National Library of Energy BETA

Sample records for materials center managing

  1. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program under

  2. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    SciTech Connect (OSTI)

    Kelly, K.E.

    1994-11-09

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

  3. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-11-09

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

  4. Project T100 -- Hazardous Materials Management and Emergency Response Training Center (HAMMER)

    SciTech Connect (OSTI)

    Norton, C.E.

    1994-11-09

    The scope of this Quality Assurance Program Plan (QAPP) is to provide a system of Quality Assurance reviews and verifications on the design and construction of the Hazardous Materials Management and Emergency Response (HAMMER) Training Center, project 95L-EWT-100 at Hanford. The reviews and verifications will be on activities associated with design, procurement, and construction of the HAMMER project which includes, but is not limited to earthwork, placement of concrete, laying of rail, drilling of wells, water and sewer line fabrication and installation, communications systems, fire protection/detection systems, line tie-ins, building and mock-up (prop) construction, electrical, instrumentation, pump and valves and special coatings.

  5. Supply Chain Management Center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Supply Chain Management Center

  6. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  7. Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    Energy Efficient Materials A DOE Energy Frontier Research Center Overview Research Events News Internships People Contact Us RSS Feed - News and Events Plastic Solar Solid State Lighting High-Efficiency Solar Cells Thermoelectrics Undergraduate Internship Program Overview The Center for Energy Efficient Materials (CEEM) is an Energy Frontier Research Center funded by the Office of Basic Energy Sciences of the US Department of Energy. The principal activity of the Center is a cross-disciplinary

  8. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific ...

  9. LANSCE | Lujan Center | Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lujan Center Data Management Lujan Neutron Scattering Center Logo The Lujan Center within LANSCE utilizes a pulsed source and has a complement of 15 instruments. It maintains a data archive of approximately 4 TB that includes all neutron scattering data collected since it came on line in 1986. Data gathered at the Lujan Center are now archived using the IBM Tivoli Storage System. No Personal information shall be stored with the data other than the User's home institution and institutional

  10. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  11. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details ... of ab initio PDOS simulations. * Direct comparison between anharmonicity-smoothed ...

  12. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  13. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center for Lightweighting Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in ...

  14. PIA - Environmental Management Consolidated Business Center (EMCBC) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) (3.42 MB) More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 LM Records Handling System (LMRHS01) - Rocky

  15. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  16. Environmental Management Consolidated Business Center (EMCBC) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Services » Program Management » Environmental Management Consolidated Business Center (EMCBC) Environmental Management Consolidated Business Center (EMCBC) Environmental Management Consolidated Business Center (EMCBC) SITE OVERVIEW The Department of Energy (DOE) established the EMCBC in Cincinnati, OH, on June 7, 2004, to provide Environmental Management customers with required and improved business and technical support services. Establishing the EMCBC allowed EM's Closure

  17. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  18. Procurement and Materials Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement and Materials Management U.S. Department of Energy | Who We Are | Current Requests for Proposal | Requests for Information | Expression of Interest | Subcontractor Information | Small Business Home Washington River Protection Solutions | Hanford.gov | Energy.gov Procurement and Materials Management Small Business Resources Small Business Calendar Terms & Conditions Procedures to Subcontractors Instructions Forms Vendor Registration Solicitations Small Bus. Events Procedures

  19. Center for Lightweighting Automotive Materials and Processing...

    Broader source: Energy.gov (indexed) [DOE]

    GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

  20. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People...

  1. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nanophase Materials Sciences and Panos Datskos of ORNL Measurement Science and Systems Engineering Division The technology, based on nonlinear nanomechanical resonators,...

  2. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  3. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  4. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  5. Bay Resource Management Center Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Resource Management Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass...

  6. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS Updates The CNMS has a new director Sean Smith from the University of Queensland in Australia has accepted the position of director for the Center for Nanophase Materials...

  7. Data Center Airflow Management Retrofit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Data Center Airflow Management Retrofit Case study bulletin describes the data center airflow management retrofit. The study includes information about how the data center ...

  8. Facilities | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The Center for Energy Efficient Materials occupies approximately 3,000 square feet of assignable space in Phelps Hall. This space houses the Administrative offices of the Center, including offices for the Director, the Executive Director, the Financial Analyst, visiting scientists, and a number of post-docs, graduate students and undergraduate students. Two small seminar rooms are also included. The Institute for Energy Efficiency is co-located on the same floor, providing close

  9. Contact Us | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Map to CEEM View Full Size Map For more information, please contact: John Bowers, Director bowers [at] ece [dot] ucsb [dot] edu 805-893-8447 David H. Auston, Executive Director auston [at] iee [dot] ucsb [dot] edu 805-893-3376 Jane Allen, Business Officer jane [at] iee [dot] ucsb [dot] edu 805-893-3488 Mailing Address: Center for Energy Efficient Materials University of California Santa Barbara, CA 93106-9560 Location: Center for Energy Efficient Materials Phelps 2300 University of

  10. Arc Casting Intermetallic Alloy (Materials Preparation Center)

    SciTech Connect (OSTI)

    2010-01-01

    Arc casting of intermetallic (La-Ni-Sn) AB5 alloy used for metal hydride hydrogen storage. Upon solidification the Sn is partially rejected and increases in concentration in the remaining liquid. Upon completing solidification there is a great deal of internal stress in the ingot. As the ingot cools further the stress is relieved. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  11. International Center for Materials Research ICMR | Open Energy...

    Open Energy Info (EERE)

    Name: International Center for Materials Research (ICMR) Place: Kawasaki-shi, Kanagawa, Japan Zip: 210-0855 Product: International Center for Materials Reseach is a Japanese...

  12. Edison Material Technology Center EMTEC | Open Energy Information

    Open Energy Info (EERE)

    Material Technology Center EMTEC Jump to: navigation, search Name: Edison Material Technology Center (EMTEC) Place: Dayton, Ohio Zip: 45420 Product: String representation "A...

  13. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  14. Feed Materials Production Center. Final phase-in report volume 11 of 15 waste management, October 25, 1985--December 31, 1985

    SciTech Connect (OSTI)

    Watts, R.E.

    1986-01-17

    This volume of the Transition Final Report provides the findings, recommendations and corrective actions for the Waste Management areas developed during the phase-in actions by Westinghouse Materials Company (WMCO). The objective is to provide a summary of the studies and investigations performed by the WMCO Company during the transition period. The Waste Management effort at FMPC was expanded in 1984 when a separate group was formed within the NLO organization. This is considered to be an area where significant increase in priority and effort must be applied to resolve waste management problems and to bring the site in conformity to regulations and the Environmental Health/Safety Standards. During the transition, there was a comprehensive investigation in all areas of air, liquid and solid waste management for nuclear, chemical and conventional wastes. Not all of these investigations are documented in this report, but the information gathered was used in the development of the budgets (cost accounts), programs, and organizational planning.

  15. A Look Inside Argonne's Center for Nanoscale Materials | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory A Look Inside Argonne's Center for Nanoscale Materials Share Topic Programs Materials science Nanoscience

  16. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rewritable artificial magnetic charge ice More Butterfly Effects: X-rays reveal the photonic crystals in butterfly wings that create color More The Friendly Faces of CNM More A Lithium-Air Battery Based on Lithium Superoxide More Borophene: Atomically Thin Metallic Boron More Video Highlight A Look Inside Argonne's Center for Nanoscale Materials BROCHURES & NEWSLETTERS CNM Overview Brochure CNM Fact Sheet Key Research Areas Nanofabrication & Devices Nanophotonics & Biofunctional

  17. General Recommendations for a Federal Data Center Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Recommendations for a Federal Data Center Energy Management Dashboard Display General Recommendations for a Federal Data Center Energy Management Dashboard Display Document ...

  18. Data Center Airflow Management Retrofit September 2010 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit September 2010 Data Center Airflow Management Retrofit September 2010 airflow-doe-femp.pdf (1.49 MB) More Documents & Publications Data Center Airflow Management Retrofit

  19. RECORDS MANAGEMENT CENTERS OF EXCELLENCE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Centers of Excellence provides information that you may draw on to access the records management knowledge and expertise in the Department PDF icon RECORDS MANAGEMENT CENTERS ...

  20. Executive Summaries for the Hydrogen Storage Materials Center...

    Broader source: Energy.gov (indexed) [DOE]

    storage materials in the areas of Chemical Hydrogen Storage Materials, Hydrogen ... Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption ...

  1. Hazardous materials (HAZMAT) Spill Center strategic plan

    SciTech Connect (OSTI)

    1996-01-01

    This strategic Plan was developed in keeping with the Department of Energy`s mission for partnership with its customers to contribute to our Nation`s welfare by providing the technical information and the scientific and educational foundation for the technology, policy and institutional leadership necessary to achieve efficiency in energy use, diversity in energy sources, a more productive and competitive economy, improved environmental quality, and a secure national defense. The Plan provides the concepts for realigning the Departments`s Hazardous Materials Spill Center (HSC) in achieving its vision of becoming the global leader in meeting the diverse HAZMAT needs in the areas of testing, training, and technology. Each of these areas encompass many facets and a multitude of functional and operational requirements at the Federal, state, tribal, and local government levels, as well as those of foreign governments and the private sector. The evolution of the limited dimensional Liquefied Gaseous Fuels Spill Test Facility into a multifaceted HAZMAT Spill Center will require us to totally redefine our way of thinking as related to our business approach, both within and outside of the Department. We need to establish and maintain a viable and vibrant outreach program through all aspects of the public (via government agencies) and private sectors, to include foreign partnerships. The HAZMAT Spill Center goals and objectives provide the direction for meeting our vision. This direction takes into consideration the trends and happenings identified in the {open_quotes}Strategic Outlook{close_quotes}, which includes valuable input from our stakeholders and our present and future customers. It is our worldwide customers that provide the essence of the strategic outlook for the HAZMAT Spill Center.

  2. Nuclear materials management storage study

    SciTech Connect (OSTI)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

  3. Center for Next Generation of Materials by Design: Incorporating

    Office of Science (SC) Website

    Metastability (CNGMD) | U.S. DOE Office of Science (SC) Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD) Print Text Size: A A A FeedbackShare Page CNGMD Header Director William Tumas Lead

  4. Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Strategies for Fleet Managers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve Fuel on Delicious Rank Alternative Fuels Data

  5. Herty Advanced Materials Development Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Herty Advanced Materials Development Center Herty Advanced Materials Development Center Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center b13_stuckey_2-b.pdf (2.33 MB) More Documents & Publications Center of Innovation - Energy Sustainable Solutions to Global Energy Challenges Biomass 2013: Breakout Speaker Biographies

  6. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matthew Rigsby Researcher - Oakridge National Lab rigsbyma@ornl.gov List Image Spencer Robbins Materials Scientist - TeraPore Technologies, Inc. swr43@cornell.edu List Image...

  7. RECORDS MANAGEMENT CENTERS OF EXCELLENCE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centers of Excellence.pdf (94.33 KB) More Documents & Publications RECORDS MANAGEMENT CENTERS OF EXCELLENCE Records Management Field Officer (RMFO) AU Functional Area Points of Contact by Office Directors

  8. General Recommendations for a Federal Data Center Energy Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dashboard Display | Department of Energy General Recommendations for a Federal Data Center Energy Management Dashboard Display General Recommendations for a Federal Data Center Energy Management Dashboard Display Document explains the benefits of developing dashboards to track energy use in Federal data centers and discusses typical dashboard content that is useful for energy management. Download the general recommendations for a federal data center energy management dashboard display. (1.23

  9. EERE Project Management Center Database PIA, The Office of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency and Renewable Energy (EERE) | Department of Energy EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) (180.97 KB)

  10. Center for the Computational Design of Functional Layered Materials (CCDM)

    Office of Science (SC) Website

    | U.S. DOE Office of Science (SC) the Computational Design of Functional Layered Materials (CCDM) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for the Computational Design of Functional Layered Materials (CCDM) Print Text Size: A A A FeedbackShare Page CCDM Header Director John Perdew Lead Institution Temple University Year Established 2014 Mission To

  11. Heavy Isotopes Lead Materials Management Organization (LMMO)...

    Office of Scientific and Technical Information (OSTI)

    Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update ...

  12. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highly promising approach to expedite the materials discovery process using theory-guided electronic and structural engineering. This roundtable will bring together materials...

  13. GATE Center of Excellence in Lightweight Materials and Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Technologies | Department of Energy 6_vaidya_2012_p.pdf (4.01 MB) More Documents & Publications GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

  14. SciDAC Outreach Center Participates in "Materials for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Participates in "Materials for Energy Applications" Workshop February 1, 2012 David Skinner From Jan. 30 to Feb. 1 Berkeley Lab hosted an invitation-only workshop on...

  15. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    His major scientific accomplishments have been 1) development of the embedded atom method, ... a member of the International Advisory Panel for the Materials Science Center at U. ...

  16. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Department of Chemistry, Vanderbilt University, Station B 351824, Nashville, TN 37235, USA 2 Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, 1 Bethel...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micronanofabricated environments for synthetic biology C. Patrick Collier and Michael L. Simpson Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences Oak...

  18. GATE Center of Excellence in Lightweight Materials and Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit...

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AL 35487 (USA) 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) 3-Department of Chemistry, University of Kentucky,...

  20. Information system revives materials management

    SciTech Connect (OSTI)

    Hansen, T.

    1995-12-01

    Through a change in philosophy and the development of a new, more efficient information management system, Arizona Public Service Co. (APSW) has, in less than two years, reduced material and service costs by 10 percent. The utility plans to cut these costs form 1993 figures by 25 percent before 2000. The utility is breaking new ground with ongoing implementation of new business processes and the new Materials Logistics Information System (MLIS), which has been co-developed with Texas Instruments Software Division (TISD).

  1. Center for Intelligent Fuel Cell Materials Design

    SciTech Connect (OSTI)

    Santurri, P.R.,; Hartmann-Thompson, C.; Keinath, S.E.

    2008-08-26

    The goal of this work was to develop a composite proton exchange membrane utilizing 1) readily available, low cost materials 2) readily modified and 3) easily processed to meet the chemical, mechanical and electrical requirements of high temperature PEM fuel cells. One of the primary goals was to produce a conducting polymer that met the criteria for strength, binding capability for additives, chemical stability, dimensional stability and good conductivity. In addition compatible, specialty nanoparticles were synthesized to provide water management and enhanced conductivity. The combination of these components in a multilayered, composite PEM has demonstrated improved conductivity at high temperatures and low humidity over commercially available polymers. The research reported in this final document has greatly increased the knowledge base related to post sulfonation of chemically and mechanically stable engineered polymers (Radel). Both electrical and strength factors for the degree of post sulfonation far exceed previous data, indicating the potential use of these materials in suitable proton exchange membrane architectures for the development of fuel cells. In addition compatible, hydrophilic, conductive nano-structures have been synthesized and incorporated into unique proton exchange membrane architectures. The use of post sulfonation for the engineered polymer and nano-particle provide cost effective techniques to produce the required components of a proton exchange membrane. The development of a multilayer proton exchange membrane as described in our work has produced a highly stable membrane at 170°C with conductivities exceeding commercially available proton exchange membranes at high temperatures and low humidity. The components and architecture of the proton exchange membrane discussed will provide low cost components for the portable market and potentially the transportation market. The development of unique components and membrane architecture

  2. User-centered guidelines for environmental management

    SciTech Connect (OSTI)

    Eike, D.R.; Fox, J.A.; Dailey, R.

    1993-08-01

    Environmental Management requirements facing US Department of Energy (DOE) facilities are detailed, complex, and often subject to rapid change. DOE`s Office of Environmental Guidance, RCRA/CERCLA Division (EH-231), is responsible for developing and issuing guidance to assist DOE facilities in interpreting and complying with Federal, State, and local requirements. Recognizing the potential for computerization of the guidance, EH-231 requested that Pacific Northwest Laboratory (PNL) develop an approach for preparing automated guidance. The approach developed by PNL, termed ``user-centered guidance,`` combines participatory design and traditional rapid prototyping techniques to produce a new form of environmental guidance that emphasizes the user`s needs. This paper describes the objectives, processes and current status of this effort.

  3. Instructional Materials | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructional Materials Instructional Materials Solar Energy Learn about the quality of electromagnetic radiation produced by the sun and investigate on how this energy is captured and transferred into usable forms of energy. Explore this process in natural systems, like photosynthetic organisms, as well as manmade systems for producing electricity from sunlight. Download Solar Materials Here | Solar Energy Kit Overview Learning Modules: Kit #1: Spectroradiometry and Chlorophyll Spectroscopy Kit

  4. Scientific Data Management Center for Enabling Technologies

    SciTech Connect (OSTI)

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  5. Center for Nanophase Materials Sciences (CNMS) - Nanofabrication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clean room space for carrying out material modification using advanced lithographic, etching, thin-film deposition, and characterization tools. Process Design Assistance with...

  6. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    can provide insights for the development of new materials for solar cells, solid-state lighting and superconductor power transmission. Computer codes will be made...

  7. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... "ORNL materials researchers get first look at atom-thin boundaries," Space Daily (November 11, 2014) "UT, ORNL Team Up in Possible Spintronics Advancement," Tennessee Today ...

  8. Center for Nanophase Materials Sciences (CNMS) - Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is home to our synthetic macromolecular capabilities and our complementary efforts in designing functional materials, including those with hybrid molecular architectures, for...

  9. 2009 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sols Morgan Stefik, Surbhi Mahajan, Hiroaki Sai, Thomas H. Epps III, Frank S. Bates, Sol M. Gruner, Francis J. DiSalvo and Ulrich Wiesner Chemistry of Materials Vol.21, p....

  10. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were recently purchased with American Recovery and Reinvestment Act funds, including new SEM and TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the...

  11. Featured Projects: Center for Materials at Irradiation and Mechanical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extremes: Los Alamos Lab About CMIME The Center for Materials at Irradiation and Mechanical Extremes (CMIME) is a Department of Energy (DOE) Energy Frontier Research Center (EFRC) designed to understand, at the atomic scale, the behavior of materials subject to extreme radiation doses and mechanical stress in order to synthesize new materials that can tolerate such conditions. It is a collaborative effort led by Los Alamos National Laboratory (LANL) that includes the Massachusetts Institute

  12. DOE - Office of Legacy Management -- Center for Energy and Environmental

    Office of Legacy Management (LM)

    Research - PR 02 Center for Energy and Environmental Research - PR 02 FUSRAP Considered Sites Site: Center for Energy and Environmental Research (PR.02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Documents Related to Center for Energy and Environmental Research

  13. Feed Materials Production Center annual environmental report for calendar 1989

    SciTech Connect (OSTI)

    Dugan, T.A.; Gels, G.L.; Oberjohn, J.S.; Rogers, L.K.

    1990-10-01

    The mission of the Department of Energy's (DOE) Feed Materials Production Center (FMPC) has been to process uranium for United States' defense programs. On July 10, 1989, the FMPC suspended production operations, but remains on standby for certain segments of production. The FMPC also manages the storage of some radioactive and hazardous materials. As part of its operations, the FMPC continuously monitors the environment to determine that it is operating within federal and state standards and guidelines regarding emission of radioactive and nonradioactive materials. Data collected from the FMPC monitoring program are used to calculate estimates of radiation dose for residents due to FMPC operations. For 1989, the estimate of dose through the air pathway, excluding radon, indicated that people in the area were exposed to less than 6% of the DOE guideline established to protect the public from radiation exposure. When radon emissions are included, the dose from FMPC operations during 1989 was less than 22% of the annual background radiation dose in the Greater Cincinnati area. This report is a summary of FMPC's environmental activities and monitoring program for 1989. An Environmental Compliance Self-Assessment presents the FMPC's efforts to comply with environmental regulations through June 1990. 44 refs., 48 figs.

  14. EERE Project Management Center Database PIA, The Office of Energy...

    Energy Savers [EERE]

    Office of Energy Efficiency and Renewable Energy (EERE) EERE Project Management Center Database PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Project ...

  15. Management Technology for Energy Efficiency in Data Centers and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    airflow, and other necessary metrics combined with thermal imaging of the ... The software solutions allow all assets across the data center to be managed, visualized, ...

  16. NNSA Contract Reform in Action: Supply Chain Management Center | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Contract Reform in Action: Supply Chain Management Center December 22, 2009 As part of NNSA's commitment to being a responsible steward of tax dollars, NNSA Administrator Thomas D'Agostino (then the head of Defense Programs) created the Supply Chain Management Center (SCMC) in 2006 and selected Honeywell, operator of the Kansas City Plant, as the lead contractor for managing the initiative. Since Management and Operating (M&O) contractors spend

  17. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rouleau,3 Karren L. More,5 G. Tayhas R. Palmore,2 and Robert H. Hurt2 1-Dept Chemistry, Brown University 2-School of Engineering, Brown University 3-Center for Nanophase Materials...

  19. UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards...

    National Nuclear Security Administration (NNSA)

    UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email: ...

  20. Power Management Techniques for Data Centers: A Survey

    SciTech Connect (OSTI)

    Mittal, Sparsh

    2014-07-01

    With growing use of internet and exponential growth in amount of data to be stored and processed (known as ``big data''), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.

  1. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  2. A Look Inside Argonne's Center for Nanoscale Materials

    SciTech Connect (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-01-29

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  3. Statistical methods for nuclear material management

    SciTech Connect (OSTI)

    Bowen W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  4. Material Management and Minimization | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Nonproliferation Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and plutonium minimization strategies, the primary objective of M3 is to achieve permanent threat reduction by minimizing and, when

  5. DOE - Office of Legacy Management -- Visitors Center

    Office of Legacy Management (LM)

    farming, uranium production, and environmental cleanup eras, as well as the recent ecological restoration and legacy management mission, is presented through a series of exhibits. ...

  6. Environmental Survey preliminary report, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    This report presents the preliminary findings from the first phase of the environmental survey of the United States Department of Energy (DOE) Feed Materials Production Center (FMPC), conducted June 16 through 27, 1986. The survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with the FMPC. The survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the survey involves the review of existing site environmental data, observations of the operations carried on at FMPC, and interviews with site personnel. The survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its onsite activities. The Sampling and Analysis Plan will be executed by a DOE national laboratory or a support contractor. When completed, the results will be incorporated into the FMPC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the FMPC survey. 41 refs., 20 figs., 25 tabs.

  7. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  8. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  9. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  10. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  11. Executive Summaries for the Hydrogen Storage Materials Center of Excellence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE | Department of Energy Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE This report contains the executive summaries of the final technical reports from the

  12. Supply Chain Management Center event highlights how small businesses...

    National Nuclear Security Administration (NNSA)

    Supply Chain Management Center event highlights how small businesses can help NNSA carry out its missions Thursday, February 18, 2016 - 11:06am NNSA Blog The Supply Chain ...

  13. Supply Chain Management Center event highlights how small businesses can

    National Nuclear Security Administration (NNSA)

    help NNSA carry out its missions | National Nuclear Security Administration | (NNSA) Supply Chain Management Center event highlights how small businesses can help NNSA carry out its missions Thursday, February 18, 2016 - 11:06am NNSA Blog The Supply Chain Management Center (SCMC) has been an important tool for NNSA to save taxpayer dollars. At the event on Feb. 18, NNSA leadership and the New Mexico congressional delegation were well represented. From left, Scott Bissen, SCMC Director; Rep.

  14. Contract administration involving the remedial investigation and feasibility study at the Feed Materials Production Center

    SciTech Connect (OSTI)

    Not Available

    1991-08-28

    Advanced Sciences, Incorporated (ASI), has been performing a Remedial Investigation and Feasibility Study (RI/FS) at the Feed Materials Production Center (Fernald Facility) at Fernald, Ohio, under an 8 (a) contract with the US Small Business Administration (SBA). The Fernald Facility is a Government-owned facility operated by Westinghouse Materials Company of Ohio (WMCO) under a management and operating contract. The objective of this audit was to evaluate the award and administration of the ASI contract.

  15. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: ...

  16. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  17. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  18. Management of Transuranic Contaminated Material

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-09-30

    To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

  19. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  20. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanoscale Materials (CNM) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  1. Interim Management of Nuclear Materials

    Office of Environmental Management (EM)

    operations resulted in a large inventory of nuclear materials caught in various stages of the historic SRS production (fabrication, irradiation, reprocessing, and recovery) cycle. ...

  2. DOE - Office of Legacy Management -- Stanford Linear Accelerator Center -

    Office of Legacy Management (LM)

    005 Stanford Linear Accelerator Center - 005 FUSRAP Considered Sites Site: Stanford Linear Accelerator Center (005) More information at www.slac.stanford.edu Designated Name: Not Designated under FUSRAP Alternate Name: SLAC Location: Palo Alto, California Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Research Site Disposition: Remediation completed by DOE Office of Environmental Management in 2014. DOE Office of Science is responsible for long-term

  3. Technical considerations in materials management policy development

    SciTech Connect (OSTI)

    Avci, H.; Goldberg, M.

    1996-05-01

    Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE`s DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized.

  4. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Alumni Page 1 of 3 ⇐ Previous | Next ⇒ Here are past members and where they are now. List Image Mahmut Aksit Senior Materials Chemist - 3M ma573@cornell.edu List Image Nicole Benedek Asst. Professor - UT Austin nicole.benedek@austin.utexas.edu List Image Robert Berger Asst. Professor - Western Washington University robert.berger@wwu.edu List Image Turan Birol Postdoc - Rutgers University tb238@cornell.edu List Image Raymond Burns Product Research Technologist - Exxon Mobile

  5. V-177: VMware vCenter Chargeback Manager File Upload Handling Vulnerability

    Broader source: Energy.gov [DOE]

    The vCenter Chargeback Manager contains a critical vulnerability that allows for remote code execution

  6. Categorical Exclusion Determinations: Western Area Power Administration-Colorado River Storage Project Management Center

    Broader source: Energy.gov [DOE]

    Categorical Exclusion Determinations issued by Western Area Power Administration-Colorado River Storage Project Management Center.

  7. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-12-22

    The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

  8. Establishment of the Heavy Isotopes Lead Materials Management...

    Office of Scientific and Technical Information (OSTI)

    Materials Management Organization (LMMO) Citation Details In-Document Search Title: Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) Authors: ...

  9. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: Project Title: Associated Materials: Programmatic RIS Previous Project Number(s) Status Code Allotment Code (S=Supplier, U=User) I authorize that the information listed above is for the NMMSS Program to use as part of the project number conversion process for this facility. Signature of Authorized Official Date

  10. Integrated Global Nuclear Materials Management Preliminary Concepts

    SciTech Connect (OSTI)

    Jones, E; Dreicer, M

    2006-06-19

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  11. Applying RFID technology in nuclear materials management.

    SciTech Connect (OSTI)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  12. Nuclear Materials Management and Safeguards System (NMMSS)

    SciTech Connect (OSTI)

    Jacobsen, S.E.; Matthews, W.B. III; McKamy, E.D.; Pedigo, R.B. )

    1991-01-01

    This paper describes the Nuclear Materials Management and Safeguards System (NMMSS) which is sponsored by the Department of Energy and the Nuclear Regulatory Commission. The system serves national security and program management interests, and international interests in the programs for the peaceful application of nuclear energy and non-proliferation of nuclear weapons. Within the scope of the NMMSS are found all nuclear materials applied and controlled under United States law and related international agreements, including U.S. nuclear materials production programs and U.S. private nuclear industrial activities. In addition, its national and international scope enables it to provide services to other organizations such as the Arms Control and Disarmament Agency, the Department of State, and the U.S. Congress.

  13. Material Management/Strategic Reserve | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Material Management/Strategic Reserve Y-12 ensures safe, secure and compliant storage of the nation's strategic reserve of nuclear materials at Y-12. Our Nuclear Materials Management and Storage Program receives, stores, protects, dispositions and manages strategic and special nuclear materials and provides programmatic planning, analysis and forecasting for national security material requirements supporting Stockpile Stewardship and other DOE programs

  14. Center for Nanoscale Materials Fact Sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center...

  15. Postdoctoral Research Fellow Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & transport properties of the materials, which in turn can be used to engineer better solid electrolyte materials 2. Automation & Data Analytics * Designing a new material for...

  16. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect (OSTI)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  17. Staff > > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Leadership Team Faculty Directory Researchers, Postdocs & Graduates Scientific Advisory Board Center Alumni Here are past members and where they are now.

  18. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related EFRC News What are EFRCs? Energy Frontier Research Centers address energy and science "grand challenges" in a broad range of research areas, which were defined through a...

  19. Ames Laboratory a partner in DOE Center for Computational Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials, as well as a companion database to predict targeted properties with energy-related application to thermoelectric materials. READ MORE at Brookhaven National Laboratory....

  20. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials physicists. He is also Director of the Doctoral Training Centre on Theory and Simulation of Materials at Imperial, where he leads 50 academics in the Departments of...

  1. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    Fuel Cell Technologies Publication and Product Library (EERE)

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. T

  2. News > > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News + Events In This Section EMC2 News Archived News Stories News EMC2 News Center news updates 30 entries Archived News Stories Previous news stories from emc2 97 entries Home » News

  3. News > > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News + Events In This Section Why Partnerships? Current Partners Project Updates News & Events Resources Join News EMC2 News Center news updates 30 entries Archived News Stories Previous news stories from emc2 97 entries Home » News

  4. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARCHIVED CNMS IN THE NEWS Sergei V. Kalinin Wins ACerS Robert L. Coble Award for Young Scholars Sergei V. Kalinin, who is a member of the Imaging Functionality Group in the Center...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expression Optimization and Synthetic Gene Networks in Cell-free Systems David K. Karig,1 Sukanya Iyer,2,3 Michael L. Simpson,1,4,5 Mitchel J. Doktycz,1,2 1-Center for Nanophase...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a whole new family of previously unknown electronic properties. Credit Published in Nano Letters, DOI: 10.1021nl203349b. Research at Oak Ridge National Laboratory's Center for...

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standing Friedel Waves, Standing Spin Waves, and Indirect Bandgap Optical Transition in Nanostructures Jun-Qiang Lu1, X.-G. Zhang1,2, and Sokrates T. Pantelides3 1Center for...

  8. The proposed fixation of sludge in cement at the Feed Materials Production Center

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1990-12-01

    The Feed Materials Production Center (FMPC), located near Cincinnati, Ohio, is a government-owned facility. Westinghouse Materials Company of Ohio (WMCO) is the prime contractor to the United States Department of Energy (DOE) at the FMPC. DOE has entered into a Consent Agreement with the United States Environmental Protection Agency (US EPA) to remediate the FMPC site. A project known as the Environmental Remedial Action (ERA) Project was created to accomplish the task of remediating the site. The majority of the estimated $2-billion ERA Project was broken into five smaller manageable subtasks called operable units.'' Each operable unit is handled as a project with its own project manager/engineer. Due to the project's complexity and stringent completion dates, DOE and WMCO have devised a project management philosophy to ensure the successful completion of the ERA Project. This paper will discuss the ERA project and the development needs to accomplish this project. In particular, development of processes for the treatment of waste sludges for Operable Units 1 and 4 will be discussed. Operable Units 2 sludges will be treated in a similar fashion to Operable Unit 1 if it is determined these sludges need treatment. 4 refs., 5 figs., 9 tabs.

  9. Getting Data Center Energy Management Started with Profiler Tools

    Broader source: Energy.gov [DOE]

    Webinar will introduce the Data Center Profiler (DC Pro) Tools available to help data centers estimate power usage effectiveness (PUE) without submetering.

  10. Mahmut Aksit > Senior Materials Chemist - 3M > Center Alumni > The Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Center at Cornell Mahmut Aksit Senior Materials Chemist - 3M ma573@cornell.edu Formerly a member of the Robinson Group, he received his PhD in June 2014.

  11. The Center for Nanophase Materials Sciences (Other) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    National Laboratory (ORNL) integrates nanoscale science with neutron science; synthesis ... environment for research to understand nanoscale materials and phenomena. ...

  12. Materials Project and Electrolyte Genome - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Materials Project and Electrolyte Genome The Materials Project and Electrolyte Genome are computer modeling tools designed to accelerate the discovery process before testing in the laboratory. Developing beyond-lithium-ion batteries requires the discovery of new working ions, cathodes, anodes, and electrolytes. The Materials Project and the Electrolyte Genome use high-throughput computer modeling to: identify new candidates for battery materials, predict their performance, and

  13. Materials Control and Accountability Program Manager | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Materials Control and Accountability Program Manager Amy Whitworth Amy Whitworth July 2009 Fellow by the Institute of Nuclear Materials Management NNSA Materials Control and Accountability Program Manager Amy Whitworth was awarded the prestigious title of Fellow by the Institute of Nuclear Materials Management during its recent annual meeting in Tucson, Ariz. Fellows must be nominated by their peers, recommended by the INMM Fellows Committee and approved by

  14. Argonne's Materials Engineering Research Facility - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research August 8, 2012, Videos Argonne's Materials Engineering Research Facility Argonne's Materials Engineering Research Facility (MERF) enables the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up

  15. Resources > Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In This Section Why Partnerships? Current Partners Project Updates News & Events Resources Join PARTNERSHIPS Why Partnerships? ›Project Updates ›News + Events › Resources for Prospective Partners CONTENT COMING SOON Cornell Standard NDA Sample Sponsored Contract Language Standard Intellectual Property terms Center member form

  16. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Traditional structural materials degrade and fail under intense irradiation, but certain nanocomposites contain high volume fractions of "super sink" interfaces that allow these materials to self-heal.Understanding how radiation damage is trapped and removed at such interfaces will help in designing a new class of radiation-tolerant materials that would make future nuclear reactors maximally safe, sustainable, and efficient. This (movie/figure) shows the

  17. Center for Inverse Design: Modality 3 - Discovery of Missing Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3: Discovery of Missing Materials Modality 3 applies to yet discovered, currently undocumented materials. This approach is designed for a different class of problems: when the materials we would like to consider are simply undocumented standard compilations, i.e., they have not yet been made. Like the other two modalities, this one also involves a search space. But unlike Modalities 1 and 2, the steps involved in Modality 3 are: Calculate the stable crystal structure of a given hypothetical

  18. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Pascal Bellon image of George Gray Contact Information Professor University of Illinois, Urbana-Champaign Department of Materials Science and Engineering Phone: (217)2675-0284 bellon@uiuc.edu http://www.mse.uiuc.edu/faculty/Bellon.html Bio Education Post-Doctoral Research Associate, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1993-1994 Ph.D., Materials Science, Université Pierre et Marie Curie, Paris, France, 1989

  19. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemistry group; in 1984, he joined the technical staff in the Materials Science & Technology Division, where he worked on a wide variety of modeling projects from composite...

  20. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George T. (Rusty) Gray III image of George Gray Contact Information Laboratory Fellow Los Alamos National Laboratory Dynamic Materials Properties, Testing, and Modeling Los Alamos,...

  1. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quanxi Jia image of George Gray Contact Information Laboratory Fellow Los Alamos National Laboratory Materials Physics and Applications Division Phone: (505) 667-2716...

  2. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yongqiang Wang image of George Gray Contact Information Los Alamos National Laboratory Ion Beam Materials Laboratory, Team Leader Phone: (505) 665-1596 yqwang@lanl.gov Bio...

  3. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cu 10 nm nanocrystalline sample being uni-axial compressed to strain of 20% and then stress released. Irradiation Extremes Thrust Traditional structural materials degrade and...

  4. Center for Nanophase Materials Sciences (CNMS) - 2012 CNMS User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 911) Transmission Electron Microscopy for Soft Materials September 12-13, 2012 Second Photovoltaics School (Photovoltaics from Fundamentals to Applications) September 13, 2012...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 4-Department of Physics and Department of Electrical Engineering and Computer...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 3-Physics Department,...

  7. Center for Nanophase Materials Sciences (CNMS) - Related ORNL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In particular, the facilities listed on this page offer a variety of capabilities for materials characterization and computational nanoscience that may enhance the research...

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a diverse collection of leading journals, such as Nano Letters, Advanced Materials, and ACS Nano. They have also built capabilities for nanofiber synthesis and characterization at...

  9. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    his work focused on theoretical condensed matter physics. In 1987, he returned to Switzerland and has been working on computational materials science ever since, a field in...

  10. Center for Nanophase Materials Sciences (CNMS) - 2014 CNMS User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences Oak Ridge National Laboratory September 15-19, 2014 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User...

  11. Center for Nanophase Materials Sciences (CNMS) - 2011 CNMS User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences Oak Ridge National Laboratory September 19-20, 2011 Chestnut Ridge Campus of Oak Ridge National Laboratory Oak Ridge, Tennessee User Meeting Announcement User...

  12. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and metallic glasses Bulk synthesis of structural nanomaterials Microstructural characterization of materials via Electron Microscopy (SEM, TEM, HRTEM, STEM, in-situ techniques)...

  13. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph.D., Materials Science and Engineering, Cornell ... of High-Level Nuclear Waste and Plutonium, W. J. ... Ion-Solid Interactions: Fundamentals and Applications, ...

  14. Center for Materials at Irradiation and Mechanical Extremes:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CINT), Physical Synthesis Lab: J. Kevin Baldwin LANL Technologist Ion Beam Materials Lab: Yongqiang Wang LANL Scientist Irradiation Thrust Electron Microscopy Lab: Rob...

  15. Material Management and Minimization | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Management and Minimization | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  16. Environment, safety and health compliance assessment, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The Secretary of Energy established independent Tiger Teams to conduct environment, safety, and health (ES H) compliance assessments at US Department of Energy (DOE) facilities. This report presents the assessment of the Feed Materials Production Center (FMPC) at Fernald, Ohio. The purpose of the assessment at FMPC is to provide the Secretary with information regarding current ES H compliance status, specific ES H noncompliance items, evaluation of the adequacy of the ES H organizations and resources (DOE and contractor), and root causes for noncompliance items. Areas reviewed included performance under Federal, state, and local agreements and permits; compliance with Federal, state and DOE orders and requirements; adequacy of operations and other site activities, such as training, procedures, document control, quality assurance, and emergency preparedness; and management and staff, including resources, planning, and interactions with outside agencies.

  17. Security robots for nuclear materials management

    SciTech Connect (OSTI)

    Deming, R.

    1986-01-01

    Robots have successfully invaded industry where they have replaced costly personnel performing their tasks cheaper and better in most cases. There may be a place for a unique class of robots, security robots, in nuclear materials management. Robots could be employed in the functions of general response, patrol and neutralizing dangerous situations. The last is perhaps most important. Ion Track Instruments of Burlington, Massachusetts has designed an excellent unit to protect life in hazardous situations. The unit can detect, disrupt or remove explosives. It can enter dangerous areas to reconnoiter the extent of danger. It can communicate with those in a dangerous area. It can fight fires or clean an area using a 2 1/2 inch, two man hose. If necessary, it can engage an adversary in a fire fight using a twelve gauge shot gun.

  18. DEPARTMENT OF FNERGY EERE PROJECT MANAGEMENT CENTER NFPA DI!TERJ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF FNERGY EERE PROJECT MANAGEMENT CENTER NFPA DITERJ.fiNATION ... publication. and distribution; and classroom training and informational programs), ...

  19. EERE PROJECT MANAGEMENT CENTER Nl!PA DFTFnIINATION RECIPIENT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Il.II.': , u.s. DEPARTMENT OFFNERGY EERE PROJECT MANAGEMENT CENTER NlPA DFTFnIINATION ... publication, and distribution: and classroom training and informational programs), ...

  20. 2014 Annual Planning Summary for the Environmental Management Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Environmental Management Energy Technology Engineering Center.

  1. 2013 Annual Planning Summary for the Environmental Management Consolidated Business Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Environmental Management Consolidated Business Center.

  2. u.s. DEPARTl\\IENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTlIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERllJNAIION RECIPIENT:City of Philip and Philip Health Services PROJECf TITLE: Philip Health Services Geothermal ...

  3. U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:Midwest Renewable Energy ... instructors together to develop classroom resources and an instructor discussion group. ...

  4. T-560: Cisco Security Advisory: Management Center for Cisco Security Agent Remote Code Execution Vulnerability

    Broader source: Energy.gov [DOE]

    The Management Center for Cisco Security Agent is affected by a vulnerability that may allow an unauthenticated attacker to perform remote code execution on the affected device.

  5. Methane storage in advanced porous materials | Center for Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane storage in advanced porous materials Previous Next List Trevor A. Makal, Jian-Rong Li, Weigang Lu and Hong-Cai Zhou, Chem. Soc. Rev., 2012,41, 7761-7779 DOI: 10.1039...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Weitering, Nature Materials 7, 539 (2008). The research was sponsored by the National Human Genome Research Institute, National Institutes of Health Grant R01HG002647 (CZ), NSF...

  7. Carbon Dioxide Capture: Prospects for New Materials | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture: Prospects for New Materials Previous Next List D. M. D'Alessandro, B. Smit, and J. R. Long, Angew. Chem.-Int. Edit. 49 (35), 6058 (2010) DOI: 10.1002...

  8. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were recently purchased with American Recovery and Reinvestment Act funds, including new SEM and TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the...

  9. In silico screening of carbon-capture materials | Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In silico screening of carbon-capture materials Previous Next List L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W....

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in multiferroic BiFeO3, only 2-3 nm wide and distinct from the surrounding insulating material.1 Conductivity was completely unexpected since domain walls present only a subtle...

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievement: The material of choice for spintronics device today is FeMgOFe tunnel ... by modi?cation of the interface is an important topic in spintronics research. ...

  12. Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Uranium-233 | Department of Energy Waste Management » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a

  13. Managing Legacy Materials at WETF | Department of Energy

    Office of Environmental Management (EM)

    Legacy Materials at WETF Managing Legacy Materials at WETF Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. Managing Legacy Materials at WETF (1.06 MB) More Documents & Publications Enterprise Assessments Review, Los Alamos National Laboratory - November 2014 DOE-HDBK-1129-2008 FPD's Perspective Photos - Los Alamos National Labratory - NISA

  14. Materials Project - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Materials Physics and Applications Division Lead Antoinette Taylor Toni Taylor November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the Laboratory's current technical staff. The new

  15. Summary 2012 Internship Projects | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Internship Projects Name Mentor Advisor Major Project Title Benjamin Abrams Ferenc Somodi Dan Morse Physics Preparation of Silicon Containing Anode Materials for Lithium-Ion Batteries Carl Bycraft Emmett Perl John Bowers Electrical Engineering Quantum Efficiency Measurement for Multijunction Photovoltaics Benjamin Campo Nathan Pffaf Steve DenBaars Electrical Engineering Temperature Evolution of Light Emitting Diode Efficiency Rachel Harris Chris Liman Michael Chabynic Investigating Degradation

  16. DOE - Office of Legacy Management -- Energy Technology Engineering Center -

    Office of Legacy Management (LM)

    044 Energy Technology Engineering Center - 044 FUSRAP Considered Sites Site: Energy Technology Engineering Center (044) More information at http://energy.gov/em and http://energy.gov/em/energy-technology-engineering-center Designated Name: Not Designated under FUSRAP Alternate Name: Area IV of the Santa Susana Field Laboratory; ETEC Location: Santa Susana, California Evaluation Year: Not considered for FUSRAP - in another program Site Operations: DOE research and development activities Site

  17. Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon SessionA7HonoNIMS.pdf More Documents & Publications Spomenka Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe Tom Lograsso, Ames Laboratory (Iowa State ...

  18. NNSA recognizes Knight's service to Nuclear Materials Management Team |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex NNSA recognizes ... NNSA recognizes Knight's service to Nuclear Materials Management Team Posted: August 13, 2015 - 3:38pm Teresa Knight was honored by NNSA for her outstanding service to the Nuclear Materials Management The National Nuclear Security Administration presented CNS employee Teresa Knight with a special award in recognition of her outstanding service to the Department of Energy's Nuclear Materials Management Team. Knight began co-chairing the team

  19. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  20. Managing Category I and II Asbestos-Containing Materials During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition August 2009 Presenter: Robert Devol, Bechtel Jacobs Company, LLC Track 3-6 Topics ...

  1. NNSA recognizes Knight's service to Nuclear Materials Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA recognizes ... NNSA recognizes Knight's service to Nuclear Materials Management Team Posted: August 13, 2015 - 3:38pm Teresa Knight was honored by NNSA for her outstanding ...

  2. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  3. Assessment of medical waste management at a primary health-care center in Sao Paulo, Brazil

    SciTech Connect (OSTI)

    Moreira, A.M.M.; Guenther, W.M.R.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Assessment of medical waste management at health-care center before/after intervention. Black-Right-Pointing-Pointer Qualitative and quantitative results of medical waste management plan are presented. Black-Right-Pointing-Pointer Adjustments to comply with regulation were adopted and reduction of waste was observed. Black-Right-Pointing-Pointer The method applied could be useful for similar establishments. - Abstract: According to the Brazilian law, implementation of a Medical Waste Management Plan (MWMP) in health-care units is mandatory, but as far as we know evaluation of such implementation has not taken place yet. The purpose of the present study is to evaluate the improvements deriving from the implementation of a MWMP in a Primary Health-care Center (PHC) located in the city of Sao Paulo, Brazil. The method proposed for evaluation compares the first situation prevailing at this PHC with the situation 1 year after implementation of the MWMP, thus allowing verification of the evolution of the PHC performance. For prior and post-diagnosis, the method was based on: (1) application of a tool (check list) which considered all legal requirements in force; (2) quantification of solid waste subdivided into three categories: infectious waste and sharp devices, recyclable materials and non-recyclable waste; and (3) identification of non-conformity practices. Lack of knowledge on the pertinent legislation by health workers has contributed to non-conformity instances. The legal requirements in force in Brazil today gave origin to a tool (check list) which was utilized in the management of medical waste at the health-care unit studied. This tool resulted into an adequate and simple instrument, required a low investment, allowed collecting data to feed indicators and also conquered the participation of the unit whole staff. Several non-conformities identified in the first diagnosis could be corrected by the instrument utilized

  4. DOE - Office of Legacy Management -- Wright Air Development Center - OH

    Office of Legacy Management (LM)

    0-08 Wright Air Development Center - OH 0-08 FUSRAP Considered Sites Site: Wright Air Development Center (OH.0-08) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Wright-Patterson AFB , Ohio OH.0-08-1 Evaluation Year: 1987 OH.0-08-2 Site Operations: The Center's Power Plant Laboratory participated in a joint USAF-AEC ANP Program from 1955 to 1957. A kilocurie gamma facility was constructed and operated. The

  5. EFRC management reference document Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... TEC-MURI program, and by the DARPA NMO program as well as the , an Energy Frontier Research Center (EFRC) funded by the U.S. DOE Office of Basic Energy Sciences." ...

  6. DOE - Office of Legacy Management -- Pittsburgh Energy Technology Center -

    Office of Legacy Management (LM)

    029 Pittsburgh Energy Technology Center - 029 FUSRAP Considered Sites Site: Pittsburgh Energy Technology Center (029 ) More information at www.netl.doe.gov Designated Name: Not Designated under FUSRAP Alternate Name: National Energy Technology Laboratory (NETL) Location: Pittsburgh, Pennsylvania Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Energy research Site Disposition: DOE continuing mission site; now part of the National Energy Technology Laboratory

  7. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    SciTech Connect (OSTI)

    Simpson, Lin

    2009-11-30

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. The report presents a review of the material status as related to DOE hydrogen storage targets and explains the basis for the down select decisions.

  8. Management Council - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization  MANAGEMENT COUNCIL Peter Green, Dir. MSE Rachel Goldman MSE Ctirad Uher Physics Jamie Phillips EECS Max Shtein MSE Roy Clarke Physics Ted Goodson III Chemistry ...

  9. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    (International). Please request these through the NMMSS mailbox. If you have any questions on the NMMSS operations, please contact Pete Dessaules, Office of Materials Integration ...

  10. Managing Category I and II Asbestos-Containing Materials During

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decontamination and Demolition | Department of Energy Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition Managing Category I and II Asbestos-Containing Materials During Decontamination and Demolition August 2009 Presenter: Robert Devol, Bechtel Jacobs Company, LLC Track 3-6 Topics Covered: ETTP Remaining Facilities D&D Project K-1320 K-1035 Regulations EPA Category I and II Materials Practical Application Controls Advantages to Approach

  11. Nuclear Materials Management and Safeguards System Reporting and Data Submission

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-02-10

    The manual provides clear and detailed instructions and procedures for documenting and reporting data submissions for nuclear materials transactions, inventories, and material balances to the Nuclear Materials Management and Safeguards System (NMMSS). Cancels DOE 5633.3B. Canceled by DOE M 474.1-2A.

  12. Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA), FINAL REPORT

    SciTech Connect (OSTI)

    Bertram Ludaescher; Ilkay Altintas

    2012-07-03

    This is the final report from SDSC and UC Davis on DE-FC02-01ER25486, Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA).

  13. A'All) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    l A'All) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:Hudson Valley Community CoUege; sub: Three Rivers Community College PROJECf TITLE:...

  14. P AUll u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUll ) u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION Page I of3 RECIPIENT: Proton Energy Systems STATE: CT PROJECT TITLE: Validation of an Advanced...

  15. Annual report procurement and logistics management center Sandia National Laboratories fiscal year 2002.

    SciTech Connect (OSTI)

    Palmer, David L.

    2003-05-01

    This report summarizes the purchasing and transportation activities of the Procurement and Logistics Management Center for Fiscal Year 2002. Activities for both the New Mexico and California locations are included.

  16. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    SciTech Connect (OSTI)

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables.

  17. U.S. DEPARTMENT OF ENERGY RECORDS MANAGEMENT CENTERS OF EXCELLENCE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RECORDS MANAGEMENT CENTERS OF EXCELLENCE October 2015 The Centers of Excellence provides information on contacts that may be contacted for records management knowledge and expertise within the Department of Energy (DOE). This information resource will assist with establishing best practices, improving program effectiveness and achieving cost efficiencies. Multiple sites or organizations may be listed to provide operational viewpoints and approaches. Each office and point of contact provided

  18. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels DOE 1540.1A, DOE 1540.2, DOE 1540.3A.

  19. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels: DOE 1540.1A, DOE 1540.2, and DOE 1540.3A.

  20. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    SciTech Connect (OSTI)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  1. Nuclear Waste Materials Characterization Center. Semiannual progress report, April 1985-September 1985

    SciTech Connect (OSTI)

    Mendel, J.E.

    1985-12-01

    Work continued on converting MCC Quality Assurance practices to comply with the national QA standard for nuclear facilities, ANSI/ASME NQA-1. Support was provided to the following: Office of Geologic Repositories; Salt Repository Project; Basalt Waste Isolation Project; Office of Defense Waste and Byproducts Management; Hanford Programs; Transportation Technology Center; and West Valley Demonstration Project. (LM)

  2. Héctor D. Abruña > Director, Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emile M. Chamot Professor Chemistry and Chemical Biology > Faculty Directory > The Energy Materials Center at Cornell Héctor D. Abruña Director, Energy Materials Center at Cornell Emile M. Chamot Professor Chemistry and Chemical Biology Research Group Webpage hda1@cornell.edu Professor Abruña, Emile M. Chamot Professor of Chemistry, completed his graduate studies with Royce W. Murray and Thomas J. Meyer at the University of North Carolina at Chapel Hill in 1980 and was a

  3. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect (OSTI)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more

  4. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    SciTech Connect (OSTI)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-02-26

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials.

  5. Naval Air Warfare Center, Aircraft Division at Warminster Environmental Materials Program. Phase 1. Interim report, October 1989-May 1992

    SciTech Connect (OSTI)

    Spadafora, S.J.; Hegedus, C.R.; Clark, K.J.; Eng, A.T.; Pulley, D.F.

    1992-06-24

    With the recent increase in awareness about the environment, there is an expanding concern of the deleterious effects of current materials and processes. Federal, state and local environmental agencies such as the EPA, State Air Resource Boards and local Air Quality Management Districts (AQMD) have issued legislation that restrict or prohibit the use and disposal of hazardous materials. National and local laws like the Clean Air and Clean Water Acts, Resource Conservation and Recovery Act, and AQMD regulations are examples of rules that govern the handling and disposal of hazardous materials and waste. The Department of Defense (DoD), in support of this effort, has identified the major generators of hazardous materials and hazardous waste to be maintenance depots and operations, particularly cleaning, pretreating, plating, painting and paint removal processes. Reductions of waste in these areas has been targeted as a primary goal in the DOD. The Navy is committed to significantly reducing its current hazardous waste generation and is working to attain a near zero discharge of hazardous waste by the year 2000. In order to attain these goals, the Naval Air Warfare Center Aircraft Division at Warminster has organized and is carrying out a comprehensive program in cooperation with the Naval Air Systems Command, the Air Force and the Department of Energy that deal with the elimination or reduction of hazardous materials. .... Environmental materials, Organic coatings, Inorganic pretreatments, Paint removal techniques, Cleaners, CFC'S.

  6. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    SciTech Connect (OSTI)

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  7. Potential applications of nanostructured materials in nuclear waste management.

    SciTech Connect (OSTI)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi; Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  8. Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)

    SciTech Connect (OSTI)

    Higginson, M.C.

    1994-10-01

    The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford`s environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO{sub 3} plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996).

  9. Recovery of Mark-18a (Mk-18A) Target Materials: Program Management...

    Office of Scientific and Technical Information (OSTI)

    Target Materials: Program Management Plan Citation Details In-Document Search Title: Recovery of Mark-18a (Mk-18A) Target Materials: Program Management Plan You are accessing ...

  10. Subtask 1: Molecules, Materials, and Systems for Solar Fuels | ANSER Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne-Northwestern National Laboratory 1: Molecules, Materials, and Systems for Solar Fuels Home > Research > Subtask 1 The above figure depicts an iridium catalyst used for water splitting. The above figure depicts an iridium catalyst used for water splitting. The greatest challenge facing the development of solar fuels is efficient fuel production at acceptable rates and driving forces. The ANSER Center is confronting this challenge by taking a hierarchical approach to designing,

  11. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employment Opportunities The Center employs qualified postdoctoral researchers at LANL on all CMIME research teams. Background in mechanical behavior and/or radiation effects in structural metals and/or ceramics is needed, with expertise in interfaces and defects in materials. In experimental research, skills in high-resolution TEM (preferably aberration-corrected TEM) are required. In theoretical research, skills in atomistic modeling are required. US citizenship is not required. Want more

  12. Huntington Veterans Affairs Medical Center - Faucet and Showerhead Replacement Project: Best Management Practice Case Study #7: Faucets and Showerheads, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01

    Case study overview of the Huntington Veterans Affairs Medical Center water efficiency program as part of FEMP's water efficiency best management practice series.

  13. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  14. Staff > Faculty Directory > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faculty Directory List Image Héctor D. Abruña Director, Energy Materials Center at Cornell Emile M. Chamot Professor Chemistry and Chemical Biology hda1@cornell.edu List Image Lynden Archer James A. Friend Family Distinguished Professor Chemical and Biomolecular Engineering laa25@cornell.edu List Image Tomás Arias Professor Department of Physics taa2@cornell.edu List Image Joel Brock Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics jdb20@cornell.edu List Image

  15. International Nuclear Safety Center database on thermophysical properties of reactor materials

    SciTech Connect (OSTI)

    Fink, J.K.; Sofu, T.; Ley, H.

    1997-08-01

    The International Nuclear Safety Center (INSC) database has been established at Argonne National Laboratory to provide easily accessible data and information necessary to perform nuclear safety analyses and to promote international collaboration through the exchange of nuclear safety information. The INSC database, located on the World Wide Web at http://www.insc.anl.gov, contains critically assessed recommendations for reactor material properties for normal operating conditions, transients, and severe accidents. The initial focus of the database is on thermodynamic and transport properties of materials for water reactors. Materials that are being included in the database are fuel, absorbers, cladding, structural materials, coolant, and liquid mixtures of combinations of UO{sub 2}, ZrO{sub 2}, Zr, stainless steel, absorber materials, and concrete. For each property, the database includes: (1) a summary of recommended equations with uncertainties; (2) a detailed data assessment giving the basis for the recommendations, comparisons with experimental data and previous recommendations, and uncertainties; (3) graphs showing recommendations, uncertainties, and comparisons with data and other equations; and (4) property values tabulated as a function of temperature.

  16. Management of Biological Materials in Wastewater from Research & Development Facilities

    SciTech Connect (OSTI)

    Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

    2011-04-01

    PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

  17. Integrating the Clearance in NPP Residual Material Management

    SciTech Connect (OSTI)

    Garcia-Bermejo, R.; Lamela, B.

    2008-01-15

    Previous Experiences in decommissioning projects are being used to optimize the residual material management in NPP, metallic scrap usually. The approach is based in the availability of a materials Clearance MARSSIM-based methodology developed and licensed in Spain. A typical project includes the integration of segregation, decontamination, clearance, quality control and quality assurance activities. The design is based in the clearance methodology features translating them into standard operational procedures. In terms of ecological taxes and final disposal costs, significant amounts of money could be saved with this type of approaches. The last clearance project managed a total amount of 405 tons scrap metal and a similar amount of other residual materials occupying a volume of 1500 m{sup 3}. After less than a year of field works 251 tons were finally recycled in a non-licensed smelting facility. The balance was disposed as LILW. In the planning phase the estimated cost savings were 4.5 Meuro. However, today a VLLW option is available in European countries so, the estimated cost savings are reduced to 1.2 Meuro. In conclusion: the application of materials clearance in NPP decommissioning lessons learnt to the NPP residual material management is an interesting management option. This practice is currently going on in Spanish NPP and, in a preliminary view, is consistent with the new MARSAME Draft. An interesting parameter is the cost of 1 m3 of recyclable scrap. The above estimates are very project specific because in the segregation process other residual materials were involved. If the effect of this other materials is removed the estimated Unit Cost were in this project around 1700 euro/m{sup 3}, this figure is clearly below the above VLLW disposal cost of 2600 euro. In a future project it appears feasible to descend to 839 euro/m{sup 3} and if it became routine values and is used in big Decommissioning projects, around 600 euro/m{sup 3} or below possibly could

  18. Emergency department management of patients internally contaminated with radioactive material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  19. A knowledge continuity management program for the energy, infrastructure and knowledge systems center, Sandia National Laboratories.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2006-07-01

    A growing recognition exists in companies worldwide that, when employees leave, they take with them valuable knowledge that is difficult and expensive to recreate. The concern is now particularly acute as the large ''baby boomer'' generation is reaching retirement age. A new field of science, Knowledge Continuity Management (KCM), is designed to capture and catalog the acquired knowledge and wisdom from experience of these employees before they leave. The KCM concept is in the final stages of being adopted by the Energy, Infrastructure, and Knowledge Systems Center and a program is being applied that should produce significant annual cost savings. This report discusses how the Center can use KCM to mitigate knowledge loss from employee departures, including a concise description of a proposed plan tailored to the Center's specific needs and resources.

  20. Reducing energy costs at state agencies and institutions in Texas through the Governor's energy management center

    SciTech Connect (OSTI)

    White, J.A.

    1989-01-01

    The one year internship required for partial fulfillment of the Doctor of Engineering Degree was completed at the Governor's Energy Management Center in Austin, Texas. The intern worked for the State Agencies Department of the Energy Management Center. The intern was involved in a variety of projects, but the primary projects requiring the greatest time were the involvement with the design reviews for energy efficiency of new prisons being constructed in Texas, conducting energy management audits at 18 major state universities, and the technical and administrative assistance to the State Cogeneration Council. Other project involvement included managing the preliminary engineering design of the cogeneration facility at Austin State Hospital, responsibility for applying for a $1.4 million dollar crude oil refund on the behalf of all state agencies in Texas, and assisting in the planning and coordination of the $48 million Revolving Loan Program for the state of Texas. The internship taught many things about management and communications. The experience also provided a better understanding of how the state and federal government operate. The greatest contribution of the internship experience was the improvement of the intern's written and oral communication skills.

  1. Material Management and Minimization Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Material Management and Minimization Program DOE/NNSA Successfully Establishes Uranium Lease and Takeback Program to Support Critical Medical Isotope Production In January 2016, the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) successfully established the Uranium Lease and Take-Back (ULTB) program, as directed in the American Medical Isotopes Production Act of 2012, to support the commercial production of the medical

  2. Development of the RFID System for nuclear materials management.

    SciTech Connect (OSTI)

    Chen, K.; Tsai, H.; Liu, Y. Y.

    2008-01-01

    Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclear materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field

  3. UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email: Phone/Fax Name Email: Phone/Fax Name Email: Phone/Fax Name Email: Phone/Fax Return Via Mail To: U.S Department Of Energy ATTN: NMMSS Staff NA-73, GTN 1000 Independence Avenue, SW Washington, DC 20585-1290 Return Via Fax To: 301-903-1998 Return Via E-Mail To: NMMSS@nnsa.doe.gov

  4. Introduction to Special Edition (of the Journal of Nuclear Materials Management) on Reducing the Threat from Radioactive Materials

    SciTech Connect (OSTI)

    Mladineo, Stephen V.

    2007-03-01

    Introductory article for special edition of the JOURNAL OF NUCLEAR MATERIALS MANAGEMENT outlining the Institute of Nuclear Materials Management Nonproliferation and Arms Control Technical Division. In particular the International Nuclear and Radiological Security Standing Committee and its initial focus covering four topical areas--Radiological Threat Reduction, Nuclear Smuggling and Illicit Trafficking, Countering Nuclear Terrorism, and Radioligical Terrorism Consequence Management.

  5. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    SciTech Connect (OSTI)

    Klebanoff, Lennie

    2007-09-01

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  6. Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007

    Fuel Cell Technologies Publication and Product Library (EERE)

    Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

  7. Aging Management Guideline for commercial nuclear power plants: Motor control centers; Final report

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.; O`Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  8. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    SciTech Connect (OSTI)

    Singh, Nagendra; Tuttle, Mark A; Bhaduri, Budhendra L

    2015-01-01

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However, until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.

  9. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.

    2015-07-30

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less

  10. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    SciTech Connect (OSTI)

    Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.

    2015-07-30

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However, until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.

  11. High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecom Central Office and Large Data Center Applications

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet about high-efficiency, wideband, three-phase rectifiers and active rectifier management for ICT centers

  12. DFPARThIl!NT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlIfiNATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    s DFPARThIl!NT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlIfiNATION Page 1 of3 RECIPIENT :State of Hawaii DBEOT STATE : HI PROJECf TITLE: Loan Loss Reserve Funding Opportunity Announc~ment Number DE-FOA-0000052 Procurement Inslrument Number DE-EEOOOO216 NEPA Control Number em Number GF0-0000216-001 GO Based on my review ofthe informalion concerning the proposed aClion, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS

  13. US DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DEI'ER1IllNATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE PROJECT MANAGEMENT CENTER NEPA DEI'ER1IllNATION Page I of3 RECIPIENT:Verdant Power, Inc. STATE: NY PROJECT TITLE : Advancement of the Kinetic Hydropower System (KHPS) to DOE TRL 7/8 Funding Opportunity Announcement Number DE-FOA-OOOO293 Procurement Instrument Number NEPA Control Number CID Number DE-EEOOO5929 GF0-0005929-OO1 EE5929 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following

  14. Scrap metal management issues associated with naturally occurring radioactive material

    SciTech Connect (OSTI)

    Smith, K.P.; Blunt, D.L.

    1995-08-01

    Certain industrial processes sometimes generate waste by-products that contain naturally occurring radioactive material (NORM) at elevated concentrations. Some industries, including the water treatment, geothermal energy, and petroleum industries, generate scrap metal that may be contaminated with NORM wastes. Of these three industries, the petroleum industry probably generates the largest quantity of NORM-contaminated equipment, conservatively estimated at 170,000 tons per year. Equipment may become contaminated when NORM-containing scale or sludge accumulates inside water-handling equipment. The primary radionuclides of concern in these NORM wastes are radium-226 and radium-228. NORM-contaminated equipment generated by the petroleum industry currently is managed several ways. Some equipment is routinely decontaminated for reuse; other equipment becomes scrap metal and may be disposed of by burial at a licensed landfill, encapsulation inside the wellbore of an abandoned well, or shipment overseas for smelting. In view of the increased regulatory activities addressing NORM, the economic burden of managing NORM-contaminated wastes, including radioactive scrap metal, is likely to continue to grow. Efforts to develop a cost-effective strategy for managing radioactive scrap metal should focus on identifying the least expensive disposition options that provide adequate protection of human health and the environment. Specifically, efforts should focus on better characterizing the quantity of radioactive scrap available for recycle or reuse, the radioactivity concentration levels, and the potential risks associated with different disposal options.

  15. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    SciTech Connect (OSTI)

    Soloveichik, Grigorii

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  16. Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177

    SciTech Connect (OSTI)

    Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (∼49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of

  17. Logan Daum > Analyst - DC Energy > Center Alumni > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Logan Daum Analyst - DC Energy lrd56@cornell.edu Formerly a graduate student with the Fennie Group, Logan joined DC Energy in June of 2013.

  18. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  19. News > EMC2 News > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In This Section EMC2 News Archived News Stories News Chemist Will Dichtel earns MacArthur 'Genius Award' Thumb Chemist Will Dichtel earns MacArthur 'Genius Award' September 29, 2015 › Dichtel is pioneering the assembly of molecules into stable, high surface-area networks with potential applications in electronic, optical, and energy storage devices. Cornell dots research collaboration leads to $10M cancer center Thumb Cornell dots research collaboration leads to $10M cancer center September

  20. Young Investigator Program > Research > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Young Investigator Program In This Section YIA1 - Chen YIA2 - Rodríguez-Calero YIA3 - Rodriguez-López YIA4 - Hernández-Burgos YIA5 - Khurana YIA6 - Potash Young Investigator Program This program is designed to encourage Center postdocs and students to submit collaborative proposals for new research projects that advance the Center's overall programmatic goal of advancing the science of energy conversion and storage by understanding and exploiting fundamental properties of active

  1. Materials Down Select Decisions Made Within DOE’s Chemical Hydrogen Storage Center of Excellence

    Broader source: Energy.gov [DOE]

    Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen storage targets.

  2. Calendar of Research Meetings > News + Events > The Energy Materials Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Cornell News + Events In This Section EMC2 News Upcoming Events Calendar of Research Meetings Archived News RSS & Calender Feeds 2013-2014 Research Meetings To download a pdf listing of upcoming Center Research Meetings and Seminars click here

  3. Henry Kostalik > Researcher - 3M > Center Alumni > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center at Cornell Henry Kostalik Researcher - 3M hak27@cornell.edu Originally a member of the Coates Group, Henry received his PhD from Cornell in 2011. He is now working as a Sr. Research Specialist at 3M Corporate Research Laboratory.

  4. Federal Energy Management Program technical assistance case study: Water conservation at the Denver Federal Center

    SciTech Connect (OSTI)

    1997-01-01

    As part of a national effort, Executive Order 12902 and the Energy Policy Act of 1992 mandated water conservation in all Federal facilities. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) was tasked with leading the effort providing the technical assistance needed to identify ways to comply with the order. To apply highly efficient water use technologies in the Federal sector, FEMP formed a partnership with DOE`s National Renewable Energy Laboratory (NREL); the General Services Administration (GSA); the Bureau of Reclamation; the Environmental Protection Agency (EPA); Denver Water, the local utility; and several manufacturers. The objectives of the partnership were: to improve energy and water efficiency in the Federal sector; to deploy US manufactured water technologies in the Federal sector; to reduce life-cycle cost and improve reliability of Federal installations; to establish a showcase site demonstrating technologies and operating practices of water conservation; to demonstrate effective government and industry partnerships. FEMP chose the 14-story Building 67 at the Denver Federal Center for the site of the water conservation project.

  5. Center for Inverse Design: Modality 2 - Design of Materials with Targeted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionality 2: Design of Materials with Targeted Functionality Modality 2 applies to cases where we have numerous-perhaps thousands-of materials, each with a single (usually ground-state) configuration, and the desired target property is complex, so it currently cannot be computed on the fly. In this case, we use "design principles"-derived quantities that can be calculated for each material and which suggest key materials parameters that need to be obtained to get the relevant

  6. DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01

    Office of Legacy Management (LM)

    Amchitka Island Test Center - AK 01 Site ID (CSD Index Number): AK.01 Site Name: Amchitka Island Test Center Site Summary: Site Link: Amchitka Island Test Center External Site Link: Alternate Name(s): Amchitka Island Test Center Alternate Name Documents: Location: Amchitka, Alaska Location Documents: Historical Operations (describe contaminants): Underground nuclear test site Historical Operations Documents: Eligibility Determination: Remediated by DOE Eligibility Determination Documents:

  7. NSIDC Data Center: Energy Reduction Strategies (Brochure), Federal Energy Management Program (FEMP)NSIDC Data Center: Energy Reduction Strategies (Brochure), Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Many of these computers are meticulously maintained for peak performance, and the physical environment where they are stored must be kept clean, free of static electricity, and maintained within specifc air quality standards. So while improvements in energy effciency are important, air quality and reliability are also critical to data centers. Background The NSIDC provides data for studying the "cryosphere"-those areas of the planet where snow or ice exist. The two most extensive

  8. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, H. Jr.

    1995-02-21

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

  9. Method and apparatus for the management of hazardous waste material

    DOE Patents [OSTI]

    Murray, Jr., Holt

    1995-01-01

    A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

  10. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  11. The Ohio State University Bioproducts Innovation Center Sustainable Materials Networking Event

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Bioenergy Technologies Office Deputy Director Dr. Valerie Reed addressed members of The Ohio State University Bioproducts Innovation Center on October 15, 2015, on the main campus of The Ohio State University. Dr. Reed spoke about important upcoming opportunities from the U.S. Department of Energy and the U.S. Department of Agriculture supporting the national bioeconomy.

  12. Microsoft Word - Final Nuclear Materials Management and Safeguards System Users Guide 2 4-3-13.docx

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management and Safeguards Users Guide National Nuclear Security Administration Office of Nuclear Materials Integration Office of Nuclear Materials Integration Nuclear Materials Management and Safeguards System (NMMSS) Users Guide-Rev. 2.0 Prepared by: Department of Energy National Nuclear Security Administration Nuclear Materials Integration - NA-73 April 2013 Xavier Ascanio Office of Nuclear Materials Integration Nuclear Materials Management and 73 NMMSS User Guide 2.0 April

  13. Materials management in an internationally safeguarded fuels reprocessing plant

    SciTech Connect (OSTI)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  14. Management of nuclear materials and non-HLW | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management of nuclear materials and non-HLW Management of nuclear materials and non-HLW GC-52 provides legal advice to DOE regarding the consolidation and disposition of nuclear materials, including plutonium, uranium, and nuclear waste in accordance with applicable statutes, DOE Orders and international commitments. Advice encompasses issues related to mixed oxide fuel, waste incidental-to-reprocessing, transuranic waste, low-level waste, greater-than-class C waste and sealed sources.

  15. Biomimicry in metal-organic materials | Center for GasSeparationsRele...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimicry in metal-organic materials Previous Next List Muwei Zhang, Zhi-Yuan Gu, Mathieu Bosch, Zachary Perry, Hong-Cai Zhou, Coordination Chemistry Reviews, (2014) DOI: 10.1016...

  16. Deputy Assistant Secretary for Waste and Materials Management

    Broader source: Energy.gov [DOE]

    This position is located in the Office of Environmental Management (EM), in the U.S. Department of Energy. EM is responsible for the largest nuclear environmental cleanup project in the world....

  17. Michigan Technological Center for Nanostructured and Lightweight Materials in the Department of Chemical Engineering (Phase II)

    SciTech Connect (OSTI)

    Mullins, M.; Rogers, T.; King, J.; Holles, J.; Keith, J.; Heiden, P.; Cornilsen, B.; Allen, J.

    2009-12-10

    Summaries of the followings tasks are given in this report: Task 1 - Lightweight, Thermally Conductive Bipolar Plates for Improved Thermal Management in Fuel Cells; Task 2 - Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts; Task 3 - Hybrid inorganic/organic polymer nanocomposites; Task 4 - Carbonaceous Monolithic Electrodes for Fuel Cells and Rechargeable Batteries; and Task 5 - Movement and Freeze of Water in Fuel Cell Electrodes.

  18. Building America Solution Center Shows Builders How to Save Materials Costs While Saving Energy

    SciTech Connect (OSTI)

    Gilbride, Theresa L.

    2015-06-15

    This short article was prepared for the U.S. Department of Energy's Building America Update newsletter. The article identifies energy and cost-saving benefits of using advanced framing techniques in new construction identified by research teams working with the DOE's Building America program. The article also provides links to guides in the Building America Solution Center that give how-to instructions for builders who want to implement advanced framing construction. The newsletter is issued monthly and can be accessed at http://energy.gov/eere/buildings/building-america-update-newsletter

  19. Manual for Nuclear Materials Management and Safeguards System Reporting and Data Submission

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-19

    The manual provides detailed instructions for documenting and reporting data submissions for nuclear materials transactions, inventories, and material balances to the Nuclear Materials Management and Safeguards System (NMMSS). Cancels DOE M 474.1-2. Canceled by DOE M 470.4-6.

  20. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    William D. Nix Professor Nix obtained his B.S. degree in Metallurgical Engineering from San Jose State College, and his M.S. and Ph.D. degrees in Metallurgical Engineering and Materials Science, respectively, from Stanford University. He joined the faculty at Stanford in 1963 and was appointed Professor in 1972. He was named the Lee Otterson Professor of Engineering at Stanford University in 1989 and served as Chairman of the Department of Materials Science and Engineering from 1991 to 1996. He

  1. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    SciTech Connect (OSTI)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  2. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    SciTech Connect (OSTI)

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing

  3. Savannah River Operations Office Interim Management of Nuclear Materials at Savannah River Site

    Office of Environmental Management (EM)

    300 Federal Register / Vol. 60, No. 243 / Tuesday, December 19, 1995 / Notices Availability as amended remains unchanged. ADDRESSES: Written comments on the draft PEIS should be mailed to the following address: U.S. Department of Energy, Waste Management PEIS Comments, P.O. Box 3790, Gaithersburg, MD 20885- 3790. Requests for information about and copies of the draft PEIS should be directed to: Center for Environmental Management Information, P.O. Box 23769,Washington, DC 20026-3769,

  4. Nanoparticles > Complex Oxides > Research > The Energy Materials Center at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cornell Nanoparticles The nanoparticle synthesis efforts at EMC2 mostly take place in the Frank DiSalvo group, and focus on preparing useful fuel cell electrocatalysts in nanoparticle form. The research groups in EMC2 (formerly the Cornell Fuel Cell Institute) have discovered that bulk ordered intermetallic compounds- a class of solid materials that are made of multiple metals, but are not random alloys- show impressive resistance to poisoning as anode catalysts, and amazing activity for

  5. Current Partners > Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In This Section Why Partnerships? Current Partners Project Updates News & Events Resources Join PARTNERSHIPS Why Partnerships? ›Project Updates ›News + Events › Current Partners Some of our partner companies appear below. More information about each of these, and other partners coming soon. General Motors Honeoye Falls, NY Primet Precision Materials Ithaca, NY Ford Motor Corporation Dearborn, MI

  6. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect (OSTI)

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  7. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    SciTech Connect (OSTI)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

  8. Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993

    SciTech Connect (OSTI)

    Martin, D.R.

    1994-02-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

  9. Why Partnerships? > Partnerships > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View Slideshow › This page has images associated with it. Click above to view. Ford_logo Lockhhed_logo Primet_logo In This Section Why Partnerships? Current Partners Project Updates News & Events Resources Join PARTNERSHIPS Why Partnerships? ›Project Updates ›News + Events › Why Partnerships? Researchers at emc2 are focusing research resources on understanding and development of novel materials to improve energy technologies. We see our role as contributing necessary elements to

  10. Voluntary Protection Program Onsite Review, Volpentest HAMMER Training Center January 2011

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Volpentest Hazardous Materials Management and Emergency Response Training Center is continuing to perform at a level deserving DOE-VPP Star recognition.

  11. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect (OSTI)

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  12. Mastering Campus Energy and Water Management: Tools for Success Presentations and Materials

    Broader source: Energy.gov [DOE]

    Presentations and materials covered during the "Mastering Campus Energy and Water Management: Tools for Success" workshop held on August 8, 2016, in Providence, Rhode Island. This interactive workshop featured technical experts who engaged participants in a campus-planning exercise intended to give them technical and management tools to address federal goals at a campus level.

  13. GUIDELINES FOR IMPLEMENTATION OF AN ADVANCED OUTAGE CONTROL CENTER TO IMPROVE OUTAGE COORDINATION, PROBLEM RESOLUTION, AND OUTAGE RISK MANAGEMENT

    SciTech Connect (OSTI)

    Germain, Shawn St; Farris, Ronald; Whaley, April M; Medema, Heather; Gertman, David

    2014-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Managing NPP outages is a complex and difficult task due to the large number of maintenance and repair activities that are accomplished in a short period of time. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information, and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status, and periodic briefings in the OCC. It is a difficult task to maintain current the information related to outage progress and discovered conditions. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across, and out of the OCC. The use of these technologies will allow information to be shared electronically, providing greater amounts of real-time information to the decision makers and allowing OCC coordinators to meet with supporting staff remotely. Passively monitoring status electronically through advances in the areas of mobile worker technologies, computer-based procedures, and automated work packages will reduce the current reliance on manually

  14. A Study on Optimized Management Options for the Wolsong Low- and Intermediate - Level Waste Disposal Center in Korea - 13479

    SciTech Connect (OSTI)

    Park, JooWan; Kim, DongSun; Choi, DongEun [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)] [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)

    2013-07-01

    The safe and effective management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Currently, for permanent disposal of low- and intermediate-level waste (LILW), the Wolsong LILW Disposal Center (WLDC) is under construction. It will accommodate a total of 800,000 drums at the final stage after stepwise expansion. As an implementing strategy for cost-effective development of the WLDC, various disposal options suitable for waste classification schemes would be considered. It is also needed an optimized management of the WLDC by taking a countermeasure of volume reduction treatment. In this study, various management options to be applied to each waste class are analyzed in terms of its inventory and disposal cost. For the volume reduction and stabilization of waste, the vitrification and plasma melting methods are considered for combustible and incombustible waste, respectively. (authors)

  15. V-177: VMware vCenter Chargeback Manager File Upload Handling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apache modproxymodrewrite Bug Lets Remote Users Access Internal Servers U-047: Siemens Automation License Manager Bugs Let Remote Users Deny Service or Execute Arbitrary Code...

  16. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Burns, Peter; MSA Staff

    2011-05-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  17. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  18. Center for Inverse Design: Organization of the Center for Inverse...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization of the Center for Inverse Design This page shows the organizational management structure of the Center for Inverse Design, an Energy Frontier Research Center. It also ...

  19. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    SciTech Connect (OSTI)

    Bowers, John; CEEM Staff

    2011-05-01

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  20. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

    2011-11-02

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  1. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    SciTech Connect (OSTI)

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  2. Industrial Assessment Center Program Helps Veterans Learn Valuable Energy Management Skills

    Broader source: Energy.gov [DOE]

    U.S. soldiers are participating in an Energy Department supported program that provides hands-on education for #engineering #jobs. The Industrial Assessment Center (IAC) program, is open to all engineering students at participating colleges and universities, but many veterans find that they can use the program to further develop many skills they obtained through their service.

  3. Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Emergency Operations Center training manual

    SciTech Connect (OSTI)

    Not Available

    1990-02-28

    The objective of this training is to: describe the responsibilities, resources, and goals of the Emergency Operations Center and be able to evaluate and interpret this information to best direct and allocate emergency, plant, and other resources to protect life and the Paducah Gaseous Diffusion Plant.

  4. Implementation of Information Management System for Radiation Safety of Personnel at the Russian Northwest Center for Radioactive Waste Management 'SevRAO' - 13131

    SciTech Connect (OSTI)

    Chizhov, K.; Simakov, A.; Seregin, V.; Kudrin, I.; Shandala, N.; Tsovyanov, A.; Kryuchkov, V. [Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, RF Ministry of Health and Social Development. 46, Zhivopisnaya St., Moscow, 123182 (Russian Federation)] [Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, RF Ministry of Health and Social Development. 46, Zhivopisnaya St., Moscow, 123182 (Russian Federation); Krasnoschekov, A.; Kosnikov, A. [Northwest Center for Radioactive Waste Management 'SevRAO' - a branch of the Federal State Unitary Enterprise 'Enterprise for Radioactive Waste Management' 'RosRAO' 183017, Murmansk, Lobova st., 100 (Russian Federation)] [Northwest Center for Radioactive Waste Management 'SevRAO' - a branch of the Federal State Unitary Enterprise 'Enterprise for Radioactive Waste Management' 'RosRAO' 183017, Murmansk, Lobova st., 100 (Russian Federation); Kemsky, I. [Regional management - 120 of the Federal Medical-Biological Agency, 184682, Snezhnogorsk, Valentina Biryukova St., 5/1 (Russian Federation)] [Regional management - 120 of the Federal Medical-Biological Agency, 184682, Snezhnogorsk, Valentina Biryukova St., 5/1 (Russian Federation); Sneve, M. [Norwegian Radiation Protection Authority, Postboks 55, 1332 Oesteraas (Norway)] [Norwegian Radiation Protection Authority, Postboks 55, 1332 Oesteraas (Norway)

    2013-07-01

    The report is an overview of the information-analytical system designed to assure radiation safety of workers. The system was implemented in the Northwest Radioactive Waste Management Center 'SevRAO' (which is a branch of the Federal State Unitary Enterprise 'Radioactive Waste Management Enterprise RosRAO'). The center is located in the Northwest Russia. In respect to 'SevRAO', the Federal Medical-Biological Agency is the regulatory body, which deals with issues of radiation control. The main document to regulate radiation control is 'Reference levels of radiation factors in radioactive wastes management center'. This document contains about 250 parameters. We have developed a software tool to simplify control of these parameters. The software includes: input interface, the database, dose calculating module and analytical block. Input interface is used to enter radiation environment data. Dose calculating module calculates the dose on the route. Analytical block optimizes and analyzes radiation situation maps. Much attention is paid to the GUI and graphical representation of results. The operator can enter the route at the industrial site or watch the fluctuations of the dose rate field on the map. Most of the results are presented in a visual form. Here we present some analytical tasks, such as comparison of the dose rate in some point with control levels at this point, to be solved for the purpose of radiation safety control. The program helps to identify points making the largest contribution to the collective dose of the personnel. The tool can automatically calculate the route with the lowest dose, compare and choose the best route. The program uses several options to visualize the radiation environment at the industrial site. This system will be useful for radiation monitoring services during the operation, planning of works and development of scenarios. The paper presents some applications of this system on real data over three years - from March 2009 to

  5. Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

  6. Center for Nonlinear Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Geophysical Experiences Materials Design Calendar NSEC Center for Nonlinear Studies Center for Nonlinear Studies Serving as an interface between mission...

  7. Commission. The Nuclear Materials Management and Safeguards System (NMMSS) 2014 Annual Users

    National Nuclear Security Administration (NNSA)

    April 2014 NMMSS News is sponsored by the Department of Energy and the Nuclear Regulatory Commission. The Nuclear Materials Management and Safeguards System (NMMSS) 2014 Annual Users Training Meeting will be held May 12-15, 2014, in Denver, Colorado. NMMSS is the U.S. Government's official information system containing current and historical accounting data and other related nuclear material information collected from both government and commercial nuclear facilities. The data serve a critical

  8. EIS-0220: Interim Management of Nuclear Materials at the Savannah River Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    This environmental impact statement assesses the potential environmental impacts of actions necessary to manage nuclear materials at the Savannah River Site (SRS) in Aiken, South Carolina, until decisions on their ultimate disposition are made and implemented. The Department of Energy has decided to initiate actions which will stabilize certain of the SRS materials that represent environment, safety and health vulnerabilities in their current storage condition or which may represent a vulnerability within the next 10 years.

  9. Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.

    SciTech Connect (OSTI)

    Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L.

    2010-01-01

    Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

  10. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Alex Zunger; Tumas, Bill; CID Staff

    2011-05-01

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  11. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  12. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Allen, Todd; CMSNF Staff

    2011-05-01

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  13. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2011-11-02

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  14. Development of Improved Graphical Displays for an Advanced Outage Control Center, Employing Human Factors Principles for Outage Schedule Management

    SciTech Connect (OSTI)

    St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David

    2015-09-01

    The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications

  15. Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V

    SciTech Connect (OSTI)

    Takeuchi, Esther Sans; Takeuchi, Kenneth James; Marschilok, Amy Catherine

    2013-07-26

    Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

  16. Notice of Intent to Revise DOE O 460.2A, Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  17. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  18. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    SciTech Connect (OSTI)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy

  19. TRADE instructional materials for SARA/OSHA training. Volume 2, Managers and supervisors training

    SciTech Connect (OSTI)

    Not Available

    1989-03-01

    This document provides instructional materials for an eight-hour training course for managers and supervisors of hazardous waste sites. It is one of three volumes of course materials TRADE is preparing to help DOE contractor training staff comply with 29 CFR 1910.120, the Occupational Health and Safety Administration (OSHA) rule that implements Title I of the Superfund Amendments and Reauthorization Act (SARA) of 1986. OSHA`s final rule for hazardous waste operators was published in the Federal Register of March 6, 1989 (54 FR 9294). Combined with the materials in Volumes I and III and with appropriate site-specific information, these materials will help DOE contractors to meet the requirements of 1910.120 (e) that ``on-site management and supervisors directly responsible for, or who supervise employees engaged in, hazardous waste operations`` receive the same initial training as that of the employees they supervise and at least eight additional hours of specialized training in managing hazardous waste operations.

  20. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management. Part 1

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management.

  1. Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"

    SciTech Connect (OSTI)

    2009-02-01

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our

  2. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Michael Nastasi; CMIME Staff

    2011-05-01

    'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  3. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff

    2011-11-03

    'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  4. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  5. Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summaries for the Hydrogen Storage Materials Centers of Excellence Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE Period of Performance: 2005-2010 Fuel Cell Technologies Program Office of Energy Efficiency and Renewable Energy U. S. Department of Energy April 2012 2 3 Primary Authors: Chemical Hydrogen Storage (CHSCoE): Kevin Ott, Los Alamos National Laboratory Hydrogen Sorption (HSCoE): Lin Simpson, National Renewable Energy Laboratory Metal Hydride

  6. Data center thermal management

    DOE Patents [OSTI]

    Hamann, Hendrik F.; Li, Hongfei

    2016-02-09

    Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.

  7. Proactive Management of Materials Degradation - A Review of Principles and Programs

    SciTech Connect (OSTI)

    Bond, Leonard J.; Doctor, Steven R.; Taylor, Theodore T.

    2008-08-28

    The U.S. Nuclear Regulatory Commission (NRC) has undertaken a program to lay the technical foundation for defining proactive actions so that future degradation of materials in light water reactors (LWRs) is limited and, thereby, does not diminish either the integrity of important LWR components or the safety of operating plants. This technical letter report was prepared by staff at Pacific Northwest National Laboratory in support of the NRC Proactive Management of Materials Degradation (PMMD) program and relies heavily on work that was completed by Dr. Joseph Muscara and documented in NUREG/CR-6923. This report concisely explains the basic principles of PMMD and its relationship to prognostics, provides a review of programs related to PMMD being conducted worldwide, and provides an assessment of the technical gaps in PMMD and prognostics that need to be addressed. This technical letter report is timely because the majority of the U.S. reactor fleet is applying for license renewal, and many plants are also applying for increases in power rating. Both of these changes could increase the likelihood of materials degradation and underline, therefore, the interest in proactive management in the future.

  8. Potential for Data Center Efficiency Improvements | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Center Efficiency Improvements Potential for Data Center Efficiency Improvements Document offers an overview of the Federal Energy Management Program's data center activities. ...

  9. Data Center Energy Efficiency | Department of Energy

    Office of Environmental Management (EM)

    Efficiency Data Center Energy Efficiency Document offers an overview of the Federal Energy Management Program's data center activities and resources. Download the data center ...

  10. APS Conference Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines intellectual stimulation with natural beauty. The Conference Center is within walking distance of the Argonne Guest House, a full-service, professionally-managed hotel and...

  11. Audit Report - The Department of Energy's Management of Surplus Nuclear Materials, OAS-L-13-04

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management of Surplus Nuclear Materials OAS-L-13-04 January 2013 MEMORANDUM FOR THE DIRECTOR INTEGRATION ADMINISTRATION FROM: Daniel M. Weeber Assistant Inspector General for Audits and Administration Office of Inspector General SUBJECT: INFORMATION Management of Surplus Nuclear Materials BACKGROUND A primary mission of the Department of Energy design, build and test the Nation' Department's complex was devoted to the production and fabrication of n components. With the end of the C suspended or

  12. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    SciTech Connect (OSTI)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  13. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center The U.S. Department of Energy's (DOE) Office of Enterprise Assessments (EA) provides expert evaluations of management performance in safety, security and other areas by seasoned experts who are independent of line management. Information related to enforcement, safety, security, emergency management and cyber performance management is made available to the public in the EA Information Center. Enforcement Info Center The Department's Enforcement Office conducts

  14. Material and energy recovery in integrated waste management systems: Project overview and main results

    SciTech Connect (OSTI)

    Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Saccani, Cesare

    2011-09-15

    Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

  15. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  16. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Understanding and manipulating the most fundamental properties of materials can lead to major breakthroughs in solar power, reactor fuels, optical computing, telecommunications. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Yu Seung Kim (left) and Kwan-Soo Lee (right) New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge

  17. The Ohio State University Bioproducts Innovation Center Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio State University Bioproducts Innovation Center Sustainable Materials Networking Event The Ohio State University Bioproducts Innovation Center Sustainable Materials Networking...

  18. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  19. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  20. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  1. Annual report: Purchasing and Materials Management Organization, Sandia National Laboratories, fiscal year 1992

    SciTech Connect (OSTI)

    Zaeh, R.A.

    1993-04-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.

  2. RECOVERY ACT: DYNAMIC ENERGY CONSUMPTION MANAGEMENT OF ROUTING TELECOM AND DATA CENTERS THROUGH REAL-TIME OPTIMAL CONTROL (RTOC): Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Ron Moon

    2011-06-30

    This final scientific report documents the Industrial Technology Program (ITP) Stage 2 Concept Development effort on Data Center Energy Reduction and Management Through Real-Time Optimal Control (RTOC). Society is becoming increasingly dependent on information technology systems, driving exponential growth in demand for data center processing and an insatiable appetite for energy. David Raths noted, 'A 50,000-square-foot data center uses approximately 4 megawatts of power, or the equivalent of 57 barrels of oil a day1.' The problem has become so severe that in some cases, users are giving up raw performance for a better balance between performance and energy efficiency. Historically, power systems for data centers were crudely sized to meet maximum demand. Since many servers operate at 60%-90% of maximum power while only utilizing an average of 5% to 15% of their capability, there are huge inefficiencies in the consumption and delivery of power in these data centers. The goal of the 'Recovery Act: Decreasing Data Center Energy Use through Network and Infrastructure Control' is to develop a state of the art approach for autonomously and intelligently reducing and managing data center power through real-time optimal control. Advances in microelectronics and software are enabling the opportunity to realize significant data center power savings through the implementation of autonomous power management control algorithms. The first step to realizing these savings was addressed in this study through the successful creation of a flexible and scalable mathematical model (equation) for data center behavior and the formulation of an acceptable low technical risk market introduction strategy leveraging commercial hardware and software familiar to the data center market. Follow-on Stage 3 Concept Development efforts include predictive modeling and simulation of algorithm performance, prototype demonstrations with representative data center equipment to verify requisite

  3. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1--October 31, 1998

    SciTech Connect (OSTI)

    1998-11-01

    This paper describes activities of the Center under the following topical sections: Electronic resource library; Environmental restoration and protection; Health and safety; Waste management; Communication program; Education program; Training; Analytical development; Materials science; Plutonium processing and handling; and Storage.

  4. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    SciTech Connect (OSTI)

    Jesse Schreiber

    2008-03-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet Americas nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in green technology.

  5. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    SciTech Connect (OSTI)

    Jesse Schrieber

    2008-07-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America’s nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in “green” technology.

  6. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  7. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    SciTech Connect (OSTI)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  8. NASA's Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Revised) (Fact Sheet), Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) is located in Huntsville, Alabama, adjacent to Redstone Arsenal. MSFC has over 4.5 million square feet of building space occupied by 7,000 personnel, and consumes approximately 240 million gallons of potable water annually, supplied through the City of Huntsville. MSFC has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. In 2005,

  9. Benefits and costs of load management: a technical assistance and resource material handbook

    SciTech Connect (OSTI)

    Mueller, Ronald; Ackerman, Gary; Lau, Ronald; Patmore, James; Ma, Fred; Sechan, Neil; Schoor, Alan; Simon, Lois; Bleiweis, Bruce; Lloyd, Kevin

    1980-06-01

    This handbook will assist state regulatory authorities and electric utilities in complying with the Load Management Standard of the Public Utility Regulatory Policies Act of 1978. The handbook has two major sections. The first discusses load-management techniques in terms of equipment, customer applications, combinations of techniques, etc. Key steps for evaluating the costs and benefits of load management options also are presented. These steps are intended to sequentially eliminate ineffective load-management options as the cost-benefit calculation becomes more detailed. The second section includes up-to-date information on available load-management technologies, models for utility costing, load-management data transfer, prescreening of load-management options, and the load-management literature.

  10. German Aerospace Center DLR | Open Energy Information

    Open Energy Info (EERE)

    Aerospace Center DLR Jump to: navigation, search Name: German Aerospace Center (DLR) Place: Stuttgart, Germany Zip: 70569 Product: Stuttgart-based, agency that manages the...

  11. Leaching tests as a tool in waste management to evaluate the potential for utilization of waste materials

    SciTech Connect (OSTI)

    Sloot, H.A. van der; Kosson, D.S.

    1995-12-01

    Several waste materials from large scale industrial processes possess technical properties that would allow their use in certain construction applications, e.g. coal fly ash, slags from large scale industrial melting and ore processing, and incinerator residues. The disposal of such materials requires space and controlled landfills to minimize long term environmental risks. The beneficial use of such bulk materials is an attractive alternative, if it can be shown that such applications are environmentally acceptable. For this management of wastes and the decision to either dispose or use, information on the environmental properties of materials is needed. Leaching tests have been developed to assess such properties. These have been designed typically in relation to regulatory tools, not as instruments to guide the management of wastes and the possibilities to improve material properties. New methods have been designed to address this aspect, in which maximum benefit can be derived from knowledge of the systematic behaviour of materials and the already existing knowledge in other countries producing similar residues. After initial detailed characterization, concise procedures can be used for control purposes focused on the typical aspects of a certain residue stream. Examples of existing knowledge in this field will be presented.

  12. Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutron scattering of deuterated block copolymers demonstrates how an applied electric field (left) alters structure and performance Energy filtered TEM of P3HT and P3HT-b-PEO...

  13. Federal Emergency Management Information System (FEMIS) Bill of Materials (BOM) for FEMIS Version 1.4.6

    SciTech Connect (OSTI)

    Homer, B.J., Johnson, D.M.; Wood, B.M.; Stoops, L.R.; Fangman, P.M.; Johnson, R.L.; Loveall, R.M.; Millard, W.D.; Johnson, S.M.; Downing, T.R.

    1999-03-12

    This document describes the hardware and software required for the Federal Emergency Management Information System version 1.4.6 (FEMIS{copyright} v1.4.6). FEMIS is designed for a single Chemical Stockpile Emergency Preparedness Program (CSEPP) site that has multiple Emergency Operations Centers (EOCs). Each EOC has personal computers (PCs) that emergency planners and operations personnel use to do their jobs. These PCs are connected via a local area network (LAN) to servers that provide EOC-wide services. Each EOC is interconnected to other EOCS via a Wide Area Network (WAN).

  14. Work with Us | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Us We are eager to pursue materials science research with partners in industry, universities, and other organizations. Contact Us Photo of Nancy Haegel Nancy Haegel Center Director, Materials Science Center Email | 303-384-6548 For lead researcher contacts, see our research areas. To find research group managers or specific researchers, see our listing of research staff. Interested in Joining Our Team? Find an opportunity: Job | Internship | Post-doc Plan Your Visit Map to NREL Golden,

  15. About Us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    understanding of how advanced thermoelectric materials function and the design and synthesis of such materials. Focus The Center for Revolutionary Materials for Solid State...

  16. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Thackeray, Michael; CEES Staff

    2011-05-01

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  17. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

    2011-11-02

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  18. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Engineering Center University of Wisconsin-Madison Experimental and Numerical Studies of the Temperature Field in Selective Laser Sintering to Improve Shrinkage and Warpage Prediction Prof. Dr.-Ing. Natalie Rudolph Polymer Engineering Center Department of Mechanical Engineering University of Wisconsin-Madison 1513 University Ave Madison, WI 53706 Advanced Qualification of Additive Manufacturing Materials Workshop, July 20-21, 2015 in Santa Fe, NM Polymer Engineering Center University of

  19. Center for Advanced Photophysics | About The Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Victor Klimov - Center for Advanced Solar Photophysics Message from Center Director The solution to the global energy challenge requires revolutionary breakthroughs in areas such as the conversion of solar energy into electrical power or chemical fuels. The principles for capturing solar light and converting it into electrical charges have not changed for more than four decades. Previous advances in this area have mostly relied on iterative improvements in material quality and/or device

  20. Data Center Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Energy Efficiency In 2014, data centers in the U.S. con- sumed an estimated 70 billion kWh, 1.8% of total U.S. electricity consump- tion. 1 Thus, it is no surprise that both private and public sector efforts are underway to reduce energy use in data centers. Executive Order (E.O.) 13693 "Planning for Federal Sustain- ability in the Next Decade" outlines the energy efficiency requirements and strategies for federal data centers. The Federal Energy Management Program (FEMP)

  1. Application for managing model-based material properties for simulation-based engineering

    DOE Patents [OSTI]

    Hoffman, Edward L.

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  2. DOE - Office of Legacy Management -- Fernald Environmental Management

    Office of Legacy Management (LM)

    Project - 027 Fernald Environmental Management Project - 027 FUSRAP Considered Sites Site: Fernald Environmental Management Project // Feed Materials Production Center (OH.12) (027) Remediated; managed by DOE LM. More information at http://www.lm.doe.gov/fernald/Sites.aspx Designated Name: Not Designated under FUSRAP Alternate Name: Fernald, OH, Site; Fernald Preserve Location: Hamilton, Ohio Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Uranium processing

  3. Data Center Energy-Efficiency Best Practices

    Broader source: Energy.gov [DOE]

    This seminar covers why energy-efficient data centers are critical, energy-efficiency opportunities, and energy management improvement processes. Topics include best practices for acquisition, benchmarking, performance metrics, and managing energy and environmental systems in Federal data centers.

  4. Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management

    SciTech Connect (OSTI)

    Shawn St. Germain; Ronald Farris; Heather Medeman

    2013-09-01

    schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

  5. Connectivity to National Atmospheric Release Advisory Center (NARAC)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-11

    To establish requirements for connectivity with the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory for all DOE and NNSA sites and facilities with potential for hazardous materials releases at levels that require emergency response. The requirements of this Notice have been incorporated into DOE O 151.1C, Comprehensive Emergency Management System, dated 11-2-05. No cancellations.

  6. Wireless Sensors Improve Data Center Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors Improve Data Center Efficiency Wireless Sensors Improve Data Center Efficiency Case study bulletin describes how to improve data center energy efficiency for wireless sensors, and how to use that information to manage the data center. Download the Wireless Sensors Improve Data Center Efficiency case study. (3.57 MB) More Documents & Publications Data Center Airflow Management Retrofit Data Center Airflow Management Retrofit September 2010 Data Center Energy Efficiency Measurement

  7. Management of radioactive material safety programs at medical facilities. Final report

    SciTech Connect (OSTI)

    Camper, L.W.; Schlueter, J.; Woods, S.

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  8. Implementation Guide for Use with DOE O 460.2 Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-11-15

    The purpose of this guide is to assist those responsible for transporting and packaging Department materials, and to provide an understanding of Department policies on activities which supplement regulatory requirements. Does not cancel/supersede other directives.

  9. Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Light Creation Materials HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRC...

  10. Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Wavelength Conversion Materials HomeEnergy ResearchEFRCsSolid-State Lighting Science ...

  11. Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Gonder, J.; Lustbader, J.; Pesaran, A.

    2007-12-01

    This Powerpoint presentation examines battery thermal management using PCM and concludes excellent performance in limiting peak temperatures at short period extensive battery use; although, vehicle designers will need to weigh the potential increase in mass and cost associated with adding PCM against the anticipated benefits.

  12. Categorical Exclusion Determinations: Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consolidated Business Service Center Categorical Exclusion Determinations: Environmental Management Consolidated Business Service Center Categorical Exclusion Determinations issued ...

  13. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama Birmingham at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  14. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center of...

  15. Center for Functional Nanomaterials

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  16. Uncertainty Quantification and Management for Multi-scale Nuclear Materials Modeling

    SciTech Connect (OSTI)

    McDowell, David; Deo, Chaitanya; Zhu, Ting; Wang, Yan

    2015-10-21

    Understanding and improving microstructural mechanical stability in metals and alloys is central to the development of high strength and high ductility materials for cladding and cores structures in advanced fast reactors. Design and enhancement of radiation-induced damage tolerant alloys are facilitated by better understanding the connection of various unit processes to collective responses in a multiscale model chain, including: dislocation nucleation, absorption and desorption at interfaces; vacancy production, radiation-induced segregation of Cr and Ni at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels; investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S); time evolution of swelling (cluster growth) phenomena of irradiated materials; and energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip.

  17. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center EM Site Manager Reflects on Field Office's Formative Year, Looks to Future EM Site Manager Reflects on Field Office's Formative Year, Looks to Future EM Los Alamos Field Office Manager Douglas E. Hintze recently spoke with EM Update about the launch of EM's newest site office and its challenges and accomplishments. Read more Los Alamos Demolition Work Progresses Toward Goal of Completing Cleanup Los Alamos Demolition Work Progresses Toward Goal of Completing Cleanup

  18. BEAM: A computational workflow system for managing and modeling material characterization data in HPC environments

    SciTech Connect (OSTI)

    Lingerfelt, Eric J; Endeve, Eirik; Ovchinnikov, Oleg S; Borreguero Calvo, Jose M; Park, Byung H; Archibald, Richard K; Symons, Christopher T; Kalinin, Sergei V; Messer, Bronson; Shankar, Mallikarjun; Jesse, Stephen

    2016-01-01

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now with the rise of multimodal acquisition systems and the associated processing capability the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalable data analysis and simulation via an intuitive, cross-platform client user interface. This framework delivers authenticated, push-button execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing the converged compute-and-data infrastructure at Oak Ridge National Laboratory s (ORNL) Compute and Data Environment for Science (CADES) and HPC environments like Titan at the Oak Ridge Leadership Computing Facility (OLCF). In this work we address the underlying HPC needs for characterization in the material science community, elaborate how BEAM s design and infrastructure tackle those needs, and present a small sub-set of user cases where scientists utilized BEAM across a broad range of analytical techniques and analysis modes.

  19. Karen Nunez, Procedures Center Manager

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the accelerator based on their knowledge and work they do. I get the benefit of learning a bit about these different perspectives while recording the necessary...

  20. Contact us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact us Home Director Donald T Morelli Professor of Materials Science and Director, MSUDOE Energy Frontier Research Center Department of Chemical Engineering & Materials...

  1. Implementation of the National Incident Management System (NIMS)/Incident Command System (ICS) in the Federal Radiological Monitoring and Assessment Center(FRMAC) - Emergency Phase

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-04-01

    Homeland Security Presidential Directive HSPD-5 requires all federal departments and agencies to adopt a National Incident Management System (NIMS)/Incident Command System (ICS) and use it in their individual domestic incident management and emergency prevention, preparedness, response, recovery, and mitigation programs and activities, as well as in support of those actions taken to assist state and local entities. This system provides a consistent nationwide template to enable federal, state, local, and tribal governments, private-sector, and nongovernmental organizations to work together effectively and efficiently to prepare for, prevent, respond to, and recover from domestic incidents, regardless of cause, size, or complexity, including acts of catastrophic terrorism. This document identifies the operational concepts of the Federal Radiological Monitoring and Assessment Center's (FRMAC) implementation of the NIMS/ICS response structure under the National Response Plan (NRP). The construct identified here defines the basic response template to be tailored to the incident-specific response requirements. FRMAC's mission to facilitate interagency environmental data management, monitoring, sampling, analysis, and assessment and link this information to the planning and decision staff clearly places the FRMAC in the Planning Section. FRMAC is not a mitigating resource for radiological contamination but is present to conduct radiological impact assessment for public dose avoidance. Field monitoring is a fact-finding mission to support this effort directly. Decisions based on the assessed data will drive public protection and operational requirements. This organizational structure under NIMS is focused by the mission responsibilities and interface requirements following the premise to provide emergency responders with a flexible yet standardized structure for incident response activities. The coordination responsibilities outlined in the NRP are based on the NIMS

  2. Material flows of mobile phones and accessories in Nigeria: Environmental implications and sound end-of-life management options

    SciTech Connect (OSTI)

    Osibanjo, Oladele Nnorom, Innocent Chidi

    2008-02-15

    Presently, Nigeria is one of the fastest growing Telecom markets in the world. The country's teledensity increased from a mere 0.4 in 1999 to 10 in 2005 following the liberalization of the Telecom sector in 2001. More than 25 million new digital mobile lines have been connected by June 2006. Large quantities of mobile phones and accessories including secondhand and remanufactured products are being imported to meet the pent-up demand. This improvement in mobile telecom services resulted in the preference of mobile telecom services to fixed lines. Consequently, the contribution of fixed lines decreased from about 95% in year 2000 to less than 10% in March 2005. This phenomenal progress in information technology has resulted in the generation of large quantities of electronic waste (e-waste) in the country. Abandoned fixed line telephone sets estimated at 120,000 units are either disposed or stockpiled. Increasing quantities of waste mobile phones estimated at 8 million units by 2007, and accessories will be generated. With no material recovery facility for e-waste and/or appropriate solid waste management infrastructure in place, these waste materials end up in open dumps and unlined landfills. These practices create the potential for the release of toxic metals and halocarbons from batteries, printed wiring boards, liquid crystal display and plastic housing units. This paper presents an overview of the developments in the Nigerian Telecom sector, the material in-flow of mobile phones, and the implications of the management practices for wastes from the Telecom sector in the country.

  3. 2013 Annual Planning Summary for the Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management Consolidated Business Center 2013 Annual Planning Summary for the Environmental Management Consolidated Business Center The ongoing and projected...

  4. Energy Security Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Security Center Energy Security Center Developing new ideas for reliable, secure, and sustainable carbon neutral energy solutions for the nation-the portal to LANL's diverse energy security research enterprise. Contact Leader Steven Buelow (505) 663 5629 Email Program Administrator Jutta Kayser (505) 663-5649 Email Research focus areas Materials and concepts for clean energy Science for renewable energy sources Superconducting cables Energy storage Fuel cells Mitigating impacts of global

  5. LANSCE | Lujan Center | Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Lujan Center: Science & People The Lujan Center, Science & People April 2014 In This Issue: * Olivier Gourdon: A crystallographer keen on showing off the revealing properties of neutrons *Seeking design rules for efficient lighting sources * Rate-dependent deformation mechanisms in beryllium * Improved understanding of a semiconductor used in infrared detectors * Mike Fitzsimmons elected NNSA Fellow * Pressure tuning: a new approach for making zero thermal expansion materials *

  6. CNEEC - Center Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals Concept of the integrated center The overarching goal of the Center is to increase the efficiency of energy conversion by manipulating materials at the nanometer scale. We develop advanced fabrication and characterization methodologies to understand how nanostructuring can optimize light absorption through quantum and optical confinement and improve catalysis through theory-driven design. Each is manipulated to improve performance and efficiency in energy conversion and storage devices.

  7. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  8. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  9. <...

  10. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24

  11. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:www.nnsa.energy.govaboutusouroperationsmanagementandbudget

  12. Y-12 History Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 History Center Y-12 History Center Located within the New Hope Center at Y-12, the History Center houses a fascinating collection of informational materials and historical...

  13. American Recovery and Reinvestment Act Federal Energy Management Program Technical Assistance Project 184 U.S. Customs and Border Protection Data Center, Springfield, Virginia

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-09-30

    This report documents the findings of an on-site energy audit of the U.S. Customs and Border Protection (CBP) Data Center in Springfield, Virginia.

  14. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at the Electron Microscopy Laboratory managed by Los

  15. Single-Center Experience and 1-Year Follow-up Results of 'Sandwich Technique' in the Management of Common Iliac Artery Aneurysms During EVAR

    SciTech Connect (OSTI)

    Ricci, Carmelo; Ceccherini, Claudio Cini, Marco; Vigni, Francesco; Leonini, Sara; Tommasino, Giulio; Muzzi, Luigi; Tucci, Enrico; Benvenuti, Antonio; Neri, Eugenio

    2012-10-15

    Purpose: Abdominal aortic aneurysm (AAA) accompanied by common iliac artery (CIA) aneurysms requires a more demanding procedure owing to the difficulties in obtaining an adequate distal landing zone for the stent-graft limb(s), a potential site of endoleak. The 'sandwich technique' is a procedure to increase EVAR feasibility in the setting of adverse or challenging CIA anatomy. Its main advantages include no restrictions in terms of CIA diameter or length or internal iliac artery (IIA) diameter, no need to wait for a specific stent-graft. Our purpose is to describe our single-center experience and one year follow-up results of this new procedure. Materials and Methods: From April 2009 to June 2010, the sandwich technique was performed in our institution in 7 patients treated for AAA and unilateral CIA aneurysms (n. 5) or bilateral CIA aneurysms (n. 2). Inclusion criteria were the presence of unilateral or bilateral CIA aneurysm (independently from its diameter), IIA artery measuring up to 9 mm in its maximum diameter, not dilatation of IIA and EIA. Results: The mean follow-up length was 15 months (range: 14-20 months). All stent-implanted iliac branches remained patent on 1 year follow-up and IIA flow was preserved. None of the patients had symptoms of pelvic ischemia. CT scan follow-up showed aneurysm shrinkage in five patients, without any sign of endoleaks in all cases. Conclusions: In selected cases, the 'sandwich technique' showed good outcomes confirming to be a safe and easy to perform way to overcome anatomical constraints and expanding the limits of EVAR.

  16. Sunrayce 97 Continues Day 6 - Manhattan to Smith Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 - Manhattan to Smith Center For more information contact: Patrick Booher, Sunrayce Program Manager (202) 586-0713 Smith Center, Kan.- --Racing across the heartland of Kansas at ...

  17. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:nnsa.energy.govaboutusouroperationsmanagementandbudget

    P...

  18. Environment and Materials Stewardship | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment and Materials Stewardship NREL's sustainability programs reduce greenhouse gases, reduce waste and prevent pollution, and encourage green purchasing. Sustainability, successfully integrated with environmental management, protects and enhances the vegetation, wildlife, and natural resources on NREL's campus. A photo of a falcon flying low over tall, brown grasses A Golden Eagle flies from a lift to his trainer during research at the National Wind Technology Center to help NREL develop

  19. Call center construction underway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.O. Box 2078 Carlsbad, New Mexico 88221 Westinghouse News For Immediate Release Call Center Construction Underway CARLSBAD, N.M., January 28, 2000 - Morrison-Knudsen (MK) and the Westinghouse Government Services Group are making significant progress on getting the Valor Telecommunications call center ready for occupancy. After only two weeks on the job, "design and construction work is in high gear," said Charlie Moore, MK Construction Manager. The 62,000-square-foot facility at 3111

  20. A HUMAN RELIABILITY-CENTERED APPROACH TO THE DEVELOPMENT OF JOB AIDS FOR REVIEWERS OF MEDICAL DEVICES THAT USE RADIOLOGICAL BYPRODUCT MATERIALS.

    SciTech Connect (OSTI)

    COOPER, S.E.; BROWN, W.S.; WREATHALL, J.

    2005-02-02

    The U.S. Nuclear Regulatory Commission (NRC) is engaged in an initiative to risk-inform the regulation of byproduct materials. Operating experience indicates that human actions play a dominant role in most of the activities involving byproduct materials, which are radioactive materials other than those used in nuclear power plants or in weapons production, primarily for medical or industrial purposes. The overall risk of these activities is strongly influenced by human performance. Hence, an improved understanding of human error, its causes and contexts, and human reliability analysis (HRA) is important in risk-informing the regulation of these activities. The development of the human performance job aids was undertaken by stages, with frequent interaction with the prospective users. First, potentially risk significant human actions were identified based on reviews of available risk studies for byproduct material applications and of descriptions of events for byproduct materials applications that involved potentially significant human actions. Applications from the medical and the industrial domains were sampled. Next, the specific needs of the expected users of the human performance-related capabilities were determined. To do this, NRC headquarters and region staff were interviewed to identify the types of activities (e.g., license reviews, inspections, event assessments) that need HRA support and the form in which such support might best be offered. Because the range of byproduct uses regulated by NRC is so broad, it was decided that initial development of knowledge and tools would be undertaken in the context of a specific use of byproduct material, which was selected in consultation with NRC staff. Based on needs of NRC staff and the human performance related characteristics of the context chosen, knowledge resources were then compiled to support consideration of human performance issues related to the regulation of byproduct materials. Finally, with

  21. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste ...

  22. Potential for Data Center Efficiency Improvements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... August 1. http:www.analyticspress.comdatacenters.html 4 http:www.nrdc.orgenergyfilesdata-center-efficien- cy-assessment-IP.pdf FEDERAL ENERGY MANAGEMENT PROGRAM For more ...

  1. Energy Efficiency in Data Centers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Centers Energy Efficiency in Data Centers Energy Efficiency in Data Centers The Federal Energy Management Program (FEMP) encourages agencies and organizations to improve data center energy efficiency. To help them construct and maintain energy-efficient data centers, FEMP provides a variety of publications, tools, and training opportunities. Read about FEMP's data center energy efficiency activities and resources. Center of Expertise Logo for the Center of Expertise for Energy Efficiency in

  2. LANSCE | Lujan Center | Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIPPO Engineering Diffraction SMARTS Protein Crystallography PCS Neutron Imaging Capability Neutron Radiography Contacts Lujan Center Leader Aaron Couture (acting) 505.667.1730 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Charles Kelsey (acting) 505.667.8755 User Program Administration lujan-uo@lanl.gov Administrative Assistant Julie Quintana-Valdez 505.665.5390 Department of Energy, National Nuclear

  3. EM Selects Ralph Holland to Lead Consolidated Business Center | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Selects Ralph Holland to Lead Consolidated Business Center EM Selects Ralph Holland to Lead Consolidated Business Center August 10, 2015 - 2:00pm Addthis Ralph Holland, Environmental Management Consolidated Business Center Ralph Holland, Environmental Management Consolidated Business Center WASHINGTON, D.C. - EM has named Ralph Holland director of the Environmental Management Consolidated Business Center (EMCBC) in Cincinnati. Holland has served in various contracting, supervisory,

  4. LANSCE | Lujan Center | Instruments | SMARTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer for Materials Research at Temperature and Stress | SMARTS Materials in Extreme Environments and Geoscience The SMARTS is a third-generation neutron diffractometer optimized for the study of engineering materials. It was funded by DOE and constructed at the Lujan Center, coming online in the summer of 2001. SMARTS provides an exciting range of capabilities for studying polycrystalline materials focusing on two areas: the measurement of deformation under stress and extreme

  5. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  6. ( Sample of Shipment Notice) Federal Records Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ( Sample of Shipment Notice) Federal Records Center ( Sample of Shipment Notice) Federal Records Center This document instructs on how to ship records to the Federal Records Center ( Sample of Shipment Notice) Federal Records Center (196.84 KB) More Documents & Publications Correspondence Style Guide Records Management Handbook Records Management Handbook

  7. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  8. Electron Microscopy Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Electron Microscopy Center The Electron Microscopy Center Group (EMC) develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials challenges. EMC emphasizes three major areas: materials research, experimental technique and instrumentation development, and operation of unique and state-of-the-art instrumentation. The goals of EMC materials research are closely aligned with those of our user community.

  9. Extreme Environments (EFree) Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extreme Environments (EFree ) Center LLNL Co-PI: Jonathon Crowhurst [e-mail] [bio] Novel materials for energy applications Ultrafast reflectivity measurements under high pressure Transient reflectivity of BaFe2As2 at the indicated pressures in neon. In this experiment we measure pump-driven ultrafast reflectivity changes in order to infer the time scale of electron phonon coupling, and help to assess its role and importance in new superconducting systems. We believe this is the first time such

  10. Independent Oversight Review of Management of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and Associated Feedback and Improvement Processes, September 2013

    Office of Environmental Management (EM)

    2003 | Department of Energy Y-12 National Security Complex - April 2003 Independent Oversight Inspection, Y-12 National Security Complex - April 2003 April 2003 Inspection of Environment, Safety, and Health Management at the Y-12 National Security Complex This report provides the results of an inspection of environment, safety, and health management at the Department of Energy's (DOE) Y-12 National Security Complex. The inspection was conducted in March and April 2003 by the Office of

  11. Staff > Center Alumni > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoc - Savannah River National Lab ttt45@cornell.edu List Image Giang Vo Research Investigator - Dupont gdv8@cornell.edu List Image Deli Wang Professor - Huazhong University of ...

  12. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. * PDOS measurements performed on polycrystalline samples have identified the...

  13. Amarillo National Resource Center for Plutonium 1999 plan

    SciTech Connect (OSTI)

    1999-01-30

    The purpose of the Amarillo National Resource Center for Plutonium is to serve the Texas Panhandle, the State of Texas and the US Department of Energy by: conducting scientific and technical research; advising decision makers; and providing information on nuclear weapons materials and related environment, safety, health, and nonproliferation issues while building academic excellence in science and technology. This paper describes the electronic resource library which provides the national archives of technical, policy, historical, and educational information on plutonium. Research projects related to the following topics are described: Environmental restoration and protection; Safety and health; Waste management; Education; Training; Instrumentation development; Materials science; Plutonium processing and handling; and Storage.

  14. Feed Materials Production Center. Final phase-in report volume 1 of 15 operations and maintenance, October 25, 1985--December 31, 1985

    SciTech Connect (OSTI)

    Britton, W.H.

    1986-01-17

    The basic purpose of the transition program in the operations area was to obtain a detailed understanding of the FMPC operations with emphasis on equipment and organization, Also considered in this evaluation were several extant conditions at FMPC which may have significant impact on initiatives adopted in the operations area. These conditions are as follows: capital expenditures over the last several years averaged less than 20% of what might be considered minimum to sustain such a facility in a good operating condition; the production load is ramping up placing greater demands on an old facility; the workforce is relatively inexperienced (68% with less than five (5) years) at FMPC; plans are in place to institute major upgrading of FMPC facilities; the RFP described the need for a major effort in the Environment, Safety and Health Area. Considering the above concerns, the transition program was focused in the following areas: Procedures - An inexperienced workforce operating in an atmosphere requiring rigid compliance with more rigorous environmental criteria necessitates clear, concise up-to-date procedures to enhance performance; Training - New equipment, new people and rigorous environmental constraints demand an aggressive, focused training program. Equipment - Site conditions are not conducive to reliable equipment performance. Specific knowledge of forecasted equipment performance is imperative to control the present and plan the future. Restoration - The massive planned expenditures must be well understood to ensure that the future production needs are satisfied and that priorities are aligned with need. Maintenance - Based on the site descriptions provided in the RFP, it was clear that the past maintenance practice has been reactive. The facility upgrade program, to be successful, must be complemented by an agressively managed maintenance program.

  15. Transuranic (TRU) Waste Processing Center- Overview

    Broader source: Energy.gov [DOE]

    DOE established the TRU Waste Processing Center (TWPC) as a regional center for the management, treatment, packaging and shipment of DOE TRU waste legacy inventory. TWPC is also responsible for managing and treating Low Level and Mixed Low Level Waste generated at ORNL. TWPC is operated by Wastren Advantage, Inc. (WAI) under contract to the DOE's Oak Ridge Office.

  16. Materials Characterization Center state-of-the-art report on corrosion data pertaining to metallic barriers for nuclear-waste repositories

    SciTech Connect (OSTI)

    Merz, M.D.

    1982-10-01

    A compilation of published corrosion data on metals that have been suggested as canisters and overpack materials is presented. The data were categorized according to the solutions used in testing and divided into two parts: high-ionic strength solutions (such as seawater and brine) and low-ionic-strength waters (such as basalt and tuff waters). This distinction was made primarily because of the general difference in aggressiveness of these solutions with respect to general corrosion. A considerable amount of data indicated that titanium alloys have acceptably low uniform corrosion rates in anticipated repository sites; the other possible corrosion failure modes for titanium alloys, such as stress corrosion cracking and delayed failure due to hydrogen, have not been sufficiently studied to make any similar conclusions about lifetime with respect to these particular degradation processes. Other data suggested that iron-base alloys are sufficiently resistant to corrosion in basalt and tuff waters, although the effects of radiation and radiation combined with elevated temperature have not been reported in enough detail to conclusively qualify iron-base alloys for any particular barrier thickness in regard to uniform corrosion rate. The effect of overpack size on corrosion rate has been given little attention. A review of long-term underground data indicated that temperature and accessibility to oxygen were too different for deep geologic repositories to make the underground corrosion data directly applicable. However, the characteristics of corrosion attack, statistical treatment of data, and kinetics of corrosion showed that corrosion proceeds in a systematic and predictable way.

  17. Center for Electrochemical Energy Science | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their...

  18. DOE Energy Frontier Research Centers (EFRCs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Idaho National Laboratory Idaho Falls ID Center for Materials Science of Nuclear Fuel Wolf, Dieter 10,000,000 Develop predictive computational models, validated by experiments, ...

  19. Center for Energy Nanoscience at USC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics The Center for Energy Nanoscience (CEN) synthesizes a variety of semiconductor nanostructure materials to exploit their unique geometrical, electrical, and optical...

  20. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3,072 Material Simulations in Joint Center for Artificial Photosynthesis (JCAP) PI: Frances A. Houle, Lawrence Berkeley National Laboratory Edison 3,072 LLNL MFE Supercomputing...

  1. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  2. Voluntary Protection Program Onsite Review, Mission Support Alliance, Llc, Volpentest Hazardous Materials Management and Emergency Response (Hammer), Federal Training Center- September 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Recertification of MSA/HAMMER as a Star Participant in the Department of Energy Voluntary Protection Program.

  3. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 - Toilets and Urinals (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  4. Carolinas Energy Career Center

    SciTech Connect (OSTI)

    Classens, Anver; Hooper, Dick; Johnson, Bruce

    2013-03-31

    Central Piedmont Community College (CPCC), located in Charlotte, North Carolina, established the Carolinas Energy Career Center (Center) - a comprehensive training entity to meet the dynamic needs of the Charlotte region's energy workforce. The Center provides training for high-demand careers in both conventional energy (fossil) and renewable energy (nuclear and solar technologies/energy efficiency). CPCC completed four tasks that will position the Center as a leading resource for energy career training in the Southeast: • Development and Pilot of a New Advanced Welding Curriculum, • Program Enhancement of Non-Destructive Examination (NDE) Technology, • Student Support through implementation of a model targeted toward Energy and STEM Careers to support student learning, • Project Management and Reporting. As a result of DOE funding support, CPCC achieved the following outcomes: • Increased capacity to serve and train students in emerging energy industry careers; • Developed new courses and curricula to support emerging energy industry careers; • Established new training/laboratory resources; • Generated a pool of highly qualified, technically skilled workers to support the growing energy industry sector.

  5. Plant-based Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant-based Materials Catalysis Center for Energy Innovation teams with consumer goods and ... announced a research program with the Plant PET Technology Collaborative (PTC) to ...

  6. Danforth Center Tour | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Danforth Center Tour Danforth Center Tour As part of our Events & Topics in Bioenergy and the Environment series, we hosted a tour to the Donald Danforth Plant Science Center to...

  7. Assessments InfoCenter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessments InfoCenter Assessments InfoCenter The U.S. Department of Energy's (DOE) enterprise assessment programs provide line management, Congress, and other stakeholders with an independent evaluation of safety, emergency management, security and cyber performance and programs to ensure these, and other critical areas as directed by the Secretary of Energy, are appropriately addressed. Assessment related information is made available to DOE senior management and stakeholders, such as

  8. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  9. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    SciTech Connect (OSTI)

    1999-06-01

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  10. Northwest Region Clean Energy Application Center

    SciTech Connect (OSTI)

    Sjoding, David

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  11. ARM - External Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govExternal Data Center External Data Center Order Data Description of External Data Streams Data Viewers and Plots (selected data sets) XDC Documentation External Data Center The ...

  12. Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Energy Frontier Research Center HomeEnergy ResearchEFRCsSolid-State Lighting Science ...

  13. Information Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Information Center Congressional Testimony Testimony to Congress by various members of OE. Library Repository of reports and documents; fact sheets; presentations and other documentation from peer review events; and Federal Register notices. Educational Resources Educational material on the generation, transmission, and usage of electricity as well as how the electric grid works and how it needs to be modernized. Reporting Reporting to OE including Electric Disturbance Incidents and

  14. 2010 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CV Subban, Q Zhou, A Hu, TE Moylan, FT Wagner and FJ DiSalvo Journal of the American Chemical Society, 132(49), pp 17531-17536, 2010 DOI: 10.1021ja1074163 Pt-Decorated PdCo@PdC...

  15. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.; Decker, S. .R; Bu, L. T.; Zhao, X. C.; McCabe, C.; Wohlert, J.; Bergenstrahle, M.; Brady, J. W.; Adney, W. S.; Himmel, M. E.; Crowley, M. F., ":The O-Glycosylated Linker from...

  16. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a cryo-ultra-microtome, to be transferred into the microscope while being held at liquid nitrogen temperatures. Plans are being made for a two day workshop on operating and...

  17. Center for Lightweighting Automotive Materials and Processing

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Analytical Resources > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differential Electrochemical Mass Spectroscopy (DEMS) Electron Microscopy X-Ray Diffraction Analytical Resources Differential Electrochemical Mass Spectroscopy (DEMS) Electron...

  19. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory in Oak Ridge, Tennessee. The annual user meeting combines oral presentations, poster sessions, workshops and tutorials into a compact program designed...

  20. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Res. 47, 6426-6433 (2008). Jang, H. W., S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, D. A. Felker, ...

  1. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Lu, J. Bernholc, and B. Sumpter, "Electron Transport in Molecular Electronics Systems," J. Phys. Conf. Series 16, 283 (2005). V. V. Osipov, A. G. Petukhov, and V. N....

  2. Center for Nanophase Materials Sciences (CNMS) - Microsocpy,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical composition in sample environment. 4-circle X-ray diffraction 4-circle plus translation stage, high temperature, in-plane thin film diffraction. Also texture,...

  3. Organic Photovoltaics | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics As an overarching goal, the CEEM OPV group seeks to understand conjugated polymer and small molecule semiconductor blends that function as the active layer in solar cell devices. The effort brings together a cohesive and mutually complementary set of experts to understand what may appear at first sight to be unrelated phenomena. Indeed, the collective CEEM OPV effort very recently led to the design, processing, structural characterization, theoretical understanding and

  4. People | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Administration/Staff Name E-mail Address Telephone Title Allen, Jane jane [at] iee [dot] ucsb [dot] edu (805) 893-3488 Business Officer Auston, David auston [at] iee [dot] ucsb [dot] edu (805) 893-3376 Executive Director Bowers, John bowers [at] ece [dot] ucsb [dot] edu (805) 893-8447 Director Faculty/Researchers Name E-mail Address Telephone Group(s)* Bazan, Guillermo bazan [at] chem [dot] ucsb [dot] edu (805) 893-5538 OPV Bowers, John bowers [at] ece [dot] ucsb [dot] edu (805) 893-8447

  5. Research | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration | (NNSA) Research at NNSA sites spans the entire electromagnetic spectrum Tuesday, August 23, 2016 - 11:12am Learn about the electromagnetic spectrum through the science and technology used within the Nuclear Security Enterprise. Helicopter You might see an NNSA helicopter in your city supporting national security by conducting radiation assessments in preparation for large events like the national party conventions, the Boston Marathon, and the Super Bowl.

  6. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsletters People Contact Us Upcoming Events and Latest News Call For Proposals - Next Cycle Spring 2016 CNMS User Meeting - August 10-12, 2016 Career Opportunities Recent News:...

  7. Past Events | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seminar Series John Papanikolas: Visualizing Charge Carrier Motion in Nanowires Using ... Personal Perspectives on Advancing Energy Sustainability Seminar Series Vidvuds ...

  8. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solid. Inelastic neutron scattering measurements of Fe1-xCoxSi alloys were combined with quantum mechanics based calculations to show why the alloys exhibit unusual softening as...

  9. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its start, it is clear to me the obvious advantages of becoming an active user, and I hope that you will too. The success of CNMS is strongly dependent on the cutting-edge...

  10. 2012 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 10.1021nl301642g Interconversion of Inverse Opals of Electrically Conducting Doped Titanium Oxides and Nitrides CV Subban, IC Smith, FJ DiSalvo Small, 8(18), pp 2824-2832, 2012 ...

  11. Center for Nanophase Materials Sciences (CNMS) - Nanomaterials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of magnetic nanosystems. Additionally, support of classical atomistic and coarse-grained molecular dynamics methods as well as self-consistent field theoretic approaches are also...

  12. Project Updates > Partnerships > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARTNERSHIPS Why Partnerships? Project Updates News + Events Partnership Project Updates CONTENT COMING SOON New Abstracts Open Solicitations New Collaborations Open TCI...

  13. Center for Nanophase Materials Sciences (CNMS) - Microsocpy,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas environmental cell holder for conducting in-situ gas reactions at pressures to 1 atm. and temperatures up to 1000C. This new holder complements other specializedin-situ...

  14. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics, National Academy of Science of Ukraine, Kiev, Ukraine 8 Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE,...

  15. Center for Nanophase Materials Sciences Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... overall theme of understanding and controlling the complexity of electronic, ionic, and molecular behavior at the nanoscale to enable the design of new functional nanomaterials. ...

  16. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 1-2, 2015. Instructions for preparing posters: Tabletop poster boards and adhesive Velcro tabs will be provided for mounting posters. You may bring your poster to the...

  17. 2011 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FW Wise, DA Muller, and RD Robinson Nano Letters, 11(12), pp 5356-5361, 2011 DOI: ... Block copolymer based composition and morphology control in nano-structured hybrid ...

  18. 2014 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HD Abrua, D Muller, and T Hanrath ACS Nano, 8(5), pp 5315-5322, 2014 DOI: 10.1021... TA Arias, HD Abrua, and DA Muller Nano Letters, 14(3), pp 1453-1459, 2014 DOI: ...

  19. Resources | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Simulation Techniques 1. MATLAB program for calculating drift mobilities of III-V compound semiconductors using the Rode iterative method. Click here to download Online...

  20. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Controllable Complex Oxide Heterointerface" - Zhiqun Lin, Georgia Institute of Technology "Crafting Functional Nanocrystals by Capitalizing on Nonlinear Block Copolymers...

  1. Center for Nanophase Materials Sciences (CNMS) - Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that limit the optimal electronic and optoelectronic properties of semiconductors. "Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in...

  2. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Newsletter 2010 Welcome Sean Smith CNMS Division Director Editor's Note: On August 1, the CNMS was pleased to welcome its new director, Sean Smith, who joined us from the...

  3. Iowa lab gets critical materials research center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE hub is set to be the largest R&D effort toward alleviating the global shortage of rare earth metals.

  4. Center for Nanophase Materials Sciences (CNMS) - Instructions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forms. Use the links below to download each of the necessary forms. CNMS Proposal Form (LaTex version) - You must use the latest version from one of these links Neutron Scattering...

  5. 2015 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films CR DeBlase, K Hernndez-Burgos, KE Silberstein, GG Rodrguez-Calero, RP Bisbey, HD Abrua, ...

  6. 2013 > Publications > Research > The Energy Materials Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sulfur for Lithium-Sulfur Batteries W Zhou, Y ... of battery systems D Gunceler, K Letchworth-Weaver, R Sundararaman, KA Schwarz and TA Arias Modeling and Simulation in ...

  7. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may be required to access online publications. L. R. Baylor, W. L. Gardner, X. Yang, R. J. Kasica, M. A. Guillorn, B. Blalock, H. Cui, D. K. Hensley, S. Islam, D. H....

  8. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Good Solvent," Soft Matter 5 (9), 1897-1904 (2009). Arenholz, E.; van der Laan, G.; Yang, F.; Kemik, N.; Biegalski, M. D.; Christen, H. M.; Takamura, Y, "Magnetic Structure of...

  9. News | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aug 28, 2013 "Morphology-dependent light trapping in thin-film organic solar cells" -- CEEM faculty Jon Schuller's research published in Optics Express. Jun 7, 2013 CEEM Faculty ...

  10. Publications | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Bahk, Je-Hyeong; Yazawa, Kazuaki; Shakouri, Ali; Youngs, Megan; and Pantchenko, Oxana An online simulator for thermoelectric cooling and power generation, 2013 IEEE Frontiers in ...

  11. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alkemade, P.F.A.; Miro, H.; van Veldhoven, E.; Maas, D. J.; Smith, D. A.; Rack, P. D., ... Jo, J. Y.; Chen, P.; Sichel, R. J.; Baek, S. H.; Smith, R. T.; Balke, N.; Kalinin, S. V.; ...

  12. Upcoming Events | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Events Events Upcoming Events Past Events

  13. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Reaction with Tin Anodes: Experiment and Theory," ... for High Avidity Microbial Capture," ... Layers of Proton Exchange Membrane Fuel Cells," J. Phys. Chem. ...

  14. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brankovic, S. R.; Strasser, P.; Mavrikakis, M., "Bifunctional Anode Catalysts for Direct Methanol Fuel Cells," Energy Environ. Sci. 5, 8335-8342 (2012). Ryckman, J. D.;...

  15. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N.; Kalinin, S. V.; Rodriguez, B. J., "Probing Charge Screening Dynamics and Electrochemical Processes at the Solid-Liquid Interface with Electrochemical Force Microscopy,"...

  16. Center for Nanophase Materials Sciences (CNMS) - Nanomaterials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THEORY INSTITUTE (NTI): THEORY, MODELING & SIMULATION CAPABILITIES NTI Computational Cluster The NTI maintains a 12 teraflop Beowulf cluster in support of the capacity-level...

  17. Travel & Hotels | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time and hassle saved will be more than worth it. UC Santa Barbara is an easy 5 minute cab ride from the Santa Barbara Airport, see taxi information below. For Santa Barbara...

  18. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Technique to automatically measure electron beam diameter and astigmatism," J. Vac. Sci. Tech. B 24, 2956-2959 (2006). Choi, Y. R., P. D. Rack, S. J. Randolph, D. A. Smith, and D....

  19. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy for chemical analysis Organizers: Sergey Shilov and James Burgess (Bruker Optics) Local Contact: Brad Lokitz, ORNL Event overview: Join us to learn about Infrared and...

  20. Center for Lightweighting Automotive Materials and Processing

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Center for Nanophase Materials Sciences (CNMS) - Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    officio seat on the SAC. Proposal Review Committees (PRCs) Evaluation of General User (GU) proposals will be carried out by appropriately constituted Proposal Review Committees....

  2. Home > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst aging The Muller group helps determine aging mechanisms in fuel cell nanoparticle cata... A recipe for the future Prof. Darrell Schlom and his research group are cooking...

  3. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meet various research needs. The chemical or physical exfoliation of graphite is a straightforward method to produce graphene with least synthesis effort, since it takes advantage...

  4. Center for Nanophase Materials Sciences (CNMS) - Macromolecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymerization: Extensive expertise in free radical and controlled radical (ATRP, NMP, RAFT) polymerizations. Ring Opening Polymerization: Expertise in the controlled ring-opening...

  5. Directions & Parking | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    round-a-bout onto Mesa Road. Make a left turn at the second stop light onto University Plaza. Make a left turn into Lot12. U.S. 101 From the North Take the Los Carneros exit...

  6. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NIST), Gaithersburg, MD where I lead a project on Nanoparticle Assembly in Complex Fluids. Before joining NIST, I completed my Ph.D. in 2001 in Polymer Science and...

  7. Center for Nanophase Materials Sciences (CNMS) - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Zutic, "Semiconductor Spintronics," Acta Physica Slovaca, 57, 565-907 (342 pages) (2007). ... Zutic, I., J. Fabian, and S. C. Erwin, "Bipolar Spintronics: from Spin injection to ...

  8. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solids, and thin films. Non-ambient options include controlled temperature and humidity cells, flow cells, and grazing-incidence SAXS for in-plane characterization of thin...

  9. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The results of the user survey we conducted are presented in this issue. The UEC elections have just concluded, and our users community has elected a new committee to serve...

  10. The Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relationship between the probability of negative entropy producing states (i.e., violations of the second law of thermodynamics), the probability of positive entropy...

  11. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alcohol-free facility. The Guest House is a 3 floor, 47 room, 71 bed inn (23 rooms with King beds and 24 rooms with 2 ex-long double beds). All rooms have a mini fridge and...

  12. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anions where capable of inducing cage formation. In a current user project (for Ken Jacobson, NIH), we are preparing polyamido(amine) (PAMAM) dendrimers for investigation as...

  13. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  14. Bisfuel links - Research centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research centers http://bioenergy.asu.edu/" target="_blank">Center for Bioenergy and Photosynthesis

  15. Management options for implementing a basic and applied research program responsive to CS technology base needs. Task VIII. Review existing CS materials R and D programs

    SciTech Connect (OSTI)

    Not Available

    1980-02-28

    Possibilities for setting up a basic and applied research program that would be responsive to the Conservation and Solar energy base needs are considered with emphasis on the area of materials research. Several organizational arrangements for the implementation of this basic and applied research program are described and analyzed. The key functions of the system such as resources allocation, and program coordination and management follow from two fundamental characteristics: assignment of lead responsibility (CS and the Office of Energy Research, ER); and nature of the organizational chain-of-command. Three options are categorized in terms of these two characteristics and discussed in detail. The first option retains lead responsibility in ER, with CS personnel exercising sign-off authority and filling the coordination role. Option 2 places lead responsibility with CS program office management, and utilizes the existing chain-of-command, but adds a Basic and Applied Research Division to each program office. Option 3 also places lead responsibility with CS, but within a new Office of Basic and Applied Research, which would include a Research Coordinator to manage interactions with ER, and Research Managers for each CS program area. (MCW)

  16. Material and energy recovery in integrated waste management system - An Italian case study on the quality of MSW data

    SciTech Connect (OSTI)

    Bianchini, A.; Pellegrini, M.; Saccani, C.

    2011-09-15

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation was then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it.

  17. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    SciTech Connect (OSTI)

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-15

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  13. Treatment approach, delivery, and follow-up evaluation for cardiac rhythm disease management patients receiving radiation therapy: Retrospective physician surveys including chart reviews at numerous centers

    SciTech Connect (OSTI)

    Gossman, Michael S.; Wilkinson, Jeffrey D.; Mallick, Avishek

    2014-01-01

    In a 2-part study, we first examined the results of 71 surveyed physicians who provided responses on how they address the management of patients who maintained either a pacemaker or a defibrillator during radiation treatment. Second, a case review study is presented involving 112 medical records reviewed at 18 institutions to determine whether there was a change in the radiation prescription for the treatment of the target cancer, the method of radiation delivery, or the method of radiation image acquisition. Statistics are provided to illustrate the level of administrative policy; the level of communication between radiation oncologists and heart specialists; American Joint Committee on Cancer (AJCC) staging and classification; National Comprehensive Cancer Network (NCCN) guidelines; tumor site; patient's sex; patient's age; device type; manufacturer; live monitoring; and the reported decisions for planning, delivery, and imaging. This survey revealed that 37% of patient treatments were considered for some sort of change in this regard, whereas 59% of patients were treated without regard to these alternatives when available. Only 3% of all patients were identified with an observable change in the functionality of the device or patient status in comparison with 96% of patients with normal behavior and operating devices. Documented changes in the patient's medical record included 1 device exhibiting failure at 0.3-Gy dose, 1 device exhibiting increased sensor rate during dose delivery, 1 patient having an irregular heartbeat leading to device reprogramming, and 1 patient complained of twinging in the chest wall that resulted in a respiratory arrest. Although policies and procedures should directly involve the qualified medical physicist for technical supervision, their sufficient involvement was typically not requested by most respondents. No treatment options were denied to any patient based on AJCC staging, classification, or NCCN practice standards.

  14. Savannah River Technology Center monthly report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This document contains many small reports from personnel at the technology center under the umbrella topics of reactors, tritium, separations, environment, waste management, and general engineering. Progress and accomplishments are given.

  15. BLM Operations Center | Open Energy Information

    Open Energy Info (EERE)

    303-236-8857 ParentHolding Organization: Bureau of Land Management Website: www.blm.govnocsten.html Retrieved from "http:en.openei.orgwindex.php?titleBLMOperationsCenter...

  16. CenterPoint Energy Sustainable Schools Program

    Broader source: Energy.gov [DOE]

    The Sustainable Schools Program focuses on energy savings through behavioral and operational improvements, and may be used along with CenterPoint Energy’s SCORE and Load Management programs. It...

  17. Savannah River Technology Center. Monthly report, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report covers the progress and accomplishments made at the Savannah River Technology Center for the month of May 1993. Progress is reported for projects in the following areas: reactors, tritium, separations, environmental, waste management, and general. General projects are: an eight week tutorial of the Los Alamos National Laboratory developed Monte Carlo Neutron Photon (MCNP) code; development of materials and fabrication technologies for the spallation and tritium targets for the accelerator production of tritium; and a program to develop welding methods to repair stainless steel containing helium.

  18. Centers | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Print Text Size: A A A FeedbackShare Page EFRC Map Centers ordered alphabetically by state and then by institution California Light-Material Interactions in Energy Conversion (LMI) Ralph Nuzzo, California Institute of Technology Center for Nanoscale Controls on Geologic CO2 (NCGC) Donald DePaolo, Lawrence Berkeley

  19. Golden Reading Room: FOIA Requester Service Centers and Public Liaisons |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FOIA Requester Service Centers and Public Liaisons Golden Reading Room: FOIA Requester Service Centers and Public Liaisons U.S. Department of Energy http://energy.gov/management/foia-contacts

  20. Data Center Energy Efficiency Best Practices Workshop (Providence, RI)

    Broader source: Energy.gov [DOE]

    This workshop, which will be held at the Rhode Island Convention Center, covers why energy-efficient data centers are critical and discusses energy efficiency opportunities and energy management improvement processes.