data indicated that temperature and accessibility to oxygen were too different for deep geologic repositories to make the underground corrosion data directly applicable. However, the characteristics of corrosion attack, statistical treatment of data, and kinetics of corrosion showed that corrosion proceeds in a systematic and predictable way.

  12. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3,072 Material Simulations in Joint Center for Artificial Photosynthesis (JCAP) PI: Frances A. Houle, Lawrence Berkeley National Laboratory Edison 3,072 LLNL MFE Supercomputing...

  13. Center for Energy Nanoscience at USC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics The Center for Energy Nanoscience (CEN) synthesizes a variety of semiconductor nanostructure materials to exploit their unique geometrical, electrical, and optical...

  14. Center for Electrochemical Energy Science | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their...

  15. Center for Inverse Design: Inverse Design Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Design Approach This page describes the inverse materials design methodology used by the Center for Inverse Design, which integrates and combines the following: (1) theory,...

  16. Carolinas Energy Career Center

    SciTech Connect (OSTI)

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: Development and Pilot of a New Advanced Welding Curriculum, Program Enhancement of Non-Destructive Examination (NDE) Technology, Student Support through implementation of a model targeted toward Energy and STEM Careers to support student learning, Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: Increased capacity to serve and train students in emerging energy industry careers; Developed new courses and curricula to support emerging energy industry careers; Established new training/laboratory resources; Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.

  17. Materials for Harsh Service Conditions:

    Energy Savers [EERE]

    Storage Center of Excellence | Department of Energy Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of Excellence Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of Excellence Technical report describing DOE's Chemical Hydrogen Storage Center of Excellence investigation into various hydrogen storage materials and progress towards meeting DOE's hydrogen storage targets. The report presents a review of the material status as

  18. Danforth Center Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Danforth Center Tour Danforth Center Tour As part of our Events & Topics in Bioenergy and the Environment series, we hosted a tour to the Donald Danforth Plant Science Center to...

  19. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    SciTech Connect (OSTI)

    1999-06-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  20. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  1. Northwest Region Clean Energy Application Center

    SciTech Connect (OSTI)

    Sjoding, David

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  2. ARM - External Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govExternal Data Center External Data Center Order Data Description of External Data Streams Data Viewers and Plots (selected data sets) XDC Documentation External Data Center The ...

  3. Centers | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Print Text Size: A A A FeedbackShare Page EFRC Map Centers ordered alphabetically by state and then by center name California Light-Material Interactions in Energy Conversion (LMI) Ralph Nuzzo, California Institute of Technology Center for Nanoscale Controls on Geologic CO2 (NCGC) Donald DePaolo, Lawrence Berkeley

  4. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center Congressional Testimony Testimony to Congress by various members of OE. Library Repository of reports and documents; fact sheets; presentations and other documentation from peer review events; and Federal Register notices. Educational Resources Educational material on the generation, transmission, and usage of electricity as well as how the electric grid works and how it needs to be modernized. Reporting Reporting to OE including Electric Disturbance Incidents and

  5. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alkemade, P.F.A.; Miro, H.; van Veldhoven, E.; Maas, D. J.; Smith, D. A.; Rack, P. D., ... Jo, J. Y.; Chen, P.; Sichel, R. J.; Baek, S. H.; Smith, R. T.; Balke, N.; Kalinin, S. V.; ...

  6. Iowa lab gets critical materials research center

    Broader source: Energy.gov [DOE]

    The DOE hub is set to be the largest R&D effort toward alleviating the global shortage of rare earth metals.

  7. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NIST), Gaithersburg, MD where I lead a project on Nanoparticle Assembly in Complex Fluids. Before joining NIST, I completed my Ph.D. in 2001 in Polymer Science and...

  8. News | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 6, 2013 Cause of LED Efficiency Droop Finally Revealed Nov 8, 2012 Umesh Mishra Receives Welker Award for Achievements in Energy Efficient Semiconductor Research Feb 10, 2012 ...

  9. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its start, it is clear to me the obvious advantages of becoming an active user, and I hope that you will too. The success of CNMS is strongly dependent on the cutting-edge...

  10. Organic Photovoltaics | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics As an overarching goal, the CEEM OPV group seeks to understand conjugated polymer and small molecule semiconductor blends that function as the active layer in solar cell devices. The effort brings together a cohesive and mutually complementary set of experts to understand what may appear at first sight to be unrelated phenomena. Indeed, the collective CEEM OPV effort very recently led to the design, processing, structural characterization, theoretical understanding and

  11. People | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Administration/Staff Name E-mail Address Telephone Title Allen, Jane jane [at] iee [dot] ucsb [dot] edu (805) 893-3488 Business Officer Auston, David auston [at] iee [dot] ucsb [dot] edu (805) 893-3376 Executive Director Bowers, John bowers [at] ece [dot] ucsb [dot] edu (805) 893-8447 Director Faculty/Researchers Name E-mail Address Telephone Group(s)* Bazan, Guillermo bazan [at] chem [dot] ucsb [dot] edu (805) 893-5538 OPV Bowers, John bowers [at] ece [dot] ucsb [dot] edu (805) 893-8447

  12. 2012 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 10.1021nl301642g Interconversion of Inverse Opals of Electrically Conducting Doped Titanium Oxides and Nitrides CV Subban, IC Smith, FJ DiSalvo Small, 8(18), pp 2824-2832, 2012 ...

  13. 2013 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano-structured ternary niobium titanium nitrides as durable non-carbon supports for ... Mesoporous titanium nitride supported Pt nanoparticles as high performance catalysts for ...

  14. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy for chemical analysis Organizers: Sergey Shilov and James Burgess (Bruker Optics) Local Contact: Brad Lokitz, ORNL Event overview: Join us to learn about Infrared and...

  15. Why Partnerships? > Partnerships > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by funding industry-university joint projects. New York State support of industry partnerships accelerates the technology development pipeline outlined by the DOE. Adapted from ...

  16. 2011 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Publications The rechargeable aluminum-ion battery N Jayaprakash, SK Das and LA Archer Chemical Communications, 47, pp 12610-12612, 2011 DOI: 10.1039C1CC15779E Atomic-resolution...

  17. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory in Oak Ridge, Tennessee. The annual user meeting combines oral presentations, poster sessions, workshops and tutorials into a compact program designed...

  18. Analytical Resources > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differential Electrochemical Mass Spectroscopy (DEMS) Electron Microscopy X-Ray Diffraction Analytical Resources Differential Electrochemical Mass Spectroscopy (DEMS) Electron...

  19. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Res. 47, 6426-6433 (2008). Jang, H. W., S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, D. A. Felker, ...

  20. 2014 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Theoretical Studies of Carbonyl-Based Organic Molecules for Energy Storage Applications: The Heteroatom and Substituent Effect K Hernndez-Burgos, SE Burkhardt, GG ...

  1. 2015 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films CR DeBlase, K Hernndez-Burgos, KE Silberstein, GG Rodrguez-Calero, RP Bisbey, HD Abrua, ...

  2. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may be required to access online publications. L. R. Baylor, W. L. Gardner, X. Yang, R. J. Kasica, M. A. Guillorn, B. Blalock, H. Cui, D. K. Hensley, S. Islam, D. H....

  3. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Good Solvent," Soft Matter 5 (9), 1897-1904 (2009). Arenholz, E.; van der Laan, G.; Yang, F.; Kemik, N.; Biegalski, M. D.; Christen, H. M.; Takamura, Y, "Magnetic Structure of...

  4. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meet various research needs. The chemical or physical exfoliation of graphite is a straightforward method to produce graphene with least synthesis effort, since it takes advantage...

  5. Center for Nanophase Materials Sciences (CNMS) - Macromolecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymerization: Extensive expertise in free radical and controlled radical (ATRP, NMP, RAFT) polymerizations. Ring Opening Polymerization: Expertise in the controlled ring-opening...

  6. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Technique to automatically measure electron beam diameter and astigmatism," J. Vac. Sci. Tech. B 24, 2956-2959 (2006). Choi, Y. R., P. D. Rack, S. J. Randolph, D. A. Smith, and D....

  7. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solid. Inelastic neutron scattering measurements of Fe1-xCoxSi alloys were combined with quantum mechanics based calculations to show why the alloys exhibit unusual softening as...

  8. Home > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst aging The Muller group helps determine aging mechanisms in fuel cell nanoparticle cata... A recipe for the future Prof. Darrell Schlom and his research group are cooking...

  9. Center for Nanophase Materials Sciences (CNMS) - Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    officio seat on the SAC. Proposal Review Committees (PRCs) Evaluation of General User (GU) proposals will be carried out by appropriately constituted Proposal Review Committees....

  10. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anions where capable of inducing cage formation. In a current user project (for Ken Jacobson, NIH), we are preparing polyamido(amine) (PAMAM) dendrimers for investigation as...

  11. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Zutic, "Semiconductor Spintronics," Acta Physica Slovaca, 57, 565-907 (342 pages) (2007). ... Zutic, I., J. Fabian, and S. C. Erwin, "Bipolar Spintronics: from Spin injection to ...

  12. Center for Nanophase Materials Sciences Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... overall theme of understanding and controlling the complexity of electronic, ionic, and molecular behavior at the nanoscale to enable the design of new functional nanomaterials. ...

  13. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 1-2, 2015. Instructions for preparing posters: Tabletop poster boards and adhesive Velcro tabs will be provided for mounting posters. You may bring your poster to the...

  14. Publications | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Zhang, Y., Bahk, J.-H., Lee, J., Birkel, C. S., Snedaker, M. L., Liu, D., Zeng, H., Moskovits, M., Shakouri, A. and Stucky, G. D. (2014), HOT CARRIER FILTERING IN SOLUTION PROCESSED HETEROSTRUCTURES: A PARADIGM FOR IMPROVING THERMOELECTRIC EFFICIENCY. Adv. Mater., 26: 2755-2761. [10.1002/adma.201304419] Huang, Ye; Wen, Wen; Mukherjee, Subhrangsu; Ade, Harald; Kramer, Edward J.; and Bazan, Guillermo C. High-Molecular-Weight Insulating Polymers Can Improve the Performance of Molecular

  15. The Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relationship between the probability of negative entropy producing states (i.e., violations of the second law of thermodynamics), the probability of positive entropy...

  16. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alcohol-free facility. The Guest House is a 3 floor, 47 room, 71 bed inn (23 rooms with King beds and 24 rooms with 2 ex-long double beds). All rooms have a mini fridge and...

  17. Upcoming Events | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Events Events Upcoming Events Past Events

  18. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The results of the user survey we conducted are presented in this issue. The UEC elections have just concluded, and our users community has elected a new committee to serve...

  19. 2010 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CV Subban, Q Zhou, A Hu, TE Moylan, FT Wagner and FJ DiSalvo Journal of the American Chemical Society, 132(49), pp 17531-17536, 2010 DOI: 10.1021ja1074163 Pt-Decorated PdCo@PdC...

  20. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.; Decker, S. .R; Bu, L. T.; Zhao, X. C.; McCabe, C.; Wohlert, J.; Bergenstrahle, M.; Brady, J. W.; Adney, W. S.; Himmel, M. E.; Crowley, M. F., ":The O-Glycosylated Linker from...

  1. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a cryo-ultra-microtome, to be transferred into the microscope while being held at liquid nitrogen temperatures. Plans are being made for a two day workshop on operating and...

  2. Center for Nanophase Materials Sciences (CNMS) - Microsocpy,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical composition in sample environment. 4-circle X-ray diffraction 4-circle plus translation stage, high temperature, in-plane thin film diffraction. Also texture,...

  3. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Lu, J. Bernholc, and B. Sumpter, "Electron Transport in Molecular Electronics Systems," J. Phys. Conf. Series 16, 283 (2005). V. V. Osipov, A. G. Petukhov, and V. N....

  4. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics, National Academy of Science of Ukraine, Kiev, Ukraine 8 Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE,...

  5. Center for Nanophase Materials Sciences (CNMS) - Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that limit the optimal electronic and optoelectronic properties of semiconductors. "Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in...

  6. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Newsletter 2010 Welcome Sean Smith CNMS Division Director Editor's Note: On August 1, the CNMS was pleased to welcome its new director, Sean Smith, who joined us from the...

  7. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solids, and thin films. Non-ambient options include controlled temperature and humidity cells, flow cells, and grazing-incidence SAXS for in-plane characterization of thin...

  8. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsletters People Contact Us Upcoming Events and Latest News Call For Proposals - Next Cycle Spring 2016 CNMS User Meeting - August 10-12, 2016 Career Opportunities Recent News:...

  9. Center for Nanophase Materials Sciences (CNMS) - Nanomaterials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of magnetic nanosystems. Additionally, support of classical atomistic and coarse-grained molecular dynamics methods as well as self-consistent field theoretic approaches are also...

  10. Center for Nanophase Materials Sciences (CNMS) - Microsocpy,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas environmental cell holder for conducting in-situ gas reactions at pressures to 1 atm. and temperatures up to 1000C. This new holder complements other specializedin-situ...

  11. Resources | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Simulation Techniques 1. MATLAB program for calculating drift mobilities of III-V compound semiconductors using the Rode iterative method. Click here to download Online...

  12. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Controllable Complex Oxide Heterointerface" - Zhiqun Lin, Georgia Institute of Technology "Crafting Functional Nanocrystals by Capitalizing on Nonlinear Block Copolymers...

  13. Center for Nanophase Materials Sciences (CNMS) - Instructions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forms. Use the links below to download each of the necessary forms. CNMS Proposal Form (LaTex version) - You must use the latest version from one of these links Neutron Scattering...

  14. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N.; Kalinin, S. V.; Rodriguez, B. J., "Probing Charge Screening Dynamics and Electrochemical Processes at the Solid-Liquid Interface with Electrochemical Force Microscopy,"...

  15. Center for Nanophase Materials Sciences (CNMS) - Nanomaterials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THEORY INSTITUTE (NTI): THEORY, MODELING & SIMULATION CAPABILITIES NTI Computational Cluster The NTI maintains a 12 teraflop Beowulf cluster in support of the capacity-level...

  16. Travel & Hotels | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time and hassle saved will be more than worth it. UC Santa Barbara is an easy 5 minute cab ride from the Santa Barbara Airport, see taxi information below. For Santa Barbara...

  17. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Reaction with Tin Anodes: Experiment and Theory," ... for High Avidity Microbial Capture," ... Layers of Proton Exchange Membrane Fuel Cells," J. Phys. Chem. ...

  18. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brankovic, S. R.; Strasser, P.; Mavrikakis, M., "Bifunctional Anode Catalysts for Direct Methanol Fuel Cells," Energy Environ. Sci. 5, 8335-8342 (2012). Ryckman, J. D.;...

  19. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  20. Bisfuel links - Research centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research centers http://bioenergy.asu.edu/" target="_blank">Center for Bioenergy and Photosynthesis

  1. Management options for implementing a basic and applied research program responsive to CS technology base needs. Task VIII. Review existing CS materials R and D programs

    SciTech Connect (OSTI)

    Not Available

    1980-02-28

    Possibilities for setting up a basic and applied research program that would be responsive to the Conservation and Solar energy base needs are considered with emphasis on the area of materials research. Several organizational arrangements for the implementation of this basic and applied research program are described and analyzed. The key functions of the system such as resources allocation, and program coordination and management follow from two fundamental characteristics: assignment of lead responsibility (CS and the Office of Energy Research, ER); and nature of the organizational chain-of-command. Three options are categorized in terms of these two characteristics and discussed in detail. The first option retains lead responsibility in ER, with CS personnel exercising sign-off authority and filling the coordination role. Option 2 places lead responsibility with CS program office management, and utilizes the existing chain-of-command, but adds a Basic and Applied Research Division to each program office. Option 3 also places lead responsibility with CS, but within a new Office of Basic and Applied Research, which would include a Research Coordinator to manage interactions with ER, and Research Managers for each CS program area. (MCW)

  2. Material and energy recovery in integrated waste management system - An Italian case study on the quality of MSW data

    SciTech Connect (OSTI)

    Bianchini, A.; Pellegrini, M.; Saccani, C.

    2011-09-15

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation was then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it.

  3. Office of Weapons Material Protection | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... Material Management and Minimization Nonproliferation Proliferation Detection Material ...

  4. Enterprise Assessments Targeted Review of the Safety System Management of the Secondary Confinement System and Power Distribution Safety System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility – December 2015

    Broader source: Energy.gov [DOE]

    Targeted Review of the Safety System Management of the Secondary Confinement System and Power Distribution Safety System at the Y-12 National Security Complex Highly Enriched Uranium Materials Facility

  5. Center for Inverse Design: Organization of the Center for Inverse Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization of the Center for Inverse Design This page shows the organizational management structure of the Center for Inverse Design, an Energy Frontier Research Center. It also describes the roles and responsibilities of the key staff within the Center for Inverse Design. Large blue equilateral triangle pointing up with a smaller purple equilateral triangle pointing down enclosed within the larger triangle that divides the larger triangle into three smaller blue triangles. The upper small

  6. Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: Retrospective physician surveys including chart reviews at numerous centers

    SciTech Connect (OSTI)

    Gossman, Michael S.; Wilkinson, Jeffrey D.; Mallick, Avishek

    2014-01-01

    In a 2-part study, we first examined the results of 71 surveyed physicians who provided responses on how they address the management of patients who maintained either a pacemaker or a defibrillator during radiation treatment. Second, a case review study is presented involving 112 medical records reviewed at 18 institutions to determine whether there was a change in the radiation prescription for the treatment of the target cancer, the method of radiation delivery, or the method of radiation image acquisition. Statistics are provided to illustrate the level of administrative policy; the level of communication between radiation oncologists and heart specialists; American Joint Committee on Cancer (AJCC) staging and classification; National Comprehensive Cancer Network (NCCN) guidelines; tumor site; patient's sex; patient's age; device type; manufacturer; live monitoring; and the reported decisions for planning, delivery, and imaging. This survey revealed that 37% of patient treatments were considered for some sort of change in this regard, whereas 59% of patients were treated without regard to these alternatives when available. Only 3% of all patients were identified with an observable change in the functionality of the device or patient status in comparison with 96% of patients with normal behavior and operating devices. Documented changes in the patient's medical record included 1 device exhibiting failure at 0.3-Gy dose, 1 device exhibiting increased sensor rate during dose delivery, 1 patient having an irregular heartbeat leading to device reprogramming, and 1 patient complained of twinging in the chest wall that resulted in a respiratory arrest. Although policies and procedures should directly involve the qualified medical physicist for technical supervision, their sufficient involvement was typically not requested by most respondents. No treatment options were denied to any patient based on AJCC staging, classification, or NCCN practice standards.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  17. Demonstration Cask Provided to Idaho Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive Waste Management Complex for many years with no identified future use before it was donated to the Idaho Science Center. Editorial Date June 23, 2009 By Bradley Bugger...

  18. CenterPoint Energy Sustainable Schools Program

    Broader source: Energy.gov [DOE]

    The Sustainable Schools Program focuses on energy savings through behavioral and operational improvements, and may be used along with CenterPoint Energy’s SCORE and Load Management programs. It...

  19. BLM Operations Center | Open Energy Information

    Open Energy Info (EERE)

    303-236-8857 ParentHolding Organization: Bureau of Land Management Website: www.blm.govnocsten.html Retrieved from "http:en.openei.orgwindex.php?titleBLMOperationsCenter...

  20. Savannah River Technology Center monthly report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This document contains many small reports from personnel at the technology center under the umbrella topics of reactors, tritium, separations, environment, waste management, and general engineering. Progress and accomplishments are given.

  1. Golden Reading Room: FOIA Requester Service Centers and Public Liaisons |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FOIA Requester Service Centers and Public Liaisons Golden Reading Room: FOIA Requester Service Centers and Public Liaisons U.S. Department of Energy http://energy.gov/management/foia-contacts

  2. Savannah River Technology Center. Monthly report, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report covers the progress and accomplishments made at the Savannah River Technology Center for the month of May 1993. Progress is reported for projects in the following areas: reactors, tritium, separations, environmental, waste management, and general. General projects are: an eight week tutorial of the Los Alamos National Laboratory developed Monte Carlo Neutron Photon (MCNP) code; development of materials and fabrication technologies for the spallation and tritium targets for the accelerator production of tritium; and a program to develop welding methods to repair stainless steel containing helium.

  3. Don Seo | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ana Moore Anne Jones Devens Gust Don Seo Giovanna Ghirlanda Hao Yan James Allen Kevin Redding Petra Fromme Thomas Moore Yan Liu Don Seo Principal Investigator Subtask 5 Leader Phone: 480-727-7789 Fax: 480-965-2747 E-mail: dseo@asu.edu Professor Don Seo contributes to the EFRC management as a Member of the Executive Committee and a leader of Subtask 5 (Functional nanostructured transparent electrode materials). His research in the Center is focused on two areas: (1) synthetic development of

  4. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov The Critical Materials Institute focuses on technologies that make better use of materials and eliminate the need for materials that are subject to supply disruptions.

  5. Utton Center Scientific and Technical Report

    SciTech Connect (OSTI)

    Marilyn C. OLeary

    2006-07-01

    Final Report of DOE grant to the Utton Transboundary Resources Center at University of New Mexico School of Law supporting prevention and management of transboundary water conflicts. Describes work of Utton Center and refers to three other documents reported separately. Includes brief description of multidisciplinary collaborative process, understanding cultural values of water and a model water compact.

  6. Supply Management Specialist

    Broader source: Energy.gov [DOE]

    This position is located in the Logistics Management organization (NSL), Supply Chain Services (NS), Chief Administrative Office (N). NSL manages the warehousing of materials; the investment...

  7. Materials sciences programs fiscal year 1996

    SciTech Connect (OSTI)

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  8. Materials sciences programs: Fiscal year 1995

    SciTech Connect (OSTI)

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  9. Microsoft Word - Centers of Excellence 9 09.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CENTERS OF EXCELLENCE: Office of Legacy Management (LM); Savannah River Operations Office; Savannah River Site (SRS) POINTS OF CONTACT: John Montgomery, LM (304-285-0937) Kermitt ...

  10. Savannah River Technology Center monthly report, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This is the monthly progress report for the Savannah River Technology Center, which covers the following areas of interest, Tritium, Separation processes, Environmental Issues, and Waste Management.

  11. Energy Procurement Information Center (EPiC) - Deb Bouslog, Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Procurement Information Center (EPiC) - Deb Bouslog, Systems Division, OAPM Energy Procurement ... dedicated to provide information to DOE's project management community. ...

  12. EERE Information Center Contact, PIA, The Office of Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center Contact, PIA, The Office of Energy Efficiency and Renewable Energy ... Record) PIA, Idaho National Laboratory Integrated Safety Management Workshop ...

  13. Industrial Assessment Centers Identifying Energy Savings in Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Industrial Assessment Centers Serving EPA Region 5 ADVANCED MANUFACTURING OFFICE ... EPA Resources Online resources are available from EPA's Office of Wastewater Management to ...

  14. EM Selects Ralph Holland to Lead Consolidated Business Center

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM has named Ralph Holland director of the Environmental Management Consolidated Business Center (EMCBC) in Cincinnati.

  15. ORISE: Providing Support to the DOE Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Information Center (JIC) ORISE supports DOE's Oak Ridge Office by managing crisis communication facility for drills, exercises and emergencies In the event of an emergency,...

  16. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... BYPASS 19 First National Technology First National Technology Center Center System Performance Specifications Fault Clearing Without Grid: 10-15 X Rated Current Overload: 150% ...

  17. NREL: Education Center - Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Programs NREL's Education Center in Golden, Colorado, offers a variety of program topics and experiences for students and adult groups addressing...

  18. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  19. Center for Functional Nanomaterials (CFN) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Functional Nanomaterials (CFN) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES

  20. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Nanotechnologies (CINT) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  1. Transuranic Waste Processing Center Contract Awarded to Wastren Advantage, Inc.

    Broader source: Energy.gov [DOE]

    The U. S. Department of Energy announces the award of a contract to Wastren Advantage, Inc. (WAI) to manage waste management activities at the Oak Ridge Transuranic (TRU) Waste Processing Center.

  2. Networks of recyclable material waste-pickers cooperatives: An alternative for the solid waste management in the city of Rio de Janeiro

    SciTech Connect (OSTI)

    Tirado-Soto, Magda Martina; Zamberlan, Fabio Luiz

    2013-04-15

    Highlights: ? In the marketing of recyclable materials, the waste-pickers are the least wins. ? It is proposed creating a network of recycling cooperatives to achieve viability. ? The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the citys main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.

  3. EERE_Project_Management_Center_Database.pdf

    Energy Savers [EERE]

  4. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  5. NNSA Dedicates National Security Computing Center at Sandia Labs | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration Contract Reform in Action: Supply Chain Management Center December 22, 2009 As part of NNSA's commitment to being a responsible steward of tax dollars, NNSA Administrator Thomas D'Agostino (then the head of Defense Programs) created the Supply Chain Management Center (SCMC) in 2006 and selected Honeywell, operator of the Kansas City Plant, as the lead contractor for managing the initiative. Since Management and Operating (M&O) contractors spend

  6. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  7. Theory Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory Center The Center for Theoretical and Computational Physics pursues a broad program of research in support of the physics being studied at Jefferson Lab and related facilities around the world. The Theory Center provides opportunities for interested scientists and students to visit the lab and work closely with theoretical and experimental colleagues.The center also advises the lab on the scientific merit of its program and its plans for future development. The center provides scientific

  8. tracc-comuting-center-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Research and Analysis Computing Center

  9. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  10. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  11. News | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Home Full Updated List of Publications Now Available Online! The full publication list of the RMSSEC EFRC is avaialble online at the follwoing DOE website. This list is frequently updated and will provide users with the latest information on Center publications. http://science.energy.gov/bes/efrc/publications/ New ZT record set by RMSSEC researchers - appears in Nature magazine RMSSEC researchers have once again set a new recored in terms of thermoelectric performance of a material. In work

  12. Training Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Materials Training Materials The following tutorials are produced by NERSC staff and are intended to provide basic instruction on NERSC systems. Sort by: Default | Name | Date (low-high) | Date (high-low) | Source | Category Introduction to Hybrid OpenMP/MPI Programming June 24, 2004 | Author(s): Helen He | Download File: hybridTalk.pdf | pdf | 1005 KB sample managed list Using OpenMP October 20, 2010 | Author(s): Helen He | Introduction to MPI January 11, 2010 | Author(s): Richard

  13. ARM - News Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP 6 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field...

  14. ARM - News Center Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP 6 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field...

  15. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  16. Sergey Maximoff | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TX EFRC research: Dr. Maximoff's interest within this EFRC centers on theory of adsorption, desorption, and chemical conversion of small molecules within porous materials. He...

  17. How to Apply - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the proposed research project Heshe should also arrange to have the following material directly sent to the Center: Two recommendation letters A letter of endorsement...

  18. Devens Gust | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center Personnel Ana Moore Anne Jones Devens Gust Don Seo Giovanna Ghirlanda Hao Yan James Allen Kevin Redding Petra Fromme Thomas Moore Yan Liu Devens Gust Director of the Center Principal Investigator Phone: 480-965-4547 Fax: 480-965-5927 E-mail: gust@asu.edu Regents' Professor Devens Gust contributes to the EFRC in the areas of management and research. In management, Dr. Gust

  19. NREL: Education Center - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center Printable Version Events Unless otherwise notified, events listed here will be held at the NREL Education Center, 15013 Denver West Parkway, Golden, CO. The Education Center phone number is 303-384-6565. June 2016 Sustainable NREL Walking Campus Tour June 17, 2016, 9:30 - 11:15 am Golden, CO Contact: NREL Education Center 303-384-6565 NREL exemplifies environmental sustainability throughout its operations. Visitors learn about renewable energy and energy efficiency research as

  20. ASU EFRC - Center researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center researchers Chad Simmons Academic Professional Gerdenis Kodis Research Assistant Professor Raimund Fromme Faculty Research Associate Yuichi Terazono Faculty Research...